PMC-581 Projeto Mecanico ll

JPM - Java Parallel Machine

Um Sistema de Computag¢ao Distribuida para

(o“ﬁ

Reconhecimento de Impressbes Digitais

UO

/f\
Orientador: Prof. Dr. Newton Maruyama W
Alvaro Guimaraes Mucida
Reynaldo Penharrubia Fagundes

Dezembro 1998

Agradecimentos

Ao Professor Newton Maruyama, pela dedicagio espartana e
indispensave! contribuicdo para a realizagéo deste trabalho.

Aos Professores desta Escola, que proporcionaram anos de
aprendizado e amadurecimento pessoal, com conhecimentos que n&o nos
faltardo nas etapas ainda por vir de nossas vidas.

Aos nossos colegas, alunos e alunas desta Escola, por sua amizade e
fraternidade que tornaram suave a jornada que agora concluimos.

A todos aqueles que, algum dia, ofereceram seu tempo e dedicagdo e
de alguma forma contribuiram para a realizagdo deste que foi nosso maior

objetivo, em cinco dos nossos melhores anos de vida.

Sumario
RESUMO ... et sttt e e en e e een e sns e S
T FOAUGEO. ..o et 7
2. OBJBHIVOS. ...t 11
3. Especificag@o do Problema............coooi e, 12
3.1 AQUISICEO de IMAGENS ... e 12
3.2 Linguagem de Programacaio ... 13
3.3 Segmentac@o de IMagens...........occooiiiiiiiii e 13
3.4 Processamento de ImMagensc.cccvviieiiiicc e 15
3.5 ldentificagéo de Caracteristicas Representativas de Digitais 17
3.5.1 Extracdo de MINUCIASsooeviiviiieicei e 18
3.5.2 Extragdo de Orientagdes LOCaiS.............ccoeveiiiivieeiieeecceecee e, 20
3.6 Comparacéo de Impressdes Digitais.........c.ccccvvvvveviviee 22
3.7 Computacéo Distribuida ..o 25
3.7 .1 MOUIVaACAO i vmsmmmristavnsiis i miv s v e i e e e D 200 D0 % R AT 25
3.7.2 Modelos de Computacao Paralela..................ccccevviieiiiieiiiieieveis 28
3.7.3 Balanceamento de carga em sistemas distribuidoscccceeee. 30
B7A4Granularidade..... ... 33
3.7.5 Tempo de vida util de um nd e balanceamento de carga.................. 34
4. POSSIVEIS SOIUGOESoooiiiiiiiii e 37
4.1 AQUISICEO dE IMAGENSiiiiiiiiiiiiiiiiiiiiiii ittt ea b aac e aabanrenbeaaene 37
4.2 Linguagem de Programagaiocc.oooeiiieuinieeieeeeeieeeenininn e essnenrsranee e 38
4.3 Segmentacéo de Imagens.......... NS, SRS SN NSSNSRRSS, SSNR. B S0 SRRNRSRRRN 39
4.4 ldentificagdo de Caracieristicas Representativas de Digitais 39
4.5 Processamento de IMageNSo.oovviieiiieeieieeiieeieeiieeeeeeceeceeneeneereenenens 41
4.6 Comparagéo de Impressées Digitais..............ocooooooiieeiiiii e 41
4.7 Computag@o Distribuida.............oooiiiiiic e e 42
5. Especificactes Finais do Projeto..........ccevvvveiiiiiice e 45
6. Engenharia do Software ... 50
6.1 Classe Display_GrafiCo........uvuuiiiiiiiiitie e 50

B.1.1.8eGMENtA () ..o 50

6.1.2Classe BIOCOBX8............cco i 53
6.2 Classe BIOCO_MINUCIA.............oooiiiiiiiiiii et 53
B.3 COMPAFACEADevvieiciiiee et e e st e e 56

T.RESURAAOS.oiiiiiiiii e 58
8. CONCIUSBES......eeiiiitiiie et e ettt 70
9. Trabalho FUtUro.......... e 71

Resumo

A necessidade de identificagdo tem crescido nos ultimos tempos, em
face a cada vez maior automagéo de tarefas que dela dependem, notadamente
no setor bancario, policial e de seguranga genérica de sistemas.

Além dessa, nos Ultimos 3 anos, observa-se uma convergéncia de
tecnologias paralelas, tais como o desenvolvimento de linguagens de
programagédo “universais” e multi-plataforma, popularizagdo das redes de
computadores em ambientes corporativos, crescimento das mega-redes
heterogéneas (como a Internet) e aumento da capacidade computacional dos
chamados “computadores de mesa’ (Desktop’s), permitindo o surgimento de
sistemas de computagdo distribuida visando processamentos
computacionalmente onerosos.

