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RESUMO

Anilises geoquimicas sio caracterizadas pela aquisicio de medidas de mnltiplas
variiveis analiticas. Nesse sentido, a geragio de amplos bancos de dados geoquimicos
possibilita estudos a predi¢do ou estimativa de valores analiticos ausentes ou complexos de
medir. O beneficiamento da bauxita é uma etapa fundamental para a producdo de aluminio,
onde a determinacio de teores de silica reativa (SiR) e alumina aproveitiavel (AA) sdo
fundamentais. Os métodos analiticos para obtengio desses teores apresentam limitagSes
associados. & baixa repetitividade e reprodutibilidade dos resultados. A partir da predigio
quantitativa de valores provenientes da técnica ndo supervisionada Self-Organizing Maps, este
estudo visa desenvolver sistematicamente a estimagio de teores ausentes da composi¢io
quimica de amostras de bauxitas da base de dados de trés projetos, a partir das varidveis:
recuperagio em massa (%) e teores (%) de AA; SiR; ALO; total; Si0, total; Fe;O, TiO2; e/ou
PF. Cada projeto foi submetido a exclusdo parcial de valores de AA e SiR, em proporgdes de
20%,30%,40% e 50%, com a finalidade de investigar a técnica SOM como metodologia de
quantificagéo de SiR e AA. Segundo os resultados obtidos na correlagiio € comparagio dos
valores preditos pelas analises SOM e os teores originais, foi possivel avaliar a técnica SOM
como ferramenta preditiva capaz de fornecer resultados analiticos satisfatérios com até 50%
de exclusdo de dados. Especificamente, os melhores resultados demonstram que a AA pode
ser obtida por predi¢io com maior correspondéncia que a SiR, tendo por base os parimetros e
variaveis envolvidas no estudo. A correspondéncia na natureza das amostras bem como a
maior quantidade de varidveis analiticas inseridas também sdo quesitos que proporcionaram
melhores resultados preditivos.

Palavras-chave: Predicdo Geoquimica Analitica; Self-Organizing Maps (SOM);
Bauxita, Silica Reativa (SiR), Alumina Aproveitavel (AA).

ABSTRACT

Geochemical analysis provides the acquisition of multiple analytical variables
measurement. Accordingly, the generation of large geochemical databases enables prediction
studies or analytical estimate of missing values or complex measuring. The processing of
bauxite is a key step in the production of aluminum, in which the determination of SiR and
AA are very relevant. Analytical methods for achieving these concentrations have limitations
associated with poor repeatability and reproducibility of results. Based on the quantitative
prediction values from a unsupervised technique Self-Organizing Maps, this study aims to
develop, systematically, the estimation of missing concentrations of the geochemical
composition of bauxite samples of a database from three projects, from the variables: WT (%)
and contents (%) of AA; SiR; total Al,Os; total $i0,; Fe;0; TiO,; and / or PF. Each project
was submitted to partial exclusion of AA and SiR values, in proportion of 20%, 30%, 40%
and 50%, to investigate the SOM technique as quantification methodology of SiR and AA.
According to the results obtained in the correlation and comparison of predicted values for
SOM analysis and original values, it was possible to evaluate the use of SOM technique as a
predictive tool capable of providing satisfactory analytical results with up to 50% of deleted
data. Specifically, the best results demonstrate that AA can be obtained by prediction with the
higher correspondence than SiR, based on the parameters and variables involved in the study.
The match in the nature of samples and the greatest amount of embedded analytical variables
are also parameters that provided better predictive results.

Key-words: Analytical Geochemical Prediction, Self-Organizing Maps (SOM),
Bauxite, Reactive Silica (SiR), Available Alumina (AA).
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1. INTRODUCAO

Atualmente, no campo da geofisica e geoquimica existem indmeros avangos que
permitem a aquisi¢io de dados multivariados com alta densidade de amostragem. A andlise
desses dados, no entanto, exige maiores estudos metodologicos, sobretudo em relagdo a
otimizagdo e exploragdo das relacGes entre as diversas variaveis analisadas. Com a fase
exploratoria das bases de dados, torna-se possivel inovar e aperfeicoar na integragio e

interpretagdo, bem como prever e/ou estimar valores analiticos.

Fraser e Dickson (2007) afirmam que Self~-Organizing Maps (SOM) pode ser
considerado uma ferramenta de analise exploratoria de dados, e o método pode ser utilizado
para realizar grandes categorias de operagies, tais como previsdo ou estimativa, agrupamento,

classificagdo, reconhecimento de padrdes, e / ou redugéo de ruido[1].

Em relagdo ao exposto, torna-se possivel implementar anilises SOM como uma
ferramenta alternativa auxiliar & predi¢io de dados analiticos. Para abordar tais analises, serdo
exploradas medidas quantitativas relacionadas aos teores de Alumina Aproveitavel AA

(gibbsita) e Silica Reativa SiR (caulinita) relativas a depésitos de bauxitas provenientes de

diversas regides do Brasil.

Inicialmente, foram feitas analises quimicas em trés projetos desenvolvidos no
Laboratério de Caracterizagio Tecnologica (LCT) Departamento de Engenharia de Minas e
de Petroleo (PMI) da Escola Politécnica da USP. Das variaveis obtidas nas analises quimicas
em amostras de bauxitas, os resultados de AA e Sir apresentaram baixa repetitividade e
reprodutibilidade, além de altos custos analiticos, que tornam a realizagdo de tais analises
pouco vidveis [2]. Desse modo, técnicas de predi¢io tais como SOM, possibilitam a

estimativa de valores analiticos em dados multivariados.

A bauxita é um minério composto geralmente por gibsita, caulinite, ¢ impurezas como
o ferro, produzido pelo desgaste das rochas igneas em condigdes geomorfologicas favoraveis.
Por ser um agregado de varios minerais de aluminio, torna-se a matéria prima da qual ¢ obtida
a alumina e, consequentemente, o aluminio [3]. No cenario econdmico do Brasil, o minério
apresenta posi¢do de destaque, detém a terceira maior reserva mundial e ocupa a segunda

posi¢do como pais produtor [4].
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O interesse econdémico da bauxita depende de sua composigdo mineraldgica,
fundamentalmente das propor¢des de gibbsita e argilominerais contidos, sendo estes
considerados deletérios para o aproveitamento econdémico, que na pratica é usualmente
avaliada através de andlises quimicas especificas ou, mais raramente, de anélises

mineralogicas em estudos mais detalhados[5].

O conhecimento de um extenso banco de dados originado a partir de amostras de
bauxitas, analisadas em trés projetos, ¢ medidas a partir da determinagdo de teores de AA e
SiR, contém elementos necessarios e significativos para a predigdo de valores desconhecidos
destas variaveis em outras amostras. A partir da técnica de analises de dados multivariados
SOM, esta pesquisa visa gerar mapas auto-organizados, que representem as relagdes das
amostras no complexo espago n-D das varidveis. O mapa auto-organizado sera a base para a

predi¢io das amostras sintéticas que visam se aproximar dos valores obtidos com as anélises

quimicas de AA e SiR.

As analises SOM serdo divididas em quatro fases para cada um dos projetos A, Be C.
As amostras foram analisadas quimicamente a partir das varidveis: recuperagido em massa (%)
e teores (%) de (1) Al,O; aproveitavel; (i) SiO; reativa;(iii) ALOstotal; (iv) SiO; total; (v)
Fe; 0, (vi) TiO2; e/ou (vii) Perda ao Fogo (PF). As fases constam da omissao parcial de valores
analiticos em propor¢do de 20%, 30%, 40% e 50% de AA e SiR para as amostras. Os
resultados preditos pela técnica SOM serdo correlacionados com os valores quimicos

analiticos originais, e avaliados segundo estatistica descritiva.

