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ENERGIA

Trabalho apresentado à Escola Politécnica
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“Se você quiser descobrir os segredos do
Universo, pense em termos de energia,
frequência e vibração.”

-- Nikola Tesla



RESUMO

Com o aumento da demanda global por energia e a busca por métodos mais sus-
tentáveis, tecnologias baseadas na interação fluido-estrutura têm se destacado como al-
ternativas promissoras, especialmente para aplicações em pequena escala. Este estudo
investigou a viabilidade da geração de energia utilizando um cilindro fixo montado em um
sistema composto por molas, amortecedores e resistência. Por meio de simulações mul-
tif́ısicas e do método dos elementos finitos, foram resolvidas as equações de Navier-Stokes,
permitindo a obtenção de mapas detalhados de pressão, velocidade e potencial de geração
de energia ao longo do tempo. Para garantir a precisão dos resultados, o modelo foi
validado com base em dados experimentais e numéricos dispońıveis na literatura. Os re-
sultados indicam que é viável gerar energia em pequena escala para diferentes frequências
naturais dos cilindros em um ambiente controlado, estabelecendo uma base sólida para
estudos adicionais e otimizações futuras. Esses avanços são direcionados à melhoria da
eficiência de dispositivos de coleta de energia por meio de vibrações induzidas por vórtices
(VIV), contribuindo para o desenvolvimento de tecnologias sustentáveis.

Palavras-Chave – Vibrações induzidas por vórtices; coletor de energia; simulação
multif́ısica.



ABSTRACT

With the increasing global energy demand and the pursuit of more sustainable methods,
technologies based on fluid-structure interaction have emerged as promising alternatives,
especially for small-scale applications. This study investigated the feasibility of energy
generation using a fixed cylinder mounted on a system composed of springs, dampers, and
resistance elements. Through multiphysics simulations and the finite element method, the
Navier-Stokes equations were solved, allowing for the detailed mapping of pressure, velo-
city, and energy generation potential over time. To ensure the accuracy of the results, the
model was validated using experimental and numerical data available in the literature.
The results indicate that it is feasible to generate small-scale energy for different natural
frequencies of the cylinders in a controlled environment, establishing a solid foundation
for further studies and future optimizations. These advances are directed towards impro-
ving the efficiency of energy-harvesting devices through vortex-induced vibrations (VIV),
contributing to the development of sustainable technologies.

Keywords – Vortex induced vibrations; Energy harvester; Multiphysics simulation.
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34 Gráficos de forças para H = 30, L = 30 e Fres = 1, 0. Produzido pelo

Autor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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2.4 Número de Strouhal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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3.4.1 Parâmetros de malha e resolução . . . . . . . . . . . . . . . . . . . 51

3.4.2 Métodos de cálculo para CD, CL, St e suas limitações . . . . . . . . 53

3.4.3 Métodos de avaliação dos efeitos VIV e suas limitações . . . . . . . 55

4 Resultados 57
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1 INTRODUÇÃO

1.1 Contextualização

Pesquisas voltadas para alternativas às atuais fontes da matriz energética tornam-se

cada vez mais necessárias para alcançar um mundo mais sustentável. Motivada por essa

demanda de um planeta mais verde, a Organização das Nações Unidas (ONU) lançou a

Agenda 2030 para o Desenvolvimento Sustentável, adotada por todos os Estados Membros

da ONU em 2015, como um plano de ação para as pessoas, o planeta e a prosperidade

(ONU, 2015). Associados a esta Agenda, há 17 Objetivos de Desenvolvimento Sustentável

(ODS) e 169 metas associadas para erradicar a pobreza e a fome, como combater a

desigualdade e garantir uma proteção longeva ao planeta e seus recursos naturais através

de estratégias que melhorem a saúde e a educação, estimulando o crescimento econômico

e preservando os oceanos e as florestas (UNITED NATIONS, 2021). Uma forma de

contribuir que se enquadra no 7º ODS é através de pesquisa na compreensão e melhoria

tecnológica de fontes alternativas de energia.

Há uma variedade grande de alternativas às fontes da matriz energética atual, que

é altamente dependente de aplicação, desde geração de energia em grande escala para

atender população e indústria até soluções de geração de energia em situações remotas,

nos mais diversos meios, seja em terra, ar, água ou até mesmo no espaço. Atualmente,

véıculos não tripulados são utilizados para os mais diversos fins, como, por exemplo,

véıculos operados remotamente utilizados para manutenção de plataformas offshore, que

têm como fonte de energia elétrica baterias que, por vezes, precisam funcionar por um

longo peŕıodo de tempo e alcançar grandes distâncias; para isso THOMAS, QIDWAI e

KELLOGG (2006) argumentam que a complementação de estoques de energia a bordo,

com a coleta de energia do meio, pode fornecer maior capacidade de operação desses

véıculos. Os mesmos ainda compilam algumas fontes alternativas pasśıveis de embarques

em véıculos não tripulados (ROV Remotely Operated Underwater Vehicle), por exemplo.

Estas são resumidas na Figura 1. Embora ainda se lide com uma quantidade considerável
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Figura 1: Fontes de energias pasśıveis de coleta em véıculos não tripulados. Fonte: THO-
MAS, QIDWAI e KELLOGG (2006).

de fontes, a estimativa de energia sujeita a coleta de cada uma destas fontes é bem

diferente. A densidade de potência tem ordens de grandeza de diferença com a tecnologia

atual. A Tabela 1 lista exemplos da variação de densidade de potências das diferentes

tecnologias.

Tabela 1: Densidade de potência de alguns métodos de coleta de energia Fonte: LI et al.
(2016)

Tecnologia & Densidade de potência [W/cm³]

Acústico (100 dB) 9, 60× 10−7

Termoelétrica (diferença de 10ºC) 4, 00× 10−5

Vibração (Forno microondas) 1, 16× 10−4

Piezoelétrica (passos) 3, 30× 10−4

Células solares (ao meio dia) 1, 50× 10−2

Neste contexto, o presente trabalho tem como tema uma destas alternativas: a vi-

abilidade de geração de energia da interação mecânica em sistemas de fluido-estrutura

(LI et al., 2016), que potencialmente tem densidade de potência próxima às tecnologias

piezométrica e de vibração listadas na Tabela 1. Mais especificamente, será abordada

a vibração induzida por vórtices (VIV) do sistema fluido-escoamento em torno de cor-

pos rombudos, com análise paramétrica do escoamento. Esta escolha temática se dá

pela possibilidade de aplicação no contexto do petróleo offshore. Propõe-se, então, criar

e validar um conjunto de códigos para avaliar a geração de energia por vibração, via
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simulações numéricas de sistema multif́ısico (escoamento, vibração mecânica, conversor

eletromecânico).

1.2 Objetivos da pesquisa

O estudo em questão tem como objetivo a modelagem integrada do escoamento la-

minar via dinâmica de fluidos computacional (CFD, Computational Fluid Dynamics)

com a vibração da estrutura para monitoramento da possibilidade de geração de energia.

Buscou-se encontrar uma amplitude fact́ıvel para geração de energia, visto que o esco-

amento vai alterando com o tempo devido ao acoplamento fluido-estrutura. Ao fim, se

produziu um simulador que possibilita a análise paramétrica de sistema de coleta de ener-

gia por vibrações induzidas por vórtices com a f́ısica do escoamento bem resolvida. Este

resultado permitirá o desenvolvimento de pesquisas futuras como, por exemplo, ao inte-

grar técnicas de otimização para melhoria do sistema, ou até mesmo com testes utilizando

diferentes ambientes, como um fluxo turbulento, com a atuação de cilindros controladores,

e até mesmo a viabilidade de coleta efetiva de energia.

Figura 2: Modelo de estrutura acoplada e osciladores de esteira para vibrações induzidas
por vórtices 2D. Fonte: FACCHINETTI, DE LANGRE e BIOLLEY (2004).

1.3 Motivação e Justificativa da pesquisa

Como já ressaltado no tópico 1.1 a pesquisa voltada para métodos de captação de

energia sustentáveis se faz cada vez mais importante, visto que, até o ano de 2018, o
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objetivo de acesso à energia confiável e sustentável não bateu suas metas anuais, sendo

necessária uma intensificação nessa área de estudos (UNITED NATIONS, 2021).

Para tal, se faz indispensável o desenvolvimento e a compreensão de modelos compu-

tacionais de sistemas multif́ısicos (escoamento, vibração e elétrica) para avançar o ńıvel

de aplicabilidade tecnológica (Technology Readiness Level – TRL (STRUTT; WELLS,

2014)) de fontes alternativas de energia.

1.4 Contribuições do estudo

Esse trabalho busca avaliar a geração de energia através da vibração do cilindro cau-

sada pelo fenômeno de vibrações induzidas por vórtices, em um ambiente de escoamento

laminar.

Havendo tal confirmação, será posśıvel, futuramente, utilizar técnicas de melhoria da

eficiência da tecnologia de coleta de energia por Vibrações Induzidas por Vórtices, por

exemplo, através de métodos de aumento da região de sincronização, ou de utilização

de diferentes tipos de objetos ciĺındricos como descritos por GROUTHIER et al. (2014)

e WANG et al. (2021), além de pesquisas futuras para aprimoramento desta tecnologia

através da aplicação de técnicas de otimização avançadas a estes sistemas multif́ısicos

complexos (PICELLI, R. et al., 2020; PICELLI, Renato et al., 2022).

1.5 Estrutura do trabalho

O trabalho está estruturado da seguinte forma: a introdução foi apresentada no

Caṕıtulo 1; o Caṕıtulo 2 traz a revisão da literatura sobre a qual o estudo se baseia, abor-

dando temas fundamentais de mecânica dos fluidos; a metodologia é tratada no Caṕıtulo

3, e a análise de resultados e considerações finais são abordadas, respectivamente, nos

Caṕıtulos 4 e 5.
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2 REVISÃO BIBLIOGRÁFICA

Esta revisão bibliográfica visa contextualizar a fenomenologia do escoamento ao redor

de um corpo rombudo; geração e que motiva sua aplicação para coleta de energia por

vibração.

2.1 Escoamento ao redor de corpos ciĺındricos

Quanto ao que se entende como corpos rombudos é interessante citar a definição

utilizada por BEARMAN (1984) em seu artigo sobre escoamento ao redor de corpos

rombudos. ”Corpos rombudos são aqueles que, quando sujeitos a uma corrente fluida,

apresentam considerável proporção da sua superf́ıcie submersa exposta ao fenômeno da

separação do escoamento”. Com base nessa definição, ÁSSI (2005) foi capaz então de

diferenciar corpos afilados e corpos rombudos, em que corpos afilados são aqueles nos

quais as linhas de corrente estão sempre aderidas à superf́ıcie de contorno e não se separam

do corpo. Enquanto em corpos rombudos, as linhas de corrente descolam-se da superf́ıcie,

formando uma região de escoamento separada ao redor de uma porção considerável de

sua parede. Na figura 3 é posśıvel observar as linhas de corrente aderidas a um corpo

afilado, já nos corpos rombudos é posśıvel observar as linhas de corrente, juntamente com

a região de escoamento separadas à jusante desse corpo.

Alguns fatores que podem alterar a separação das linhas de corrente segundo WIL-

LIAMSON (1996b), são: rugosidade, ńıvel de turbulência (assim como o caráter dos

espectros de turbulência), geometria e condições de camada limite.

Para explicar como a geometria afeta na separação das linhas de corrente, ÁSSI (2005)

escreve que se a forma do corpo terminar abruptamente, ou seja, não for afilada, o escoa-

mento que segue uma linha de corrente próxima à superf́ıcie, sofrerá um impedimento de-

vido ao gradiente desfavorável de pressão no sentido do escoamento (ou gradiente adverso

de pressão), gerando uma alta desaceleração no escoamento e sua posterior separação.

Quanto à turbulência da camada limite, o mesmo disserta que à medida que a camada
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Figura 3: Esquema e visualização do escoamento ao redor de um corpo afilado e um corpo
rombudo. Destaque para a superf́ıcie do corpo rombudo exposta ao escoamento separado
(em vermelho). Extráıdo de: ÁSSI (2005).

limite se torna turbulenta, o ponto de separação se move para a porção a jusante do corpo.

Figura 4: Regiões de escoamento perturbado pela presença do corpo rombudo. Extráıdo
de: ÁSSI (2005).

Para melhor entendimento do que ocorre em escoamentos ao redor de corpos rombu-

dos, é posśıvel separar esse escoamento em 4 regiões, como classificadas por ZDRAVKO-

VICH (1997) e ilustrado por ÁSSI (2005) na Figura 4. Tais regiões são:

Região 1: Faixa de escoamento retardado consequente do ponto de estagnação fron-

tal no corpo;
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Região 2: Camada limite aderida à superf́ıcie do corpo. Quando o gradiente de pressão

passa a ser desfavorável para a aderência das camadas limites, elas se separam e formam

as camadas cisalhantes livres que delimitam a esteira próxima;

Região 3: Escoamento deslocado e acelerado pela presença do corpo, na qual a veloci-

dade média do escoamento é maior que a do escoamento incidente;

Região 4: esteira é a parte do escoamento perturbado, que apresenta escoamento total-

mente separado e com velocidade média menor que a incidente.

Na região de esteira próxima ao corpo, originam-se os principais fenômenos res-

ponsáveis pelas vibrações induzidas pelo escoamento.

2.2 Número de Reynolds

Em 1883, Osbourne Reynolds analisou o comportamento de uma listra de corante

introduzido no escoamento de um fluido transparente base, para diferentes vazões deste

fluido. Com isso, ele percebeu que para maiores valores de vazão, o corante se misturava

mais no fluido. Através desse experimento, Reynolds categorizou o regime de escoamentos

em três tipos: laminar, quando não há mistura significativa entre part́ıculas vizinhas do

fluido durante o escoamento; turbulento, quando os movimentos do fluido variam irregu-

larmente e o corante em questão perde sua identidade devido à difusão; transição, marcado

pela transição do escoamento de laminar para turbulento (POTTER et al., 2017). Tais

experimentos foram importantes para o desenvolvimento de uma grandeza adimensional

chamada de número de Reynolds (nomeada em homenagem ao f́ısico e engenheiro que

fez os experimentos), tal grandeza governa diversos fenômenos de escoamento ao redor de

corpos arbitrários, inclusive o fenômeno de separação do escoamento que atravessa um

corpo rombudo trazido nessa pesquisa. Tal grandeza adimensional relaciona a magnitude

das forças inerciais e viscosas no escoamento e é expressa pela seguinte equação:

Re =
ρU∞D

µ
=

U∞D

v
(2.1)

ρ representa a massa espećıfica do fluido; U∞, a velocidade do escoamento incidente

(no caso da presente pesquisa corresponde à velocidade do escoamento incidente ao longe);

D, uma dimensão caracteŕıstica do escoamento (no caso da presente pesquisa D corres-

ponde ao diâmetro externo do cilindro); µ a viscosidade dinâmica (absoluta) do fluido; e

υ a viscosidade cinemática do fluido.



