DENNIS T. S. CUFLAT

COPROCESSADOR CRIPTOGRAFICO PARA
TRANSACOES SEGURAS EM DISPOSITIVOS

MOVEIS

Sao Paulo
2015

DENNIS T. S. CUFLAT

COPROCESSADOR CRIPTOGRAFICO PARA
TRANSACOES SEGURAS EM DISPOSITIVOS

MOVEIS

Texto apresentado a Escola Politécnica da
Universidade de Sdo Paulo como requisito
para a conclusdo do curso de graduacdo em
Engenharia de Computacdo, junto ao De-
partamento de Engenharia de Computacdo e

Sistemas Digitais (PCS).

Area de Concentragio:

Engenharia de Computagdo
Orientador:

Wilson Vicente Ruggiero

Co-orientador:

Jonatas Faria Rossetti

Sao Paulo
2015

FICHA CATALOGRAFICA

S. Cuflat, Dennis Tritapepe

Coprocessador Criptografico para Transagoes Seguras em Dispo-
sitivos Méveis/ D. T. S. Cuflat. Sao Paulo, 2015.

96 p.

Monografia (Graduacdao em Engenharia de Computacdo) — Es-
cola Politécnica da Universidade de Sao Paulo. Departamento de En-
genharia de Computagao e Sistemas Digitais (PCS).

1. Seguranca e criptografia com curvas elipticas #1. 2. Sintese
e implementagéo de projeto de hardware em FPGA #2. 3. Software e
interface de comunicacao entre dispositivos #3. |. Universidade de Sao
Paulo. Escola Politécnica. Departamento de Engenharia de Computa-
¢ao e Sistemas Digitais (PCS). II. t.

RESUMO

Este relatério documenta as motivacgdes, especificacdo e o desenvolvimento de um
dispositivo de hardware capaz de se conectar a uma plataforma host (por exemplo, um
computador ou um dispositivo mével) e realizar operagdes criptograficas de modo a
prover uma camada adicional de seguranca em transagdes online. O projeto € baseado
nas demandas do cendrio atual, onde cada vez mais as pessoas fazem uso de seus dispo-
sitivos méveis para realizar fungdes que lidam com dados que devem estar protegidos
das vulnerabilidades da plataforma.

Propomos entdo um sistema baseado na criptografia de curvas elipticas, que per-
mite gerar e validar assinaturas digitais. Como essa forma de criptografia € baseada na
aritmética de corpos finitos, com a qual os processadores mais comuns ndo estao oti-
mizados para trabalhar, projetaremos um coprocessador dedicado e capaz de realizar
as fungdes passadas pela maquina host.

Ao longo do relatorio, tratamos das bases tedricas de criptografia, corpos finitos
e curvas elipticas, estabelecemos um cendrio de uso, explicamos a metodologia de
trabalho e recursos necessarios para o desenvolvimento do projeto, fazemos a especifi-
cacdo de seus componentes de hardware e software, e, enfim, detalhamos os resultados
obtidos a fim de verificar o sucesso do projeto.

ABSTRACT

This document provides the background, specification, and development of a hard-
ware device that can be connected to a host platform (i.e a personal computer or a
mobile device) and execute cryptographic operations, in order to provide an additional
security layer for online transactions. This project is based on the demands of our cur-
rent society, in which an increasing number of people make use of their mobile devices
to do tasks that deal with sensitive data, which must be protected against the platform
vulnerabilities.

Therefore, we present a system based on Elliptic Curves Cryptography, that can
generate and validate digital signatures. Since this kind of cryptography is based on fi-
nite field arithmetic, which our usual processors are not optimized to deal with, we will
design a dedicated coprocessor. It will be able to execute the cryptographic operations
needed by the host machine.

Throughout this document, we will explain the theoretical foundation of crypto-
graphy, finite field, and elliptic curves; establish an use case scenario; explain the work
methodology and resources needed for the project development; specify the software
and hardware components and their synthesis; and, finally, test e report the results in
order to verify if the project succeeded in its objectives.

SUMARIO

Lista de Ilustracoes

1 Introducao

.1 Apresentacoo e
1.2 Motivag@o e e e
1.3 Objetivos e e
1.4 Metodologia

2 Fundamentos Teoricos

2.1 Conceitos de Criptografia
2.2 Aritméticade Corpos Finitos
2.3 Aritmética de Curvas Elipticas
2.4 Assinatura Digital com Curvas Elipticas

3 Cenario e Parametros
3.1 CasodeUsOo o

3.2 ParAmetrosde Operacdo

4 Recursos
4.1 Visual Studio 2015 o

42 XilinxISEo oo

13

13

15

16

18

20

20

23

25

30

36

36

38

42

5 Especificacio de Software
5.1 VisaoGeral L

5.2 Diagramade Sequéncia

6 Especificacao de Hardware
6.1 Vis@doGeral
6.2 Hierarquiado Fluxode Dados
6.3 Diagramade Instrucdes

6.4 FPGA e

7 Implementacao de Software

7.1 Terminal de Comunicagdo

8 Implementacido de Hardware
8.1 Aritmética de Corpos Finitos
8.2 Aritméticade Curvas Elipticas
8.3 Multiplicacdo Escalarde Pontos
8.4 Controlador Principal

8.5 Multiplicador DARo

9 Resultados e Testes
9.1 Sintese do Coprocessador

9.2 Comparagdo com Software

10 Conclusoes

45

45

48

50

50

51

53

59

61

61

65

65

70

74

76

81

84

84

90

94

Referéncias

96

10

11

12

13

14

15

16

17

18

LISTA DE ILUSTRACOES

Plataformas trocam dados criptografados pelos dispositivos externos . 17
Etapasda Cifracdo 21
Etapasda Decifracdo 21
Etapas da geracdo de uma assinatura digital 22
Etapas da validacdo de uma assinatura digital 22

Exemplos de curvas elipticas (HEKERSON; MENEZES; VANSTONE, 2004) 26

Representacdo gréfica das operacdoes de soma sobre pontos de uma

curva eliptica (HEKERSON; MENEZES; VANSTONE, 2004) 27
Pares de chavesdeteste 41
Visual Studio 2015o 42
Interface do Visual Studio L oo 43
Xilinx ISE Design Suite L. 44
Interfacedo Xilinx ISE oo 44
Diagrama do caso de uso <Gerar Assinatura Digital> 48
Diagrama do caso de uso <Validar Assinatura Digital> 49
Estrutura do Coprocessador 51
Hierarquia do Fluxode Dados 52
Legenda de camadas deoperacdo 54

Instrugdo: configurar corocessador 54

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Instrucdo: cifrar uma mensagem 55
Instrugdo: decifrar uma mensagem 56
Instrugdo: gerar assinatura digital 57
Instrugdo: validar assinatura digital 58
Placa Digilent Nexys 2 59
Especificacdo da Digilent Nexys 2 59
Interface de comunicagdoserial USB 60
Interface inicial do software 62
Caso de uso - gerandoum pardechaves 62
caso de uso - cifrando uma mensagem 62
Caso de uso - decifrando uma mensagem 63
Caso de uso - gerando um comprovante 63
Caso de uso - assinando um comprovante 63
Caso de uso - validando a assinaturo de um comprovante 64
ULA do médulo de aritmética de corpos finitos 66
Modulo de aritmética de corpos finitos L. 66
Maiquina de estados do mddulo de aritmética de corpos finitos 67
Simulacdo de uma operacdo de adicdo 68
Simulacdo de uma operacdo de subtracdo 68
Simula¢do de uma operacdo de multiplicagdo 69
Simulagdo de uma operacdo de inversdo 69

Modulo de aritmética de curvas elipticas 71

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Miquina de estados do médulo de aritmética de curvas elipticas

Estados - Somadedoispontos
Estados - Dobrodeumponto
Simulacdo de uma operacdo de soma de pontos
Simulacdo de uma operacdo de dobrode um ponto

Moédulo de multiplicacdo escalarde pontos

Miquina de estados da opera¢do de multiplicacao escalar de pontos

Simulacio de uma operacdo de multiplicacao escalar de pontos
Moédulo de multiplicagdo escalar depontos
Estados - operacdo de cifracdo de uma mensagem
Estados - operacdo de decifracdo de uma mensagem
Estados - operacdo de geracdo de assinatura digital
Estados - operagdo de validacdo de assinatura digital
Simula¢do de uma operacao de cifracdo de uma mensagem
Simulacio de uma operacdo de decifragdo de uma mensagem

Simula¢do de uma operagdo de geracdo de assinatura digital

Simulacdo de uma operacdo de validagdo de assinatura digital

Moédulo de aritmética de corpos finitos com o multiplicador DAR . . .

Simula¢do de multiplicagdo em corpos finitos com DAR

71

72

72

73

74

75

75

76

7

77

78

78

78

79

80

80

81

82

13

1 INTRODUCAO

1.1 Apresentacao

Ao longo da formacao no curso de Engenharia de Computagdo, somos expostos
a uma vasta quantidade de matérias de diferentes areas de atuacdo, sejam projetos de
hardware, software, redes e segurancga, passando pelos conceitos fisicos e matematicos
com os quais formamos a nossa base nos primeiros anos de curso. Sendo assim, este
trabalho de conclusdo de curso apresenta, em principio, a tarefa de tentar agregar o
conhecimento adquirido em um projeto coeso com uma aplicacio relevante ao nosso

cendrio tecnoldgico atual.

Na idealizacdo do tema para este projeto, foi definido que, de modo a melhor
atender a essa proposta, o foco principal deveria ser a sintese de um hardware, dando
continuidade aos estudos de organizacdo e arquitetura de computadores. Adicional-
mente, um software companheiro seria desenvolvido como forma de interface entre
o usudrio e o dispositivo, rodando em uma mdquina host ao qual este dispositivo se

conecta.

Dentre as possibilidades de aplicagdo, que também incluiam processadores gra-
ficos, gerenciadores de recursos fisicos de uma residéncia, e uma rede de sensores
sem fio, chegamos a um tema que, ndo apenas abrange uma grande parte de areas da
computacdo, como também € uma demanda constante no mercado, e que permite ad-
quirir um conhecimento novo e significante no meio profissional: seguranga de dados.

Quando tratamos de seguranca de dados, consideramos desde os meios fisicos pelos

14

quais passa uma informacao e as camadas de servigo utilizadas para transmiti-la, até
o proprio formato no qual ela estd codificada. Com o avango crescente da tecnologia,
especialmente com o advento dos dispositivos moveis, o leque de possibilidades que
temos em nossas maos para nos comunicar aumentou, € com ele, também a quantidade

de vulnerabilidades de seguranca.

E uma consequéncia natural que, neste novo cendrio, surjam constantemente novas
demandas para a maior comodidade do usudrio: ndo basta mais apenas ser capaz de se
comunicar com outros dispositivos, o dispositivo movel também deve ser um substituto
vidvel para realizar operagdes antes desempenhadas por outros aparelhos eletronicos,
ou restritas ao meio ndo digital, e que podem envolver dados mais delicados, como,
por exemplo, transagdes financeiras. Sistemas como o «Apple Pay» (compativel com
o iPhone), que permite realizar pagamentos através de NFC e validagdo por sensores
biométricos, ja sdo uma realidade. E sistemas como esse também trazem consigo uma

demanda ainda maior de seguranga de informagao.

Uma das mais importantes camadas de seguranca de dados € a criptografia, um
dos temas de estudo do curso de redes. Formas mais robustas de criptografia, no en-
tanto, demandam mais recursos computacionais, visto que normalmente fazem uso
de ferramentas matemadticas com as quais os dispositivos de hardware que utilizamos

diariamente nio foram projetados para trabalhar eficientemente.

A técnica de criptografia de curvas elipticas é especialmente interessante para essa
abordagem. E uma técnica poderosa, cuja seguranca estd baseada no problema dos
logaritmos discretos e, portanto, € computacionalmente invidvel obtermos a mensagem
original a partir da mensagem cifrada sem o conhecimento da chave privada associada a
chave publica utilizada na etapa de cifracio (HEKERSON; MENEZES; VANSTONE, 2004).
Essa técnica de criptografia faz uso de aritmética de corpos finitos, e € nesse ponto que

a maior parte dos hardware comerciais apresenta um gargalo de eficiéncia.

Dessa forma, a possibilidade de um dispositivo de hardware otimizado para traba-

15

lhar com este tipo de aritmética, € que possa ser conectado a uma maquina host para
realizar fungdes criptograficas para uso em uma aplicagdo local, se torna bastante atra-
ente, adicionando uma camada robusta de segurancga para os sistemas que utilizamos.

Fazemos deste, entdo, o tema para o projeto de conclusdo de curso.

1.2 Motivacao

Estabelecemos a hipdtese de um cendrio para este projeto: a compra de um item
através de uma loja virtual. Com ele, podemos identificar um problema que implique
em uma demanda, e uma possivel solu¢do que justifica um produto. Ao final desta
descricdo, podemos entdo especificar os objetivos exatos desse projeto. Ao realizarmos
a compra em uma loja virtual, estamos fazendo uso de uma criptografia assimétrica,
baseada em um par de chaves: temos acesso a chave publica da loja e, assim, ciframos
alguns dados importantes de pagamento durante a transa¢do que somente poderao ser
revelados para a loja, através do uso da chave privada que apenas ela conhece e que

estd associada a chave publica utilizada.

Identificamos duas questdes pertinentes: primeiramente, uma vez que estamos
cada vez mais utilizando dispositivos mdveis, expostos a varios novos canais de co-
municacdo e brechas de segurancga, para realizar compras e transagcdes, nossos dados
tornam-se mais vulnerdveis a alguns ataques que buscam contornar a segurancga ofe-
recida pela criptografia através da andlise de vazamento de dados, como consumo de
energia e sinais eletromagnéticos. Dessa forma, € importante que utilizemos métodos
mais robustos de criptografia, que permitam obter um nivel maior de seguranga, mas

que a0 mesmo tempo exijam um maior desempenho computacional.

Adicionalmente, o tipo de criptografia assimétrica que utilizamos traz a desvan-
tagem de assegurar a identidade apenas da entidade portadora de chave privada, ou

seja, a loja. Em um ambiente onde estamos cada vez mais expostos a fraudes, torna-se

16

cada vez mais necessdrio que possamos assegurar que uma transacao financeira feita
em nome de uma pessoa através de seu dispositivo tenha sido, de fato, feita por essa

pessoa.

Nesse contexto, a posse de uma chave privada permite gerar uma assinatura digital,
sujeita a validagdo que comprove a origem dos dados, tornando mais dificil a realizagao

de uma transacdo fraudulenta. Propomos, portanto, um sistema onde:

e Tanto usudrios como comércio tenham um par de chaves publica e privada.

e As assinaturas digitais sejam geradas por um método de criptografia mais ro-

busto.

Obviamente, tanto o aumento no nimero de processos de criptografia quanto sua
qualidade vao demandar recursos computacionais especificos. Nesse cendrio, justifica-
mos o desenvolvimento de um coprocessador criptografico baseado em curvas elipticas
para se adequar a esse sistema, que oferece uma alternativa para as demandas atuais de

segurancga.

1.3 Objetivos

O objetivo deste projeto de conclusdo de curso € a sintese de um dispositivo de
hardware que, conectado a uma maquina host, é capaz de realizar funcdes de crip-
tografia e geracdo de assinatura digital fazendo uso de um coprocessador dedicado a
aritmética de corpos finitos. Esse dispositivo visa adicionar uma camada de seguranca

para aplicagdes (mdveis, principalmente), que trabalham com dados sigilosos.

Com este objetivo em mente, podemos listar os requerimentos necessarios para

que o projeto entregue um resultado adequado. Segue abaixo:

e Devemos estabelecer um cendrio de uso para guiar o projeto do dispositivo. Fo-

caremos em uma vertente baseada em validacdo de uma assinatura digital: para o

17

4 Camada de Aplicagio

Coprocessador
1100

Coprocessador

4 Camada de Aplicago

—

Ul] |

Figura 1: Plataformas trocam dados criptografados pelos dispositivos externos

consumidor, uma transa¢do financeira mével que requer a geracao de uma tnica
assinatura (foco em tempo de resposta); e para a loja, uma validacdo em lotes

realizada em uma méquina dedicada (foco em vazao).