Uma vez demonstrada a correlagio entre os dados originais e os preditos, as andlises
preditivas por SOM podem auxiliar aos usuérios de andlises quimicas em bauxitas na
obtengdo de teores de AA e SiR com baixo custo material e pessoal. Os testes analiticos ¢
probabilisticos nos referidos resultados trariam seguranga e confianga para a utilizagio da

ferramenta como fator de referéncia em outras analises.

Os experimentos desenvolvidos neste projeto visam abordar discussdes relativas a
validagio de uma nova sistematica se obter teores de AA e SiR, com baixo custo operacional,
sem comprometer os padrdes de qualidade dos resultados. Além disso, os resultados visam
promover o uso da técnica SOM como ferramenta preditiva capaz de fomecer resultados
analiticos satisfatorios. Desse modo, os resultados que serfio abordados a seguir abrem

precedente a aplicagdo da técnica em estudos geoquimicos, geofisicos ou nas mais diversas
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areas, onde ocorram semelhantes incertezas ou necessidades em relagio 3 predido, integracio

e interpretagio de dados multivariados.

2. OBJETIVOS

2.1. Objetivo Geral

Desenvolver sistematicamente a predigio de composicio quimica/mineral6gica em

amostras de bauxitas, utilizando a técnica ndo-supervisionada SOM.

2.2. Objetivos Especificos

* Implementar ¢ validar uma metodologia de quantificacdo de silica reativa ¢ alumina
aproveitavel em bauxitas brasileiras usando a técnica de analise espacial de dados
SOM;

* Avaliar comparativamente as andlises quimicas convencionais e os valores de
predi¢do obtidos por meio da técnica SOM, confrontando-as em termos quantitativos
bem como no que se refere a repetitividade em diferentes tipos de bauxitas;

* Direcionar pardmetros que possam auxiliar o uso da técnica de analises multivariado

SOM para a predigao, classificacio, integragio e interpretagiio de dados geofisicos.

3. REVISAO BIBLIOGRAFICA

3.1. Aspectos histéricos da técnica SOM

Em 1984, o cientista Teuvo Kohonen desenvolveu uma monografia intitulada "Auto-
Organiza¢do e Memdria Associativa", que despertou o interessc de cientistas e pesquisadores
da érea de redes neurais. Tal publicagiio impulsionou os algoritmos de auto-organizagio,
chamados de rede neural SelfOrganizing Maps (SOM) e Learning Verctor Quantization
(LVQ) a se tornarem mais populares. Os crescentes usos da técnica tornaram necessario
estudo e abordagem mais criteriosa sobre a analise de padrdes estatisticos, bem como maiores
detalhamentos sobre a técnica SOM. Devido a isso, em 1998 Kohonen realizou uma segunda
investigagdo, que teve inicio em 1981, com foco principal em SOM, e que deu origem 2
publicagio do artigo cientifico The Self-Organizing Maps (1998), em seguida, trés edigdes do

livro com o mesmo nome [6].
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A partir da concepcdo da base conceitual, as anilises SOM foram utilizadas em
diversas e extensas pesquisas ao longo da Gltima década. Alguns destes estudos serfio
abordados abaixo, sobretudo aqueles com enfoque na aplicagdo das analises SOM em

pesquisas geocientificas, envolvendo geofisica e geoquimica.

Strecker ¢ Uden (2002) usaram o principio ndo supervisionado da analise SOM, de
que a rede neural € livre para procurar, reconhecer e classificar padrdes estruturais em um
campo vetorial n-dimensional que abrange todos os conjuntos de dados 3D de atributos
sismicos em 3D [7]. Os autores concluiram que os mapas gerados por SOM proporcionam
uma oportunidade para interpretacdes geologicas de grandes volumes de dados sismicos 3D,
quando a estratigrafia é largamente mascarada nos dados empithados. Além disso, os autores
conseguiram a distingdo de caracteristicas fisicas em escala de reservatorio, além de
demonstrar a importincia da heterogeneidade de reservatdrios ¢ otimizagdo subsequente da
respectiva exploragio através de furos horizontais de pocos. Tais resultados proporcionaram

relevantes contribuicdes geofisicas [8].

Penn (2005) abordou a necessidade de visualizagio adequada para os conjuntos de
dados de alta dimensdo. A pesquisa foi exemplificada com os principais elementos

geoquimicos, bem como com dados hiperespectrais [9].

Freser e Dickson (2007) propuseram abordagem computacional baseado em SOM para
compreender e sintetizar a quantidade de dados exploracionistas adquiridos em estudos
geologico, geoquimico e geofisico. Eles introduzem a andlises SOM como capaz de relacionar
¢ ajudar no processo de criacdo de conhecimento a partir de dados complexos e dispares com
a finalidade de integrar e interpretar os dados. Além disso, os autores enfatizaram que SOM ¢
uma ferramenta de analise exploratoria nfo supervisionada e orientada a dados, a partir da

qual os padrdes resultantes, fronteiras e relagdes sdo internamente derivados [1].

Seguidamente, Carneiro et af. (2012) demonstraram a eficacia do uso SOM como uma
ferramenta para analise de dados geofisicos tendo em vista a geragio de mapas geologicos
semiautomaticos.Para tanto foram desenvolvidas analises de classificacio de varidveis
geofisicas adquiridas a partir de levantamento aéreo realizado sobre a Amazdnia brasileira. As
analises SOM permitiram identificar e mapear de maneira confiavel informagdes geofisicas

relacionadas com as diversas unidades geologicas. As analises foram realizadas a partir dos



13

dados magnetométricos ¢ gamaespectrométricos e foram relacionados a processos geologicos
presentes na areal10].

Cracknell ez al. (2015) usaram SOM para descrever as caracteristicas geofisicas ¢
mineralégicas do regolito e rocha. A aplicagio de aprendizagem estatistica em diversas
camadas de dados de sensoriamento remoto terrestre, em escala continental, permitiu-lhes
explorar as multiplas influéncias da rocha-mie, do clima, biota, paisagem e tempo no
desenvolvimento do regolito ¢ suas propriedades. Os autores apresentaram um exemplo de

modelagem geocientifica interdisciplinar, realizada a partir de dados geofisicos e

geoquimicos[11].

3.2, Modelo Neuronal
O sistema nervoso é organizado em termos de um nimero imenso de unidades
elementares chamadas neurdnios, dispostos em constelagdes funcionais ou conjuntos de
acordo com os contatos sindpticos que fazem umas com as outras [12]. Além disso, os
neurdnios sio estruturas de ocorréncia natural que vieram em uma imensa variedade de

tamanhos e formas independentemente de seu funcionamento fisiolégico e psicoldgico.

Entretanto, a neurofisiologia apresenta a célula neural como um sistema dinimico
complexo controlado pelos sinais neurais, campos elétricos pequenos e numerosos

transmiss@o quimicas e moléculas transmissoras de mensagens [6].

3.2.1. Redes Neuronais Artificiais
Hoje em dia, o principio basico dos neurdnios no cérebro humano, é usado em
multiplas aplicagdes de controle, baseado nas redes neurais artificiais (RNA's), com a
finalidade de criar inteligéncia auténoma. Essas redes, a saber, teriam a capacidade de
aprender, fazendo o possivel para alcangar um elevado grau de autonomia e com a capacidade
de aproximar fungdes altamente ndo-lineares, o que permite a construgio de sistemas

complexos de modelagem geral.