21

2.3 Regimes de escoamento e transições

WILLIAMSON (1996b) descreve 8 modos tridimensionais no escoamento, até A, A-

B, B-C, C-D, D-E, E-F, F-G, G-H e H-J que ajudam a entender alguns fenômenos que

ocorrem no escoamento para números de Reynolds espećıficos.

O número de Reynolds é importante, pois é ele que dita os diferentes regimes de es-

coamento ao redor de corpos rombudos, portanto é com essa informação que será posśıvel

prever o comportamento do escoamento, como pode ser observado na Tabela 2. Obser-

vando novamente a Tabela 2, conforme o número de Reynolds aumenta, o escoamento

vai passando por transições entre os regimes. ÁSSI (2005), CARMO (2005) e ZDRAV-

KOVICH (1988) descorrem que as transições estão relacionadas à turbulência na camada

limite e são senśıveis a pequenas perturbações que podem fazer com que as transições se

iniciem em um número de Reynolds menor, e podem modificar ou até mesmo inibir algu-

mas estruturas do escoamento, entretanto, escoamentos livres de perturbações, ou aqueles

em que elas possam ser desprezadas, o número de Reynolds será o único parâmetro go-

vernante. Na Figura 5 são mostradas de forma esquemática as transições que ocorrem

em três regiões: TrW - Esteira, TrSL - Camadas cisalhantes, TrS - Separação e TrBL -

Camadas limite.

A primeira transição - TrW -, esquematizada na Figura 5 (a) ocorre na esteira para

o regime turbulento em Re ≈ 180 ~ 200 . ”A turbulência gradualmente se desenvolve na

região próxima ao cilindro e se espalha ao longo da esteira, mas as camadas cisalhantes

que limitam a região de esteira próxima permanecem laminares”. (CARMO, 2005)

Conforme há um aumento no número de Reynolds, a transição turbulenta antecipa-se

em direção ao ponto de separação e a segunda transição acontece nas camadas cisalhantes

- TrSL -, esquematizada na Figura 5 (b), afetando o comprimento e a largura da esteira

próxima.

A terceira transição é a responsável pela crise de arrasto, ou seja, ocorre uma dimi-

nuição súbita do arrasto e pode ser evidenciada em Re ≈ 105. Tal transição atinge as

camadas limite no ponto de separação e prossegue até que a camada limite seja comple-

tamente turbulenta, como esquematizado na Figura 5 (c).

Conforme se aumenta o número de Reynolds, a transição turbulenta se move em

direção ao ponto de estagnação, gerando uma camada limite completamente turbulenta

na região de separação, como evidenciado na Figura 5 (d). ”No limite superior da TrBL,

a transição atingiria a região retardada e esse é o final da terceira e última transição, dado
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Tabela 2: Regimes de escoamento ao redor de cilindro adaptado de WILLIAMSON
(1996b), DERAKHSHANDEH e ALAM (2019) e TAKATA (2019).

Intervalo do núm. de
Reynolds

Regime de
escoamento

Caracteŕıstica Visualização

0 < Re < 4 a 5 Até A Sem separação

4 a 5 < Re < 40 a 48 Até A

Separação
estável com
recirculação
estacionária

40 a 48 < Re < 180 a 194 A-B

Desprendimento
de Vórtices
periódico
Laminar

194 < Re < 260 a 300 B-C

Desprendimento
de vórtices em

regime de
transição 3D

300 < Re < 103 C-D

Regime
subcŕıtico com
desordem no

desprendimento
de vórtices 3D

103 < Re < 1, 4 ∗ 105 D-E
Regime
subcŕıtico

1, 4 ∗ 105 < Re < 106 E-G Regime cŕıtico

106 < Re < 5 ∗ 106 G-H
Regime

supercŕıtico

5 ∗ 106 < Re H-J
Regime

pós-cŕıtico

que todas as regiões do escoamento são completamente turbulentas.”(CARMO, 2005)

2.3.1 Escoamentos 2D e completamente laminares

ZDRAVKOVICH (1988) divide o escoamento laminar em 3 subdivisões:

• L1: Escoamento altamente viscoso sem separação, ou creeping flow. Ocorre em 0 <

Re < 4 a 5
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Figura 5: Transições de regiões perturbadas; BL - Camada Limite, L - Laminar, T -
Turbulenta, Tr - Transição, S - Separação. Extráıdo de: ZDRAVKOVICH (1988).

• L2: Separação com recirculação estacionária. Ocorre em 4 a 5 < Re < 30 a 48

• L3: Regime laminar periódico. Ocorre em 30 a 48 < Re < 180 a 200

L1 ocorre em valores de Re baixos, onde se tem um escoamento altamente viscoso, pois

as forças inerciais não têm magnitude suficiente para vencer as forças viscosas do fluido,

de modo que as camadas limites não se separam da superf́ıcie do cilindro em nenhum

ponto, como pode ser observado na Figura 6.

Figura 6: Escoamento através de um cilindro sem separação. Extráıdo de: VAN DYKE
(1988).

Em Re = 4 a 5 se inicia a separação e até valores entre 30 e 48 se tem o regime L2,

onde há o crescimento de bolhas de recirculação estacionárias e simétricas na região da

esteira próxima, como pode ser observado na Figura 7. Segundo CARMO (2005), nesse

regime as camadas cisalhantes livres se encontram na extremidade jusante desta bolha,

no chamado ponto de confluência.

Conforme o número de Reynolds começa a obter valores entre 30 a 48, as bolhas de re-

circulação se alongam até se tornarem instáveis e então saem da região da esteira próxima

e são convectadas para a esteira ao longe, onde se inicia o regime L3, ao qual oscilações

harmônicas podem ser observadas ao longe. Segundo CARMO (2005) a amplitude da
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Figura 7: Bolha de recirculação em escoamento através de cilindro, Re = 26. Retirado
de: VAN DYKE (1988).

oscilação aumenta com Re e para valores maiores que 45 a 65 as camadas cisalhantes se

enrolam formando cristas e vales. Até valores de número de Reynolds entre 180 e 200

é posśıvel observar uma carreira de vórtices laminares, conhecida como esteira de Von

Kármán. Todos esses fenômenos que ocorrem no regime L3 puderam ser observados na

Figura 8.

Figura 8: Representação do escoamento laminar para diferentes Re. Retirado de: ÁSSI
(2005).

2.3.2 Transição na esteira

Para valores de número de Reynolds entre 180 e 200, a esteira deixa de ser bidimensi-

onal e passa a apresentar sinais de turbulência. É nessa faixa do número de Reynolds em

que os modos tridimensionais A-B e C-D descritos por WILLIAMSON (1996b) ocorrem,

gerando fenômenos como deslocamentos de vórtices, que afetam a organização da esteira

bidimensional. Apesar de ser posśıvel modelar esse regime em 3D, o trabalho possui
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como foco a investigação do regime modelado de forma 2D, uma vez que ajuda na visu-

alização do fenômeno de escoamento e pede menos esforços computacionais da máquina

que irá rodar os testes, sendo posśıvel fazer mais testes em um menor peŕıodo de tempo,

sem necessitar de um computador com alto poder de processamento (PAIDOUSSIS; DE

LANGRE; PRICE, 2010).

2.4 Número de Strouhal

Em 1878, um f́ısico alemão de nome Vincenc Strouhal, estudou a vibração de um

fio sujeito a uma corrente de ar e concluiu que a frequência fS do som emitido resul-

tante do movimento dele variava apenas com seu diâmetro D e a velocidade U∞ do fluxo

de ar. Outra descoberta do f́ısico foi que, quando a frequência do som coincidia com

uma das frequências naturais do fio, que estava livre para oscilar, o som se intensificava

(MENEGHINI, 2002).

Nos anos seguintes às descobertas de Strouhal, diversos cientistas começaram a estudar

o fenômeno, e foi observado que quando um fluido escoa com velocidade U∞ ao redor de

um corpo rombudo, um fluxo periódico se desenvolverá a jusante do corpo, devido a um

padrão regular de vórtices que são desprendidos do corpo (MUNSON, 2013). ÁSSI (2005)

descreve a origem dos vórtices na esteira próxima, pela interação entre as duas camadas

cisalhantes que se separam do corpo rombudo, sendo convectadas alternadamente para

o escoamento, formando a esteira a jusante. Esse sistema de desprendimento alternado

de vórtices é chamado de esteira de Von Kármán e ocorre no range 102 < Re < 106

(WHITE, 2011). A adimensionalização da frequência de desprendimento dos vórtices

ficou conhecida como Número de Strouhal, que se dá pela seguinte relação:

St =
fSD

U∞
(2.2)

Ela representa uma medida da razão entre as forças inerciais devido à instabilidade

do fluxo (aceleração local) e as forças inerciais devido a mudanças na velocidade de

ponto a ponto no campo de fluxo (aceleração convectiva) (MUNSON, 2013) e relaciona a

frequência de desprendimento de vórtices com as caracteŕısticas geométricas da estrutura

e caracteŕısticas do escoamento.

Nas figuras 9, 10 e 11 são apresentados dados experimentais e numéricos para a va-

riação do número de Strouhal em relação ao número de Reynolds para uma faixa ampla de

Re. Observa-se, portanto, que o número de Strouhal pode ser estritamente correlacionado
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com o número de Reynolds, podendo ser descrito até como função do mesmo.

ÁSSI (2005), WHITE (2011), MENEGHINI (2002), PAIDOUSSIS, DE LANGRE e

PRICE (2010) e NORBERG (2003) trazem que, para uma vasta gama de experimentos,

o número de Strouhal para um cilindro é da ordem de St ≈ 0, 2 .

Figura 9: Relação entre St e Re. Retirado de: NORBERG (2003).

Figura 10: Resultados experimentais e numéricos para St e Re. Retirado de: NORBERG
(2003).

2.5 Forças Fluidomecânicas

Segundo ÁSSI (2005) e CICOLIN (2014) o desprendimento ao redor do cilindro al-

tera o campo de pressão em seu entorno, produzindo uma força fluidomecânica ćıclica

no corpo. Tal força tem direção, magnitude, varia no tempo e pode ser decomposta em
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Figura 11: Resultados experimentais e numéricos para St e Re. Retirado de: ÁSSI (2005).

dois componentes, como ilustrado na figura 12: força de arrasto (ou drag) FD, proje-

tada na direção do escoamento incidente ao longe, e força de sustentação (ou lift) FL,

projetada perpendicularmente à direção do escoamento incidente. Tais forças podem ser

adimensionalizadas, formando os coeficientes de arrasto (CD) e de sustentação (CL):

CD =
FD

1
2
ρU2

∞DL
;CL =

FL

1
2
ρU2

∞DL
(2.3)

Onde, a expressão 1
2
ρU2

∞ representa a pressão dinâmica e DL é a área projetada do

corpo, ambos são usados para representar o campo de pressões ao redor da parede, de

forma adimensional, em termos dos coeficientes de pressão, enquanto FL e FD representam

as forças.

Como trazido anteriormente, as forças são variáveis no tempo e ćıclicas, ou seja, o

campo de pressões também é, o que faz com que seja posśıvel decompor CD e CL em

componentes médias CD, CL e flutuantes C ′
D, C

′
L como pode ser observado na Equação

2.4

CD = CD + C ′
D;CL = CL + C ′

L (2.4)

Neste trabalho foi atribúıdo aos valores de C ′
D e C ′

L a flutuação quadrática média (RMS

- root mean square), assim como nos trabalhos de WILLIAMSON (1996a) e NORBERG

(2003). Na figura 13 são apresentados os valores de ambos os coeficientes para diferentes

valores de Re

CICOLIN (2014) discute ainda que, devido à simetria do escoamento, o coeficiente
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Figura 12: Decomposição da força que age sobre o cilindro. Retirado de: ÁSSI (2005).

de arrasto médio é nulo (CD ≈ 0), enquanto o coeficiente de sustentação flutuante (C ′
L)

começa a ser significativo a partir do momento em que se inicia o desprendimento de

vórtices no regime laminar.

2.6 Vibrações Induzidas por Vórtices (VIV)

A vibração induzida por vórtices (VIV) em estruturas é de interesse prático para mui-

tas áreas da engenharia. Alguns exemplos citados por WILLIAMSON e GOVARDHAN

(2004) são, vibrações causadas por VIV em tubos de trocadores de calor; influencia a

dinâmica risers que transportam petróleo do leito marinho até a superf́ıcie; é importante

para o design de estruturas de engenharia civil, como pontes e chaminés, bem como para

o design de véıculos maŕıtimos e terrestres; e pode causar vibrações de grande amplitude

em estruturas ancoradas no oceano. Devido às diversas aplicações do VIV e a importância

do fenômeno, pode-se citar diversas pesquisas e livros relevantes na área, como BLEVINS

(1990), PAIDOUSSIS, DE LANGRE e PRICE (2010), WILLIAMSON e GOVARDHAN

(2004), BEARMAN (1984), NORBERG (2003), ZDRAVKOVICH (1988, 1997), SARP-

kAYA (1979) e PARKINSON (1989), entre outros.

ÁSSI (2005) traz uma explicação simplificada e didática para o entendimento das

interações fluido-estrutura, a força de excitação que leva uma estrutura à oscilação vem

do escoamento. O corpo e o fluido estão acoplados pela interface entre as fronteiras, isto

é, a parede do corpo. A força fluida exercida na parede deforma ou desloca o corpo, que

ganha uma nova orientação em relação ao escoamento, de tal forma que a força fluida

pode se alterar para esta nova configuração. O fluido exerce força sobre a estrutura e esta

responde exercendo força oposta ao fluido. Assim, estabelece-se o mecanismo de interação
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Figura 13: Comportamento dos coeficientes de arrasto e sustentação para diferentes va-
lores de Re e configurações de esteira. Retirado de: ÁSSI (2005).

entre o fluido e a estrutura. A força fluida aplicada na estrutura tem origem no campo de

pressões que o escoamento exerce sobre o corpo rombudo. Se o fenômeno fluido possuir

um comportamento ćıclico, o campo de pressões oscilará ciclicamente na parede do corpo

e a força resultante exercida será periódica.

Vibrações Induzidas por Vórtices (VIV) é uma das interações fluido-estrutura t́ıpicas

de corpos rombudos (PAIDOUSSIS; DE LANGRE; PRICE, 2010). Os fenômenos de

alternância da emissão de vórtices e a alteração periódica do campo de pressões na parede

do cilindro, discutidos anteriormente, são os fatores predominantes para a geração da

força fluida de excitação do fenômeno de VIV.