Este projeto visa o desenvolvimento de um sistema de identificagéo
pessoal, baseado em reconhecimento de impressbes digitais, usando
computagdo paralela em plataformas de baixo custo para levar a cabo os
processamentos excessivamente custosos associados ao reconhecimento de
padrdes.

A “Java Parallel Machine” (ou JPM) é uma maquina de computacéo
paraiela virtual, baseada em linguagem Java, multi-plataforma, que se propde
a realizar o reconhecimento de impressdes digitais, utilizando uma ténica que
utliza légica Fuzzy. As etapas computacionalmente custosas desta tarefa séo
implementadas usando uma biblicteca que permite lancar mac de varias
maquinas de uma rede para construir um “computador paralelo virtual® e
assim, viabilizar os tempos de processamento impraticaveis sem o uso de
computacéo paralela.

A implementagfio visa demonstrar a viabilidade do uso, hoje, de
técnicas de computacdo distribuida em redes corporativas e heterogéneas,
subsidiando argumentos otimistas com relagéo a viabilidade de implantagdo de

tais sistemas em redes ‘reais’, e oferecendo contrapontos aqueles

excessivamente otimistas, como os que acreditam na viabilidade imediata de
processamento distribuido em redes heterogéneas e de baixa confiabilidade,
como a Internet.

O sistema gerado apresentou um comportamento excelente com relagéo
as questbes relativas & computagdo paralela (curva de speed-up bastante
proxima da teoricamente ideal e com boa porgdo linear, baixo overhead de
comunicagdo para aplicagbes em Intranet’s, principalmente) e
surpreendentemente mostrou-se também muito confiavel quanto ao
reconhecimento, propriamente dito, de digitais (probabilidade de falsa

aceitacéo menor do que 0,1%).

1. Introdugao

A habilidade que certos sistemas computacionais tém de realizar suas
tarefas (genericamente, a solugéo de um problema gualquer) subdividindo a
tarefa inicial em subtarefas a serem realizadas em diferentes unidades de
processamento ac mesmo tempo €& usualmente chamada de computacéo
distribuida. Langando méo desta capacidade, é possivel aproveitar 0s recursos
do que podemos chamar de “computadores paralelos” de forma eficiente, ja
que temos as vérias unidades de processamento realizando suas tarefas de
maneira simultinea e parciaimente independente (ja que, tipicamente, as
subtarefas ndo sdo totaimente independentes umas das outras, mas sim
ligadas por uma hierarquia de execuc¢ao).

Certamente, o uso da computacdo paralela € desejavel quando se
percebe que a arquitetura dos modernos computadores esbarra em barreiras
tecnol6gicas que tornam mais viavel (normalmente por motivos econdmicos)
criar computadores com duas ou mais unidades de processamento do que
computadores com recursos de processamento maiores ou melhores.

Como quase sempre acontece com os avangos tecnolégicos que se
tornam lugar comum nos dias modemos, o surgimento de maquinas com
processamento paralelo se deu no meio académico, e por muito tempo a
computacdo distribuida se resumia ao conjunto de ferramentas e técnicas
utilizadas para operar os entéo “computadores paralelos”, maquinas dotadas
de mais de um processador. Com o tempo, entretanto, novos paradigmas
surgiram e aproximaram cada vez mais este tipo de sistema do uso em
ambientes corporativos.

Nos dias atuais, entretanto, percebe-se um notavel avango do tema. O
antigo modelo de “computadores paralelos” vem sendo gradativamente
repensado para sistemas de computagéo distribuida, onde se tem varios
computadores, eventualmente heterogéneos, constituindo uma “forca

computacional’ para a resolugdo do problema, e ndo um unico computador

paralelo. Esse tipo de ambiente mostra-se muito robusto ja que se pode, a
baixo custo, constituir uma grande “maquina paralela” formada por centenas
ou mesmo milhares de maquinas “simples’, computadores ja existentes, por
exemplo, em redes corporativas de grandes corporagdes. Essa nova realidade
vem estimular o uso de solucdes de computacio que se utilizem de um grande
numero de computadores, heterogéneos, que se comunicam por algum tipo de
rede e eventualmente individuaimente faliveis (0 que torna necessarios
modelos regenerativos tolerantes a falhas) para a realizagdo de tarefas
complexas.

