
DENNIS T. S. CUFLAT

COPROCESSADOR CRIPTOGRÁFICO PARA
TRANSAÇÕES SEGURAS EM DISPOSITIVOS

MÓVEIS

Texto apresentado à Escola Politécnica da

Universidade de São Paulo como requisito

para a conclusão do curso de graduação em

Engenharia de Computação, junto ao De-

partamento de Engenharia de Computação e

Sistemas Digitais (PCS).

São Paulo
2015

DENNIS T. S. CUFLAT

COPROCESSADOR CRIPTOGRÁFICO PARA
TRANSAÇÕES SEGURAS EM DISPOSITIVOS

MÓVEIS

Texto apresentado à Escola Politécnica da

Universidade de São Paulo como requisito

para a conclusão do curso de graduação em

Engenharia de Computação, junto ao De-

partamento de Engenharia de Computação e

Sistemas Digitais (PCS).

Área de Concentração:

Engenharia de Computação

Orientador:

Wilson Vicente Ruggiero

Co-orientador:

Jonatas Faria Rossetti

São Paulo
2015

FICHA CATALOGRÁFICA

S. Cuflat, Dennis Tritapepe
Coprocessador Criptográfico para Transações Seguras em Dispo-

sitivos Móveis/ D. T. S. Cuflat. São Paulo, 2015.
96 p.

Monografia (Graduação em Engenharia de Computação) — Es-
cola Politécnica da Universidade de São Paulo. Departamento de En-
genharia de Computação e Sistemas Digitais (PCS).

1. Segurança e criptografia com curvas elípticas #1. 2. Síntese
e implementação de projeto de hardware em FPGA #2. 3. Software e
interface de comunicação entre dispositivos #3. I. Universidade de São
Paulo. Escola Politécnica. Departamento de Engenharia de Computa-
ção e Sistemas Digitais (PCS). II. t.

RESUMO

Este relatório documenta as motivações, especificação e o desenvolvimento de um
dispositivo de hardware capaz de se conectar a uma plataforma host (por exemplo, um
computador ou um dispositivo móvel) e realizar operações criptográficas de modo a
prover uma camada adicional de segurança em transações online. O projeto é baseado
nas demandas do cenário atual, onde cada vez mais as pessoas fazem uso de seus dispo-
sitivos móveis para realizar funções que lidam com dados que devem estar protegidos
das vulnerabilidades da plataforma.

Propomos então um sistema baseado na criptografia de curvas elípticas, que per-
mite gerar e validar assinaturas digitais. Como essa forma de criptografia é baseada na
aritmética de corpos finitos, com a qual os processadores mais comuns não estão oti-
mizados para trabalhar, projetaremos um coprocessador dedicado e capaz de realizar
as funções passadas pela máquina host.

Ao longo do relatório, tratamos das bases teóricas de criptografia, corpos finitos
e curvas elípticas, estabelecemos um cenário de uso, explicamos a metodologia de
trabalho e recursos necessários para o desenvolvimento do projeto, fazemos a especifi-
cação de seus componentes de hardware e software, e, enfim, detalhamos os resultados
obtidos a fim de verificar o sucesso do projeto.

ABSTRACT

This document provides the background, specification, and development of a hard-
ware device that can be connected to a host platform (i.e a personal computer or a
mobile device) and execute cryptographic operations, in order to provide an additional
security layer for online transactions. This project is based on the demands of our cur-
rent society, in which an increasing number of people make use of their mobile devices
to do tasks that deal with sensitive data, which must be protected against the platform
vulnerabilities.

Therefore, we present a system based on Elliptic Curves Cryptography, that can
generate and validate digital signatures. Since this kind of cryptography is based on fi-
nite field arithmetic, which our usual processors are not optimized to deal with, we will
design a dedicated coprocessor. It will be able to execute the cryptographic operations
needed by the host machine.

Throughout this document, we will explain the theoretical foundation of crypto-
graphy, finite field, and elliptic curves; establish an use case scenario; explain the work
methodology and resources needed for the project development; specify the software
and hardware components and their synthesis; and, finally, test e report the results in
order to verify if the project succeeded in its objectives.

SUMÁRIO

Lista de Ilustrações

1 Introdução 13

1.1 Apresentação . 13

1.2 Motivação . 15

1.3 Objetivos . 16

1.4 Metodologia . 18

2 Fundamentos Teóricos 20

2.1 Conceitos de Criptografia . 20

2.2 Aritmética de Corpos Finitos . 23

2.3 Aritmética de Curvas Elípticas . 25

2.4 Assinatura Digital com Curvas Elípticas 30

3 Cenário e Parâmetros 36

3.1 Caso de Uso . 36

3.2 Parâmetros de Operação . 38

4 Recursos 42

4.1 Visual Studio 2015 . 42

4.2 Xilinx ISE . 43

5 Especificação de Software 45

5.1 Visão Geral . 45

5.2 Diagrama de Sequência . 48

6 Especificação de Hardware 50

6.1 Visão Geral . 50

6.2 Hierarquia do Fluxo de Dados . 51

6.3 Diagrama de Instruções . 53

6.4 FPGA . 59

7 Implementação de Software 61

7.1 Terminal de Comunicação . 61

8 Implementação de Hardware 65

8.1 Aritmética de Corpos Finitos . 65

8.2 Aritmética de Curvas Elípticas . 70

8.3 Multiplicação Escalar de Pontos . 74

8.4 Controlador Principal . 76

8.5 Multiplicador DAR . 81

9 Resultados e Testes 84

9.1 Síntese do Coprocessador . 84

9.2 Comparação com Software . 90

10 Conclusões 94

Referências 96

LISTA DE ILUSTRAÇÕES

1 Plataformas trocam dados criptografados pelos dispositivos externos . 17

2 Etapas da Cifração . 21

3 Etapas da Decifração . 21

4 Etapas da geração de uma assinatura digital 22

5 Etapas da validação de uma assinatura digital 22

6 Exemplos de curvas elípticas (HEKERSON; MENEZES; VANSTONE, 2004) 26

7 Representação gráfica das operações de soma sobre pontos de uma

curva elíptica (HEKERSON; MENEZES; VANSTONE, 2004) 27

8 Pares de chaves de teste . 41

9 Visual Studio 2015 . 42

10 Interface do Visual Studio . 43

11 Xilinx ISE Design Suite . 44

12 Interface do Xilinx ISE . 44

13 Diagrama do caso de uso <Gerar Assinatura Digital> 48

14 Diagrama do caso de uso <Validar Assinatura Digital> 49

15 Estrutura do Coprocessador . 51

16 Hierarquia do Fluxo de Dados . 52

17 Legenda de camadas de operação . 54

18 Instrução: configurar corocessador 54

19 Instrução: cifrar uma mensagem . 55

20 Instrução: decifrar uma mensagem 56

21 Instrução: gerar assinatura digital . 57

22 Instrução: validar assinatura digital 58

23 Placa Digilent Nexys 2 . 59

24 Especificação da Digilent Nexys 2 59

25 Interface de comunicação serial USB 60

26 Interface inicial do software . 62

27 Caso de uso - gerando um par de chaves 62

28 caso de uso - cifrando uma mensagem 62

29 Caso de uso - decifrando uma mensagem 63

30 Caso de uso - gerando um comprovante 63

31 Caso de uso - assinando um comprovante 63

32 Caso de uso - validando a assinaturo de um comprovante 64

33 ULA do módulo de aritmética de corpos finitos 66

34 Módulo de aritmética de corpos finitos 66

35 Máquina de estados do módulo de aritmética de corpos finitos 67

36 Simulação de uma operação de adição 68

37 Simulação de uma operação de subtração 68

38 Simulação de uma operação de multiplicação 69

39 Simulação de uma operação de inversão 69

40 Módulo de aritmética de curvas elípticas 71

41 Máquina de estados do módulo de aritmética de curvas elipticas . . . 71

42 Estados - Soma de dois pontos . 72

43 Estados - Dobro de um ponto . 72

44 Simulação de uma operação de soma de pontos 73

45 Simulação de uma operação de dobro de um ponto 74

46 Módulo de multiplicação escalar de pontos 75

47 Máquina de estados da operação de multiplicação escalar de pontos . 75

48 Simulação de uma operação de multiplicação escalar de pontos 76

49 Módulo de multiplicação escalar de pontos 77

50 Estados - operação de cifração de uma mensagem 77

51 Estados - operação de decifração de uma mensagem 78

52 Estados - operação de geração de assinatura digital 78

53 Estados - operação de validação de assinatura digital 78

54 Simulação de uma operação de cifração de uma mensagem 79

55 Simulação de uma operação de decifração de uma mensagem 80

56 Simulação de uma operação de geração de assinatura digital 80

57 Simulação de uma operação de validação de assinatura digital 81

58 Módulo de aritmética de corpos finitos com o multiplicador DAR . . . 82

59 Simulação de multiplicação em corpos finitos com DAR 83

13

1 INTRODUÇÃO

1.1 Apresentação

Ao longo da formação no curso de Engenharia de Computação, somos expostos

a uma vasta quantidade de matérias de diferentes áreas de atuação, sejam projetos de

hardware, software, redes e segurança, passando pelos conceitos físicos e matemáticos

com os quais formamos a nossa base nos primeiros anos de curso. Sendo assim, este

trabalho de conclusão de curso apresenta, em princípio, a tarefa de tentar agregar o

conhecimento adquirido em um projeto coeso com uma aplicação relevante ao nosso

cenário tecnológico atual.

Na idealização do tema para este projeto, foi definido que, de modo a melhor

atender a essa proposta, o foco principal deveria ser a síntese de um hardware, dando

continuidade aos estudos de organização e arquitetura de computadores. Adicional-

mente, um software companheiro seria desenvolvido como forma de interface entre

o usuário e o dispositivo, rodando em uma máquina host ao qual este dispositivo se

conecta.

Dentre as possibilidades de aplicação, que também incluíam processadores grá-

ficos, gerenciadores de recursos físicos de uma residência, e uma rede de sensores

sem fio, chegamos a um tema que, não apenas abrange uma grande parte de áreas da

computação, como também é uma demanda constante no mercado, e que permite ad-

quirir um conhecimento novo e significante no meio profissional: segurança de dados.

Quando tratamos de segurança de dados, consideramos desde os meios físicos pelos

14

quais passa uma informação e as camadas de serviço utilizadas para transmiti-la, até

o próprio formato no qual ela está codificada. Com o avanço crescente da tecnologia,

especialmente com o advento dos dispositivos móveis, o leque de possibilidades que

temos em nossas mãos para nos comunicar aumentou, e com ele, também a quantidade

de vulnerabilidades de segurança.

É uma consequência natural que, neste novo cenário, surjam constantemente novas

demandas para a maior comodidade do usuário: não basta mais apenas ser capaz de se

comunicar com outros dispositivos, o dispositivo móvel também deve ser um substituto

viável para realizar operações antes desempenhadas por outros aparelhos eletrônicos,

ou restritas ao meio não digital, e que podem envolver dados mais delicados, como,

por exemplo, transações financeiras. Sistemas como o «Apple Pay» (compatível com

o iPhone), que permite realizar pagamentos através de NFC e validação por sensores

biométricos, já são uma realidade. E sistemas como esse também trazem consigo uma

demanda ainda maior de segurança de informação.

