Ivan Ferrucio Reche da Silva Filgueiras

OTIMIZACAO DE CIRCUITOS CMOS POR
ALGORITMO GENETICO

Trabalho de Conclusédo de Curso apresentado a Escola de Engenharia de
Séo Carlos, da Universidade de Sdo Paulo

Curso de Engenharia de Computacao

ORIENTADOR: Joao Navarro Soares Jr.

Sao Carlos
2010

AUTORIZO A REPRODUCAO E DIVULGACAO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalogréfica preparada pela Segao de Tratamento da Informacéo do Servico de Biblioteca — EESC/USP

Filgueiras, lvan Ferrucio Reche da Silva
Otimizacgéao de Circuitos CMOS por Algoritmo Genético / Ivan Ferrucio Reche da Silva Filgueiras ;
orientador Jodo Navarro Soares Jr. — S&o Carlos, 2010.

Trabalho de Concluséo de Curso (Graduacdo em Engenharia de Computacéo) — Escola de Engenharia de
S&o Carlos da Universidade de Sdo Paulo, 2010.

1. Circuitos integrados MOS. 2. Fontes de corrente. 3. Inteligéncia artificial.

4. Algoritmos genéticos. 5. Otimizacao. |. Titulo.

FOLHA DE APROVACAO

Nome: Ivan Ferrucio Reche da Silva

Titulo: “Otimizacao de Circuitos CMOS por Algoritmo Genético”

Trabalho de Conclusér de Curso defendido e aprovado

em A4/ 6 /A0,

com NOTA_102 (e 3uo-), pela comissao julgadora:

JN@% %)

Prof. Associado Amilcar Careli César - SEL/IEESC/USP

\ LLYFPCCTS
Prof. Dr. Evandro Luis l7fu{hari Rodrigues - SSC/ICMC/USP

I =

Prof. Dr. Evandro L:;z'}ffin hari Rodrigues
Coordenador pela EESC/USP do
Curso de Engenharia de Computacio

DEDICATORIA

Dedico este trabalho aos meus pais Walkiria e Dionisio, por terem arcado com a dificil tarefa

de garantir a minha educacéo desde jovem.

Dedico também a minha namorada Marcia, que sempre foi compreensiva e amorosa, mesmo

nos momentos onde estive ausente para dedicar-me ao trabalho.

Por fim, dedico ao meu orientador Jo&o, que acreditou no meu potencial de realizar um

trabalho desafiador.

AGRADECIMENTOS

Agradeco a todos os professores que participaram da minha formacéo e possibilitaram que eu

tivesse a base tedrica necessaria para realizar este trabalho.

Agradeco também a comunidade de software livre, que trabalha arduamente para fornecer
ferramentas de qualidade para todos, como as utilizadas ao longo deste trabalho (GNU/Linux,

Gnucap, OpenOffice e PLT-Scheme).

Resumo do Projeto de Formatura apresentado a EESC-USP como parte dos requisitos

necessarios para a obtencao da conclusao do curso de Engenharia de Computacao

OTIMIZACAO DE CIRCUITOS CMOS POR ALGORITMO GENETICO

Ivan Ferrucio Reche da Silva Filgueiras
05/2010
Orientador: Prof. Dr. Jodo Navarro Soares Jr.
Areas de Concentracgao: Microeletrdnica, inteligéncia artificial.

Palavras chave: Circuitos integrados MOS, fontes de corrente, inteligéncia artificial, algoritmos

genéticos, otimizacao.

RESUMO

O dimensionamento de transistores para blocos eletrénicos, digitais ou analégicos ndo é uma
tarefa simples e varias técnicas sdo empregadas para tal. Normalmente, projetistas trabalham
com relagBes simplificadas para transistores e obtém equacdes para os blocos. A partir destas
equagbes, sdo determinadas dimensfGes que, posteriormente, s&o ajustadas por meio de
simulagdes. Tal caminho é demorado, pouco pratico e exige, para 0 sucesso, experiéncia do
projetista. Um caminho alternativo para o dimensionamento de transistores é o desenvolvimento
de programas de auxilio a projeto. Os métodos empregados em tais programas Sd80 0S mais
variados, mas os resultados, principalmente para circuitos analdgicos, deixam a desejar e
dependem muito da adequacdo dos modelos aplicados. O objetivo deste trabalho é estudar a
aplicabilidade de algoritmos genéticos no projeto de circuitos. Para isto, serd desenvolvido um
programa para dimensionar alguns blocos de circuitos CMOS (Complementary Metal Oxide
Semiconductor), aplicando algoritmos genéticos e conhecimento minimo sobre o dominio da

aplicacéo.

Abstract of the Undergraduate Project presented to EESC-USP as a partial fulfilment of the

requirements to conclude Computer Engineering course

OPTIMIZATION OF CMOS CIRCUITS BY GENETIC ALGORITHMS

Ivan Ferrucio Reche da Silva Filgueiras
05/2010
Advisor: Prof. Dr. Jodo Navarro Soares Jr.
Concentration Areas: Microelectronics, artificial intelligence.

Keywords: MOS integrated circuits, current sources, artificial intelligence, genetic algorithms,

optimization.

ABSTRACT

The sizing of transistors for electronic blocks, digital or analogical, is not a simple task and a
variety of techniques are employed to do so. Designers usually work with simplified relations for
transistors and obtain equations for those blocks. From these equations, the dimensions are
determined which, afterwards, are adjusted by simulations. This process is time-consuming and
not practical and it demands a lot of designer expertise. A possible alternative way for the sizing of
transistors is the development of computer programs to help the design. The methods employed
by such programs are diverse, but the results, especially for analogical circuits, are usually
disappointing and very affected by the used models. The goal of this work is to study the
applicability of genetic algorithms in circuit design. For this it will be developed a software for sizing
some CMOS (Complementary Metal Oxide Semiconductor) circuit blocks, employing genetic

algorithms and the minimum amount of knowledge in the application domain.

10

indice de figuras

Figura 1: Exemplo de individuos e seus respectivos DNAS...........ccccccvveviiiiiiiiieceeeece e 18
Figura 2: Exemplo de DNA de INAIVIQUOS..........cuuiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeseeseeeeeeeeeeeeeeees 20
Figura 3: Cruzamento de doiS iNAIVIAUOS.uuuui e 21
Figura 4: Crossover - dois individuos "pais" geram um individuo "filno", cujo DNA € uma

MISTUra dOS DINAS OS PAIS....ceuuuuuniiieeeiiiiiitiiie e ettt e e e e e et ab e e e e e e e eeetbenea e e eeen e 21

Figura 5: Maximos locais de amplitudes diferentes (o ponto vermelho representa um
maximo local e o ponto azul representa outro maximo local, de amplitude maior do que o

=L =] (o]) TR 22
Figura 6: Operacao de mutacao - um individuo novo, que ndo poderia ser obtido por

crossover dos pais dos exemplos anteriores, € gerado.............cceeeeeeeeeiiiiiiiiiiiiee e 22
Figura 7: Topologia da fonte de corrente base com pontos de interesse em destaque.....24
Figura 8: Curva de corrente da fonte DASE..........couuuiiiiiiiii e 27
Figura 9: Dimensdes de um transistor CMOS...........oiiii i 30
Figura 10: Fonte de corrente "AlPha™........ oo 32
Figura 11: Fonte de COrrente "Beta............uuuiiiiiii ittt e e 34
Figura 12: Fonte de corrente "Gamma............uuiiii it eeeaean s 36
Figura 13: Fonte de corrente "Delta’.............uuiiii i 37
Figura 14: Exemplo grafico de uma boa fonte de corrente...........ccceeeeeeeieeeeeeeeeeeeee, 42

Figura 15: Curva da corrente fornecida pela tenséo de alimentacdo das fontes com
topologia Alpha otimizadas pelo algoritmo genético para populagéo de 10 individuos...... 48
Figura 16: Curva da corrente fornecida pela tenséo de alimentagéo das fontes com
topologia Alpha otimizadas pelo algoritmo genético para populagéo de 20 individuos...... 48
Figura 17: Curva da corrente fornecida pela tenséo de alimentagcéo das fontes com
topologia Alpha otimizadas pelo algoritmo genético para populagéo de 30 individuos......49
Figura 18: Curva da corrente fornecida pela tenséo de alimentagéo das fontes com

topologia Beta otimizadas pelo algoritmo genético para populagéo de 10 individuos........ 52
Figura 19: Curva da corrente fornecida pela tenséo de alimentacdo das fontes com
topologia Beta otimizadas pelo algoritmo genético para populagéo de 20 individuos........ 52
Figura 20: Curva da corrente fornecida pela tenséo de alimentagcéo das fontes com
topologia Beta otimizadas pelo algoritmo genético para populagéo de 30 individuos........ 53

Figura 21: Curva da corrente fornecida pela tenséo de alimentagcéo das fontes com
topologia Gamma otimizadas pelo algoritmo genético para populacédo de 10 individuos. .56
Figura 22: Curva da corrente fornecida pela tenséo de alimentagcéo das fontes com
topologia Gamma otimizadas pelo algoritmo genético para populagéo de 20 individuos. .57
Figura 23: Curva da corrente fornecida pela tenséo de alimentagcéo das fontes com
topologia Gamma otimizadas pelo algoritmo genético para populagéo de 30 individuos. .57
Figura 24: Curva da corrente fornecida pela tenséo de alimentacdo das fontes com
topologia Delta otimizadas pelo algoritmo genético para populagéo de 10 individuos....... 61
Figura 25: Curva da corrente fornecida pela tenséo de alimentagcéo das fontes com
topologia Delta otimizadas pelo algoritmo genético para populacéo de 20 individuos....... 62
Figura 26: Curva da corrente fornecida pela tenséo de alimentagcéo das fontes com
topologia Delta otimizadas pelo algoritmo genético para populacéo de 30 individuos....... 62
Figura 27: Execucgédo da fonte Delta com 60 geragfes e 30 individuos...........ccccceeevernnnnes 64

11

12

indice de tabelas

Tabela 1: Equagbes de corrente para ambos os modos de operagao de um MOS........... 25
Tabela 2: Relacdo dos métodos de sele¢cdo com o tamanho da populacdo e a intensidade

(0 F= ST S] (=T o T SR UPPPTTTR 40
Tabela 3: Critérios de restricao da fonte AIPNa.............coiiiiiiiiiie e 45

Tabela 4: Individuos encontrados para a fonte Alpha com populacéo de tamanho 10....... 46
Tabela 5: Individuos encontrados para a fonte Alpha com populacdo de tamanho 20....... 46
Tabela 6: Individuos encontrados para a fonte Alpha com populacdo de tamanho 30....... 47

Tabela 7: Resultados da otimizag&o da fonte Alpha.................eeveiiiiiiiiiiiiiiiee, 47
Tabela 8: Individuos encontrados para a fonte Beta com populacéo de tamanho 10........ 50
Tabela 9: Individuos encontrados para a fonte Beta com populagcéo de tamanho 20........ 50
Tabela 10: Individuos encontrados para a fonte Beta com populacdo de tamanho 30...... 50

Tabela 11: Resultados da otimizag&o da fonte Beta.............coooovviiiiiiii 51
Tabela 12: Individuos encontrados para a fonte Gamma com populacédo de tamanho 10.54
Tabela 13: Individuos encontrados para a fonte Gamma com populagédo de tamanho 20.54
Tabela 14: Individuos encontrados para a fonte Gamma com populagédo de tamanho 30.55
Tabela 15: Resultados da otimizag&o da fonte Gamma............coooeeeiiiiiiiiiiiiiiie 55
Tabela 16: Individuos encontrados para a fonte Delta com populacdo de tamanho 10.....58
Tabela 17: Individuos encontrados para a fonte Delta com populacdo de tamanho 20.....59
Tabela 18: Individuos encontrados para a fonte Delta com populacdo de tamanho 30.....60
Tabela 19: Resultados da otimizag&o da fonte Delta..................eeveiiiiiiiiiiiiiiiiiiiiiiiiiiieee 60
Tabela 20: Otimizacao da fonte de corrente Delta, com 60 gerac¢fes e populagéo de

1= T 0=] 1o T T S 63

13

14

Sumario

(R [0 (0T [UTor= o J TP 15
I @] 11 (1Y o PSS UPPPPPPPTTRR 15
22 SISTolo] | oF= o [0 I (o o] 40 g [0 I CT=T 0 1= 1o o 15
1.3 Escolha da fonte de corrente como circuito a ser otimizado...............cooeeeeeeeeeeeeenn. 16

1.3.1Tecnologia MOS ULHIZAA........ccooeiiiiiiiiiieiee e 16
1.4 Estrutura do trabalno............ooooiii e 16

2 ReViS80 d0S CONCEILOS ADOIIAUOS. eeeeiieiiiiiie e e e e e eeeeeanees 17

2.1 AlGOrtMOS GENELICOS. ...ci i i i e 17
2. L. 1INAIVIAUO. ... 17
2.1.2P0PUIAGED € GEIAGAD.......ci i i e e 18
2.1.3FUNGEO A APLIAEO. ... 18
P ST =1 =T oz Lo J PP PP P PP PP PPPPPPPPP 19

SeIEGAOD TIUNCAUA.cce i 19
2.1.5ACASAIAMENTO.eeiiiiiie ettt e et e e 20
2. L BMULAGAD. ... 21
P A 1T 11Tt 23

2.2 FONLE T8 COMEBNEE. ...ttt ettt ettt e e e e e e et et e e e e e e e e e ettt e e e e e eeeeeennes 23
AV N [o] oTo] (oTo = F= 0 (o] | (= ST 23

3 Ferramentas ULIIZAdAS.coooo et e e e e eeaa e ees 28
3.1 Simulador de CIircuitoS €letrONICOS.uuuuiiieeieeeiei e 28

G 300 00t I [T U =T = o PRSP 28

3.2 Ambiente de deSenVOIVIMENTO.ccoii i 29

4 Modelagem do Problema.............ee e 30
4.1 Dimensdes de um transiStor CMOS..... ... eeaaeens 30
4.2 Circuitos comO INAIVIAUOS.cooeeieeeeeeee e 30
4.3 FONLES 08 COIMENLE.cciiiiiiiieiie ettt ettt e e e e e et e e aab e e e e e e e e eeeeaana e e e enns 31

A.3.LF0NE AIDNA. ... e 31
A.3.2F0NTE BOLA.t e e ea e 33
4.3.3F0NTE GAIMMIAL. . ..eutiiiiiiii et e ettt e et e e e e e e e e e e eea e e e e eeta e e e eesaa e eaeennsnaeaaenne 35
A3 AFONE DILA. ... anas 37

5 Otimizacao por Algoritmo GENELICO..........ccuviiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee s 39

5.1 EXECUGAO PreliMINAI......eeeeeiiiiiieieiiieeeteeeeeeeeeeeeeeee e eees e e s s ess st e ses e e s eesseeesee e 39
5.1.1ESCOINA UOS PESOS. ... iiiiiieiiiiiiie ettt e ettt e e e e e e e e e eeeaba e e e e e e eeaeennens 39
5.1.2Intensidade da SEIECA0.uuuuuiiiiii e 39

5.2 Estratégia de OtIMIZAGCAO.coeiiiiiiiiiiiie et e e e e 40
5.2.1P0opUlaGEO INICIAL......ccoeeeeeeeeee e 40
5.2.2Avaliagao da POPUIAGED..........ccoeriiiiiiiiiiii 41

Funcdo de aptid8o UtIliZad@..............eeeeiiiiiiiiiiiiieieee e 41
5.2.3SIBGED. ... teeeeiieee ettt 43
5.2.4CHAGA0 A PIOIE... ..o 43
FUNGEO 0B COME. ... s 44
FUNGEO 0€ MULAGEO. i 44

6 Analise dos Resultados ODtIOS.ccoeeeiiiieee e 45
6.1 Resultados de otimizag&o da fonte AlPha..............ccoooii e 45
6.2 Resultados de otimizag&o da fonte Beta..............ccoiiiiiiiiii s 49
6.3 Resultados de otimizag&o da fonte GammaL..........coooeeeeiieiiieeeeee e 53
6.4 Resultados de otimizag&o da fonte Delta..............ccoooiiie 58

A O] 4 o] [1157= Lo J O UURPPPPRPR 65

8 Apéndice A — COIgO FONE......ccce i, 66

8.1 spice-INtegrationN/@lEMENTS.SS.....uu e ee e 66
8.2 SpICe-INtEgratioN/aNalYSIS.SS. ... it iieiiieieiiiiiie ettt ans 69
8.3 spice-INtegration/SIMUIATION.SS........uuuuiie e e e e e 70
8.4 SPICE-INLEYIAtION/PIINT.SS. . eiiiiiiiee ettt e e e e e e e et b e e e e e e e e eeeeaen e enaees 71
8.5 spice-integration/hsSpPiCe-MOAEIS.SS........uuiiiiiiiiieii e 72
IOl o T= VA oTo] 0 010 010 o 18 TS UPPPPPPRPTS 74
8.7 ga/Current-SOUICE-alPNa.SS..... oo i 76
8.8 ga/CUIMENT-SOUICE-DELA.SS. ...uuttiiie ettt e e e e e e e eeaaae e enaees 79
8.9 ga/CUIENT-SOUICE-gaAMMIA.SS. ... i i eeeeeeiiiiiiiae e e e e e eeeeeettta e e e e e e eeeeesaan e e e eaeeeeesannn e eenaeens 81
8.10 ga/current-SOUICE-AEILA.SS.......ccee i e e e eeeaaae 84
S ey (=T 1] g Tod = SR SUPP TP 88

16

1 Introducao

O projeto de circuitos integrados CMOS (Complementary Metal Oxide Semiconductor) se faz
através da aplicagcdo de relagdes simplificadas que descrevem o funcionamento dos transistores
construido com a tecnologia. Através destas equacdes obtém-se relagcbes que servem de ponto de
partida. A partir dai, um projetista experiente pode aprofundar os modelos utilizados e,

consequentemente, melhorar os resultados utilizando simula¢des. Este processo € lento e caro.

Surge, entdo, uma demanda por ferramentas que possam auxiliar projetistas sem o perfil de
especialista a projetar circuitos otimizados e com o minimo de conhecimento e no intervalo mais

curto possivel.

A tecnologia CMOS passou, a partir dos anos 80, a ser dominante na fabricacdo de circuitos
integrados devido as vantagens sem igual que ela oferece: alto nivel de integracdo, baixo
consumo de poténcia e simplicidade de projeto. Nos dUltimos anos, 75% dos circuitos
semicondutores (tanto em quantidade como em valor) foi produzido em CMOS, fato que adiciona
outra vantagem a tecnologia: reducdo de custos devido a escala de producdo. Este quadro nao
deve se alterar nos proximos anos [ITO5] e € um fator motivador para a realizagdo do trabalho

nesta area.

1.1 Objetivo

O objetivo deste trabalho é analisar o uso de algoritmos genéticos para projetar circuitos CMOS.
Desta forma, introduz-se uma mudanga de paradigma na confeccdo de circuitos eletrénicos:
solucdes para este dominio de problemas néo séo projetadas, e sim procuradas em um espaco de

busca.

1.2 Escolha do Algoritmo Genético
O espaco de busca do projeto de um circuito CMOS simples ja pode ser suficiente para uma
explosdo da complexidade computacional, tornando invidvel a andlise de cada uma das possiveis

combinag8es de parametros envolvidos no problema.

Necessita-se, entdo, de técnicas agressivas de busca em dominios vastos. Os algoritmos
genéticos sdo conhecidos por seu 6timo desempenho em diversas aplicagcdes, além de sua
flexibilidade. Com mudancgas nos parametros do método, é possivel otimizar o desempenho da
propria busca e conseguir resultados satisfatorios em tempo reduzido (se comparados ao tempo

de projeto ou a busca aleatoria).

A ideia de utilizar um algoritmo genético para esta otimizagdo decorre também da caracteristica
de projetos de circuitos eletrbnicos: constituem-se basicamente de um conjunto de elementos,
conectados entre si, que sdo dotados de atributos (parametros). Sendo assim, é trivial modelar

circuitos como individuos possuidores de DNA, sendo este o fulcro da técnica. Portanto, a

17

abordagem por algoritmos genéticos parece ser adequada ao problema de projeto.

1.3 Escolha da fonte de corrente como circuito a ser otimizado
As técnicas de otimizacdo por algoritmo genético utilizadas neste trabalho serdo aplicadas em

um circuito de fonte de corrente voltado para aplicagdes de microeletrénica.

Esta escolha foi feito pela importéancia deste circuito. Diversas implementacdes classicas de
circuitos analdgicos utilizam fontes de corrente. Aumentar a eficiéncia delas afeta diretamente a

qualidade final do circuito para qual ela est4 sendo utilizada.

Além disso, foi considerada também a simplicidade de simular uma fonte deste tipo. A simulacao
€ DC, e isso faz com que os simuladores operem consideravelmente mais rapido. Como as
simulacgdes sao utilizadas constantemente na otimizac¢éo por algoritmo genético empregada neste

trabalho, o desempenho do simulador em termos de tempo é um fator importante a ser

considerado.

1.3.1 Tecnologia MOS utilizada

Foram escolhidos os transistores tipicos da tecnologia CMOS 0,35um da foundry da AMS
(Austria Micro-Systems) [AMS10]. E fornecido para estes transistores um modelo BSIM3v3
(Berkeley Short-channel IGFET Mode) para ser usado em simuladores do tipo SPICE (mais
detalhes na se¢do Simulador de circuitos eletronicos, pagina 30).

1.4 Estrutura do trabalho

No capitulo 2 serd apresentada uma revisao bibliografica sucinta, de forma a contextualizar o
tema. No capitulo 3, as escolhas das ferramentas utilizadas no desenvolvimento do trabalho serdo
discutidas com detalhes. No capitulo 4, sera explicada a modelagem do problema para a
aplicacdo de algoritmos genéticos. No capitulo 5, o0 modo como o algoritmo genético foi
configurado para a aplicacéo no problema alvo deste trabalho sera descrito com maiores detalhes.
No capitulo 6, os resultados obtidos em ambiente computacional serdo analisados. No capitulo 7,
a conclusdo da analise dos resultados sera apresentada. Por fim, o capitulo 9 relaciona as

referéncias bibliograficas.

18

2 Revisao dos conceitos abordados
Este trabalho é baseado na aplicacdo de técnicas de inteligéncia artificial para a otimizacao do
dimensfes de transistores em circuitos CMOS. A técnica escolhida foi algoritmo genético. As

ferramentas utilizadas estéo descritas neste capitulo.

2.1 Algoritmos Genéticos

Um algoritmo genético é uma técnica de inteligéncia artificial para realizar buscas por solugbes
Otimas ou satisfatérias em diversas aplicacdes. Esta busca baseia-se em heuristicas para tentar
convergir rapidamente a um ponto desejado. Porém, no caso do algoritmo genético, estas
heuristicas diferem de outras técnicas por serem baseadas no processo da evolucdo dos seres
vivos, conforme observado por Darwin e refinado por cientistas da area ao longo dos anos. Este
processo de evolugdo simulado encontra rapidamente maximos (ou minimos) locais do dominio
de busca, ao mesmo tempo em que néo fica estagnada no primeiro maximo (ou minimo) local que

encontrar.