Desta forma, a computacdo distribuida como uma alternativa de
computagdo de alto desempenho barata e flexivel, em ambientes (cada vez
mais comuns) de redes com imenso nimero de maquinas hoje em dia dotadas
de razoavel grau de processamento (computadores, por exemplo, com
arquitetura Intel, abundantes e normaimente subutilizados em Intranet’s de
grandes corporagfes), conectadas por redes cada vez mais velozes e, ainda,
com o surgimento de novos modelos de programagéo universais (dentre os
quais destaca-se a linguagem Java) nos encorajam a diregbes ainda pouco
exploradas e incrivelmente promissoras.

Naturalmente, para que todas estas caracteristicas da computacgao
distribuida pudessem ser implementadas, testadas e apresentadas, uma
aplicago exemplo teve que ser eleita. Esta aplicagéo teria que apresentar
caracteristicas adaptaveis a sua implementagdo em computagéo distribuida
{como executar tarefas computacionalmente intensivas e que de certa forma
pudessem ser distribuidas de forma razoavelmente independente entre
diferentes unidades de processamento) e também fazer parte do rol de
tecnologias em acentuado desenvolvimento e incontestavel importancia, de
forma que se pudesse unir em um sé trabalho dois recentes e modernos
campos de pesquisa cientifica.

As Tecnologias Biométricas, que para o presente trabalho, aparecem
como instrumento para sistemas de identificagdo pessoal, poderiam ser

definidas como métodos automatizados para verificagdo e/ou reconhecimento

da identidade de pessoas baseados em caracteristicas fisioldgicas e/ou
comportamentais. Na grande maioria dos casos, sistemas biométricos de
reconhecimento e identificagcdo pessoais envolvem: (i) mecanismos para
aquisicdo e captura de uma imagem analdgica ou digital de caracteristicas
pessoais de uma pessoa; (ii) compresséo, processamento e comparagio da
imagem; (iii) interface com as aplicagdes dos sistemas. Vale fazer uma
distingdo clara entre as caracteristicas fisioldgicas e comportamentais: as
primeiras s&o caracteristicas relativamente estaveis, como uma impresséo
digital, a forma e o contorno das méaos, os padrdes da iris, ou os padrées dos
vasos sanglineos na pupila; as uUltimas sd&o mais um reflexo do perfil
psicolégico da pessoa, ainda que fatores como sexc ou tamanho tenham
influéncia consideravel. A assinatura € um exemplo classico de caracteristica
comportamental utilizada para reconhecimento e identificacdo, assim como a
maneira como uma pessoa digita ou a forma de falar.

Sao caracteristicas utilizadas em sistemas biométricos automatizados
de identificagcio: impressdes digitais, padrdes nos olhos, contorno e forma das
maos, a assinatura, a voz, a dinadmica da digitacgo e caracteristicas faciais,
entre outros. A caracteristica eleita como objeto de estudo do presente
trabalho é a impressdo digital, cuja estabilidade e unicidade estdo
estabelecidas e comprovadas no meio cientifico. Sob cuidadosa investigacéo,
estima-se que a chance de duas pessoas terem impressdes digitais
consideradas idénticas seja de uma em um bilhdo, incluindo gémeos, o que
prova a eficacia do método para os fins a que se propoe.

O uso de impressdes digitais para fins de identificacdo pessoal tem se
revelado um método promissor para no futuro ampliar razoavelmente sua base
de aplicagdo e quiga substituir muitas formas ja consagradas de identificagéo
pessoal como senhas ou cartdes. Por outro lado, além do controle de acesso
(seja a locais, ou sistemas ou qualquer outra entidade, fisica ou légica), as
impressdes digitais também tem grande importancia para as policias efou
quaisquer instituicdes que por algum motivo podem desejar identificar uma

pessoa com alto grau de confiabilidade.

10

Assim propde-se aqui o desenvolvimento de um sistema que consiga
unir da melhor forma possivel a tecnologia da computagdo distribuida com o
uso de impressoes digitais para o reconhecimento de identidade, aproveitando
todas as particularidades e sinergias entre estes dois recentes ramos do

conhecimento humano.

11

2, Objetivos

Os principais objetivos deste projeto séo o estudo, a concepgdo e a
implementaggo de um Sistema de Computagdo Distribuida para o
Reconhecimento de Impressoes Digitais. Deve-se enfatizar que este Sistema
de Computagéo Distribuida deve ser flexive! e potencialmente adaptavel para
outras aplicagbes que ndo apenas a extracdo de caracteristicas
representativas de impressdes digitais e para tanto deve ser desenvolvida uma
biblioteca para o gerenciamento de processamento distribuido tdo genérica
quanto possivel.

Alem disso, o presente projeto também compreende a fase de testes do
sistema proposto sob diversas condigbes e rodando em ambientes
heterogéneos, observando-se a sensibilidade do sistema ao numero de
processadores, as condigbes de rede, simulagbes de falha, observando-se
também os problemas de “overhead” de comunicagéo e distribuigdo de carga.