Uma das mais importantes camadas de segurança de dados é a criptografia, um

dos temas de estudo do curso de redes. Formas mais robustas de criptografia, no en-

tanto, demandam mais recursos computacionais, visto que normalmente fazem uso

de ferramentas matemáticas com as quais os dispositivos de hardware que utilizamos

diariamente não foram projetados para trabalhar eficientemente.

A técnica de criptografia de curvas elípticas é especialmente interessante para essa

abordagem. É uma técnica poderosa, cuja segurança está baseada no problema dos

logaritmos discretos e, portanto, é computacionalmente inviável obtermos a mensagem

original a partir da mensagem cifrada sem o conhecimento da chave privada associada à

chave pública utilizada na etapa de cifração (HEKERSON; MENEZES; VANSTONE, 2004).

Essa técnica de criptografia faz uso de aritmética de corpos finitos, e é nesse ponto que

a maior parte dos hardware comerciais apresenta um gargalo de eficiência.

Dessa forma, a possibilidade de um dispositivo de hardware otimizado para traba-

15

lhar com este tipo de aritmética, e que possa ser conectado a uma máquina host para

realizar funções criptográficas para uso em uma aplicação local, se torna bastante atra-

ente, adicionando uma camada robusta de segurança para os sistemas que utilizamos.

Fazemos deste, então, o tema para o projeto de conclusão de curso.

1.2 Motivação

Estabelecemos a hipótese de um cenário para este projeto: a compra de um item

através de uma loja virtual. Com ele, podemos identificar um problema que implique

em uma demanda, e uma possível solução que justifica um produto. Ao final desta

descrição, podemos então especificar os objetivos exatos desse projeto. Ao realizarmos

a compra em uma loja virtual, estamos fazendo uso de uma criptografia assimétrica,

baseada em um par de chaves: temos acesso à chave pública da loja e, assim, ciframos

alguns dados importantes de pagamento durante a transação que somente poderão ser

revelados para a loja, através do uso da chave privada que apenas ela conhece e que

está associada à chave pública utilizada.

Identificamos duas questões pertinentes: primeiramente, uma vez que estamos

cada vez mais utilizando dispositivos móveis, expostos a vários novos canais de co-

municação e brechas de segurança, para realizar compras e transações, nossos dados

tornam-se mais vulneráveis a alguns ataques que buscam contornar a segurança ofe-

recida pela criptografia através da análise de vazamento de dados, como consumo de

energia e sinais eletromagnéticos. Dessa forma, é importante que utilizemos métodos

mais robustos de criptografia, que permitam obter um nível maior de segurança, mas

que ao mesmo tempo exijam um maior desempenho computacional.

Adicionalmente, o tipo de criptografia assimétrica que utilizamos traz a desvan-

tagem de assegurar a identidade apenas da entidade portadora de chave privada, ou

seja, a loja. Em um ambiente onde estamos cada vez mais expostos a fraudes, torna-se

16

cada vez mais necessário que possamos assegurar que uma transação financeira feita

em nome de uma pessoa através de seu dispositivo tenha sido, de fato, feita por essa

pessoa.

Nesse contexto, a posse de uma chave privada permite gerar uma assinatura digital,

sujeita a validação que comprove a origem dos dados, tornando mais difícil a realização

de uma transação fraudulenta. Propomos, portanto, um sistema onde:

• Tanto usuários como comércio tenham um par de chaves pública e privada.

• As assinaturas digitais sejam geradas por um método de criptografia mais ro-

busto.

Obviamente, tanto o aumento no número de processos de criptografia quanto sua

qualidade vão demandar recursos computacionais específicos. Nesse cenário, justifica-

mos o desenvolvimento de um coprocessador criptográfico baseado em curvas elípticas

para se adequar a esse sistema, que oferece uma alternativa para as demandas atuais de

segurança.

1.3 Objetivos

O objetivo deste projeto de conclusão de curso é a síntese de um dispositivo de

hardware que, conectado a uma máquina host, é capaz de realizar funções de crip-

tografia e geração de assinatura digital fazendo uso de um coprocessador dedicado à

aritmética de corpos finitos. Esse dispositivo visa adicionar uma camada de segurança

para aplicações (móveis, principalmente), que trabalham com dados sigilosos.

Com este objetivo em mente, podemos listar os requerimentos necessários para

que o projeto entregue um resultado adequado. Segue abaixo:

• Devemos estabelecer um cenário de uso para guiar o projeto do dispositivo. Fo-

caremos em uma vertente baseada em validação de uma assinatura digital: para o

17

Figura 1: Plataformas trocam dados criptografados pelos dispositivos externos

consumidor, uma transação financeira móvel que requer a geração de uma única

assinatura (foco em tempo de resposta); e para a loja, uma validação em lotes

realizada em uma máquina dedicada (foco em vazão).

• Devemos sintetizar um dispositivo de hardware que atua como um coprocessador

e consegue, de maneira eficiente, realizar cálculos de aritmética de corpos finitos,

especialmente aqueles necessários para calcular pontos de curvas elípticas.

• O dispositivo deve ser capaz de receber uma mensagem original, parâmetros de

uma curva elíptica, e uma chave pública, e devolver a mensagem criptografada.

• O dispositivo deve ser capaz de receber uma mensagem criptografada, parâme-

tros de uma curva elíptica, e uma chave privada, e devolver a mensagem original.

• O dispositivo deve ser capaz de gerar uma assinatura digital para quaisquer men-

sagens criptografadas, e ser capaz de validar uma assinatura digital.

• O dispositivo deve ser sintetizado a partir de uma descrição em VDHL, e imple-

mentado em uma FPGA.

• Devemos desenvolver um aplicativo a ser rodado na maquina host, que simule

um caso de uso que requer uma camada adicional de segurança de dados. Este

18

aplicativo deve ser codificado em uma linguagem orientada a objetos, e deve ser

capaz de se comunicar com o dispositivo de hardware.

• A máquina host, idealmente, deve ser uma plataforma móvel, como um

smartphone com sistema operacional Android. Caso seja necessário simplifi-

car uma das frentes do projeto por limitação de tempo, podemos utilizar um PC

como máquina host.

• Todo o processo de uso do aplicativo e realização das tarefas de criptografia

pelo dispositivo de hardware deve acontecer dentro de uma janela de tempo con-

siderada aceitável para o caso de uso tratado, e, portanto, eficiência é um dos

requisitos mais importantes.

• Além da eficiência computacional em termos de tempo, o projeto deve ser viável

em relação a outras métricas de desempenho de hardware, como área e consumo

de energia, de modo que seja possível inseri-lo na forma de um dispositivo em-

barcado.

1.4 Metodologia

Com os objetivos definidos, precisamos definir alguns critérios com os quais, ao

final do projeto, julgaremos se este cumpre ou não com estes objetivos. Caso positivo,

com que grau de eficiência, e, caso negativo, as razões pelas quais não conseguimos

atingir os resultados esperados.

• O dispositivo faz o que é esperado?

Precisamos, aqui, submeter o dispositivo ao caso de uso específico que será de-

talhado. Faremos uma análise de entradas, saídas esperadas, e resultados, para

determinar seu funcionamento de acordo com os parâmetros pré-determinados.

• O dispositivo cumpre com os requisitos de tempo?

19

Nos nossos casos de uso, nos deparamos com duas situações específicas: para

o consumidor, é importante que o dispositivo tenha um tempo de resposta pe-

queno, e para a loja, é importante que o dispositivo tenha vazão de dados grande.

Devemos então definir o que consideramos tolerável, e se o tempo e vazão regis-

trados pelo dispositivo se enquadram nessa categoria.

• O dispositivo é viável para aplicações móveis?

Aqui, devemos nos preocupar com dois pontos importantíssimos se desejamos

que este dispositivo possa funcionar como periférico ou como hardware embar-

cado de um sistema móvel: área e consumo de energia. Devemos analisar se

o hardware resultante pode ser fisicamente integrado a um smartphone sem au-

mentar seu tamanho, e se ele não afeta de forma considerável seu consumo de

bateria, um dos problemas mais frequentes enfrentados por essa plataforma.

• O dispositivo é necessário para o sistema?

Talvez uma das questões mais importantes, ainda que fácil de ser ignorada: de

nada adianta desenvolver este dispositivo se, no sistema que propomos, ele pode

ser facilmente substituído por alternativas de software. Para verificar isso, va-

mos simular seu funcionamento em software e comparar nossos resultados como

aqueles obtidos usando o dispositivo.

20

2 FUNDAMENTOS TEÓRICOS

2.1 Conceitos de Criptografia

Este projeto é baseado em um dispositivo capaz de realizar operações de crip-

tografia assimétrica e assinatura digital. Dessa forma, é conveniente estabelecer os

principais conceitos que utilizaremos no restante do projeto.

Fazemos uso de criptografia quando queremos estabelecer um canal seguro de

comunicação. A criptografia assimétrica é baseada na geração de um par de chaves

(pública e privada) através de um problema matemático considerado computacional-

mente inviável de ser resolvido sem estes parâmetros, como o problema dos logaritmos

discretos (HEKERSON; MENEZES; VANSTONE, 2004).

Tomemos uma função f(a,x) com estas características. Teremos, então, uma fun-

ção simétrica g(b,y) de modo que, quando y=f(a,x), g(b,y)=x. Podemos aplicar estes

conceitos a criptografia gerando um par de chaves [a,b] onde [a] é chave pública e [b]

é chave privada. Detalhamos abaixo:

• Mapeamos uma string de dados na forma de um valor [x].

• Fazemos uso da função [f] e da chave pública [a] do destinatário, de modo a

calcular uma string criptografada y=f(a,x).

• O destinatário da mensagem então faz uso da função [g] e da chave privada [b]

para revelar a mensagem original x=g(b,y).

21

• É computacionalmente inviável calcular [x] a partir de [y], [a] e as funções [f,g],

sem, no entanto, conhecer a chave privada [b].

Figura 2: Etapas da Cifração

Figura 3: Etapas da Decifração

Os métodos de criptografia assimétrica também nos permitem gerar e validar assi-

naturas digitais, métodos para assegurar a identidade do remetente de uma mensagem

e não violação de seu conteúdo. Isso é feito gerando uma assinatura que depende de

uma função hash sobre seu conteúdo criptografado com a chave privada do remetente.

Detalhamos abaixo:

• Fazemos uso de uma função de hash [h] válida, e escolhida a partir de parâmetros

de segurança determinados, para gerar uma string [s] de tamanho adequado a

partir da mensagem original.

• Mapeamos essa string de dados [s] na forma de um valor [y].

• Fazemos uso da função [g] e da chave privada [b] de modo a gerar uma assinatura

digital [x]=g(b,y).

• Para validarmos a assinatura digital, tomamos a mensagem original e passamos

pelo mesmo procedimento de hash e mapeamento até chegar ao valor de [y].

22

• Fazemos, então, uso da função [f] e chave pública [a] para calcular [y]=f(a,x).

• Pelo inverso da função de mapeamentos, resgatamos a string de hash [s].