Quando o problema em questéo oferece diversas solu¢gdes, mas a determinacéo da 6tima nao é

trivial, temos um candidato forte a otimizacéo por técnicas desta natureza.

Para modelar um problema para este tipo de busca € necesséario modelar as possiveis solu¢fes
do problema em uma estrutura semelhante a um DNA, composta por cromossomos que Ss&o
capazes de guardar informacfes e serem usadas na geracao individuos. Cada individuo é uma

possivel solucao.

Inicialmente uma populacgéo inicial é gerada, com cada individuo codificado pelo seu DNA. Esta
populacdo é submetida a um processo de selecao natural, onde os individuos mais adaptados séo

selecionados em detrimento dos menos adaptados.

Esta selecdo ocorre por meio de uma funcdo de aptidao (fitness function), que avalia 0 quéo
satisfatoria é cada uma das solucdes, ou seja, cada um dos individuos representados por seus
DNA. Com esta elite, ocorre a geracdo de uma nova populacdo através de acasalamentos e

mutacao.

O processo selegdo-geracgao é repetido até que um determinado critério de parada seja atendido
e se obtenha uma populagéo final. O problema deve ser satisfatoriamente solucionado por um ou

mais individuos presente nesta populacao final.

2.1.1 Individuo
O individuo, como ja mencionado, € um candidato a solu¢gdo do problema proposto. Por
exemplo: se o problema visado é encontrar um polindmio, de maneira que este passe por um

conjunto de pontos definidos, um individuo seria qualquer um dos polinémios pertencentes ao

19

dominio de busca e este pode ser representado pelo conjunto de valores de coeficientes que o

descrevem.

O DNA representa a codificagdo de cada uma das solucdo e contém a informacdo minima
necessaria para que uma funcéo geradora possa produzir um novo individuo (solucédo). A figura 1

mostra a relagdo individuo e DNA.

N

0100 0111 0000

Figura 1: Exemplo de individuos e seus respectivos DNAs

—

2.1.2 Populacdo e geracao

Uma populagdo é composta por um conjunto de individuos. Uma geracdo é similar a uma
populagdo, pois também é composta por um conjunto de individuos, mas o termo geracao
normalmente representa uma iteracdo especifica na execucdo de uma otimizagédo por algoritmo

genético.

Por exemplo: suponha uma busca por algoritmo genético que gerou dez geragdes. Cada uma
destas € uma populagdo diferente, composta por diversos individuos. O termo geracdo agrega

uma nogao de iteratividade importante para a compreensao do problema.

2.1.3 Funcao de Aptidao

Uma parte vital do processo de busca por algoritmo genético é a definicdo de uma boa funcéo
de aptiddo. Através da sua aplicacdo, os individuos serdo julgados como mais ou menos
adaptados, permitindo o avango das novas geracdes de populagBes em direcdo a maximos (ou

minimos) locais.

A equacdo 1 mostra uma representagdo matematica deste processo,

f(i)=s,VieD,, sel, Q)

Onde f é a fungdo de aptiddo; i é um individuo; s € a pontuagao deste individuo, que representa
a sua aptidao; D; é o dominio de todos os individuos possiveis; Is € o intervalo que abrange as
possiveis pontuacdes que serdo utilizadas para ordenar os individuos entre 0s mais e menos

adaptados.

Porém, o valor obtido com a aplicacdo desta funcdo nem sempre é utilizado diretamente na

20

aplicacdo do algoritmo genético. E comum utilizar a técnica de normalizacio, onde a pontuacio
de cada individuo é dividida pela soma da pontuagéo de todos antes de ser utilizada. Isto permite
que caracteristicas, como a intensidade da selecdo (descrita mais adiante), possam ser

comparadas com outras implementacg6es de algoritmos genéticos.

Neste trabalho, a definicdo desta funcdo foi um grande desafio, e serd detalhada na secgéo

Avaliagcéo da populacéo, na pagina 43.

2.1.4 Selecao

A sele¢do é uma funcdo que imita, no ambiente virtual da modelagem, o processo da selegéo
natural. Uma populacdo de individuos € classificada pela funcdo de aptiddo e, através de seu
resultado, escolherd uma elite da populacdo. Isto decorre, geralmente, da associacdo de cada

individuo com uma pontuacao.

Com estes numeros em maos, um mecanismo de selecdo é aplicado para decidir quais
individuos serdo elitizados e quais serdo descartados. Este mecanismo pode ser caracterizado
pela intensidade ou pressdo de selecdo. Apesar deste conceito ser interpretado de formas
diferentes por diversos autores, adotarei ao longo do trabalho a abordagem que define a
intensidade da sele¢cdo como a variacdo causada na aptiddo média de uma populagédo apés a

aplicacao do critério de selegéo.

A definicdo formal da intensidade do teste, baseada na definicdo de [ZEBO0Z2], é dada pela

equagéao 2,

=2—=)

Onde / é a intensidade do teste; M é a média de aptiddo da populacéo atual; M" é a média de
aptiddo esperada apos a sele¢do; g € o desvio padrao dos valores de aptiddo dos individuos da

populacéo antes da selecéo.

As selecdes mais comuns, citadas em literaturas especializadas, sdo: proporcional, torneio,

truncada, classificagéo linear e classificacdo exponencial.

O critério escolhido neste trabalho, como ser4d mostrado em sec¢Bes subsequentes, foi o de

selecao truncada. Posteriormente, neste capitulo, este tema sera aprofundado.

Selecédo Truncada
A selecao ocorre pelo truncamento dos individuos mais adaptados da populacdo atual baseado
em um limiar T (threshold) fixo e predeterminado. Os T individuos com maior aptiddo séo

selecionados, ocorrendo a exclusdo dos demais. Pode ser demonstrado que a presséo

21

correspondente deste método é dada pela equacgéo 3,

2

1 1 K
?.\/<27T).e 3

I =

Onde | é a intensidade da selecdo; f. € a aptidao mais baixa dos individuos selecionados.

Observando a equacéo, vemos que a intensidade da selecao diminuird conforme afrouxarmos

(aumentarmos) o limiar T, conforme o previsto.

Este resultado serd utilizado posteriormente no planejamento da estratégia a ser adotada.

2.1.5 Acasalamento

Acasalamento é o processo de geracdo de novos individuos a partir de dois ou mais ja
existentes (pais). Usualmente, utiliza-se a técnica de cruzamento (crossover) para este fim. Esta
técnica consiste em misturar o DNA dos pais, como ocorre na natureza, e gerar individuos através

do produto desta mistura.

Uma forma de fazer o cruzamento € definir pontos de corte no DNA e realizar a permutacao das
partes seccionadas para gerar a prole. Um ponto de corte € uma posi¢cdo no DNA do individuo que
serd utilizada como referéncia para partir o mesmo em duas partes. Segundo [RANO4], gerar dois

filhos a partir de dois pais e com apenas um ponto de corte € o usual.

Por exemplo, suponha dois individuos com DNAs cujos cromossomos sao modelados como
caracteres. Neste caso, uma sequéncia de cinco letras compde o DNA de um individuo. A figura 2

representa graficamente este conceito.

al|lblc|d]|e

V| iW|X|Yy|z

Figura 2: Exemplo de DNA de individuos

Caso adotemos um ponto de corte entre 0 segundo e o terceiro cromossomo, e efetuarmos o

cruzamento, obteremos o DNA de dois “filhos” conforme ilustra a figura 3.

22

alb X |y |z

vV wliYc|d]|e

Figura 3: Cruzamento de dois individuos

A figura 4 mostra uma representacdo grafica de um dos individuos gerados por uma aplicagéo

de crossover (um ponto de corte aplicado entre o segundo e o terceiro digito).

@ C =

0111 0000 0011

Figura 4: Crossover - dois individuos "pais" geram um individuo "filho", cujo
DNA é uma mistura dos DNAs dos pais

2.1.6 Mutacdo
E o processo de modificar aleatoriamente o DNA de um individuo. Geralmente, € o ultimo passo

no processo de geragao de uma nova populacgéo.

Segundo observacdes de [ZEBO2], algoritmos genéticos que utilizam apenas selecdo e
acasalamento convergem muito rdpido, mas acabam atingindo apenas maximos (ou minimos)

locais.

A operagdo de mutagao permite ao algoritmo um comportamento exploratorio mais agressivo no
processo de busca, reciclando o material genético ao encontrar individuos mais adaptados que
jamais seriam gerados na populagao atual por acasalamento. Por exemplo, pode-se observar o
exemplo da figura 4: é impossivel gerar um individuo com o cromossomo mais a esquerda com o

valor 1, pois nenhum dos pais possui esta caracteristica genética.

A figura 5 representa um universo de busca onde ocorrem diversos méximos locais de
amplitudes diferentes. Neste exemplo, um algoritmo genético sem a operagdo de mutagéo poderia
ficar restrito a encontrar uma solucdo na regidao do ponto vermelho, e ndo encontraria uma

possivel melhor solugéo tal qual aquela representada pelo ponto azul.

23

dp

“‘“"I “ ﬂ%‘%’m (B,
N m” SN\
A m‘lﬂ ﬂl \\\ =)

NN
! li';*’ b‘\ A

AR ‘ \\ 11\111?";?;}"-”
“d}**
-.,_--—-' =

'*‘a'ﬁ‘f‘%ﬁf"* “"f"f.r.lli ﬂﬁ‘
& 1
"**’ #lr LT

.l'..:.'.

Figura 5: Maximos locais de amplitudes diferentes (o ponto vermelho
representa um maximo local e o ponto azul representa outro maximo local,
de amplitude maior do que o anterior)
Normalmente, a operacdo de mutacdo seleciona aleatoriamente um conjunto de cromossomos
de um individuo e o modifica de acordo com uma fungéo geradora de cromossomos. Dado um
conjunto com N individuos, representando a geracdo atual, seleciona-se um numero N, para

sofrer mutacdo. A equacgéo 4 modela formalmente a mutacdo de uma populacéo.
N,=N -« 4)
Onde « é a proporgéo de mutagao.
Escolhidos os individuos para sofrerem mutacdo, um conjunto n. de cromossomos €

selecionado, também aleatoriamente, e estes cromossomos sdo modificados pela fungéo

geradora. A figura 6 ilustra o resultado da mutagdo em um individuo.

o0 0o
N N

0100 1100

Figura 6: Operacdo de mutacdo - um individuo novo,
que n&o poderia ser obtido por crossover dos pais dos
exemplos anteriores, é gerado

24

2.1.7 Heuristica
E um adjetivo para técnicas baseadas em experiéncia (geralmente conhecimento de um

especialista) para ajudar a resolver problemas.

O objetivo da heuristica é diminuir o dominio de busca do problema, de forma a eliminar (sem a

necessidade de avaliacdo computacional) individuos que sdo pouco interessantes.

Um exemplo de heuristica é evitar que dimensfes de um transistor possam assumir valores
impraticaveis, como metros. Um simulador elétrico, SPICE por exemplo, até permite a simulagédo

de tal dispositivo, mas os resultados obtidos seriam inGteis do ponto de vista pratico.

2.2 Fonte de corrente
Um desafio de aplicagbes de microeletrdnica é o desenvolvimento de fontes de corrente que
funcionam com baixas tensdes de alimentacdo, além de terem alta eficiéncia e estabilidade na

regido de operacéao.

A fonte de corrente que serviu de base para todas as outras utilizadas neste trabalho, mostrada

na secao seguinte, foi inspirada nas aplicagdes utilizadas em [SILO8] e [RAZ03].

2.2.1 Topologia da fonte

A fonte de corrente base consiste de dois transistores do tipo PMOS em configuragao de
espelho de corrente, e de dois transistores NMOS em configuracdo de espelho de corrente
degenerado. A degeneracao se da pelo uso da resisténcia, que permite fixar o valor da corrente de
dreno no transistor M4. A figura 7 ilustra a topologia da fonte. A corrente de dreno do transistor M4

pode ser facilmente copiada para outras por¢cdes de um circuito que possua esta fonte.

25

Fﬂ | | —7
M3 =] [M4
1 d4 = Id2
Id3 = 1d1
Ny [M2
. LJ | I=
RS <: Vr

Figura 7: Topologia da fonte de
corrente base com pontos de
interesse em destaque
Neste circuito, a corrente de dreno em M4 sera espelhada para o circuito de carga que
consumira a corrente fornecida. Uma boa forma de obter este valor é determinando a tensao no
resistor Rs.

Vamos considerar aqui 0 caso em que os transistores NMOS operam em inversao fraca. Nesta
situacao, a corrente gerada, como veremos, é diretamente proporcional a temperatura do circuito,
0 que é muito Util para a construcdo de fontes de tensdo compensadas com a temperatura
[SILO8]. Os transistores PMOS, por outro lado, podem operar tanto em forte como em fraca

inversdo. A tabela 1 mostra as equacdes para a corrente do dreno dos MOS para ambos 0s casos.

26

Tabela 1: Equacgfes de corrente para ambos os modos de operacdo de um MOS

Regido de operacao Equacao da corrente de dreno

W Ve -V -V,

i 3 n-v, vV, v,

Fraca inversao ID:T'IDO' . —e
. N N _ W Vs
Forte inversao (regiao linear) ID—u-Cox-f- VGS—VT—T Vs

1 W 2

Forte inverséo (regido de saturagéo) IDZE'I’('COX'T.(VGS_VT)

Onde I, é a corrente do dreno; Ip, € uma corrente caracteristica da tecnologia de fabricacéo; n €
o fator slope; W é a largura do canal do transistor; L € o comprimento do canal do transistor; Vs é
a tensdo de porta-substrato; V,, é a tensdo dreno-substrato; Vs € a tensdo fonte-substrato; V; € a
tensdo térmica; y € a constante de mobilidade dos elétrons ou lacunas (dependendo do tipo do

transistor); C.x € 0 valor da capacitancia do 6xido de porta por unidade de &rea.

Portanto, obtém-se as correntes de dreno dos transistores por meio das equacgdes 5 e 6,

W, [v vl
_ _ 4 nVy Vol nVy Vg
Ip,=1p,=1Ipy| — =1IpySy-e (5)
4
VG3 VG3
3 n-Vy nVy
Ip=1p3=Ipy- e =1IpySye (6)
3

Onde S é a relacdo W sobre L dos transistores; W; é a largura do canal do transistor /; L; € o
comprimento do canal do transistor i; a tensdo Vs € a tensdo porta-substrato do transistor i; a

tensdo Vs é a tensado fonte-substrato do transistor i.

Nota-se que a tensdo fonte-substrato do transistor M2 € igual & queda de tenséo sobre o resistor
Rs, ou seja, Vs; = Vk. Supondo que a tenséo Vps >> V7, onde Vps € a tensdo dreno-subtrato do

transistor, para os transistores M1 e M2, obtém-se a relacéo da equacgéo 7,

Ve
n-Vy GI_ _ Ve ﬁ ﬁ
IDS_IDI_ Sl'IDo'e _i nV; n-VT+VT _i.e(vT (7)
\4 \4
Ip, Ip, ~ *V—R) S, S,
T T

S, I,y-e

Arelacao entre o valor W/L do transistor M4 e do M3 é dada pela equagéo 8,

27

I, M-/ (8)

Caso os transistores PMOS M3 e M4 sejam iguais, exceto pela relagdo W/L dos mesmos,
obtém-se a relacdo entre suas correntes de dreno na equacao 9,

I
Ip= = 9

Substituindo o resultado da equacéo 7 em 9, obtém-se a equacéao 10,

5, 4
1 T
S—Z'e =M (10)

A partir da equacdo 10, podemos obter a equacao 11, que modela o comportamento da tenséo
VR1

S, 1

Vie=V; S_1M)] (11)

In

Nota-se que a tensdo é proporcional a Vr independe da tensédo de alimentag&o. Finalmente, a

corrente I, € dada por meio da equacéo 12,

22 1
S, M (12)

Por esta analise simplificada, o valor da corrente fornecida por esta fonte independe da tenséo
de alimentagcdo. Na prética (através de simulagfes), percebe-se que o comportamento acaba
sendo diferente do esperado, ocorrendo forte dependéncia. Isto se deve ao efeito da modulagéo

de canal nos transistores que nao foi considerada nas relacdes.

Os circuitos de topologias mais complexas apresentados posteriormente neste trabalho visam
atenuar ou até eliminar este problema. Eles apresentam um nUmero maior de transistores
operando em configuracdes cascode. Porém, quanto maior o0 nimero de transistores empregados

no circuito, mais dificil € dimensiona-los de forma a obter o melhor desempenho possivel da fonte.

A figura 8 mostra gréfico da corrente de dreno no transistor M4 em funcdo da tensao de
alimentacéo. Ele foi obtido através de simulagcdo de um circuito desta topologia, com o0s seguintes
parametros: W4 = 0,4um, W3 = 0,8um, L3 =L4 =2,0um, W1 =W2 =55um, L1=L2=1,0um, Rs

= 21500Q. A simulacao foi feita com o simulador Gnucap, modelo 49 do BSIM3v3 (semelhante ao

28

HSpice®, com os parametros fornecidos pela AMS). Mais detalhes sobre as ferramentas de

simulacdo no capitulo 3, pagina 30.

9e-87 T T T T

cnrrentelde dreno eﬁ H4
8e-07 [T

fe-87 1
Ge-87 1
Se-07 b

4e-87 g

I{H4} (A}

Je-87 1

2e-07 b

1le-87 1

_18_3? 1 1 1 1 1 1
a 8.5 1 1.5 2 2.9 3 3.9

Ydd ()

Figura 8: Curva de corrente da fonte base

No gréfico da figura 8, a corrente fornecida pela fonte aparece no eixo y em fungéo da variacao

na tensdo de alimentac&do, mapeada no eixo x.

Esta demonstracao foi baseada no trabalho [SILO8].

29

3 Ferramentas utilizadas

Este capitulo descrevera as ferramentas utilizadas para atingir os objetivos propostos no
trabalho.

3.1 Simulador de circuitos eletrénicos

Simuladores da familia SPICE (Simulation Program with Integrated Circuit Emphasis) sdo 0s
mais utilizados para a simulacdo de circuitos eletrénicos analdgicos. Exemplos de simuladores:
HSpice®, da empresa Synopsys®; ELDO®, da empresa Mentor Graphics®; Gnucap e NGSpice,
sendo estes de codigo livre e desenvolvidos pela comunidade.

Neste trabalho, foi utilizado o simulador Gnucap devido & facilidade de instalacdo e integracdo
do mesmo com o software desenvolvido.

3.1.1 Linguagem

A linguagem utilizada pelos simuladores da familia SPICE varia entre as implementagdes. Nao

existe um padrdo da industria, mas a maioria delas implementa a sintaxe do antigo software
Spice3.

Abaixo consta um exemplo de cédigo SPICE. Ele representa um filtro passa-baixa simples,
apresentado em [ECC10].

*LPFILTER.CIR - SIMPLE RC LOW-PASS FILTER
VS 1 0AC 1 SIN(OVOFF 1VPEAK 2KHZ)
R1121K

C1200.032UF

.AC DEC 5 10 10MEG
.TRAN 5US 500US

.PRINT AC VM(2) VP(2)
PRINT TRAN V(1) V(2)

.PROBE
.END

Algumas regras da linguagem sao:
* a primeira linha é sempre de comentario;

0 primeiro caractere de cada linha indica a funcdo: “*” indica comentario; “.” indica linha de
comando; “M” indica especificagdo de um transistor MOS; “C” indica especificagéo de um

capacitor; “R” indica a especificacdo de um resistor; “V” indica especificacdo de uma fonte
de tensao.

* 0 arquivo deve terminar com “.end” ;

30

* nao ha distingdo entre letras maitusculas ou minasculas.

Informagdes sobre o significado dos termos utilizados neste trecho podem ser encontrados em
[QUA93].

3.2 Ambiente de desenvolvimento
Implementacdes que utilizam inteligéncia artificial sdo geralmente bastante simbdlicas. Portanto,
uma linguagem de programacdo com uma abordagem desta natureza € indicada para uma

modelagem mais adequada do problema.

Por este motivo, a linguagem escolhida para este trabalho foi Scheme: um dialeto minimalista de
LISP (List Processing). Esta linguagem possui diversas ferramentas desenvolvidas pela
comunidade de software livre, tornando confortavel o ato de programar aplicagées com énfase em

simbolos. A implementacéo utilizada foi a PLT-Scheme.

A representacdo voltada aos simbolos facilita a forma de pensar do programador, que pode
operar com estruturas ndo numéricas, como “bananas” ou “laranjas”. No contexto deste trabalho,
esta habilidade foi utilizada para modelar os componentes de circuitos e as ideias abstratas do
funcionamento de um algoritmo genético. Isto fez com que a implementagdo da otimizacao seja

bastante genérica, e pode ser aplicada a outros trabalhos com pouco esforco.

Mais informagbes sobre esta linguagem e suas ferramentas podem ser encontradas em
[DYBO09].

31

4 Modelagem do Problema
Para aplicar otimizacao por algoritmos genéticos € necessario modelar o problema no universo

desta técnica.

4.1 Dimensdes de um transistor CMOS
A otimizacdo deste trabalho é aplicada nas dimensdes dos transistores CMOS de um circuito

integrado e na varia¢@o do valor de uma resisténcia.

As dimensdes escolhidas foram a largura W e o comprimento L do canal do transistor, conforme
ilustra a figura 9.

porta

dreno fonte

L

Figura 9: Dimensées de um transistor CMOS

Estas dimensdes afetam diretamente o comportamento deste dispositivo.

4.2 Circuitos como individuos

Neste trabalho, um circuito é representado como o arquivo SPICE que o modela (uma fonte de
corrente, por exemplo). Na proposta aqui desenvolvida, estes circuitos serdo de topologia fixa, ou
seja, 0os elementos que compde os circuitos ndo serdo removidos ou substituidos. Eles terdo os

seus parametros modificados.

Como apenas os parametros sdo modificados, um conjunto de valores para estes representara
um individuo e serd o proprio DNA dele. A partir deste DNA serdo gerados tanto arquivos para o
simulador SPICE, que o modelara eletricamente, (mais informacdes na pagina 25) como novos

individuos.

32

Nos exemplos aqui utilizados (fontes de corrente), o objetivo serd otimizar o dimensionamento
dos transistores CMOS presentes nestes circuitos. Os simuladores SPICE possuem parametros

especificos para a representacéo destas dimensfes em seus modelos de componentes.

4.3 Fontes de corrente
Um bom exemplo de uma classe de problemas de projeto que necessitam de experiéncia por

parte do projetista é a confec¢do de uma fonte de corrente para o contexto da microeletrénica.

Além da topologia, o dimensionamento dos transistores CMOS utilizados causa forte influéncia

na qualidade da fonte. Uma escolha ruim pode torna-la menos eficiente e, possivelmente, inutil.