Devemos sintetizar um dispositivo de hardware que atua como um coprocessador
e consegue, de maneira eficiente, realizar calculos de aritmética de corpos finitos,

especialmente aqueles necessarios para calcular pontos de curvas elipticas.

O dispositivo deve ser capaz de receber uma mensagem original, parametros de

uma curva eliptica, e uma chave publica, e devolver a mensagem criptografada.

O dispositivo deve ser capaz de receber uma mensagem criptografada, parame-

tros de uma curva eliptica, e uma chave privada, e devolver a mensagem original.

O dispositivo deve ser capaz de gerar uma assinatura digital para quaisquer men-

sagens criptografadas, e ser capaz de validar uma assinatura digital.

O dispositivo deve ser sintetizado a partir de uma descricdo em VDHL, e imple-

mentado em uma FPGA.

Devemos desenvolver um aplicativo a ser rodado na maquina host, que simule

um caso de uso que requer uma camada adicional de seguranca de dados. Este

18

aplicativo deve ser codificado em uma linguagem orientada a objetos, e deve ser

capaz de se comunicar com o dispositivo de hardware.

e A mdaquina host, idealmente, deve ser uma plataforma mdvel, como um
smartphone com sistema operacional Android. Caso seja necessdrio simplifi-
car uma das frentes do projeto por limitacdo de tempo, podemos utilizar um PC

como maquina host.

e Todo o processo de uso do aplicativo e realizacdo das tarefas de criptografia
pelo dispositivo de hardware deve acontecer dentro de uma janela de tempo con-
siderada aceitdvel para o caso de uso tratado, e, portanto, eficiéncia é um dos

requisitos mais importantes.

e Além da eficiéncia computacional em termos de tempo, o projeto deve ser vidvel
em relacdo a outras métricas de desempenho de hardware, como area e consumo
de energia, de modo que seja possivel inseri-lo na forma de um dispositivo em-

barcado.

1.4 Metodologia

Com os objetivos definidos, precisamos definir alguns critérios com os quais, ao
final do projeto, julgaremos se este cumpre ou ndo com estes objetivos. Caso positivo,
com que grau de eficiéncia, e, caso negativo, as razdes pelas quais ndo conseguimos

atingir os resultados esperados.

e O dispositivo faz o que é esperado?

Precisamos, aqui, submeter o dispositivo ao caso de uso especifico que sera de-
talhado. Faremos uma andlise de entradas, saidas esperadas, e resultados, para

determinar seu funcionamento de acordo com os parametros pré-determinados.

e O dispositivo cumpre com 0s requisitos de tempo?

19

Nos nossos casos de uso, nos deparamos com duas situagdes especificas: para
o consumidor, ¢ importante que o dispositivo tenha um tempo de resposta pe-
queno, e para a loja, € importante que o dispositivo tenha vazio de dados grande.
Devemos entdo definir o que consideramos tolerdvel, e se o tempo e vazao regis-

trados pelo dispositivo se enquadram nessa categoria.

O dispositivo € viavel para aplicagdes moveis?

Aqui, devemos nos preocupar com dois pontos importantissimos se desejamos
que este dispositivo possa funcionar como periférico ou como hardware embar-
cado de um sistema moével: drea e consumo de energia. Devemos analisar se
o hardware resultante pode ser fisicamente integrado a um smartphone sem au-
mentar seu tamanho, e se ele ndo afeta de forma consideravel seu consumo de

bateria, um dos problemas mais frequentes enfrentados por essa plataforma.

O dispositivo € necessdrio para o sistema?

Talvez uma das questdes mais importantes, ainda que féacil de ser ignorada: de
nada adianta desenvolver este dispositivo se, no sistema que propomos, ele pode
ser facilmente substituido por alternativas de software. Para verificar isso, va-
mos simular seu funcionamento em software e comparar nossos resultados como

aqueles obtidos usando o dispositivo.

20

2 FUNDAMENTOS TEORICOS

2.1 Conceitos de Criptografia

Este projeto é baseado em um dispositivo capaz de realizar operag¢des de crip-
tografia assimétrica e assinatura digital. Dessa forma, é conveniente estabelecer os

principais conceitos que utilizaremos no restante do projeto.

Fazemos uso de criptografia quando queremos estabelecer um canal seguro de
comunicacdo. A criptografia assimétrica € baseada na geracdo de um par de chaves
(publica e privada) através de um problema matematico considerado computacional-
mente invidvel de ser resolvido sem estes pardmetros, como o problema dos logaritmos

discretos (HEKERSON; MENEZES; VANSTONE, 2004).

Tomemos uma fun¢do f(a,x) com estas caracteristicas. Teremos, entdo, uma fun-
cao simétrica g(b,y) de modo que, quando y=f(a,x), g(b,y)=x. Podemos aplicar estes
conceitos a criptografia gerando um par de chaves [a,b] onde [a] é chave publica e [b]

¢ chave privada. Detalhamos abaixo:

e Mapeamos uma string de dados na forma de um valor [x].

e Fazemos uso da funcdo [f] e da chave publica [a] do destinatdrio, de modo a

calcular uma string criptografada y=f(a,x).

e O destinatdrio da mensagem entdo faz uso da func¢do [g] e da chave privada [b]

para revelar a mensagem original x=g(b,y).

21

E computacionalmente invidvel calcular [x] a partir de [y], [a] e as fun¢des [f,g],

sem, no entanto, conhecer a chave privada [b].

N—\—\

Y

, ™, N,
.,

5

/

String de Dados ‘> Dados Mapeados \Dados Criptografade
[m] / [¢] = p(m} Vi [y] = fla.x}
A A

i
F
i

¥

Figura 2: Etapas da Cifracao

#
r

ra
/" stringde Dados / Dados Mapeados /' Dados Criptografados
{

“\ [m] = p* x} S, [= gib.y) AN Iyl
\

Figura 3: Etapas da Decifracao

Os métodos de criptografia assimétrica também nos permitem gerar e validar assi-

naturas digitais, métodos para assegurar a identidade do remetente de uma mensagem

e ndo violacdo de seu conteudo. Isso € feito gerando uma assinatura que depende de

uma fung¢do hash sobre seu contetddo criptografado com a chave privada do remetente.

Detalhamos abaixo:

Fazemos uso de uma funcao de hash [h] vélida, e escolhida a partir de parametros
de seguranga determinados, para gerar uma string [s] de tamanho adequado a

partir da mensagem original.

Mapeamos essa string de dados [s] na forma de um valor [y].

Fazemos uso da func@o [g] e da chave privada [b] de modo a gerar uma assinatura

digital [x]=g(b,y).

Para validarmos a assinatura digital, tomamos a mensagem original e passamos

pelo mesmo procedimento de hash e mapeamento até chegar ao valor de [y].

22
e Fazemos, entdo, uso da fun¢do [f] e chave publica [a] para calcular [y]=f(a,x).
e Pelo inverso da funcido de mapeamentos, resgatamos a string de hash [s].

e (Caso os valores de [s] sejam iguais, entdo a assinatura digital foi corretamente
validada. Caso os valores sejam diferentes, entdo as informacdes a respeito do
remetente (na forma da chave [b]) ou do conteiido da mensagem (na forma da

string [s]) foram violados.

Com a assinatura digital, 1) Nenhum terceiro pode passar uma mensagem em
nome de um remetente sem sua chave privada [b]; 2) Nenhum terceiro pode
violar o conteiido de uma mensagem enviada [s] por um remetente sem que a
alteracdo seja descoberta; 3) O remetente ndo pode negar ter sido, de fato, a

origem de uma mensagem.

N\

N N

AN

String de Dados

Hash da String

[m] /// Is] = him}

Hash Mapeada
[yl = pls)

Assinatura Digital>

[x] = g(b.y}

N\

Y
,

N

k|

)/

L

[/

k|

L/

']

/

Figura 4: Etapas da geragdao de uma assinatura digital

/|

/]

/|

Validagdo
[s]= him]?

N

}/

Hash da String
[s]= gy}

,

/
//
ra
) Hash Maprada
[v] = fia,x)

'

F
Iy
i

Assinatura Digital
[x]

,

N

k|

,
,
\\I

Rl

N

Figura 5: Etapas da valida¢do de uma assinatura digital

23

2.2 Aritmética de Corpos Finitos

O tipo de criptografia que vamos utilizar neste projeto depende da aritmética dos
corpos finitos, que servird como base tedrica de toda a especificacdo do coprocessador.
Como as unidades aritméticas encontradas no hardware que utilizamos diariamente
ndo estdo otimizadas para trabalhar com esse tipo de aritmética, a eficiéncia computa-
cional das operagdes de criptografia ndo € a ideal, motivo pelo qual esta implementacdo
¢ importante para cumprir com os requisitos do sistema proposto. Explicamos os con-
ceitos principais: um campo de corpos finitos € a abstracdo de um conjunto numérico
abeliano, com nimero limitado de elementos e que satisfaz as seguintes propriedades

(BROWN, 2009)
e Para dois elementos [a,b] quaisquer do conjunto, qualquer operacao sobre estes
elementos resulta em [c] que também estd no conjunto.
e O conjunto aceita operacdo de adicdo, com identidade [O].
¢ O conjunto aceita operagcdo de multiplicagdo, com identidade [1].
e Tanto operacgdes de adicdo como multiplicagdo sdo associativas € comutativas.

e Para qualquer elemento [a] do conjunto, hd um elemento inverso aditivo b no

conjunto, tal que a+b=0.

e Para qualquer elemento [a] do conjunto, hd um elemento inverso multiplicativo

b no conjunto, tal que a*b=1.
e Operacdes de subtracdo e divisdo sdo representadas como operagdes de soma e

multiplicacdo dos elementos inversos.

Em um conjunto de corpos finitos, o tipo de aritmética utilizada ¢ modular, definida

sobre a ordem (ndmero total de elementos) do conjunto, ou seja, para um conjunto

24

primo F = {0,1,2,3,4...n}, as operagdes sdo dadas em «mddulo n». Tomamos como
exemplo um conjunto de ordem 7 dado por F = {0,1,2,3,4,5,6}. As operacdes entdo

serdo dadas em «mddulo 7». Exemplos:

Soma: 5+4=9mod7 =2;

Multiplicag@o: 2 * 6 =12 mod 7 = 5;

Inversao Aditiva: -2 =5, pois 2+ 5 =7mod 7 = 0;

Inversdo Multiplicativa: 5 = 4, pois 2 *4 =8 mod 7 = 1;

Existem dois tipos principais de corpos finitos: Aqueles definidos em um campo
primo FP, que consiste em um conjunto de inteiros de ordem igual a um niimero primo,
e que foi exemplificado nas operacdes acima; e aqueles definidos em um campo binério
F2". Os corpos finitos bindrios tém propriedades particularmente convenientes em

uma implementacio de hardware (BROWN, 2009).

O campo finito F2™ pode ser representado na forma de um polindmio:

F2" = a1 Xp-1 + QuoXpmo + ... + a1 X + ap}

E os coeficientes am deste polindmio fazem parte do conjunto primo F2=0,1. Por-
tanto, um conjunto de corpos finitos binrios de grau m=4 F2* contém os seguintes
elementos (polindmios): F2* = {[0], [1], [x], [x + 11, [x*], [x* + 1], [x* + x], [x* + x +

1L, [[+, [+x], [+ x+ 1L [P+ 2] [P+ 2+ 1], [P+ 2+ x], [P+ 2+ x+1]).

E, da mesma forma que em um conjunto de corpos primos, as operacdes sa0 mo-
dulares sobre a ordem, em um conjunto de corpos bindrios, as operacdes sao modulares
sobre um polindmio irredutivel (ndo fatordvel) de grau m. Um polindmio F2* irredu-
tivel possivel € [x4 + x + 1]. Exemplificamos abaixo as operagdes sobre um conjunto

de corpos finitos bindrios:

25

Soma: [+ x>+ 1]+ [x>+x+1] =[x +x];

Inversdo Aditiva: —[x*+x>+1] = [x*+x?+1], pois [xX* + x>+ 1]+[x}+x*+1] = 0,

Para qualquer elemento [a] de F2" , [-a] = [a];

Multiplicagdo: [x* + x>+ 1]# [x* + x+ 1] = [x° + x+ 1]mod[x* + x+ 1] = [x* +1];

Inversdo Multiplicativa: 1/[x* + x*> + 1] = [x?], pois [x*] = [x* + x* + 1] =

[+ x* + XJmod[x* + x+ 1] = 1;

E interessante notar que todos os corpos finitos bindrios podem ser expressos dire-
tamente como uma sequéncia de bits, o que € ideal para implementacdo em hardware.

Reescrevemos o exemplo acima nessa notagio:

Soma: [1101] + [0111] = [1010];

Inversdo Aditiva: -[1101] = [1101];

Multiplicagdo: [1101] * [0111] = [0101];

Inversao Multiplicativa: 1/[1101] = [0100];

2.3 Aritmética de Curvas Elipticas

Uma vez que ja estabelecemos o conceito de corpos finitos, podemos apresentar
o conceito das curvas elipticas sobre corpos finitos. Estas curvas sdo definidas pela

Equacdo de Weierstrass, dada abaixo (HEKERSON; MENEZES; VANSTONE, 2004)

E:y2+a1xy+a3y=x3+a2x2+a4x+a6

Os coeficientes [a] da equag@o precisam respeitar uma condicdo matemadtica que

implica que o discriminante da curva deve ser diferente de zero (o que impede que

26

a curva tenha mais de uma reta tangente em qualquer ponto). Nao entraremos em
detalhes a respeito da natureza do discriminante pois a teoria nio € o foco deste pro-
jeto, sendo suficiente apresentar a forma geral das curvas elipticas e garantir que 0s

coeficientes com que trabalharemos seguem esta regra.

Se K € um campo de corpos finitos, entdo uma curva eliptica definida sobre este

campo é€:

E(K) ={(x,y) € KxK : y2 + a1xy + azy — X - a2x2 —asx —ag = 0} U {0}

Onde [O] € um ponto chamado «Ponto no Infinito», definido como a identidade

[0] da curva elipitica.

. v, ’ 2 3 5
(@) Ey:y==x"—X by Ez:y==x"4+=x+%

Figura 6: Exemplos de curvas elipticas (HEKERSON; MENEZES; VANSTONE, 2004)

Como estamos trabalhando com campos primos, de ordem P>2, podemos utili-
zar um recurso de mudancga de varidveis para chegar em uma Equacdo de Weierstrass

simplificada para este caso. Fazemos:

x—3a;>-12a, y-3a’x a;® +4aa, - 12a3)

(%3 => (36 216 24

27

E chegamos a equacao:

E:y"=x+ax+b

Os pontos que satisfazem a estas condicdes em uma curva eliptica formam um
grupo abeliano de ordem #E (nimero de pontos no grupo) junto ao ponto [O]. Por-
tanto, também podemos aplicar operagdes de grupos sobre eles. Sejam P = (xi,y;) e
0O = (x2,y») pontos de uma curva E, definimos P+Q, geometricamente, como sendo a
reflexdo sobre o eixo x do ponto de intersec¢do entre a reta PQ e um terceiro ponto da
curva E. Quando P=Q, definimos 2P, geometricamente, como a reflexdo sobre o eixo

x do ponto de interseccao entre a reta tangente a P e um terceiro ponto da curva E.

¥ / ¥ ¥

! /

y, |
-

s -
P - /o
* i I - / I
;o) P=(x.y) -t~ S
0 =X, %) . I | e / !
i / | e / |
.-'/ \,V ‘ I - '.'?r ™ { I
I. i | | || P { |
\ - | [T \] [X
o \ . \ ! I
et \ ! - -
= {x1.¥v1) _.\ | _ |
|
o \"- |
Y A
A : iY
\ R =33, 33) Y R=0a.y9)

\ N

\ \

(a) Addition: P+Q = R. (b) Doubling: P+ P = R.