• Caso os valores de [s] sejam iguais, então a assinatura digital foi corretamente

validada. Caso os valores sejam diferentes, então as informações a respeito do

remetente (na forma da chave [b]) ou do conteúdo da mensagem (na forma da

string [s]) foram violados.

• Com a assinatura digital, 1) Nenhum terceiro pode passar uma mensagem em

nome de um remetente sem sua chave privada [b]; 2) Nenhum terceiro pode

violar o conteúdo de uma mensagem enviada [s] por um remetente sem que a

alteração seja descoberta; 3) O remetente não pode negar ter sido, de fato, a

origem de uma mensagem.

Figura 4: Etapas da geração de uma assinatura digital

Figura 5: Etapas da validação de uma assinatura digital

23

2.2 Aritmética de Corpos Finitos

O tipo de criptografia que vamos utilizar neste projeto depende da aritmética dos

corpos finitos, que servirá como base teórica de toda a especificação do coprocessador.

Como as unidades aritméticas encontradas no hardware que utilizamos diariamente

não estão otimizadas para trabalhar com esse tipo de aritmética, a eficiência computa-

cional das operações de criptografia não é a ideal, motivo pelo qual esta implementação

é importante para cumprir com os requisitos do sistema proposto. Explicamos os con-

ceitos principais: um campo de corpos finitos é a abstração de um conjunto numérico

abeliano, com número limitado de elementos e que satisfaz as seguintes propriedades

(BROWN, 2009)

• Para dois elementos [a,b] quaisquer do conjunto, qualquer operação sobre estes

elementos resulta em [c] que também está no conjunto.

• O conjunto aceita operação de adição, com identidade [0].

• O conjunto aceita operação de multiplicação, com identidade [1].

• Tanto operações de adição como multiplicação são associativas e comutativas.

• Para qualquer elemento [a] do conjunto, há um elemento inverso aditivo b no

conjunto, tal que a+b=0.

• Para qualquer elemento [a] do conjunto, há um elemento inverso multiplicativo

b no conjunto, tal que a*b=1.

• Operações de subtração e divisão são representadas como operações de soma e

multiplicação dos elementos inversos.

Em um conjunto de corpos finitos, o tipo de aritmética utilizada é modular, definida

sobre a ordem (número total de elementos) do conjunto, ou seja, para um conjunto

24

primo F = {0,1,2,3,4...n}, as operações são dadas em «módulo n». Tomamos como

exemplo um conjunto de ordem 7 dado por F = {0,1,2,3,4,5,6}. As operações então

serão dadas em «módulo 7». Exemplos:

• Soma: 5 + 4 = 9 mod 7 = 2;

• Multiplicação: 2 * 6 = 12 mod 7 = 5;

• Inversão Aditiva: -2 = 5, pois 2 + 5 = 7 mod 7 = 0;

• Inversão Multiplicativa: 1
2 = 4, pois 2 * 4 = 8 mod 7 = 1;

Existem dois tipos principais de corpos finitos: Aqueles definidos em um campo

primo FP, que consiste em um conjunto de inteiros de ordem igual a um número primo,

e que foi exemplificado nas operações acima; e aqueles definidos em um campo binário

F2m. Os corpos finitos binários têm propriedades particularmente convenientes em

uma implementação de hardware (BROWN, 2009).

O campo finito F2m pode ser representado na forma de um polinômio:

F2m = {am−1xm−1 + am−2xm−2 + ... + a1x + a0}

E os coeficientes am deste polinômio fazem parte do conjunto primo F2=0,1. Por-

tanto, um conjunto de corpos finitos binários de grau m=4 F24 contém os seguintes

elementos (polinômios): F24 = {[0], [1], [x], [x + 1], [x2], [x2 + 1], [x2 + x], [x2 + x +

1], [x3], [x3 +1], [x3 + x], [x3 + x+1], [x3 + x2], [x3 + x2 +1], [x3 + x2 + x], [x3 + x2 + x+1]}.

E, da mesma forma que em um conjunto de corpos primos, as operações são mo-

dulares sobre a ordem, em um conjunto de corpos binários, as operações são modulares

sobre um polinômio irredutível (não fatorável) de grau m. Um polinômio F24 irredu-

tível possível é [x4 + x + 1]. Exemplificamos abaixo as operações sobre um conjunto

de corpos finitos binários:

25

• Soma: [x3 + x2 + 1] + [x2 + x + 1] = [x3 + x] ;

• Inversão Aditiva: −[x3+x2+1] = [x3+x2+1] , pois [x3+x2+1]+[x3+x2+1] = 0,

Para qualquer elemento [a] de F2m , [−a] = [a];

• Multiplicação: [x3 + x2 + 1]∗ [x2 + x + 1] = [x5 + x + 1]mod[x4 + x + 1] = [x2 + 1];

• Inversão Multiplicativa: 1/[x3 + x2 + 1] = [x2], pois [x2] ∗ [x3 + x2 + 1] =

[x5 + x4 + x2]mod[x4 + x + 1] = 1;

É interessante notar que todos os corpos finitos binários podem ser expressos dire-

tamente como uma sequência de bits, o que é ideal para implementação em hardware.

Reescrevemos o exemplo acima nessa notação:

• Soma: [1101] + [0111] = [1010];

• Inversão Aditiva: -[1101] = [1101];

• Multiplicação: [1101] * [0111] = [0101];

• Inversão Multiplicativa: 1/[1101] = [0100];

2.3 Aritmética de Curvas Elípticas

Uma vez que já estabelecemos o conceito de corpos finitos, podemos apresentar

o conceito das curvas elípticas sobre corpos finitos. Estas curvas são definidas pela

Equação de Weierstrass, dada abaixo (HEKERSON; MENEZES; VANSTONE, 2004)

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

Os coeficientes [a] da equação precisam respeitar uma condição matemática que

implica que o discriminante da curva deve ser diferente de zero (o que impede que

26

a curva tenha mais de uma reta tangente em qualquer ponto). Não entraremos em

detalhes a respeito da natureza do discriminante pois a teoria não é o foco deste pro-

jeto, sendo suficiente apresentar a forma geral das curvas elípticas e garantir que os

coeficientes com que trabalharemos seguem esta regra.

Se K é um campo de corpos finitos, então uma curva elíptica definida sobre este

campo é:

E(K) = {(x, y) ∈ KxK : y2 + a1xy + a3y − x3 − a2x2 − a4x − a6 = 0} ∪ {O}

Onde [O] é um ponto chamado «Ponto no Infinito», definido como a identidade

[0] da curva elípitica.

Figura 6: Exemplos de curvas elípticas (HEKERSON; MENEZES; VANSTONE, 2004)

Como estamos trabalhando com campos primos, de ordem P>2, podemos utili-

zar um recurso de mudança de variáveis para chegar em uma Equação de Weierstrass

simplificada para este caso. Fazemos:

(x, y) => (
x − 3a1

2 − 12a2

36
,

y − 3a1
2x

216
−

a1
3 + 4a1a2 − 12a3

24
)

27

E chegamos à equação:

E : y2 = x3 + ax + b

Os pontos que satisfazem a estas condições em uma curva elíptica formam um

grupo abeliano de ordem #E (número de pontos no grupo) junto ao ponto [O]. Por-

tanto, também podemos aplicar operações de grupos sobre eles. Sejam P = (x1, y1) e

Q = (x2, y2) pontos de uma curva E, definimos P+Q, geometricamente, como sendo a

reflexão sobre o eixo x do ponto de intersecção entre a reta PQ e um terceiro ponto da

curva E. Quando P=Q, definimos 2P, geometricamente, como a reflexão sobre o eixo

x do ponto de intersecção entre a reta tangente a P e um terceiro ponto da curva E.

Figura 7: Representação gráfica das operações de soma sobre pontos de uma curva
elíptica (HEKERSON; MENEZES; VANSTONE, 2004)

Respeitando as propriedades da identidade [0], sabemos que, para qualquer ponto

P da curva E:

• P + O = O + P = P

• P + (−P) = O

• O = −O

28

Apesar das definições geométricas, podemos chegar a equações sobre corpos fi-

nitos para as operações de curvas elípticas. Temos abaixo as propriedades de grupos

para os dois tipos simplificados de curvas sobre campos binários, sempre considerando

P(x1, y1) e Q(x2, y2) como pontos da curva E (HEKERSON; MENEZES; VANSTONE, 2004)

Se E : y2 = x3 + ax + b

• Negativo: R(x3, y3) = −P(x1, y1)

x3 = x1

y3 = −y1

• Soma: R(x3, y3) = P(x1, y1) + Q(x2, y2)

x3 = ((y2 − y1)/(x2 − x1))2 − x1 − x2 ;

y3 = ((y2 − y1)/(x2 − x1))(x1 − x3) − y1 ;

• Dobro: R(x3, y3) = 2 ∗ P(x1, y1)

x3 = ((3x1
2 + a)/(2y1))2 − 2x1 ;

y3 = ((3x1
2 + a)/(2y1))(x1 − x3) − y1 ;

Vamos usar como exemplo um campo [K] do tipo [F29]. Uma curva elíptica do

tipo [E : y2 = x3 + ax + b] é definida sobre este campo, com coeficientes [a=4] e

[b=20]. Temos:

E : y2 = x3 + 4x + 20

A equação pode, então, ser resolvida com aritmética de corpos finitos sobre [F29],

e podemos encontrar o conjunto de pontos P(x,y) que compõe o grupo abeliano:

• Se [x=0], [y2 = (03 + 4 ∗ 0 + 20) = 20mod29] => [y=7] ou [y=22];

29

• Se [x=1], [y2 = (13 + 4 ∗ 1 + 20) = 25mod29] => [y=5] ou [y=24];

• (...)

• Se [x=7], [y2 = (73 + 4 ∗ 7 + 20) = 14mod29] => [Não há y em F29];

• (...)

• Se [x=27], [y2 = (273 + 4 ∗ 27 + 20) = 4mod29] => [y=2] ou [y=27];

Conjunto de pontos de E: [(O), (0,7), (0,22), (1,5), (1,24), (2,6), (2,23), (3,1),

(3,28), (4,10), (4,19), (5,7), (5,22), (6,12), (6,17), (8,10), (8,19), (10,4), (10,25),

(13,6), (13,23), (14,6), (14,23), (15,2), (15,27), (16,2), (16,27), (17,10), (17,19),

(19,13), (19,16), (20,3), (20,26), (24,7), (24,22), (27,2), (27,27)]

Ordem #E = 37

Exemplo de Negativo: -(5,22) = (5,7);

Exemplo de Soma: (5,22) + (16,27) = (13,6);

Exemplo de Dobro: 2*(5,22) = (14,6);

Observe que, apesar de estarmos utilizando campos de ordem relativamente baixa

como exemplo, em aplicações reais as ordens são muito maiores, do tipo [FP , P »

2100]. Nestes casos, é possível mapear códigos inteiros na forma de uma coordenada

[x] para o cálculo de um ponto [P] válido, sendo esta a forma mais comum de preparar

uma mensagem para ser cifrada utilizando criptografia de curvas elípticas. Uma men-

sagem maior poderia ser fragmentada em mais de um ponto, sendo possível até mesmo

mapear diretamente códigos ASCII a pontos de uma curva elíptica (BROWN, 2009).