A fabricagdo de modelos, universalmente, busca o desenvolvimento de uma imagem
sintética, consistente ¢ instrutiva da natureza [13]. Estes modelos, por sua vez, consistem em
um set finito de variaveis e multiplas interagGes quantitativas, dispostos a descrever, mediante

processos, estados e sinais em um sistema real com a finalidade de analisar, descrever,

explicar, prever e simular.
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A Inteligéneia Artificial (IA), por defini¢ho, é a capacidade que as maquinas tém em

realizar atividades que exijam inteligéncia humana. Kohonen [6] descreveu trés categorias

principais que dominam a pesquisa de redes neurais artificiais: (i) os modelos de transferéncia

de estado;(ii) os modelos de transferéncia de sinal; e (iii) a aprendizagem competitiva.

Por uma questdo de fato, os modelos de transferéncia de estado séo

casos especiais de circuitos de relagbes nfo-lineares, € os modelos de
transferéncia de sinal sio muito semelhantes as expressdes em teoria da
aproximagdo matematica. (...) A aprendizagem competitiva é relacionada a
quantificagdo vetorial. Em todos os campos tradicionais existe abundéncia
de resultados matematicos que poderiam ser transferidos para as
investigagoes de redes neurais [6].

E importante mencionar que a IA nfio ¢é restrita s6 aos campos de modelagem e

controle.Os temas que envolvem suas teorias e principios tém atraido pesquisadores desde

1956 e, na atualidade, sdo utilizados nas mais variadas e diversas aplicagBes. Um dos

exemplos relacionados envolve a estimativa de pardmetros nio mensuriveis como uma

alternativa para os observadores convencionais e sensores de hardware em sistemas de

processos quimicos. A afinidade ocorre dada a formulagio simples, capacidades de adaptagio

e de requisitos minimos de modelagem inerentes a IA [14].

Baseado no principio de que a rede neural é livre para procurar, reconhecer e

classificar padrdes estruturais em um campo vetorial n-dimensional, TA é usada nos estudos

nido supervisionado da andlise SOM[8]. Em geral, as RNA's demonstram-se como uma

solucio emergente para reconhecimento de padrdes.

3.3.

Self-Organizing Maps

O Self-Organizing Maps (SOM) é uma técnica eficaz para a
visualizagio dados de elevada dimensionalidade. Os principios do
SOM envolvem o mapeamento ordenado de uma distribui¢io de alta
dimensio em uma rede regular de baixa dimensio. Deste modo, SOM
¢ capaz de converter relagdes estatisticas complexas, ndo-lineares
entre os itens de dados de alta dimensdes em relagbes geométricas
simples apresentadas via display de baixa dimensio. Como ele
comprime informagGes, preservando as relagdes topoldgicas e
métricas mais importantes dos itens de dados primarios no visor, a
técnica pode também ser utilizada para produzir alguns tipos de
abstragdes. Estes dois aspectos, visualizagfio e abstragio, podem ser
utilizados de diversas formas nas tarefas complexas, tais como
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analise de processo, percepgio automatizada, controle e comunicagéo
[15].

Baseado em um modelo neural, na quantizagfo de vetores € medidas de similaridades,
os algoritmos usados por SOM analisam e integram dados em n-dimensdes, cada uma
representando uma variavel de entrada, continua ou categoérica, com a finalidade de gerar um
mapa em duas dimensdes que permita interpretar dados complexos e dispares. Por esta razio,

¢ fato que SOM tem uma abordagem na andlise, integracio, visualizag@o e interpretagdo de
dados.

SOM pode ser usado para predigio, estimago, agrupacdo de padrio de
reconhecimento e reducio de ruido. Porém, para representar os multiplos valores das amostras
de entrada em um espago 2D, torna-se necessario um treinamento dos vetores-nos, a partir de
medidas de similaridade vetorial, seguindo regras matemdticas como produto escalar,

cosseno, distincia euclidiana, dentre outras.

3.3.1. O Subespaco Adaptativo SOM (ASSOM)
O principio do subespago adaptativo de SOM, do inglés Adaptative-Subspace SOM
(ASSOM) foi introduzido por Kohonen em 1995 como um tipo especial de SOM, com a
finalidade de resolver uma das limita¢Ses de estes analises: as unidades dos mapas obtidas sdo

sensitivas para alguma classe de padrdes elementares que ainda n3o podem ser consideradas

como caracteristicas invariaveis.

A saber, ao definir filtros que correspondem aos vetores, se gera um padrio de
subespagos, ¢ podem ser excluidos alguns grupos pela transformacgio automatica do vetor. Por
essa razio, no ASSOM, as diferentes unidades de mapas se desenvolvem em filtros de muitas
caracteristicas basicas nfio variaveis, onde a unidade do mapa n3o estd descrita pela longitude
de um tnico vetor, mas esta & destinada a representar um subespaco linear compreendido pelo
vetor basico adaptativo, processo alcangado pelo tipo de aprendizagem, que deve modificar

todos os vetores base que definem um subespago definido.

Assim, o ASSOM, baseado da combinagio do SOM e o método de subespago, ¢ uma
alternativa ao método de andlise de padriio de componentes principais (PCA) de geragio de
recurso, verificado em diferentes estudos € abordagem neural para PCA [16]. Além disso,

ASSOM pode gerar filtros de recursos espacialmente ordenados, devido as interagGes enire os
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modulos de processamento [17]. E importante mencionar que as equagdes matematicas dos
filtros ndo necessitam ser fornecidas a priori; os filtros e suas variagbes se moldam

automaticamente em resposta a transformagio tipica que ocorre na observagio [6].

Efetivamente, ASSOM n#o reproduz padrdes particulares, mas sim a transformagio
que ocorre nos seus proprios micleos. Portanto, funciona a partir de um algoritmo que difere
dos demais algoritmos de rede neural, com a finalidade de reproduzir um ntimero de multiplas

caracteristicas invariantes.

A entrada para uma matriz ASSOM ¢ tipicamente uma sequéncia de padrio vetorial
treinado para abranger certo subespago, normalmente de elevadas dimensfo. Tal entrada sera
adaptada para capturar a transformagdo nele codificada [18]. A fun¢io mais essencial de
ASSOM, portanto, ¢ o aprendizado competitivo de episédios, o que nfio denota um padrio,
mas sim uma sequéncia de padrdes construida a partir das unidades do mapa. Isto denota um

processo que s6 ocorre neste modelo de rede neural.

3.3.2. Feedback do Espaco Adaptativo SOM
O Feedback SOM (FSOM) ¢ um uma variagio do modelo SOM, mas com 0 mesmo
tipo de aprendizagem de vetores. Desse modo, torna-se possivel a classificagiio temporal, a
partir da expansfio ou contragio dos padrdes de espago temporal, segundo foi demonstrado
por [19]. Estes autores apresentam a estrutura de FSOM como clara e simples, onde a
informacio de mapeamentos realizados é reincorporada ao espago de entrada (inpuf) com a

finalidade de processar a informacio temporal.

O ASSOM, portanto, pode ser considerado um método capaz de classificar os padres
adaptados espacialmente. Por outro lado, o FSOM, apesar das vantagens relacionadas ao
processamento dos dados, possui uma complexa classificagdo dos respectivos padrdes. Assim,
torna-se necessario introduzir o termo Subespago Adaptativo do Feedback SOM, do inglés
Feedback Adaptive-Subspace SOM (FASSOM), o qual consiste na combinagio dos dois
modelos. Esta combinacéo é produzida a partir das fungdes de padrdes de reconhecimento de

saida e entrada dirigida, que podem ser feitas de forma adaptativa.

Por conseguinte, a arquitetura de reconhecimento de padrdes definida como um
FASSOM ¢ uma variagdo do modelo ASSOM, proposto com a finalidade de gerar resultados

da classificagdo obtidos por algum algoritmo para o padrio de reconhecimento. Para esta
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variagdo, ASSOM s6 proporciona as caracteristicas de entrada e o processo de aprendizagem

adaptativo de ASSOM nos subespagos é controlado por informagZo de maiores niveles [6].