O algoritmo para a extracdo de caracteristicas representativas de
impressGes digitais deve ainda ser implementado de forma a obter ganho de
performance em ambientes mais potentes, isto &, deve possuir tarefas
computacionalmente custosas que possam ser distribuidas de maneira

relativamente independente.

12

3. Especifica¢dao do Problema

Para que os objetivos do presente projeto fossem atingidos, separou-se
as diferentes caracteristicas que deveriam ser especificadas para que cada
uma fosse tratada individualmente e baseado em critérios diferentes para cada
uma delas se chegasse a uma decisdo quanto a melhor maneira de
implementar cada uma das caracteristicas do software a ser desenvoivido.

Desta forma, desde pequenos detalhes como a maneira pela qual as
imagens para os testes do software seriam adquiridas até decisbes mais
importantes como a linguagem de programac¢éo com que o software seria
desenvolvido, o algoritmo que seria utilizado para a identificacdo de
caracteristicas representativas das impressdes digitais e a maneira como o0s
dados seriam distribuidos entre os diversos processadores tiveram que ser
ponderados e para cada aspecto deste, chegou-se a uma concluséo relativa a
que rumo seguir, langando-se mao, para tanto, de técnicas como Matrizes de
deciséo e sessodes de “brain storms”.

Portanto, neste capitulo serdo apresentados as caracteristicas que
foram tratadas individualmente e as alternativas para cada uma delas.

Posteriormente, serdo expostas as decisdes tomadas e suas justificativas.

3.1 Aquisigao de imagens

O problema de como proceder a aquisicéo de imagens é o primeiro que
deve ser encarado no desenvolvimento de um software de reconhecimento de
padrées. As alternativas que foram encontradas para a solucdo deste
problema foram:

e aquisicdo de imagens através do scaneamento de imagens diretamente

roladas sobre papel,

13

o aquisicdo de imagens através de scanner apropriado para este tipo de
aplicagdo (em geral com um pequeno slot para o dedo, garantindo a
inexisténcia de rota¢des consideraveis) e

e aquisicdo de imagens através da conversdo de imagens do tipo .wsq
(Wavelet Scalar Quantization) para .bmp (Windows Bitmap) e

eventualmente para outros tipos conhecidos e manipulaveis de imagens.

3.2 Linguagem de Programacao

A escolha da linguagem de programagdo a ser utilizada para o
desenvolvimento do projeto é um ponto crucial do trabalho, uma vez que
grande nimero de dificuldades que serdo inevitavelmente encontradas durante
a fase de desenvolvimento sera fruto direto das particuiaridades da linguagem
escolhida.

Os critérios fundamentais na escolha da linguagem de programacéo
para o presente projetos s&o: disponibilidade de ferramentas para a
implementacso de sistemas distribuidos, robustez de implementagdes (ja que a
aplicacdo & inerentemente computacionalmente complexa) e portabilidade
para o uso em diferentes plataformas, presenga de conceitos modernos de
programagao {(como a orientacéo a objetos e abstragéo de implementacéo).

Naturalmente surgem como potenciais candidatos para linguagem de

programacéo do presente trabalho as linguagens C, C++, Pascal e Java.

3.3 Segmentagao de Imagens

A segmentacdo de imagens consiste em um pré-processamento que se
faz necessario em certas aplicagdes que exigem que certa porgdo da imagem
original seja descartada e que se identifique uma ou mais areas cujo interior
represente a porgdo significativa da imagem, que serd considerada

efetivamente na aplicaggo. Além de separar a regido efetivamente relevante da

14

imagem (area onde se encontra a impresséo digital), a segmentacdo pode
apresentar algumas outras fung¢des visando padronizar a imagem, como

rotagdes, translagdes, ajustes de escala, etc.

Figura 1 - Imagem scaneada de um cartdo antes da segmentacéo

Portanto, deve-se decidir se sera ou n&o necessaria a implementacao
de uma rotina de segmentacéo da imagem, além da extens&o desta rotina (o
quéo abrangente ela seria, 0 qudo genérica, 0 que exatamente seria
necessario que ela fizesse, etc.). No caso de se chegar a concluséo de que
sera necessaria tal rotina, deve-se também optar por se utilizar ou ndo uma
versdo de segmentagéo de imagem implementada em C++ também disponivel
no CD elaborado pelo NIST (National Institute of Standards and Technology)
em conjunto com o FBI (Federal Bureau of Investigation), referente ao projeto

AFIS (Automated Fingerprint Identification System).