A escolha de boas dimensdes depende de modelos complexos. O casamento das dimensdes
dos transistores busca melhorar o desempenho da fonte, de forma que ela funcione com tensdes
de alimentacdo menores e forneca correntes mais constantes (independem de variacbes na

alimentacédo) independentemente de possiveis variacdes de componentes na fabricacoes.

Além disso, existem limitacdes do processo de fabricacdo que restringem a escolha das

dimensodes.

Neste trabalho, quatro fontes de correntes tiveram as dimensfes de seus transistores
otimizadas. Elas foram batizadas, para uso interno neste documento, como “alpha”, “beta”,

“‘gamma’” e “delta”.

O DNA de um individuo de fonte é caracterizado pelos valores das larguras e comprimentos de

canal dos seus transistores e valor do resistor.

4.3.1 Fonte Alpha
A fonte alpha é a topologia mais simples dentre as consideradas. Ela utiliza quatro transistores
(dois NMOS e dois PMOS) e gera uma corrente de referéncia no canal do transistor M4, conforme

ilustra a figura 10. O equacionamento desta fonte foi visto anteriormente.

33

M4

Rs <

Figura 10: Fonte de corrente "Alpha”

Um individuo desta fonte foi modelado com um DNA de cinco cromossomos (conforme a
modelagem previamente especificada). As relagdes entre os Ws dos transistores NMOS e entre
os Ws dos PMOS foram mantidos fixas. Os parametros contidos no modelo de cinco

Cromossomos s&o
Lo |Wn | Lo | Wy | Rs

Onde L, representa o comprimento dos transistores NMOS; W, representa a largura dos
transistores NMOS,; L, representa o comprimento dos transistores PMOS; W, representa a largura

dos transistores PMOS; Rs representa o valor da resisténcia.

Neste caso, a heuristica é considerar o L dos transistores NMOS iguais entre si e o L dos
transistores PMOS iguais entres si. Estas restricbes reduzem o numero de individuos
investigados, afastando aqueles sabidamente inadequados a solugédo do problema (mais detalhes
sobre heuristicas na pagina 25). A relacdo X entre W,s/L,; € W,/L,, foi utilizada com valor 2. A

relagéo Y entre W,/L,;, € W,../Lp, foi utilizada com valor 1.

Numerando estes cromossomos de 1 a 5, da esquerda para a direita, pode-se construir um

individuo a partir deste DNA conforme o codigo SPICE a seguir.

"~ACA Ananaratad circnit - ININIVINT NS Air

M4 Vdd 2 2 Vdd MODP L=<CROMOSSOMO 3> W=<CROMOSSOMO 4>

34

M3 1 2 Vdd Vdd MODP L=<CROMOSSOMO 3> W=<CROMOSSOMO 4> M=2
M2 2 1 3 Vss MODN L=<CROMOSSOMO 1> W=<CROMOSSOMO 2>

M1 Vss 11 Vss MODN L=<CROMOSSOMO 1> W=<CROMOSSOMO 2>

R Vss 3 <CROMOSSOMO 5>

Vgnd Vss 0 0.0V
Vpow Vdd 0 3.3V

.MODEL MODP PMOS LEVEL=49 <PAR,5A\METROS>
.MODEL MODN NMOS LEVEL=49 <PARAMETROS>

_PRINT DC I(M4) '
.DC Vpow 0V 3.3V 0.01V > <INDIVIDUO>.out
END

Os termos <CROMOSSOMO i>, onde / varia de 1 a 5, correspondem aos campos que Serao

modificados. O termo <INDIVIDUO> representa o nome do individuo, na forma “In-wn-lp-wp-rs”.

O termo <PARAMETROS> indica os parametros de simulag&o para os transistores da tecnologia

AMS 0,35um, fornecidos pela AMS.

4.3.2 Fonte Beta
A fonte beta possui algumas melhorias com relagéo a fonte alpha, como maior estabilidade ao
custo de tensdes de alimentacdo maiores. Ela utiliza seis transistores (trés NMOS e trés PMOS) e

gera uma corrente de referéncia no canal do transistor M6, conforme ilustra a figura 11.

35

H ||TT
Mo =] |7 Me
= I
Me] | e
= I
M| H_‘ Mz

Rs

=
Figura 11: Fonte de corrente "Beta"

Um individuo desta fonte foi modelado com um DNA de cinco cromossomos (conforme a

modelagem previamente especificada).
De forma anéloga a fonte alpha, a representacdo de cinco cromossomos €
Lo |Wn | Lo | Wy | Rs

Onde L, representa o comprimento dos transistores NMOS; W, representa a largura dos
transistores NMOS; L, representa o comprimento dos transistores PMOS; W, representa a largura

dos transistores PMOS; Rs representa o valor da resisténcia.

Neste caso, a heuristica é considerar L,;=Ln,=Lns=Lps, Wns=Wps=W,,=W,; (mais detalhes sobre

heuristicas na pagina 25).

Arelagao X entre W,s/Lps € W,e/L s fOi Utilizada com valor 2. Arelagao Y entre W,./L,; € Wpo/L,» fOi

utilizada com valor 1.

Numerando estes cromossomos de 1 a 5, da esquerda para a direita, pode-se construir um

individuo a partir deste DNA conforme o codigo SPICE a seguir.

" COGA generated circuit - <INDIVIDUO>.cir

M1 Vss 12 Vss MODN L=<CROMOSSOM 1> W=<CROMOSSOM 2>
M2 11 3 Vss MODN L=<CROMOSSOM 1> W=<CROMOSSOM 2>
M3 2 4 4 Vss MODN L=<CROMOSSOM 1> W=<CROMOSSOM 2>

36

M4 5 4 1 Vss MODN L=<CROMOSSOM 1> W=<CROMOSSOM 2>

M5 4 5 Vdd Vdd MODP L=<CROMOSSOM 3> W=<CROMOSSOM 4> M=2
M6 Vdd 5 5 Vdd MODP L=<CROMOSSOM 3> W=<CROMOSSOM 4>

Rs Vss 3 <CROMOSSOM 5>

Vgnd Vss 0 0.0V
Vpow Vdd 0 3.3V

.MODEL MODP PMOS LEVEL=49 <PAR,5A\METROS>
.MODEL MODN NMOS LEVEL=49 <PARAMETROS>

.PRINT DC I(M6) '
.DC Vpow 0V 3.3V 0.01V > <INDIVIDUO>.out
END

Os termos <CROMOSSOMO i>, onde / varia de 1 a 5, correspondem aos campos que Serao

modificados. O termo <INDIVIDUO> representa o nome do individuo, na forma “In-wn-lp-wp-rs”.

O termo <PARAMETROS> indica os parametros de simulag&o para os transistores da tecnologia
AMS 0,35um, fornecidos pela AMS.

4.3.3 Fonte Gamma

A fonte gamma possui algumas melhorias com relagdo a fonte beta, visando desempenho
similar, mas com tensdo de alimentagdo menor. Esta topologia utiliza um circuito de polarizacéo
adicional, transistores M7 e M8, que polariza os transistores cascode M3 e M4 e garante uma
correta tensdo no dreno dos transistores M1 e M2. Ela utiliza oito transistores (quatro NMOS e
quatro PMOS) e gera uma corrente de referéncia no canal do transistor M6, conforme ilustra a

figura 12.

37

w1 M5[§}ﬁig]m

o I

S

Figura 12: Fonte de corrente "Gamma"

Um individuo desta fonte foi modelado com um DNA de dez cromossomos (conforme a

modelagem previamente especificada).
Os parametros contidos nos dez cromossomos séo
I—n-1-2 I I—n-:«;‘-4 I Wn-1-3 I Wn-2-4 I Lp-5-6-8 I Wp-5-6 I Wp-B I I—n-7 I Wn-7 I RS

Onde L,; representa o comprimento dos transistores NMOS de numero i; W,, representa a
largura dos transistores NMOS de numero i; L, representa o comprimento dos transistores PMOS
de namero i; W, representa a largura dos transistores PMOS de numero i; Rs representa o valor

da resisténcia.
Neste caso, a heuristica é considerar L,;=L,z, Lns=Lns, Wi1=W3, Wn2=Why, Lps=Lps=Lps € Wys=Wie.

Arelagao X entre W,s/Lps € W,e/L s fOi Utilizada com valor 2. Arelagao Y entre W,./L,: € Wpo/L,» fOi

utilizada com valor 1.

Numerando estes cromossomos de 1 a 10, da esquerda para a direita, pode-se construir um

individuo a partir deste DNA conforme o codigo SPICE a seguir.

" COGA generated circuit - <INDIVIDUO>.cir

M1 Vss 1 2 Vss MODN L=<CROMOSSOMO 1> W=<CROMOSSOMO 3>

M2 31 4 Vss MODN L=<CROMOSSOMO 1> W=<CROMOSSOMO 4>

M3 2 6 1 Vss MODN L=<CROMOSSOMO 2> W=<CROMOSSOMO 3>

M4 5 6 3 Vss MODN L=<CROMOSSOMO 2> W=<CROMOSSOMO 4>

M5 1 5 Vdd Vdd MODP L=<CROMOSSOMO 5> W=<CROMOSSOMO 6> M=2
M6 Vdd 5 5 Vdd MODP L=<CROMOSSOMO 5> W=<CROMOSSOMO 6>

38

M7 Vss 6 6 Vss MODN L=<CROMOSSOMO 8> W=<CROMOSSOMO 9>
M8 6 5 Vdd Vdd MODP L=<CROMOSSOMO 5> W=<CROMOSSOMO 7>
Rs Vss 4 <CROMOSSOMO 10>

Vgnd Vss 0 0.0V
Vpow Vdd 0 3.3V

.MODEL MODP PMOS LEVEL=49 <PAR,5A\METROS>
.MODEL MODN NMOS LEVEL=49 <PARAMETROS>

.PRINT DC I(M6) '
.DC Vpow 0V 3.3V 0.01V > <INDIVIDUO>.out
END

Os termos <CROMOSSOMO i>, onde / varia de 1 a 10, correspondem aos campos que Serao
modificados. O termo <INDIVIDUO> representa o nome do individuo, na forma “In12-In34-wn13-

wn24-Ip568-wp56-wp8-In7-wn7-rs”.

O termo <PARAMETROS> indica os parametros de simulag&o para os transistores da tecnologia
AMS 0,35um, fornecidos pela AMS.

4.3.4 Fonte Delta
A fonte delta possui algumas melhorias com relagdo a fonte gamma, e esta possui desempenho
similar, mas com uma tensdo de alimentacdo menor ainda. Esta topologia utiliza dois circuitos de

polarizagcdo para atingir tal objetivo. Ela utiliza dez transistores (cinco NMOS e cinco PMOS) e

gera uma corrente de referéncia no canal do transistor M6, conforme ilustra a figura 13.

=

Gy - g

L L.

Fx=

1

Figura 13: Fonte de corrente "Delta"

Um individuo desta fonte foi modelado com um DNA de quinze cromossomos (conforme a

modelagem previamente especificada).

39

Os parametros contidos nos quinze cromossomos sdo mostrados abaixo.
I—n-1-2-7 I I—n-4 I Wn-l I Wn-2-4 I Wn-7| Lp-3| Lp-5-6-10 I Wp-5-3 I Wp-6 I Wp-lO I Ln-B I Wp-B I Ln-9 I Wn-9 I RS

Onde L,; representa o comprimento dos transistores NMOS de numero i; W,, representa a
largura dos transistores NMOS de numero i; L, representa o comprimento dos transistores PMOS
de namero i; W, representa a largura dos transistores PMOS de numero i; Rs representa o valor

da resisténcia.
Neste caso, a heuristica é considerar Ly;=L,>=Ln7, Wn2=Wh4, Lps=Lps=Lp10 € Wps=Wp3.

Arelagao X entre W,s/Lps € W,e/L s fOi Utilizada com valor 2. Arelagao Y entre W,./L,; € Wpo/L,» fOi

utilizada com valor 1.

Numerando estes cromossomos de 1 a 15, da esquerda para a direita, pode-se construir um

individuo a partir deste DNA conforme o codigo SPICE a seguir.

" COGA generated circuit - <INDIVIDUO>.cir

M1 Vss 1 1Vss MODN L=<CROMOSSOMO 1> W=<CROMOSSOMO 3>
M10 Vdd 5 6 Vdd MODP L=<CROMOSSOMO 7> W=<CROMOSSOMO 10>
M2 2 1 3 Vss MODN L=<CROMOSSOMO 1> W=<CROMOSSOMO 4>

M3 17 4 Vdd MODP L=<CROMOSSOMO 6> W=<CROMOSSOMO 8>

M4 5 6 2 Vss MODN L=<CROMOSSOMO 2> W=<CROMOSSOMO 4>

M5 4 5 Vdd Vdd MODP L=<CROMOSSOMO 7> W=<CROMOSSOMO 8> M=4
M6 Vdd 5 5 Vdd MODP L=<CROMOSSOMO 7> W=<CROMOSSOMO 9>
M7 Vss 1 7 Vss MODN L=<CROMOSSOMO 1> W=<CROMOSSOMO 5>
M8 7 7 Vdd Vdd MODP L=<CROMOSSOMO 11> W=<CROMOSSOMO 12>
M9 6 6 Vss Vss MODN L=<CROMOSSOMO 13> W=<CROMOSSOMO 14>
Rs Vss 3 <CROMOSSOMO 15>

Vgnd Vss 0 0.0V
Vpow Vdd 0 3.3V

.MODEL MODP PMOS LEVEL=49 <PAR,5A\METROS>
.MODEL MODN NMOS LEVEL=49 <PARAMETROS>

.PRINT DC I(M6) '
.DC Vpow 0V 3.3V 0.01V > <INDIVIDUO>.out
END

Os termos <CROMOSSOMO i>, onde j varia de 1 a 15, correspondem aos campos que Serao
modificados. O termo <INDIVIDUO> representa o nome do individuo, na forma “In127-In4-wn1-

wn24-wn7-1p3-1p5610-wp53-wp6-wpl0-IN8-wp8-In9-wn9-rs”.

O termo <PARAMETROS> indica os parametros de simulag&o para os transistores da tecnologia
AMS 0,35um, fornecidos pela AMS.

40

5 Otimizacao por Algoritmo Genético
No contexto deste trabalho, otimizar um circuito significa buscar combinacdes de seus
parametros relevantes (dimensdo dos transistores CMOS) de modo que o seu desempenho

melhore. A definicdo de um bom desempenho varia para cada aplicacéo.

Para o caso de nossa fonte de corrente, bom desempenho é funcionar com baixa tensdo de
alimentacdo ao mesmo tempo que a corrente dependa pouco deste fator (estavel). O algoritmo
genético deve ser capaz de projetar uma fonte que forneca uma corrente especificada pelo

projetista.

5.1 Execucao preliminar
Antes de comecar o processo de otimizacdo das fontes, foi necessario realizar execucdes
iniciais no caso mais simples (fonte de topologia Alpha) para tomar algumas decisbes baseadas

no comportamento observado.

5.1.1 Escolha dos pesos
O primeiro fator foi a escolha dos pesos w; e w, (detalhes sobre o seu uso na pagina 43). Os
pesos utilizados ndo sdo normalizados, e foi feito um esforco para manté-los em ordens de

grandeza préximas, mas de forma que um tenha prioridade sobre o outro.

A diferenca de 7 ordens de grandeza em w;=1 e w,=-1.10" garantiu, nas execucdes observadas,
uma diferenca de duas ordens de grandeza em relagdo ao peso w.. Ou seja, foi dada prioridade
para que a fonte gerada respeite mais a especificacdo do valor da corrente a ser fornecida do que

a capacidade de operar com tensdes de alimentacdo menores.

O valor negativo do peso w. se d& pela forma como o valor da corrente € avaliado, detalhado na

secao Estratégia de otimizagéo (pagina 42).

5.1.2 Intensidade da selecéo
O calculo da intensidade da selegdo quantifica a intensidade da variacdo de uma geracao para a
outra. Através de uma média deste nimero em algumas poucas execugfes preliminares, foi

possivel tomar decisBes com relacdo ao método de selecdo e ao tamanho das populagdes.

A tabela 2 mostra uma relacdo dos métodos de selecdo (discutidos na pagina 45), combinados
com diferentes tamanhos de populacéo, e a respectiva média da intensidade da selecdo para 10
execucdes. As pontuagdes dos individuos de cada execucdo foram normalizadas apenas para o
calculo da intensidade, pois a normalizagdo torna a execugdo mais lenta sem fornecer beneficios

praticos no caso da otimizagéo.

41

Tabela 2: Relagao dos métodos de selecdo com o tamanho da populacao e a intensidade da selecéo

Método de selecao Tamanho da populacao Média da Intensidade da
Selecao
Truncada convencional 10 0,13
Truncada convencional 20 0,07
Truncada convencional 30 0,04
Truncada convencional 40 0,03
Truncada modificada 10 0,19
Truncada modificada 20 0,10
Truncada modificada 30 0,07
Truncada modificada 40 0,05

Os valores da intensidade da selecdo vao diminuindo conforme o aumento do tamanho da
populacdo. Isto ocorre por tomarmos uma elite de T individuos proporcional ao tamanho da

populacao (explicado com mais detalhes na pagina 45).

Por este motivo, o tamanho de populagdo 40 apresentou uma intensidade muito baixa e foi
descartado. Dentre os dois métodos de sele¢do selecionados, o da sele¢do truncada modificada
apresentou maior intensidade e serd selecionado como forma de buscar solu¢des de forma mais

agressiva.

5.2 Estratégia de otimizacdo
A estratégia utilizada neste trabalho instancia uma técnica de algoritmo genético para esta

aplicacéo, seguindo sugestdes de [ZEB02] e [RANO4].

5.2.1 Populacao inicial

O primeiro passo é a gera¢gdo de uma populacao inicial de individuos. Para gerar um individuo
desta populagdo, é utilizada uma funcdo geradora de parametros. Cada parametro € gerado
aleatoriamente, dentro de um intervalo considerado razoavel do ponto de vista da aplicacdo. No
caso de dimensfes dos transistores, este razoavel seriam valores de L variando de 0,35um a
5,0um e valores de W variando de 2um a 100um. Para o valor da resisténcia, eles variam de
5000 a 45000Q.

O numero de individuos na populacéo afeta diretamente o desempenho da busca na selecao
utilizada (mais detalhes sobre a selecdo adotada na pagina 45). Este impacto pode ser analisado

por meio da intensidade do teste (mais detalhes sobre a intensidade do teste na pagina 21).

42

5.2.2 Avaliacao da populacao
A cada iteracdo os individuos da populacdo sdo avaliados pela funcdo de aptiddo (detalhes
tedricos na pagina 20). Esta funcéo atribuira uma pontuagdo para cada um dos individuos, de

forma que o mais apto é o de maior pontuacao.

Apés esta classificagdo, a populacdo é ordenada do individuo mais apto ao menos como
preparacdo para a etapa de selecdo. A implementacéo desta funcdo pode ser bastante complexa,
visto que o software capaz de avaliar um individuo deve agregar o conhecimento especifico do
dominio da aplicacdo empregada, sendo que esta geralmente € realizada por um ser humano.
Existem estudos dedicados somente a criacdo destas fungbes. O estudo [BARO2] dedica-se a
otimizar a criacdo destas funcdes por meio de modificagdes técnicas nas implementagbes, como a
diminuicdo de condicionais if-then em cascata (if dentro de if), e sugere que podem ser obtidos
ganhos grandes com este tipo de cuidado. J& o estudo [SANO2] utiliza algoritmos genéticos para

obter funcdes de aptiddo para uso em outros algoritmos genéticos.

As préximas sec¢bes descrevem as peculiaridades da funcdo de aptidao aplicada para cada um

dos circuitos de interesse.

Funcdo de aptidao utilizada

Conforme descrito anteriormente, uma boa fonte de corrente funciona com baixa tensdo de
alimentacdo e fornece uma corrente pouco dependente de variacdes no valor desta mesma
tensdo. A funcdo de aptidao ird obter dois nimeros de uma curva lo,: X Vpp para uso no calculo da

pontuacdo de cada individuo. Chama-los-ei de n; e n.,.

O primeiro é relacionado ao valor de Vyp, para o qual a corrente atinge um valor fora de um
intervalo onde ela é considerada estavel. Por exemplo: se, com alimentagdo maxima (3,3V), a
fonte fornece uma corrente /, e o fator de tolerancia de variacdo ¢ for 10%, entdo este nimero
serd o primeiro valor de Vpp, do maior para o menor, no qual a corrente saiu do intervalo [| +

10%.1;1—10%.1]. As equacdes 13 e 14 expressam este comportamento,

I<VDD,NSTAVM)€[IREF+(IREF'F)’IREF_<IREF'F)]’talque Ipep=1 (VDDMAX) (13)

nl:VDD]NSTAVEL_VDDMAX (14)

Onde Vpp wstaver € 0 valor de Vpp para o qual a corrente sai do limiar de estabilidade; Vpp wax € 0

valor maximo de Vpp na simulagéo, definido como 3,3V.

O segundo numero é o médulo da diferenca entre a corrente no ponto de tensdo maxima de

alimentacdo Vpp max € a corrente escolhida pelo projetista a ser fornecida pela fonte. Seu

43

comportamento pode ser expresso pela equagéo 15,

n2:||I<VDDMAX)_IALVO” (15)

Onde I(Vp max) € a corrente no ponto de maior tensé@o de alimentagao; /..vo € a corrente definida

pelo projetista.

Por fim, o valor de aptiddo de um individuo consiste na soma de n; e n, apés a aplicacao de
pesos de ajuste de ordem de grandeza e sinal, para que ambos os parametros afetem a escolha
do melhor individuo e que fagcam isso de forma positiva ou negativa. Chamando estes pesos de w;

e W,, a funcdo final de aptidado é dada pela equacao 16,

f (ind)=w,-n,+w,n, (16)

Ao contrario do que foi descrito na se¢do Funcdo de Aptidao (pagina 20), este valor ndo sera
normalizado para melhorar a velocidade de execuc¢éo do algoritmo. A normalizacdo sera utilizada

apenas pontualmente para calcular a intensidade de sele¢éo, quando necessario.

Os valores definidos para os pesos foram w;=1 e w,=-1.10" (ajustado empiricamente e que

resultam em fontes mais estaveis).

Neste trabalho, definimos como uma boa fonte de corrente uma fonte que respeite sua
especificacdo de corrente e trabalhe com tensdes de alimentagdo o menor possiveis. A figura 14

apresenta um grafico de um exemplo de fonte de corrente Util por esta perspectiva.