Através da Figura 14 é posśıvel observar que o campo de pressões na parede está

sincronizado com a geração dos vórtices na esteira. ÁSSI (2005) explica como se dá esse

ciclo, quando um vórtice se forma, ocorre uma diminuição da pressão em seu lado do

cilindro, resultando em uma força de sustentação direcionada para esse lado. Durante um

ciclo completo de formação, essa força varia do seu valor máximo positivo para o máximo

negativo e volta ao valor positivo inicial. Portanto, a variação da força de sustentação
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coincide com a frequência de formação dos vórtices na esteira. Além da força de sus-

tentação, o fenômeno conta também com a força de arrasto, que também flutua ao longo

do ciclo de emissão de vórtices. Porém, diferentemente da força de sustentação, a força

de arrasto apresenta apenas flutuações de magnitude, sem alteração de direção (sempre

aponta para a direção do escoamento). A frequência de flutuação da força de arrasto é o

dobro da frequência de emissão de vórtices da esteira e da frequência de flutuação de sus-

tentação, visto que, ao longo de um ciclo de emissão, um vórtice de cada lado do cilindro

é emitido, de modo que o campo de pressões que causa a força de arrasto é modificado

duas vezes.

Portanto, as vibrações podem ocorrer tanto no sentido do escoamento quanto prin-

cipalmente no sentido transversal ao escoamento, onde tipicamente são observadas as

maiores flutuações e amplitudes, (A ∼ O(D), quando a frequência de emissão de vórtices

se aproxima de uma das frequências naturais do sistema). Cabe destacar que este trabalho

foca nas vibrações para viabilidade de geração de energia, visando simular a geração de

energia para diferentes frequências naturais do cilindro, variando seu material. Vale notar

que a dinâmica de geração de vórtices é muito associada à dinâmica da camada limite e

sua separação, ou seja, com a vorticidade do escoamento (SAFFMAN, 1993).

Todo sistema dinâmico, incluindo cilindros, pode entrar em ressonância, caracteri-

zada pela amplificação de vibrações quando a frequência de emissão de vórtices (fS), que

determina a força fluida de excitação, se aproxima da frequência natural (fN) do oscila-

dor, responsável pela resposta dinâmica de oscilação. Nessa condição, as amplitudes de

vibração podem alcançar magnitudes comparáveis ao diâmetro do cilindro, favorecendo

a coleta de energia. (CICOLIN, 2014; FACCHINETTI; DE LANGRE; BIOLLEY, 2004;

KHALAK; WILLIAMSON, 1999).

2.7 Resposta t́ıpica e Lock-in

A resposta t́ıpica em amplitude da VIV não segue o comportamento clássico de res-

sonância linear. Efeitos não lineares do escoamento prevalecem. O fenômeno de lock-in é

um dos principais fenômenos em sistemas de VIV (PAIDOUSSIS; DE LANGRE; PRICE,

2010). Para entender melhor como se dá o efeito de lock-in, SILVA (2013) explica que,

diferentemente de osciladores harmônicos comuns, que respondem à entrada do sistema

com a mesma frequência em que são excitados, em sistemas sujeitos a VIV, uma vez que

o sistema de excitação (desprendimento de vórtices) está intimamente ligado ao sistema

excitado (cilindro), fazendo com que a movimentação do corpo altere o padrão de emissão
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Figura 14: Variação do campo de pressão na parede para aproximadamente um terço do
ciclo de emissão de vórtices. Retirado de: ÁSSI (2005).

de vórtices e, consequentemente, seu próprio carregamento. Portanto, dado um cilindro

oscilando com o escoamento, ao aumentar a velocidade do escoamento, em algum ponto

o sistema irá atingir a ressonância (caracterizada pelas altas amplitudes atingidas pelo

cilindro), que se manterá por uma região de velocidades, devido à retroalimentação do

sistema, uma vez que a frequência de emissão de vórtices é capturada pela frequência de

vibração do cilindro, mantendo a sincronização para uma faixa de velocidades.

Para análise da resposta t́ıpica GOVARDHAN e WILLIAMSON (2000) trazem alguns

parâmetros adimensionais do VIV, tais parâmetros são descritos por ÁSSI (2005) e CICO-

LIN (2014). A adimensionalização dos parâmetros auxiliou na padronização, facilitando

a análise dos dados.

Vale destacar que, na Tabela 3, os parâmetros são mais generalizados, sem considerar

o meio em que o cilindro está imerso. Quando o fluido é o ar, não há necessidade de

adaptação dos parâmetros, visto que a massa de ar deslocada é muito pequena em com-

paração à massa do sistema. Porém, se o fluido é a água, não se pode desconsiderar o

deslocamento de massa, principalmente em situações de desprendimento de vórtices em
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Tabela 3: Parâmetros adimensionais adaptado de ÁSSI (2005), CICOLIN (2014) e GO-
VARDHAN e WILLIAMSON (2000).

Parâmetro Expressão Definição

U ∗ U∞
fND

Velocidade Reduzida: Razão entre a
velocidade do escoamento ao longe (U∞)
e o produto entre a frequência natural do
sistema (fN) e o diâmetro do cilindro (D)

m∗ m
m∀

= m

ρπD2
4 L

Razão de massa: Razão entre a a
massa de todo o sistema que oscila (m) e
a massa de fluido deslocada pelo cilindro

submerso (m∀)

A∗ y0
D = A

D

Amplitude reduzida: Razão entre a
amplitude de oscilação do cilindro e
(y0 ≡ A) e o diâmetro do cilindro (D)

f ∗ f
fN

Frequência reduzida: Razão entre a
frequência de oscilação do cilindro (f) e a

frequência natural do sistema (fN)

ζ c
ccr

= c
2
√
km

Razão de amortecimento: Razão
entre o amortecimento estrutura (c) e o
amortecimento cŕıtico (ccr = 2

√
km)

cilindros. Segundo SILVA (2013), os efeitos de desprendimento de vórtices são intrinseca-

mente viscosos.KHALAK e WILLIAMSON (1999) trazem novas expressões adimensionais

utilizando o conceito de que a massa adicional para uma situação de vibração de cilindro

é aquela que efetivamente acompanha o movimento do corpo, estando em fase com sua

aceleração.

CA =
ma

m∀
(2.5)

CEA =
1

2π3

CLcos(ϕ)

A∗ (
U∗

f ∗ )
2 (2.6)

fN =

√
k

(m+ma)
(2.7)

ζw =
c

2
√
k(m+ma)

(2.8)

Ca representa a relação entre a massa adicional causada pelo movimento do corpo

imerso no fluido (ma) e a massa deslocada pelo volume do corpo imerso (m∀). CEA é o

coeficiente efetivo de massa adicional, enquanto fN e ζw representam, respectivamente, a

nova frequência natural e o novo fator de amortecimento.
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Utilizando os parâmetros generalizados, bem como as equações e conceitos associados

à adição do efeito de deslocamento de massa de água, KHALAK e WILLIAMSON (1999)

apresentam novos parâmetros adimensionais, apresentados na Tabela 4.

Tabela 4: Novos parâmetros adimensionais com consideração dos efeitos do deslocamento
de massa adaptado de SILVA (2013).

Parâmetro Expressão Definição

U ∗ U∞
fND

Velocidade Reduzida
considerando a frequência
natural do corpo na água

A∗ 1
4π3

Clsin(ϕ)
(m∗+CA)ζ

(U
∗

f∗ )
2f ∗ Amplitude reduzida

considerando o coeficiente
efetivo de massa adicionada

f ∗ f
fN

=
√

m∗+CA
m∗+CEA

Frequência reduzida
considerando o efeito de

massa adicional

Apesar de não ser trazido nesse trabalho, é interessante citar para conhecimento e

para pesquisas futuras mais três parâmetros que são frequentemente utilizados para essas

análises e são combinações dos parâmetros de massa e amortecimento. Tais parâmetros

podem ser observados na Tabela 5

Tabela 5: Parâmetros adimensionais combinados adaptado de SILVA (2013) e ÁSSI
(2005).

Parâmetro Descrição

(m∗ζ) Parâmetro de massa-amortecimento

SG = 2π3S2
t (m

∗ζ) Parâmetro de Skop-Griffin

Sc =
π
2(m

∗ζ) Número de Scruton

Como já apresentado anteriormente, diversos livros e artigos mostram que a variação

do número de Strouhal se encontra por volta de St ≈ 0, 2 para uma ampla faixa de 102 <

Re < 106. Portanto, é posśıvel estimar a ordem de grandeza da velocidade do escoamento

onde ocorre a ressonância entre as frequências f ≈ fN , como pode ser observado nas

equações 2.9 e 2.10:

f =
U∞St

D
≈ 0, 2

U∞

D
(2.9)

U∗ =
U∞

fND
≈ U∞

fD
≈ 1

0, 5
≈ 5 (2.10)
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Como já exposto anteriormente, durante o lock-in, a amplitude pode atingir a ordem

de grandeza do cilindro (A ∼ O(D)). Porém, FENG (1968) e KHALAK e WILLIAMSON

(1999) observaram que a amplitude e os ramos de resposta estão diretamente associados

aos parâmetros de massa e amortecimento do sistema, pois o primeiro obteve um pico de

amplitude na ressonância da ordem de A = 0, 6, D, enquanto o segundo obteve amplitude

da ordem de A = 0, 9, D, sendo que a diferença do parâmetro m∗ era da ordem de 20x.

Portanto, é posśıvel observar que os parâmetros de massa e amortecimento têm papel

fundamental no comportamento da resposta do sistema. Pensando nisso, KHALAK e

WILLIAMSON (1999) afirmam: ”A amplitude máxima depende do parâmetro combinado

(mζ), quanto maior for este parâmetro de massa-amortecimento, menor será a amplitude

do pico de ressonância”. Tal fato pode ser observado na Figura 15. É interessante também

mencionar que a largura da faixa de U∗ em que se obtém o lock-in está relacionada ao

parâmetro m∗; um incremento na massa reduzida provoca uma diminuição na largura de

sincronização.

Figura 15: Amplitude reduzida em função de diferentes velocidades reduzidas com (m∗ζ)
distintos. (FENG, 1968): m∗ = 248 e m∗ζ ≈ 3,28; (KHALAK; WILLIAMSON, 1999):
m∗ = 10,1 e m∗ζ ≈ 0,13 Retirado de: KHALAK e WILLIAMSON (1999).
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SILVA (2013) traz uma explicação sobre os três ramos de resposta, observada na

Figura 15:

• Ramo inicial (Initial Excitation): Ramo em que a frequência de emissão de vórtices

é ligeiramente menor que a frequência natural do sistema e, portanto, onde se tem

menores valores de amplitude de VIV;

• Ramo superior (Upper Branch): Ramo em que há grandes amplitudes de resposta

de VIV em função da sincronização da frequência de emissão de vórtices com a

frequência natural do cilindro, f ≈ fN ;

• Ramo inferior (Lower Branch): Ramo em que a sincronização é mais evidente porém

com respostas em valores menores que as do Upper Brench, em um prenúncio da

interrupção do quadro ressonante.

É interessante também observar a relação entre os parâmetros de frequência reduzida

(f ∗) e velocidade reduzida (U∗), como ilustrado na Figura 16, que apresenta a relação

linear entre a frequência de emissão (f) e a velocidade reduzida, evidenciando o coeficiente

angular determinado pelo número de Strouhal (St = 0, 20).

Figura 16: Frequência reduzida em função da velocidade reduzida com m∗ distintos. 1ª
imagem: m∗ = 10,3; 2ª imagem m∗ 1,2. Retirado de: GOVARDHAN e WILLIAMSON
(2000).

2.8 Método dos elementos finitos

Segundo HIRSCH (2007), o método dos elementos finitos teve origem no campo da

análise estrutural, principalmente entre 1940 e 1960. O conceito de ”elementos”remonta
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às técnicas usadas em cálculos de tensão, em que uma estrutura é subdividida em peque-

nas subestruturas de várias formas, sendo remontada após a análise de cada ’elemento’.

Hoje, após os desenvolvimentos iniciais em um contexto de engenharia, os matemáticos

colocaram o método dos elementos finitos em uma estrutura muito elegante, rigorosa e

formal, com condições matemáticas precisas para critérios de existência, convergência e

limites de erro rigorosamente derivados.

ARNDT (2013) descreve o método dos elementos em 3 passos principais:

• 1) O espaço Ω é discretizado em elementos poligonais com finitos graus de liberdade

chamados então de ”elementos”, transformando sistema de equações diferenciais

parciais em um sistema discreto;

• 2) Definir em cada elemento uma representação paramétrica das variáveis desconhe-

cidas, baseada em famı́lias de funções interpoladoras ou de forma, associadas a cada

elemento;

• 3) Definir uma formulação integral das equações a serem resolvidas para cada ele-

mento (célula) do espaço discretizado, resolvendo então, não o problema inicial, mas

o sistema discreto (sendo ele linear ou não, que é o caso de escoamentos).

Sendo assim é posśıvel obter uma solução aproximada do problema, resolvendo um pro-

blema discreto ou um conjunto de equações. Segundo SOUZA (2013) a ideia dos elementos

finitos é tomar um espaço discreto de dimensão finita Xh ⊆ X com funções polinomiais

por partes, sendo posśıvel encontrar algum parâmetro (no caso desse trabalho velocidade

e pressão) de maneira discreta, uh ∈ Xh. BURDEN, FAIRES e BURDEN (2016) trazem

uma análise interessante para os problemas com condições de contorno como sendo inici-

almente um problema de escolha, a partir do conjunto de todas as funções suficientemente

diferenciáveis que satisfazem as condições de contorno, da função que minimiza uma certa

integral.

2.8.1 Método dos elementos finitos em uma dimensão

Para simplificar o entendimento do método dos elementos finitos, é útil trazer o

método para casos mais simples, que são aqueles com somente uma dimensão. Para

esses casos, tem-se um espaço de dimensão finita com funções lineares por partes, de

modo que 0 = x0 < x1 < ... < xN < xN+1 = 1 seja a partição da malha com subin-

tervalos [xj−1, xj], com j = 1, ..., N + 1, igualmente espaçados por um intervalo h. Seja
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Xh o conjunto de funções uh(x, t) que são lineares em cada subintervalo, cont́ınuas em

[0, 1], e com condições de contorno uh(0, t) = 0 e uh(1, t) = 0, como pode ser observado

na Figura 17. Para encontrar uma solução para uh(x, t) ∈ Xh, é necessário calcular os

valores de ûh(t) = uh(xj, t) em cada nó xj, com j = 0, ..., N + 1, sendo os graus de liber-

dade. Sendo assim, utiliza-se funções base (Trial Functions ou Funções Interpoladoras)

ϕj(xi) ∈ Xh, para j = 1, ..., N , ou seja, cada subintervalo, de modo que ϕj(xi) = 1 se

i = j, ou ϕj(xi) = 0 se i ̸= j. Em outras palavras, ϕj assume o valor 1 no nó xj e 0 nos

demais nós. O funcionamento da função base pode ser observado na Figura 18.