A ideia principal do FASSOM ¢é que o fator de uma taxa de aprendizagem do
algoritmo n&o supervisionado possa ser escalonado. Assim, altos valores serfo obtidos se a
classificagio estiver correta e baixos valores serdio obtidos se a classificaciio estiver errada.
Desse modo, as agdes do FASSOM sfio regidas pela estratégia de feedback. Naturalmente, o
sinal resultante pode também se tomar negativo quando a classificagdo de treinamento estd

errada. Esta seria, portanto, uma punigo tal como ocorre no aprendizado supervisionado em

geral[6].

3.4. Aprendizagem da Quantizacio vetorial
A aprendizagem dos vetores é baseada em um treinamento de vetores em né (node
vectors) que pode ser descrito como um processo de dois passos iterativos: (i) competitivo; ¢
(i) comparativo. Esses processos sdo aplicados para cada amostra de entrada até que os
vetores sejam capazes de representar a estrutura e os padrdes de as amostras de entrada a

partir das respectivas similaridades [1].

O passo competitivo, tendo como base medidas de similaridades vetoriais, ¢ feito pela
comparacdo da amostra de entrada e todos os vetores dentro de um raio particular. O vetor
mais semelhante, ou vencedor (winning) terd suas propriedades modificadas de forma
percentual, sendo que suas caracteristicas buscario semelhanga junto 4 amostra de entrada. Ja
no passo cooperativo, todos os vectores dentro de um determinado raio do vetor vencedor sio
também modificados, de modo a que as suas propriedades também sio alteradas por uma

percentagem para procurar assemelhar-se 4 amostra de entrada em questfio.

Ao final, com a aplicagiio desses passos a cada dado de entrada repetidamente, os
vetores iniciais, agora vetores em no, irfio representar a estrutura original dos dados de entrada
de forma automitica e organizada. Sem precisar parametrizacio ou supervisio, os seed-
vetors, conhecidos como “Best Matching Units” (BMUs), geram um mapa auto-organizado

em duas dimensdes, feito a partir de dados multivariados complexos.

Os BMUs sio projetadas para o hipersuperficie envolvente e transformadas para
produzir a representa¢io dos dados no mapa auto-organizado. Uma vez calculada, o mapa

pode ser visualizado de muitas maneiras [20]. Algumas destas sdo components plots (CP);
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um K-means do vetor dos valores de BMU;e a “matriz de distincia unificada” {Matriz-U),

utilizada neste projeto.

3.4.1. Visualizaciio e interpretagac do mapa: Matriz de

distancia unificada (Matriz-U)
A visualizagio Matriz-U mostra a similaridade relativa, em termos de distancia
Euclidiana, entre vectores BMU adjacentes, representadas como nés no mapa auto-
organizado. Assim, cada BMU na matriz contém a medida de similaridade do vector segundo

as caracteristicas entre as unidades de neurdnios adjacentes [21].

A matriz-U usa vetores de codigo SOM para gerar uma visualizagio 2D de dados
multivariados, conseguido pelas relagdes de propriedades topolégicas entre os neurbnios apos
a processo de aprendizagem. Este algoritmo gera uma matriz, na qual cada componente tem
uma distincia entre dois neurbnios adjacentes. Altos valores da matriz representam uma
regido de fronteira entre os neurdnios, ¢ baixos valores representam um elevado grau de

semelhanga entre os neurdnios.

O método Matriz-U tem a vantagem de apresentar de maneira mais clara as estruturas
complexas ndo-lineares. Em uma matriz-U sfio descritas tanto as distdncias dentro de um

aglomerado quanto a forma das distincias entre os diferentes neurdnios [20].

Dentro da representagéo demonstrada pela Matriz-U, o tamanho dos hexagonosvariam
de acordo com o nitmero de amostras de entrada, representada pelo respectivo BMU. As
variagbes sdo mostradas em uma escala de cores da temperatura.Desse modo, o azul (mais
frio) indica similaridade e proximidade entre nés adjacentes,enquanto as dissimilardade,

maior distincia sdo representadas com amarelos, laranjas e vermelhos (mais quente) [10].

Depois do treinamento e aprendizagem dos vetores em né, e o agrupamento do SOM
segundo o apresentado na visualizagio Matriz-U, é necessario conhecer as bases para uma
Otima interpretagdo dos mapas. Entretendo, os vetores treinados de SOM sdo eficientemente
utilizados para a visualizagio, além de que & fundamental no processo de agrupamento para

reduzir a complexidade computacional [22].

O grafico de vetor quantizado ordenado, o qual é uma superficie elastica gerada pelas

proje¢Oes ndo-lineares e os métodos de agrupamento da analise SOM,devem ser interpretados
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com base na estatistica, seguindo a distribuicio dos dados de entrada, onde cada n6 tem duas

dire¢des principais encontradas pelas diferengas entre os vetores nas proximidades.

Em primer lugar, cada né6 ou BMU apresentado no mapa ¢ um agrupamento inicial
das amostras de entrada, ¢ no mapa Matriz-U2D sio percebidas as mudangas de densidade,

produzidas pelas estruturas locais na topologia, preservando sempre a projecéo do espago dos

dados de alta dimensio.

A contribuigio das varidveis é significativa na estrutura agrupada se os componentes
da uma 4rea local de SOM so grandes, segundo as diferengas vetoriais. Isso proporcionaria
um amplo poder explicativo no dominio dos valores. Além, o poder discriminatério das
variaveis ¢ mais evidente nos extremos dos grupos, onde se observam varidveis com menor

semelhanca em relagio s amostras proximas.

E importante mencionar que este tipo de interpretagio visual é aplicavel para alta
quantidade de dados, a saber, matrizes extensas. Ao contrario, a resposta Matriz-U seria

complexa e dificil de interpretar, além de fomentar um maior etro associado.

3.5. Aplicaciio das Anilises SOM como Estimador
As analises SOM sio catalogadas como associativas e estimadoras, devido ao fato de
que todos os padrdes dos mapas de saida (mapas auto-organizados) estio relacionados com os
dominios de cada dado de entrada. Desse modo, o mapa gerado pode ser classificado em

simétrico ou assimétrico.

No mapeado simétrico (Associativo), cada componente do mapa SOM (saida)
corresponde a um sinal de entrada ndo condicionado, com as vantagens de rapida
aprendizagem para ordenar e uma distribuicio de tamanho uniforme. Porém, a fungiio
simétrica pode gerar defeitos topolégicos globais no centro do mapa, devido ao fato de que os
dados de saida replicam os defeitos dos dados de entrada. Assim, a fungdo precisaria de

muitas iteragdes para corrigir o mapa ruidoso.

Em comparagio com a fungfio simétrica, a vizinhanga assimétrica acelera o processo
de corre¢do, mesmo na presenca do defeito. No cntanto, esta assimetria tende a gerar um

mapa distorcido. Isto pode ser suprimido pela fungio de vizinhanga assimétrica [23].
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3.6. Estudos de Silica Reativa (SiR) e Alumina Aproveitavel (AA)
nas Rochas de Bauxita
A bauxita, normalmente apresentada como uma mistura de gibbsita Al (OH); e
caulinita Al,Si,0; (OH)4, € a matéria prima a partir da qual é obtida a alumina. Através da
transformagfio da alumina & obtido aluminio (Al}{24]. Bauxitas de alto teor geralmente
apresentam de 40 a 50% de AL, O; e de 10 a 24% de Fe,0;.

Por essa razdo, a bauxita, formada de rochas aluminosas que mobilizam minerais,
elementos e substincias quimicas, é considerada a principal matéria prima utilizada na
industria de aluminio. O metal é um excelente condutor de calor e eletricidade, tendo a leveza

COmo sua maior vantagem.