15

Figura 2 - Figura anterior ap6s um processo de segmentacéo

Uma outra caracteristica importante da segmentagio, dependendo da
aplicacéo, € marcar areas da imagem que deverao ser consideradas nos
célculos da aplicagdo visando a economia de tempo. Assim, em condigbes
particulares, pode-se na segmentacéo determinar areas que estio “borradas”
demais para que o programa perca tempo posteriormente tentando dali extrair

caracteristicas importantes.

3.4 Processamento de Imagens

Um outro ponto que surge quando se esta procedendo as
especificacbes do problema concerne ao problema do processamento de
imagens. Este assunto depende diretamente do algoritmo selecionado para a
extracdo de caracteristicas representativas, uma vez que alguns algoritmos
exigem que a imagem seja binarizada (em preto e branco apenas), outros
exigem que a imagem tenha seu contraste realgado com um filtro do tipo FFT
(Fast Fourier), outros demandam uma imagem “esqueletizada” (com linhas de

apenas um pixel de espessura) e assim por diante.

Figura 3 - Imagem anterior com contraste real¢ado

16

Assim, decidido o algoritmo que sera implementado no projeto, pode-se

particularidades do respectivo algoritmo selecionado.

AN
AN W\
N
9
, ‘\‘q :Ff:
\\\::‘ “'\"a
, A"&:‘x DN
i
W,

'/ Y) 2
:5'/ NN

[1
P L] b e N
/’g‘;“:.."‘:}-
- RS g

Figura 4 - Exemplos de processamentos de imagem

(a) imagem original (b) imagem binarizada (c) imagem esqueletizada

ponderar o(s) processamento(s) de imagem necessario para atender todas as

17

3.5 ldentificagao de Caracteristicas Representativas de Digitais

Esta é talvez a caracteristica do projeto mais dificil a ser definida em
todo o trabalho, uma vez que impactaré diretamente sobre a maneira como o
processamento sera distribuido em diversas maquinas. Portanto, deve-se ter
bem claro os objetivos acima expostos, orientando nossa decisdo ndo so pelas
gualidades do algoritmo de extracdo de caracteristicas representativas de
digitais, mas também pensando na qualidade dos possiveis métodos de
paralelizacdo para o algoritmo escolhido, obtendo ganho de performance e
sendo portavel para ambientes heterogéneos.

Existem fundamentalmente dois métodos para a extracdo de
caracteristicas representativas para a posterior comparagdo de duas imagens
de impressdes digitais: extraggo de mindcias e identificacdo de orientagGes
locais (ainda existem alguns métodos que comparam os gradientes locais,
associados as mintcias ou as orientagdoes). Minlcias sao particularidades
caracteristicas que costumam ocorrer em impressdes digitais, tais como fins de
linhas (“ridge ends’) e bifurcagbes. Localizando-se um certo numero de
minlcias, procede-se a comparagdo através de alguns métodos, sendo o mais
simples deles a distancia euclidiana. Ja no método de orienta¢des, obtém-se
uma matriz com as orientagfes locais em cada pequena porgdo da imagem e a
comparacgéc € feita através da redugéo da matriz a um vetor com menos
elementos através de uma transformagéo linear razoaveimente complicada. A
seguir serdo explicados com mais detalhe os dois métodos classicos para a
identificacdo de caracteristicas representativas (observe-se que tanto mintcias
quanto orientacbes séo caracteristicas representativas que podem ser usadas

para a identificagao pessoal).

18

3.5.1 Extragao de Minucias

Conforme exposto acima, uma abordagem muito usada nos algoritmos
para a extragéo de caracteristicas representativas das digitais é a extragdo de
mintcias, que podem ou ndo ser feitas sobre imagens binarias, esqueletizadas
ou até mesmo sobre a imagem em tons de cinza.

Para imagens esqueletizadas, pode-se identificar minucias através do
mapeamento das linhas e sera considerada como bifurcagdo aquele pixel que
tenha exatamente trés vizinhos ndo nulos e fim de linha aquele pixel que tenha

apenas um vizinho nao nulo.