Figura 17: Exemplo de função arbitrária uh ∈ Xh. Retirado de: SOUZA (2013).

Figura 18: Mecanismo da função base linear (ϕ). Retirado de: SOUZA (2013).

Com isso é posśıvel obter para cada u(x, t) ∈ Xh uma única combinação linear da

função ϕj, que pode ser observada na Equação 2.11

u(x, t) =
N∑
j=1

ûjϕj(x) (2.11)

2.8.2 Método dos elementos finitos em duas dimensões

Em duas dimensões, considera-se Γ como o contorno do poĺıgono de domı́nio Ω. A

discretização do domı́nio é realizada por meio da triangularização de Ω, que o subdivide

em um conjunto T h = ∪N
j=1Kj de triângulos não sobrepostos Kj, onde nenhum vértice de

um triângulo se encontra no lado de outro triângulo, como pode ser observado na Figura

19.
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Figura 19: Malha 2D com funções base lineares. Retirado de: SOUZA (2013).

Assim como no caso de uma única dimensão, as funções base para duas dimensões

podem ser definidas da seguinte maneira:

ϕj(Mi) = δij =


1, se i = j

0, se i ̸= j

(2.12)

ondeMi = (xi, yi) são os nós da malha. Para duas dimensões para obtermos u(x, y, t) ∈
Xh, onde uh(x, y, t) = (uh,1(x, y, t), uh,2(x, y, t)) é dado pela Equação 2.13

uh,k(x, y, t) =
N∑
j=1

ûk
j (t)ϕj(x, y), û

k
j (t) = uh,k(Ni, t) = uh,k(xi, yi, t), x, y ∈ Ω ∪ Γ (2.13)

onde k = 1, 2.

2.8.3 Tipos de Elementos Finitos

Neste trabalho, os tipos de elementos significativos são aqueles com funções bases

lineares, como ilustrado nas Figuras 18 (1D) e 20 (2D), onde os triângulos hachurados

representam os triângulos com um nó em comum, ou seja, onde ϕ ̸= 0, e aqueles com

funções bases quadráticas, como mostrado nas Figuras 21 e 22. Vale destacar que, com

a utilização de funções base quadráticas, há um aumento significativo na quantidade de

graus de liberdade: em uma dimensão, cada função local possui três graus de liberdade,

em vez de dois. Em duas dimensões, o número de graus de liberdade aumenta de três

para seis com o uso de funções base quadráticas.
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Figura 20: Mecanismo de função base linear (ϕ) para duas dimensões. Retirado de:
SOUZA (2013).

2.8.4 Elementos Finitos Lagrangianos

Segundo FreeFEM (2023), existem três tipos de elementos finitos Lagrangianos, clas-

sificados de acordo com as funções base: o Elemento-P0, com funções base constantes; o

Elemento-P1, com funções base lineares; e o Elemento-P2, com funções base quadráticas.

Nos Elementos-P0, para cada triângulo Tk, a função base ϕk é dada por:

ϕj(x) =


1, se (x) ∈ Tk

0, se (x) /∈ Tk

(2.14)

Então para os vértices qki, i = 1, 2, ..., d+ 1, portanto a função uh é dada da seguinte

forma uh(x, y) =
∑

k u(
∑

i q
ki

d+1
)ϕk.

Nos Elementos-P1, para cada vértice qi, a função base ϕi é dada por:

ϕi(x, y) =aki + bki x+ cki y para (x, y) ∈ Tk

notar que ϕi(q
i) = 1, se i = j, e ϕi(q

j) = 0, se i ̸= j
(2.15)

Na figura 23 é posśıvel observar que a função base ϕk1(x, y) com o vértice qk1 no ponto

p = (x, y) no triângulo Tk coincide com as coordenadas do baricentro λk
1 e:

ϕk1(x, y) = λk
1(x, y) =

Área do triângulo (p, qk2qk3)

Área do triângulo (qk1, qk2, qk3)
(2.16)

Sendo assim, é posśıvel montar a equação uh(x, y) =
∑nv

i=1 u(q
i)ϕi(x, y).
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Figura 21: Mecanismo de função base quadrática (ϕ) para uma dimensão. Retirado de:
SOUZA (2013).

Figura 22: Mecanismo de função base quadrática (ϕ) para duas dimensões. Retirado de:
SOUZA (2013).

Por fim, nos Elementos-P2 ilustrados na Figura 23, para cada vértice ou ponto-médio

qi, a função base ϕi é dada por:

ϕi(x, y) =aki + bki x+ cki y + dki x
2 + eki xy + f f

j y
2 para (x, y) ∈ Tk

notar que ϕi(q
i) = 1, se i = j, e ϕi(q

j) = 0, se i ̸= j
(2.17)

As funções base ϕk1(x, y), com vértice qk1, são definidas pelas coordenadas baricêntricas

e, para o ponto-médio, respectivamente:

ϕk1(x, y) = λk
1(x, y)(2λ

k
1(x, y)− 1) (2.18)

ϕk2(x, y) = 4λk
1(x, y)λ

k
4(x, y) (2.19)

Sendo assim, temos uh(x, y) =
∑M

i=1 u(q
i)ϕi(x, y) como a soma de todos os vértices

ou pontos médios.
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Figura 23: Elementos triangulares Tk para elementos P1 e P2. Retirado de: FreeFEM
(2023).
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3 METODOLOGIA

Este caṕıtulo apresenta brevemente as ferramentas numéricas a serem aplicadas e

os modelos f́ısicos, além das limitações das metodologias utilizadas. Então, as seções

introduzem o método de simulação numérica das equações não-lineares do escoamento e

o modelo eletro-mecânico do dispositivo de coleta de energia por vibração.

3.1 Modelagem com 1 grau de liberdade

É posśıvel observar através da Figura 24 o esquema do sistema formado por um

cilindro ŕıgido montado sobre um conjunto de molas, amortecedores e imerso em um meio

fluido escoando. O único grau de liberdade do cilindro se encontra na direção transversal

ao fluxo e o conjunto mola-amortecedor resiste ao movimento nesta direção. O corpo do

cilindro ŕıgido é considerado como toda a estrutura do sistema dinâmico (massa estrutural,

força de restauração e amortecimento do sistema).

Figura 24: Sistema Massa-Mola-Amortecedor com um grau de liberdade. Retirado de:
ÁSSI (2005).
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O esquema torna fácil a visualização do movimento transversal y(t) do cilindro, o

mesmo pode ser descrito simplificadamente pela equação (tais equações são apresentadas

a seguir somente de forma ilustrativa para entendimento da modelagem simplificada) 3.3:

y(t) = y0 sin(ωt) (3.1)

F (t) = F0 sin(ωt+ ϕ) (3.2)

mÿ + cẏ + ky = F (t) (3.3)

Nas equações 3.1, 3.2 e 3.3 temos m representando a massa de todo o sistema que

oscila, c, o coeficiente de amortecimento da estrutura, k, a constante proporcional da

força de restauração, F (t), a força fluida de excitação na direção transversal que varia

no tempo, todas essas equações e funções regem o problema com 1 grau de liberdade

e é trazido neste trabalho como forma de explicar simplificadamente o problema. ÁSSI

(2005) traz que, nos regimes de oscilação em que a frequência de vibração do corpo está

sincronizada com a excitação da força fluida, uma boa aproximação para F (t) e y(t) são

as equações 3.2 e 3.1, onde F0 é a magnitude da força fluida, y0 é a amplitude da oscilação

do corpo (A), ω = 2πf é a frequência angular de oscilação do corpo (ωN = rad
s

e fN = 1
s
)

e ϕ é o ângulo de fase entre a força de excitação fluida e o deslocamento do cilindro.

3.2 Fluidodinâmica computacional

HIRSCH (2007) define de maneira interessante fluidodinâmica computacional ou em

inglês Computacional Fluid Dynamics (CFD), como um conjunto de metodologias que

permite que o computador forneça simulações numéricas de escoamentos de fluido.

Neste trabalho foi simulado um escoamento bidimensional ao redor de um cilindro.

O cilindro foi numericamente definido por um ćırculo de diâmetro d no plano (x, y). O

escoamento foi definido com uma velocidade ao longe na direção x dada por U∞. As

escalas usadas para adimensionalizar o problema são diâmetro (d), velocidade ao longe

(U∞) e pressão (ρU
2
∞
2

). O regime de escoamento, como já mencionado anteriormente,

é governado por apenas um parâmetro, o número de Reynolds Re = U∞d

ν
, sendo ν a

viscosidade cinemática do fluido.
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3.2.1 Equação de Navier-Stokes

Neste trabalho, para todos os testes, o número de Reynolds foi fixado em Re = 200,

sendo assim, o ambiente de simulação utilizado para as soluções numéricas seguiu as

equações que regem os escoamentos viscosos laminares.

As equações 3.4 e 3.5 são as que governam esse tipo de escoamento, sendo elas a

equação de Navier-Stokes e a equação da continuidade. Além das premissas de escoamento

viscoso e laminar, ainda foi considerada a premissa de desprezar o efeito da aceleração da

gravidade, e a de continuidade com condições de contorno adequadas (MUNSON, 2013):

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u (3.4)

∇ · u = 0 (3.5)

Para a simulação das equações de Navier-Stokes e de Continuidade aplicadas ao pro-

blema, utilizou-se o ambiente Google Colaboratory, o software Firedrake para a solução

dos elementos finitos e o Gmesh para a criação da malha, conforme descrito em BAL-

LARIN (2021) e Ham et al. (2023). Tanto o Google Colaboratory quanto os softwares

utilizados são open source, sendo muito flex́ıveis para adaptar equações diferenciais escri-

tas em formulação fraca e incorporar métodos de geração e adaptação de malhas (BELME;

DERVIEUX; ALAUZET, 2012; FREY; ALAUZET, 2005).

3.2.2 Simulação temporal do escoamento: Método dos elemen-
tos finitos: Formulação fraca pelo método de Garlekin com
elementos Taylor-Hood P2-P1

Utilizou-se um domı́nio finito dividido em elementos triangulares expandidos pelo ele-

mento de Taylor-Hood P2-P1, ou seja, a velocidade é representada por um elemento-P2 de

Lagrange, que aproxima os valores com polinômios de segunda ordem, enquanto a pressão

é representada por um elemento-P1 de Lagrange, que aproxima os valores com polinômios

de primeira ordem, como pode ser observado na Figura 25. Sendo assim, é obtida uma

discretização espacial de segunda ordem de precisão (ZIENKIEWICZ; TAYLOR, 2000).

Como os valores nodais são definidos pelas próprias funções desconhecidas, obtém-se uma

continuidade C0 na fronteira.

Como método dos elementos finitos, foi utilizada uma formulação fraca para as equações

de Navier-Stokes, segundo BitBucket (2016), as equações de Navier-Stokes podem ser fa-

cilmente formuladas em uma forma variacional mista, significando uma forma onde as duas
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Figura 25: Elemento de Taylor-Hood P2-P1. Retirado de: BENNER et al. (2013).

variáveis do problema, velocidade e pressão, são aproximadas simultaneamente. BitBuc-

ket (2016) traz de forma abstrata o seguinte problema para explicação da formulação

fraca, onde é necessário encontrar (u, p) ∈ W , de modo que:

a((u, p), (v, q)) = L((v, q)), (3.6)

para todo (v, q) ∈ W , onde:

a((u, p), (v, q)) =

∫
Ω

∇u · ∇v −∇ · vp+∇ · uq dx, (3.7)

L((v, q)) =

∫
Ω

f · v dx+

∫
∂ΩN

g · v ds (3.8)

Sendo que, o espaço W deve ser uma função de espaço mista (Produto), entre V

(Espaço das velocidades) e Q (Espaço das pressões), portanto W = V × Q, de tal modo

que u ∈ V e q ∈ Q.

Quanto aos métodos para a pressão no escoamento incompresśıvel, utilizou-se o método

das penalidades, o qual promove uma compressibilidade artificial numérica muito pequena

e controlável, sem afetar os resultados. Para a marcha no tempo, utilizou-se o método de

Adams-Bashforth de 2ª ordem e múltiplos passos.

3.2.2.1 Modelagem do movimento relativo

DONEA et al. (2004) trazem uma explicação interessante do por que se utilizar da

técnica ALE para problemas de interação fluido-estrutura, em algoritmos lagrangianos

cada nó individual da malha computacional segue a part́ıcula material associada durante

o movimento, esse método é normalmente utilizado em mecânica estrutural. A descrição

Lagrangiana permite um rastreamento fácil das superf́ıcies e interfaces livres entre dife-

rentes materiais. Sua fragilidade é sua incapacidade de acompanhar grandes distorções
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do domı́nio computacional sem recorrer a frequentes operações de refazer toda a malha.

Por outro lado, algoritmos Eulerianos são amplamente utilizados em dinâmica dos fluidos,

nesse método, a malha computacional é fixa e o cont́ınuo se move em relação à grade.

Na descrição Euleriana, grandes distorções no movimento cont́ınuo podem ser tratadas

com relativa facilidade, mas geralmente à custa de uma definição precisa da interface e

da resolução dos detalhes do fluxo. A diferença entre as três técnicas pode ser observada

na Figura 26

Para o deslocamento de cada nó da malha, utilizou-se uma função projetada no espaço

de elementos finitos, similar às usadas para velocidade e pressão, explicadas na Seção 3.2.2,

porém aplicada aos campos de deslocamento da malha móvel. Para modelar esse desloca-

mento relativo entre os corpos imersos, foi utilizada a técnica Lagrangeana-Euleriana Ar-

bitrária (ALE - Arbitrary Lagrangian-Eulerian), que, segundo HIRT, AMSDEN e COOK

(1974), pode ser empregada para qualquer velocidade de escoamento, uma vez que utiliza

uma malha de diferenças finitas cujos vértices podem: se mover com o fluido (Lagrangi-

ano), permanecer fixos (Euleriano) ou se mover em qualquer direção arbitrária. Portanto,

prescreve-se o movimento não uniforme para a malha do domı́nio do fluido, associado ao

movimento e/ou deformação dos objetos imersos, ou seja, o problema é descrito na re-

ferência local de cada nó da malha, permitindo que cada nó se desloque arbitrariamente,

desde que a malha não se distorça excessivamente. Para este trabalho, o movimento é

atrelado ao movimento oscilatório dos cilindros, e a malha se desloca nas fronteiras de

acordo com o movimento dos cilindros, no contorno externo é fixa, e nos demais nós

internos se comporta como um sólido elástico linear.

A abordagem elegantemente modifica a condição de contorno e trata a malha como

um referencial móvel com velocidade arbitrária para cada nó, definida por ugrid(x, t).