Observamos também que nem todo elemento de um campo [FP] é uma coordenada

[x] possível para um ponto [P]. Nestes casos, fazemos uso de um multiplicador [t]

de modo que, para todo código [m] possível, há uma coordenada válida no intervalo

[(t)m,(t+1)m].

30

2.4 Assinatura Digital com Curvas Elípticas

Os itens anteriores apresentam todos os conceitos teóricos necessários para que,

agora, possamos implementar um método de assinatura digital fazendo uso de curvas

elípticas. Antes disso, no entanto, aplicamos estes conceitos ao caso mais simples de

cifrar uma mensagem qualquer [m]. Tomemos uma curva elíptica [E] definida sobre

um campo [FP]. Dentre o conjunto de pontos que satisfazem a Equação de Weierstrass,

tomamos um ponto [P] tal que [P] ∈ [O] (Ponto no Infinito). Este ponto [P] formará um

grupo abeliano cíclico sobre esta curva por multiplicação escalar ([P],[2P],[3P],[4P]...)

de ordem [n] (quantidade de pontos deste grupo).

Sendo assim, podemos escolher um valor [d] no intervalo [1,n] de forma que ob-

temos um ponto [Q]=[dP]. Uma vez que temos o inteiro [d] e o ponto [P], é fácil obter

[Q], mas se, no entanto, tivermos apenas [P] e [Q], o problema de encontrar o valor

[d] é justamente aquele equivalente ao problema dos logaritmos discretos, sendo com-

putacionalmente inviável. Podemos fazer uso dessa propriedade e manipular dados de

modo a gerar uma operação criptográfica. Se escolhermos um outro inteiro [k] no in-

tervalo [1,n], podemos fazer [C1] = [kP], e assim (HEKERSON; MENEZES; VANSTONE,

2004) :

d[C1] = d[kP] = k[dP] = [kQ]

Com isso, podemos cifrar uma mensagem [m] em um par [C1],[C2] fazendo:

• A mensagem [m] é mapeada a um ponto [M] da curva [E];

• Selecionamos um [k] no intervalo [1,n];

• Calculamos [C1] = [kP];

• Calculamos [C2] = M + [kQ];

31

E deciframos esta mesma mensagem fazendo:

• Calculamos [M] = [C2] - d[C1];

• Extraimos a mensagem [m] mapeada em [M];

Neste contexto, se temos um domínio com [F] e [E] bem definidos, juntamente

a um ponto escolhido [P], podemos fazer uso do par [Q],[d] como um par de chaves

pública e privada, respectivamente. Este é o método de criptografia de curvas elítpticas.

Podemos expandir este conceito de criptografia para o caso de geração e validação de

assinatura digital, que já conta com alguns protocolos bem conhecidos para o caso

de curvas elípticas. Um esquema particularmente eficiente e conhecido é o ECDSA

(Elliptic Curve Digital Signature Algorithm). Para fazer uso do esquema, a primeira

coisa que devemos estabelecer é um domínio sobre o qual trabalharemos. Um domínio

é, genericamente, dado pela forma (HEKERSON; MENEZES; VANSTONE, 2004) :

D = q, FR, S , a, b, P, n, h

Onde:

• <q> é a ordem do campo [F] de corpos finitos sobre o qual se define a curva

elíptica [E];

• <FR> é a representação utilizada pelos elementos do campo [F] utilizado;

• <S> é a semente que gera os coeficientes aleatórios para uma curva elíptica;

• <a> e são os coeficientes da curva elíptica;

• <P> é um ponto qualquer da curva [E] que define um grupo abeliano cíclico

através de multiplicação escalar;

32

• <n> é a ordem do grupo definido por [P], ou seja, quantidade de pontos no grupo

cíclico;

• <h> é chamado cofator, dado por #E(F)/n, e pode ser utilizado como parâmetro

de segurança para alguns dos ataques mais comuns.

Adicionalmente, como especificado no item sobre protocolos de assinatura digital,

precisamos definir uma função de hash [H] pela qual passaremos a mensagem [m] a ser

assinada. Com estes parâmetros, definimos dois algoritmos: Um algoritmo que gera

uma assinatura digital para uma mensagem [m] na forma de um par de inteiros [r,s]

através de uma chave privada [d]; e um algoritmo que valida uma assinatura digital

para uma mensagem [m] através de uma chave pública [Q]. Seguem os algoritmos

abaixo (HEKERSON; MENEZES; VANSTONE, 2004) :

Geração de uma Assinatura Digital:

INPUT: Domínio [D], Chave Privada [d], mensagem [m], função de hash [H].

OUTPUT: Assinatura digital [r,s].

• Selecionamos um inteiro [k] no intervalo [1,n];

• Calculamos [kP] = (x1, y1) e convertemos [x1] para um inteiro [X1];

• Calculamos [r] = [X1] mod [n]. Se [r]=0, escolhemos um outro [k];

• Calculamos [e] = H(m);

• Calculamos [s] = [k]-1(e+dr) mod [n]. Se [s]=0, escolhemos um outro [k];

• A assinatura digital é dada na forma do par (r,s);

Validação de uma Assinatura Digital:

INPUT: Domínio [D], Chave Pública [Q], mensagem [m], função de hash [H],

Assinatura digital [r,s].

33

OUTPUT: Validação da assinatura digital: [ACEITA] ou [REJEITA].

• Os valores no par [r,s] estão dentro do intervalo [1,n]? Se não, [REJEITA];

• Calculamos [e] = H(m);

• Calculamos [w] = [s]-1 mod [n];

• Calculamos [u1] = [e][w] mod [n];

• Calculamos [u2] = [r][w] mod [n];

• Calculamos [Z] = [u1 ∗ P] + [u2 ∗ Q];

• O ponto [Z] é o Ponto no Infinito [O]? Se sim, [REJEITA];

• Convertemos a coordenada [x1] de Z(x1, y1) para um inteiro [X1];

• Calculamos [v] = [X1] mod [n];

v =[r]? Caso positivo, [ACEITA]; Caso negativo, [REJEITA];

São estes os algoritmos de assinatura digital que vamos utilizar neste projeto.

Exemplo de Aplicação: Abaixo, fazemos um exemplo simples com o grupo [F29]

cujo grupo de pontos já foi determinado anteriormente. Ou seja, temos a curva:

E : y2 = x3 + 4x + 20

E assumimos P=(1,5). Se gerarmos um par de chaves com chave privada [d=7],

temos como chave pública Q=(24,22). Adicionalmente, se uma mensagem [m] gera

um hash H(m)=17, mapeada para M=(17,10), podemos seguir o algoritmo:

Geração de uma Assinatura Digital:

34

• Selecionamos um inteiro [k] no intervalo [1,n];

Escolhemos [k]=15;

• Calculamos [kP] = (x1, y1) e convertemos [x1] para um inteiro [X1];

Calculamos 15*P = (3,1), X=3;

• Calculamos [r] = [X1] mod [n]. Se [r]=0, escolhemos um outro [k];

Calculamos [r] = 3 mod 37 = 3;

• Calculamos [e] = H(m);

Função de Hash já aplicada, [e] = 17;

• Calculamos [s] = [k]-1(e+dr) mod [n]. Se [s]=0, escolhemos um outro [k];

Calculamos [s] = (17+7*3)/15 mod 37 = (38/15) mod 37 = 5;

• A assinatura digital é dada na forma do par (r,s);

A Assinatura Digital é o par (3,5).

Validação de uma Assinatura Digital:

• Os valores no par [r,s] estão dentro do intervalo [1,n]? Se não, [REJEITA];

Sim, 3 e 5 estão no intervalo [1,37].

• Calculamos [e] = H(m);

Função de hash já aplicada. [e] = 17;

• Calculamos [w] = [s]-1 mod [n];

Calculamos [w] = (1/5) mod 37 = 15;

• Calculamos [u1] = [e][w] mod [n];

Calculamos [u1] = 17*15 mod 37 = 33;

35

• Calculamos [u2] = [r][w] mod [n];

Calculamos [u2] = 3*15 mod 37 = 8;

• Calculamos [Z] = [u1 ∗ P] + [u2 ∗ Q];

Calculamos [Z] = 33*(1,5) + 8*(24,22) = (15,2) + (2,6) = (3,1)

• O ponto [Z] é o Ponto no Infinito [O]? Se sim, [REJEITA];

[Z] não é o Ponto no Infinito [O];

• Convertemos a coordenada [x1] de Z(x1, y1) para um inteiro [X1];

Convertemos para X=3;

• Calculamos [v] = [X1] mod [n];

Calculamos [v] = 3 mod 37 = 3;

v =[r]? Caso positivo, [ACEITA]; Caso negativo, [REJEITA];

Temos que [v]=3 e [r]=3. Como [v]=[r], aceitamos a Assinatura Digital.

36

3 CENÁRIO E PARÂMETROS

3.1 Caso de Uso

De modo a melhor definir as especificações do produto, vamos gerar um cenário

para um caso de uso no qual este coprocessador deve ser utilizado. Estabelecemos na

introdução deste relatório que gostaríamos de uma solução de segurança para compras

online através de um smartphone, então partimos disso para imaginar um sistema de

pagamento que seja adequado ao nosso caso de uso:

Contexto

• Imaginamos um novo sistema de pagamentos eletrônicos. Este sistema contém

uma base de dados com possíveis variações de um domínio de curvas [D];

• A cada pessoa física ou jurídica cadastrada no sistema é atribuído um código

referente a um dos domínios [D] utilizados pelo sistema;

• A cada período de tempo pré-determinado, a base de dados de [D] é atualizada,

e cada cliente recebe um novo código referente a seu novo domínio atribuído.

• O sistema de pagamentos apresenta uma função que gera um número inteiro, e

chave privada, [d] (nunca gravado no sistema) a partir de uma senha de 4 dígitos

e dados biométricos do usuário.

• Ao se cadastrar no sistema com a senha e os dados biométricos, uma chave

pública [Q] será gerada a partir de [dP]. Esta chave pública passa a ser o principal

37

método de identificação do usuário no sistema.

Cenário

• Usuário faz uma compra em uma loja virtual através de seu smartphone, gerando,

através do site, um comprovante com detalhes da compra. O comprovante passa

então por uma função de hash, resultando no código [h].

• Usuário utiliza a senha e biometria para calcular [d] na hora. Smartphone re-

passa ao coprocessador criptográfico seu domínio [Dx], o código [h], e o inteiro

[d]. Com esses dados, o coprocessador gera uma assinatura digital [A] para o

comprovante e repassa ao smartphone.

• Durante a utilização pelo usuário, o coprocessador deve ter foco no tempo de

resposta, já que o usuário espera terminar de maneira relativamente rápida o seu

pedido.

• Loja recebe e confirma o pedido de compra ao usuário. Assinatura digital é então

colocada na fila com um lote de outras assinaturas digitais, cada uma associada

ao código de uma compra na loja virtual.

• O coprocessador recebe essas assinaturas em lotes, junto com as chaves públicas

e domínio, e repassa ao servidor os códigos [h] decifrados de cada compra. O

servidor então compara cada um dos códigos [h] com aqueles gerados por seus

próprios comprovantes.

• Caso os códigos de uma compra sejam iguais, o pagamento é autorizado pelo

sistema, e a compra pela loja virtual pode ser consumada.