>

lout (uA)

regiao de operacao

[.
- - > .

| especificada

© vdd (V)

Figura 14: Exemplo grafico de uma boa fonte de corrente

Nota-se, neste gréafico, que a corrente na regido de operacao é estavel (independe de variages

44

no Vdd). Este é o tipo de curva de corrente por tensdo de alimentacdo que desejamos encontrar
em nossas fontes otimizadas e é isso que a funcdo de aptiddo busca quantificar. Porém, como a
funcdo de aptiddo sera utilizada durante a execucdo, ela deve ser simples para consumir pouco
processamento computacional e permitir execucdes mais rapidas. A funcdo de aptiddo descrita
nesta secdo apresenta boa classificacdo de curvas desse tipo, a0 mesmo tempo em que seu

desempenho é satisfatorio.

5.2.3 Selecao

A selecdo foi feita pelo método de truncamento, mas de forma modificada. Normalmente, a
selecao por truncamento escolhe os T melhores individuos de uma populagéo para serem a elite.
Esta serd a responsével por gerar a prole que compora a geracdo seguinte. Chamaremos este

método de sele¢do truncada convencional.

Porém, neste trabalho, este método foi um pouco modificado de forma a aumentar a
agressividade do algoritmo (que converge mais rapidamente). Esta mudanca pode ser
evidenciada através do célculo da intensidade da sele¢do, detalhado na secdo Intensidade da

selecdo (pagina 41).

A mudanca feita foi a seguinte: ao invés de selecionar os T melhores individuos, seleciona-se os
T - 1 melhores e adiciona-se a elite o pior individuo da geracéo atual. Este método sera chamado

de selecdo truncada modificada.

Com esta modificagdo, conforme explicitado na sec¢do Intensidade da selecdo (pagina 41), a
variedade do material genético entre duas geracdes consecutivas € maior, e o algoritmo mostrou-
se mais eficiente (menor tempo de convergéncia) desta forma. Os resultados preliminares

encontrados com esta configuracdo foram satisfatorios.

5.2.4 Criacao da prole
O numero de individuos da populacdo é fixo e especificado antes do inicio da busca. A cada

geracdo, 0 primeiro passo para a criagdo da geragcdo seguinte € a escolha de uma elite de

individuos da geracgéo atual.

Através desta elite, sdo criados os individuos restantes para manter o tamanho da populagéo de
cada geracdao fixo. Por exemplo: se a elite de uma populacdo de 20 individuos é composta por 4,
entdo estes 4 serdo utilizados para gerar os 16 restantes (prole), de forma a obtermos novamente

uma populacgdo de 20 individuos.

A prole € gerada através da criagdo de pares de individuos a partir de pares de pais. Os pais séo
escolhidos aleatoriamente do conjunto da elite, e criam os filhos por crossover. Caso o nimero de

individuos da populacao seja impar, na criagdo do ultimo par, um dos filhos é descartado.

45

Tendo a prole sido gerada, ela sofrera mutagdo. Conforme mostrado na se¢do Mutacdo (pagina
23), cada individuo tem probabilidade a de ser selecionado para mutacdo, sendo o a taxa de
mutacdo. Por exemplo: se a taxa de mutacdo for 50%, e a prole for composta por 16 individuos,

entdo, em média 8 individuos sofrerdo mutagéo.

A funcéo de corte para uso no crossover e a funcdo de mutacdo utilizadas em nosso trabalho

seréo detalhadas a seguir.

Funcao de corte

Conforme visto no capitulo Revisdo dos conceitos abordados, se¢do 2.1.5 (pagina 22), a funcao
de corte é responsavel por determinar entre quais cromossomos ocorrerq o0 seccionamento do
DNA dos pais para que haja a geracdo dos filhos (utilizamos apenas um ponto de corte neste
trabalho).

A funcdo escolhe aleatoriamente um ponto de corte entre dois cromossomos, variando da

posi¢cdo entre o primeiro e o segundo até a posi¢do entre o pendltimo e o ultimo.

Funcao de mutacao

Conforme visto no capitulo Revisdo dos conceitos abordados, se¢do 2.1.6 (pagina 23), a funcao
de mutacdo é responsavel por decidir qual cromossomo sera modificado e como sera feita esta
modificagdo.

s

O cromossomo a ser modificado pela mutacdo € escolhido aleatoriamente (apenas um

cromossomo é modificado na mutagao).

Ele é modificado de acordo com as restricdes impostas para cada execucdo, explicadas no

capitulo 6.

46

6 Analise dos Resultados Obtidos
A avaliacdo de uma populacdo, no contexto deste trabalho, € computacionalmente cara. Para
realizar esta tarefa, é necesséaria a simulagdo de cada um dos individuos (circuitos), além do

tratamento dos extensos arquivos de saida gerados como produto do simulador.

Para cada fonte a ser otimizada, seréo feitas cinco execu¢es completas do algoritmo genético
para trés tamanhos de populacao: 10, 20 e 30 individuos. A populacgéo inicial € sempre criada com
parametros aleatérios, com restricbes baseadas nos critérios de projeto previamente
estabelecidos (mais detalhes na pagina 42). A tabela 3 apresenta estes critérios, validos para

todas as fontes.

Tabela 3: Critérios de restricdo da fonte Alpha

Critério Restricao Imposta
Primeiro critério L varia de 0,35um a 5,0pm
Segundo critério W varia de 1,0pm a 100um
Terceiro critério Rs varia de 5kQs a 50kQs

Quatro critério X fixado em 2
Quinto critério Y fixado em 1

6.1 Resultados de otimizacao da fonte Alpha
As otimizacdes foram executadas com populagdes de 10, 20 e 30 individuos. O fator tolerancia
de variacdo ¢ foi fixado em 5%. O limiar (threshold) T depende do tamanho da populacéo e foi

estabelecido como 33,3% de uma geracgéo. A taxa de mutacéo o foi escolhida como 50%.

E dtil ressaltar que apenas a prole da elite de uma geracéo pode sofrer mutacéo (mais detalhes
na pagina 23). Apesar da taxa de mutacdo ser alta para os padrdes de algoritmos genéticos,
apenas um cromossomo de cada individuo que sofre mutacdo € modificado, equilibrando o

impacto desta operacdo com as modificacfes do acasalamento.

Para justificar esta afirmacédo, suponha uma populacéo de 30 individuos, cada um com DNA de
10 cromossomos, uma elite com 10 elementos, acasalamento por crossover com um ponto de
corte e taxa de mutacdo de 50% com apenas um cromossomo alterado por mutacdo. Vamos
comparar o numero de cromossomos modificador pelo acasalamento e pela mutacdo de uma
geracgdo para outra. No acasalamento, sado gerados 20 individuos e 5 cromossomos de cada um
serdo modificados, de forma que, ao todo, 100 cromossomos serdo modificados nesta geracéo
pelo acasalamento. Por outro lado, na mutacdo, sdo escolhidos 10 individuos e apenas 1
cromossomo de cada um serd modificado, de forma que, ao todo, apenas 10 cromossomos seréo

modificados nesta geracdo pela mutagdo. Com isso, a mutagéo estara modificando em média 10

a7

vezes menos cromossomos que a operacgao de acasalamento, razoavel para este trabalho.

Para testar o algoritmo, especificou-se uma fonte com corrente de saida de 0,5uA, com

tolerancia de variacdo de +0,03uA. Especificou-se também que a fonte deve operar com boa

estabilidade com tensdo de alimentacdo inferior a 2,1V. Caso estas especificagbes ndao sejam

atingidas em trinta geracdes, a otimizag&o sera encerrada.

A tabela 4 mostra os individuos encontrados através da otimizacao por algoritmo genético para a

fonte Alpha com populacéo de 10 individuos.

Tabela 4: Individuos encontrados para a fonte Alpha com populac&o de tamanho 10

Otimizadal | Otimizada2 | Otimizada3 | Otimizada4 | Otimizada 5
Ln (um) 4,6 4,86 4,3 4,92 4,96
Wn (um) 91,8 92,2 44,7 29,4 51,3
Lp (um) 4,86 4,68 4,87 4,58 4,76
Wp (um) 64,9 2,0 72,7 91,0 46,2
Rs (Qs) 44424 43537 45924 46967 45954

A tabela 5 mostra os individuos encontrados atraves da otimizacao por algoritmo genético para a

fonte Alpha com populacao de 20 individuos.

Tabela 5: Individuos encontrados para a fonte Alpha com populac&o de tamanho 20

Otimizadal | Otimizada2 | Otimizada3 | Otimizada4 | Otimizada 5
Ln (pm) 4,8 4,96 4,96 4,77 4,84
Wn (um) 38,8 83,5 90,4 61,7 38,0
Lp (um) 4,62 4,72 4,48 4,93 4,27
Wp (um) 88,9 6,8 50,7 66,9 88,9
Rs (Qs) 47104 44906 44666 45006 47082

A tabela 6 mostra os individuos encontrados através da otimizacao por algoritmo genético para a

fonte Alpha com populacao de 30 individuos.

48

Tabela 6: Individuos encontrados para a fonte Alpha com populac&o de tamanho 30

Otimizadal | Otimizada2 | Otimizada3 | Otimizada4 | Otimizada 5
Ln (um) 4,5 4,71 4,81 4,99 4,81
Wn (um) 30,6 77,7 90,0 99,5 97,2
Lp (um) 4,7 4,8 4,55 4,9 4,78
Wp (um) 49,9 95,7 56,7 13 73,1
Rs (Qs) 48500 45040 44554 42987 44476

A tabela 7 mostra os resultados das otimiza¢cdes com os trés tamanhos de populagédo e cinco

execucOes completas para a fonte Alpha.

Tabela 7: Resultados da otimizacdo da fonte Alpha

Tamanho da Média do n° de Média do tempo Média da pontuacao
populacao geracoes gasto (s) (cinco execucdes)
(cinco execucdes) (cinco execucdes)
10 23,6 102 22498
20 15,2 111 22597
30 7,6 95,6 22658

Obs.: Execugbes em um computador com: processador Intel(R) Core(TM)2 Duo CPU E6750, 2.66GHz; 4GB
de memdria RAM; sistema operacional Gentoo GNU/Linux 64 bits; interpretador mzscheme 4.2.5. O
ambiente continha apenas uma carga minima necessaria, como o ambiente grafico X-Windows e processos
do sistema.

Pelos dados apresentados, nota-se que as fontes otimizadas possuem valores de Rs, L, e L,
altos. Nota-se uma tendéncia da diminui¢cdo do tempo total da otimizagdo conforme a populagcéo
fica mais numerosa. Este comportamento é interessante, pois apesar de aumentar o niumero de
simulacdes por geracdo com o aumento do tamanho da populacéo, o tempo final de execucéao foi
menor por conta do menor niumero de geracdes necessarias para atingir a solugdo. No caso desta
topologia de fonte, a maior diversidade de individuos nas populacdes mais numerosas acelerou a
otimizacdo da fonte. Porém, devido ao baixo numero de execucgfes, estes dados sdo pouco

significativos do ponto de vista estatistico.

Nem todas as fontes atingiram a especificacdo tracada inicialmente. Para a populacédo de 10
individuos, as fontes otimizadas 4 e 5 atingiram a especificagdo. Para a populacdo de 20
individuos, as fontes otimizadas 1, 2, 4 e 5 atingiram a especificagdo. Para a populagdo de 30
individuos, as fontes otimizadas 1, 2, 4 e 5 atingiram a especificacdo. As outras alcancaram o
limite de 30 geracdes fora da especificacdo, mas apresentaram uma boa curva também e

chegaram bem proximas dos valores desejados.

As figuras 15, 16 e 17 apresentam os gréficos das curvas de corrente pela tensdo de

alimentacdo da fonte alpha obtidas com as otimizacdes feitas para os trés tamanhos de

49

populacéo.

otinizada 1
le-06 [otinizada 2 ——
otinizada 3
otinizada 4
8e-07 | otinizada 5
& 6e-07 [.
-
o~
-
Z L J
¥ 4e-87
2e-07 b
a - 4
1 1 1 1 1 1
a 8.5 1 1.5 2 2.5 3 3.5
vdd (v}

Figura 15: Curva da corrente fornecida pela tenséo de
alimentacg&o das fontes com topologia Alpha otimizadas pelo
algoritmo genético para populacdo de 10 individuos

otinizada 1
le-06 [otinizada 2 ——
otinizada 3
otinizada 4
8e-07 | otinizada 5
& 6e-07 [.
-
o~ —
= I
Z L o J
H 4e-07
2e-07 b
a 4
1 1 1 1 1 1
a 8.5 1 1.5 2 2.5 3 3.5
vdd (v}

Figura 16: Curva da corrente fornecida pela tenséo de
alimentacg&o das fontes com topologia Alpha otimizadas pelo
algoritmo genético para populacdo de 20 individuos

50

otinizada 1
le-06 [otinizada 2
otinizada 3
otinizada 4
8e-07 | otinizada 5

Be-87 1

T{H4} {A)

4e-07

2e-07

vdd (v}

Figura 17: Curva da corrente fornecida pela tens&o de
alimentacg&o das fontes com topologia Alpha otimizadas pelo
algoritmo genético para populacdo de 30 individuos
Dos gréaficos, observa-se que todas as fontes otimizadas, em todos os casos, sado utilizidveis em

circuitos eletrénicos.

Esta topologia batizada de alpha possui limitagcdes que ndo podem ser superadas apenas com o
mero ajuste de parametros. As fontes analisadas nas sec¢des seguintes possuem topologias mais

robustas e séo projetadas para oferecer uma corrente mais estavel do que a vista nesta fonte.

6.2 Resultados de otimizacdo da fonte Beta
As otimizacdes foram executadas com populagdes de 10, 20 e 30 individuos. O fator tolerancia
de variacdo ¢ foi fixado em 2%. O limiar (threshold) T depende do tamanho da populacéo e foi

estabelecido como 33,3% de uma geracgéo. A taxa de mutacéo o foi escolhida como 50%.

Para testar o algoritmo, especificou-se uma fonte com corrente de saida de 0,5uA, com
tolerancia de variacdo de +0,03uA. Por esta topologia ser mais robusta do que a Alpha, a tensao
de alimentagdo minima para o qual a fonte deve operar com boa estabilidade foi forcada para um
valor mais baixo, especificada como 1,8V. Caso estas especificacbes ndo sejam atingidas em

trinta geracdes, a otimizacdo sera encerrada.

A tabela 8 mostra os individuos encontrados através da otimizag&o por algoritmo genético para a

fonte Beta com populagéo de 10 individuos.

51

Tabela 8: Individuos encontrados para a fonte Beta com populagéo de tamanho 10

Otimizadal | Otimizada2 | Otimizada3 | Otimizada4 | Otimizada 5
Ln (um) 1,09 1,46 2,71 4,8 3,86
Wn (um) 61,7 82,6 43,5 42,6 49,5
Lp (um) 4,69 4,8 4,9 4,96 4,89
Wp (um) 94,0 82,8 99,0 99,7 76,5
Rs (Qs) 39792 39502 41579 43103 43880

A tabela 9 mostra os individuos encontrados através da otimiza¢ao por algoritmo genético para a

fonte Beta com populagéo de 20 individuos.

Tabela 9: Individuos encontrados para a fonte Beta com populagéo de tamanho 20

Otimizadal | Otimizada2 | Otimizada3 | Otimizada4 | Otimizada 5
Ln (um) 4,62 4,33 2,34 0,93 3,74
Wn (um) 54,6 99,9 12,6 17,8 95,3
Lp (um) 4,95 4,44 4,89 4,82 4,82
Wp (um) 98,8 95,3 66,5 69,3 45,1
Rs (Qs) 42493 40887 44802 42694 39389

A tabela 10 mostra os individuos encontrados através da otimizag&o por algoritmo genético para

a fonte Beta com populacao de 30 individuos.

Tabela 10: Individuos encontrados para a fonte Beta com populacéo de tamanho 30

Otimizadal | Otimizada2 | Otimizada3 | Otimizada4 | Otimizada 5
Ln (um) 1,75 3,74 3,15 0,72 1,49
Wn (um) 63,7 61,4 76,1 36,7 14,8
Lp (um) 4,42 4,62 4,73 4,75 4,92
Wp (um) 86,7 92,0 58,3 68,0 94,8
Rs (Qs) 40840 41620 41047 39782 42533

A tabela 11 mostra os resultados das otimizagfes com os trés tamanhos de populagéo e cinco

execucdes completas para a fonte Beta.

52

Tabela 11: Resultados da otimizac&o da fonte Beta

Tamanho da Média do n° de Média do tempo Média da pontuacgao
populacao geracoes gasto (s) (cinco execucdes)
(cinco execucdes) (cinco execucdes)
10 14,4 77 14838
20 14,4 129 14234
30 8,2 112 14734

Obs.: Execugbes em um computador com: processador Intel(R) Core(TM)2 Duo CPU E6750, 2.66GHz; 4GB
de memdria RAM; sistema operacional Gentoo GNU/Linux 64 bits; interpretador mzscheme 4.2.5. O
ambiente continha apenas uma carga minima necessaria, como o ambiente grafico X-Windows e processos
do sistema.

Pelos dados apresentados, nota-se que as fontes otimizadas possuem valores de R, L, € W,
altos. Diferentemente da topologia Alpha, nota-se um equilibrio no tempo de execucdo das
otimizacdes. Apesar do numero de parametros ser igual ao da fonte Alpha, a topologia Beta é
mais robusta e, por conta disso, existem mais solugfes satisfatérias no dominio de busca. Como
consequéncia, as execucgfes convergiram mais rapido do que com a fonte Alpha. Devido ao baixo

namero de execucgdes, estes dados sdo pouco significativos do ponto de vista estatistico.

Nem todas as fontes atingiram a especificacdo tracada inicialmente. Para a populacédo de 10
individuos, todas as fontes atingiram a especifica¢do. Para a populacdo de 20 individuos, apenas
as fontes otimizadas 1, 2, 4 e 5 atingiram a especificacdo. Para a populacdo de 30 individuos,
apenas as fontes otimizadas 1, 2, 3 e 4 atingiram a especificacdo. As outras alcancaram o limite
de 30 geracdes fora da especificacdo, mas apresentaram uma boa curva também e chegaram
bem proximas dos valores desejados. Nota-se que mais fontes otimizadas atingiram a

especificagdo com esta topologia por conta da maior robustez desta fonte.

As figuras 20, 19 e 18 apresentam os gréficos das curvas de corrente pela tensdo de

alimentacdo da fonte Beta obtidas com as otimizacdes feitas para os trés tamanhos de populacao.

53

54

otinizada 1
le-06 [otinizada 2 ——
otinizada 3
otinizada 4
8e-07 | otinizada 5
& 6e-07 [.
-
o~
w0
< L J
¥ 4e-87
2e-07 b
a - 4
1 1 1 1 1 1
a 8.5 1 1.5 2 2.5 3 3.5
vdd (v}

Figura 18: Curva da corrente fornecida pela tenséo de
alimentacg&o das fontes com topologia Beta otimizadas pelo
algoritmo genético para populacdo de 10 individuos

otinizada 1
le-06 [otinizada 2 ——
otinizada 3
otinizada 4
8e-07 | otinizada 5
& 6e-07 [.
-
o~
w0
< L J
H 4e-07
2e-07 b
a — 4
1 1 1 1 1 1
a 8.5 1 1.5 2 2.5 3 3.5
vdd (v}

Figura 19: Curva da corrente fornecida pela tens&o de
alimentacg&o das fontes com topologia Beta otimizadas pelo
algoritmo genético para populacdo de 20 individuos

otinizada 1 ——
le-06 [otinizada 2 ——
otinizada 3 ——
otinizada 4 ——
8e-07 | otinizada 5
& 6e-07 [.
-
-~
w0
< L J
¥ 4e-87
2e-07 b
a — 4
1 1 1 1 1 1
a 8.5 1 1.5 2 2.5 3 3.5

vdd (v}

Figura 20: Curva da corrente fornecida pela tens&o de
alimentacg&o das fontes com topologia Beta otimizadas pelo
algoritmo genético para populacdo de 30 individuos
Dos graficos, observa-se que as fontes otimizadas desta topologia possuem maior estabilidade
do que a fonte Alpha, ao custo de tensfes de alimentagdo um pouco maiores para o inicio da
regido de operagdo. Em todos os casos, as fontes séo utilizaveis em circuitos eletrénicos. Aquelas

gue ndo cumpriram a especificacdo obtiveram comportamento proximo ao das que cumpriram.

As topologias seguintes visam obter correntes tdo estaveis quanto a Beta, mas operam com

tensdes de alimentacdo menores.

6.3 Resultados de otimizacdo da fonte Gamma
As otimizagOes foram executadas com populacdes de 10, 20 e 30 individuos. O fator tolerancia

de variacdo ¢ foi fixado em 2%. O limiar (threshold) T depende do tamanho da populagéo e foi

estabelecido como 33,3% de uma geracgéo. A taxa de mutacéo o foi escolhida como 50%.

Para testar o algoritmo, especificou-se uma fonte com corrente de saida de 0,5pA, com
tolerancia de variacdo de +0,03uA. A tensdo de alimentagdo para o qual a fonte deve operar com
boa estabilidade foi especificada como 1,8V, assim como a fonte Beta. Caso estas especificacdes

ndo sejam atingidas em trinta geragées, a otimizacdo sera encerrada.

A tabela 12 mostra os individuos encontrados através da otimizag&o por algoritmo genético para

a fonte Gamma com populacédo de 10 individuos.

55

Tabela 12: Individuos encontrados para a fonte Gamma com populagdo de tamanho 10

Otimizadal | Otimizada2 | Otimizada3 | Otimizada4 | Otimizada 5
Ln-1-2 (um) 0,54 1,13 0,74 0,58 3,65
Ln-3-4 (um) 2,42 2,4 4,88 1,49 2,85
Wn-1-3 (um) 42,6 73,2 31,2 72,6 81,7
Wn-2-4 (um) 65,2 78,9 47,9 76,1 96,2
Lp-5-6-8 (um) 4,77 4,68 4,82 3,3 3,75
Wp-5-6 (um) 9,7 10,9 43,5 6,3 6,3
Wp-8 (um) 84,3 715 82,9 93,7 54,8
Ln-7 (um) 4,55 1,19 4,14 1,76 4,11
Wn-7 (um) 8,5 54 2,6 14,5 63,8
Rs (Qs) 446527 43047 48567 42806 49698

A tabela 13 mostra os individuos encontrados através da otimizag&o por algoritmo genético para

a fonte Gamma com populacéo de 20 individuos.

Tabela 13: Individuos encontrados para a fonte Gamma com populagdo de tamanho 20

Otimizadal | Otimizada2 | Otimizada3 | Otimizada4 | Otimizada 5
Ln-1-2 (um) 2,9 0,89 1,46 0,36 0,65
Ln-3-4 (um) 3,41 3,44 2,82 2,28 4,05
Wn-1-3 (pum) 77,6 73,3 39,8 53,4 66,8
Wn-2-4 (um) 89,0 99,1 54,5 56,9 77,3
Lp-5-6-8 (um) 4,28 4,74 4,85 4,79 4,74
Wp-5-6 (um) 18,7 23,3 10,0 9,4 16,2
Wp-8 (um) 42,3 93,3 96,1 57,9 89,5
Ln-7 (um) 3,55 4,04 3,25 3,64 4,94
Wn-7 (um) 7,1 54 9,6 16,2 18,2
Rs (Qs) 47337 47460 47160 41998 47553

A tabela 14 mostra os individuos encontrados através da otimizag&o por algoritmo genético para

a fonte Gamma com populacédo de 30 individuos.