Figura 7: Representacdo gréfica das operagdes de soma sobre pontos de uma curva
eliptica (HEKERSON; MENEZES; VANSTONE, 2004)

Respeitando as propriedades da identidade [0], sabemos que, para qualquer ponto

PdacurvaE:

e P+O=0+P=P

e P+(-P)=0

28

Apesar das defini¢des geométricas, podemos chegar a equacdes sobre corpos fi-
nitos para as operagdes de curvas elipticas. Temos abaixo as propriedades de grupos
para os dois tipos simplificados de curvas sobre campos bindrios, sempre considerando

P(x1,y1) € Q(x3,y,) como pontos da curva E (HEKERSON; MENEZES; VANSTONE, 2004)

SeE:y=x*+ax+b

e Negativo: R(x3,y3) = —P(x1,y1)
X3 = X
Y3 =N
e Soma: R(x3,y3) = P(x1,y1) + Q(x2,y2)
x3= (02 = yD)/ (2 = x1))* = x1 — X3
y3 = (2 = y)/(x2 = x1))(x1 — Xx3) = y1 3
e Dobro: R(x3,y3) = 2 * P(x1,y1)
x3 = (Bx1* + @)/ (2y1))* = 2x1 5

y3 = (Bx1” + @)/ 2y)(x1 = x3) = y1 3

Vamos usar como exemplo um campo [K] do tipo [F29]. Uma curva eliptica do
tipo [E : y* = x* + ax + b] é definida sobre este campo, com coeficientes [a=4] e

[b=20]. Temos:

E:y'=x+4x+20

A equacdo pode, entdo, ser resolvida com aritmética de corpos finitos sobre [F29],

e podemos encontrar o conjunto de pontos P(x,y) que compde o grupo abeliano:

e Se [x=0], [y* = (0° + 4 % 0 + 20) = 20mod29] => [y=7] ou [y=22];

29
o Se[x=1], [y* = (13 + 4 % 1 + 20) = 25mod29] => [y=5] ou [y=24];

e (..)

e Se [x=7], [y* = (7> + 4 % 7 + 20) = 14mod29] => [Ndo hd y em F29];

e (..)

o Se [x=27], [)* = 7° + 4 % 27 + 20) = 4mod29] => [y=2] ou [y=27];

Conjunto de pontos de E: [(O), (0,7), (0,22), (1,5), (1,24), (2,6), (2,23), (3,1),
(3,28), (4,10), (4,19), (5,7), (5,22), (6,12), (6,17), (8,10), (8,19), (10,4), (10,25),
(13,6), (13,23), (14,6), (14,23), (15,2), (15,27), (16,2), (16,27), (17,10), (17,19),
(19,13), (19,16), (20,3), (20,26), (24,7), (24,22), (27,2), (27,27)]

Ordem #E = 37
Exemplo de Negativo: -(5,22) = (5,7);
Exemplo de Soma: (5,22) + (16,27) = (13,6);

Exemplo de Dobro: 2%(5,22) = (14,6);

Observe que, apesar de estarmos utilizando campos de ordem relativamente baixa
como exemplo, em aplicacdes reais as ordens sdo muito maiores, do tipo [FP , P »
2100]. Nestes casos, € possivel mapear cddigos inteiros na forma de uma coordenada
[x] para o cdlculo de um ponto [P] vélido, sendo esta a forma mais comum de preparar
uma mensagem para ser cifrada utilizando criptografia de curvas elipticas. Uma men-
sagem maior poderia ser fragmentada em mais de um ponto, sendo possivel até mesmo

mapear diretamente codigos ASCII a pontos de uma curva eliptica (BROWN, 2009).

Observamos também que nem todo elemento de um campo [FP] € uma coordenada
[x] possivel para um ponto [P]. Nestes casos, fazemos uso de um multiplicador [t]
de modo que, para todo cédigo [m] possivel, hd uma coordenada valida no intervalo

[(©)m,(t+1)m)].

30

2.4 Assinatura Digital com Curvas Elipticas

Os itens anteriores apresentam todos os conceitos tedricos necessarios para que,
agora, possamos implementar um método de assinatura digital fazendo uso de curvas
elipticas. Antes disso, no entanto, aplicamos estes conceitos ao caso mais simples de
cifrar uma mensagem qualquer [m]. Tomemos uma curva eliptica [E] definida sobre
um campo [FP]. Dentre o conjunto de pontos que satisfazem a Equacdo de Weierstrass,
tomamos um ponto [P] tal que [P] € [O] (Ponto no Infinito). Este ponto [P] formard um
grupo abeliano ciclico sobre esta curva por multiplicagdo escalar ([P],[2P],[3P],[4P]...)

de ordem [n] (quantidade de pontos deste grupo).

Sendo assim, podemos escolher um valor [d] no intervalo [1,n] de forma que ob-
temos um ponto [Q]=[dP]. Uma vez que temos o inteiro [d] e o ponto [P], € facil obter
[Q], mas se, no entanto, tivermos apenas [P] e [Q], o problema de encontrar o valor
[d] € justamente aquele equivalente ao problema dos logaritmos discretos, sendo com-
putacionalmente invidvel. Podemos fazer uso dessa propriedade e manipular dados de
modo a gerar uma operacao criptogréfica. Se escolhermos um outro inteiro [k] no in-
tervalo [1,n], podemos fazer [C1] = [kP], e assim (HEKERSON; MENEZES; VANSTONE,

2004) :

d[C1] = d[kP] = k[dP] = [kQ]

Com isso, podemos cifrar uma mensagem [m] em um par [C1],[C2] fazendo:

e A mensagem [m] € mapeada a um ponto [M] da curva [E];

Selecionamos um [k] no intervalo [1,n];

Calculamos [C1] = [kP];

Calculamos [C2] =M + [kQ];

31

E deciframos esta mesma mensagem fazendo:

e Calculamos [M] = [C2] - d[C1];

e Extraimos a mensagem [m] mapeada em [M];

Neste contexto, se temos um dominio com [F] e [E] bem definidos, juntamente
a um ponto escolhido [P], podemos fazer uso do par [Q],[d] como um par de chaves
publica e privada, respectivamente. Este € o método de criptografia de curvas elitpticas.
Podemos expandir este conceito de criptografia para o caso de geracdo e validacdo de
assinatura digital, que j4 conta com alguns protocolos bem conhecidos para o caso
de curvas elipticas. Um esquema particularmente eficiente e conhecido é o ECDSA
(Elliptic Curve Digital Signature Algorithm). Para fazer uso do esquema, a primeira
coisa que devemos estabelecer € um dominio sobre o qual trabalharemos. Um dominio

€, genericamente, dado pela forma (HEKERSON; MENEZES; VANSTONE, 2004) :

D=gq,FR,S,a,b,P,n,h

Onde:

e <g> ¢é a ordem do campo [F] de corpos finitos sobre o qual se define a curva

eliptica [E];

o <FR> ¢ a representacao utilizada pelos elementos do campo [F] utilizado;

e <S> ¢ a semente que gera os coeficientes aleatdrios para uma curva eliptica;

e <a> e sdo os coeficientes da curva eliptica;

e <P> ¢ um ponto qualquer da curva [E] que define um grupo abeliano ciclico

através de multiplicacio escalar;

32

e <n> ¢ a ordem do grupo definido por [P], ou seja, quantidade de pontos no grupo

ciclico;

e <h> ¢ chamado cofator, dado por #E(F)/n, e pode ser utilizado como parametro

de segurancga para alguns dos ataques mais comuns.

Adicionalmente, como especificado no item sobre protocolos de assinatura digital,
precisamos definir uma funcao de hash [H] pela qual passaremos a mensagem [m] a ser
assinada. Com estes parametros, definimos dois algoritmos: Um algoritmo que gera
uma assinatura digital para uma mensagem [m] na forma de um par de inteiros [r,s]
através de uma chave privada [d]; e um algoritmo que valida uma assinatura digital
para uma mensagem [m] através de uma chave publica [Q]. Seguem os algoritmos

abaixo (HEKERSON; MENEZES; VANSTONE, 2004) :

Geracgdo de uma Assinatura Digital:

INPUT: Dominio [D], Chave Privada [d], mensagem [m], func¢do de hash [H].

OUTPUT: Assinatura digital [r,s].

Selecionamos um inteiro [k] no intervalo [1,n];

Calculamos [kP] = (x;,y;) e convertemos [x;] para um inteiro [X;];

Calculamos [r] = [X;] mod [n]. Se [r]=0, escolhemos um outro [k];

Calculamos [e] = H(m);

Calculamos [s] = [k]-1(e+dr) mod [n]. Se [s]=0, escolhemos um outro [k];

A assinatura digital € dada na forma do par (r,s);

Validag@o de uma Assinatura Digital:

INPUT: Dominio [D], Chave Publica [Q], mensagem [m], funcdo de hash [H],

Assinatura digital [r,s].

33

OUTPUT: Validagdo da assinatura digital: [ACEITA] ou [REJEITA].

Os valores no par [r,s] estdo dentro do intervalo [1,n]? Se ndo, [REJEITA];
e Calculamos [e] = H(m);

e Calculamos [w] = [s]-1 mod [n];

e Calculamos [u;] = [e][w] mod [n];

e Calculamos [u;] = [r][w] mod [n];

e Calculamos [Z] = [u; * P] + [u» * O];

e O ponto [Z] € o Ponto no Infinito [O]? Se sim, [REJEITA];

e Convertemos a coordenada [x;] de Z(x;, y;) para um inteiro [X;];

e Calculamos [v] = [X;] mod [n];

v =[r]? Caso positivo, [ACEITA]; Caso negativo, [REJEITA];

Sdo estes os algoritmos de assinatura digital que vamos utilizar neste projeto.

Exemplo de Aplicagdo: Abaixo, fazemos um exemplo simples com o grupo [F29]

cujo grupo de pontos ja foi determinado anteriormente. Ou seja, temos a curva:

E:yZ:x3+4x+2O

E assumimos P=(1,5). Se gerarmos um par de chaves com chave privada [d=7],
temos como chave publica Q=(24,22). Adicionalmente, se uma mensagem [m] gera

um hash H(m)=17, mapeada para M=(17,10), podemos seguir o algoritmo:

Geracao de uma Assinatura Digital:

e Selecionamos um inteiro [k] no intervalo [1,n];

Escolhemos [k]=15;

e Calculamos [kP] = (x;,y;) e convertemos [x;] para um inteiro [X];

Calculamos 15*P = (3,1), X=3;

e Calculamos [r] = [X;] mod [n]. Se [r]=0, escolhemos um outro [Kk];

Calculamos [r] = 3 mod 37 = 3;

e Calculamos [e] = H(m);

Funcdo de Hash ja aplicada, [e] = 17;

e Calculamos [s] = [k]-1(e+dr) mod [n]. Se [s]=0, escolhemos um outro [K];

Calculamos [s] = (17+7%3)/15 mod 37 = (38/15) mod 37 = 5;

e A assinatura digital é dada na forma do par (r,s);

A Assinatura Digital é o par (3,5).

Validag@o de uma Assinatura Digital:

e Os valores no par [r,s] estdo dentro do intervalo [1,n]? Se ndo, [REJEITA];
Sim, 3 e 5 estdo no intervalo [1,37].

e Calculamos [e] = H(m);
Fungdo de hash jd aplicada. [e] = 17;

e Calculamos [w] = [s]-1 mod [n];

Calculamos [w] = (1/5) mod 37 = 15;

e Calculamos [u;] = [e][w] mod [n];

Calculamos [u,] = 17*%15 mod 37 = 33;

34

Calculamos [u>] = [r][w] mod [n];

Calculamos [u,] = 3*15 mod 37 = 8;

Calculamos [Z] = [u; * P] + [uy * O];

Calculamos [Z] = 33%(1,5) + 8%(24,22) = (15,2) + (2,6) = (3,1)
O ponto [Z] € o Ponto no Infinito [O]? Se sim, [REJEITA];

[Z] ndo é o Ponto no Infinito [O];

Convertemos a coordenada [x;] de Z(x;, y;) para um inteiro [X;];

Convertemos para X=3;

Calculamos [v] = [X;] mod [n];

Calculamos [v] = 3 mod 37 = 3;

=[r]? Caso positivo, [ACEITA]; Caso negativo, [REJEITA];

Temos que [v]=3 e [r]=3. Como [v]=[r], aceitamos a Assinatura Digital.

35

36

3 CENARIO E PARAMETROS

3.1 Casode Uso

De modo a melhor definir as especificagdes do produto, vamos gerar um cendrio
para um caso de uso no qual este coprocessador deve ser utilizado. Estabelecemos na
introducgdo deste relatério que gostariamos de uma solucd@o de seguranca para compras
online através de um smartphone, entdo partimos disso para imaginar um sistema de

pagamento que seja adequado ao nosso caso de uso:

Contexto

e Imaginamos um novo sistema de pagamentos eletronicos. Este sistema contém

uma base de dados com possiveis variagdes de um dominio de curvas [D];

e A cada pessoa fisica ou juridica cadastrada no sistema ¢é atribuido um cédigo

referente a um dos dominios [D] utilizados pelo sistema;

e A cada periodo de tempo pré-determinado, a base de dados de [D] ¢ atualizada,

e cada cliente recebe um novo cédigo referente a seu novo dominio atribuido.

e O sistema de pagamentos apresenta uma funcdo que gera um ndmero inteiro, e
chave privada, [d] (nunca gravado no sistema) a partir de uma senha de 4 digitos

e dados biométricos do usuario.

e Ao se cadastrar no sistema com a senha e os dados biométricos, uma chave

publica [Q] serd gerada a partir de [dP]. Esta chave publica passa a ser o principal

37

método de identificagdo do usudrio no sistema.

Cenario

e Usudrio faz uma compra em uma loja virtual através de seu smartphone, gerando,
através do site, um comprovante com detalhes da compra. O comprovante passa

entdo por uma fun¢do de hash, resultando no cédigo [h].

e Usudrio utiliza a senha e biometria para calcular [d] na hora. Smartphone re-
passa ao coprocessador criptografico seu dominio [Dx], o cédigo [h], e o inteiro
[d]. Com esses dados, o coprocessador gera uma assinatura digital [A] para o

comprovante e repassa ao smartphone.

e Durante a utilizacdo pelo usudrio, o coprocessador deve ter foco no tempo de
resposta, ja que o usudrio espera terminar de maneira relativamente rapida o seu

pedido.

e Lojarecebe e confirma o pedido de compra ao usudrio. Assinatura digital é entao
colocada na fila com um lote de outras assinaturas digitais, cada uma associada

ao cédigo de uma compra na loja virtual.

e O coprocessador recebe essas assinaturas em lotes, junto com as chaves publicas
e dominio, e repassa ao servidor os codigos [h] decifrados de cada compra. O
servidor entdo compara cada um dos cédigos [h] com aqueles gerados por seus

proprios comprovantes.

e (Caso os codigos de uma compra sejam iguais, o pagamento ¢ autorizado pelo

sistema, e a compra pela loja virtual pode ser consumada.

e Durante a utilizacdo pela loja, o coprocessador deve ter foco na vazdo, ja que
ha um ndmero elevado de pedidos esperando autorizacio, e estas nao precisam

ocorrer imediatamente apds o pedido ser efetuado.