• Durante a utilização pela loja, o coprocessador deve ter foco na vazão, já que

há um número elevado de pedidos esperando autorização, e estas não precisam

ocorrer imediatamente após o pedido ser efetuado.

38

3.2 Parâmetros de Operação

Apesar de termos estabelecido um caso de uso completo para o sistema na forma

de um sistema de pagamentos, o foco de nosso projeto é o coprocessador, e não o

sistema completo. Dessa forma, é necessário lembrar que não estaremos trabalhando

com cálculos de biometria ou métodos de segurança para o software. O software com-

panheiro a ser desenvolvido tem como objetivo apenas alimentar o coprocessador com

dados válidos. Da mesma forma, respeitando o escopo deste projeto, vamos trabalhar

com parâmetros de uso pré-estabelecidos. Isso é importante neste projeto por 2 razões:

• Podemos pular algumas etapas de cunho teórico que não são parte do escopo do

projeto, mas que tomariam um tempo considerável, como geração e validação

de curvas de coeficientes aleatórios através de uma semente [S];

• Podemos mais facilmente estabelecer benchmarks com as curvas mais utilizadas,

bem como mais facilmente transitar entre aplicações de hardware e aplicações

de software para o cálculo de curvas elípticas.

Estabelecidas estas condições, podemos definir os parâmetros que vamos utilizar

neste projeto. Estamos trabalhando com campos de corpos finitos do tipo [FP], e nesse

contexto, escolhemos uma curva recomendada pelo padrão FIPS 186-2 do tipo P-256

([F2233]), com os seguintes parâmetros (HEKERSON; MENEZES; VANSTONE, 2004) :

Curva P-256

• Ordem <q> = 2256 - 2224 + 2192 + 296 - 1;

• Coeficientes

* <a> = -3;

* = 0x 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0

CC53B0F6 3BCE3C3E 27D2604B

39

• Ponto P(x,y) com coordenadas:

* <x> = 0x 6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81

2DEB3AA0 F4A13945 D898C296

* <y> = 0x 4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357

6B315ECE CBB64068 37BF51F5

• Ordem do ponto P(x,y):

* <n> = 0x FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD

A7179E84 F3B9CAC2 FC632551

• Cofator <h> = 1;

Além do domínio, há outros 3 tipos de parâmetros que precisamos definir: O for-

mato da mensagem [m] que será assinada, a função de hash [H] a qual a mensagem

será submetida, e os pares de chaves pública e privada a serem distribuídos.

Formato da Mensagem

O formato de mensagem padronizado que utilizaremos para este projeto é um com-

provante simples com alguns dados básicos da compra simulada em questão. Este

comprovante será gerado pelo próprio software companheiro, e é da forma:

###

PCS2501 - TRABALHO DE CONCLUSÃO DE CURSO

COMPROVANTE DE COMPRA

** CÓDIGO DE COMPRA: 72094157209415

** COMPRADOR: DENNIS T S CUFLAT

** LOJA: ESCOLA POLITÉCNICA USP

** DATA DA COMPRA: 22/05/2015

** VALOR DA COMPRA: R\$100,00

###

40

Função de Hash

A escolha de uma função de hash [H] deve ser feita com cuidado. Ao mesmo

tempo em que sua aplicação não é o papel principal do nosso dispositivo de hardware,

e, portanto, poderíamos fazer uso de uma operação menos complexa por não julgar

que esta faz parte do escopo do projeto, é necessário lembrar que, como estamos lin-

dando com um cenário de segurança, não podemos nos colocar em uma situação em

que tomamos conclusões erradas a respeito da validade de uma assinatura digital por

conta de uma colisão de hash, o que prejudicaria todo o projeto e documentação. É

importante, por isso, que a função de Hash cumpra com seus requisitos principais de

criptografia para assegurar bons resultados de testes com o coprocessador:

• Resistência à Inversão: Se temos uma função de hash H, tal que geramos um

código [x] através de [x] = H(m), a função de hash deve garantir que não seja

possível encontrar o valor da mensagem [m] que gerou o código [x]

• Resistência à Colisão: Outra característica importante deve ser a minimização

de colisões, ou seja, de mensagens [m] que resultem em um mesmo código [x].

O requisito é que, para um [m] qualquer, deve ser computacionalmente inviável

calcular um outro [m] que gere o mesmo código [x]. Como estamos lidando

com um modelo de comprovante pré-definido, também reduzimos as chances de

encontrar um outro comprovante válido que leve a uma colisão.

Uma possível função de Hash ideal a nossos propósitos é a Keccak, vencedora de

uma competição da NIST com o propósito de definir o padrão SHA-3 (Secure Hash

Algorithm). Escolhemos utilizar essa função por ser conhecida e possuir alto desempe-

nho em hardware. Além disso, fazendo uso de bibliotecas pré-estabelecidas e testadas,

diminuimos o tempo de projeto.

41

Pares de Chaves

Podemos utilizar ferramentas de software para gerar pares de chaves a serem usa-

dos para testes com o nosso coprocessador. Utilizando a biblioteca Cryptopp, geramos

as seguintes chaves de exemplo:

Figura 8: Pares de chaves de teste

42

4 RECURSOS

Vamos agora nos focar nos recursos que temos em mãos para realizar a síntese,

simulação e testes dos módulos do nosso projeto. Iniciaremos com as ferramentas que

usaremos para desenvolver o software companheiro, e depois detalharemos aquelas

que, de fato, vamos utilizar para projetar nosso dispositivo de hardware.

4.1 Visual Studio 2015

Nosso software companheiro será desenvolvido com o paradigma de Orientação a

Objetos. Será um software simples, que basicamente simula o sistema de pagamentos

e lida com entradas e saídas para o coprocessador.

Figura 9: Visual Studio 2015

Inicialmente, o projeto especificava a linguagem Java como linguagem de pro-

gramação de escolha para o software, por ser uma das linguagens mais utilizadas pra

orientação a objetos, e, por isso, com amplo material online e diversas ferramentas

conhecidas e amplamente difundidas. No entanto, posteriormente optamos por fazer

uso de C++, por conta dos seguintes motivos:

43

• C++ permite que a nossa simulação das operações criptográficas em software

(para benchmarks) sejam feitas nas mesmas ferramentas em que estamos de-

senvolvendo o software companheiro. Não poderíamos tomar esta abordagem

em Java pois, como esta roda sobre o JVM, o desempenho do software como

parâmetro de comparação seria prejudicado.

• C++ contém uma excelente biblioteca de criptografia, a biblioteca Crypto++, da

qual podemos fazer uso nas simulações de operação do coprocessador, e também

em alguns cálculos específicos em que a implementação no coprocessador não é

tão vantajosa, como a operação de mapeamento.

Figura 10: Interface do Visual Studio

4.2 Xilinx ISE

Durante a maior parte do desenvolvimento deste projeto, estaremos escrevendo

em linguagem de descrição de hardware VHDL. Há diversas ferramentas robustas que

permitem sintetizar e simular um projeto deste tipo: Durante o curso, por exemplo, já

fizemos uso do Active-HDL para a síntese de um processador com pipeline.

44

Figura 11: Xilinx ISE Design Suite

Escolhemos a ferramenta ISE Design Suite, da Xilinx, para este projeto, pois a sua

implementação prevista será com FPGAs, e o ISE oferece um ambiente completo para

lidar com este tipo de implementação nos mais diversos parâmetros de dispositivos

(XILINX, 2009).

Figura 12: Interface do Xilinx ISE

45

5 ESPECIFICAÇÃO DE SOFTWARE

5.1 Visão Geral

Faremos agora uma especificação mais detalhada do software companheiro que

será desenvolvido junto ao coprocessador. Sua função, como explicado anteriormente,

será servir como uma interface entre usuário e hardware, alimentando o último com da-

dos já verificados e no formato adequado para serem manipulados; também receberá

os dados resultantes do coprocessador e os formatará de forma a serem apresentados ao

usuário. Especificamos dois casos de uso que estaremos trabalhando: Geração e vali-

dação de assinaturas digitais. Para isso, é importante que o software possa servir como

interface aos dois módulos. Sendo este um software desenvolvido utilizando orienta-

ção a objetos, começamos analisando os elementos do projeto de modo a identificar as

classes relevantes.

Classe: Usuário

Função: Atua no papel de comprador de um item qualquer em uma loja virtual. É

identificado pelo nome, sua chave pública, e é o responsável por gerar a assinatura

digital.

Classe: Empresa

Função: Atua no papel de responsável pela loja virtual. É identificada pelo nome, sua

chave pública, e é responsável pela validação em lotes de assinaturas digitais de modo

a autorizar as compras.

46

Classe: Comprovante

Função: É o elemento resultante da compra de um item na loja virtual. É um dos prin-

cipais elementos do projeto por ser o conjunto de dados a ser submetido aos processos

criptográficos do coprocessador.

Classe: Lote

Função: Basicamente, um conjunto de comprovantes que serão encaminhados juntos

para validação por parte da empresa. Tem o diferencial de ser alimentado ao software

por meio de arquivos de texto, e não pela interface do terminal.

Classe: Domínio da Curva

Função: Atua como uma classe estática contendo todos os parâmetros pré-

determinados para a curva com a qual trabalharemos e faremos as operações criptográ-

ficas. O programa constantemente carregará informações dessa classe para repassar ao

coprocessador.

Além das classes retiradas diretamente dos elementos teóricos do projeto, precisa-

mos considerar dois outros tipos de classe: Os sistemas e as interfaces com bibliotecas.

Os sistemas são aqueles que atuam como os controladores do software e suas opera-

ções.

Classe: Sistema CryptoCurves

Função: É o sistema principal do projeto, ou classe <main>, que tem uma interface di-

retamente com o usuário através do terminal, e pode fazer a chamada de uma operação

de geração ou validação de assinatura digital.

Classe: Operação de Geração

Função: É o controlador do caso de uso em que um usuário compra um item em uma

loja, gera um comprovante e sua respectiva assinatura digital.

Classe: Operação de Validação

Função: É o controlador do caso de uso em que uma loja recebe um lote de compro-

47

Tabela 1: Entradas e Saídas do Software
Tipo de Entrada Tipo de Saída

Comunicação com Usuário Terminal Terminal
Dados de Compra Terminal Terminal
Dados de Validação Arquivos .txt Arquivos .txt
Comunicação com o Hardware Interface USB Interface USB

vantes e passa a validar, uma a uma, as assinaturas digitais para aprovar o pedido.

Todas as classes especificadas até então serão inteiramente escritas para este pro-

grama. No entanto, também vamos utilizar algumas bibliotecas prontas para realizar

operações de manipulação e transporte de dados para que possamos mais facilmente

adaptá-los ao formato do coprocessador.

Classe: Biblioteca Cypto++

Função: Inclui uma ampla quantidade de operações criptográficas para fins de ben-

chmark, e operações de curvas elípticas para realizar ações específicas, como mapea-

mento de pontos.

Classe: Biblioteca Hash

Função: Integra ao sistemas as funções de hash as quais será submetido o comprovante,

implementadas em uma biblioteca avulsa (no caso, função de hash SHA-3).