56

Tabela 14: Individuos encontrados para a fonte Gamma com populagdo de tamanho 30

Otimizadal | Otimizada2 | Otimizada3 | Otimizada4 | Otimizada 5
Ln-1-2 (um) 1,06 0,89 0,72 0,56 1,08
Ln-3-4 (um) 1,84 2,76 2,41 4,34 2,35
Wn-1-3 (um) 51,7 41,3 32,5 64,4 58,8
Wn-2-4 (um) 59,3 63,9 53,6 92,9 95,1
Lp-5-6-8 (um) 4,43 4,79 4,94 4,95 4,9
Wp-5-6 (um) 11,7 29,6 16,6 15,5 43,2
Wp-8 (um) 70,8 96,8 96,6 715 94,7
Ln-7 (um) 4,66 4,1 4,66 4,63 3,08
Wn-7 (um) 11,6 3,6 16,7 5,6 3,9
Rs (Qs) 46454 48371 49523 49706 49982

A tabela 15 mostra os resultados das otimiza¢cdes com os trés tamanhos de populagéo e cinco

execucdes completas para a fonte Gamma.

Tabela 15: Resultados da otimizacdo da fonte Gamma

Tamanho da Média do n° de Média do tempo Média da pontuacao
populacao geracoes gasto (s) (cinco execucdes)
(cinco execucdes) (cinco execucdes)
10 15 72 18918
20 14,8 122 20165
30 25,8 330 21906

Obs.: Execugbes em um computador com: processador Intel(R) Core(TM)2 Duo CPU E6750, 2.66GHz; 4GB
de memdria RAM; sistema operacional Gentoo GNU/Linux 64 bits; interpretador mzscheme 4.2.5. O
ambiente continha apenas uma carga minima necessaria, como o ambiente grafico X-Windows e processos
do sistema.

Pelos dados apresentados, nota-se que as fontes otimizadas possuem valores de R; altos.
Diferentemente da topologia Beta, nota-se que o aumento do tamanho da populacéo acarretou
uma maior média do numero de geragBes necessarias para obter a solucdo. Uma maior
diversidade de individuos por geracdo (tamanho da populagcdo maior) ndo acelerou o processo de
otimizacdo. Isto pode ser consequéncia da inadequacao da funcao de aptidao, fazendo com que
fontes que ndo atinjam a especificacdo obtenham uma alta de pontuacéo (conforme evidenciamos
pela coluna da média de pontos da tabela 15). Mais estudos sdo necessarios para obter
conclusdes mais precisas. Novamente, devido ao baixo nimero de execucdes, estes dados séo

pouco significativos do ponto de vista estatistico.

Nem todas as fontes atingiram a especificacdo tracada inicialmente. Para a populacédo de 10
individuos, apenas as fontes otimizadas 2, 4 e 5 atingiram a especificagdo. Para a populacdo de

20 individuos, apenas as fontes otimizadas 1, 4 e 5 atingiram a especificacdo. Para a populagéo

57

de 30 individuos, apenas a fonte otimizada 1 atingiu a especificagdo. As outras alcancaram o
limite de 30 geracdes fora da especificacdo e ndo se aproximaram da especificacdo. Nota-se que
0 numero de fontes que atingiram a especificacdo foi inferior ao das topologias Alpha e Beta.
Possivelmente, isto ocorreu por causa do aumento do dominio de busca (maior nimero de

parametros), que pode ter tornado o limite de 30 geragGes muito precoce para estas execugdes.

As figuras 23, 22 e 21 apresentam os graficos das curvas de corrente pela tensdo de
alimentagdo da fonte Gamma obtidas com as otimizagdes feitas para os trés tamanhos de

populacéo.

T
otinizada 1
1e-06 [otinizada 2 —— A
otinizada 3
otinizada 4 ——
8e-07 | otinizada 5

Ge=87 I

4e-87

I{HE} {A}

2e-87

vdd (v

Figura 21: Curva da corrente fornecida pela tens&o de
alimentag&o das fontes com topologia Gamma otimizadas pelo
algoritmo genético para populacdo de 10 individuos

58

otinizada 1
le-06 [otinizada 2 ——
otinizada 3
otinizada 4
8e-07 | otinizada 5
& 6e-07 [Plani 1
-
o~
w0
= i : J
H 4e-07
2e-07 b
a 4
1 1 1 1 1 1
a 8.5 1 1.5 2 2.5 3 3.5

vdd (v}

Figura 22: Curva da corrente fornecida pela tenséo de
alimentag&o das fontes com topologia Gamma otimizadas pelo
algoritmo genético para populacdo de 20 individuos

otinizada 1
le-06 [otinizada 2 ——
otinizada 3
otinizada 4
8e-07 | otinizada 5
== — — =
& 6e-07 [.
-
o~
w0
< L J
H 4e-07
2e-07 b
a - 4
1 1 1 1 1 1
a 8.5 1 1.5 2 2.5 3 3.5

vdd (v}

Figura 23: Curva da corrente fornecida pela tens&o de
alimentag&o das fontes com topologia Gamma otimizadas pelo
algoritmo genético para populacdo de 30 individuos
Dos graficos, observa-se que as fontes otimizadas desta topologia possuem boa estabilidade,
operam com tensdes de alimentacdo menores do que a fonte Beta, mas um ndmero consideravel

de fontes n&o cumpriu a especificagao inicial de corrente.

59

A Ultima topologia foi projetada para obter desempenho melhor do que a Gamma em todos as

especificagbes definidas no inicio do capitulo.

6.4 Resultados de otimizacdo da fonte Delta
As otimizacdes foram executadas com populagdes de 10, 20 e 30 individuos. O fator tolerancia

de variacdo ¢ foi fixado em 2%. O limiar (threshold) T depende do tamanho da populagéo e foi

estabelecido como 33,3% de uma geragéo. A taxa de mutacédo o foi escolhida como 50%.

Para testar o algoritmo, especificou-se uma fonte com corrente de saida de 0,5uA, com
tolerancia de variacao de +0,03uA. A tensdo de alimentagdo para o qual a fonte deve operar com
boa estabilidade foi especificada como 1,8V, assim como as fontes Beta e Gamma. Caso estas

especificacbes ndo sejam atingidas em trinta geracdes, a otimizagdo sera encerrada.

A tabela 16 mostra os individuos encontrados através da otimizag&o por algoritmo genético para

a fonte Delta com populacéo de 10 individuos.

Tabela 16: Individuos encontrados para a fonte Delta com populagdo de tamanho 10

Otimizadal | Otimizada2 | Otimizada3 | Otimizada4 | Otimizada 5
Ln-1-2-7 (um) 0,7 4,7 4,0 11,8 1,4
Ln-4 (um) 1,0 0,2 1,2 0,5 2,1
Whn-1 (pm) 14 62,5 0,9 10,9 34,1
Wn-2-4 (pm) 37,1 95,5 11,7 90,0 56,6
Wn-7 (um) 28,7 58,3 46,9 8,9 91,2
Lp-3 (um) 2,9 1,4 4,9 4,2 1,0
Lp-5-6-10 2,2 3,4 2,7 1.4 11
(hm)
Wp-5-3 (um) 84,2 67,5 25,6 65,3 11,1
Wp-6 (um) 27,9 28,0 7,7 59,4 8,5
Wp-10 (um) 47,1 77,7 21,9 44,3 95,0
Ln-8 (um) 3,7 3,3 1,2 15 5,0
Wp-8 (um) 0,4 98,0 36,0 52,6 21,9
Ln-9 (um) 0,8 0,6 0,5 2,6 4,0
Wn-9 (pm) 68,4 22,5 37,9 14,9 39,4
Rs (Qs) 10227 47158 14746 29867 37452

A tabela 17 mostra os individuos encontrados através da otimizag&o por algoritmo genético para

a fonte Delta com populacéo de 20 individuos.

60

Tabela 17: Individuos encontrados para a fonte Delta com populagdo de tamanho 20

Otimizadal | Otimizada2 | Otimizada3 | Otimizada4 | Otimizada 5
Ln-1-2-7 (um) 11 3,6 1,7 0,2 3,5
Ln-4 (um) 2,4 4,1 0,2 15 4,9
Wn-1 (um) 7,7 26,6 20,0 12,6 9,9
Wn-2-4 (um) 86,7 32,1 84,8 98,2 64,4
Wn-7 (um) 11,7 53,0 33,9 59,7 60,8
Lp-3 (um) 0,3 4,2 1.4 2,6 3,5
Lp-5-6-10 23 1,5 2,0 4,6 1.8
(hm)
Wp-5-3 (um) 19,3 99,5 44,0 30,7 715
Wp-6 (um) 81,2 34,2 32,8 86,1 44,1
Wp-10 (um) 63,5 58,5 89,7 33,8 53,2
Ln-8 (um) 3,2 0,8 1,0 2,8 0,8
Wp-8 (um) 59 90,6 93,8 24,9 88,9
Ln-9 (um) 34 34 3,2 4,5 5,0
Wn-9 (um) 2,9 4,5 42,8 5,0 29,4
Rs (Qs) 45502 29630 40797 46203 48801

A tabela 18 mostra os individuos encontrados através da otimizag&o por algoritmo genético para

a fonte Delta com populacédo de 30 individuos.

61

Tabela 18: Individuos encontrados para a fonte Delta com populagdo de tamanho 30

Otimizadal | Otimizada2 | Otimizada3 | Otimizada4 | Otimizada 5
Ln-1-2-7 (um) 2,4 2,9 1,2 1,3 2,7
Ln-4 (um) 2,2 2,6 1,9 5,0 0,2
Wn-1 (um) 49,3 39,5 50,5 19,5 49,7
Wn-2-4 (um) 81,2 71,7 98,9 97,6 54,1
Wn-7 (um) 88,1 63,2 94,7 61,1 52,9
Lp-3 (um) 11 0,9 1,3 3,5 0,9
Lp-5-6-10 3,8 4,1 1,7 5,0 1,3
(hm)
Wp-5-3 (um) 91,7 66,8 73,4 38,1 46,1
Wp-6 (um) 55,8 46,8 51,7 14,6 18,8
Wp-10 (um) 91,2 24,5 83,1 92,0 7,8
Ln-8 (um) 2,3 3,8 4,8 5,0 4,5
Wp-8 (um) 30,1 37,8 60,7 44.8 20,8
Ln-9 (um) 1,0 2,7 4,8 1,6 3,8
Wn-9 (um) 7.4 1,7 13,3 21,7 93,1
Rs (Qs) 48241 47763 49339 49406 49514

A tabela 19 mostra os resultados das otimiza¢cdes com os trés tamanhos de populagéo e cinco

execucdes completas para a fonte Delta.

Tabela 19: Resultados da otimizag&do da fonte Delta

Tamanho da Média do n° de Média do tempo Média da pontuacgao
populacao geracoes gasto (s) (cinco execucdes)
(cinco execucdes) (cinco execucdes)
10 27,4 145 1480
20 23,8 197 8939
30 23 314 22803

Obs.: Execugbes em um computador com: processador Intel(R) Core(TM)2 Duo CPU E6750, 2.66GHz; 4GB
de memdria RAM; sistema operacional Gentoo GNU/Linux 64 bits; interpretador mzscheme 4.2.5. O
ambiente continha apenas uma carga minima necessaria, como o ambiente grafico X-Windows e processos
do sistema.

Pelos dados apresentados, nota-se que atingir a solucdo satisfatoria tornou-se uma tarefa mais
mais custosa com o0 aumento do numero de parametros (a fonte Delta possui DNA com 15
cromossomos). O nimero da geracdo maxima das execucgfes (no caso, 30) mostrou-se baixo,
visto que as execugOes com tamanhos de populacdo menores tiveram dificuldade para convergir
(média de geracdes mais alta). Novamente, devido ao baixo nimero de execugdes, estes dados

séo pouco significativos do ponto de vista estatistico.

62

Nem todas as fontes atingiram a especificacdo tracada inicialmente. Para a populacédo de 10
individuos, apenas a fonte otimizada 5 atingiu a especificacdo. Para a populac¢do de 20 individuos,
apenas as fontes otimizadas 1 e 4 atingiram a especificacdo. Para a populacdo de 30 individuos,
apenas as fontes otimizadas 1, 2 e 3 atingiram a especificacdo. As outras alcancaram o limite de
30 gerag0es fora da especificagdo e ndo se aproximaram da especificacdo. Nota-se que o nimero
de fontes que atingiram a especificacdo foi inferior ao das topologias Alpha, Beta e Gamma.
Possivelmente isto ocorreu por causa do aumento do dominio de busca (maior numero de

parametros), que pode ter tornado o limite de 30 geragGes muito precoce para estas execugdes.

As figuras 26, 25 e 24 apresentam os graficos das curvas de corrente pela tensdo de
alimentagdo da fonte Delta obtidas com as otimizagfes feitas para os trés tamanhos de

populacéo.

otinizada 1 ——
le-06 [otinizada 2 ——
otinizada 3 ——
otinizada 4 ——
8e-07 | otinizada 5
& 6e-07 [.
=
-~
T
5 _ | f__,_.—-——]
H 4e-07
2e-07 b
8 - 4
L L L L L L
a 8.5 1 1.5 2 2.5 3 3.5

vdd (v}

Figura 24: Curva da corrente fornecida pela tenséo de
alimentacg&o das fontes com topologia Delta otimizadas pelo
algoritmo genético para populacdo de 10 individuos

63

otinizada 1
le-06 [otinizada 2 ——
otinizada 3
otinizada 4
8e-07 | otinizada 5

Be-87 1

4e-07

T{H4} {A)

2e-07

vdd (v}

Figura 25: Curva da corrente fornecida pela tenséo de
alimentacg&o das fontes com topologia Delta otimizadas pelo
algoritmo genético para populacdo de 20 individuos

otinizada 1
le-06 [otinizada 2 ——
otinizada 3
otinizada 4
8e-07 | otinizada 5
& 6e-07 [.
-
o~
-
Z L J
H 4e-07
2e-07 b
a 4
1 1 1 1 1 1
a 8.5 1 1.5 2 2.5 3 3.5

vdd (v}

Figura 26: Curva da corrente fornecida pela tenséo de
alimentacg&o das fontes com topologia Delta otimizadas pelo
algoritmo genético para populacdo de 30 individuos
Dos graficos, observa-se que as fontes otimizadas desta topologia possuem boa estabilidade,
operam com tensdes de alimentacdo menores do que a fonte Beta, mas um ndmero consideravel
de fontes ndo cumpriu a especificagdo inicial de corrente. No caso das execugbes com 30

individuos, houve uma fonte que ficou muito distante da especifica¢cdo. Por a populacao inicial ser

64

construida de maneira aleatoria, € possivel que esta fonte tenha sido bastante desfavorecida na
primeira geracdo. As fontes que respeitaram a especificacio mostraram-se parecidas com as

fontes obtidas com a topologia Gamma.

Os gréficos enfatizam a concluséo de que 30 geracdes é um numero baixo para este DNA de 15
cromossomos convergir. Para fundamentar mais esta hipétese, fizemos uma execucdo extra da

topologia Delta, com 30 individuos, ininterruptamente até atingir 60 geracdes.

O individuo gerado por esta execucao é apresentado na tabela 20.

Tabela 20: Otimizacéo da fonte de corrente Delta, com 60 geracdes e populacdo de tamanho 30

Otimizada apé6s 60

geracdes
Ln-1-2-7 (pm) 3,3
Ln-4 (um) 2,4
Wn-1 (pm) 455
Wn-2-4 (um) 91,9
Wn-7 (pm) 68,6
Lp-3 (um) 2,4
Lp-5-6-10 (um) 1,2
Wp-5-3 (um) 55,4
Wp-6 (pm) 67,4
Wp-10 (pm) 99,7
Ln-8 (pum) 0,8
Wp-8 (pm) 6,7
Ln-9 (um) 4,2
Wn-9 (pm) 6,1

Rs (Qs) 23631

A figura 27 mostra o grafico desta execucao.

65

Be=-87

T T T
otinizada con 68 geracoes

De=87 b

de=87 b

3e-87 1

Tout (A}

2e-87 1

1e-87 1

vdd (v}

Figura 27: Execucé&o da fonte Delta com 60 geracdes e 30
individuos
Nota-se que a fonte obtida € de boa qualidade, baseado nos critérios descritos no capitulo
Otimizacao por Algoritmo Genético (pagina 41). Além de ter a regido de operagao iniciando-se
com valores baixos de Vpp, a corrente fornecida € bastante estavel e proxima da especificada
(0,5uA). Portanto, a hipotese exposta anteriormente de que 30 gera¢des ndo sdo um numero
suficiente para obter boas otimizagdes com DNAs de numeros de cromossomos elevados é

razoavel.

66

7 Conclusao

Neste trabalho foi montada uma configuragéo de algoritmo genético para otimizar parametros de
circuitos eletrébnicos. Foram definidos os cromossomos dos individuos (possivel solugédo), uma
funcdo de aptiddo, uma funcéo de selecdo e uma funcédo de mutacdo para buscar boas fontes de
corrente (operar com baixa tensdo de alimentagdo e fornece corrente estavel). Feito isso, foi
implementado todo o software necessério para integrar o simulador com a otimiza¢éo. Testes com
0 programa e com a fonte mostraram que é possivel encontrar uma boa configuragdo destes
parametros através de algoritmos genéticos, utilizando conhecimento minimo do dominio do

problema.

Conforme observou-se no capitulo 6 (Andlise dos Resultados Obtidos), o objetivo proposto foi
atingido: otimizar circuitos integrados (em particular, fontes de corrente) através de algoritmos
genéticos. Os resultados foram motivadores, com a aplicacdo de um algoritmo genético

convencional conseguindo resultados praticos em uma classe de problemas complexos.

Este trabalho abre portas para trabalhos onde técnicas mais avancadas de algoritmos genéticos
poderdo ser aplicadas para resolver problemas mais desafiadores do universo de projetos de
circuitos eletrbnicos. Ferramentas deste tipo poderdo, em um futuro préximo, reduzir o custo e o

tempo de implementacgéo de projetos de hardware em geral.
A seguir sdo apresentadas possiveis continuac¢des do projeto:

» estudar se as otimizag6es funcionam com um numero maior de restricbes, como gerar
fontes com as menores dimensfes possiveis de transistores, forcar os transistores em

fraca ou forte inversao;
* integrar outros simuladores comerciais mais confiaveis;
» aplicar técnicas mais sofisticadas de algoritmos genéticos;

+ a implementacdo de uma ferramenta gréfica, de interface amigéavel, para que projetistas
experientes possam utilizar esta ferramenta, sem a necessidade de conhecimentos

aprofundados do ambiente de programacéao utilizado;

« testar outros circuitos, como amplificadores operacionais e fontes de tenséo bandgap, que

exigem diferentes tipos de simulagéo (tais como transiente, AC, com a temperatura, etc);

* outros tipos de simula¢éo, como transiente e AC, também podem obter ser estudados com

a técnica desenvolvida.

67

8 Apéndice A - Cédigo Fonte

8.1 spice-integration/elements.ss

;; COGA - Spice utility procedures
#lang scheme/base

(require scheme/mpair)
(require srfi/1)
(require srfi/13)

(provide (all-defined-out))

;; Generic elements procedures
(define (element->string element)
(let ([type (car element)]

[name (cadr element)]
[rest (cddr element)])
(string-append
(param->string type)
(param->string name) " "
(string-join (map param->string rest)))))

(define (model-command->string model)

(let ([name (cadr model)]
[device (caddr model)]
[params (cdddr model)])
(string-append
".MODEL " (param->string name) " "
(param->string device) " "
(string-join (map param->string params)))))

(define (content->string contents)
(fold (lambda (x seed)
(string-append (any->string x) " " seed)) ™' contents))

(define (param->string param)
(let ([name (mcar param)]
[content (mcdr param)])
(cond [(and (not (list? param))
(not (mpair? param)))
(error "error: param must be a pair or a list")]
[(type? param) (type->string param)]
[(hame? param) (name->string param)]
[(nodes? param) (nodes->string param)]
[(value? param) (value->string param)]
[(model? param) (model->string param)]
[(device? param) (device->string param)]
[else
(string-append (any->string name) "="
(if (list? content)
(content->string content)
(any->string content)))])))

(define (params->string params)
(fold (lambda (x seed)
(string-append (param->string x) " " seed)) " params))

(define (type? param)
(let ([type (mcar param)]
[content (mcdr param)])
(cond [(not (mpair? param)) #f]
[(not (eq? type 'TYPE)) #f]
[else #t])))

(define (name? param)
(let ([name (mcar param)]
[content (mcdr param)])
(cond [(not (mpair? param)) #f]
[(not (eq? name 'NAME)) #f]
[else #t])))

(define (nodes? param)

68

(let ([nodes (mcar param)]
[content (mcdr param)])
(cond [(not (list? content)) #f]
[(not (eq? nodes 'NODES)) #f]
[else #t])))

(define (value? param)
(let ([name (mcar param)]
[content (mcdr param)])
(cond [(not (mpair? param)) #f]
[(not (eq? name 'VALUE)) #f]
[else #t])))

(define (model? param)
(let ([name (mcar param)]
[content (mcdr param)])
(cond [(not (mpair? param)) #f]
[(not (eq? name 'MODEL)) #f]
[else #t])))

(define (device? param)
(let ([name (mcar param)]
[content (mcdr param)])
(cond [(not (mpair? param)) #f]
[(not (eq? name 'DEVICE)) #f]
[else #t])))

(define (type->string param)
(let ([content (mcdr param)])
(any->string content)))

(define (name->string param)
(let ([content (mcdr param)])
(any->string content)))

(define (nodes->string param)
(let ([content (mcdr param)])
(string-join
(map any->string content))))

(define (value->string param)
(let ([content (mcdr param)])
(any->string content)))

(define (model->string param)
(let ([content (mcdr param)])
(any->string content)))

(define (device->string param)
(let ([content (mcdr param)])
(any->string content)))

(define (any->string any)

(cond [(number? any) (number->string any)]
[(symbol? any) (symbol->string any)]
[(char? any) (make-string 1 any)]

[(string? any) any]
[else (error any)]))

;; Element constructors
(define (make-param name value)
(mcons name value))

(define (make-voltage-source name . nodes-and-value)
(let ([nodes (drop-right nodes-and-value 1)]
[value (car (take-right nodes-and-value 1))])
(cond [(< (length nodes-and-value) 3) (error "error: voltage source must have a name, two nodes and a value")]
[(not (string? name)) (error "error: voltage-source's name must be a string")]
[(list? value) (error "error: value must be an atom")]
[else (list (make-param 'TYPE 'V)
(make-param 'NAME name)
(make-param 'NODES nodes)
(make-param 'VALUE value))])))