38

3.2 Parametros de Operacao

Apesar de termos estabelecido um caso de uso completo para o sistema na forma
de um sistema de pagamentos, o foco de nosso projeto € o coprocessador, € nao o
sistema completo. Dessa forma, € necessdrio lembrar que nao estaremos trabalhando
com célculos de biometria ou métodos de seguranca para o software. O software com-
panheiro a ser desenvolvido tem como objetivo apenas alimentar o coprocessador com
dados validos. Da mesma forma, respeitando o escopo deste projeto, vamos trabalhar

com parametros de uso pré-estabelecidos. Isso € importante neste projeto por 2 razdes:

e Podemos pular algumas etapas de cunho tedrico que ndo sao parte do escopo do
projeto, mas que tomariam um tempo considerdvel, como geragdo e validacao

de curvas de coeficientes aleatdrios através de uma semente [S];

o Podemos mais facilmente estabelecer benchmarks com as curvas mais utilizadas,
bem como mais facilmente transitar entre aplicacdes de hardware e aplicagcdes

de software para o cdlculo de curvas elipticas.

Estabelecidas estas condi¢des, podemos definir os parametros que vamos utilizar
neste projeto. Estamos trabalhando com campos de corpos finitos do tipo [FP], e nesse
contexto, escolhemos uma curva recomendada pelo padrao FIPS 186-2 do tipo P-256

([F2%33]), com os seguintes parimetros (HEKERSON; MENEZES; VANSTONE, 2004) :

Curva P-256

e Ordem <q> = 2256 - 2224 + 2192 + 296 - 1;
e Coeficientes

* <a>=-3;

* = Ox 5AC635D8 AA3A93E7 B3EBBDS55 769886BC 651D06B0

CC53B0F6 3BCE3C3E 27D2604B

39

e Ponto P(x,y) com coordenadas:

* <x> = 0x 6B17D1F2 E12C4247 F8BCEOGES 63A440F2 77037D81

2DEB3AAO F4A13945 D898C296

* <y> = Ox 4FE342E2 FE1A7F9B S8EE7EB4A 7COF9E16 2BCE3357

6B315ECE CBB64068 37BF51F5

e Ordem do ponto P(x,y):

* <n> = Ox FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD

AT7179E84 F3BICAC2 FC632551
e Cofator <h> = 1;
Além do dominio, ha outros 3 tipos de parametros que precisamos definir: O for-

mato da mensagem [m] que serd assinada, a func@o de hash [H] a qual a mensagem

serd submetida, e os pares de chaves publica e privada a serem distribuidos.

Formato da Mensagem

O formato de mensagem padronizado que utilizaremos para este projeto € um com-
provante simples com alguns dados basicos da compra simulada em questdo. Este

comprovante serd gerado pelo proprio software companheiro, e é da forma:

S
PCS2501 - TRABALHO DE CONCLUSAO DE CURSO
COMPROVANTE DE COMPRA

*% CODIGO DE COMPRA: 72094157209415

*% COMPRADOR: DENNIS T S CUFLAT

*% L0JA: ESCOLA POLITECNICA USP

*% DATA DA COMPRA: 22/05/2015

#% VALOR DA COMPRA: R\$100,00

HARBHHAHRRRHHARRR R HATRRRHH AR RS H AR RS S

40

Funcdo de Hash

A escolha de uma funcdo de hash [H] deve ser feita com cuidado. Ao mesmo
tempo em que sua aplica¢do ndo € o papel principal do nosso dispositivo de hardware,
e, portanto, poderiamos fazer uso de uma operacdo menos complexa por ndo julgar
que esta faz parte do escopo do projeto, € necessario lembrar que, como estamos lin-
dando com um cendrio de seguranga, ndo podemos nos colocar em uma situacdo em
que tomamos conclusdes erradas a respeito da validade de uma assinatura digital por
conta de uma colisdo de hash, o que prejudicaria todo o projeto e documentagio. E

importante, por isso, que a fun¢do de Hash cumpra com seus requisitos principais de

criptografia para assegurar bons resultados de testes com o coprocessador:

e Resisténcia a Inversdo: Se temos uma fun¢do de hash H, tal que geramos um
codigo [x] através de [x] = H(m), a funcdo de hash deve garantir que ndo seja

possivel encontrar o valor da mensagem [m] que gerou o c4digo [x]

e Resisténcia a Colisdo: Outra caracteristica importante deve ser a minimizagao
de colisoes, ou seja, de mensagens [m] que resultem em um mesmo cédigo [X].
O requisito € que, para um [m] qualquer, deve ser computacionalmente invidvel
calcular um outro [m] que gere o mesmo cédigo [x]. Como estamos lidando
com um modelo de comprovante pré-definido, também reduzimos as chances de

encontrar um outro comprovante valido que leve a uma colisao.

Uma possivel fungdo de Hash ideal a nossos propositos € a Keccak, vencedora de
uma competi¢do da NIST com o propésito de definir o padrao SHA-3 (Secure Hash
Algorithm). Escolhemos utilizar essa funcdo por ser conhecida e possuir alto desempe-
nho em hardware. Além disso, fazendo uso de bibliotecas pré-estabelecidas e testadas,

diminuimos o tempo de projeto.

41

Pares de Chaves

Podemos utilizar ferramentas de software para gerar pares de chaves a serem usa-
dos para testes com 0 nosso coprocessador. Utilizando a biblioteca Cryptopp, geramos

as seguintes chaves de exemplo:

Chave Privada Chave Publica (x) Chave Publica (y)
b84dc782607e923d c91b8a29d28a4042 fb2d7fee9fe298ca
2f223251c1862f0C 1ee980bd581b8a%h 34f98fel183161d05
4f07e134c6c11707 160d2c2846943e29 b827abaeblc9b7f2
79a8c97a296bde3e c42dd2211640d37d £88d213426830868bd
a4fad484dceb74ac e70328cb732b6687 7fc79aa222ae5144
fe635db3b7e2c791 8b8284c1bdbc8621 8c235f5abceec436
©aBc8ba21170c424 6425a28ab43e004b ebed98926dfead6f
63288cB0f77fbboa 3bae489c94f53665 1fbfe5f31959fde8
2186b8ec79c5bdoe adb848ccB89423648 cbb666c79b38b906
3b67cfacd925c2f5 b114f3857c9c8486 570e29f2d70173c1
4bB37ec3e8360141 f67097b1a739b52d c4263f22c56647ba
970b7760a84c472d5 4c0d16b189d52fb6 66411ed1860bcse6

Figura 8: Pares de chaves de teste

42

4 RECURSOS

Vamos agora nos focar nos recursos que temos em maos para realizar a sintese,
simulacao e testes dos modulos do nosso projeto. Iniciaremos com as ferramentas que
usaremos para desenvolver o software companheiro, e depois detalharemos aquelas

que, de fato, vamos utilizar para projetar nosso dispositivo de hardware.

4.1 Visual Studio 2015

Nosso software companheiro serd desenvolvido com o paradigma de Orientag@o a
Objetos. Serd um software simples, que basicamente simula o sistema de pagamentos

e lida com entradas e saidas para o coprocessador.

b Visual Studio

Figura 9: Visual Studio 2015

Inicialmente, o projeto especificava a linguagem Java como linguagem de pro-
gramacdo de escolha para o software, por ser uma das linguagens mais utilizadas pra
orientacdo a objetos, e, por isso, com amplo material online e diversas ferramentas
conhecidas e amplamente difundidas. No entanto, posteriormente optamos por fazer

uso de C++, por conta dos seguintes motivos:

43

e C++ permite que a nossa simulagdo das operagOes criptograficas em software
(para benchmarks) sejam feitas nas mesmas ferramentas em que estamos de-
senvolvendo o software companheiro. Nao poderiamos tomar esta abordagem
em Java pois, como esta roda sobre o JVM, o desempenho do software como

parametro de comparacdo seria prejudicado.

e C++ contém uma excelente biblioteca de criptografia, a biblioteca Crypto++, da
qual podemos fazer uso nas simulagdes de operacdo do coprocessador, e também
em alguns cdlculos especificos em que a implementa¢ao no coprocessador nao é

tdo vantajosa, como a operacdo de mapeamento.

DQ CrypteCurves - Microsoft Visual Studio (Administrater) X & | Quick Launch (Ctrl+Q) A= B x
File Edit View Project Build Debug Team Tools Test Analze Window Help Dennis Seman -
[@ -2 | - | Debug - 36 - P Local Windows Debugger - | 51 _H b = 2 | = %= | W N

yptoCurves.cop Assinatura.cop X TR0 -

[CryptoCurves ~| (Global Scope) ~ @ assina(string mnome, string neme) M @ ‘ -5 aBm ‘ ey
ogfiessage < ifs.rdbuf(); Y scarch soluton Eplorer(Cute) P -
cout << endl << "MENSAGEM: " << ogMessage.str() << endl; &1 Solution 'CryptoCurves' (1 project) =

_ N 4 & CryptoCurves
ECDSACECP, SHA3>::PrivateKey privateKey;

" P b 1 External Dependencies
privateKey = carrega_chave_privada(nome);

4 Header Files

ECDSAKECP, SHA2563::Signer signer(privateKey); b [A Serialh
//signer.AccessKey().SetPrivateExponent(privatekey.GetPrivateExponent()); b B stdafch
[targetver.h
chrono: :high_resolution_clock::time_point t1 = chrono::high resolution clock::now(); b ®@ References
string sghessage; 7 Resource Files

StringSource ss(ogMessage.str(), true, new SignerFilter(prng, signer, new StringSink(sgMessage)));
chrone: :high_resolution_clock::time_point 2 = chrono::high resclution_clock::now();
aute duration = chrono: :duration_cast<chrono: imicroseconds>(t2 - t1).count();

4] Source Files
+s Assinatura.cpp

+» Chaves.cpp
*+ Cifra.cpp -

ofs << sghessage;
ifs.close();
ofs.close();

13
b+ Cenarios.cop
b
2

Solution Expl... [IETE T g

cout << endl << "ASSINATURA: " << sgMessage << endl;

assina VCCodeFunction
T
Show output from: Build - | & 2a Efe -

Output

1peemen Build started: Project: CryptoCurves, Configuration: Debug Win32 ------ 2l Mame assina
1> CryptoCurves.cpp
1> oCurves.vexproj -> C:\Users\Dennis\documents\visual stud: \Projects\CryptoCurves\DebughCryptoCurves.exe file Mser\Deani\l)
= = Build: 1 succeeded, @ failed, 8 up-to-date, 8 skipped === FullName assina
IsDefault False
IsDelete False

< o

Y output

Col31

Figura 10: Interface do Visual Studio

4.2 Xilinx ISE

Durante a maior parte do desenvolvimento deste projeto, estaremos escrevendo
em linguagem de descricdo de hardware VHDL. Ha diversas ferramentas robustas que
permitem sintetizar e simular um projeto deste tipo: Durante o curso, por exemplo, ja

fizemos uso do Active-HDL para a sintese de um processador com pipeline.

44

Figura 11: Xilinx ISE Design Suite

Escolhemos a ferramenta ISE Design Suite, da Xilinx, para este projeto, pois a sua
implementagdo prevista serd com FPGAs, e o ISE oferece um ambiente completo para
lidar com este tipo de implementacdo nos mais diversos parametros de dispositivos

(XILINX, 2009).

. ISE Project Navigator (P.20131013) - GiUsers -— o O

D File Edit View Project Source Process Tools Window Layout Help [-[=]=
CDPEF Lsnbx|nc] LR R mE T A#R[rcP[Q
Design ~08x 116 end component: z
[| View: @ 38} mplementation ¢ Simulation 117
118 COMPONEnt ecurve mtopbit
o] | Hierarchy 119 port (multi : in std logic_vector (NBITS-1 downto 0):
] debug 120 topbit : out std logic_vector (7 downto 0)):
— | B £3 xc3s1200e-4fg320 =| 12 end component;
% & [Coprocessor - BEHAVIORAL (Coprocessadorvhd) 122
= & [XLXL1 - meoproc - BEHAVIORAL (meoprocvhd) | | 123 pegin
& - [ig] XLXLL - ecurve_multi - BEHAVIORAL (ecurve mi | 194 XLXI 1 : ecurve arith
& [ig] XLXI1 - ecurve_arith - BEHAVIORAL (ecurve| 4 | 125 port map (clock=>clock,
] XLXI 3 - ecurve mregs - Behavioral (ecurve o5 | 126 m(NBITS-1 downto 0)=>m(NBITS-1 downto 0),
= [ia] XLXLS - ecurve_meontrol - Behavioral (ecur: s op, starte>XLNN 34,
- [is] XLXL9 - ecurve mtopbit - Behavioral (ecurve 4 | 158 op_type (2 downto 0)=>XLXN_32 (2 downto 0),
- [fu] XLX12 - mcoproc_regs - Behavioral (mcoproc_rel 4 | 123 %1 (NBITS-1 downto 0)=>XLXN_1(NBITS-1 downto 0Q),
[k XLXLS - meoproc_control - Behavioral (mcoprog ~—| 13g %2 (NBITS-1 downto LXN_2 (NBITS-1 downto 0),
[y XLXI2 - interface - Behavioral (interface.vhd) D 131 ¥1(NBITS-1 downto TXN_3 (NBITS-1 downto 0),
®| 132 v2 (NBITS-1 downto 0)=>XLXN & (NBITS-1 downto 0),
< i J vl —| 133 op_done=>XLXN_3€,
134 %3 (NBITS-1 downto 0)=>XLXN 9 (NBITS-1 downto 0),
B | 22 NoProcesses Running 135 ¥3 (NBITS-1 dewnto 0)=>XLXN_10 (NBITS-1 downto 0));
| 136
74 | Processes: XLX_1 - ecurve_multi - BEHAVIORAL 137 XLXI_3 : ecurve_mregs
2| @ % Design utities 138 port map (clock=>clock,
1T ChedeSyntax 139 code (1 downto 0)=>XLXN_40(1 downte 0),
= 140 ecurvea inl add(3 downto 0)=>XLXN_26(3 downto 0},
— 141 ecurvea in2 add(3 dovnto 0)=>XLXN 27(3 downto 0), i
& start | [Fles | B¢ Design | Lbrares | = Design summary =]IE] ecurve_multi vhd 8|
Cansole 0 8 x|[Erors 0 & x|[Warnings “08x

) INFO: HDLCompiler: 1061
INFO:HDLCompiler:1061
INFO:HDLCompiler:1061
INFO:HDLCompiler:1061

Parsing VHDL file "C:/Users/Dennis/Xilinx W - -
Parsing VHDL file "C:/Users/Dennis/Xilinx W
Parsing VHDL file "C:/Users/Dennis/Xilinx W
Parsing VHDL file "C:/Users/Dennis/Xilinx W
dp INFO:HDLCompiler:1061 Parsing VHDL file "C:/Users/Dennis/Xilinx W:
3y INFO:HDLCompiler:1061 Parsing VHDL file "C:/Users/Dennis/Xilinx W + - -
<Lm vl | v

g% Find in Files Results

Ln44 Col1 VHDL

Figura 12: Interface do Xilinx ISE

45

5 ESPECIFICACAO DE SOFTWARE

5.1 Visao Geral

Faremos agora uma especificacdo mais detalhada do software companheiro que
serd desenvolvido junto ao coprocessador. Sua fun¢do, como explicado anteriormente,
sera servir como uma interface entre usuario e hardware, alimentando o ultimo com da-
dos ja verificados e no formato adequado para serem manipulados; também recebera
os dados resultantes do coprocessador e os formatard de forma a serem apresentados ao
usudrio. Especificamos dois casos de uso que estaremos trabalhando: Geragao e vali-
dacdo de assinaturas digitais. Para isso, € importante que o software possa servir como
interface aos dois modulos. Sendo este um software desenvolvido utilizando orienta-
cdo a objetos, comecamos analisando os elementos do projeto de modo a identificar as

classes relevantes.

Classe: Usuario

Fungdo: Atua no papel de comprador de um item qualquer em uma loja virtual. E
identificado pelo nome, sua chave publica, e € o responsavel por gerar a assinatura

digital.

Classe: Empresa

Funcio: Atua no papel de responsdvel pela loja virtual. E identificada pelo nome, sua
chave publica, e € responsdvel pela validacao em lotes de assinaturas digitais de modo

a autorizar as compras.