Figura 5 - Exemplos de bifurcagbes em impresséo digitai

Para imagens em tons de cinza é apropriado o usc de légica fuzzy, que
identifica minticias através da subdivisdo da imagem original em blocos
menores, normalmente quadrados, onde no interior desta regi&o considera-se
uma sub-regido de n x n pixels e outras oito regides correspondentes a faixas
nas bordas (norte, nordeste, leste, sudeste, sul, sudoeste, ceste, noroeste).
Destas oito janelas, observa-se que apenas seis delas por teste séo
suficientes para a extracdo de mindcias. Cada faixa da borda tem a si
associada um grau de cinza e de branco. Assim, testa-se para cada regido a
possibilidade de que ali haja uma bifurcagéo cuja orientagéo seja norte,

nordeste, e assim por diante. Também testa-se se a hipotese de ali haver um

19

fim de linha de orientagéo norte, nordeste, e assim por diante. Para o teste de
hipotese de haver na regido uma determinada minccia, vale a regra de que ali
ha esta determinada minucia com a “forga” minima entre todas as faixas da
borda, ou seja, se em uma bifurcagdo do tipo norte deve haver a faixa sul
branca e as outras cinco faixas opostas cinza, diz-se que esta regi&o tem uma
bifurcagdo norte com a minima forga dentre a forca com que a faixa sul é
branca e as outras sdo cinza. Anaiogamente, apura-se a forca de determinado
tipo de minucia na regido pela regra do maximo, ou seja, se numa regi&o, ha
0,1 de bifurcagédo norte, 0,05 de bifurcagéo nordeste, e assim por diante,
apura-se qual & a minticia que tem maior forca naquela regido e dependendo
de seu valor, apura-se se ele é suficiente para que se considere que ali ha
mesmo uma minucia ou ndo. Ildentificadas as mintcias, a codificagéo das
mesmas pode ser feita de varias maneiras. Uma maneira aiternativa
armazenaria a posi¢éo x, y da minucia, o tipo (Bifurcagio ou Fim de Linha), a
orientagéo, etc. Uma forma muito usada em grandes bancos de dados de
digitais & codificar apenas a posicéo x, y e o tipo e a codificagéo poderia ser
feita em uma string, com a vantagem da boa compressibilidade dos dados

assim codificados.

Figura 6 - Exemplos de “fins de linha” em impresséo digital

20

3.5.2 Extragédo de Orientagoes Locais

A segunda abordagem classica para a obten¢do que caracteristicas
particulares de cada impressao digital é extrair orientacdes locais das linhas e
dos vales, de forma a se obter uma matriz de médias locais destas
orientagbes. Uma maneira simplista de obter-se orienta¢des locais seria, numa
imagem binarizada, tornar a orientacdo de um pixel branco igual & direcéo de
sua minima soma e analogamente a orientacdo de um pixel preto igual a
direc&o de sua soma maxima. O grande problema deste método seria a grande
suscetibilidade a ruido e além disso vetor de orientagfes seria excessivamente
grande.

Uma alternativa razoavel seria reduzir-se o vetor de orientagdes para
um bem menor, onde cada orientagéo representaria a média das orientagdes
de um bloco de 16 x 16 pixels. Cada angulo local seria definido como 0° para
uma linha horizontal, e variando até 180° conforme a linha gira em sentido anti-
hordrio e se torna novamente 0° quando a linha se torna novamente horizontal.
A média é calculada baseada nos vetores de orientacac que tém como pares
ordenados (cos20, sen208). Como todos estes vetores orientagdo tem
comprimento unitério, a média tem comprimento no maximo um também o que
faz com que regifes com muito ruido, borradas por exempio, e gue ndo tenham
uma orientagdo muito bem definidas, apresentem um vetor meédio de
comprimento pequeno, ja que as orientagdes dos 256 pixels tenderdo a se
cancelar. Este artificio & importante porque assim a média local dos
comprimentos dos vetores préximos a cada regido € uma medida da
representatividade daquela parte da imagem, e blocos com comprimento
pegueno indicam menos certeza naquele valor médio de orientagdes.

Neste caso em que as orientagtes s&o obtidas, é a partir delas é que se
fara a comparacdo entre as digitais, € importante neste ponto resolver o
problema de possiveis translagbes que possam ter ocorrido quando da
aquisicdo das impressdes digitais. Um algoritmo que trata de fazer este ajuste
& o R92, utilizado pelo NIST no projetc do PCASYS (A Pattern-level

21

Classification Automation System for Fingerprints). Este algoritmo acha um
ponto caracteristico na impressédo digital correspondente ao nucleo (ou ao
nlcleo de menor ordenada) e translada a digital colocando este ponto de
registro sobre um ponto padréao obtido pela mediana dos pontos de registros

de uma amostra consideravel de digitais.