ZIENKIEWICZ e TAYLOR (2000) exemplificam, em termos de variáveis primitivas, a

escrita da equação de continuidade 3.10 e as equações de Navier-Stokes 3.9 modificadas

para uma implementação de uma malha ALE:

∂u

∂t
+ (u− ugrid) · ∇u = −∇p+

1

Re
∇2u (3.9)

∇ · u = 0 (3.10)

A adição do termo (u − ugrid) corresponde à implementação do método ALE. Onde,

u é a velocidade do fluido no referencial absoluto e ugrid é a velocidade da malha. Com

isso, caso a velocidade da malha seja zero, a equação se torna uma abordagem Euleriana,

e caso a velocidade da malha seja igual à velocidade do fluido, ela se torna Lagrangiana.
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Figura 26: Diferença entre as técnicas Euleriana, Lagrangiana e ALE para uma dimensão.
Retirado de: DONEA et al. (2004).

A velocidade da malha é adaptada ao movimento relativo dos corpos; ou seja, o

movimento de cada nó da malha é calculado como se a malha se comportasse como um

material elástico Hookeano, preso aos corpos que impõem deslocamento e velocidade.

Para a construção da malha, foi considerado que a mesma é um sólido elástico linear

com propriedades de Lamé λ e µ inversamente proporcionais à dimensão do elemento

(assim, quanto menor o elemento, mais ŕıgido ele é).

O problema elástico isotrópico linear é, para pequenos deslocamentos:

−∇ · σ = f em Ω, (3.11)

com o tensor de tensão:

σ := λTr(ϵ)I + 2µϵ, (3.12)

e o tensor de taxa de deformação simétrico:

ϵ :=
1

2
(∇u+ (∇u)T ), (3.13)

onde u é o campo desconhecido de deslocamento vetorial, e µ e λ são os parâmetros de

Lamé.

Como já explicado, a formulação variacional consiste em multiplicar por uma função
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de teste em algum espaço de elemento finito adequado, v ∈ V , e integrar. Note que

desta vez, a solução u, e consequentemente o espaço de teste V , são vetoriais (então a

multiplicação significa pegar o produto interno).

Obtemos:

−
∫
Ω

(∇ · σ) · v dx =

∫
Ω

f · v dx. (3.14)

Como σ é uma função das derivadas de u, devemos integrar este termo por partes,

resultando em: ∫
Ω

σ : ∇v dx−
∫
Γ

(σ · n) · v ds =
∫
Ω

f · v dx. (3.15)

3.2.2.2 Resolução do problema variacional

O problema variacional do escoamento incompresśıvel é a projeção da equação no

espaço de funções ponderadas.

As equações a serem resolvidas são as trazidas na seção 3.2.2.1:

∂u

∂t
+ u · ∇u− umesh · ∇u− ν∇2u+∇p = 0, (3.16)

∇ · u = 0. (3.17)

Utilizando a forma variacional ponderada pelas funções (v, q), que representam as

funções de teste no espaço de elementos finitos, obtêm-se as seguintes equações:∫
Ω

(
∂u

∂t
+ u · ∇u− umesh · ∇u− ν∇2u+∇p

)
v dΩ = 0, (3.18)∫

Ω

(∇ · u)q dΩ = 0. (3.19)

Para resolvê-las foi utilizado o método de CHORIN (1968), onde Chorin propõe uma

diferença finita de 1 passo para a derivada temporal para discretizar a parcela temporal

e decompõe as equações em 3 passos:

1) Resolve-se uma estimativa para a velocidade:∫
Ω

[
u∗ − up

∆t
· v + (up · ∇u∗) · v − (umesh · ∇up) · v + ν∇u∗ · ∇v

]
dΩ = 0. (3.20)

2) Impõe-se a condição de incompressibilidade usando a pressão:∫
Ω

[∇p · ∇q + (∇ · u∗)q/∆t] dΩ = 0. (3.21)
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3) Corrige-se a velocidade estimada:∫
Ω

[u · v − u∗ · v +∆t∇p · v] dΩ = 0. (3.22)

3.2.2.3 Condições de contorno

Como condições de contorno para resolução das equações diferenciais parciais para

velocidade e pressão foram considerados:

• Nos cilindros U(xcil, t) = ucil(t)

• Entrada e laterais u(xentrada, t) = (1, 0)

• Na sáıda, foi assumido uma pressão de referência nula p(xsai) = 0

Para a solução da equação diferencial parcial da elasticidade linear, foram consideradas

as seguintes condições de contorno:

• Nos cilindros d(xcil, t) = dcil(t) que mudam com o tempo

• Nos entornos (entrada, sáıda e laterais) d(xentorno) = (0, 0)

3.3 Modelo de estrutura acoplada para converter de

energia

O problema do escoamento abordado por elementos finitos, como apresentado ante-

riormente, está acoplado a um modelo estrutural modificado para incluir um dispositivo

de coleta que converte energia mecânica em elétrica, como pode ser observado na Figura

28. Na literatura focada na representação do escoamento, o efeito do acoplamento ele-

tromecânico é frequentemente simplificado, como no caso de uma dissipação viscosa de

energia local, pois o foco dos estudos está nas condições combinadas de escoamento e

propriedades estruturais que facilitam a coleta de energia. Um exemplo é o trabalho de

GROUTHIER et al. (2014), que analisa a eficiência por meio de um modelo reduzido.

Ainda assim, para representar mais adequadamente o acoplamento eletro-mecânico,

propõe-se considerar um transdutor piezoelétrico como o conversor de deformações mecânicas

em eletricidade, tal qual MEHMOOD et al. (2013) usaram em seu trabalho. O modelo

simplificado consiste em uma seção de estrutura com comportamento elástico Hookeano
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acoplado com o transdutor piezoelétrico e com forçante dada pela interação com o escoa-

mento (ABDELKEFI; HAJJ; NAYFEH, 2012).

Figura 27: Esquema do coletor de energia piezoelétrico baseado no cilindro proposto, em
que U∞ representa a velocidade livre do fluxo, C e K representam, respectivamente, o
amortecimento estrutural e a rigidez, enquanto R representa a resistência. Retirado de
MEHMOOD et al. (2013).

O modelo pode ser escrito, para uma direção y como exemplo, pela combinação de

um sistema massa-mola-amortecedor simples.

MŸ + CẎ +KY = Fyfluido(t, Ẏ , Ÿ , escoamento), (3.23)

Onde Y representa o deslocamento da estrutura, M é a massa do cilindro por uni-

dade de comprimento, C é o amortecimento estrutural, K é a rigidez, e a força atuante

representa a carga do escoamento sobre a estrutura, que depende tanto do escoamento

quanto do movimento da própria estrutura.

A Equação 3.23 é resolvida simultaneamente com a forma discreta das equações 3.9 e

3.10.

Para o cálculo da energia bruta, foram utilizados dois métodos de integral numérica:

o método da integral de Simpson e a integral trapezoidal. No primeiro método, a curva

é aproximada por parábolas, e a área é calculada com base em parábolas ajustadas a 3

pontos. No segundo, a curva é aproximada por retas, e a área é calculada com base em

retas ajustadas a 2 pontos. A curva a ser aproximada por esses métodos para integração

é a curva das potências ao longo do tempo, previamente calculadas.

A curva às quais esses métodos farão a aproximação para integração será a curva das
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potências no tempo, potências essas calculadas através da equação Pot = F · v, onde

F é a força de sustentação, e v a velocidade de deslocamento do cilindro.

Figura 28: Curva de Força para cálculo da potência e energia gerada / consumida através
das integrais de Simpson e Trapezoidal. Produzido pelo Autor.

3.4 Parâmetros, métodos de cálculo e limitações das

simulações

A validação das simulações requer dados de experimentos ou de outras simulações dis-

pońıveis na literatura. Um sistema de coleta de energia por vibração induzida por vórtices

tem uma variedade considerável de parâmetros: condições de escoamento, parâmetros

estruturais, parâmetros elétricos e parâmetros de acoplamento. Para este trabalho, a

validação das simulações de vibração induzida por vórtices foi apoiada pela extensa com-

pilação de trabalhos publicados em NORBERG (2003) e ÁSSI (2005), para a validação do

sistema fluido-estrutura foi utilizado como referência MEHMOOD et al. (2013). Critérios

de validação de escolha de parâmetros para simulação numérica do escoamento são bem

estabelecidos e aplicados em todo trabalho que preze por reprodutibilidade (ROACHE,

1994; REIS; GIORIA, 2021).

3.4.1 Parâmetros de malha e resolução

Os parâmetros de malha utilizados nas simulações computacionais foram:

• Domı́nio computacional: Retângulo de dimensão H × L;
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• Cilindro: O cilindro tem seu centro controlado pelo domı́nio computacional sendo

c = 0, 4 · L× H
2
, e tem raio r = 0, 5;

• Caixa de controle de resolução: A caixa que controla o tamanho dos elementos

em regiões intermediárias tem dimensões 2 · hh× hh+ le, onde hh = 2, 0 é a altura

da caixa de controle e le = 7, 0 é o comprimento;

É importante destacar que todos os parâmetros da malha foram adimensionalizados pelo

diâmetro do cilindro principal.

Os parâmetros de resolução utilizados no trabalho foram:

• Fator de resolução: Fator que será alterado e terá as três áreas de resolução como

sua função;

• Resolução principal: Tamanho do elemento usado nas regiões próximas ao corpo

do cilindro (camadas limite);

• Resolução da caixa de controle: Tamanho dos elementos em regiões inter-

mediárias, usada no controle de distribuição da malha;

• Resolução ao longe: Resolução das regiões ao longe, onde não ocorrem grandes

mudanças no escoamento.

A resolução principal, da caixa de controle e ao longe serão sempre, respectivamente 0, 05 ·
fator de resolução, 5,0

16,0
· fator de resolução, 1, 5 · fator de resolução.

Os parâmetros de caracteŕısticas f́ısicas do problema foram:

• Timestep (dt): Para todos os testes foi utilizado timestep (dt = 0, 01);

• Tempo f́ısico (T ): Para os testes em que o foco era encontrar os parâmetros de

malha e de resolução, ou seja, sem VIV, foi utilizado T = 100, e para os testes com

VIV foi utilizado T = 200, isso se deve à necessidade de um tempo maior para o

desenvolvimento de um regime estável com VIV;

• Velocidade ao longe (U∞): Assim como o diâmetro do cilindro, U∞ = 1, 0, foi

escolhido dessa maneira para facilitar na reprodutibilidade do problema, e manter

o foco na análise de parâmetros mais cruciais para o problema, como o número de

Reynolds;
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• Viscosidade cinemática (ν) e Número de Reynolds (Re): Estes parâmetros

estão relacionados através da equação Re = U∞·D
ν

e para este problema foi escolhido

o número de Reynolds Re = 200, 0, por ter uma vasta gama de trabalhos anteriores

para definição de parâmetros e por se encontrar em um regime de transição de

escoamento, onde há a possibilidade de análises interessantes. Sendo assim, teremos

ν = 0, 005

3.4.2 Métodos de cálculo para CD, CL, St e suas limitações

Devido à dependência temporal do escoamento em relação ao desprendimento de

vórtices e à ocorrência do VIV, são necessários métodos estat́ısticos para calcular os

valores dos coeficientes de arrasto (CD), sustentação (CL) e o número de Strouhal (St).

Portanto, para determinar os valores de CL e CD, foram utilizadas as técnicas da média

simples e da média quadrática, ou Root-mean-square (RMS). O uso de ambas as técnicas

é justificado, uma vez que os valores obtidos por RMS proporcionam uma análise da

magnitude das variações, desconsiderando o sinal dos valores, enquanto a média simples

fornece uma análise da tendência central das flutuações.

Para calcular a frequência da força de arrasto, o número de Strouhal (St), ou a

frequência de desprendimento dos vórtices, foram empregadas duas técnicas de cálculo.

Uma delas é a técnica de zero crossing, na qual os valores do eixo x (tempo) são deter-

minados por interpolações, identificando os pontos onde a curva da força de sustentação

muda de sinal, de negativo para positivo. As diferenças de tempo entre os instantes de

troca de sinal são calculadas, determinando os peŕıodos. As frequências são então obtidas

utilizando a equação:

Stzerocrossing = fzerocrossing =
1

Média T
(3.24)

A outra técnica utilizada foi a da Transformada Rápida de Fourier, ou Fast Fourier

Transform (FFT), uma técnica amplamente conhecida para a análise de sinais senoidais.

A motivação para o uso de ambas as técnicas é garantir uma verificação cruzada. Dife-

rentemente das técnicas utilizadas para o cálculo dos coeficientes, nas quais cada método

mede aspectos distintos, as técnicas para obtenção da frequência devem apresentar valo-

res próximos, uma vez que realizam medições semelhantes. A principal diferença entre as

técnicas é que a técnica por zero crossing apresenta maior precisão em intervalos curtos

de tempo, enquanto o FFT é mais preciso para intervalos maiores. A FFT projeta o

sinal como uma soma de senos e cossenos com frequências discretas, determinadas pelo
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tempo total do sinal e pelo intervalo de amostragem. Assim, é posśıvel detectar todas as

frequências presentes no sinal, desde que estejam dentro da projeção. Além disso, como

projeta senos e cossenos, a FFT garante periodicidade. Por outro lado, o zero crossing

computa apenas as trocas de sinal de negativo para positivo e depende exclusivamente

do intervalo de amostragem; portanto, a priori, a periodicidade não é assumida, sendo

inferida apenas por observação. É necessário lembrar que St = fsD
U∞

, porém está sendo

considerado D = U∞ = 1, 0, logo St = fs.

Como as técnicas utilizadas são intrinsecamente estat́ısticas, existem algumas li-

mitações, como por exemplo, é necessário que sejam retirados os outliers, para que sejam

diminúıdos os rúıdos da análise. No caso de um sistema de equiĺıbrio dinâmico, os va-

lores que não são relevantes para a análise correspondem ao transiente inicial, ou seja,

ao peŕıodo anterior ao sistema atingir um regime desenvolvido, onde as forças, embora

variáveis, estejam devidamente acomodadas para o equiĺıbrio do sistema. Para o caso do

sistema sem VIV, foi considerado que o sistema já se encontra em um regime estatistica-

mente desenvolvido a partir de T = 35 e para os sistemas com VIV a partir de T = 140

como pode ser observado nas Figuras 29 e 30

Figura 29: Gráfico de força em função tempo com destaque para o regime estatisticamente
desenvolvido em sistema sem VIV. Produzido pelo autor.
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Figura 30: Gráfico de força em função do tempo com destaque para o regime estatistica-
mente desenvolvido em sistema com VIV. Produzido pelo autor.