46

Classe: Comprovante

Funcio: E o elemento resultante da compra de um item na loja virtual. E um dos prin-
cipais elementos do projeto por ser o conjunto de dados a ser submetido aos processos

criptograficos do coprocessador.

Classe: Lote
Funcao: Basicamente, um conjunto de comprovantes que serdo encaminhados juntos
para validacdo por parte da empresa. Tem o diferencial de ser alimentado ao software

por meio de arquivos de texto, € ndo pela interface do terminal.

Classe: Dominio da Curva

Funcdo: Atua como uma classe estitica contendo todos os parametros pré-
determinados para a curva com a qual trabalharemos e faremos as operacdes criptogra-
ficas. O programa constantemente carregard informacdes dessa classe para repassar ao

coprocessador.

Além das classes retiradas diretamente dos elementos tedricos do projeto, precisa-
mos considerar dois outros tipos de classe: Os sistemas e as interfaces com bibliotecas.
Os sistemas sdo aqueles que atuam como os controladores do software e suas opera-

coes.

Classe: Sistema CryptoCurves

Funcao: E o sistema principal do projeto, ou classe <main>, que tem uma interface di-
retamente com o usudrio através do terminal, e pode fazer a chamada de uma operagao

de geracdo ou validacao de assinatura digital.

Classe: Operacao de Geragao

Funcdo: E o controlador do caso de uso em que um usudrio compra um item em uma

loja, gera um comprovante e sua respectiva assinatura digital.

Classe: Operacao de Validacao

Funcio: E o controlador do caso de uso em que uma loja recebe um lote de compro-

47

Tabela 1: Entradas e Saidas do Software
Tipo de Entrada | Tipo de Saida

Comunicagdo com Usudrio Terminal Terminal
Dados de Compra Terminal Terminal
Dados de Validagdo Arquivos .txt Arquivos .txt

Comunicacdo com o Hardware | Interface USB Interface USB

vantes e passa a validar, uma a uma, as assinaturas digitais para aprovar o pedido.

Todas as classes especificadas até entdo serdo inteiramente escritas para este pro-
grama. No entanto, também vamos utilizar algumas bibliotecas prontas para realizar
operacdes de manipulacio e transporte de dados para que possamos mais facilmente

adapté-los ao formato do coprocessador.

Classe: Biblioteca Cypto++

Funcdo: Inclui uma ampla quantidade de operacdes criptograficas para fins de ben-
chmark, e operagdes de curvas elipticas para realizar acdes especificas, como mapea-

mento de pontos.

Classe: Biblioteca Hash

Funcao: Integra ao sistemas as fung¢des de hash as quais serd submetido o comprovante,

implementadas em uma biblioteca avulsa (no caso, fung¢do de hash SHA-3).

Classe: Biblioteca Interface USB

Funcao: Integra ao sistema as fun¢des que permitem realizar comunicagdo serial en-
tre software e coprocessador através de uma interface USB, implementadas em uma

biblioteca avulsa.

E importante também definir quais sdo os canais de entrada e saidas de dados deste
software. Para isto, basta analisar as classes e verificar que temos 4 demandas: inter-
face para o usudrio, entrada de dados para compra, entrada de dados para validacdo, e

comunicacdo com o hardware. Mais especificamente detalhadas abaixo:

48

Com todos os dados em maos, passamos a encontrar as relacdes entre cada classe e

os requerimentos que cada uma faz as outras. Desenhamos entao diagramas de sequén-

cia para cada um dos casos de uso trabalhados.

5.2 Diagrama de Sequéncia

l CryptoCurves | QpCompra. ‘ Usuario | ‘ Empresa Comprovante. ‘ Hash | ‘ QpCriptografia DominioCurva ‘ Cryptots InterfaceUss }
T 1 T T 1 T
') | ! ! i ! | 1
I | I
| I | ! 1 ! | | :
I I ! ! ! 1 | i I
| I | ! ! 1 | I]
L i w ! ! i | i i
comprar{) | | | | 1 ! ! |
— 1 I
identificarUsuario() | | | 1 ! ! !
— | | : | |]
| | ! | | 1
,,,,,,,, 1 | h I I I
I | | ! | |
i | | ! | |
identificarEmpresal) | | ! | ! !
| ! | | I
| | } : | i]
e i ! ! 1 } : :
i | i ‘ | }
I
gerarComprovante() | | ! | i i
| | 1
gerarHash) ' ; ! !
! | | |
1 | i i
1 | I]
1 i |]
7777777777777777777777777777 ! | | |
| i]
| ! | |]
T | - ! ! !
assinarComprovante(} | | | : :
- H | i
I I
! ! carregaCurva() |]
. | 1
> i]
I I
T I I
I 1
I 1
i]
1
|]
|]
]
! 1
mapearPontof)]
1
1
p]
- 1
inicializar() |
xd
I
,,,,,,,,,,,, [
= I
I
I
carregarParametros() |
i >
i
_____________ [
I
i
gerarAssinatura() |
1
I
I
e i |ttt
I
| T
b | '
I I
i]
- I 1
I 1
\ confirmar(} | |
" T ‘ ‘
1
1
[T 1
1
1
1

mmemmm e

Figura 13: Diagrama do caso de uso <Gerar Assinatura Digital>

49

Interfacelss

Cryptots

Dominiaturva

OnCriptografia

‘mh‘

Comprovante

Empresa

Usuario

OpVands

CryntaCurves

carregarComprovante)

gerarash()

fmmmmmmmmm e
i

identificar Usuariof)

i

ﬂ

validarComprovantef)

identificarEmpresal)

inicializar)

carregarParametros|)

mapearPontof)

e e
e

L

carregaCurval)

e

validarAssinaturaf)

e

validar()

S

carregarlote()

[N

canfirmar()

comprar()

tal>

igi

dar Assinatura Di

i

do caso de uso <Val

lagrama

D

Figura 14

50

6 ESPECIFICACAO DE HARDWARE

6.1 Visao Geral

O foco principal deste projeto € o hardware do coprocessador, que deve ser capaz
de realizar operacdes criptogréficas a serem implementadas em um cendrio de segu-
ranga, e facilmente escaldvel a um smartphone. Com base nos conceitos tedricos de-
talhados anteriormente, podemos listar todas as operacdes bdsicas que se espera fazer
com este hardware. No escopo deste projeto, estas podem se apresentar na forma de 5

operacoes (instrugdes que serdo passadas e reconhecidas).

e Configuracdo: O coprocessador deve reconhecer uma instrucdo de configura-
¢do, de modo a armazenar na memdria todos os parametros de curvas a serem

utilizados em seu funcionamento.

e Criptografia: O coprocessador deve ser capaz de receber um ponto da curva, e

fazendo uso de uma chave publica, cifrar uma mensagem.

e Descriptografia: O coprocessador deve ser capaz de receber um ponto da curva,

e, fazendo uso de uma chave privada, decifrar uma mensagem.

e Assinatura Digital: O coprocessador deve ser capaz de receber o codigo hash de
um conjunto de dados, e a partir dele e uma chave privada, gerar uma assinatura

digital.

51

e Validacdo de Assinatura: O coprocessador deve ser capaz de receber o codigo

hash de um conjunto de dados, bem como uma assinatura digital e uma chave

publica, e testar a validade dessa assinatura digital.

Sao, portanto, 5 operacdes que devem ser especificadas como instru¢des passadas

ao coprocessador. Estas instru¢des serdo passadas através de um canal serial por uma

interface USB, que serd detalhada adiante. Estas instru¢des compreendem processos

que ndo podem ser realizados diretamente através de um pipeline simples. Instrucdes

criptograficas demandam calculos iterativos, controlados em diversas camadas de uma

hierarquia de dados. A estrutura geral do coprocessador, que trabalha nestas camadas,

pode ser apresentada da seguinte forma:

Interface USB

' i

Y

Controlador Principal Multiplicagdo de Pontos

F 3

A

Y

Aritmética de Curvas
Elipticas

A

h 4

Aritmética de Corpos
Finitos

Figura 15: Estrutura do Coprocessador

6.2 Hierarquia do Fluxo de Dados

Uma vez apresentada a configuracdo do coprocessador, vamos detalhar um pouco

a funcdo de cada um de seus médulos. Como especificado, o hardware trabalha com

uma hierarquia de dados, nos quais cada instru¢do demanda operacdes que controlam

suboperagdes em camadas inferiores. Os dados caminham da seguinte forma:

52

Controlador
Principal

//Iultiplicagﬁo de Ponto\
/ Aritmética de Curvas Elipticas \
/ Aritmetica de Corpos Finitos \

Figura 16: Hierarquia do Fluxo de Dados

Moédulo Interface USB

Funcio: E através do médulo de interface que nosso coprocessador se comunica com
o software do sistema. Este mdédulo tem a func@o de receber as instrugdes e seus
parametros através de uma conexao serial, € mapeé-las em um formato que pode ser
utilizado pela unidade de controle. Analogamente, tem a funcdo de receber os outputs

do coprocessador e maped-los de modo a permitir uma transmissao serial.

Moédulo Controlador Principal

Funcao: Este médulo atua como a unidade de controle principal do coprocessador,
recebendo as instru¢des da interface USB, e repassando os sinais necessarios para
realizé-las, incluindo subinstrucdes de load e store em registradores internos, gerenci-

amento de fila dos médulos seguintes e inser¢do de bolhas no pipeline.

Moédulo Multiplicagdo de Pontos

Funcdo: Este modulo atua na organizagdo do processo iterativo de multiplicacdo es-
calar de pontos de curvas elipticas, que demanda operagdes constantes nas camadas
inferiores. Esta € a principal etapa no processo de criptografia de curvas elipticas.
Operacgoes:

Z(x,y) =k * P(xy)

53

Modulo Aritmética de Curvas Elipticas

Funcao: Este pode ser considerado o médulo aritmético superior do coprocessador, € a
ele compete as operacdes basicas de curvas elipticas, especificamente soma e reflexao
de pontos, calculados através das operacdes geométricas demonstradas na parte ted-
rica deste relatdrio. Para isso, cada operagcdo € um processo de requisi¢cdes a camada
inferior de aritmética de corpos finitos.

Operacoes:

Z(xy) = - P(x,y)

Z(x,y) =2 * P(xy)

Z(x,y) = P(x)y) + Q(x,y)

Moédulo Aritmética de Corpos Finitos

Funcao: Esta é a camada mais inferior do sistema, responsdvel pelos cédlculos puros
de aritmética sobre os corpos finitos. Responde as camadas superiores e apresenta os
processos realizados no menor nimero de ciclos de clock.

Operacgdes:

Z =P modn

Z=FP+Q)modn

Z = (-P) mod n

Z = (P*Q) mod n

Z =(1/P) mod n

6.3 Diagrama de Instrucoes

Para desenvolver a unidade de controle e o fluxo de dados do coprocessador na
proxima fase deste projeto, é necessario que detalhemos cada instru¢do, incluindo in-
puts, outputs, sinais e dados de memoria que serdo utilizados durante a sua execugao.
Dessa forma, desenvolvemos diagramas especificos contendo estes dados e a ordem de

operacdo para cada instrucao. De modo a facilitar o entendimento, cada etapa da ins-

54

trucao € identificada por uma cor que marca qual camada hierdrquica do coprocessador

¢ responsdvel por sua execugdo. A tabela de cores é dada abaixo:

Aritméticade
Controlador Multiplicagao
. Curvas
Principal de Pontos -
Elipticas

Figura 17: Legenda de camadas de operagao

Inputs:
string FR Inicio
int Q

int A
int B
int N
int H
point P

-

Sinais:
int sts

w

Meméria:
string fr
intg
inta

intb sts=1

=+
=
1}

"
TIzZw>»pO0J]

T 35 T wao
n

a—

intn

inth
point p ¢

Outputs:
int STS

_/—\

STS =sts

Fim

Figura 18: Instrucdo: configurar corocessador

Inputs:
Int K

point Q
point M

w

Sinais:
Intk
point q
point m
point c1
point c2
point c3

"

Memoria:
Int K
point P

0

Outputs:
point C1
point C2

55

Inicio

S o=
I
ZPpx

\/_\

cl=k*p

c3=k*q

c2=m+c3

Cl=cl
C2=c2

Fim

Figura 19: Instrucdo: cifrar uma mensagem

56

Inputs:
intD Inicio
point C1

point C2

-

Sinais:
intd
point c1

point c2

point x ¢
point x’
point m

\/_\

d=D
cl=C1
c2=C2

x=d*cl

point M

\/—\ X =-X

m=c2+x

Fim

Figura 20: Instrugdo: decifrar uma mensagem

Sinais:
int k
intd
inth
intal
inta2
inta3
inta4

intj
intr
ints

point x

_/\

Memdria:
intK

\-//—\

Qutputs:
intR
intS

Inicio

O o x
1]
I O =R

_/\

a3=al+r

x =k*p

al=x_x

v

ad=1/k

s =ad*a3

€

r=amodn

w0
o
wv =

v

a2=d*r

Fim

Figura 21: Instrugdo: gerar assinatura digital

57

Sinais:
inth
intg
intr
intr
intw
intul
intu2
inta
intv
point t1
point t2
point z
Int vid

—

Memdria:
intn
point p

\-/—\

Outputs:
int VLD

Inicio

w -8 =
I
woI DT

w=1/s

ul =h*w

u2 = r*w

/\

tl=ul*p

t2 =u2*p

-

Figura 22: Instrucdo: validar assinatura digital

z=vl+v2
a=z_x
v=amodn
— v=r?
S
vid=1

vid=0

VLD = vid

58

59

6.4 FPGA

A placa que serd utilizada neste projeto é a Nexys 2, da Digilent. Ela contém a
FPGA Xilinx Spartan-3E de 1200k gates (DIGILENT, 2015), ideal para este projeto.
A placa também oferece diversos canais de comunicacdo, como USB e serial, que
facilitard o desenvolvimento e depuracdo do coprocessador. A principal vantagem
desta FPGA em nosso contexto é o fato dela ter sido desenvolvida para trabalhar com

o ambiente ISE, que utilizaremos para escrever o cddigo VHDL do coprocessador.

_M}Cron

i

ADIGILENT

Figura 23: Placa Digilent Nexys 2

High Speed Platform Flash | SDRAM

USB2 Port +— Flash | 16MByte| 16MByte
(JTAG and Data) | (config ROM) SOE_WHZ | (oD | gaicron]
n}Paa || TG | 5

i:XII_INX' Spartan 3E-500 FG320

a1
R] T
]| ;
BEEE PS2
110 Devices Data Ports Expansion Connectors

Figura 24: Especificacdo da Digilent Nexys 2

60

Para a interface entre hardware e software necessdria para nosso projeto, faremos
uso de um componente USB que permite comunicacao serial direta, que ja € suficiente

para cumprir com os requisitos do projeto.

Figura 25: Interface de comunicacdo serial USB

61

7 IMPLEMENTACAO DE SOFTWARE

7.1 Terminal de Comunicacao

A camada de software deste projeto é composta por um aplicativo escrito em lin-
guagem C++, capaz de se comunicar com 0 nosso coprocessador, € também simular
suas funcdes a fim de gerar dados para compararmos o desempenho entre as operacdes
criptogrificas em hardware e em software. Acima de tudo, a aplicagdo serve como

uma interface entre o usudrio € nosso projeto.

Uma vez que este ndo era o foco deste projeto, implementamos esta camada na
forma de um terminal simples, sem uma interface grafica mais sofisticada. A estrutura
interna do software sofreu algumas pequenas modificagcdes de modo a tornar os pro-
cessos mais diretos: a divisdo entre classes se tornou menos dependente dos atores, €

mais dependentes do fluxo do caso de uso.

Em geral, o software cumpre com todos os seus requisitos, e é capaz de realizar
as seguintes funcdes: gerar um par de chaves, cifrar uma mensagem, decifrar uma
mensagem, gerar um comprovante nos padrdes especificados neste relatério, assinar
um comprovante, e validar a assinatura em um comprovante. As telas abaixo acompa-

nham os casos de uso retratados aqui.