Classe: Biblioteca Interface USB

Função: Integra ao sistema as funções que permitem realizar comunicação serial en-

tre software e coprocessador através de uma interface USB, implementadas em uma

biblioteca avulsa.

É importante também definir quais são os canais de entrada e saídas de dados deste

software. Para isto, basta analisar as classes e verificar que temos 4 demandas: inter-

face para o usuário, entrada de dados para compra, entrada de dados para validação, e

comunicação com o hardware. Mais especificamente detalhadas abaixo:

48

Com todos os dados em mãos, passamos a encontrar as relações entre cada classe e

os requerimentos que cada uma faz as outras. Desenhamos então diagramas de sequên-

cia para cada um dos casos de uso trabalhados.

5.2 Diagrama de Sequência

Figura 13: Diagrama do caso de uso <Gerar Assinatura Digital>

49

Figura 14: Diagrama do caso de uso <Validar Assinatura Digital>

50

6 ESPECIFICAÇÃO DE HARDWARE

6.1 Visão Geral

O foco principal deste projeto é o hardware do coprocessador, que deve ser capaz

de realizar operações criptográficas a serem implementadas em um cenário de segu-

rança, e facilmente escalável a um smartphone. Com base nos conceitos teóricos de-

talhados anteriormente, podemos listar todas as operações básicas que se espera fazer

com este hardware. No escopo deste projeto, estas podem se apresentar na forma de 5

operações (instruções que serão passadas e reconhecidas).

• Configuração: O coprocessador deve reconhecer uma instrução de configura-

ção, de modo a armazenar na memória todos os parâmetros de curvas a serem

utilizados em seu funcionamento.

• Criptografia: O coprocessador deve ser capaz de receber um ponto da curva, e

fazendo uso de uma chave pública, cifrar uma mensagem.

• Descriptografia: O coprocessador deve ser capaz de receber um ponto da curva,

e, fazendo uso de uma chave privada, decifrar uma mensagem.

• Assinatura Digital: O coprocessador deve ser capaz de receber o código hash de

um conjunto de dados, e a partir dele e uma chave privada, gerar uma assinatura

digital.

51

• Validação de Assinatura: O coprocessador deve ser capaz de receber o código

hash de um conjunto de dados, bem como uma assinatura digital e uma chave

pública, e testar a validade dessa assinatura digital.

São, portanto, 5 operações que devem ser especificadas como instruções passadas

ao coprocessador. Estas instruções serão passadas através de um canal serial por uma

interface USB, que será detalhada adiante. Estas instruções compreendem processos

que não podem ser realizados diretamente através de um pipeline simples. Instruções

criptográficas demandam cálculos iterativos, controlados em diversas camadas de uma

hierarquia de dados. A estrutura geral do coprocessador, que trabalha nestas camadas,

pode ser apresentada da seguinte forma:

Figura 15: Estrutura do Coprocessador

6.2 Hierarquia do Fluxo de Dados

Uma vez apresentada a configuração do coprocessador, vamos detalhar um pouco

a função de cada um de seus módulos. Como especificado, o hardware trabalha com

uma hierarquia de dados, nos quais cada instrução demanda operações que controlam

suboperações em camadas inferiores. Os dados caminham da seguinte forma:

52

Figura 16: Hierarquia do Fluxo de Dados

Módulo Interface USB

Função: É através do módulo de interface que nosso coprocessador se comunica com

o software do sistema. Este módulo tem a função de receber as instruções e seus

parâmetros através de uma conexão serial, e mapeá-las em um formato que pode ser

utilizado pela unidade de controle. Analogamente, tem a função de receber os outputs

do coprocessador e mapeá-los de modo a permitir uma transmissão serial.

Módulo Controlador Principal

Função: Este módulo atua como a unidade de controle principal do coprocessador,

recebendo as instruções da interface USB, e repassando os sinais necessários para

realizá-las, incluindo subinstruções de load e store em registradores internos, gerenci-

amento de fila dos módulos seguintes e inserção de bolhas no pipeline.

Módulo Multiplicação de Pontos

Função: Este módulo atua na organização do processo iterativo de multiplicação es-

calar de pontos de curvas elípticas, que demanda operações constantes nas camadas

inferiores. Esta é a principal etapa no processo de criptografia de curvas elípticas.

Operações:

Z(x,y) = k * P(x,y)

53

Módulo Aritmética de Curvas Elípticas

Função: Este pode ser considerado o módulo aritmético superior do coprocessador, e a

ele compete as operações básicas de curvas elípticas, especificamente soma e reflexão

de pontos, calculados através das operações geométricas demonstradas na parte teó-

rica deste relatório. Para isso, cada operação é um processo de requisições à camada

inferior de aritmética de corpos finitos.

Operações:

Z(x,y) = - P(x,y)

Z(x,y) = 2 * P(x,y)

Z(x,y) = P(x,y) + Q(x,y)

Módulo Aritmética de Corpos Finitos

Função: Esta é a camada mais inferior do sistema, responsável pelos cálculos puros

de aritmética sobre os corpos finitos. Responde às camadas superiores e apresenta os

processos realizados no menor número de ciclos de clock.

Operações:

Z = P mod n

Z = (P + Q) mod n

Z = (-P) mod n

Z = (P*Q) mod n

Z = (1/P) mod n

6.3 Diagrama de Instruções

Para desenvolver a unidade de controle e o fluxo de dados do coprocessador na

próxima fase deste projeto, é necessário que detalhemos cada instrução, incluindo in-

puts, outputs, sinais e dados de memória que serão utilizados durante a sua execução.

Dessa forma, desenvolvemos diagramas específicos contendo estes dados e a ordem de

operação para cada instrução. De modo a facilitar o entendimento, cada etapa da ins-

54

trução é identificada por uma cor que marca qual camada hierárquica do coprocessador

é responsável por sua execução. A tabela de cores é dada abaixo:

Figura 17: Legenda de camadas de operação

Figura 18: Instrução: configurar corocessador

55

Figura 19: Instrução: cifrar uma mensagem

56

Figura 20: Instrução: decifrar uma mensagem

57

Figura 21: Instrução: gerar assinatura digital

58

Figura 22: Instrução: validar assinatura digital

59

6.4 FPGA

A placa que será utilizada neste projeto é a Nexys 2, da Digilent. Ela contém a

FPGA Xilinx Spartan-3E de 1200k gates (DIGILENT, 2015), ideal para este projeto.

A placa também oferece diversos canais de comunicação, como USB e serial, que

facilitará o desenvolvimento e depuração do coprocessador. A principal vantagem

desta FPGA em nosso contexto é o fato dela ter sido desenvolvida para trabalhar com

o ambiente ISE, que utilizaremos para escrever o código VHDL do coprocessador.

Figura 23: Placa Digilent Nexys 2

Figura 24: Especificação da Digilent Nexys 2

60

Para a interface entre hardware e software necessária para nosso projeto, faremos

uso de um componente USB que permite comunicação serial direta, que já é suficiente

para cumprir com os requisitos do projeto.

Figura 25: Interface de comunicação serial USB

61

7 IMPLEMENTAÇÃO DE SOFTWARE

7.1 Terminal de Comunicação

A camada de software deste projeto é composta por um aplicativo escrito em lin-

guagem C++, capaz de se comunicar com o nosso coprocessador, e também simular

suas funções a fim de gerar dados para compararmos o desempenho entre as operações

criptográficas em hardware e em software. Acima de tudo, a aplicação serve como

uma interface entre o usuário e nosso projeto.

Uma vez que este não era o foco deste projeto, implementamos esta camada na

forma de um terminal simples, sem uma interface gráfica mais sofisticada. A estrutura

interna do software sofreu algumas pequenas modificações de modo a tornar os pro-

cessos mais diretos: a divisão entre classes se tornou menos dependente dos atores, e

mais dependentes do fluxo do caso de uso.

Em geral, o software cumpre com todos os seus requisitos, e é capaz de realizar

as seguintes funções: gerar um par de chaves, cifrar uma mensagem, decifrar uma

mensagem, gerar um comprovante nos padrões especificados neste relatório, assinar

um comprovante, e validar a assinatura em um comprovante. As telas abaixo acompa-

nham os casos de uso retratados aqui.

62

Figura 26: Interface inicial do software

Figura 27: Caso de uso - gerando um par de chaves

Figura 28: caso de uso - cifrando uma mensagem

63

Figura 29: Caso de uso - decifrando uma mensagem

Figura 30: Caso de uso - gerando um comprovante

Figura 31: Caso de uso - assinando um comprovante

64

Figura 32: Caso de uso - validando a assinaturo de um comprovante

65

8 IMPLEMENTAÇÃO DE HARDWARE

8.1 Aritmética de Corpos Finitos

O primeiro módulo desenvolvido no projeto foi aquele que está na base da hierar-

quia do processador, o módulo de aritmética de corpos finitos. Basicamente todos os

outros módulos implementam operações que dependem diretamente deste. A função

principal do módulo é receber os parâmetros de módulo do corpo finito, tipo de opera-

ção, e dois operandos (que necessariamente devem estar dentro do intervalo definido

pelo campo), e devolver o resultado da operação. Implementamos ainda uma camada

inferior dentro desta, que atua como a ULA da camada para os casos em que a opera-

ção é feita em um único ciclo de clock (combinatória). São essas operações a adição,

subtração, e multiplicação. Estas operações são implementadas diretamente em código

VHDL, seguindo as regras e instruções definidas anteriormente neste relatório para a

aritmética de corpos finitos.

Acompanham os blocos operacionais da ULA buffers de entrada e saída, que evi-

tam constantes alterações de estado e tornam o consumo mais eficiente, e um mini-

controlador responsável por estes buffers.

Com isto, montamos o nosso módulo de aritmética de corpos finitos. Já temos

uma ULA para as operações combinatórias, porém ainda precisamos de um compo-

nente capaz de realizar a operação de inversão, definida pelo algoritmo euclidiano

estendido para campos de Galois (GF), baseado em divisores comuns. Este compo-

nente também foi implementado diretamente em código VHDL, mas é um processo

66

Figura 33: ULA do módulo de aritmética de corpos finitos

iterativo, que demanda um maior número de ciclos de clock, e portanto requer sinais

de controle adicionais como start e done. Dessa forma, ao nosso módulo fazemos

duas adições: Primeiramente, precisamos de um registrador que guarde o resultado

das operações, especialmente no caso das operações combinatórias, cujos resultados

permanecem corretos apenas durante um ciclo. Adicionalmente, ainda precisamos de

uma unidade de controle do módulo, que implementa uma máquina de estados simples.

Figura 34: Módulo de aritmética de corpos finitos

67

A máquina de estados simplesmente contém um estado inicial de repouso, dois es-

tados que disparam operações (combinatória ou iterativa), dois estados que aguardam

resposta e comandam a gravação do resultado no registrador, e um estado que indica

ao coprocessador que as operações já foram feitas e o resultado está disponível.

Figura 35: Máquina de estados do módulo de aritmética de corpos finitos

Depois de terminado o módulo, fazemos alguns testes para garantir que este es-

teja funcionando corretamente. O processador é capaz de lidar com operações com

operandos de até 256 bits, porém, a fim de tornar os resultados mais compreensíveis,

colocamos no relatório os testes com valores muito mais baixos. A seguir, estão as

formas de ondas para os 4 tipos de operação: soma, subtração, multiplicação e inver-

são. Todas sobre um corpo de módulo primo 29, e apresentando resultados corretos,

conforme esperamos deste módulo do projeto.