Figura 7 - Representacdo geométrica das orientagbes locais de uma

impresséo digital

O vetor de orientages, mesmo depois de ser transladado ainda ndo €
apropriado para passar pelas comparagdes para a identificagdo de digitais.
Sobre ele, é aplicada uma transformagdo linear objetivando reduzir a
dimensionalidade do vetor de orientacbes e de certa forma fazer valer a
diferenca relativa entre as representatividades locais nas diferentes regides da
imagem da digital. Esta transformagéo linear & chamada de Transformada de
Karhunen-Loéve (K-L). Para produzir a matriz que implementa a Transformada
K-L, o primeiro passo & obter a matriz de covariancia amostral do vetor
registrado original. Entéo, & usada uma rotina de diagonalizagéo para produzir
um subconjunto com m autovetores da matriz de covariancia, correspondentes
aos maiores autovalores (m arbitrério, usualmente na faixa de 100). Assim,
para qualquer n menor ou igual a m, a matriz ¥ pode ser definida como tendo

em suas colunas os primeiros n autovetores, e cada autovetor tendo tantos

22

elementos quanto o vetor de caracteristicas original. Uma versdo da
Transformada K-L que reduz um vetor original u para um vetor w de n

elementos pode ser definida como:

w=¥"u

A Transformada K-L, portanto, reduz o vetor de orientagbes para um
vetor com dimensdes muito menores que pode ser utilizado para efeitos
comparativos com resultados muito parecidos com aqueles que seriam obtidos

se a comparacéo fosse realizada antes da Transformada de K-L.

Figura 8 - impressao digital com orientagdes locais indicadas

3.6 Comparagao de Impressdes Digitais

Naturalmente c método de comparacéo entre as impressbes digitais
depende diretamente das caracteristicas representativas a serem extraidas.
Assim, dependendo do algoritmo, pode-se desejar comparar vetores, minucias
e em alguns casos até mesmo a localizag&o de poros.

O método da Distancia Euclidiana é talvez o método mais simples e

intuitivo de se comparar dois vetores n-dimensionais representativos das

23

caracteristicas de impressdes digitais (vetores em geral obtidos apds a
utilizagéo da Transformacédo de Karhunen-Loéve). Consiste basicamente em

calcular a distancia entre dois vetores x e y (n-dimensionais) como se segue:

D(x,y) = (8~ 3,) + 06 = 3,) + (65 = y3) 4 Hx, — 3,)

Estatisticamente (através de um grande numero de testes) calcula-se
um valor limiar étimo para a distancia D{x,y) a partir do qual considera-se que
duas impressbes digitais ndo sdc da mesma pessoa; caso a distancia seja
menor que este valor, considera-se as duas digitais como sendo da mesma
pessoa.

Ainda existe um outro método utilizado para estes fins chamado de
Distancia Quadréatica. Neste método, faz-se uso da matriz de covariancia da

amostra, chamada de S. Define-se esta distancia quadratica como sendo:

D, y)=—(x-y)Y S (x-y)

Também neste caso, x e y séo vetores n-dimensionais , por T denota-se
a transposi¢do do vetor e por $” denota-se a inversa da matriz de covariancia
da amostra.

Diferentemente dos métodos anteriores, ha ainda o caso em que a
entrada é uma série de mintcias identificadas por sua posi¢céo (x , y). Tem-se
uma série de impressbes s quais deseja-se comparar uma dada impressao
(alvo). A idéia & que cada uma das impressbes da base de dados tenha um
nimero determinado de minucias, por exemplo 10. O metodo fuzzy consiste
em estabelecer um limite tanto para distancias (que visam minimizar efeitos de
translagdes indesejadas) quanto para gradientes (assume-se que duas
mintcias devam ter gradientes locais com valores parecidos). Desta forma, o
que se faz é basicamente verificar se na imagem alvo, na posicdo equivalente
a cada uma das minlcias das imagens da base de dados, existe uma minucia

que esteja deslocada de um distancia suficientemente pequena para que o

24

grau de pertencimento tenha um valor proxime de um. Caso nio haja mindcia
naquela regido ou a natureza da mindcia seja diferente (bifurcacéo x ridge
end), o grau de pertencimento é determinado como zero.

Analogamente, & determinado também um grau de pertencimento
baseado no gradiente local , de forma que duas mindcias que estejam
deslocadas de uma distancia menor que o limite também sejam comparadas
também quanto ao gradiente, ou seja, quanto a variagéo nos tons de cinza em
diferentes direcles.

Finalmente estabelece-se uma relacdo entre os dois graus de
pertencimento entre duas minucias, que pode ser uma relagéo qualquer que
mantenha o grau de pertencimenio giobal entre 0 e 1, por exemplo a
multiplicacdo dos dois valores, o0 menor valor entre os dois, etc. Desta forma,
para cada minticia na impressé@o da base, tem-se um grau de pertencimento
diferente na impressa@o alvo. Escolhe-se também uma relagdo entre estes
graus de pertencimento, que pode por exemplo ser a média entre os graus de
pertencimento de todas as 10 mindcias, e se este média for maior que um
limite determinado experimentalmente, admite-se serem iguais as duas
impressées digitais. Uma outra abordagem seria estabelecer um limite para
dizer se cada mintcia é ou ndo reconhecida como tendo uma correspondente
na impressdo alvo, e pode-se estabelecer um limite de n mintcias necessarias
para que uma impresséo seja reconhecida como idéntica a outra.