P -~
¥ Clwindows\system32\cmd.exe , _

— PCS2502 —
Projeto de Conclusao de Curso — Coprocessador Criptografico

0 gue voce deseja fazer?

> Gerar par de chaves
Criptografar uma mensagem
Descriptografar uma mensagem
Gerar comprovante
Asszinar comprovante
Ualidar comprovante
Sair

Figura 26: Interface inicial do software

— -
B Chwindowshsystem32\cmd.exe , _

<5 Assinar comprovante
(6> Validar comprovante
<@>» Sair

il
Nome de wsuario: dcuflat

Salvando chave privada de dcuflat...
ez 6hd9298feefPeb1d7P1PAe631242@896chleShlif2?e4bedd56408cec?e5212457d7h

%alvando chave publica de dcuflat...
x: a?8c6b95c?fI3aBbBb4583a?o48104c?4875c3dbef64b26b1d3al 747182384950
y: b6ad2fdPacf98d?37183f9dbdc5f7a?7b18dAdc52edel1 3A46E88906ePd27453F1h

0 que voce deseja fazer?

} Gerar par de chaves
Criptografar uma mensagem
Descriptografar uma mensagem
Gerar comprovante
Assinar comprovante
Validar comprovante
Sair

Figura 27: Caso de uso - gerando um par de chaves

2

m

Mome da mensagem: mensageml
Nome do destinatario: dcuflat

Qual meio pretende usar?

(1> Software — Biblioteca Cryptopp
(2> Hardware — Coprocessador Criptografico
1

Escreva uma mensagem:
Menzagem de teste

MENSAGEM: Mensagem de teste

Carregando chave publica de dcuflat...
a%8ch?5c7f33afbAh4503a75481 A4c?4075c3dbef6db26bid3aB74£f 71 8a30495h
y: boad2fdPacf?8d?37183f?dbdc5f 7a?7h18dBdc52edel1 3046889062 7d27453F 1

CIFRA: #3e+1’ "BRI[ICYI4AT4c¥2 j45>B8n LeownF= 86 ivt= TR_Bul . \4E EOAAGSE|[Entdoag! 32
G20 TAAESaY _hgOAL $ZeTHi. CTE

Tempo de operacao criptografica: 5531 us

Figura 28: caso de uso - cifrando uma mensagem

62

Mome da mensagem: mensageml
Mome do destinatario: dcuflat

Qual meio pretende usar?

(1> Software — Biblioteca Cryptopp

(2> Hardware — Coprocessador Criptografico
i

CIFRA: #de:t’ “BRI|ICYJMATA4c¥2 j4>66n " LeownF ivt=F0R_fuf, ¥ ARgSEllent4®ag! 42

(20 SANESAVY _=hgyONI SZETHI.CTE

Carregando chave privada de dcuflat...

e: 6hd?298feef?e61d?81Be6312420%6cbleS5hlf27edhedBb64Bcec?e5212457d7h
MENSAGEM: HMensagem de teste

Tempo de operacao criptografica: 6e?l us

0 gue voce deseja fazer?

(1> Gerar par de chaves

(2> Criptografar uma mensagem
(3> Descriptografar uma mensagem

Figura 29: Caso de uso - decifrando uma mensagem

BN Cl\windows\system32\cmd.exe _

¢@> Bair

4

Mome do comprador: Dennis Seman
Ualor do produto: R$100.00

HHEHEE R R R R R R R R R R
PCE2501 {i TRABALHO DE CONCLUS FO DE CURSO
COMPROUANTE DE COMFRA

=% CEDIGO DE COMPRA :18041 .088008

=% COMPRADOR :Dennis Seman

= LOJA = ESCOLA POLITRCNICA

=** DATA DA COMPRA :29.11,2@15

== UALOR DA COMPRA :R$100.00

BigBieiniidiniidinisifiaiaifidinid dieididihinidiBiniaibiainididinididihisiniiidisininisifisinis]
Salvar comprovante como?

comprovante

0 gue voce deseja fazepr?

(1> Gerar par de chaves

(2> Criptografar uma mensagem
- T e —

Figura 30: Caso de uso - gerando um comprovante

BN Chwindows\system32\cmd.exe —

Mome da mensagem: comprovante
Mome do remetente: dcuflat

Qual meio pretende usar?
1> Software — Biblioteca Cryptopp
{2» Hardware — Coprocessador Criptografico

MENSAGEM: {HHHHE G HHHHHE S HHEHH S HHHEH i HHH R R i
PCS2501 {i TRABALHO DE CONCLUS [0 DE CURSO

COMPROUANTE DE COMPRA

== CEDIGO DE COMPRA :18841 A88A0A

=% COMPRADOR :Dennis Seman

e LOJA = ESCOLA POLITRCHICA

== DATA DA COMPRA :29.-11-281%

== UALOR DA COMPRA :R$100.80

LEiM g iaiRiBininis v g I8 IRIBININIS BT IRIBINIRININ HIIAIRIGININIE M IBIEIRIRININININ BIEAIR]

Carregando chave privada de dcuflat...
e: 6hd?298feefPe61d47P108e6312420%6ch1e5hlf2?e4hedB85648cec?e5212457d7h

ASSIMATURA: £ lxnC. CETMES% ;8518 n,)0 Selle rpliHOK 12 46 \aZil=0B FEMa e Tul

Tempo de operacao criptografica: 7hea us

Figura 31: Caso de uso - assinando um comprovante

63

64

BN Chwindows\system32\cmd.exe _

GQual meic pretende usapr?
(1> Software — Biblioteca Cryptopp
(2> Hardware — Coprocessador Criptografico

MENSAGEM: #i#iiiiidgiaggiitigig i niiniin gt
PCS2501 {i TRABALHO DE CONCLUS 0 DE CURS0
COMPROUANTE DE COMFPRA

CEDIGO DE COMPRA :18041 .880864

COMPRADOR :Dennis Seman

LOJA : ESCOLA POLITRCMICA

DATA DA COMPRA :29.-11,/2815%

UALOR DA COMPRA :R5100.P0
it s gttt Rt
ASSINATURA: £lxq<. CETN™13Z (&; 8415 In, 900 ey mpUHOX 1280 \Zili=08 "FEMa<Tuvd
Carregando chave publica de dcuflat...
x: a?Bc695c?fI3aBbBh4503a7548184c74875c3dbef64b26b1d3a874F 7182384950
y: hbad2fd7acf?Ad937183F 7dbdce5f2a?7b18d0dc52ede1 304688906 7d27453F1h
RESULTADO: Valido

Tempo de operacao criptografica: chih us

Figura 32: Caso de uso - validando a assinaturo de um comprovante

65

8 IMPLEMENTACAO DE HARDWARE

8.1 Aritmética de Corpos Finitos

O primeiro médulo desenvolvido no projeto foi aquele que estd na base da hierar-
quia do processador, o médulo de aritmética de corpos finitos. Basicamente todos os
outros médulos implementam operagdes que dependem diretamente deste. A funcdo
principal do médulo € receber os parametros de médulo do corpo finito, tipo de opera-
cdo, e dois operandos (que necessariamente devem estar dentro do intervalo definido
pelo campo), e devolver o resultado da operacdo. Implementamos ainda uma camada
inferior dentro desta, que atua como a ULA da camada para os casos em que a opera-
cdo € feita em um unico ciclo de clock (combinatdria). Sdo essas operagdes a adigao,
subtragdo, e multiplicacdo. Estas operagdes sao implementadas diretamente em c6digo
VHDL, seguindo as regras e instru¢des definidas anteriormente neste relatério para a

aritmética de corpos finitos.

Acompanham os blocos operacionais da ULA buffers de entrada e saida, que evi-
tam constantes alteracdes de estado e tornam o consumo mais eficiente, € um mini-

controlador responsavel por estes buffers.

Com isto, montamos o nosso médulo de aritmética de corpos finitos. J4 temos
uma ULA para as operagdes combinatérias, porém ainda precisamos de um compo-
nente capaz de realizar a operagdo de inversdo, definida pelo algoritmo euclidiano
estendido para campos de Galois (GF), baseado em divisores comuns. Este compo-

nente também foi implementado diretamente em cédigo VHDL, mas é um processo

ent

en2

field_alu_control
codel(1.0) b code(1:0)

buffer_3x256

mod_adder

buffer_ffalu

de(1:0) 20(255:0) [—+

1(255:0)

——]x_i(256:0) x_0(265:0) [—+ { 0) 2(256:0) | T
1y.i(255:0) y_0(255:0) [—————F——y(255:0) ———————F——22(2550)
| m_i(255:0) m_0(255:0) [———— m(255:0) — 23(256:0)
enable
buffer_3x256 mod_subtr

1x_i(256:0) x_0(256:0) [——3——F

1y_i(255:0) y_0(255:0) [———F

p——————F——m_i(255:0) m_0(255:0) [——3—F
enable

X(265:0) 2(266:0) i

Y(255:0)

m(255:0)

buffer_3x256 mod_multiplier

——x_i(255:0) x_0(255:0) —*

0 2(2550)[—3

b m_i(255:0) m_0(255:0) ——F—

enable

{——1y.i(255:0) y_0(255:0) ————F——]y(25!

m(255:0)

Figura 33: ULA do mdédulo de aritmética de corpos finitos

iterativo, que demanda um maior nimero de ciclos de clock, e portanto requer sinais
de controle adicionais como start € done. Dessa forma, ao nosso modulo fazemos
duas adi¢Oes: Primeiramente, precisamos de um registrador que guarde o resultado
das operacdes, especialmente no caso das operagdes combinatdrias, cujos resultados
permanecem corretos apenas durante um ciclo. Adicionalmente, ainda precisamos de

uma unidade de controle do médulo, que implementa uma maquina de estados simples.

op_codn@0) —t

ffield_control

clock op_done
op_start OP-record f
start |

ffield_reg

op_resp

done
=] op_code(2:0), . 1.0y

mod_inverter

. done
{start

reset

| 0) 2(255:0) [——+

————|m(255:0)

field_alu

1y(255:0)

| m(256:0)

] code(1:0)

£——x(255:0) 2(255:0) —F4————

op_record zout(:
op_resp
21(266:0)

22(255:0)

)

R
w0 >
{0 >

Figura 34: Médulo de aritmética de corpos finitos

67

A mdquina de estados simplesmente contém um estado inicial de repouso, dois es-
tados que disparam operacdes (combinatéria ou iterativa), dois estados que aguardam
resposta e comandam a gravacao do resultado no registrador, e um estado que indica

ao coprocessador que as operacgdes ja foram feitas e o resultado esta disponivel.

I:fj)

h
op_start <="1"7 op_start <="1"7
op_code(2] =07 op_code(2] = 17
52
code <= op_code start €="1"
r_done = '1'? r done = '1'?
8 s
op_record <= 1" op_record <= '1'
55
op_done <= ‘1’
{)
\
A

Figura 35: Maquina de estados do mddulo de aritmética de corpos finitos

Depois de terminado o mddulo, fazemos alguns testes para garantir que este es-
teja funcionando corretamente. O processador € capaz de lidar com operagdes com
operandos de até 256 bits, porém, a fim de tornar os resultados mais compreensiveis,
colocamos no relatdrio os testes com valores muito mais baixos. A seguir, estdo as
formas de ondas para os 4 tipos de operacao: soma, subtragdao, multiplicacio e inver-
sdo. Todas sobre um corpo de médulo primo 29, e apresentando resultados corretos,

conforme esperamos deste médulo do projeto.

68

2,000.000 ns

2,000 ns 2,020 ns

B x255:0)
B yi255:0)
'ﬂ op_code[2:0]

B z255:0)

Ly op_record
b B mem[255:0)
15 op_resp

X1: 2,000.000 ns

Figura 36: Simulagdo de uma operagao de adi¢dao

3,000.000 ns

2,980 ns 3,000 ns 3,020 ns 3,040 ns 3,060 ns 3,080 ns

EI op_done

L current_state

;.E op_record
» B mem[255:0)
|G op_resp

X1: 3,000.000 ns

Figura 37: Simula¢do de uma operacdo de subtracdo

3,980 ns

-!'I] dock
B m[255:0]
B x(255:0)
B yi255:0)
'ﬂ op_code[2:0] 1
L Er)
Ly op_done

current_state

X1: 4,000,000 ns

5,000 ns
Ly clock
P m[255:0]
'ﬁ %[255:0]
B yi255:0)
'ﬂ op_code[2:0]

;h op_start

» B z255:0]

-"|:-:| op_done

Ligs current_state
» B]
» B z202550)
i.ﬂ op_record
» B mem[255:0]
ilu op_resp

5150 ns

Figura 39: Simula¢do de uma operagdo de inversao

69

70

8.2 Aritmética de Curvas Elipticas

O segundo médulo desenvolvido é o mddulo de aritmética de curvas elipticas. Ele
implementa diretamente o modulo anterior para realizar operagdes sobre pontos de
uma curva representada pela equacao de Weierstrass, definida anteriormente neste re-
latério. A sua funcdo principal € receber os parametros de médulo do corpo finito, tipo
de operacdo, e dois operandos (na forma de dois pontos da curva pré-estabelecida, cada
um definido por um par x,y), e devolver o resultado da operagdo. Vale notar que ainda é
util permitir que operagdes avulsas (adi¢do, subtracdo, multiplicacdo e inversio) sejam
acessadas através deste modulo, e ndo apenas operacdes de pontos. Portanto deve-
mos levar isso em conta na hora de projetar o controlador. Temos para esta camada
o modulo de aritmética de corpos finitos, o controlador, € também um banco de re-
gistradores. Como as operacdes sobre pontos demandam novas varidveis, precisamos
de um local no médulo para armazenar os resultados de cada sub-operacdo. Por conta
disso, além de sinais de tipo de operacao, o controlador também deve manipular sinais
de enderecamentos (tanto de entrada como de saida dos registradores), comandos de

gravacdo e disparo de operagdes.