3.4.3 Métodos de avaliação dos efeitos VIV e suas limitações

Neste trabalho, a fim de chegar à resposta do problema inicial que é: se com es-

ses parâmetros f́ısicos selecionados é posśıvel obter energia advinda da vibração de um

corpo ciĺındrico imerso em um escoamento devido ao fenômeno de vibrações induzidas por

vórtices, foi necessário, assim como na escolha de parâmetros, selecionar alguns métodos e

limitações para avaliação do fenômeno do VIV, para que em pesquisas futuras seja posśıvel

alcançar um certo grau de reprodutibilidade.

Os parâmetros utilizados para a avaliação do VIV incluem: o número de Strouhal (St);

a amplitude da força de sustentação e a frequência de sustentação, calculadas utilizando

o RMS, que mede a magnitude das variações da força de sustentação; a frequência de

oscilação da estrutura livre, obtida pelo método de zero-crossing, focado no intervalo de

amostragem para obter valores mais precisos; e, por fim, a amplitude de deslocamento dos

cilindros com VIV. Para o cálculo desse último parâmetro, foram consideradas as cinco

maiores amplitudes de deslocamento do cilindro, a partir das quais foi calculada a média

simples. Esses parâmetros são fundamentais para a produção dos gráficos e análises

necessárias para responder ao problema inicial. É importante mencionar a limitação

descrita na Seção 3.4.2, referente à consideração do regime estatisticamente desenvolvido

para o VIV, como pode ser observado na Figura 30.
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Por fim, dois procedimentos de análise foram essenciais para a avaliação dos efeitos

do VIV. O primeiro refere-se à maneira de cálculo da velocidade reduzida, definida como

U∗ = U∞
fNestrut ·D

. Alterou-se a frequência natural (rigidez) da estrutura para obter valores

de velocidades reduzidas entre 1 e 10, com incrementos de 1. A justificativa para alterar

a frequência natural da estrutura, em vez de ajustar diretamente a velocidade reduzida,

é que, caso a velocidade reduzida fosse alterada mantendo a rigidez constante, o sistema

precisaria ajustar o escoamento para atingir o equiĺıbrio, o que resultaria em uma variação

do número de Reynolds, algo fora do escopo deste trabalho. O segundo procedimento

está relacionado à presença ou ausência de batimentos, causados pela interferência entre

duas ondas de frequências levemente diferentes, resultando em uma onda com amplitude

variável. A ocorrência de batimentos pode indicar uma posśıvel transição entre branches.

Para valores de velocidade reduzida em que se observem batimentos, será realizada uma

análise mais detalhada, ajustando-se a velocidade reduzida em incrementos de 0,1. Vale

destacar que, por se tratar de um problema bidimensional, os batimentos podem indicar

que o sistema está em transição entre branches ; contudo, sem a presença de turbulência,

é improvável obter uma relação clara.
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4 RESULTADOS

4.1 Escolha dos parâmetros H, L e fator de resolução

Para este trabalho foram escolhidos três valores para teste de cada um dos parâmetros.

Para o fator de resolução, 1,0; 2,0 e 4,0, para H, 10,0; 20,0 e 30,0 e para L 15,0; 25,0 e 30,0.

Primeiramente, foi-se alterando os parâmetros do domı́nio computacional, tantoH quanto

L e então o fator de resolução. O ponto de parada de refinamento de ambos os parâmetros

considerou a proximidade com os coeficientes de Lift (CL) e de Drag (CD), e o número de

Strouhal (St) encontrados por NORBERG (2003) e HENDERSON (1995) (considerando

posśıveis erros de pontos flutuantes, que podem se propagar ao longo das equações e

erros de discretização que se devem à aproximação da solução pelos elementos finitos

(polinomial) (GRÄTSCH; BATHE, 2005), além das diferenças de softwares e modelagens

utilizados), e o tempo de simulação. Os valores obtidos podem ser observados na Tabela 6:

Tabela 6: Testes de parâmetros de malha e resolução. Produzido pelo autor.

Parâmetros CL C ′
L St StFFT CD C ′

D fD fDFFT

Tempo de

simulação

(min)

L = 15,0

H = 10,0

Fres = 1,0

0,0607 0,0014 - - 0,9566 0,004 - - 6,05

L = 25,0

H = 10,0

Fres = 1,0

0,0639 0,0029 - - 0,9541 0,0007 - - 7,04

L = 30,0

H = 10,0

Fres = 1,0

0,0288 0,0268 - - 0,9546 0,0024 - - 6,47

L = 15,0

H = 20,0

Fres = 1,0

0,0713 0,0017 - - 0,9250 0,0005 - - 7,07

Continua na próxima página.
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Continuação da tabela 6.

Parâmetros CL C ′
L St StFFT CD C ′

D fD fDFFT

Tempo de

simulação

(min)

L = 25,0

H = 20,0

Fres = 1,0

0,0359 0,0021 - - 0,9054 0,0045 - - 7,41

L = 30,0

H = 20,0

Fres = 1,0

0,0523 0,0079 - - 0,9032 0,0029 - - 8,26

L = 15,0

H = 30,0

Fres = 1,0

0,0672 0,0019 - - 0,9179 0,0037 - - 7,20

L = 25,0

H = 30,0

Fres = 1,0

0,0525 0,0025 - - 0,9109 0,0039 - - 8,58

L = 30,0

H = 30,0

Fres = 1,0

0,0648 0,0044 - - 0,8910 0,0050 - - 9,14

L = 15,0

H = 10,0

Fres = 2,0

0,0112 0,3839 0,1878 0,1834 0,8910 0,0050 0,3751 0,3668 11,08

L = 25,0

H = 10,0

Fres = 2,0

0,0177 0,3849 0,1868 0,1834 1,3384 0,0213 0,3733 0,3668 12,11

L = 30,0

H = 10,0

Fres = 2,0

0,0165 0,3870 0,1870 0,1834 1,3367 0,0215 0,3736 0,3668 13,12

L = 15,0

H = 20,0

Fres = 2,0

0,0112 0,3775 0,1835 0,1834 1,3066 0,0214 0,3644 0,3668 13,50

L = 25,0

H = 20,0

Fres = 2,0

0,0047 0,3621 0,1811 0,1834 1,2760 0,0203 0,3613 0,3668 18,34

L = 30,0

H = 20,0

Fres = 2,0

0,0052 0,3674 0,1810 0,1834 1,2738 0,0204 0,3615 0,3668 19,18

L = 15,0

H = 30,0

Fres = 2,0

0,0109 0,3820 0,1829 0,1834 1,3060 0,0214 0,3643 0,3668 15,23

Continua na próxima página.
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Continuação da tabela 6.

Parâmetros CL C ′
L St StFFT CD C ′

D fD fDFFT

Tempo de

simulação

(min)

L = 25,0

H = 30,0

Fres = 2,0

0,0036 0,3620 0,1804 0,1834 1,2706 0,0204 0,3598 0,3668 20,34

L = 30,0

H = 30,0

Fres = 2,0

0,0017 0,3628 0,1801 0,1834 1,2646 0,0204 0,3594 0,3668 22,19

L = 15,0

H = 10,0

Fres = 4,0

0,0062 0,4822 0,1965 0,1834 1,4550 0,0299 0,3930 0,3668 33,08

L = 25,0

H = 10,0

Fres = 4,0

0,0056 0,4676 0,1953 0,1834 1,4391 0,0294 0,3906 0,3668 37,41

L = 30,0

H = 10,0

Fres = 4,0

0,0039 0,4707 0,1953 0,1834 1,4396 0,0295 0,3907 0,3668 34,11

L = 15,0

H = 20,0

Fres = 4,0

0,0063 0,4728 0,1922 0,1834 1,4147 0,0294 0,3843 0,3668 39,11

L = 25,0

H = 20,0

Fres = 4,0

0,0123 0,4514 0,1897 0,1834 1,3791 0,0280 0,3793 0,3668 55,40

L = 30,0

H = 20,0

Fres = 4,0

0,0088 0,4535 0,1895 0,1834 1,3750 0,0278 0,3789 0,3668 56,55

L = 15,0

H = 30,0

Fres = 4,0

0,0087 0,4720 0,1914 0,1834 1,4092 0,0294 0,3827 0,3668 43,47

L = 25,0

H = 30,0

Fres = 4,0

0,0141 0,4504 0,1888 0,1834 1,3701 0,0280 0,3775 0,3668 1h04

L = 30,0

H = 30,0

Fres = 4,0

0,0072 0,4512 0,1884 0,1834 1,3638 0,0277 0,3766 0,3668 1h12

Para número de Reynolds Re = 200, utilizando as seguintes equações sugeridas por
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NORBERG (2003):

ϵ =
Re−Rec

Rec
, (4.1)

C ′
L =

√
ϵ

30
+

ϵ2

90
, (4.2)

onde, Rec = 47, encontra-se um valor para a flutuação do coeficiente de sustentação de

C ′
L = 0, 48.

Já para o coeficiente de arrasto médio CD foi utilizado o gráfico da Figura 31 proposto

por HENDERSON (1995)

Figura 31: Gráfico do coeficiente de arrasto em função do número de Reynolds. Retirada
de HENDERSON (1995).

Através do gráfico da Figura 31, HENDERSON (1995) ajusta duas curvas, uma para

o coeficiente de arrasto gerado pela força viscosa CDf
e outra para o coeficiente de arrasto

gerado pela pressão CDp , sendo representadas, respectivamente, pelas equações 4.3 e 4.4,

com os parâmetros indicados na Figura 32:
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CDf
(Re) =

a0
Rea1

, (4.3)

CDp(Re) = a0 − a1 ·Rea2 · exp (a3 ·Re). (4.4)

Figura 32: Parâmetros para cada curva de arrasto: (Superior) escoamento estável, (Infe-
rior) desprendimento de vórtex. Retirada de HENDERSON (1995).

Ao se somar ambos os coeficientes de arrasto utilizando o número de Reynolds Re =

200 e os parâmetros da Figura 32, é encontrado o valor de CD = 1, 3411.

Ao se comparar os valores dos coeficientes de arrasto, sustentação e o número de

Strouhal obtidos por NORBERG (2003) e HENDERSON (1995), com os valores obti-

dos nas simulações apresentados na Tabela 6 é posśıvel observar que os parâmetros de

domı́nio computacional e fator de resolução em que esses valores estão mais próximos

são, respectivamente, H = 10, 0, L = 15, 0 e fator de resolução = 4,0. Porém, para as

simulações com vibrações induzidas por vórtices foram escolhidos os seguintes parâmetros

H = 30, 0, L = 30, 0 e fator de resolução = 4,0, isso se deve ao fato de que o fator que

mais altera significativamente a proximidade dos valores encontrados com os da literatura

é o fator de resolução, por esse motivo o fator de resolução escolhido é o maior. Quanto

ao domı́nio computacional, os valores escolhidos foram os de 30× 30 pois, diferentemente

da simulação sem VIV, as com VIV necessitam de uma largura maior devido ao maior

comprimento da esteira de vórtices para ser considerada uma esteira de vórtices desen-

volvida, e necessitam de uma altura maior pois o VIV gera movimento transversal no

cilindro e afeta de maneira mais expressante o escoamento ao longe, necessitando de uma

altura maior para o domı́nio computacional.

4.2 Simulações sem VIV

A seguir são trazidos os gráficos com as forças de sustentação e arrasto ao longo do

tempo com diversas combinações de parâmetros, onde será posśıvel observar como o fator
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de resolução se faz o parâmetro mais importante para a obtenção de dados mais refinados.

Figura 33: Gráficos de forças para H = 10, L = 15 e Fres = 1, 0. Produzido pelo Autor.
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Figura 34: Gráficos de forças para H = 30, L = 30 e Fres = 1, 0. Produzido pelo Autor.

Figura 35: Gráficos de forças para H = 20, L = 25 e Fres = 2, 0. Produzido pelo Autor.
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Figura 36: Gráficos de forças para H = 30, L = 30 e Fres = 2, 0. Produzido pelo Autor.

Figura 37: Gráficos de forças para H = 10, L = 15 e Fres = 4, 0. Produzido pelo Autor.
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Figura 38: Gráficos de forças para H = 20, L = 25 e Fres = 4, 0. Produzido pelo Autor.

Figura 39: Gráficos de forças para H = 30, L = 30 e Fres = 4, 0. Produzido pelo Autor.
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A análise dos gráficos mostra que alterações no domı́nio computacional resultam em

poucas mudanças no refinamento das respostas. Em contraste, alterações no fator de

resolução evidenciam respostas mais refinadas e próximas dos valores esperados. Isso

pode ser explicado por dois motivos:

1. Para o fator de resolução 1,0, as equações divergem, apresentando respostas sem

sentido f́ısico, pois o regime não é completamente desenvolvido (representado pelo

quadrado vermelho pontilhado nos gráficos com fator de resolução igual a 4,0).

2. O segundo motivo está relacionado ao zero crossing, representado nos gráficos pelos

pontos vermelhos. Para o fator de resolução 1,0, quase não há interseção com o

eixo, reforçando a ausência de sentido f́ısico nas respostas.

4.3 Simulações com VIV

4.3.1 Parâmetros adimensionais utilizados nas simulações

Para a solução das equações nas simulações envolvendo VIV, é necessário definir pre-

viamente como informação do problema alguns dos parâmetros adimensionais trazidos na

Tabela 3 como:

• Velocidade Reduzida (U∗): Como dito anteriormente para cálculo da velocidade

reduzida foi-se alterando a frequência natural (fN) ou rigidez da estrutura pois,

caso fosse alterado a velocidade reduzida e mantido a rigidez do material constante,

para que o sistema alcançasse o equiĺıbrio ele teria que alterar o escoamento, sendo

assim seria alterado o Reynolds, algo que foge do escopo das análises do trabalho;

• Massa Reduzida (m∗): A massa reduzida do problema é m∗ = 4, visto que m∗ =
m

ρπD2

4

, onde ρ · π = m = 1

• Amplitude Reduzida (A∗): A amplitude reduzida será calculada para cada valor

de Velocidade reduzida/frequência natural da estrutura, pois esse parâmetro será

fundamental na para a análise dos branches através do gráfico de A∗ × U∗;

• Frequência Reduzida (f ∗): A frequência reduzida será calculada para cada valor

de Velocidade reduzida/frequência natural da estrutura, pois esse parâmetro será

fundamental na para a análise de identificação de lock-in através do gráfico de

f ∗ × U∗;
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• Razão de amortecimento (ζ): A razão de amortecimento do problema é ζ = 0, 001,

pois foi considerado que o amortecimento da estrutura (c) bem baixo, visto que

ζ = c
2
√
km

, onde k = m = 1.

• Coeficiente de acoplamento eletromecânico (θ): O coeficiente de acoplamento ele-

tromecânico θ = 0, 0, uma vez que o objetivo desse estudo era a produção ou não

de energia através do fenômeno do VIV, a adição de valores para o θ, traria uma

nova discussão para o estudo já robusto quanto a possibilidade ou não de captura

dessa energia gerada.