A composigdo mineralogica da bauxita, considerada como simples, ¢ estimada e
avaliada através de anilises quimicas de teores totais de Alz0s, SiO2, Fex0s e TiOz,
usualmente por fluorescéncia e difragdo de raios X, e teores especificos de Al2Os aproveitavel
¢ 8i0z reativa, por via imida. As estimativas mineraldgicas sdo feitas nas bauxitas baseados

nas seguintes suposigdes [5):

* Teores de AA se relacionam a teores de gibbsita;

* Teores de SiR se relacionam a teores de argilominerais, em especial caulinita;
* Os teores de 6xi-hidréxidos de ferro assumem os valores dos teores de Fe,0s;
* Os teores de Gxidos de titdnio assumem os valores obtidos para TiO-;

* O teor de quartzo esti relacionado & silica ndo reativa (SiO; total - SiO,

reativa).

Apesar do entendimento sobre a simplicidade da composigsio quimica das bauxitas, o
processo para a obtengfio de dados analiticos nio obedece ao mesmo entendimento. As
técnicas e ferramentas utilizadas para a caracterizagdo quimica das bauxitas apresentam
limitagSes que causam baixa repetitividade e reprodutibilidade, aliados aos altos custos

analiticos.

A fluorescéncia de raios X (XRF) é uma das técnicas mais eficiente para
caracterizago quimica de materiais. A XRF determina, elementos de maneira qualitativa e

quantitativa através dos comprimentos de onda e intensidades de emissSes caracteristicas
[25].
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No entanto, a técnica é pouco eficiente para analisar elementos de nimero atémico
baixo, bem como ¢ apresenta limitagdes na calibragfio. Desse modo torna-se necessaria a

comparagdo com padrSes semelhantes ds amostras e com teores ja conhecidos.

Por outro lado, a difragio de raios-X é um dos métodos mais utilizados na
caracterizagdo de materiais cristalinos, Através da técnica, torna-se possivel o
desenvolvimento de andlises microestruturais, tanto no aspecto qualitativo quanto no
quantitativo, para a obteng¢dio das propriedades fisicas da bauxita. No entanto, a quantidade de
dano por espalhamento elastico 1itil é centenas de vezes maiores do que para os elétrons sem
todos os comprimentos de onda e, portanto, as energias e exigéncias sobre o tamanho da

amostra e nimero de particulas é muito maior [26].

E importante mencionar que a técnica de via mida também apresenta limitagGes, tais
como: erros analiticos, substitui¢des de elementos dentro da estrutura cristalina de um mineral
¢ presen¢a de minerais com composigdes quimicas similares. Isso torna o uso da técnica

limitado, bem como acarreta em desvios na estimativa mineral [2].
4. MATERIAIS E METODOS

4.1. Selecdio de Amostras de Bauxita para as Andlises SOM
As amostras de bauxitas selecionadas para as analises SOM sdo parte das bases de
dados de trés projetos compostos por particularidades litologicas diferentes, O confronto entre

diferentes projetos teve por finalidade a obtencdo da melhor representatividade e

comparabilidade entre estes.

A estimativa ¢ avaliagdo da composigio mineralogica das amostras de bauxita foram
desenvolvidas mediante analises quimicas de teores totais de Al0s, 8102, Fe203 e TiOz, XRF,
e teores especificos de Alz03 aproveitavel e SiOz reativa, por via Umida no Laboratério de
Caracterizacio Tecnolégica (LCT), do Departamento de Engenharia de Minas e de Petrdleo

(PMI) da Escola Politécnica da Universidade de S&o Paulo (EPUSP).

Efetivamente, foi priorizada a variabilidade quimica e composicional entre elevados ¢
baixos teores de SiR e AA. Desse modo, a variabilidade da proveniéncia das amostras, ¢ os
distintos processos aos que foram submetidas, tais como ensaios de classificagfo e separagio

de minerais, viabilizaram uma extensa e diversa base de dados para realizar as analises SOM.
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Os dados adquirides do Projeto A contam com dez grupos compostos por sessenta e
nove amostras cada um. As varidveis caracterizadas a partir de cada amostra sio: os teores
totais de Alz0s3, SiOz, Fe20s e suas porcentagens, ¢ de recuperagio em massa (WT).Com
relagio aos dados utilizados no Projeto B contam com os teores das variaveis: Al20s, Si0z,
Fe20s ¢ TiO2 em valor, em porcentagem ¢ Perda ao Fogo (%PF) para vinte e cinco grupos de
amostras, subdivididos em seis grupos de oito amostras ¢ o dezenove grupos de nove
amostras. Por fim, o Projeto C conta com um grupo de setenta amostras, caracterizados em

teores totais de: Al203, SiO2, Fe203 ¢ TiOz, em porcentagem, e Perda ao Fogo (%PF){2].

4.2. Procedimento Experimental
Uma vez selecionadas as amostras, foi necessaria a preparago e organizagio destas
com a finalidade de alimentar as anélises de predigfio dos valores a partir da técnica SOM. Na
preparagdo de amostragem foram excluidos valores aleatérios de AA e SiR para posterior
estimativa pelas analises SOM. Finalmente, os valores preditos foram comparados com os

valores de originais obtidos por andlises quimicas de teores por XRF ou via timida no LCT.

4.2.1. Preparacido das amostras
Com a finalidade de medir e avaliar a extensdio das analises SOM, foram modificadas
as tabelas de dados de amostragem com a omissdo aleatéria de valores de AA e SiR. Para
cada projeto, foi filtrado aleatoriamente 20%, 30%, 40% e 50% do total de amostras, para a
geragio das novas tabelas de entrada a serem utilizadas na predigio de valores. A tabela de

dados, entdo, foi introduzida na plataforma SOM a partir do software SiroSOM®.

Nesse sentido, o espago de dados foi introduzido de forma aleatéria. Como varidveis
de entrada foram utilizadas a recuperacdo em massa (%), teores (%) ¢ recuperacoes
metaliirgicas (%) das varidveis: (i) ALO; aproveitavel; (ii) SiO; reativa; (iii) Fe,Os, (iv) TiOz,
e Perda ao Fogo (PF).

Tabela 1- Preparagio de amostras para cada projeto

At E20% | E3o% | Eao% | Esox \'i
Projeto A | 690 | 140 | 210 | 280 | 350 4
Projeto B | 219 43 72 96 120 7
ProjetoC | 70 14 21 28 35 6
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4.2.2. Predicdo de valores a partir da Técnica SOM
A predigdo de valores de teores de AA e SiR das bauxitas foi desenvolvida segundo a
adaptacdo de uma rutina proposta [10], onde os dados estimados pela técnica tém como base
as distincias entre os vetores disponiveis [1]. Para os dados com menor resolugio espacial, o
processo de estimativa tradicional € dado por substitui¢do, onde os valores sio produzidos a
partir dos vetores das BMU’s. Muitas vezes os conjuntos de dados resultario em previsdes

tendenciosas, o que faz necessério a utilizagdo de técnicas como do vizinho mais proximo
[27].

A pesquisa contou, além da equipe envolvida, com o suporte técnico do instituto de
pesquisa australiano CSIRO, com a colaboragio do pesquisador Stephen Fraser (CSIRO), que

presume na disponibilidade do software SiroSOM® para as andlises em ambiente de SOM.

Uma grade hexagonal foi escolhida como formato de visualizagdo; a superficie de um
hiper volume toroidal foi utilizada para a projeg¢io dos neurénios ou BMU’s. Para a definigio
do tamanho de mapa auto-organizavel resultante, foi utilizada a equagio 1 (Eq. 1), onde [a]
representa o numero de amostras inseridas na plataforma SOM [28]. Dessa maneira, um
tamanho de mapa foi escolhido como adequado para este estudo exploratorio. Apods a gerago

do mapa auto-organizado, foram produzidas as imagens da Matriz-U e CP.