A nova méaquina de estados deste modulo € um pouco mais robusta do que a do
modulo anterior, visto que precisa implementar sub-rotinas inteiras. As duas principais
operacoes, as realizadas sobre os pontos de curva, sdo a soma de dois pontos e o dobro
de um ponto, que acompanham as quatro sub-rotinas que apenas chamam as operacdes
primdrias individuais. Apesar do nimero maior de estados, a estrutura da maquina
ainda se mantém relativamente similar, com um estado inicial de repouso, os estados
relativos a cada operacdo, e um estado final, que indica ao coprocessador o término
da execugdo e disponibilidade dos resultados. Abaixo da miquina de estados, também
inserimos duas tabelas que tratam dos sinais internos de cada passo das duas operacdes
de pontos, incluindo os cddigos de operacdo e endereco dos registradores utilizados em

cada etapa do processo;

ecurve_control

ffield_arith

dock & —_{clock opdonef——— T wame
— clock op_done
fhield_start
95l et Op_start p_code(2:0)
reg_code(1:0)
] %(255:0)
ffiela_in1_add(3:0)
op_tpel20) —————— op_type(2:0) ¥(255:0)
ffield_in2_add(3:0)
[mi2550) > —— m(255:0)
field_out_ade(3:0) |———
ffield_done op_start 2(255:0)
op_code(2:0) —— I
ecurve_regs
clack ffield_in1(265:0) ——
BT] x1(255:0) ffield_in2(255:0) ——
a0 ——x2(255:0)
[12550} >] y1(255:0)
T] y2(255:0)
de(1:0)
—] ffield_out(255:0)
£ ffield_out_add(3:0}

ffield_in1_add(3:0)

] ffield_in2_add(3:0)
X3(255:0) —F—— weso)
50 [

Figura 40: Mdédulo de aritmética de curvas elipticas

0

|
op_start = '1'?

i
regs <= ", "y

s
:

op add op sub op mult

!

op_done <=1

O

Figura 41: Méquina de estados do médulo de aritmética de curvas elipticas

CURVAS ELIPTICAS — SOMA DE DOIS PONTOS

x3=((y2-y1)/(x2-x1))*-x1 -x2

y3=((y2-y1)/(x2-x1))(x1-x3) -yl

Pardmetros: X1,X2,Y1,Y2 | Reg Parametros: RO,R1,R2,R3
Calculo Registradores Cadigo
Resultado Operador 1 Operador 2 Operacdo
R1=Y2-Y1 4 3 2 011
R2=X2 -X1 5 1 0 011
R2=1/R2 5 5 0 100
R1=R1* R2 4 4 5 011
R2=R1*R1 5 4 4 011
R3=X1+X2 6 0 1 010
R3=R2-R3 6 5 6 011
R4 =X1-R3 7 0 6 011
R2=R1* R4 5 4 7 001
R4=R2-Y1 7 5 2 011
Saidas: X3,Y3 | Reg Saidas: R6,R7

Figura 42: Estados - Soma de dois pontos

CURVAS ELIPTICAS - DOBRO DE UM PONTO

x3 = ((3x1%+ a)/(2y1))*-2x1 ;

y3 = ((3x1%+ a)/(2y1)) (x1 - x3) - y1

Parametros: X1,A¥1,3 | Reg Parametros: RO,R1,R2,R3
Calculo Registradores Cadigo

Resultado Operador 1 Operador 2 Operagdo
R1=X1*X1 4 0 0 001
R1=03 *R1 4 3 4 001
R1=R1+ 0A 4 4 1 010
R2=Y1+Y1 5 2 2 010
R2=1/R2 5 5 0 100
R1=R1*R2 4 4 5 001
R2=R1*R1 5 4 4 001
R3=X1+X1 6 0 0 010
R3=R2-R3 6 5 6 011
R4=X1-R3 7 0 6 011
R2=R1* R4 5 4 7 001
R4=R2-Y1 7 5 2 011

Saidas: X3,Y3 | Reg Saidas: R6,R7

Figura 43: Estados - Dobro de um ponto

73

Tal como no médulo anterior, depois de terminada a descri¢do, fazemos testes para
avaliar o seu correto funcionamento. Vamos demonstrar abaixo as formas de ondas
para as duas operagdes de pontos, soma e dobro. Como referéncia a parte tedrica deste
relatrio, vamos utilizar as operagdes que exemplificamos logo ao introduzi-las: Em

um campo primo de médulo 29, com a curva da forma:

E:y2:x3+4x+20

Operagdo de Soma: (5,22) + (16,27) = (13,6);
Operacgdo de Dobro: 2#(5,22) = (14,6);

'B dock

B m(255:0]
B a[255:0]
B v1i255:0]
B x2i255:0)
B y21255:0]
B op_type[20)

B op_start

» B 302550
['S B

Iy op_done

current_state

b BF op_code[20)

b B reg_code(l:0]
1y frield_start
1y ffield_done

X1: 1,100.000 ns

Figura 44: Simulagao de uma operagao de soma de pontos

74

-!.[I clock

B m[255:0]
P [255:0)
B v1[255:0)
B 2[2s5:0)
B y2[255:0]
B op_type[2:0]

_é op_start
» B 2550 13
B y3[255:0]

i frield_start
iy ffield_done

Figura 45: Simulagao de uma operagao de dobro de um ponto

8.3 Multiplicacao Escalar de Pontos

O terceiro médulo € o médulo de multiplicacdo escalar de pontos para curvas elip-
ticas. A multiplicacdo escalar € completamente dependente de operacdes sucessivas
de soma de pontos, e portanto, o médulo € baseado em um loop que faz chamadas
de soma conforme seus operandos. A operacdo € feita da seguinte forma: O ponto a
ser multiplicado € dobrado e registrado em um banco interno por tantas vezes quanto
os bits do multiplicador, do menos ao mais significativo, levam para atingir o 1 mais
significativo (por exemplo, para uma multiplicacio por 9, em bindrio, 1001, sdo 4 ope-
racdes de dobro até o 1 mais significativo). Realizadas as multiplica¢cdes, sdo feitas as
chamadas de soma de pontos para cada resultado de dobro equivalente a um bit 1 do
multiplicador, até chegar ao resultado final. Resumidamente, temos uma soma parcial
de pontos resultantes de operacdes de poténcia, e a estrutura do moédulo repete a trinca
de controlador, banco de registradores, e médulo aritmético, que verificamos nos casos

anteriores.

75

2888 e x1(255:0)

ecurve_mcontrol

oo clock op_done | ———{ w.ame

ecurvea_start

op_start reg_cote(1 Q)]

ecurvea_in1_add(30)

ecurve_mregs

clock 3(255:0) [————

ecurve_arith

¥31255:0) [————— et =D m(255:0)

ecurvea_done
ecurvea_in2_ada(3.0) =+

—y1(2550) ecurvea_n1(255:0) —+ £ Jx1(255:0) X3(255:0) [—F——
] 2(255:0) ecurvea_in2(255:0) = 0)
(2550) ecurvea_in3(255:0) [+ —y1(2550) y3(2550) =
2, % y ¥
e code(10) ecurvea_nd(255:0) [—+ p— e
) 3_in1_add(3:0)
=] ecunvea_in2_ado3:0) s

op_start op_done

ecurvea_in3_add(30) |

LX)] op_type(20)
ecurvea_ind_add(3.0)

{ecunvea_in3_ade(3:0)

{—|ecuvea_ind_addi30)

_out!_add(3:0) [

ecurve_mtopbit

ecurvea_out2_add(3:0)

Jecunea_outl_add(3:0)

P mult(255 0} topbit(7-0) [-——fmrf——] plimit(7:0) e —

[————Jecunvea_out1(255.0)

r ecunvea_out2(265:0)

| ecunea_out2_add(3:0)

Figura 46: Médulo de multiplicac@o escalar de pontos

Os parametros da multiplicacdo sdo: ponto, multiplicador, e coeficiente <a> da

curva, mas, tal como nos outros modulos, também € necessdrio adaptar este de modo

que consiga efetuar operagdes avulsas de qualquer camada inferior, seja uma soma

singular de pontos, ou uma operacdo de multiplicacdo sobre curvas elipticas. Sendo

assim, a estrutura da maquina de estados deste mddulo € praticamente a mesma daquela

do moédulo de aritmética de corpos finitos. Demonstramos abaixo, entdo, apenas a

maquina de estados da sub-operacdo de multiplicacdo escalar de pontos.

op_start ="1"
op_type = 001"
¥
ecurve_start = '’
oune > i -
POyt 7| op_code="011

pmultiipcounter] = 07
prounter < max

peounter < pmax

ecurve_done = "1

pmultiipcounter) ="1'

ecurve_start = 1"
op_code = 0107

reg_code = “010"

ecurve_done =1’

reg_code = "010°

T
peounter = pmax

_pmulll(pcounter) =0
poounter = max

Figura 47: Méquina de estados da operacdo de multiplicacio escalar de pontos

76

Tendo j4 este modulo pronto, demonstramos abaixo as formas de onda de uma
operacdo de multiplicacdo escalar, novamente fazendo uso do ponto (5,22) da curva
que estamos utilizando de exemplo, e multiplicando-o escalarmente por 9, resultando

no ponto (3,1).

-"B op_start
B op_type[2:0]
B m2s5:0)
B 2550
B vi[255:0]
B x2(255:0)
B y2[255:0)

current_state [t{ opmdb = opmgb = opmdb X o

iif. pcounter |
i'm ecurvea_start
i'ﬁ ecurvea_done
"
BE reg_code[l:0]

op_code[2:0]

X1: 0.130000 us

Figura 48: Simulagcdo de uma operacdo de multiplicagc@o escalar de pontos

8.4 Controlador Principal

Finalmente, temos o médulo de controlador principal, que se encontra no topo da
hierarquia do coprocessador (exceto a interface de comunica¢do com software). Este
modulo € responsdvel por fazer chamadas a qualquer tipo de operacdo implementada
pelos médulos inferiores a fim de completar as 4 principais fungdes do coprocessador:
cifrar uma mensagem, decifrar uma mensagem, gerar uma assinatura do coprocessador
digital, e validar uma assinatura digital. Resumidamente, este ¢ o mddulo que controla
todas as fungdes e implementa diretamente as maquinas de estado de nossa especifi-
cacdo. Ao ser iniciado, pode carregar os parametros encaminhados pelo software ou
receber o cddigo de operacgdo referente a uma de suas fungdes e iniciar o seu respectivo

processo, retornando a interface hardware-software os resultados obtidos.

77

mcoproc_regs
| clock out_ext1(255:0) =4 oaemesn
in_ext1(255:0)
Jin_ext2(255:0) out_ext2(255:0) [=] ou emzassn
Jin_ext3(255:0)
{in_ext4(255:0) out_ext3{265:0) 4 o emessn)
in_ext5(255:0)
(255 0) |in_exts(255:0) out_ext4(255:0) | Jd cua_eniazss0)

L———Jcurve_out_x(255:0)

L ——Jcurve_out y(255:0) curve_in_m(255:0)
Jeurve_out_x_add(4:0)
mcoproc_control
— Jcurve_out_y_add(4:0)rve_in_x1(255:0) |
clock op_done | .
Jeurve_in_m_ada(4:0) eCUrVe_mUItl
curve_start -
Jeurve_in_x1_adei(4:@urve_in_x2(255:0) | t |m(255:0) x3(255:0) —
curve_code(2:0) f -
— Jcurve_in_x2_add(4:0) S]x1(255:0)
reg_code(2:0) |
. op.start] curve_in_y1_add(4:@rve_in_y1(255!0) [1(255:0)
curve_out_x_add(4:0) |
(—————] curve_in_y2_add(¢.0) e s
curve_out_y_add(4:0) [——+ y3(258:0) ——F—
————jreg_code(20) curve_in_y2(255:0) [y2(255:0)
curve_in_m_add(4:0) [—=
- curve_done] op_type(2:0)

curve_in_x1_add(4:0) |
op_start

curve_in_x2_ade(4:0)

clock op_done
curve_in_y1_adc{d:0) | |

0862) et] code(2:0) curve_in_y2_add{4.0)f

Figura 49: Médulo de multiplicacdo escalar de pontos

Uma vez que a maquina de estados para os processos deste modulo foram deta-
lhadas na especificacdo do sistema, inserimos abaixo as tabelas que tratam de todos os
passos das funcdes e seus devidos cédigos de operacdo e de enderecamento no banco

de registradores.

OPERACAQ — CRIPTOGRAFAR UMA MENSAGEM
Entradas: Point P, Point Q, Point M, int k
Saidas: Point C1, Point C2
Parametros: Px, Py, Qx, Qy, Mx, My, k Reg Parametros: R26, R27, RO,
R1,R2, R3, R4
Célculo Registradores Cadigo
Resultado Operador 1 Operador 2 Operagdo
(R28,R29)=R4 * (R26, R27) 28,29 26,27 4,22 001
(RO,R1) = R4 * (RO, R1) 0,1 0,1 4,22 001
(R30,R31)=(R2, R3) + (RO, R1) 30,31 2,3 0,1 010
Saidas: Clx, Cly, C2x, C2y Reg Saidas: R28, R29, R30, R31

Figura 50: Estados - operacao de cifracdo de uma mensagem

OPERACAO - DESCRIPTOGRAFAR UMA MENSAGEM

Entradas: Point C1, Point C2, intd

Saidas: Point M

Parametros: Clx, Cly, C2x, C2y, d

Reg Parametros: RO, R1, R2,

R3,R4
Caélculo Registradores Codigo
Resultado Operador 1 Operador 2 Operacdo
(RO, R1) = R4 * (RO, R1) 0,1 0,1 4,22 001
R1=-R1 1 20 1 101
(R28,R29) = (RO, R1) + (R2, R3) 28,29 0,1 2,3 010
Saidas: Mx, My Reg Saidas: R28, R29

Figura 51: Estados - operacdo de decifracdo de uma mensagem

OPERACAQO - GERAR UMA ASSINATURA DIGITAL

Entradas: Point P, int m, int d, int k

Saidas:intr, ints

Parametros: Px, Py, Mx, My, d, k

Reg Parametros: R26,R27, RO,

R1,R2, R3
Calculo Registradores Cadigo
Resultado Operador 1 Operador 2 Operagao
(R4, R5) = R3 * (R26, R27) 4,5 26,27 3,22 001
R28=1 * R4 (mod R25) 28 21 4 110
R6=R2 * R28 (mod R25) 6 2 28 110
R6=R6 + RO (mod R25) 6 6 0 100
R7=1/R3 (mod R25) 7 3 20 111
R29=R6 * R7 (mod R25) 29 6 7 110

Saidas:r, s

| Reg Saidas: R28, R29

Figura 52: Estados - operacdo de geracao de assinatura digital

OPERACAO — VALIDAR UMA ASSINATURA DIGITAL

Entradas: Point P, Point Q, int m, intr, int s

Saidas: int val

Parametros: Px, Py, Qx, Qy, m, , s

Reg Parametros: R26, R27, RO,

R1,R2, R3, R4
Célculo Registradores Caodigo
Resultado Operador 1 Operador 2 Operacao

R5 =1/ R4 (mod R25) 5 4 20 111

R6=R2 * R5 (mod R25) 6 2 5 110

R7=R3 * R5 (mod R25) 7 3 5 110

(R8,R9) = R6 * (R26,R27) 8.9 26,27 6,22 001

(R10,R11)=R7 * (RO, R1) 10,11 0,1 7,22 001

(R8, R9) = (R8, R9) + (R10, R11) 8,9 8,9 10,11 010

R5=1 * R8 (mod R25) 5 21 8 110

R28 =R5 - R3(mod R25) 28 5 3 101
Saidas: Val Reg Saidas: R28

Figura 53: Estados - operacdo de validac@o de assinatura digital

78

79

Temos, finalmente, um mdédulo capaz de realizar todas as operagdes determinadas
na especificacdo do projeto, e podemos entdo realizar os testes necessarios e verificar as
formas de onda resultantes em cada operacgao, a fim de validar o nosso coprocessador
e iniciar os trabalhos no moédulo de interface hardware-software. Para fins de testes,
vamos utilizar novamente os parametros usados como exemplo na parte tedrica deste
relatdrio, ou seja: P=(1,5), d=7, Q=(24,22), e uma mensagem M=(17,10), ainda com

0s mesmos parametros de curva dos itens anteriores.

;[I dock

B codejz:0]
Tn op_start

1l current_state

» B regpiz) 0,0,0,0,0, [0,7,17,10,3,..]

X1: 62.010000 us

Figura 54: Simula¢do de uma operacgdo de cifracdo de uma mensagem

80

E clock

p B code[z0]
'!'ﬂ op_start
B in_ext1(255:0)
B in_ext2255:0)
B in_ext3[255:0

op_done

out_extl[2

Il current_s 3 50 decryplb
B reg0:31) 0,7,17 |[0,717,10,3,... [20,3,3,1,7,.].

X1: 72.010000 us

clock
code[Z:0]
op_start
in_extl [255:0]

! op_done
out_ext1[255:0]
out_ext2[255:0]
out_ext3[255:0]

f out_extd[255:0)

'Ir current_state

B reg(0:31) 0,22,3,1,7 7 | [17,10,7]15,0,..])4 [17,10,7,15,3,..]

Figura 56: Simulagcao de uma operagao de geracao de assinatura digital

81

E clock

» B code(z0)
'!'ﬂ op_start
B in_ext1(255:0)
B in_ext2{255:0)
B in_ext3[25
'ﬁ in_extd[255:0
B in_ext5[255:0
B in_ext6[255:0)
lm op_done
B out_ext1[2

Il current_state | =1 0 [vds

B regn:31) [17,10,7,1s] 17 3,nn | [23.22,17,35,..]