• Energia Gerada: Conforme mencionado anteriormente, o cálculo da energia bruta

utilizou dois métodos de integração numérica: o método da integral de Simpson e

a integral trapezoidal. A curva aproximada por esses métodos corresponde à curva

das potências no tempo, cujos valores foram calculados para gerar uma energia

adimensional.

4.3.2 Resultados das simulações

Na Tabela 7 são trazidos os resultados dos parâmetros descritos na seção 4.3.1 além de

outros valores importantes que serão utilizados posteriormente nas análises de geração de

energia vs solicitação da resistência do cilindro, entendimento do fenômeno, visualização

de branch e lock-in.
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Tabela 7: Resultados obtidos para diferentes valores de velocidade reduzida. Produzida
pelo autor.

fN U∗ A∗ f∗ Energia

Gerada

1,000 1,0 0,00302 0,18061 −8, 2× 10−7

0,500 2,0 0,01109 0,36315 1, 0× 10−5

0,333 3,0 0,02344 0,5559 6, 2× 10−5

0,250 4,0 0,04907 0,78711 −1, 4× 10−4

0,200 5,0 0,18037 1,01057 8, 1× 10−4

0,196 5,1 0,18395 1,09439 1, 1× 10−3

0,192 5,2 0,18232 1,10410 1, 3× 10−3

0,189 5,3 0,18356 1,11328 2, 3× 10−3

0,185 5,4 0,17380 1,12614 3, 2× 10−3

0,182 5,5 0,16587 1,15793 6, 2× 10−3

0,179 5,6 0,16333 1,18325 7, 2× 10−3

0,175 5,7 0,16270 1,19384 7, 3× 10−3

0,172 5,8 0,16088 1,19241 8, 0× 10−3

0,169 5,9 0,17374 1,19745 4, 8× 10−3

0,167 6,0 0,17781 1,19723 2, 5× 10−3

0,143 7,0 0,21343 1,35795 −1, 3× 10−3

0,125 8,0 0,21748 1,55710 −1, 3× 10−3

0,111 9,0 0,21464 1,75959 −1, 9× 10−3

0,100 10,0 0,21093 1,96231 −2, 0× 10−3

Dos valores trazidos na Tabela 7 se faz interessante analisar mais profundamente 4

casos, em que as velocidades reduzidas são 1,0; 5,0; 5,8 e 8,0.

4.3.2.1 Parâmetros: U∗ = 1, 0; fN = 1, 0

A análise do escoamento para a velocidade reduzida U∗ = 1, 0 é particularmente

interessante, pois representa um regime em que a vibração induzida por vórtices no cilindro
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começa a surgir, embora ainda apresente uma magnitude insuficiente para causar um

deslocamento expressivo no cilindro. Isso é evidenciado na Figura 40, que apresenta

baixas forças de sustentação e pequeno deslocamento, e na Figura 41, onde o cilindro é

praticamente estático, com desprendimento de vórtices menos intensos e mais longos.

Figura 40: Gráficos de forças e deslocamento gerado por VIV, para U∗ = 1. Produzido
pelo Autor.



70

t = 1
5
T

t = 2
5
T

t = 3
5
T

t = 4
5
T

t = T

Figura 41: Variação dos campos de pressão (esquerda) e velocidade (direita) para um
ciclo completo U∗ = 1, 0. Produzido pelo autor.

4.3.2.2 Parâmetros: U∗ = 5, 0; fN = 0, 2

A análise do escoamento para a velocidade reduzida U∗ = 5, 0 é indispensável, pois,

como mostrado na Figura 42, é nesse regime que se observam baixas forças de sustentação

associadas a uma alta vibração do cilindro, possibilitando a geração de energia, conforme

evidenciado na Tabela 7, sem causar desgaste excessivo na estrutura devido à menor

solicitação da força de sustentação. A Figura 43 mostra um desprendimento de vórtices



71

mais intenso, com vórtices menores e menos desenvolvidos, explicando a maior vibração

do cilindro em comparação ao cenário descrito na Seção 4.3.2.1.

Figura 42: Gráficos de forças e deslocamento gerado por VIV, para U∗ = 5, 0. Produzido
pelo Autor.
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Figura 43: Variação dos campos de pressão (esquerda) e velocidade (direita) para um
ciclo completo com U∗ = 5, 0. Produzido pelo autor.

4.3.2.3 Parâmetros: U∗ = 5, 8; fN = 0, 172

A análise do escoamento para a velocidade reduzida U∗ = 5, 8 é igualmente impor-

tante, pois, como mostrado na Tabela 7, este é o regime com maior geração de energia

bruta. Entretanto, a Figura 44 revela a ocorrência de batimentos. Devido às altas forças

atuantes e ao perfil variacional da força, a estrutura seria altamente solicitada, resultando

em uma menor eficiência na obtenção de energia em relação à amplitude da força. Além
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disso, trata-se de um regime de transição, tornando-o dif́ıcil de ser mantido.

Figura 44: Gráficos de forças e deslocamento gerado por VIV, para U∗ = 5, 8. Produzido
pelo Autor.
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Figura 45: Variação dos campos de pressão (esquerda) e velocidade (direita) para um
ciclo completo com U∗ = 5, 8. Produzido pelo autor.

4.3.2.4 Parâmetros: U∗ = 8, 0; fN = 0, 125

Para a velocidade reduzida U∗ = 8, 0, observa-se um efeito interessante, pois este

cenário ocorre logo após os regimes com batimentos e representa um cenário mais estável

para o sistema. Como indicado na Tabela 7, são observadas as maiores amplitudes de

deslocamento do cilindro e força de sustentação para essa velocidade reduzida. Entretanto,

há consumo de energia ao invés de geração. Apesar das altas amplitudes das forças que
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geram energia, esta é consumida pelo sistema para sustentar o grande deslocamento do

cilindro causado pelos vórtices.

Figura 46: Gráficos de forças e deslocamento gerado por VIV, para U∗ = 8, 0. Produzido
pelo Autor.
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Figura 47: Variação dos campos de pressão (esquerda) e velocidade (direita) para um
ciclo completo com U∗ = 8, 0. Produzido pelo autor.

4.3.3 Avaliação dos resultados

Para uma melhor avaliação dos resultados, é interessante transpor os dados da Tabela

7 para os gráficos apresentados nas Figuras 48 e 49. A análise dos gráficos e da tabela

revela que, para valores de velocidade reduzida entre U∗ = 1, 0 e U∗ = 5, 3 o aumento

da velocidade reduzida resulta em um aumento progressivo da amplitude reduzida, cor-

respondente ao deslocamento do cilindro causado pelo VIV, atingindo um máximo de
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aproximadamente 20% do diâmetro do cilindro. Nesse intervalo, também ocorre um au-

mento na frequência reduzida, evidenciando um crescimento progressivo na geração de

energia. Entre U∗ = 5, 3 e U∗ = 5, 8 observa-se o cenário ideal para geração de energia,

com o máximo alcançado em U∗ = 5, 8. A partir de U∗ = 5, 3, a frequência média de

desprendimento de vórtices continua aumentando, indicando maior vibração gerada pelo

desprendimento de vórtices, enquanto as amplitudes médias de deslocamento do cilindro

diminuem devido ao fenômeno de batimentos. A partir de U∗ = 5, 9, ocorre uma inversão

do fenômeno, com o desaparecimento dos batimentos e o sistema retornando a um estado

mais estável. Nesse regime, a frequência de desprendimento de vórtices se afasta nova-

mente da frequência natural da estrutura, resultando em uma redução na frequência de

desprendimento e um aumento nas amplitudes de deslocamento do cilindro. Consequen-

temente, o sistema consome energia para suportar esses deslocamentos.

Figura 48: Gráfico de amplitude reduzida para diferentes valores de velocidade reduzida.
Produzido pelo Autor.
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Figura 49: Gráfico de frequência reduzida para diferentes valores de velocidade reduzida.
Produzido pelo Autor.

Além da análise anterior, é necessário examinar as Figuras 41, 43, 45 e 47, que ilus-

tram os deslocamentos causados pelo VIV e a magnitude das forças ao longo do tempo.

Inicialmente, com base apenas na análise anterior, poderia-se concluir que a melhor esco-

lha para a geração de energia seria manter a velocidade reduzida em torno de U∗ = 5, 8.

No entanto, ao observar o gráfico de força de sustentação e deslocamento do cilindro ao

longo do tempo, assim como o gráfico de frequência reduzida versus velocidade reduzida,

verifica-se que entre U∗ = 5, 0 e U∗ = 6, 0 ocorre um provável fenômeno de lock-in.Nesse

fenômeno, as frequências de desprendimento de vórtices aproximam-se da frequência natu-

ral da estrutura, gerando o efeito de batimento (devido às frequências próximas, mas não

exatamente iguais), o que sugere uma posśıvel transição de um branch para outro. Como

mencionado anteriormente, essa comprovação é dificultada pela condição bidimensional

da simulação. Para alcançar uma geração de energia mais eficiente, tanto em termos de

resistência da estrutura quanto de energia bruta gerada, seria ideal operar o sistema a uma

velocidade reduzida de U∗ = 5, 0. Nesse ponto, o sistema começa a entrar no lock-in, ou

seja, o momento em que as frequências começam a se aproximar. Nesse regime, observa-se

um montante significativo de energia obtida, com uma solicitação relativamente baixa da

estrutura, como evidenciado na Figura 43. Nessa figura, há uma vibração significativa
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causada pelo desprendimento de vórtices (fator gerador de energia) e uma baixa amplitude

das forças de sustentação, indicando uma menor solicitação da estrutura para sustentar

a vibração do sistema. Por outro lado, a análise também explica por que, para U∗ > 7, 0,

ocorre consumo de energia ao invés de geração. Na Figura 47, observa-se altas amplitudes

de vibração, indicando um potencial para grande geração de energia. Entretanto, também

são verificadas maiores amplitudes para as forças de sustentação, o que leva ao consumo

de energia pelo sistema para sustentar essas vibrações e manter o sistema estável. Por

esse motivo, é essencial evitar velocidades reduzidas maiores que U∗ = 6, 0, pois, além de

consumirem energia, essas velocidades exigem bastante da estrutura do cilindro, podendo

causar danos à mesma.
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5 CONCLUSÃO

Como parte do objetivo geral deste estudo, foi realizada uma revisão da literatura

pertinente à análise do fenômeno de vibrações induzidas por vórtices (VIV).

Por fim, foi desenvolvido um programa computacional em código aberto, escrito em

Python, no qual o método dos elementos finitos foi implementado utilizando o Firedrake

como software para a resolução de equações diferenciais parciais e o Gmesh para a criação

da malha de elementos finitos. No entanto, será necessário um refinamento nas técnicas

utilizadas, uma vez que alguns resultados não apresentaram o comportamento esperado,

especialmente no que diz respeito à frequência da força de sustentação, que deveria estar

mais próxima das frequências naturais da estrutura. Esse fato, porém, não inviabiliza

os resultados obtidos, considerando que a técnica empregada exige simplificações e é um

método numérico suscet́ıvel à propagação de erros.

Apesar da divergência encontrada nos gráficos das Figuras 48 e 49, nos pontos em

que eram esperados um lock-in, os apuramentos se mostraram sólidos, pois os resultados

finais buscados, que eram de energia gerada, condizem com os valores encontrados para

deslocamento do cilindro causado pelo VIV e com as forças de sustentação apresentadas

nos gráficos de forças × tempo.

Concluindo, foi posśıvel responder ao problema inicial proposto neste trabalho: de-

senvolver um modelo de coletor utilizando um cilindro ŕıgido montado em um conjunto de

molas, amortecedores e resistência. Verificou-se que é viável produzir energia por meio das

vibrações do cilindro geradas pelo escoamento incidente, que causa o desprendimento de

vórtices. Como sugestões para pesquisas futuras, destacam-se três importantes direções:

1. Refinamento e aperfeiçoamento das técnicas matemáticas e computacionais utiliza-

das, a fim de melhorar a precisão dos resultados obtidos;

2. Utilização de sistemas de controle para cilindros, com o objetivo de manter o esco-

amento em velocidades ideais para a geração de energia;
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3. Avaliação da viabilidade econômica e prática para implantação do modelo descrito,

incluindo a captura de energia em pequena escala, e a realização de diversos testes

variando o parâmetro θ da equação ??. Dessa forma, seria posśıvel determinar se a

energia capturada pelo transdutor é adequada para aplicações práticas e qual o ńıvel

de acoplamento ideal para uma captura de energia mais eficiente, considerando sua

real viabilidade para outros usos.
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⟨https://doc.freefem.org/documentation/finite-element.html#p2-element⟩.

FREY, P. J.; ALAUZET, F. Anisotropic mesh adaptation for CFD computations.
Computer Methods in Applied Mechanics and Engineering, v. 194,
p. 5068–5082, 2005. DOI: ⟨10.1016/j.cma.2004.11.025⟩.

GOVARDHAN, R.; WILLIAMSON, C. H. Modes of Vortex Formation and frequency
response of a freely vibrating cylinder. Journal of Fluid Mechanics, v. 420,
p. 85–130, 2000. DOI: ⟨10.1017/s0022112000001233⟩.
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⟨https://link.springer.com/article/10.1007/s00158-020-02598-0⟩.

PICELLI, Renato et al. Topology optimization of turbulent fluid flow via the TOBS
method and a geometry trimming procedure. Structural and Multidisciplinary
Optimization, v. 65, n. 1, 2022. DOI: ⟨10.1007/s00158-021-03118-4⟩. Dispońıvel em:
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APÊNDICE A – ARTIGO SÍNTESE
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1 Resumo
Com o aumento da demanda global por energia e a busca por métodos mais sustentáveis, tecnologias baseadas

na interação fluido-estrutura têm se destacado como alternativas promissoras, especialmente para aplicações em
pequena escala. Este estudo investigou a viabilidade da geração de energia utilizando um cilindro fixo montado em
um sistema composto por molas, amortecedores e resistência. Por meio de simulações multifísicas e do método dos
elementos finitos, foram resolvidas as equações de Navier-Stokes, permitindo a obtenção de mapas detalhados de
pressão, velocidade e potencial de geração de energia ao longo do tempo. Para garantir a precisão dos resultados, o
modelo foi validado com base em dados experimentais e numéricos disponíveis na literatura. Os resultados indicam
que é viável gerar energia em pequena escala para diferentes frequências naturais dos cilindros em um ambiente
controlado, estabelecendo uma base sólida para estudos adicionais e otimizações futuras. Esses avanços são
direcionados à melhoria da eficiência de dispositivos de coleta de energia por meio de vibrações induzidas por
vórtices (VIV), contribuindo para o desenvolvimento de tecnologias sustentáveis.