68

Figura 36: Simulação de uma operação de adição

Figura 37: Simulação de uma operação de subtração

69

Figura 38: Simulação de uma operação de multiplicação

Figura 39: Simulação de uma operação de inversão

70

8.2 Aritmética de Curvas Elípticas

O segundo módulo desenvolvido é o módulo de aritmética de curvas elípticas. Ele

implementa diretamente o módulo anterior para realizar operações sobre pontos de

uma curva representada pela equação de Weierstrass, definida anteriormente neste re-

latório. A sua função principal é receber os parâmetros de módulo do corpo finito, tipo

de operação, e dois operandos (na forma de dois pontos da curva pré-estabelecida, cada

um definido por um par x,y), e devolver o resultado da operação. Vale notar que ainda é

útil permitir que operações avulsas (adição, subtração, multiplicação e inversão) sejam

acessadas através deste módulo, e não apenas operações de pontos. Portanto deve-

mos levar isso em conta na hora de projetar o controlador. Temos para esta camada

o módulo de aritmética de corpos finitos, o controlador, e também um banco de re-

gistradores. Como as operações sobre pontos demandam novas variáveis, precisamos

de um local no módulo para armazenar os resultados de cada sub-operação. Por conta

disso, além de sinais de tipo de operação, o controlador também deve manipular sinais

de endereçamentos (tanto de entrada como de saída dos registradores), comandos de

gravação e disparo de operações.

A nova máquina de estados deste módulo é um pouco mais robusta do que a do

módulo anterior, visto que precisa implementar sub-rotinas inteiras. As duas principais

operações, as realizadas sobre os pontos de curva, são a soma de dois pontos e o dobro

de um ponto, que acompanham as quatro sub-rotinas que apenas chamam as operações

primárias individuais. Apesar do número maior de estados, a estrutura da máquina

ainda se mantém relativamente similar, com um estado inicial de repouso, os estados

relativos a cada operação, e um estado final, que indica ao coprocessador o término

da execução e disponibilidade dos resultados. Abaixo da máquina de estados, também

inserimos duas tabelas que tratam dos sinais internos de cada passo das duas operações

de pontos, incluindo os códigos de operação e endereço dos registradores utilizados em

cada etapa do processo;

71

Figura 40: Módulo de aritmética de curvas elípticas

Figura 41: Máquina de estados do módulo de aritmética de curvas elipticas

72

Figura 42: Estados - Soma de dois pontos

Figura 43: Estados - Dobro de um ponto

73

Tal como no módulo anterior, depois de terminada a descrição, fazemos testes para

avaliar o seu correto funcionamento. Vamos demonstrar abaixo as formas de ondas

para as duas operações de pontos, soma e dobro. Como referência à parte teórica deste

relatório, vamos utilizar as operações que exemplificamos logo ao introduzi-las: Em

um campo primo de módulo 29, com a curva da forma:

E : y2 = x3 + 4x + 20

Operação de Soma: (5,22) + (16,27) = (13,6);

Operação de Dobro: 2*(5,22) = (14,6);

Figura 44: Simulação de uma operação de soma de pontos

74

Figura 45: Simulação de uma operação de dobro de um ponto

8.3 Multiplicação Escalar de Pontos

O terceiro módulo é o módulo de multiplicação escalar de pontos para curvas elíp-

ticas. A multiplicação escalar é completamente dependente de operações sucessivas

de soma de pontos, e portanto, o módulo é baseado em um loop que faz chamadas

de soma conforme seus operandos. A operação é feita da seguinte forma: O ponto a

ser multiplicado é dobrado e registrado em um banco interno por tantas vezes quanto

os bits do multiplicador, do menos ao mais significativo, levam para atingir o 1 mais

significativo (por exemplo, para uma multiplicação por 9, em binário, 1001, são 4 ope-

rações de dobro até o 1 mais significativo). Realizadas as multiplicações, são feitas as

chamadas de soma de pontos para cada resultado de dobro equivalente a um bit 1 do

multiplicador, até chegar ao resultado final. Resumidamente, temos uma soma parcial

de pontos resultantes de operações de potência, e a estrutura do módulo repete a trinca

de controlador, banco de registradores, e módulo aritmético, que verificamos nos casos

anteriores.

75

Figura 46: Módulo de multiplicação escalar de pontos

Os parâmetros da multiplicação são: ponto, multiplicador, e coeficiente <a> da

curva, mas, tal como nos outros módulos, também é necessário adaptar este de modo

que consiga efetuar operações avulsas de qualquer camada inferior, seja uma soma

singular de pontos, ou uma operação de multiplicação sobre curvas elípticas. Sendo

assim, a estrutura da máquina de estados deste módulo é praticamente a mesma daquela

do módulo de aritmética de corpos finitos. Demonstramos abaixo, então, apenas a

máquina de estados da sub-operação de multiplicação escalar de pontos.

Figura 47: Máquina de estados da operação de multiplicação escalar de pontos

76

Tendo já este módulo pronto, demonstramos abaixo as formas de onda de uma

operação de multiplicação escalar, novamente fazendo uso do ponto (5,22) da curva

que estamos utilizando de exemplo, e multiplicando-o escalarmente por 9, resultando

no ponto (3,1).

Figura 48: Simulação de uma operação de multiplicação escalar de pontos

8.4 Controlador Principal

Finalmente, temos o módulo de controlador principal, que se encontra no topo da

hierarquia do coprocessador (exceto a interface de comunicação com software). Este

módulo é responsável por fazer chamadas a qualquer tipo de operação implementada

pelos módulos inferiores a fim de completar as 4 principais funções do coprocessador:

cifrar uma mensagem, decifrar uma mensagem, gerar uma assinatura do coprocessador

digital, e validar uma assinatura digital. Resumidamente, este é o módulo que controla

todas as funções e implementa diretamente as máquinas de estado de nossa especifi-

cação. Ao ser iniciado, pode carregar os parâmetros encaminhados pelo software ou

receber o código de operação referente a uma de suas funções e iniciar o seu respectivo

processo, retornando à interface hardware-software os resultados obtidos.

77

Figura 49: Módulo de multiplicação escalar de pontos

Uma vez que a máquina de estados para os processos deste módulo foram deta-

lhadas na especificação do sistema, inserimos abaixo as tabelas que tratam de todos os

passos das funções e seus devidos códigos de operação e de endereçamento no banco

de registradores.

Figura 50: Estados - operação de cifração de uma mensagem

78

Figura 51: Estados - operação de decifração de uma mensagem

Figura 52: Estados - operação de geração de assinatura digital

Figura 53: Estados - operação de validação de assinatura digital

79

Temos, finalmente, um módulo capaz de realizar todas as operações determinadas

na especificação do projeto, e podemos então realizar os testes necessários e verificar as

formas de onda resultantes em cada operação, a fim de validar o nosso coprocessador

e iniciar os trabalhos no módulo de interface hardware-software. Para fins de testes,

vamos utilizar novamente os parâmetros usados como exemplo na parte teórica deste

relatório, ou seja: P=(1,5), d=7, Q=(24,22), e uma mensagem M=(17,10), ainda com

os mesmos parâmetros de curva dos itens anteriores.

Figura 54: Simulação de uma operação de cifração de uma mensagem

80

Figura 55: Simulação de uma operação de decifração de uma mensagem

Figura 56: Simulação de uma operação de geração de assinatura digital

81

Figura 57: Simulação de uma operação de validação de assinatura digital

8.5 Multiplicador DAR

Ao longo de nosso processo de descrição de hardware e testes com o código, ve-

rificamos que, para operandos com uma quantidade muito grande de bits (como é o

caso de nosso projeto, que usa 256 bits), surgiam problemas na síntese do multiplica-

dor combinatório. O mapeamento das equações falhava, e mesmo o período mínimo

do clock dava indícios de que este circuito não funcionaria bem em frequências mais

elevadas.

82

Para contornar estes problemas, e garantir uma síntese em 256 bits, foi criado um

módulo adicional que realiza multiplicação em corpos finitos. Ao contrário do anterior,

este trabalha com uma máquina de estados, fazendo uso do algoritmo DAR (Double,

Add, Reduce), iterado a cada bit do multiplicador.

Como trata-se de um módulo semelhante ao inversor em corpos finitos, a estrutura

da camada de aritmética de corpos finitos foi alterada de modo a acomodar o novo

componente.

Figura 58: Módulo de aritmética de corpos finitos com o multiplicador DAR

É preciso lembrar, no entanto, que apesar de oferecer os mesmos resultados, esta

alternativa significa tempos de respostas maiores para o coprocessador. Nota-se, na

nova simulação de multiplicação, que a quantidade de ciclos de clock para terminar a

operação aumentou consideravelmente.

83

Figura 59: Simulação de multiplicação em corpos finitos com DAR

84

9 RESULTADOS E TESTES

9.1 Síntese do Coprocessador

Uma vez que já temos uma descrição de hardware pronta e devidamente simulada,

utilizamos o Xilinx ISE para sintetizar o coprocessador criptográfico. Segue o relatório

final da síntese do hardware projetado (e fazendo uso do multiplicador DAR):

===

* Final Report *

===

Final Results

RTL Top Level Output File Name : Coprocessor.ngr

Top Level Output File Name : Coprocessor

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics

IOs : 7

Cell Usage :

BELS : 88845

GND : 1

85

INV : 296

LUT1 : 1058

LUT2 : 1925

LUT2_D : 1

LUT2_L : 6

LUT3 : 30947

LUT3_D : 19

LUT3_L : 14

LUT4 : 21651

LUT4_D : 68

LUT4_L : 338

MUXCY : 3270

MUXF5 : 15551

MUXF6 : 6689

MUXF7 : 2576

MUXF8 : 1288

VCC : 1

XORCY : 3146

FlipFlops/Latches : 14275

FD : 10507

FD_1 : 1

FDC : 9

FDE : 2304

FDE_1 : 8

FDPE : 1

FDR : 14

FDRE : 1312

FDS : 58

86

FDSE : 61

Clock Buffers : 1

BUFGP : 1

IO Buffers : 6

IBUF : 5

OBUF : 1

===

Device utilization summary:

Selected Device : 3s1200efg320-4

Number of Slices: 33068 out of 8672 381% (*)

Number of Slice Flip Flops: 14275 out of 17344 82%

Number of 4 input LUTs: 56323 out of 17344 324% (*)

Number of IOs: 7

Number of bonded IOBs: 7 out of 250 2%

Number of GCLKs: 1 out of 24 4%

WARNING:Xst:1336 - (*) More than 100% of Device resources are used

Partition Resource Summary:

No Partitions were found in this design.

87

===

Nota-se que, apesar de termos um coprocessador sintetizável que atende aos re-

quisitos operacionais deste projeto, o relatório aponta que a FPGA que estamos uti-

lizando não possui recursos suficientes para implementa-lo devidamente, e portanto,

uma FPGA mais robusta seria necessária.