SizeSOM = Sx\/ [n] Eq. 1

Os CP possibilitaram visualizar e quantificar a contribui¢fio das varidveis analisadas
para cada neurdnio resultante no mapa auto-organizével, sendo possivel verificar as relagSes
entre as respostas das véarias componentes. A matriz-U possibilitou, entio, a classificagéo dos

dados relacionada ao vetor similaridade construido a partir dessas amostras.

Como resultado, foram obtidos os BMU's para cada amostra e variavel analisada, bem
como BMU's para esses mesmos pardmetros nas amostras com andlises incompletas. A
predicdo de valores foi determinada, portanto, a partir dos BMU's para cada amostra original,
refletindo em teores sintéticos representativos para amosiras onde tais teores eram

originalmente desconhecidos.

E importante mencionar que para a imputacio dos dados, o cédigo SiroSOM®
trabalha com a combinacgdo de duas abordagens e variagdes: (i) a substituicdo dos valores

inexistentes pelos valores BMU's; (ii) a melhora dos valores estimados mediante um processo
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iterativo. Em (i), o SOM inicial & calculado e determina um conjunto inicial de valores de
substitui¢do. Ja em (ii), os valores de SOM sdo recalculados para substituir novamente os

valores néo encontrados nos dados de entrada,

4.2.3. Testes de Correlacio e Avaliacio dos Resultados
A correlagio dos resultados apresentados pelas analises classicas e a partir da técnica
SOM foi realizada mediante analises estatisticas descritivas, com a realiza¢do de tabelas e
graficos de dispersio que confrontam os valores obtidos para cada amostra estudada das

variaveis aleatorias continuas: AA e SiR.

As medidas de dispersdo foram feitas em torno média, tal como a variincia, a
covaridncia, para determinar a correlagio entre as varidveis calculadas ¢ medidas
simultaneamente, e o coeficiente de correlagio com a finalidade de normalizar a covaridncia
em intervalo -1 e 1. A correlagio ¢ calculada pela Eq. 2:

Cov(X.Y)

COT'T'[X, Y] = W Eq. 2

Consequentemente, em um grafico de dispersdo foi representada uma reta de
regressdo, a qual gera uma correlagio linear, dado um conjunto de pares ordenados, para

determinar uma relagio funcional pelo método dos minimos quadrados.

A correspondéncia dos valores obtidos pelas andlises SOM e os estudos quimicos foi
medida pela diferenca entre as médias e medianas dos teores, seguido pela porcentagem de

erro relativo, conforme a Eq. 3:

ERP =

Tsom—Trcr
Tier

«100 Eq.3

Onde Tsou representa os teores obtidos pela ferramenta de SOM e Tycr os teores

originais, obtido pelas analises de laboratério.

Além disso, foi calculado a média ¢ mediana de cada variavel com a finalidade de

obter o erro porcentual das amostras de cada projeto.

E importante mencionar que, segundo a comparagdo dos valores, é possivel medir o
alcance de SOM mediante a avaliagio da porcentagem de erro e correlagfo, para determinar a

efetividade para a omissdo de dados de AA e SiR em fatores de 20%, 30%, 40% e 50%.
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5. RESULTADOS

5.1. Analises a partir da Téenica “Self-Organizing Maps”
Foram produzidos 12 mapas auto-organizados visualizados pela Matriz-U ¢ cada um
dos CP (varidveis) em cada etapa da exclusdo das amostras dos trés projetos. O nimero de

linhas e colunas foi calculado a partir do tamanho de mapa desejado (Sizegom).

Além de isso, a0 fim de cada analise SOM, fot calculado o erro de quantificagfo final
(Qe), que representa a distancia média entre cada vetor e o seu respectivo BMU, medida da
resolugdo do mapa. Foi calculado, ainda, o erro topografico final (Te), que simula a proporgiio

de todos os vetores dos dados para os quais os principais BMU (primeiro e segundo) nio sdo

unidades adjacentes.

A tabela 2 apresenta os parimetros preenchidos e calculados na ctapa de inicializacio
da analises SOM para cada projeto, nas quatro fases de exclusdo de dados de 20%, 30%, 40%

e 50%, representados por E20%, Eaon, B, Esos respectivamente.

Tabela 2- Valores da etapa de inicializacio de SOM

Inicializagfio
Sizesom E20% Esox Eao% Esox
Fifas [ Col| Qe Te Qe Te Qe Te Qe Te
ProjetoA | 10 | 14| 0,341 | 0,190 0,300 § 0,190 ; 0,296 | 0,228 | 0,274 | 0,271
Projeto B 8 9 10,388 | 0,265 | 0,426 | 0,151 0,388 | 0,146 | 0,389 | 0,196
Projeto C 6 7 10,304 | 0,0286 | 0,147 0 0,419 | 0,100 | 0,391 0

Em seguida, no processo de treinamento, foi selecionado o tipo de vizinho para cada
vetor gaussiano. Além de isso, foi preciso definir dados robustos (rough) que tinham por
default o raio inicial R;;, raio final Rp e comprimento de treinamento Li, e os dados finos

(fine) calculados pelo SOM, apresentados na tabela 3.

A fim de representar a estrutura e os padrdes das amostras de entrada pelas
similaridades, 0 SOM utilizou os dados de raio e comprimento inicial para cada valor de

amostra de entrada.
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Tabela 3- Valores robustos e finos do processo de treinamento de SOM

Treinamento
Ri1 RL L1 Riz Rf2 L2
Projeto A 18 5 20 5 1 400
Projeto B 13 4 20 4 1 400
Projeto C 10 3 20 3 1 400

Apés a inicializaglio e o treinamento dos vetores, foram gerados os mapas de
Components Plots (CP) de cada varidvel, e a integracio dos mesmos na visualizagdo da
Matriz-U apresentados na figura 1, figura 2 ¢ figura 3 para os projetos A, B ¢ C,

respetivamente. A escala de cores de cada uma das figuras representa a contribugdo das

variaveis para cada umo dos mapas CP, e o nivel de dissimilaridade do mapa de Matriz-U.

Em primer lugar, na figura 1, os mapas de CP apresentam alta contribui¢do das
varidveis AA e WT, representada pela prevaléncia das cores quentes, a qual aumentou

proporcionalmente com a exclusio de dados para AA, e permaneceu aparentemente constante
para WT.

No entanto, os CP de Fe;0s apresentam uma tendéncia contraria s de WT e AA,
representada por cores frias que indicam baixa contribuigio da varidvel, com tendéncia
constante. No caso dos CP da SiR, o padrio de contribuigio é muito menos claro. Porém,
similar aos anteriores, observa-se uma baixa contribuigio da variavel que permaneceu

relativamente constante para as quatro fases de exclusdo de dados.

’

E assim como na Matriz-U, observa-se que a alta similaridade esta, sobretudo,
associada 4 elevada contribuigio da AA e a baixa contribui¢io de Fe,O;, evidenciando

correlagdo negativa da contribuicfo destas variaveis.
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SiR

Fe20s

Figura 1- Mapas auto-organizados - Projeto A: CP para cada varidvel e Matriz-U.

Na figura 2 sdo apresentados os mapas auto-organizados CP para cada uma das sete

variaveis do Projeto B, seguido de suas respectivas visualizagdes a partir da Matriz-U.

Em relagfio as CP, a figura 2 pode-se observar comoa AA segue o mesmo padrio de
alta contribuicdo que %Al,0; Total, assim como %PF. O contrario ocorre para os CP de SiR e
%Si0; Total, %TiO; e Fe,0s, que seguem o padrio de baixa contribui¢io dos nés para as
variaveis.

Apesar da contribui¢do das varidveis permanecerem relativamente constante segundo

sua representagdo de cores, as tendéncias e distribuigdes variam segundo a exclusdo de dados.