2 Abstract
With the increasing global energy demand and the pursuit of more sustainable methods, technologies based

on fluid-structure interaction have emerged as promising alternatives, especially for small-scale applications. This
study investigated the feasibility of energy generation using a fixed cylinder mounted on a system composed of
springs, dampers, and resistance elements. Through multiphysics simulations and the finite element method, the
Navier-Stokes equations were solved, allowing for the detailed mapping of pressure, velocity, and energy generation
potential over time. To ensure the accuracy of the results, the model was validated using experimental and numerical
data available in the literature. The results indicate that it is feasible to generate small-scale energy for different natural
frequencies of the cylinders in a controlled environment, establishing a solid foundation for further studies and future
optimizations. These advances are directed towards improving the efficiency of energy-harvesting devices through
vortex-induced vibrations (VIV), contributing to the development of sustainable technologies.

3 Introdução
A demanda por fontes de energia sustentáveis tem se intensificado em resposta às metas globais de desen-

volvimento sustentável, como as propostas pela Agenda 2030 da ONU (ONU, 2015). Com o objetivo de reduzir a
dependência de fontes de energia convencionais e incentivar alternativas mais limpas, surgem tecnologias inovado-
ras, entre as quais se destacam os sistemas que utilizam interações fluido-estruturais para geração de energia em
pequena escala.

A pesquisa foca na viabilidade de modelagem e controle do sistema, utilizando simulações numéricas com o
método dos elementos finitos para analisar o comportamento do escoamento e otimizar a geração de energia.Além
do avanço no entendimento do comportamento de sistemas VIV, essa pesquisa justifica-se pela sua relevância para
o análise de possibilidade de geração de energia através de sistemas com VIV. A tecnologia proposta pode fornecer
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uma alternativa viável para complementar fontes de energia em locais de difícil acesso, aumentando a autonomia
de veículos e dispositivos, como os Veículos Operados Remotamente (ROVs), utilizados em operações offshore. A
aplicação desse modelo contribui, assim, para atender o 7º Objetivo de Desenvolvimento Sustentável, que busca
acesso universal a energia confiável e sustentável.

4 Desenvolvimento
Este capítulo apresenta brevemente as ferramentas numéricas a serem aplicadas e os modelos físicos, além

das limitações das metodologias utilizadas. As seções introduzem o método de simulação numérica das equações
não-lineares do escoamento e o modelo eletro-mecânico do dispositivo de coleta de energia por vibração.

4.1 Modelagem com 1 grau de liberdade e Fluidodinâmica Computacional
Foi utilizado o esquema do sistema formado por um cilindro rígido montado sobre um conjunto de molas, amor-

tecedores e imerso em um meio fluido escoando. O único grau de liberdade do cilindro se encontra na direção
transversal ao fluxo e o conjunto mola-amortecedor resiste ao movimento nesta direção. O corpo do cilindro rígido
é considerado como toda a estrutura do sistema dinâmico (massa estrutural, força de restauração e amortecimento
do sistema). O esquema torna fácil a visualização do movimento transversal y(t) do cilindro, o mesmo pode ser des-
crito simplificadamente pela equação (tais equações são apresentadas a seguir somente de forma ilustrativa para
entendimento da modelagem simplificada) 3:

y(t) = y0 sin(ωt) (1)

F(t) = F0 sin(ωt +φ) (2)

mÿ+ cẏ+ ky = F(t) (3)

ÁSSI (2005) traz que, nos regimes de oscilação em que a frequência de vibração do corpo está sincronizada com
a excitação da força fluida, uma boa aproximação para F(t) e y(t) são as equações 2 e 1.

Neste trabalho foi simulado um escoamento bidimensional ao redor de um cilindro.

4.2 Equação de Navier-Stokes
Neste trabalho, para todos os testes, o número de Reynolds foi fixado em Re = 200, sendo assim, o ambiente de

simulação utilizado para as soluções numéricas seguiu as equações que regem os escoamentos viscosos laminares.

As equações 4 e 5 são as que governam esse tipo de escoamento, sendo elas a equação de Navier-Stokes e a
equação da continuidade. Além das premissas de escoamento viscoso e laminar, ainda foi considerada a premissa
de desprezar o efeito da aceleração da gravidade, e a de continuidade com condições de contorno adequadas
(MUNSON, 2013):

∂u
∂t

+u ·∇u =−∇p+
1

Re
∇2u (4)

∇ ·u = 0 (5)

Para a simulação das equações de Navier-Stokes e de Continuidade aplicadas ao problema, utilizou-se o ambi-
ente Google Colaboratory, o software Firedrake para a solução dos elementos finitos e o Gmesh para a criação da
malha, conforme descrito em BALLARIN (2021) e Ham et al. (2023)

4.3 Modelo de estrutura acoplada para converter de energia
O modelo simplificado consiste em uma seção de estrutura com comportamento elástico Hookeano acoplado

com o transdutor piezoelétrico e com forçante dada pela interação com o escoamento (ABDELKEFI; HAJJ; NAYFEH,
2012).

O modelo pode ser escrito, para uma direção y como exemplo, pela combinação de um sistema massa-mola-
amortecedor simples.
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MŸ +CẎ +KY = Fy f luido(t,Ẏ ,Ÿ ,escoamento), (6)

Onde Y representa o deslocamento da estrutura, M é a massa do cilindro por unidade de comprimento, C é o
amortecimento estrutural, K é a rigidez, e a força atuante representa a carga do escoamento sobre a estrutura, que
depende tanto do escoamento quanto do movimento da própria estrutura.

A Equação 6 é resolvida simultaneamente com a forma discreta das equações 4 e 5.

Para o cálculo da energia bruta, foram utilizados dois métodos de integral numérica: o método da integral de
Simpson e a integral trapezoidal. No primeiro método, a curva é aproximada por parábolas, e a área é calculada com
base em parábolas ajustadas a 3 pontos. No segundo, a curva é aproximada por retas, e a área é calculada com
base em retas ajustadas a 2 pontos. A curva a ser aproximada por esses métodos para integração é a curva das
potências ao longo do tempo, previamente calculadas.

A curva às quais esses métodos farão a aproximação para integração será a curva das potências no tempo,
potências essas calculadas através da equação Pot = F · v, onde F é a força de sustentação, e v a velocidade de
deslocamento do cilindro.

5 Resultados
Na Tabela 1 são trazidos os resultados dos parâmetros descritos mais à frente no artigo, além de outros valores

importantes que serão utilizados posteriormente nas análises de geração de energia vs solicitação da resistência do
cilindro, entendimento do fenômeno, visualização de branch e lock-in.

Tabela 1 – Resultados obtidos para diferentes valores de velocidade reduzida. Produzida pelo autor.

fff NNN UUU∗∗∗ AAA∗∗∗ fff ∗∗∗
Energia
Gerada

1,000 1,0 0,00302 0,18061 −8,2×10−7

0,200 5,0 0,18037 1,01057 8,1×10−4

0,172 5,8 0,16088 1,19241 8,0×10−3

0,125 8,0 0,21748 1,55710 −1,3×10−3

Para a solução das equações nas simulações envolvendo VIV, é necessário definir previamente como informação
do problema alguns dos parâmetros adimensionais:

• Velocidade Reduzida (U∗): Como dito anteriormente para cálculo da velocidade reduzida foi-se alterando a
frequência natural ( fN) ou rigidez da estrutura pois, caso fosse alterado a velocidade reduzida e mantido a
rigidez do material constante, para que o sistema alcançasse o equilíbrio ele teria que alterar o escoamento,
sendo assim seria alterado o Reynolds, algo que foge do escopo das análises do trabalho;

• Massa Reduzida (m∗): A massa reduzida do problema é m∗ = 4, visto que m∗ = m
ρπ D2

4

, onde ρ ·π = m = 1

• Amplitude Reduzida (A∗): A amplitude reduzida será calculada para cada valor de Velocidade reduzida/frequência
natural da estrutura, pois esse parâmetro será fundamental na para a análise dos branches através do gráfico
de A∗×U∗;

• Frequência Reduzida ( f ∗): A frequência reduzida será calculada para cada valor de Velocidade reduzida/frequência
natural da estrutura, pois esse parâmetro será fundamental na para a análise de identificação de lock-in atra-
vés do gráfico de f ∗×U∗;

• Razão de amortecimento (ζ): A razão de amortecimento do problema é ζ = 0,001, pois foi considerado que o
amortecimento da estrutura (c) bem baixo, visto que ζ = c

2
√

km
, onde k = m = 1.
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• Energia Gerada: Conforme mencionado anteriormente, o cálculo da energia bruta utilizou dois métodos de
integração numérica: o método da integral de Simpson e a integral trapezoidal. A curva aproximada por esses
métodos corresponde à curva das potências no tempo, cujos valores foram calculados para gerar uma energia
adimensional.

Dos valores trazidos na Tabela 1 se faz interessante analisar mais profundamente o caso, com a velocidade
reduzida de 5,0.

Figura 1 – Gráficos de forças e deslocamento gerado por VIV, para U∗ = 5,0. Produzido pelo Autor.

A análise do escoamento para a velocidade reduzida U∗ = 5,0 é indispensável, pois, como mostrado na Figura 1,
é nesse regime que se observam baixas forças de sustentação associadas a uma alta vibração do cilindro, possibili-
tando a geração de energia, conforme evidenciado na Tabela 1, sem causar desgaste excessivo na estrutura devido
à menor solicitação da força de sustentação.

6 conclusões
A análise dos gráficos 2 e 3 revela que, para valores de velocidade reduzida entre U∗ = 1,0 e U∗ = 5,3 o

aumento da velocidade reduzida resulta em um aumento progressivo da amplitude reduzida, correspondente ao
deslocamento do cilindro causado pelo VIV, atingindo um máximo de aproximadamente 20% do diâmetro do cilindro.
Nesse intervalo, também ocorre um aumento na frequência reduzida, evidenciando um crescimento progressivo
na geração de energia. Entre U∗ = 5,3 e U∗ = 5,8 observa-se o cenário ideal para geração de energia, com o
máximo alcançado em U∗ = 5,8. A partir de U∗ = 5,3, a frequência média de desprendimento de vórtices continua
aumentando, indicando maior vibração gerada pelo desprendimento de vórtices, enquanto as amplitudes médias de
deslocamento do cilindro diminuem devido ao fenômeno de batimentos. A partir de U∗ = 5,9, ocorre uma inversão do
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fenômeno, com o desaparecimento dos batimentos e o sistema retornando a um estado mais estável. Nesse regime,
a frequência de desprendimento de vórtices se afasta novamente da frequência natural da estrutura, resultando
em uma redução na frequência de desprendimento e um aumento nas amplitudes de deslocamento do cilindro.
Consequentemente, o sistema consome energia para suportar esses deslocamentos.

Figura 2 – Gráfico de amplitude reduzida para diferentes valores de velocidade reduzida. Produzido pelo Autor.

Figura 3 – Gráfico de frequência reduzida para diferentes valores de velocidade reduzida. Produzido pelo Autor.

No entanto, ao observar o gráfico de força de sustentação e deslocamento do cilindro ao longo do tempo, assim
como o gráfico de frequência reduzida versus velocidade reduzida, verifica-se que entre U∗ = 5,0 e U∗ = 6,0 ocorre
um provável fenômeno de lock-in.Nesse fenômeno, as frequências de desprendimento de vórtices aproximam-se da
frequência natural da estrutura, gerando o efeito de batimento (devido às frequências próximas, mas não exatamente
iguais), o que sugere uma possível transição de um branch para outro. Como mencionado anteriormente, essa
comprovação é dificultada pela condição bidimensional da simulação. Para alcançar uma geração de energia mais
eficiente, tanto em termos de resistência da estrutura quanto de energia bruta gerada, seria ideal operar o sistema
a uma velocidade reduzida de U∗ = 5,0. Nesse ponto, o sistema começa a entrar no lock-in, ou seja, o momento
em que as frequências começam a se aproximar. Nesse regime, observa-se um montante significativo de energia
obtida, com uma solicitação relativamente baixa da estrutura, como evidenciado na Figura ??. Nessa figura, há uma
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vibração significativa causada pelo desprendimento de vórtices (fator gerador de energia) e uma baixa amplitude
das forças de sustentação, indicando uma menor solicitação da estrutura para sustentar a vibração do sistema. Por
outro lado, a análise também explica por que, para U∗ > 7,0, são verificadas maiores amplitudes para as forças de
sustentação, o que leva ao consumo de energia pelo sistema para sustentar essas vibrações e manter o sistema
estável. Por esse motivo, é essencial evitar velocidades reduzidas maiores que U∗ = 6,0, pois, além de consumirem
energia, essas velocidades exigem bastante da estrutura do cilindro, podendo causar danos à mesma.

foi desenvolvido um programa computacional em código aberto, escrito em Python, no qual o método dos elemen-
tos finitos foi implementado utilizando o Firedrake como software para a resolução de equações diferenciais parciais
e o Gmesh para a criação da malha de elementos finitos. No entanto, será necessário um refinamento nas técnicas
utilizadas, uma vez que alguns resultados não apresentaram o comportamento esperado, especialmente no que diz
respeito à frequência da força de sustentação, que deveria estar mais próxima das frequências naturais da estrutura.
Esse fato, porém, não inviabiliza os resultados obtidos, considerando que a técnica empregada exige simplificações
e é um método numérico suscetível à propagação de erros.

Apesar da divergência encontrada nos gráficos das Figuras 2 e 3, nos pontos em que eram esperados um lock-in,
os apuramentos se mostraram sólidos, pois os resultados finais buscados, que eram de energia gerada, condizem
com os valores encontrados para deslocamento do cilindro causado pelo VIV e com as forças de sustentação apre-
sentadas nos gráficos de forças × tempo.

Concluindo, foi possível responder ao problema inicial proposto neste trabalho: desenvolver um modelo de co-
letor utilizando um cilindro rígido montado em um conjunto de molas, amortecedores e resistência. Verificou-se
que é viável produzir energia por meio das vibrações do cilindro geradas pelo escoamento incidente, que causa o
desprendimento de vórtices. Como sugestões para pesquisas futuras, destacam-se três importantes direções:

1. Refinamento e aperfeiçoamento das técnicas matemáticas e computacionais utilizadas, a fim de melhorar a
precisão dos resultados obtidos;

2. Utilização de sistemas de controle para cilindros, com o objetivo de manter o escoamento em velocidades
ideais para a geração de energia;

3. Avaliação da viabilidade econômica e prática para implantação do modelo descrito, incluindo a captura de
energia em pequena escala, e a realização de diversos testes variando o parâmetro θ da equação ??. Dessa
forma, seria possível determinar se a energia capturada pelo transdutor é adequada para aplicações práti-
cas e qual o nível de acoplamento ideal para uma captura de energia mais eficiente, considerando sua real
viabilidade para outros usos.
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