Isto ocorre, principalmente, por conta da natureza hierárquica da arquitetura que

projetamos. Como cada módulo foi projetado em uma estrutura de controlador, banco

de registradores, e unidade aritmética, quando trabalhamos com operandos de grande

quantidade de bits, a estrutura acumulativa de registradores, que cresce em tamanho e

redundância a medida que nos aproximamos das camadas superiores do coprocessa-

dor, consome recursos da FPGA, mais adequada para trabalhar com memórias do tipo

RAM.

De modo a conseguir implementar devidamente o nosso hardware com os recursos

físicos que temos, é necessário fazer concessões no nível de segurança. Podemos, para

isso, reduzir o número de bits dos operandos para 64 bits, o que torna o hardware

compatível com a FPGA, porém mais vulnerável a ataques. Segue o relatório:

===

* Final Report *

===

Final Results

RTL Top Level Output File Name : Coprocessor.ngr

Top Level Output File Name : Coprocessor

Output Format : NGC

88

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics

IOs : 7

Cell Usage :

BELS : 22941

GND : 1

INV : 97

LUT1 : 289

LUT2 : 895

LUT3 : 7971

LUT3_L : 2

LUT4 : 5447

LUT4_D : 6

LUT4_L : 24

MUXCY : 909

MUXF5 : 3827

MUXF6 : 1672

MUXF7 : 644

MUXF8 : 322

VCC : 1

XORCY : 834

FlipFlops/Latches : 3775

FD : 760

FDC : 13

FDE : 576

89

FDP : 2

FDPE : 1

FDR : 15

FDRE : 352

FDS : 1932

FDS_1 : 1

FDSE : 59

LD : 64

Clock Buffers : 2

BUFG : 1

BUFGP : 1

IO Buffers : 6

IBUF : 5

OBUF : 1

===

Device utilization summary:

Selected Device : 3s1200efg320-4

Number of Slices: 7742 out of 8672 89%

Number of Slice Flip Flops: 3775 out of 17344 21%

Number of 4 input LUTs: 14731 out of 17344 84%

Number of IOs: 7

Number of bonded IOBs: 7 out of 250 2%

Number of GCLKs: 2 out of 24 8%

90

Partition Resource Summary:

No Partitions were found in this design.

===

9.2 Comparação com Software

A última etapa deste projeto é avaliar como o hardware que projetamos se com-

para às alternativas de software que efetuam as mesmas operações. Para isso, vamos

utilizar o nosso terminal escrito em C++, com a biblioteca Cryptopp, para avaliar o

tempo médio de realizar as 4 operações necessárias (cifrar e decifrar uma mensagem,

gerar e validar a assinatura digital de uma mensagem) sobre os parâmetros iniciais que

definimos no início deste relatório. Processador utilizado: Intel i3 2.1GHz

Tabela 2: Tempos de Execução - Software com biblioteca Cryptopp
Operação Tempo (ms)
Cifrar uma mensagem 21.809
Decifrar uma mensagem 28.273
Gerar uma assinatura digital 31.722
Validar uma assinatura digital 52.027

Para medir os tempos de execução do coprocessador, torna-se mais flexível lidar

diretamente com o número de ciclos de clock. Equacionamos, com base em nosso

código e simulações, a quantidade de ciclos de clock que as operações criptográficas

gastam em cada módulo do coprocessador:

91

Tabela 3: Número de ciclos de clock para cada operação - Multiplicador DAR
Módulo Operação Número de ciclos

Aritmética de Corpos Finitos Soma 3
Subtração 3
Multiplicação 515
Inversão 259

Aritmética de Curvas Elipticas Soma de Pontos 1836
Dobro de um Ponto 2868
Soma 7
Subtração 7
Multiplicação 519
Inversão 263

Multiplicação Escalar de Pontos Multiplicação de Ponto 1087620
Soma de Pontos 1840
Dobro de um Ponto 2872
Soma 11
Subtração 11
Multiplicação 523
Inversão 267

Controlador Principal Cifrar uma mensagem 2177090
Decifrar uma mensagem 1089481
Gerar assinatura digital 1089478
Validar assinatura digital 2178942

Como a nossa FPGA opera a 50MHz, vamos considerar um período de 20ns para

cada ciclo de clock. Sendo assim, os tempos de execução para estas operações em

hardware são:

Tabela 4: Tempos de Execução - Coprocessador com multiplicador DAR
Operação Tempo (ms)
Cifrar uma mensagem 43.542
Decifrar uma mensagem 21.790
Gerar uma assinatura digital 21.790
Validar uma assinatura digital 43.579

É interessante também avaliar como a unidade de multiplicação combinatória afe-

taria o desempenho do coprocessador, visto que grande parte das operações criptográ-

ficas fazem chamadas de multiplicação em corpos finitos pelo menos uma vez:

92

Tabela 5: Número de ciclos de clock para cada operação - Multiplicador Combinatório
Módulo Operação Número de ciclos

Aritmética de Corpos Finitos Soma 3
Subtração 3
Multiplicação 3
Inversão 259

Aritmética de Curvas Elipticas Soma de Pontos 300
Dobro de um Ponto 308
Soma 7
Subtração 7
Multiplicação 7
Inversão 263

Multiplicação Escalar de Pontos Multiplicação de Ponto 137348
Soma de Pontos 304
Dobro de um Ponto 312
Soma 11
Subtração 11
Multiplicação 11
Inversão 267

Controlador Principal Cifrar uma mensagem 275010
Decifrar uma mensagem 137673
Gerar assinatura digital 137670
Validar assinatura digital 275326

Tabela 6: Tempos de Execução - Coprocessador com multiplicador combinatório
Operação Tempo (ms)
Cifrar uma mensagem 5.500
Decifrar uma mensagem 2.753
Gerar uma assinatura digital 2.753
Validar uma assinatura digital 5.507

93

Podemos verificar que o coprocessador com módulo de multiplicação DAR (o mais

lento) já apresenta tempos de execução da mesma ordem de magnitude do software,

mesmo rodando a 50MHz, contra 2.1GHz do processador convencional. Se conside-

rarmos o coprocessador combinatório, este ainda leva a vantagem de ser na ordem de

10 vezes mais rápido.

Projetistas, então, poderiam escolher entre duas alternativas: manter a frequência

mais baixa do coprocessador como forma de economizar bateria e evitar aquecimento,

ou igualar as frequências dos dispositivos, e oferecer uma alternativa em hardware

consideravelmente mais rápida do que em software.

Tabela 7: Tempos de Execução - Comparação em 2.0 GHz
Tempo Software (ms) Tempo Hardware (ms) Tempo Hardware (ms)

Operação <DAR> <Combinatório>

Cifrar uma mensagem 21.809 1.089 0.138
Decifrar uma mensagem 28.273 0.545 0.069
Gerar uma assinatura 31.722 0.545 0.069
Validar uma assinatura 52.027 1.089 0,138

94

10 CONCLUSÕES

Ao longo deste projeto, detalhamos os conceitos teóricos da criptografia de curvas

elípticas, fizemos a especificação de um coprocessador criptográfico, e concluímos o

seu desenvolvimento. Como forma de avaliar o nosso resultado, precisamos voltar ao

início, e responder os questionamentos que fizemos ainda na fase de determinação de

objetivos e metodologia:

• O dispositivo faz o que é esperado?

Sim. O requisito funcional de nosso dispositivo era a realização de 4 operações

criptográficas sobre curvas elípticas, e nossas simulações demonstraram que o

coprocessador é funcionalmente capaz de realizar todas elas, gerando resultados

corretos, e escalável para qualquer tamanho de coeficiente e parâmetro de curva,

desde que implementado em hardware que suporte este tamanho.

• O dispositivo cumpre com os requisitos de tempo?

Sim. Em nossas comparações com alternativas em software, verificamos que o

coprocessador atinge resultados semelhantes com frequências muito menores,

ou seja, o tempo de execução das operações criptográficas se torna consideravel-

mente menor do que quando executadas em um processador convencional com a

mesma frequência, atendendo, assim, aos requisitos propostos de vazão e tempo

de resposta.

95

• O dispositivo é viável para aplicações móveis?

De modo a terminar o projeto dentro de seu ciclo de desenvolvimento pré-

definido, fizemos uso de uma arquitetura modular, de fácil depuração, e com

fluxos de dados simples e independentes. O resultado é uma camada adicional

de redundância de hardware, que não é ideal quando estamos lidando com nú-

meros muito grandes de bits por operando, por consumir mais recursos físicos.

Por conta disso, de modo a implementar o coprocessador com uma FPGA, foi

necessário fazer algumas alterações no tamanho das variáveis, o que implica em

redução no nível de segurança. Entretanto, em placa dedicada e com otimização

em seu fluxo de dados, o coprocessador pode atingir melhores resultados nos re-

quisitos de área. Já a possibilidade de operar com tempos de execução satisfató-

rios, em frequências consideravelmente baixas de clock , torna o coprocessador

vantajoso dentro dos requisitos de consumo de energia e calor dissipado.

• O dispositivo é necessário para o sistema?

Enfim, temos um dispositivo capaz de realizar todas as funções para as quais

foi projetado, e operando de forma muito mais eficiente do que as alternativas

em software. A avaliação da necessidade do dispositivo em um sistema passa a

depender muito de sua utilização: mesmo com tempos de resposta maiores, as

alternativas de software ainda se encontram na escala de milissegundos, que po-

dem ser consideradas imediatas ao usuário final. As aplicações que apresentam

requisito de alta vazão, entretanto, podem se beneficiar muito de um hardware

capaz de realizar um número muito maior de operações criptográficas em um

determinado intervalo de tempo. Retomando o caso de uso detalhado no início

deste relatório, podemos concluir que a demanda da <loja> por um hardware

como este é maior do que a demanda do <comprador>.

96

REFERÊNCIAS

BROWN, D. R. L. Standards for Efficient Cryptography 1: Elliptic Curve
Cryptography. [S.l.]: Certicom Corp, 2009.

DESCHAMPS, J.-P. D.; BIOUL, G. J. A.; SUTTER, G. D. Synthesis of Arithmetic
Circuits FPGA, ASIC, and Embedded Systems. New Jersey: John Wiley and Sons
INC, 2006.

DIGILENT. Nexys 2 Spartan3E FPGA Board. [S.l.], 2015. Acesso em 24/06/15.
Disponível em: <http://www.digilentinc.com/Products/Detail.cfm?Prod=
NEXYS2>. Acesso em: 18 de dezembro de 2015.

HEKERSON, D.; MENEZES, A.; VANSTONE, S. Guide to Elliptic Curve
Cryptography. New York: Springer, 2004.

LINKOPINGS UNIVERSITY. Cryptography Lecture 8 Digital Signatures, Hash
Functions. 2014.

VOGEL, L. Eclipse IDE Tutorial. [S.l.], 2014. Acesso em 21/07/15. Disponível em:
<http://www.vogella.com/tutorials/Eclipse/article.html>. Acesso em:
18 de dezembro de 2015.

XILINX. ISE 11 InDepth Tutorial (UG695 v 11.2). [S.l.], 2009.

XILINX. Spartan3E FPGA Family Datasheet. [S.l.], 2013.

http://www.digilentinc.com/Products/Detail.cfm?Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?Prod=NEXYS2
http://www.vogella.com/tutorials/Eclipse/article.html