(define (make-current-source name . nodes-and-value)
(let ([nodes (drop-right nodes-and-value 1)]

[value (car (take-right nodes-and-value 1))])
(cond [(< (length nodes-and-value) 3) (error "error: current source must have a name, two nodes and a value")]
[(not (string? name)) (error "error: current-source's name must be a string")]
[(list? value) (error "error: value must be an atom")]
[else (list (make-param 'TYPE 'l)
(make-param 'NAME name)
(make-param 'NODES nodes)
(make-param 'VALUE value))])))

(define (make-resistor name . nodes-and-value)
(let ([nodes (drop-right nodes-and-value 1)]
[value (car (take-right nodes-and-value 1))])
(cond [(< (length nodes-and-value) 3) (error "error: resistor must have a name, two nodes and a value")]
[(not (string? name)) (error "error: resistor's name must be a string")]
[(list? value) (error "error: value must be an atom")]
[else (list (make-param 'TYPE 'R)
(make-param 'NAME name)
(make-param 'NODES nodes)
(make-param 'VALUE value))])))

(define (make-capacitor name . nodes-and-value)
(let ([nodes (drop-right nodes-and-value 1)]
[value (car (take-right nodes-and-value 1))])
(cond [(< (length nodes-and-value) 3) (error "error: capacitor must have a name, two nodes and a value")]
[(not (string? name)) (error "error: capacitor's name must be a string")]
[(list? value) (error "error: value must be an atom")]
[else (list (make-param 'TYPE 'C)
(make-param 'NAME name)
(make-param 'NODES nodes)
(make-param 'VALUE value))])))

(define (make-inductor name . nodes-and-value)
(let ([nodes (drop-right nodes-and-value 1)]
[value (car (take-right nodes-and-value 1))])
(cond [(< (length nodes-and-value) 3) (error "error: inductor must have a name, two nodes and a value")]
[(not (string? name)) (error "error: inductor's name must be a string")]
[(list? value) (error "error: value must be an atom")]
[else (list (make-param 'TYPE 'l)
(make-param 'NAME name)
(make-param 'NODES nodes)
(make-param 'VALUE value))])))

(define (make-nmos name . nodes-and-model-and-params)
(let* ([Ist nodes-and-model-and-params]
[size (length Ist)]
[pos-first-param (list-index (lambda (x) (mpair? x)) Ist)]
[nodes (if (eq? pos-first-param #f)
(drop-right Ist 1)
(drop-right (take Ist pos-first-param) 1))]
[model (if (eq? pos-first-param #f)
(car (take-right Ist 1))
(car (take-right (take Ist pos-first-param) 1)))]
[params (if (eq? pos-first-param #f)

(drop Ist pos-first-param))])
(cond [(< (length nodes-and-model-and-params) 5) (error "error: NMOS must have a name, four nodes and zero or more
parameters")]
[(not (string? name)) (error "error: nmos's hame must be a string")]
[(not (symbol? model)) (error "error: nmos's model must be a symbol")]
[else (append (list (make-param 'TYPE 'M)
(make-param 'NAME name)
(make-param 'NODES nodes)
(make-param '"MODEL model))

params)])))

(define (make-pmos name . nodes-and-model-and-params)
(let* ([Ist nodes-and-model-and-params]
[size (length Ist)]
[pos-first-param (list-index (lambda (x) (mpair? x)) Ist)]
[nodes (if (eq? pos-first-param #f)
(drop-right Ist 1)
(drop-right (take Ist pos-first-param) 1))]
[model (if (eq? pos-first-param #f)
(car (take-right Ist 1))
(car (take-right (take Ist pos-first-param) 1)))]
[params (if (eq? pos-first-param #f)

70

0
(drop Ist pos-first-param))])

(cond [(< (length nodes-and-model-and-params) 5) (error "error: PMOS must have a name, four nodes and zero or more

parameters")]
[(not (string? name)) (error "error: pmos's name must be a string")]
[(not (symbol? model)) (error "error: pmos's model must be a symbol")]
[else (append (list (make-param 'TYPE 'M)
(make-param 'NAME name)
(make-param 'NODES nodes)
(make-param '"MODEL model))

params)])))

(define (make-model-command name device . params)

(cond [(not (string? name)) (error "error: model's name must be a string")]
[(not (symbol? device)) (error "error: model's deice must be a symbol")]
[else (append (list (make-param 'TYPE 'COMMAND)

(make-param 'NAME name)
(make-param 'DEVICE device))
params)]))

;; Element accessors
(define (get-param name element)
(if (not (symbol? name))
(error "error: a parameter's index must be a symbol")
(let ([index (list-index (lambda (x) (eq? name (mcar x)))
element)])
(if (not (number? index))
void
(list-ref element

index)))))

(define (set-param! name newvalue element)
(if (not (symbol? name))
(error "error: a parameter's index must be a symbol")
(let ([index (list-index (lambda (x) (eq? name (mcar x)))
element)])
(if (not (number? index))
void
(set-mcdr! (list-ref element
index) newvalue)))))

;; Analysis related
(define (make-circuit . elements)
elements)

(define (circuit->string circuit)
(fold (lambda (x seed) (string-append (element->string x) "\n" seed))

circuit))

(define (command->string command)
(let ([name (mcar command)]

[model (mcar (mcdr command))]

[type (mcar (mcdr (mcdr command)))]

[rest (mcdr (mcdr (medr command)))])

(cond [(not (string? name)) (error "error: command name must be a string")]
[(not (symbol? model)) (error "error: command model must be a symbol")]
[(not (symbol? type)) (error "error: command type must be a symbol")]
[else
(string-append

"." (param->string name) " "
(param->string model) " "
(param->string type) " "

(string-join (map param->string rest)))])))

8.2 spice-integration/analysis.ss

#lang scheme/base

(require schemel/list)
(require (file "../spice-integration/elements.ss"))

(provide (all-defined-out))

(define (make-analysis type label start stop step)
(list (make-param 'TYPE 'COMMAND)
(make-param 'NAME type)
(make-param 'LABEL label)

71

(make-param 'START start)
(make-param 'STOP stop)
(make-param 'STEP step)))

(define (analysis->string analysis)
(let ([type (mcdr (first analysis))]
[name (mcdr (second analysis))]
[label (mcdr (third analysis))]
[start (mcdr (fourth analysis))]
[stop (mcdr (fifth analysis))]
[step (mcdr (sixth analysis))])
(if (not (eg? type 'COMMAND))
(error "analysis must be a command")
(string-append "."
(any->string name) " "
(any->string label) " "
(any->string start) " "
(any->string stop) " "
(any->string step)))))

8.3 spice-integration/simulation.ss

#lang scheme/base

(require (file "../spice-integration/elements.ss"))
(require (file "../spice-integration/analysis.ss"))
(require (file "../spice-integration/print.ss"))

(require (planet neil/csv:1:5))
(require scheme/system)
(require srfi/1)

(provide (all-defined-out))

;; Circuit simulation internal modelling
(define (make-simulation name circuit models analysis watches)
(if (not (string? name))
(error "error: simulation's name must be a string")
(list (make-param 'TYPE 'SIMULATION)
(make-param 'NAME name)
(make-param 'CIRCUIT circuit)
(make-param '"MODELS models)
(make-param 'ANALYSIS analysis)
(make-param 'WATCHES watches))))

(define (simulation->gnucap-cir simu)
(let* ([name (mcdr (get-param 'NAME simu))]
[circuit (mcdr (get-param 'CIRCUIT simu))]
[models (mcdr (get-param '"MODELS simu))]
[analysis (mcdr (get-param 'ANALYSIS simu))]
[watches (mcdr (get-param "WATCHES simu))]
[print-command (make-print-command (mcdr (get-param 'NAME analysis)) watches)])
(string-append "\" COGA generated circuit - " name ".cir\n"
(circuit->string circuit) "\n"
(fold (lambda (x seed)
(string-append (model-command->string x) "\n" seed)) " models)
"
(print-command->string print-command) "\n"
(analysis->string analysis) " > "
name ".out\n"
".END\n")))

(define (simulation->ngspice-cir simu)
(let* ([name (mcdr (get-param 'NAME simu))]
[circuit (mcdr (get-param 'CIRCUIT simu))]
[models (mcdr (get-param '"MODELS simu))]
[analysis (mcdr (get-param 'ANALYSIS simu))]
[watches (mcdr (get-param "WATCHES simu))]
[print-command (make-print-command (mcdr (get-param 'NAME analysis)) watches)])
(string-append "\" COGA generated circuit - " name ".cir\n"
(circuit->string circuit) "\n"
(fold (lambda (x seed)
(string-append (model-command->string x) "\n" seed)) " models)
"
(print-command->string print-command) "\n"
(analysis->string analysis) "\n"

72

" END\n")))

(define (run-gnucap-simulation simulation)
(let* ([simu-name (mcdr (get-param 'NAME simulation))]
[spice-file (string-append simu-name ".cir")]
[spice-port (open-output-file spice-file
#:exists 'replace)]
[simu-string (simulation->gnucap-cir simulation)]
[spice-cir-ops (begin (display simu-string spice-port)
(close-output-port spice-port))]
[gnucap-run (system (string-append "gnucap -b " spice-file "> /dev/null"))]
[input-file (string-append simu-name ".out")]
[input-port (open-input-file input-file)]
[results (read-string 9999999 input-port)]
[input-port-ops (close-input-port input-port)]
[results (begin (read-string 9999999 (open-input-file (string-append simu-name
".out)))])

(read-simulation-output results)))

(define (run-ngspice-simulation simulation)
(let* ([simu-name (mcdr (get-param 'NAME simulation))]
[spice-file (string-append simu-name ".cir")]
[output-file (string-append simu-name ".out")]
[spice-port (open-output-file spice-file
#:exists 'replace)]
[simu-string (simulation->ngspice-cir simulation)]
[port-ops (list (display simu-string spice-port)
(close-output-port spice-port))]
[gnucap-run (system (string-append "ngspice -b " spice-file " -r " output-file))]
[results (read-string 9999999 (open-input-file (string-append simu-name
".out")))])

(read-simulation-output results)))

(define (read-simulation-output string)
(let* ([make-my-csv-reader
(make-csv-reader-maker
'((separator-chars #\space)
(strip-leading-whitespace? . #t)
(strip-trailing-whitespace? . #t)
(whitespace-char #\space)))]
[ascii-list (csv->list (make-my-csv-reader string))])
(map (lambda (row)
(filter (lambda (x)
(not (equal? " x)))
row))
ascii-list)))

(define (get-results-row column index results)
(let* ([header (car results)]
[num-of-cols (length header)]
[liststr (string->list index)]
[real-index (if (eq? (list-ref liststr (- (length liststr) 1)) #\.)
(string-append index "0")
index)])
(if (> column num-of-cols)
(error "error: target column is bigger than number of columns")
(find (lambda (x)
(equal? (list-ref x column)
(any->string index)))
results))))

8.4 spice-integration/print.ss
#lang scheme/base

(require srfi/1)
(require (file "../spice-integration/elements.ss"))

(provide (all-defined-out))

(define (make-print-command analisys watches)
(append (list (make-param TYPE 'COMMAND)
(make-param 'ANALISYS analisys))
watches))

73

(define (print-command->string print-command)
(let ([type (mcdr (first print-command))]

[analisys (mcdr (second print-command))]

[watches (cddr print-command)])

(if (not (eg? type 'COMMAND))

(error "print command must be of COMMAND type")

(string-append ".PRINT "
(any->string analisys)
(fold (lambda (x seed)

(string-append (watch->string x) " " seed)) " watches)))))

(define (make-watch nature point) ;point can be a node, an element's label or an index
(if (not (or (eq? nature 'VOLTAGE)
(eg? nature 'CURRENT)))
(error "nature must be VOLTAGE or CURRENT")
(list (make-param 'TYPE '"WATCH)
(make-param 'NATURE nature)
(make-param 'POINT point))))

(define (watch->string watch)
(let ([type (mcdr (first watch))]
[nature (mcdr (second watch))]
[point (mcdr (third watch))])
(if (not (eg? type 'WATCH))
(error "watch must be of WATCH type")
(string-append
(cond [(eq? nature 'VOLTAGE) "V"]
[(eq? nature 'CURRENT) "I"])

"(" (any->string point))"))))
8.5 spice-integration/hspice-models.ss
#lang scheme/base

(require (file "../spice-integration/elements.ss"))

(define (make-hspice-modn)
(make-model-command "MODN" 'NMOS (make-param 'LEVEL 49)

;format : HSPICE

; model : MOS BSIM3v3

; process : CS[ADFI]

; extracted : CSA C61417; 1998-10; ese(487)

; doc# 19933016 REV_N/C

; created :1999-01-12

; TYPICAL MEAN CONDITION

; i Flags ;s

(make param 'MOBMOD 1.000e+00) (make-param 'CAPMOD 2.000e+00)

; ;;» Threshold voltage related model parameters ;;;

(make-param 'K1 6.044e-01)

(make-param 'K2 ~ 2.945e-03) (make-param 'K3 -1.72e+00) (make-param 'K3B 6.325e-01)
(make-param 'NCH 2.310e+17) (make-param 'VTHO 4.655e-01)

(make-param 'VOFF -5.72e-02) (make-param 'DVT0O 2.227e+01) (make-param 'DVT1 1.051e+00)
(make-param 'DVT2 3.393e-03) (make-param 'KETA -6.21e-04)

(make-param 'PSCBE1 2.756e+08) (make-param 'PSCBE2 9.645e-06)

(make param 'DVTOW 0.000e+00) (make- param 'DVT1IW 0.000e+00) (make-param 'DVT2W 0.000e+00)
; ;;; Mobility related model parameters ;;;

(make-param 'UA 1.000e-12) (make-param 'UB 1.723e-18) (make-param 'UC 5.756e-11)
(make-param 'UO0 4.035e+02)

; ;;; Subthreshold related parameters ;;;

(make-param 'DSUB 5.000e-01) (make-param 'ETAO 3.085e-02) (make-param 'ETAB -3.95e-02)
(make-param 'NFACTOR 1.119e-01)

; ;;; Saturation related parameters ;;;

(make-param 'EM 4.100e+07) (make-param 'PCLM 6.831e-01)

(make-param 'PDIBLC1 1.076e-01) (make-param 'PDIBLC2 1.453e-03) (make-param 'DROUT 5.000e-01)
(make-param ‘A0 2.208e+00) (make-param ‘A1 0.000e+00) (make-param 'A2 1.000e+00)
(make-param 'PVAG 0.000e+00) (make-param 'VSAT 1.178e+05) (make-param 'AGS 2.490e-01)
(make-param 'BO -1.76e-08) (make-param '‘B1 ~ 0.000e+00) (make-param 'DELTA 1.000e-02)
(make param 'PDIBLCB 2.583e-01)

; ;;; Geometry modulation related parameters ;;;

(make-param 'WO 1.184e-07) (make-param 'DLC 8.285e-09)

(make-param 'DWC 2.676e-08) (make-param 'DWB 0.000e+00) (make-param 'DWG 0.000e+00)

74

(make-param 'LL 0.000e+00) (make-param ‘LW 0.000e+00) (make-param 'LWL 0.000e+00)
(make-param 'LLN 1.000e+00) (make-param 'LWN 1.000e+00) (make-param ‘WL 0.000e+00)
(make-param 'WW 0.000e+00) (make-param 'WWL 0.000e+00) (make-param 'WLN 1.000e+00)
(make param 'WWN 1.000e+00)

; ;;; Temperature effect parameters ;;;

(make-param 'AT 3.300e+04) (make param 'UTE -1.80e+00)

(make-param 'KT1 -3.30e-01) (make-param 'KT2 2.200e-02) (make-param 'KT1L 0.000e+00)
(make-param 'UA1 0.000e+00) (make-param 'UB1 0.000e+00) (make-param 'UC1 0.000e+00)
(make param 'PRT 0.000e+00)

; ;;; Overlap capacitance related and dynamic model parameters ;;;

(make-param 'CGDO 2.100e-10) (make-param 'CGSO 2.100e-10) (make-param 'CGBO 1.100e-10)
(make-param 'CGDL 0.000e+00) (make-param 'CGSL 0.000e+00) (make-param 'CKAPPA 6.000e-01)
(make-param 'CF 0.000e+00) (make-param 'ELM 5.000e+00)

(make param 'XPART 1.000e+00) (make-param 'CLC 1.000e-15) (make-param 'CLE 6.000e-01)

; ;;; Parasitic resistance and capacitance related model parameters ;;;

(make-param 'RDSW 6.043e+02)

(make-param 'CDSC 0.000e+00) (make-param 'CDSCB 0.000e+00) (make-param 'CDSCD 8.448e-05)
(make param 'PRWB 0.000e+00) (make-param 'PRWG 0.000e+00) (make param 'CIT 1.000e-03)
; ;;; Process and parameters extraction related model parameters ;;;

(make-param 'TOX 7.700e-09) (make-param 'NGATE 0.000e+00)

(make-param 'NLX 1.918e-07)

(make param 'XL 5.000e-08) (make-param 'XW O 000e+00)

; ;;; Substrate current related model parameters ;;;

(make param 'ALPHAO 0.000e+00) (make- param 'BETAO0 3.000e+01)

; ;;» Noise effect related model parameters ;;;

(make-param 'AF 1.400e+00) (make-param 'KF 2.810e-27) (make-param 'EF 1.000e+00)
(make-param 'NOIA 1.000e+20) (make-param 'NOIB 5.000e+04) (make-param 'NOIC -1.40e-12)
(make param 'NLEV 0)

; ;;; Common extrinsic model parameters ;;;

(make-param 'ACM 2)

(make-param 'RD 0.000e+00) (make-param 'RS ~ 0.000e+00) (make-param 'RSH 8.200e+01)
(make-param 'RDC 0.000e+00) (make-param 'RSC 0.000e+00)

(make-param 'LINT 8.285e-09) (make-param 'WINT 2.676e-08)

(make-param 'LDIF 0.000e+00) (make-param 'HDIF 6.000e-07) (make-param 'WMLT 1.000e+00)
(make-param 'LMLT 1.000e+00) (make-param 'XJ 3.000e-07)

(make-param 'JS 2.000e-05) (make-param 'JSW 0.000e+00) (make-param 'IS 0.000e+00)
(make-param 'N 1.000e+00) (make-param 'NDS 1000.) (make-param 'VNDS -1.000e+00)
(make-param 'CBD 0.000e+00) (make-param 'CBS 0.000e+00) (make-param 'CJ 9.300e-04)
(make-param 'CIJSW 2.800e-10) (make-param 'FC 0.000e+00)

(make-param 'MJ 3.100e-01) (make-param 'MJSW 1.900e-01) (make-param TT 0.000e+00)
(make-param 'PB 6.900e-01) (make-param 'PHP 9.400e-01)))

(define (make-hspice-modp)
(make-model-command "MODP" 'PMOS (make-param 'LEVEL 49)

; format : HSPICE

; model : MOS BSIM3v3

; process : CS[ADFI]

; extracted : CSA C61417; 1998-10; ese(487)
; doc# 19933016 REV_N/C

; created :1999-01-12

; TYPICAL MEAN CONDITION

; ;o Flags ;;;

(make param 'MOBMOD 1.000e+00) (make-param 'CAPMOD 2.000e+00)

; ;;» Threshold voltage related model parameters ;;;

(make-param 'K1 5.675e-01)

(make-param 'K2 -4.39e-02) (make-param 'K3 4.540e+00) (make-param 'K3B -8.52e-01)
(make-param 'NCH 1.032e+17) (make-param 'VTHO -6.17e-01)

(make-param 'VOFF -1.13e-01) (make-param 'DVTO 1.482e+00) (make-param 'DVT1 3.884e-01)
(make-param 'DVT2 -1.15e-02) (make-param 'KETA -2.56e-02)

(make-param 'PSCBE1 1.000e+09) (make-param 'PSCBE2 1.000e-08)

(make param 'DVTOW 0.000e+00) (make- param 'DVT1IW 0.000e+00) (make-param 'DVT2W 0.000e+00)
; ;;; Mobility related model parameters ;;;

(make-param 'UA 2.120e-10) (make-param 'UB 8.290e-19) (make-param 'UC -5.28e-11)
(make param ‘U0 1.296e+02)

; ;;; Subthreshold related parameters ;;;

(make-param 'DSUB 5.000e-01) (make-param 'ETA0 2.293e-01) (make-param 'ETAB -3.92e-03)
(make param 'NFACTOR 8.237e-01)

; ;;; Saturation related parameters ;;;

(make-param 'EM 4.100e+07) (make param 'PCLM 2.979e+00)

75

(make-param 'PDIBLCL1 3.310e-02) (make-param 'PDIBLC2 1.000e-09) (make-param 'DROUT 5.000e-01)
(make-param 'A0 1.423e+00) (make-param 'A1 0.000e+00) (make-param ‘A2 1.000e+00)
(make-param 'PVAG 0.000e+00) (make-param 'VSAT 2.000e+05) (make-param 'AGS 3.482e-01)
(make-param 'BO 2.719e-07) (make-param 'B1 ~ 0.000e+00) (make-param 'DELTA 1.000e-02)
(make param 'PDIBLCB -1.78e-02)

; ;;; Geometry modulation related parameters ;;;

(make-param 'W0O 4.894e-08) (make-param 'DLC -5.64e-08)

(make-param 'DWC 3.845e-08) (make-param 'DWB 0.000e+00) (make-param 'DWG 0.000e+00)
(make-param 'LL 0.000e+00) (make-param 'LW 0.000e+00) (make-param 'LWL 0.000e+00)
(make-param 'LLN 1.000e+00) (make-param 'LWN 1.000e+00) (make-param 'WL 0.000e+00)
(make-param 'WW 0.000e+00) (make-param 'WWL 0.000e+00) (make-param 'WLN 1.000e+00)
(make-param 'WWN 1.000e+00)

; ;;; Temperature effect parameters ;;;

(make-param 'AT 3.300e+04) (make-param 'UTE -1.35e+00)

(make-param 'KT1 -5.70e-01) (make-param 'KT2 2.200e-02) (make-param 'KT1L 0.000e+00)
(make-param 'UA1 0.000e+00) (make-param 'UB1 0.000e+00) (make-param 'UC1 0.000e+00)
(make param 'PRT 0.000e+00)

; ;;; Overlap capacitance related and dynamic model parameters ;;;

(make-param 'CGDO 2.100e-10) (make-param 'CGSO 2.100e-10) (make-param 'CGBO 1.100e-10)
(make-param 'CGDL 0.000e+00) (make-param 'CGSL 0.000e+00) (make-param 'CKAPPA 6.000e-01)
(make-param 'CF 0.000e+00) (make-param 'ELM 5.000e+00)

(make param 'XPART 1.000e+00) (make-param 'CLC 1.000e-15) (make-param 'CLE 6.000e-01)

; ;;; Parasitic resistance and capacitance related model parameters ;;;

(make-param 'RDSW 1.853e+03)