A maior contribui¢io aos grupamentos evidentes na Matriz-U é dada pelas varidveis
AA, %Al0; Total e %PF. Nio foram evidenciadas grandes mudangas quando comparando os

resultados de menores ou maiores exclusdes de dados.
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Figur

a 2- Mapas

organizados - Projeto B: CP para cada varidvel ¢ Matriz-U,
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Na figura 3 sfo mostrados os mapas auto-organizados CP das seis variaveis do Projeto
C e suas respetivas visualizaghes nz Matnz-1.

As visualizagdes de CP das variaveis dependentes da Alumina (AA ¢ %A0; Total),
seguem um padrio similar, independente das exclusdes de dados, de médias a altas
contribnipdes de vandveis. Em contraste, 2 vanavel Fe203 o
geral. Ji as varifvess SiR, %Si0s Tetal € %TH0h, dependentes da silica nas amosiras, seguem

um padrio completamente contririo ao das varidveis da alumina, onde predominam cores

frias, indicativas de contribuicio media a alta.

Total

%Ti02

Maximo Minimo

Figura 3- Mapas auto-organizados - Projeto C: CP para cada variavel e Matriz-U.
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Os agrupamentos de dados na Matriz-U para cada uma das exclusSes nio seguiram um
padrao especifico. No entanto, ha uma clara separacfio de, pelo menos, dois agrupamentos

caracterizados por altas contribuicSes de alumina e silica em regies distintas.

Em termos gerais, a visualiza¢io dos mapas auto-organizados em CP demonstra a
contribui¢do ¢ influéncia de cada variavel para a visualizagio Matriz-U, com a presenca das
Cores quentes para representar altas contribuigdes, e frias no caso de baixas contribui¢des na
predicio de dados. Desse modo, embora nio seja possivel distinguir um paddio de
comportamento segundo as porcentagens de exclusio de dados de AA e SiR nos trés projetos,
¢ possivel entender que ndo h grandes variagdes na Matriz-U a medida em que aumentam as
exclusdes de dados. Fato que demonstra a relagdo direita das variaveis e seus mapas de CP

para com o mapa integrado Matriz-U, pelo qual é feita a predigdo de dados.

5.2.  Valores preditos a partir da Técnica “Self-Organizing Maps”
A tecnica SOM, com o software SiroSOM® permitiu predizer 1414 pares de dados
excluidos das variaveis de teores de ALO; aproveitavel e SiQ, reativa, principais elementos
de controle na cadeia de produgio do aluminio. Além disso, a partir dos ajustes por BMU,

foram obtidos novos valores para cada uma das amostras nas varidveis de entrada.

5.3.  Correlagiio e Avaliacio dos Resultados
Com a finalidade de avaliar e simplificar a visualizagiio dos resultados obtidos pelo
SOM, foi calculada a média (m:) e mediana do teor (m«) de AA e SiR dos dados originais,

bem como os obtidos pelo BMU gerados pelas andlises em SOM.

Este procedimento foi realizado para cada projeto ¢ suas diferentes derivagdes com
porcentagens de exclusdo de dados. Os resultados sdo apresentados nas tabelas 4, 5, 6 e 7 com
a finalidade de comparar no sé a influencia da porcentagem excluida, mas também as

diferencas quanto 2 utilizagdo das varidveis e amostras de cada projeto.

Em termos gerais, pode-se notar que os coeficientes de correlagfio tanto da AA como
de SiR de todos os projetos ¢ efetiva, ou seja, mantém uma relagio positiva, que indica
proporcionalidade direita (Tabelas 4, 5, 6 ¢ 7. Apéndices A e B). Os resultados sdo coerentes,

portanto, levando em conta de que tratam da comparac¢do de uma mesma variavel.
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Tabela 4- Analises estadistico de AA e SiR. Projetos A, B, C. Excluséiio 20%.

Projeto A Projeto B Projeto C
AA B_AA SiR | B_SiR AA B_AA SiR B_SiR AA B_AA SiR B_SiR
M 36,92 | 37,09 | 624 | 5,72 | 32,98 | 31,83 |10,38| 10,34 | 37,94 | 37,96 |10,37| 10,43
M« | 40,90 | 40,62 | 5,17 5,23 | 36,06 | 542 |33,97| 572 |4890 | 48,43 | 4,40 | 3,95
Max, | 57,9 52,2 | 479 | 13,5 | 53,7 504 | 309 | 26,3 | 52,6 506 | 31,1 | 264
| Min, 3,0 10,9 3.2 27 5,7 8,0 2,4 4,0 9,2 10,9 is 2,9
ERP(%) 0,69 1,09 565,40 494,40 0,97 11,34
Corr 0,97 0,74 0,99 0,99 1,00 0,99
‘Tabela 5- Analises estadistico de AA e SiR. Projetos A, B, C. Exclusiio 30%.
Projeto A Projeto B Projeto C
AA BLAA | SiR | BSIR | AA BAA | SiR | BSIR | AA BAA | SiR | B_SR
M 36,92 | 35,76 (6,24 6,31 {3298 | 31,80 /10,38 10,34 | 3794 | 3539 [10,37! 8,87
M: | 4090 | 3894 |517 | 547 | 36,06 | 32,49 | 542 | 568 | 4890 | 42,14 | 4,40 | 4,12
Max, 57,9 51,8 |479| 18,2 | 53,7 49,9 30,9 | 26,7 | 52,6 496 | 31,1 | 21,9
Min, | 3,0 B | 12| 24 [B=EEENEN 24 | 43 G iEaEE 15 | 22
ERP(%) 5,03 5,50 10,97 4,61 16,04 6,80
Corr 0,95 0,73 0,99 0,99 0,98 0,99
Tabela 6- Anilises estadistico de AA e SiR. Projetos A, B, C. Exclusio 40%.
Projeto A Projeto B Projeto C
AA BAA | SR | BSIR | AA BAA | SR | BSR | AA B_AA | SiR | B_SiR
Vit 36,92 | 3587 |6,24| 5,67 | 32,88 | 31,83 |10,38| 10,27 | 37,94 | 35,87 |10,37| 10,286
M= | 40,90 | 38,85 |517| 533 | 3606 | 34,64 | 542 | 6,10 | 48,90 | 48,75 | 4,40 | 4,59
Max, | 57,9 51,3 |479]| 129 | 53,7 50,1 | 30,9 | 26,6 | 52,6 499 | 31,1 | 26,3
Wir, 3,0 6,4 1,2 2,2 5.7 7.8 2,4 4,2 9,2 10,7 1,5 3,7
ERP(%) 5,28 2,98 4,09 11,18 0,22 4,03
Corr 0,95 0,67 0,98 0,99 0,98 0,99
Tabela 7- Analises estadistico de AA e SiR. Projetos A, B, C. Exclusdo 50%.
Projeto A Projeto B Projeto C
AA BLAA | SiR | BSIR | AA BAA | SR | BSIR | AA BLAA | SR | B_SR
[ M 36,92 | 3552 624 574 | 3298 | 3138 110,38| 10,58 | 37,94 | 38,15 |10,37| 8,89
M« | 40,890 | 38,10 | 5,17 | 5,44 | 36,06 | 34,71 | 5,42 | 6,30 | 48,90 | 46,74 | 4,40 | 3,71
Max, | 57,9 50,7 47,9 | 13,2 | 53,7 49,8 | 309 | 26,8 | 52,6 495 | 31,1 | 225
Min 3.0 7.0 1,2 2,3 N 8,2 2,4 4,2 9,2 12,0 1,5 2,6
ERP(%) 7,36 4,95 3,90 13,92 4,63 18,66
Corr 0,92 0,60 0,99 0,98 0,99 0,98
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Além de isso, é possivel estabelecer um faixa de correlagdo entre 0,98 e 1 da AA nos
projetos B e C. No entanto, para o projeto A, a AA apresenta valor minimo de 0,92 e maximo
de 0,97, o que indica maior variancia entre AA inicial e a calculada pelo SOM. Em geral
pode-se observar que a correlagdo diminui na medida em que se aumenta a exclusdo para os

trés projetos, apesar da faixa de correlagio entre 0,92 ¢ 1, que sugere altos valores.