Figura 57: Simulacao de uma operagao de validacdo de assinatura digital

8.5 Multiplicador DAR

Ao longo de nosso processo de descri¢ao de hardware e testes com o cédigo, ve-
rificamos que, para operandos com uma quantidade muito grande de bits (como € o
caso de nosso projeto, que usa 256 bits), surgiam problemas na sintese do multiplica-
dor combinatério. O mapeamento das equacdes falhava, e mesmo o periodo minimo
do clock dava indicios de que este circuito nao funcionaria bem em frequéncias mais

elevadas.

82

Para contornar estes problemas, e garantir uma sintese em 256 bits, foi criado um
modulo adicional que realiza multiplicagdo em corpos finitos. Ao contrario do anterior,
este trabalha com uma mdaquina de estados, fazendo uso do algoritmo DAR (Double,

Add, Reduce), iterado a cada bit do multiplicador.

Como trata-se de um moédulo semelhante ao inversor em corpos finitos, a estrutura

da camada de aritmética de corpos finitos foi alterada de modo a acomodar o novo

componente.
ffield_control . ffield_reg
dlock clock op_done EXND fleld_al u op_record zout(255:0) [——% {ouess0 >
op 2(255:0) F————————F—21(255:0)
op_record
op_star op_start -
X(255:0) ——22(255:0)
start
done ” 3
code ———|¥(285:0) ———] 23(255:0)
[ovcoetto) — r’code("o)op_respﬁ P — | m(255:0) |—E! op_resp(1:0)
mod_inverter
clk done
[reset -
Vi\ \\v
’—L /\ start T

AND2 £ X(255:0) OR2

——y(255:0)

m(255:0) 2(255:0)

mod_multiplier_2

clk done

p— reset

start
L
550> ND28+ ——|x(255:0)

[102550 ¥(255:0)

@550, ——|m(255:0) 2(255:0) —%

Figura 58: Médulo de aritmética de corpos finitos com o multiplicador DAR

E preciso lembrar, no entanto, que apesar de oferecer os mesmos resultados, esta
alternativa significa tempos de respostas maiores para o coprocessador. Nota-se, na
nova simulacdo de multiplicacdo, que a quantidade de ciclos de clock para terminar a

operacdo aumentou consideravelmente.

¢ equal_zero
¢ step_type
#ocep

¢ condition

update

¢ equal_zero

Figura 59: Simulagdo de multiplicacdo em corpos finitos com DAR

83

84

9 RESULTADOS E TESTES

9.1 Sintese do Coprocessador

Uma vez que ja temos uma descri¢ao de hardware pronta e devidamente simulada,
utilizamos o Xilinx ISE para sintetizar o coprocessador criptografico. Segue o relatorio

final da sintese do hardware projetado (e fazendo uso do multiplicador DAR):

Final Report

Final Results

RTL Top Level Output File Name : Coprocessor.ngr
Top Level Output File Name : Coprocessor
Output Format : NGC
Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics

I0s 1 7
Cell Usage :
BELS : 88845

GND 11

INV
LUT1
LUT2
LUT2_D
LUT2_L
LUT3
LUT3_D
LUT3_L
LUT4
LUT4_D
LUT4_L
MUXCY
MUXF5
MUXF6
MUXF7
MUXF8
VCC
XORCY
FlipFlops/Latches
FD
FD_1
FDC
FDE
FDE_1
FDPE
FDR
FDRE

FDS

: 296

1058

1925

: 30947

19

14

: 21651

: 68

: 338

1 3270

15551

: 6689

: 2576

1288

: 3146

14275

10507

14

1312

58

85

FDSE
Clock Buffers
BUFGP
I0 Buffers
IBUF

OBUF

: 61

86

Device utilization summary:

Selected Device : 3s1200efg320-4

Number of Slices:

Number of Slice Flip Flops:
Number of 4 input LUTs:
Number of IOs:

Number of bonded IOBs:

Number of GCLKs:

33068
14275

56323

out

out

out

out

out

WARNING:Xst:1336 - (*) More than 100% of Device

No Partitions were found in this design.

of
of

of

of

of

8672

17344

17344

250

24

381%

82%

324%

2%

4%

)

&

resources are used

87

Nota-se que, apesar de termos um coprocessador sintetizivel que atende aos re-
quisitos operacionais deste projeto, o relatério aponta que a FPGA que estamos uti-
lizando ndo possui recursos suficientes para implementa-lo devidamente, e portanto,

uma FPGA mais robusta seria necessaria.

Isto ocorre, principalmente, por conta da natureza hierdrquica da arquitetura que
projetamos. Como cada médulo foi projetado em uma estrutura de controlador, banco
de registradores, e unidade aritmética, quando trabalhamos com operandos de grande
quantidade de bits, a estrutura acumulativa de registradores, que cresce em tamanho e
redundéncia a medida que nos aproximamos das camadas superiores do coprocessa-
dor, consome recursos da FPGA, mais adequada para trabalhar com memdrias do tipo

RAM.

De modo a conseguir implementar devidamente o nosso hardware com os recursos
fisicos que temos, é necessario fazer concessodes no nivel de seguranga. Podemos, para
1sso, reduzir o numero de bits dos operandos para 64 bits, o que torna o hardware

compativel com a FPGA, porém mais vulnerdvel a ataques. Segue o relatorio:

Final Report

Final Results
RTL Top Level Output File Name : Coprocessor.ngr
Top Level Output File Name : Coprocessor

Output Format : NGC

Optimization Goal

Keep Hierarchy

Design Statistics

10s

Cell Usage :

BELS

GND

INV

LUT1

LUT2

LUT3

LUT3_L
LUT4

LUT4_D
LUT4_L
MUXCY
MUXF5

MUXF6
MUXF7

MUXF8

VCC

XORCY

FlipFlops/Latches
FD
FDC

FDE

: Speed

: No

1 22941

: 97
: 289
: 895

1 7971

5447

1 24

: 909

1 3827

1672

1 644

1 322

: 834

: 3775

. 760

13

576

88

FDP
FDPE
FDR
FDRE
FDS
FDS_1
FDSE

LD

Clock Buffers

BUFG

BUFGP

I0 Buffers

IBUF

OBUF

89

15

: 352

1932

59

: 64

Device

Selecte

Number
Number
Number
Number
Number

Number

utilization summary:

d Device : 3s1200efg320-4

of Slices:

of Slice Flip Flops:
of 4 input LUTs:

of IO0s:

of bonded IOBs:

of GCLKs:

7742 out of 8672 89%
3775 out of 17344 21%

14731 out of 17344 84%

7 out of 250 2%

2 out of 24 8%

90

No Partitions were found in this design.

9.2 Comparacao com Software

A tltima etapa deste projeto € avaliar como o hardware que projetamos se com-
para as alternativas de software que efetuam as mesmas operacdes. Para isso, vamos
utilizar o nosso terminal escrito em C++, com a biblioteca Cryptopp, para avaliar o
tempo médio de realizar as 4 operacdes necessdrias (cifrar e decifrar uma mensagem,
gerar e validar a assinatura digital de uma mensagem) sobre os parametros iniciais que

definimos no inicio deste relatorio. Processador utilizado: Intel i3 2.1GHz

Tabela 2: Tempos de Execucdo - Software com biblioteca Cryptopp

Operacado Tempo (ms)
Cifrar uma mensagem 21.809
Decifrar uma mensagem 28.273

Gerar uma assinatura digital | 31.722
Validar uma assinatura digital | 52.027

Para medir os tempos de execucdo do coprocessador, torna-se mais flexivel lidar
diretamente com o nimero de ciclos de clock. Equacionamos, com base em nosso
cddigo e simulagdes, a quantidade de ciclos de clock que as operacdes criptograficas

gastam em cada mddulo do coprocessador:

91

Tabela 3: Numero de ciclos de clock para cada operagdo - Multiplicador DAR

Modulo Operagao Niimero de ciclos
Aritmética de Corpos Finitos Soma 3
Subtracdo 3
Multiplicacao 515
Inversao 259
Aritmética de Curvas Elipticas | Soma de Pontos 1836
Dobro de um Ponto 2868
Soma 7
Subtracdo 7
Multiplicacao 519
Inversdo 263
Multiplicag@o Escalar de Pontos | Multiplicagdo de Ponto | 1087620
Soma de Pontos 1840
Dobro de um Ponto 2872
Soma 11
Subtracdo 11
Multiplicagao 523
Inversdo 267
Controlador Principal Cifrar uma mensagem 2177090
Decifrar uma mensagem | 1089481
Gerar assinatura digital | 1089478
Validar assinatura digital | 2178942

Como a nossa FPGA opera a S0OMHz, vamos considerar um periodo de 20ns para

cada ciclo de clock. Sendo assim, os tempos de execucdo para estas operacdes em

hardware sao:

Tabela 4: Tempos de Execucdo - Coprocessador com multiplicador DAR

Operagdo

Tempo (ms)

Cifrar uma mensagem

43.542

Decifrar uma mensagem

21.790

Gerar uma assinatura digital

21.790

Validar uma assinatura digital

43.579

E interessante também avaliar como a unidade de multiplicacdo combinatdria afe-

taria o desempenho do coprocessador, visto que grande parte das operagdes criptogra-

ficas fazem chamadas de multiplicagdo em corpos finitos pelo menos uma vez:

92

Tabela 5: Numero de ciclos de clock para cada operagdo - Multiplicador Combinatério

Moédulo Operacdo Numero de ciclos

Aritmética de Corpos Finitos Soma 3
Subtragao 3
Multiplicagao 3
Inversao 259

Aritmética de Curvas Elipticas | Soma de Pontos 300
Dobro de um Ponto 308
Soma 7
Subtracdo 7
Multiplicagdo 7
Inversao 263

Multiplicag@o Escalar de Pontos

Multiplicag@o de Ponto | 137348

Soma de Pontos 304
Dobro de um Ponto 312
Soma 11
Subtragdo 11
Multiplicagdo 11
Inversao 267
Controlador Principal Cifrar uma mensagem 275010

Decifrar uma mensagem | 137673

Gerar assinatura digital | 137670

Validar assinatura digital | 275326

Tabela 6: Tempos de Execucao - Coprocessador com multiplicador combinatério

Operagado Tempo (ms)
Cifrar uma mensagem 5.500
Decifrar uma mensagem 2.753

Gerar uma assinatura digital | 2.753

Validar uma assinatura digital | 5.507

93

Podemos verificar que o coprocessador com modulo de multiplicagdo DAR (o mais

lento) j& apresenta tempos de execu¢do da mesma ordem de magnitude do software,

mesmo rodando a 50MHz, contra 2.1GHz do processador convencional. Se conside-

rarmos o coprocessador combinatdrio, este ainda leva a vantagem de ser na ordem de

10 vezes mais rapido.

Projetistas, entdo, poderiam escolher entre duas alternativas: manter a frequéncia

mais baixa do coprocessador como forma de economizar bateria e evitar aquecimento,

ou igualar as frequéncias dos dispositivos, e oferecer uma alternativa em hardware

consideravelmente mais rdpida do que em software.

Tabela 7: Tempos de Execugdo - Comparacdo em 2.0 GHz

Tempo Software (ms)

Tempo Hardware (ms)

Tempo Hardware (ms)

Operagdo <DAR> <Combinatorio>
Cifrar uma mensagem 21.809 1.089 0.138
Decifrar uma mensagem | 28.273 0.545 0.069
Gerar uma assinatura 31.722 0.545 0.069
Validar uma assinatura | 52.027 1.089 0,138

94

10 CONCLUSOES

Ao longo deste projeto, detalhamos os conceitos tedricos da criptografia de curvas
elipticas, fizemos a especificagdo de um coprocessador criptografico, e concluimos o
seu desenvolvimento. Como forma de avaliar o nosso resultado, precisamos voltar ao
inicio, e responder os questionamentos que fizemos ainda na fase de determinacao de

objetivos e metodologia:

e O dispositivo faz o que € esperado?

Sim. O requisito funcional de nosso dispositivo era a realizacao de 4 operacdes
criptograficas sobre curvas elipticas, e nossas simulagdes demonstraram que o
coprocessador € funcionalmente capaz de realizar todas elas, gerando resultados
corretos, e escaldvel para qualquer tamanho de coeficiente e parametro de curva,

desde que implementado em hardware que suporte este tamanho.

e O dispositivo cumpre com os requisitos de tempo?

Sim. Em nossas comparagdes com alternativas em software, verificamos que o
coprocessador atinge resultados semelhantes com frequéncias muito menores,
ou seja, o tempo de execucao das operagdes criptograficas se torna consideravel-
mente menor do que quando executadas em um processador convencional com a
mesma frequéncia, atendendo, assim, aos requisitos propostos de vazao e tempo

de resposta.

95

e O dispositivo € vidvel para aplicacdes méveis?

De modo a terminar o projeto dentro de seu ciclo de desenvolvimento pré-
definido, fizemos uso de uma arquitetura modular, de facil depuracdo, e com
fluxos de dados simples e independentes. O resultado ¢ uma camada adicional
de redundancia de hardware, que ndo ¢é ideal quando estamos lidando com nu-
meros muito grandes de bits por operando, por consumir mais recursos fisicos.
Por conta disso, de modo a implementar o coprocessador com uma FPGA, foi
necessdrio fazer algumas alteragdes no tamanho das varidveis, o que implica em
reduc¢do no nivel de seguranca. Entretanto, em placa dedicada e com otimizacao
em seu fluxo de dados, o coprocessador pode atingir melhores resultados nos re-
quisitos de drea. Ja a possibilidade de operar com tempos de execugdo satisfatod-
rios, em frequéncias consideravelmente baixas de clock , torna o coprocessador

vantajoso dentro dos requisitos de consumo de energia e calor dissipado.

e O dispositivo € necessario para o sistema?

Enfim, temos um dispositivo capaz de realizar todas as fun¢des para as quais
foi projetado, e operando de forma muito mais eficiente do que as alternativas
em software. A avaliacdo da necessidade do dispositivo em um sistema passa a
depender muito de sua utilizacdo: mesmo com tempos de resposta maiores, as
alternativas de software ainda se encontram na escala de milissegundos, que po-
dem ser consideradas imediatas ao usudrio final. As aplicagdes que apresentam
requisito de alta vazdo, entretanto, podem se beneficiar muito de um hardware
capaz de realizar um nimero muito maior de operagdes criptograficas em um
determinado intervalo de tempo. Retomando o caso de uso detalhado no inicio
deste relatério, podemos concluir que a demanda da <loja> por um hardware

como este € maior do que a demanda do <comprador>.

96

REFERENCIAS

BROWN, D. R. L. Standards for Efficient Cryptography 1: Elliptic Curve
Cryptography. [S.1.]: Certicom Corp, 2009.

DESCHAMPS, J.-P. D.; BIOUL, G. J. A.; SUTTER, G. D. Synthesis of Arithmetic
Circuits FPGA, ASIC, and Embedded Systems. New Jersey: John Wiley and Sons
INC, 2006.

DIGILENT. Nexys 2 Spartan3E FPGA Board. [S.1.], 2015. Acesso em 24/06/15.
Disponivel em: <http://www.digilentinc.com/Products/Detail.cfm?Prod=
NEXYS2>. Acesso em: 18 de dezembro de 2015.

HEKERSON, D.; MENEZES, A.; VANSTONE, S. Guide to Elliptic Curve
Cryptography. New York: Springer, 2004.

LINKOPINGS UNIVERSITY. Cryptography Lecture 8 Digital Signatures, Hash
Functions. 2014.

VOGEL, L. Eclipse IDE Tutorial. [S.1.], 2014. Acesso em 21/07/15. Disponivel em:
<http://www.vogella.com/tutorials/Eclipse/article.html>. Acesso em:
18 de dezembro de 2015.

XILINX. ISE 11 InDepth Tutorial (UG695 v 11.2). [S.1.], 2009.

XILINX. Spartan3E FPGA Family Datasheet. [S.1.], 2013.

http://www.digilentinc.com/Products/Detail.cfm?Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?Prod=NEXYS2
http://www.vogella.com/tutorials/Eclipse/article.html