(make-param 'CDSC 6.994e-04) (make-param 'CDSCB 2.943e-04) (make-param 'CDSCD 1.970e-04)
(make param 'PRWB 0.000e+00) (make-param 'PRWG 0.000e+00) (make param 'CIT 1.173e-04)
; ;;; Process and parameters extraction related model parameters ;;;

(make-param 'TOX 7.700e-09) (make-param 'NGATE 0.000e+00)

(make-param 'NLX 1.770e-07)

(make param 'XL 5.000e-08) (make-param 'XW O 000e+00)

; ;;; Substrate current related model parameters ;;;

(make param 'ALPHAO 0.000e+00) (make- param 'BETAO 3.000e+01)

; ;;» Noise effect related model parameters ;;;

(make-param 'AF 1.290e+00) (make-param 'KF ~ 1.090e-27) (make-param 'EF 1.000e+00)
(make-param 'NOIA 1.000e+20) (make-param 'NOIB 5.000e+04) (make-param 'NOIC -1.40e-12)
(make param 'NLEV 0)

; ;;; Common extrinsic model parameters ;;;

(make-param 'ACM 2)

(make-param 'RD 0.000e+00) (make-param 'RS ~ 0.000e+00) (make-param 'RSH 1.560e+02)
(make-param 'RDC 0.000e+00) (make-param 'RSC 0.000e+00)

(make-param 'LINT -5.64e-08) (make-param ' WINT 3.845e-08)

(make-param 'LDIF 0.000e+00) (make-param 'HDIF 6.000e-07) (make-param 'WMLT 1.000e+00)
(make-param 'LMLT 1.000e+00) (make-param 'XJ 3.000e-07)

(make-param 'JS 2.000e-05) (make-param 'JSW 0.000e+00) (make-param'IS 0.000e+00)
(make-param 'N 1.000e+00) (make-param 'NDS 1000.) (make-param 'VNDS -1.000e+00)
(make-param 'CBD 0.000e+00) (make-param 'CBS 0.000e+00) (make-param 'CJ 1.420e-03)
(make-param 'CIJSW 3.800e-10) (make-param 'FC 0.000e+00)

(make-param 'MJ 5.500e-01) (make-param ‘'MJSW 3.900e-01) (make-param 'TT 0.000e+00)
(make-param 'PB 1.020e+00) (make-param 'PHP 9.400e-01)))

8.6 galcommon.ss

#lang scheme/base

(require srfi/1)
(provide (all-defined-out))

;; Genetic algorithms structures constructors
(define (make-dna . chromosomes)
chromosomes)

(define (make-individual dna)
dna)

(define (make-evaluated-individual ind score)
(cons ind score))

(define (make-population number-of-individuals generation-procedure)
(if (eq? number-of-individuals 1)
(list (generation-procedure))
(append (list (generation-procedure))
(make-population (- number-of-individuals 1) generation-procedure))))

(define (make-generation selected-individuals cut-procedure mutation-procedure mutation-ratio pop-size)

76

(define (will-mutate?)
(zero? (random mutation-ratio)))
(define (generation-iter parent-candidates offspring iters-left)
(let* ([num-parents (length parent-candidates)]
[parent-1 (list-ref parent-candidates (random num-parents))]
[parent-2 (list-ref parent-candidates (random num-parents))]
[parent-1-size (length parent-1)]
[parent-2-size (length parent-2)]
[parent-size (if (< parent-1-size parent-2-size)
parent-1-size
parent-2-size)]
[crossover-offspring (crossover parent-1 parent-2 cut-procedure)]
[new-offspring (if (will-mutate?)
(list (mutate (first crossover-offspring) mutation-procedure)
(mutate (second crossover-offspring) mutation-procedure))
crossover-offspring)])
(cond [(< iters-left 0)
(error "error: number of iterations left must be grater than zero")]
[(= iters-left 0) new-offspring]
[else (append offspring (generation-iter parent-candidates new-offspring (- iters-left 1)))])))
(let* ([size (length selected-individuals)]
[pop-minus-selected (- pop-size size)]
[num-iters (if (= (remainder pop-minus-selected 2) 1)
(+ (quotient pop-minus-selected 2) 1)
(quotient pop-minus-selected 2))]
[selected-without-score (map car selected-individuals)])
(if (< pop-minus-selected 0)
(error "error: new generation size must be greater than number of parents, since parents are included also")
(let ([new-generation (append selected-without-score (generation-iter selected-without-score '() num-iters))])
(if (even? num-iters)
new-generation
(drop-right new-generation 1))))))

;; Basic GA operations
(define (crossover ind1 ind2 cut-procedure)
(let ([size (length ind1)]
[size-other (length ind2)])
(if (not (eg? size size-other))
(error "error: number of chromosomes must be equal in this procedure™)
(let* ([cut (cut-procedure size)]
[new-ind1 (append (drop-right ind1 cut) (take-right ind2 cut))]
[new-ind2 (append (drop-right ind2 cut) (take-right ind1 cut))])
(list new-ind1 new-ind2)))))

(define (mutate ind mutation-procedure)
(let* ([size (length ind)]

[chromosome (random size)])

(if (not (procedure? mutation-procedure))

(error "error: mutation-procedure must be a procedure")

(append (take ind chromosome)
(list (mutation-procedure chromosome)) ;the mutation depends on the chromosome
(drop ind (+ chromosome 1))))))

;; Selection procedure
;; This procedure shall receive a population
;; and return a group of selected individuals
;; based on their fitness and the selection procedure.
;; The number of selected individuals will vary according
;; to the selection procedure.
(define (selection population selection-procedure sort-criteria fitness-procedure)
(let ([fittests (fitness-procedure population)])
(selection-procedure fittests sort-criteria)))

(define (score ind)
(cdr ind))

;; Utility methods for GA operators
(define (random-cut size)
(+ (random (- size 1)) 1))

(define (random-mutation-test dont-care)
(random 10))

(define (best-first-sort-criteria x y)

77

(> (score x) (score y)))

(define (worst-first-sort-criteria x y)
(< (score Xx) (score y)))

(define (truncated-selection fittests sort-criteria)
(let* ([sorted (sort fittests sort-criteria)]
[elite-divider 3]
[threshold (quotient (length fittests) elite-divider)])
(take sorted threshold)))

(define (truncated-selection-with-dumb-individual fittests sort-criteria)
(let* ([sorted (sort fittests sort-criteria)]
[threshold (quotient (length fittests) 5)])
(append (take sorted (- threshold 1)) (list (last sorted)))))

(define (truncated-selection-intensity ind pop-size)
(let ([T pop-size]
[sqrt-1/2pi 0.3989422804014327]
[fc (cdr ind)])
(* (/ 1 T) sqrt-1/2pi (exp (- (/ (* fc fc) 2))))))

(define (ga-optimization pop bests individual-string-conversion-procedure good-enough-procedure fitness-procedure cut-procedure
mutation-procedure generation)
(let* ([size-of-pop (length pop)]
[current-generation (+ generation 1)]
[good-enough? good-enough-procedure]
[fittests (selection pop truncated-selection best-first-sort-criteria fithess-procedure)]
[new-generation (make-generation fittests cut-procedure mutation-procedure size-of-pop)]
[new-fittests (fitness-procedure new-generation)]
[sort-criteria (lambda (x y)
(> (cdr x) (cdr y)))]
[best-individual (car (take (sort new-fittests sort-criteria) 1))]
[best-string (string-append (number->string current-generation)
" " (individual-string-conversion-procedure (car best-individual))
" " (number->string (cdr best-individual))
"\n")])
(if (good-enough? current-generation) ;TODO generalize better than this
(string-append bests best-string)
(begin (display (string-append (number->string current-generation) " "))
(newline)
(ga-optimization new-generation
(string-append bests best-string)
individual-string-conversion-procedure
good-enough-procedure
fitness-procedure
cut-procedure
mutation-procedure
current-generation)))))

8.7 galcurrent-source-alpha.ss

#lang scheme/base

(require (file "../ga/common.ss"))

(require (file "../spice-integration/elements.ss"))
(require (file "../spice-integration/analysis.ss"))
(require (file "../spice-integration/print.ss"))

(require (file "../spice-integration/simulation.ss"))
(require (file "../spice-integration/hspice-models.ss"))

(require srfi/1)

(define (make-cs-alpha-individual In wn Ip wp rs)
(make-dna In wn Ip wp rs))

(define (cs-alpha-individual->string dna)
(fold (lambda (x seed)
(string-append seed "-" x)) (car dna) (cdr dna)))

(define (cs-alpha-individual->filename dna)
(fold (lambda (x seed)
(string-append seed "-" x)) (car dna) (cdr dna)))

(define (cs-alpha-chromosome-generator chromosome)
(cond [(or (= chromosome 0)

78

(= chromosome 2)) (string-append (number->string (/ (+ (random 465) 35) 100.0)) "u")]
[(or (= chromosome 1)

(= chromosome 3)) (string-append (number->string (/ (+ (random 990) 10) 10.0)) "u")]
[(= chromosome 4) (number->string (+ 5000 (random 45000)))]
[else (error "error: chromosome to mutate doesn't exist")]))

(define (cs-alpha-cut size)
(random-cut size))

(define (cs-alpha-mut chromosome-position)
(cs-alpha-chromosome-generator chromosome-position))

(define (make-cs-alpha-mut-ratio)
(let* ([ratio 50]
[divider (/ 100 ratio)])
divider))

(define (make-cs-alpha-tolerance-delta)
(let* ([delta 5]
[divider (/ 100 delta)])
divider))

(define (cs-alpha-good-enough generation values)
(let* ([dc (car values)]
[current (cdr values)]
[junk (begin (display "dc: ")
(display dc)
(display " current: ")
(display current)
(newline))])
(if (or (>= generation 30)
(and (< dc 2.1)
(and (< current .53e-6)
(> current .47e-6))))

#t #)))

(define (cs-alpha-individual->circuit individual)

(let* ([In (first individual)]
[wn (second individual)]
[Ip (third individual)]
[wp (fourth individual)]
[r (fifth individual)]
[vpow (make-voltage-source "pow" 'Vdd 0 '3.3V)]
[vgnd (make-voltage-source "gnd" 'Vss 0 '0.0V)]
[rs (make-resistor " 'Vss '3 1)]
[m1 (make-nmos "1" 'Vss 1 1 'Vss 'MODN (make-param 'L In) (make-param "W wn))]
[m2 (make-nmos "2" 2 1 3 'Vss 'MODN (make-param 'L In) (make-param 'W wn))]
[m3 (make-pmos "3" 1 2 'Vdd 'Vdd 'MODP (make-param 'L Ip) (make-param "W wp) (make-param 'M 2))]
[m4 (make-pmos "4" 'Vdd 2 2 'Vdd 'MODP (make-param 'L Ip) (make-param 'W wp))])
(make-circuit vpow vgnd rs m1 m2 m3 m4)))

(define (cs-alpha-dc-sweep-value tuple)
(string->number (list-ref tuple 0)))

(define (cs-alpha-output tuple)
(string->number (list-ref tuple 1)))

(define (score-and-values-cs-alpha-simulation-data results)

(define (next-iter results-left mean delta min-value last-dc)
(let* ([value (cs-alpha-output (last results-left))]

[dc (cs-alpha-dc-sweep-value (last results-left))])
(cond [(or (> value (+ mean delta))
(< value (- mean delta))) (list (- last-dc dc) ;to calculate score
(cons dc mean))] ;to calculate stop point
[(equal? dc 0) last-dc]
[else (next-iter (drop-right results-left 1)
mean
delta
min-value
last-dc)])))

(let* ([last-dc (cs-alpha-dc-sweep-value (last results))]
[last-value (cs-alpha-output (last results))]
[tolerance-delta (/ last-value 20)]

[target-current 0.5e-6]
[weight-1 -1e7]
[weight-2 1]

79

[current-value-score (abs (- last-value target-current))]
[stability-calculus-product (next-iter (drop-right results 1) last-value tolerance-delta target-current last-dc)]
[stability-score (car stability-calculus-product)]
[stability-values (cdr stability-calculus-product)]
[candidate-score (+ (* current-value-score weight-1) ;score
(* stability-score weight-2))])
(list candidate-score stability-values)))

(define (evaluate-cs-alpha-individual models dc watches individual)
(let* ([circuit (cs-alpha-individual->circuit individual)]
[simulation (make-simulation (cs-alpha-individual->filename individual) circuit models dc watches)]
[results (cdr (run-gnucap-simulation simulation))])
(score-and-values-cs-alpha-simulation-data results)))

(define (make-evaluated-cs-alpha-individual individual score-and-values)
(let ([score (car score-and-values)])
(make-evaluated-individual individual score)))

(define (cs-alpha-fitness population)
(let* ([modn (make-hspice-modn)]
[modp (make-hspice-modp)]
[models (list modn modp)]
[dc (make-analysis "DC" "Vpow" '0V '3.3V '0.01V)]
[watches (list (make-watch 'CURRENT 'M4))]
[evaluated-individuals (map (lambda (ind) (make-evaluated-cs-alpha-individual ind (evaluate-cs-alpha-individual models dc watches
ind))) population)])
evaluated-individuals))

(define (make-cs-alpha-population n)
(make-population n (lambda ()

(make-cs-alpha-individual (cs-alpha-chromosome-generator 0)
(cs-alpha-chromosome-generator 1)
(cs-alpha-chromosome-generator 2)
(cs-alpha-chromosome-generator 3)
(cs-alpha-chromosome-generator 4)))))

(define (ga-cs-alpha-optimization pop bests good-enough-procedure fithess-procedure cut-procedure mutation-procedure mutation-ratio
generation)
(let* ([size-of-pop (length pop)]
[current-generation (+ generation 1)]
[good-enough? good-enough-procedure]
[fittests (selection pop truncated-selection-with-dumb-individual best-first-sort-criteria fithess-procedure)]
[new-generation (make-generation fittests cut-procedure mutation-procedure mutation-ratio size-of-pop)]
[new-fittests (fitness-procedure new-generation)]
[best-individual (car (take (sort new-fittests best-first-sort-criteria) 1))]
[worst-individual (car (take (sort new-fittests worst-first-sort-criteria) 1))]
[selection-intensity (truncated-selection-intensity worst-individual (length fittests))]
[best-string (string-append "generation "(number->string current-generation)
" | champion: " (cs-alpha-individual->string (car best-individual))
" | score: " (number->string (cdr best-individual))
" | selection intensity: " (number->string selection-intensity)
"\n")]
[modn (make-hspice-modn)] ;workaround to obtain data for my paper
[modp (make-hspice-modn)]
[models (list modn modp)]
[dc (make-analysis "DC" "Vpow" '0V '3.3V '0.01V)]
[watches (list (make-watch 'CURRENT 'M4))]
[best-values (caadr (evaluate-cs-alpha-individual models dc watches (car best-individual)))])
(begin (display (string-append "Generation number " (number->string current-generation) " done..."))
(newline)
(if (good-enough? current-generation best-values)
(string-append bests best-string)
(ga-cs-alpha-optimization new-generation
(string-append bests best-string)
good-enough-procedure
fitness-procedure
cut-procedure
mutation-procedure
mutation-ratio
current-generation)))))

(define (do-ga-cs-alpha-optimization)
(let ([out (open-output-file "optimization.txt"
#:exists 'replace)]
[pop (make-cs-alpha-population 20)])

80

(begin
(display "COGA - optimizing Alpha current source circuit") (newline)
(display "Time spent: ")
(time (display
(ga-cs-alpha-optimization pop
"Coefficients aproximation optimization:\n"
cs-alpha-good-enough
cs-alpha-fitness
cs-alpha-cut
cs-alpha-mut
(make-cs-alpha-mut-ratio)
0)
out))
(display "Optimization finished") (newline)
(close-output-port out))))

(do-ga-cs-alpha-optimization)

8.8 galcurrent-source-beta.ss

#lang scheme/base

(require (file "../ga/common.ss"))

(require (file "../spice-integration/elements.ss"))
(require (file "../spice-integration/analysis.ss"))
(require (file "../spice-integration/print.ss"))

(require (file "../spice-integration/simulation.ss"))
(require (file "../spice-integration/hspice-models.ss"))

(require srfi/1)

(define (make-cs-beta-individual In wn Ip wp rs)
(make-dna In wn Ip wp rs))

(define (cs-beta-individual->string dna)
(fold (lambda (x seed)
(string-append seed "-" x)) (car dna) (cdr dna)))

(define (cs-beta-individual->filename dna)
(fold (lambda (x seed)
(string-append seed "-" x)) (car dna) (cdr dna)))

(define (cs-beta-chromosome-generator chromosome)
(cond [(or (= chromosome 0)
(= chromosome 2)) (string-append (number->string (/ (+ (random 465) 35) 100.0)) "u")]
[(or (= chromosome 1)
(= chromosome 3)) (string-append (number->string (/ (+ (random 990) 10) 10.0)) "u")]
[(= chromosome 4) (number->string (+ 5000 (random 45000)))]
[else (error "error: chromosome to mutate doesn't exist")]))

(define (cs-beta-cut size)
(random-cut size))

(define (cs-beta-mut chromosome-position)
(cs-beta-chromosome-generator chromosome-position))

(define (make-cs-beta-mut-ratio)
(let* ([ratio 50]
[divider (/ 100 ratio)])
divider))

(define (make-cs-beta-tolerance-delta)
(let* ([delta 5]
[divider (/ 100 delta)])
divider))

(define (cs-beta-good-enough generation values)
(let* ([dc (car values)]

[current (cdr values)]

[junk (begin (display "dc: ")
(display dc)
(display " current: ")
(display current)
(newline))])

(if (or (>= generation 30)

(and (< dc 1.8)

81

(and (< current .53e-6)
(> current .47e-6))))

#t #f)))

(define (cs-beta-individual->circuit individual)

(let* ([In (first individual)]
[wn (second individual)]
[Ip (third individual)]
[wp (fourth individual)]
[r (fifth individual)]
[vpow (make-voltage-source "pow" 'Vdd 0 '3.3V)]
[vgnd (make-voltage-source "gnd" 'Vss 0 '0.0V)]
[rs (make-resistor " 'Vss '3 1)]
[m1 (make-nmos "1" 'Vss 1 2 'Vss 'MODN (make-param 'L In) (make-param "W wn))]
[m2 (make-nmos "2" 1 1 3 'Vss 'MODN (make-param 'L In) (make-param 'W wn))]
[m3 (make-nmos "3" 2 4 4 'Vss 'MODN (make-param 'L In) (make-param 'W wn))]
[m4 (make-nmos "4" 5 4 1 'Vss 'MODN (make-param 'L In) (make-param 'W wn))]
[m5 (make-pmos "5" 4 5 'Vdd 'Vdd 'MODP (make-param 'L Ip) (make-param "W wp) (make-param 'M 2))]
[m6 (make-pmos "6" 'Vdd 5 5 'Vdd 'MODP (make-param 'L Ip) (make-param 'W wp))])
(make-circuit vpow vgnd rs m1 m2 m3 m4 m5 m6)))

(define (cs-beta-dc-sweep-value tuple)
(string->number (list-ref tuple 0)))

(define (cs-beta-output tuple)
(string->number (list-ref tuple 1)))

(define (score-and-values-cs-beta-simulation-data results)
(define (next-iter results-left mean delta min-value last-dc)
(let* ([value (cs-beta-output (last results-left))]
[dc (cs-beta-dc-sweep-value (last results-left))])
(cond [(or (> value (+ mean delta))
(< value (- mean delta))) (list (- last-dc dc) ;to calculate score
(cons dc mean))] ;to calculate stop point
[(equal? dc 0) last-dc]
[else (next-iter (drop-right results-left 1)
mean
delta
min-value
last-dc)])))
(let* ([last-dc (cs-beta-dc-sweep-value (last results))]
[last-value (cs-beta-output (last results))]
[tolerance-delta (/ last-value 50)]
[target-current 0.5e-6]
[weight-1 -1e7]
[weight-2 1]
[current-value-score (abs (- last-value target-current))]
[stability-calculus-product (next-iter (drop-right results 1) last-value tolerance-delta target-current last-dc)]
[stability-score (car stability-calculus-product)]
[stability-values (cdr stability-calculus-product)]
[candidate-score (+ (* current-value-score weight-1) ;score
(* stability-score weight-2))])
(list candidate-score stability-values)))

(define (evaluate-cs-beta-individual models dc watches individual)
(let* ([circuit (cs-beta-individual->circuit individual)]
[simulation (make-simulation (cs-beta-individual->filename individual) circuit models dc watches)]
[results (cdr (run-gnucap-simulation simulation))])
(score-and-values-cs-beta-simulation-data results)))

(define (make-evaluated-cs-beta-individual individual score-and-values)
(let ([score (car score-and-values)])
(make-evaluated-individual individual score)))

(define (cs-beta-fitness population)
(let* ([modn (make-hspice-modn)]
[modp (make-hspice-modp)]
[models (list modn modp)]
[dc (make-analysis "DC" "Vpow" '0V '3.3V '0.01V)]
[watches (list (make-watch 'CURRENT 'M6))]
[evaluated-individuals (map (lambda (ind) (make-evaluated-cs-beta-individual ind (evaluate-cs-beta-individual models dc watches
ind))) population)])
evaluated-individuals))

(define (make-cs-beta-population n)
(make-population n (lambda ()

82

(make-cs-beta-individual (cs-beta-chromosome-generator 0)
(cs-beta-chromosome-generator 1)
(cs-beta-chromosome-generator 2)
(cs-beta-chromosome-generator 3)
(cs-beta-chromosome-generator 4)))))

(define (ga-cs-beta-optimization pop bests good-enough-procedure fitness-procedure cut-procedure mutation-procedure mutation-ratio

generation)
(let* ([size-of-pop (length pop)]
[current-generation (+ generation 1)]
[good-enough? good-enough-procedure]
[fittests (selection pop truncated-selection-with-dumb-individual best-first-sort-criteria fithess-procedure)]
[new-generation (make-generation fittests cut-procedure mutation-procedure mutation-ratio size-of-pop)]
[new-fittests (fitness-procedure new-generation)]
[sort-criteria (lambda (x y)
(> (cdr x) (cdr y)))]
[best-individual (car (take (sort new-fittests sort-criteria) 1))]
[worst-individual (car (take (sort new-fittests worst-first-sort-criteria) 1))]
[selection-intensity (truncated-selection-intensity worst-individual (length fittests))]
[best-string (string-append "generation "(number->string current-generation)
" | champion: " (cs-beta-individual->string (car best-individual))
" | score: " (number->string (cdr best-individual))
" | selection intensity: " (number->string selection-intensity)
"\n")]
[modn (make-hspice-modn)]
[modp (make-hspice-modp)]
[models (list modn modp)]
[dc (make-analysis "DC" "Vpow" '0V '3.3V '0.01V)]
[watches (list (make-watch 'CURRENT 'M6))]
[best-values (caadr (evaluate-cs-beta-individual models dc watches (car best-individual)))])
(begin (display (string-append "Generation number " (number->string current-generation) " done..."))
(newline)
(if (good-enough? current-generation best-values)
(string-append bests best-string)
(ga-cs-beta-optimization new-generation
(string-append bests best-string)
good-enough-procedure
fitness-procedure
cut-procedure
mutation-procedure
mutation-ratio
current-generation)))))