Os valores de SiR apresentam também uma correlagio inversamente proporcional 3
exclusdo das amostras. Porém, é menor em relagdo a correlagdio da AA, o qual é mais evidente
para o projeto A, com uma faixa de valores que varia entre 0,60 e 0,74. Para os projetos Be C

a correlacio de SiR se mantém alta, com variagio entre 0,98 € 0,99,

E importante mencionar que os erros porcentuais foram calculados segundo a
mediana, devido a que esta ¢ menos sensjvel a flutuacdes nos valores médios da varidvel e é
mais representativa para PopulagBes heterogéneas, tal como foram os grupos das varidveis
originais e calculadas [29]. Os valores maximos e minimos de teores originais e calculados

pelas analises SOM para cada projeto sdo ilustrados nos Apéndices C, D, E, F, Ge H.

6. DISCUSSAO

Esta pesquisa, que procura um melhor alcance na predigio e interpretagio de dados
geoquimicos, parte das limitagdes em relagio a visvalizacio adequada para os conjuntos de
dados diversos e de alta dimensionalidade, caracterizada pelas miltiplas varidveis. Assim, a
abordagem desta pesquisa lancou mio da técnica SOM, o que permitiu gerar vetores
decompostos, analisados para extrair a importancia relativa de cada um dos componentes
durante a classificaco. Tal abordagem favoreceu uma visdo sobre as relagOes complexas em
conjuntos de dados de alta dimensionalidade, como ¢é o caso das andlises geoquimicas. As
andlises SOM favorecem, portanto, a preservagio das relagdes topolégicas €, ao mesmo o

tempo, a producdo de um modelo estatistico decorrente do conjunto de dados [9].

As andlises estatisticas dos resultados obtidos no projeto A resultaram em alta
correlagio de AA. Porém, com maior varidncia em relagio aos projetos B e C. J4 em relagio
aos valores de correlagdo para a SiR, os resultados obtidos no projeto A apresentaram
resultados inferiores tanto em comparagio com os.projetos B e C, quanto com os resultados
obtidos para a AA. Uma questdo evidente € relativa ao maior mimero de amostras do

projeto.Essas amostras nio estiio completamente relacionadas em regides de origem. Além
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disso, observaram-se grandes discrepincias entre os teores dos 10 diferentes grupos de
amostras, estudados como um mesmo conjunto. Isso provavelmente ocasionou maior

variincia e incerteza na relacio das amostras de uma variavel especifica.

Além disso, no projeto A o maximo teor da SiR dos dados originais nfio & um valor
frequente (nfo & representativo) e, por vezes, apresenta teores muito maiores a mediana. Por
€ssa razdo, pode ser considerada a possibilidade de erros analiticos em determinadas
amostras. No entanto, os teores mdximos calculados pelas analises SOM nio foram
diretamente influenciadas por esses valores. A saber, os teores calculados pelo SOM seguiram

0 padrdo dos demais dados da varigvel SiR, tal como pode ser observado no apéndice D.

Em relacio ao projeto B, este apresentou os melhores resultados relativos 3 predigio
dos dados, quando comparado aos projetos A e¢ C. E notavel que a maior variabilidade e
dissimilaridades nos mapas de CP €, consequentemente, na Matriz-U integrados induziram a
possibilidade de predi¢io de maneira mais eficientemente. Estes resultados refletem o produto
da influencia de uma maior quantidade de varidveis, sem importar a diversidade de origem

das amostras de bauxitas analisadas.

Quanto ao projeto C, tornou-se clara a alta correlagdo tanto para AA como para SiR.
Porém, o estudo foi feito com poucos dados, o que refletiu em dimensges pequenas para o
tamanho do mapa auto-organizado. A saber, um mapa auto-organizado com baixa densidade
de neurbnios dificulta a étima interpretagdo visual, e proporciona em incremento do erro
associado. Além de isso, o alto valor de correlagio pode refletir em baixa significincia, dado

0 restrito mimero de amostras analisadas em C.

Em termos gerais, os resultados apresentaram alta correlacdo de valores entre as
varigveis medidas em laboratério e aquelas preditas pelo SOM. No entanto, em amostras de
bauxitas origindrias de multiplas fontes, foi notavel que predicdo de dados para AA teve
maior correlagdo com os resultados originais que as predi¢des obtidas para a SiR. Isso pode
ser explicado pela influéncia de outros pardmetros ou pela auséncia de varidveis relacionadas
ou dependentes entre si, que nio estavam presentes nas analises do projeto que envolveu

bauxitas provenientes de regides diversas (Projeto A).

Como sugestdes alternativas, a anilise quimica total realizada mediante o método de

absor¢3o atdmica poderia aportar varidveis tais como: porcentagem de 6xidos de cdlcio
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(% Ca0); oxido de magnésio (% MgO); e 6xido de potassio(% K»0). A inclusio destas

varidveis as andlises SOM seriam pardmetros influentes.

A obtengfo de melhores respostas da Matriz-U poder4 ser obtida a partir de analises
com alta densidade de dados inter-relacionados, bem como com a maior quantidade de
varidveis possiveis. A geragdo dos mapas CP de cada variave] é integrada no mapa auto-
organizado 2D (neste estudo evidenciado pela Matriz-U). Porém, a influéncia das diferentes
naturezas ¢ dependéncias das varidveis afetam a distribuicdo uniforme e a identificagio de
agrupamentos neste mapa. Isso € considerado como um fator influente na melhor prediggo de
dados, ou seja, a baixa correlagdo entre as distintas variaveis originais resulta numa 6tima

predico de dados desconhecidos.

7. CONCLUSOES

A predigdo de 1414 pares de valores para AA e SiR, mediante o uso da técnica nio-
supervisionada SOM, permitiu constatar a eficiéncia da técnica como ferramenta
complementar & geragdo de dados analiticos. Assim, o SOM passa a ser explorado nio apenas
como ferramenta de classificaglo, integragiio ¢ interpretagio de dados multivariados, como a

maioria dos estudos atvais o reconhecem, mas como uma ferramenta capaz de predizer teores

analiticos.

Baseado nas analises estatisticas desenvolvidas, a alta correlagio entre os valores
originais medidos pelas analises quimicas em laboratério e aquelas preditas por SOM
permitiu definir o a técnica como efetiva para prever dados com até 50% de auséncia de

valores em até duas varidveis simultineas entre outras varidveis.

Em rela¢do a influencia dos parimetros e varidveis utilizadas neste estudo, a técnica se
demonstrou mais eficiente quando utilizada em amostras originarias de fontes préximas.
Desse modo, as analises proporcionar o uso mais adequado da ferramenta SOM, implicando

em menores erros de amostragem.

Quanto maior for a quantidade de varidveis analiticas de entrada, menores serfio os
erros associados a predigdo de dados com o SOM. Desse modo, a realizagio de mais andlises
quimicas convencionais poderia gerar maior quantidade de varidveis, as qual podem

proporcionar melhores resultados para as predigdes, especificamente no caso da SiR.
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Os estudos ora apresentados foram desenvolvidos em varidveis de interesse
especificos (AA ¢ SiR). No entanto, outros estudos podem ser desenvolvidos futuramente no

sentido de explorar a predi¢do em maiores percentagens de exclusio de valores (acima de

50%), bem como em maiores quantidades de variaveis.
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