(define (do-ga-cs-beta-optimization)
(let ([out (open-output-file "optimization.txt"
#:exists 'replace)]
[pop (make-cs-beta-population 30)])
(begin
(display "COGA - optimizing Beta current source circuit") (newline)
(display "Time spent: ")
(time (display
(ga-cs-beta-optimization pop
"Coefficients aproximation optimization:\n"
cs-beta-good-enough
cs-beta-fitness
cs-beta-cut
cs-beta-mut
(make-cs-beta-mut-ratio)
0)
out))
(display "Optimization finished") (newline)
(close-output-port out))))

(do-ga-cs-beta-optimization)

8.9 galcurrent-source-gamma.ss

#lang scheme/base

(require (file "../ga/common.ss"))

(require (file "../spice-integration/elements.ss"))
(require (file "../spice-integration/analysis.ss"))
(require (file "../spice-integration/print.ss"))

(require (file "../spice-integration/simulation.ss"))
(require (file "../spice-integration/hspice-models.ss"))

83

(require srfi/1)

(define (make-cs-gamma-individual In-1-2 In-3-4 wn-1-3 wn-2-4 |p-5-6-8 wp-5-6 wp-8 In-7 wn-7 rs)
(make-dna In-1-2 In-3-4 wn-1-3 wn-2-4 Ip-5-6-8 wp-5-6 wp-8 In-7 wn-7 rs))

(define (cs-gamma-individual->string dna)
(fold (lambda (x seed)
(string-append seed "-" x)) (car dna) (cdr dna)))

(define (cs-gamma-individual->filename dna)
(fold (lambda (x seed)
(string-append seed "-" x)) (car dna) (cdr dna)))

(define (cs-gamma-chromosome-generator chromosome)
(cond [(or (= chromosome 0)
(= chromosome 1)
(= chromosome 4)
(= chromosome 7)) (string-append (number->string (/ (+ (random 465) 35) 100.0)) "u")]
[(or (= chromosome 2)
(= chromosome 3)
(= chromosome 5)
(= chromosome 6)
(= chromosome 8)) (string-append (number->string (/ (+ (random 990) 10) 10.0)) "u")]
[(= chromosome 9) (number->string (+ 5000 (random 45000)))]
[else (error "error: chromosome to mutate doesn't exist")]))

(define (cs-gamma-cut size)
(random-cut size))

(define (cs-gamma-mut chromosome-position)
(cs-gamma-chromosome-generator chromosome-position))

(define (make-cs-gamma-mut-ratio)
(let* ([ratio 50]
[divider (/ 100 ratio)])
divider))

(define (make-cs-gamma-tolerance-delta)
(let* ([delta 5]
[divider (/ 100 delta)])
divider))

(define (cs-gamma-good-enough generation values)
(let* ([dc (car values)]
[current (cdr values)]
[junk (begin (display "dc: ")
(display dc)
(display " current: ")
(display current)
(newline))])
(if (or (>= generation 30)
(and (< dc 1.8)
(and (< current .53e-6)
(> current .47e-6))))

#t #)))

(define (cs-gamma-individual->circuit individual)

(let* ([In-1-2 (first individual)]
[In-3-4 (second individual)]
[wn-1-3 (third individual)]
[wn-2-4 (fourth individual)]
[Ip-5-6-8 (fifth individual)]
[wp-5-6 (sixth individual)]
[wp-8 (seventh individual)]
[In-7 (eighth individual)]
[wn-7 (ninth individual)]
[r (tenth individual)]
[vpow (make-voltage-source "pow" 'Vdd 0 '3.3V)]
[vgnd (make-voltage-source "gnd" 'Vss 0 '0.0V)]
[rs (make-resistor " 'Vss '4 1)]
[m1 (make-nmos "1" 'Vss 1 2 'Vss 'MODN (make-param 'L In-1-2) (make-param 'W wn-1-3))]
[m2 (make-nmos "2" 31 4 'Vss 'MODN (make-param 'L In-1-2) (make-param 'W wn-2-4))]
[m3 (make-nmos "3" 2 6 1 'Vss 'MODN (make-param 'L In-3-4) (make-param 'W wn-1-3))]
[m4 (make-nmos "4" 5 6 3 'Vss 'MODN (make-param 'L In-3-4) (make-param 'W wn-2-4))]
[m5 (make-pmos "5" 1 5 'Vdd 'Vdd 'MODP (make-param 'L Ip-5-6-8) (make-param 'W wp-5-6) (make-param 'M 2))]

84

[m6 (make-pmos "6" 'Vdd 5 5 'Vdd 'MODP (make-param 'L Ip-5-6-8) (make-param 'W wp-5-6))]
[m7 (make-nmos "7" 'Vss 6 6 'Vss 'MODN (make-param 'L In-7) (make-param 'W wn-7))]

[m8 (make-pmos "8" 6 5 'Vdd 'Vdd 'MODP (make-param 'L Ip-5-6-8) (make-param "W wp-8))])
(make-circuit vpow vgnd rs m1 m2 m3 m4 m5 m6é m7 m8)))

(define (cs-gamma-dc-sweep-value tuple)
(string->number (list-ref tuple 0)))

(define (cs-gamma-output tuple)
(string->number (list-ref tuple 1)))

(define (score-and-values-cs-gamma-simulation-data results)

(define (next-iter results-left mean delta min-value last-dc)
(let* ([value (cs-gamma-output (last results-left))]

[dc (cs-gamma-dc-sweep-value (last results-left))])
(cond [(or (> value (+ mean delta))
(< value (- mean delta))) (list (- last-dc dc) ;to calculate score
(cons dc mean))] ;to calculate stop point
[(equal? dc 0) last-dc]
[else (next-iter (drop-right results-left 1)
mean
delta
min-value
last-dc)])))

(let* ([last-dc (cs-gamma-dc-sweep-value (last results))]
[last-value (cs-gamma-output (last results))]
[tolerance-delta (/ last-value 50)]

[target-current 0.5e-6]
[weight-1 -1e7]
[weight-2 1]
[current-value-score (abs (- last-value target-current))]
[stability-calculus-product (next-iter (drop-right results 1) last-value tolerance-delta target-current last-dc)]
[stability-score (car stability-calculus-product)]
[stability-values (cdr stability-calculus-product)]
[candidate-score (+ (* current-value-score weight-1) ;score
(* stability-score weight-2))])
(list candidate-score stability-values)))

(define (evaluate-cs-gamma-individual models dc watches individual)
(let* ([circuit (cs-gamma-individual->circuit individual)]
[simulation (make-simulation (cs-gamma-individual->filename individual) circuit models dc watches)]
[results (cdr (run-gnucap-simulation simulation))])
(score-and-values-cs-gamma-simulation-data results)))

(define (make-evaluated-cs-gamma-individual individual score-and-values)
(let ([score (car score-and-values)])
(make-evaluated-individual individual score)))

(define (cs-gamma-fitness population)
(let* ([modn (make-hspice-modn)]
[modp (make-hspice-modp)]
[models (list modn modp)]
[dc (make-analysis "DC" "Vpow" '0V '3.3V '0.01V)]
[watches (list (make-watch 'CURRENT 'M6))]
[evaluated-individuals (map (lambda (ind) (make-evaluated-cs-gamma-individual ind (evaluate-cs-gamma-individual models dc
watches ind))) population)])
evaluated-individuals))

(define (make-cs-gamma-population n)
(make-population n (lambda ()
(make-cs-gamma-individual (cs-gamma-chromosome-generator 0)
(cs-gamma-chromosome-generator 1)
(cs-gamma-chromosome-generator 2)
(cs-gamma-chromosome-generator 3)
(cs-gamma-chromosome-generator 4)
(cs-gamma-chromosome-generator 5)
(cs-gamma-chromosome-generator 6)
(cs-gamma-chromosome-generator 7)
(cs-gamma-chromosome-generator 8)
(cs-gamma-chromosome-generator 9)))))

(define (ga-cs-gamma-optimization pop bests good-enough-procedure fitness-procedure cut-procedure mutation-procedure mutation-
ratio generation)
(let* ([size-of-pop (length pop)]
[current-generation (+ generation 1)]
[good-enough? good-enough-procedure]

85

[fittests (selection pop truncated-selection-with-dumb-individual best-first-sort-criteria fithess-procedure)]
[new-generation (make-generation fittests cut-procedure mutation-procedure mutation-ratio size-of-pop)]
[new-fittests (fitness-procedure new-generation)]
[sort-criteria (lambda (x y)
(> (cdr x) (cdr y)))]
[best-individual (car (take (sort new-fittests sort-criteria) 1))]
[worst-individual (car (take (sort new-fittests worst-first-sort-criteria) 1))]
[selection-intensity (truncated-selection-intensity worst-individual (length fittests))]
[best-string (string-append "generation "(number->string current-generation)
" | champion: " (cs-gamma-individual->string (car best-individual))
" | score: " (number->string (cdr best-individual))
" | selection intensity: " (number->string selection-intensity)
"\n")]
[modn (make-hspice-modn)] ;workaround to obtain data for my paper
[modp (make-hspice-modp)]
[models (list modn modp)]
[dc (make-analysis "DC" "Vpow" '0V '3.3V '0.01V)]
[watches (list (make-watch 'CURRENT 'M6))]
[best-values (caadr (evaluate-cs-gamma-individual models dc watches (car best-individual)))])
(begin (display (string-append "Generation number " (number->string current-generation) " done..."))
(newline)
(if (good-enough? current-generation best-values)
(string-append bests best-string)
(ga-cs-gamma-optimization new-generation
(string-append bests best-string)
good-enough-procedure
fitness-procedure
cut-procedure
mutation-procedure
mutation-ratio
current-generation)))))

(define (do-ga-cs-gamma-optimization)
(let ([out (open-output-file "optimization.txt"
#:exists 'replace)]
[pop (make-cs-gamma-population 30)])
(begin
(display "COGA - optimizing Gamma current source circuit") (newline)
(display "Time spent: ")
(time (display
(ga-cs-gamma-optimization pop
"Coefficients aproximation optimization:\n"
cs-gamma-good-enough
cs-gamma-fitness
cs-gamma-cut
cs-gamma-mut
(make-cs-gamma-mut-ratio)
0)
out))
(display "Optimization finished") (newline)
(close-output-port out))))

(do-ga-cs-gamma-optimization)
8.10 galcurrent-source-delta.ss
#lang scheme/base

(require (file "../ga/common.ss"))

(require (file "../spice-integration/elements.ss"))
(require (file "../spice-integration/analysis.ss"))
(require (file "../spice-integration/print.ss"))

(require (file "../spice-integration/simulation.ss"))
(require (file "../spice-integration/hspice-models.ss"))

(require srfi/1)

(define (make-cs-delta-individual In-1-2-7 In-4 wn-1 wn-2-4 wn-7 Ip-3 Ip-5-6-10 wp-5-3 wp-6 wp-10 In-8 wp-8 In-9 wn-9 rs)
(make-dna In-1-2-7 In-4 wn-1 wn-2-4 wn-7 Ip-3 Ip-5-6-10 wp-5-3 wp-6 wp-10 In-8 wp-8 In-9 wn-9 rs))
(define (cs-delta-individual->string dna)
(fold (lambda (x seed)
(string-append seed "-" x)) (car dna) (cdr dna)))

(define (cs-delta-individual->filename dna)

86

(fold (lambda (x seed)
(string-append seed "-" x)) (car dna) (cdr dna)))

(define (cs-delta-chromosome-generator chromosome)
(cond [(or (= chromosome 0)
(= chromosome 1)
(= chromosome 5)
(= chromosome 6)
(= chromosome 10)
(= chromosome 12)) (string-append (number->string (/ (+ (random 50) 1) 10.0)) "u")]
[(or (= chromosome 2)
(= chromosome 3)
(= chromosome 4)
(= chromosome 7)
(= chromosome 8)
(= chromosome 9)
(= chromosome 11)
(= chromosome 13)) (string-append (number->string (/ (+ (random 1000) 1) 10.0)) "u")]
[(= chromosome 14) (number->string (+ 5000 (random 45000)))]
[else (error (string-append "error: chromosome to mutate doesn't exist -> " (number->string chromosome)))]))

(define (cs-delta-cut size)
(random-cut size))

(define (cs-delta-mut chromosome-position)
(cs-delta-chromosome-generator chromosome-position))

(define (make-cs-delta-mut-ratio)
(let* ([ratio 50]
[divider (/ 100 ratio)])
divider))

(define (make-cs-delta-tolerance-delta)
(let* ([delta 5]
[divider (/ 100 delta)])
divider))

(define (cs-delta-good-enough generation values)
(let* ([dc (car values)]
[current (cdr values)]
[junk (begin (display "dc: ")
(display dc)
(display " current: ")
(display current)
(newline))])
(if (or (>= generation 30)
(and (< dc 1.8)
(and (< current .53e-6)
(> current .47e-6))))

#t #)))

(define (cs-delta-individual->circuit individual)
(let* ([In-1-2-7 (first individual)]

[In-4 (second individual)]
[wn-1 (third individual)]
[wn-2-4 (fourth individual)]
[wn-7 (fifth individual)]
[Ip-3 (sixth individual)]
[Ip-5-6-10 (seventh individual)]
[wp-5-3 (eighth individual)]
[wp-6 (ninth individual)]
[wp-10 (tenth individual)]
[In-8 (list-ref individual 10)]
[wp-8 (list-ref individual 11)]
[In-9 (list-ref individual 12)]
[wn-9 (list-ref individual 13)]
[r (list-ref individual 14)]
[vpow (make-voltage-source "pow" 'Vdd 0 '3.3V)]
[vgnd (make-voltage-source "gnd" 'Vss 0 '0.0V)]
[rs (make-resistor " 'Vss '3 1)]
[m1 (make-nmos "1" 'Vss 1 1 'Vss 'MODN (make-param 'L In-1-2-7) (make-param 'W wn-1))]
[m2 (make-nmos "2" 2 1 3 'Vss 'MODN (make-param 'L In-1-2-7) (make-param 'W wn-2-4))]
[m3 (make-pmos "3" 17 4 'Vdd 'MODP (make-param 'L Ip-3) (make-param 'W wp-5-3))]
[m4 (make-pmos "4" 5 6 2 'Vss 'MODN (make-param 'L In-4) (make-param 'W wn-2-4))]
[m5 (make-pmos "5" 4 5 'Vdd 'Vdd 'MODP (make-param 'L Ip-5-6-10) (make-param "W wp-5-3))]
[m6 (make-pmos "6" 'Vdd 5 5 'Vdd 'MODP (make-param 'L Ip-5-6-10) (make-param "W wp-6))]

[m7 (make-pmos "7" 'Vss 1 7 'Vss 'MODN (make-param 'L In-1-2-7) (make-param 'W wn-7) (make-param 'M 2))]
[m8 (make-pmos "8" 7 7 'Vdd 'Vdd 'MODP (make-param 'L In-8) (make-param "W wp-8))]

[m9 (make-pmos "9" 6 6 'Vss 'Vss 'MODN (make-param 'L In-9) (make-param 'W wn-9))]

[m210 (make-pmos "10" 'Vdd 5 6 'Vdd 'MODP (make-param 'L Ip-5-6-10) (make-param 'W wp-10))])
(make-circuit vpow vgnd rs m1 m2 m3 m4 m5 m6é m7 m8 m9 m10)))

(define (cs-delta-dc-sweep-value tuple)
(string->number (list-ref tuple 0)))

(define (cs-delta-output tuple)
(string->number (list-ref tuple 1)))

(define (score-and-values-cs-delta-simulation-data results)
(define (next-iter results-left mean delta min-value last-dc)
(let* ([value (cs-delta-output (last results-left))]
[dc (cs-delta-dc-sweep-value (last results-left))])
(cond [(or (> value (+ mean delta))
(< value (- mean delta))
(< value min-value)) (list (- last-dc dc) ;to calculate score
(cons dc mean))] ;to calculate stop point
[(equal? dc 0) last-dc]
[else (next-iter (drop-right results-left 1)
mean
delta
min-value
last-dc)])))
(let* ([last-dc (cs-delta-dc-sweep-value (last results))]
[last-value (cs-delta-output (last results))]
[tolerance-delta (/ last-value 50)]
[target-current 0.5e-6]
[weight-1 -1e7]
[weight-2 1]
[current-value-score (abs (- last-value target-current))]
[stability-calculus-product (next-iter (drop-right results 1) last-value tolerance-delta target-current last-dc)]
[stability-score (car stability-calculus-product)]
[stability-values (cdr stability-calculus-product)]
[candidate-score (+ (* current-value-score weight-1) ;score
(* stability-score weight-2))])
(list candidate-score stability-values)))

(define (evaluate-cs-delta-individual models dc watches individual)
(let* ([circuit (cs-delta-individual->circuit individual)]
[simulation (make-simulation (cs-delta-individual->filename individual) circuit models dc watches)]
[results (cdr (run-gnucap-simulation simulation))])
(score-and-values-cs-delta-simulation-data results)))

(define (make-evaluated-cs-delta-individual individual score-and-values)
(let ([score (car score-and-values)])
(make-evaluated-individual individual score)))

(define (cs-delta-fitness population)
(let* ([modn (make-hspice-modn)]
[modp (make-hspice-modp)]
[models (list modn modp)]
[dc (make-analysis "DC" "Vpow" '0V '3.3V '0.01V)]
[watches (list (make-watch 'CURRENT 'M6))]
[evaluated-individuals (map (lambda (ind) (make-evaluated-cs-delta-individual ind (evaluate-cs-delta-individual models dc watches
ind))) population)])
evaluated-individuals))

(define (make-cs-delta-population n)
(make-population n (lambda ()
(make-cs-delta-individual (cs-delta-chromosome-generator 0)
(cs-delta-chromosome-generator 1)
(cs-delta-chromosome-generator 2)
(cs-delta-chromosome-generator 3)
(cs-delta-chromosome-generator 4)
(cs-delta-chromosome-generator 5)
(cs-delta-chromosome-generator 6)
(cs-delta-chromosome-generator 7)
(cs-delta-chromosome-generator 8)
(cs-delta-chromosome-generator 9)
(cs-delta-chromosome-generator 10)
(cs-delta-chromosome-generator 11)
(cs-delta-chromosome-generator 12)
(cs-delta-chromosome-generator 13)

88

(cs-delta-chromosome-generator 14)))))

(define (ga-cs-delta-optimization pop bests good-enough-procedure fithess-procedure cut-procedure mutation-procedure mutation-
ratio generation)
(let* ([size-of-pop (length pop)]
[current-generation (+ generation 1)]
[good-enough? good-enough-procedure]
[fittests (selection pop truncated-selection-with-dumb-individual best-first-sort-criteria fitness-procedure)]
[new-generation (make-generation fittests cut-procedure mutation-procedure mutation-ratio size-of-pop)]
[new-fittests (fitness-procedure new-generation)]
[sort-criteria (lambda (x y)
(> (cdr x) (cdr y)))]
[best-individual (car (take (sort new-fittests sort-criteria) 1))]
[worst-individual (car (take (sort new-fittests worst-first-sort-criteria) 1))]
[selection-intensity (truncated-selection-intensity worst-individual (length fittests))]
[best-string (string-append "generation "(number->string current-generation)
" | champion: " (cs-delta-individual->string (car best-individual))
"| score: " (number->string (cdr best-individual))
" | selection intensity: " (number->string selection-intensity)
“\n")]
[modn (make-hspice-modn)]
[modp (make-hspice-modn)]
[models (list modn modp)]
[dc (make-analysis "DC" "Vpow" '0V '3.3V '0.01V)]
[watches (list (make-watch 'CURRENT 'M6))]
[best-values (caadr (evaluate-cs-delta-individual models dc watches (car best-individual)))])
(begin (display (string-append "Generation number " (number->string current-generation) " done..."))
(newline)
(if (good-enough? current-generation best-values)
(string-append bests best-string)
(ga-cs-delta-optimization new-generation
(string-append bests best-string)
good-enough-procedure
fitness-procedure
cut-procedure
mutation-procedure
mutation-ratio
current-generation)))))

(define (do-ga-cs-delta-optimization)
(let ([out (open-output-file "optimization.txt"
#:exists 'replace)]
[pop (make-cs-delta-population 30)])
(begin
(display "COGA - optimizing Delta current source circuit") (newline)
(display "Time spent: ")
(time (display
(ga-cs-delta-optimization pop
"Coefficients aproximation optimization:\n"
cs-delta-good-enough
cs-delta-fitness
cs-delta-cut
cs-delta-mut
(make-cs-delta-mut-ratio)
0)
out))
(display "Optimization finished") (newline)
(close-output-port out))))

(do-ga-cs-delta-optimization)

9 Referéncias

[AMS10] AMS, 0,35 um CMOS process technology. 2010.
http://www.austriamicrosystems.com/05foundry/indexc35.htm, acesso em Maio, 2010

[BARO2] BARESEL, A, et al, Fitness function design to im-prove evolutionary structural
testing. Genetic andEvolutionary Computation Conference (GECCO 2002) , p. 1329-1336,
Nova lorque, 2002. Morgan Kaufmann.

[DYBO09] DYBVIG, R.K., The Scheme programming language. Quarta edi¢cdo, MIT Press,
Massachusetts, 2009.

[ECC10] eCircuit Center, Spice basic. 2010. http://www.ecircuitcenter.com/Basics.htm,
acesso em Maio/2010

[ITOS] ITRS, International technology roadmap for semiconductors. 2005.
http://www.itrs.net/reports.html, acesso em Maio/2010

[QUA93] QUARLES, T; et al, Spice3 version user's manual. Manual de usuario. 1993.

[RANO4] HAUPT, R.L., HAUPT, S.E., Pratical genetic algorithms. Segunda edicao, Wiley-
Interscience, Malden, 2004.

[RAZ03] RAZAVI, B., Design of analog CMOS integrated circuits. Primeira edi¢c&o,
McGraw-Hill Science, Columbus, 2003.

[SANO2] SANO, Y, KITA, H., Optimization of noisy fitness functionsby means of genetic
algorithms using history of search with test ofestimation. Congress on
EvolutionaryComputation CEC2002 (2002) , p. 360-365, Nova Jersey, 2002. IEEE Press.

[SILO8] SILVA, E.S.C., Projeto de fontes de referéncia de baixa tensdo em tecnologia
CMOS. 2008. Trabalho de Conclusao de Curso - Departamento de Engenharia Elétrica,
Escola de Engenharia de Sao Carlos, Universidade de S&o Paulo, Sao Carlos, 2008.

[ZEBO2] ZEBULUM, R.C.; et al, Evolutionary electronics. Primeira edicdo, CRC Press,
Washington D.C., 2002.

90