Naturalmente, pode-se ainda comparar Iimpressbes digitais
aproveitando-se um pouco de cada método citado anteriormente. Pode-se, por
exemplo, ter como entrada uma base de dados dando conta de um
determinado numero de minucias e duas coordenadas, e fazendo-se uso da
distancia euclidiana comparar os vetores raio (a partir do centréide da imagem)
de cada uma dela com a minUcia correspondente (quando houver) na outra

imagem.

25

3.7 Computacio Distribuida

Para que se tome uma decisdo quanto a melhor maneira de distribuir as
tarefas entre diferentes processadores, € necessario antes se ter um
background em computagéo distribuida, que por ser uma tecnologia recente,
nos obriga a fazer aqui algumas defini¢des e esclarecer alguns conceitos a ela

relacionados.

3.7.1 Motivagao

E facil se espantar com o avango dos modernos computadores. Nos
ultimos anos, barreiras de desempenho foram sistematicamente superadas, em
sucessivos langcamentos da gigantesca industria de informatica. Os
computadores de hoje sdo capazes de realizar tarefas que superam por ordens
de grandeza a complexidade das tarefas de seus similares apenas alguns
anos mais antigos.

A indastria de informatica tem sido capaz de fazer crescer em
progresséo geométrica a capacidade processamento de seus produtos, com
equipamentos cada vez mais poderosos, e arquiteturas que conferem novas
habilidades a suas maquinas.

Por outro lado, a industria de software é capaz de surpreendentemente
“consumir” cada avango dos equipamentos onde rodam seus programas, seja
concebendo programas que realizam novas € mais complexas tarefas, seja
desenvolvendo programas que realizam as antigas tarefas com ainda mais
qualidade e consequentemente exigindo mais recursos dos equipamentos
utilizados.

Além da demanda por performance, uma nova realidade se apresenta
nos departamenios de ‘“informatica” de ambientes corporativos. Os

computadores agora est&o (e estar&o cada vez mais) “conectados”, ligados em

26

redes corporativas e estas, por sua vez, em redes heterogéneas de amplo
alcance (como a Internet, principalmente).

Com o desenvolvimento deste cenario, duas realidades motivaram (e
continuam motivando) grupos de engenheiros e cientistas da computagao na

direcdo da computacéo distribuida:

s Presenga de maquinas cada vez mais poderosas, COM recursos
suficientes para capacité-las a aplicagdes de alta performance antes
exclusivas de complexos (e dispendiosos) sistemas de computacao.

e Ambientes inteiramente conectados, em redes cada vez mais
velozes (as redes locais e suas ‘interfaces” de usuarios, as

intranets), permitindo o desenvolvimento de aplicagdes.

Com maquina melhores e mais rapidas, individualmente mais capazes,
e agora ancoradas em redes também cada vez mais rapidas, a idéia da
computagéo distribuida ganha cada vez mais forga, e desponta como uma
realidade promissora. A idéia de se realizar tarefas complexas langando mao
da disponibilidade de véarios processadores (localizados eventuaimente em
vérias méaquinas) oferece as empresas que as utilizarem a possibilidade de
realizar suas tarefas mais complexas em seus computadores, eventualmente
durante periodos ociosos dos mesmos.

Para que a idéia, no entanto, seja aplicavel, era necessario obter
razodvel facilidade e flexibilidade na implementacdo de tais sistemas.
Conforme visto, tivemos o surgimento da computacéo paralela no ambiente
académico, com a presenca de maquinas bastante complexas, dedicadas as
tarefas do processamento paralelo e que dificilmente poderiam ser usadas em
ambientes ndo tdo controlados quanto os dos laboratérios de computagéo de
alto desempenho das universidades e centros de pesquisa.

Um terceiro elemento surgiu, entéo, como uma solugdo simples e eficaz
no sentido de se poder conceber sistemas portateis e que pudessem usar 0s

recursos de uma gama extremamente heterogénea de maquinas presentes,

27

por exemplo numa Intranet de uma grande corporacdo. O surgimento de
sistemas independentes de plataforma, notadamente a linguagem Java.

Com o surgimento do Java, resolveu-se o sério probiema gque era a
excessiva complexidade de se realizar tarefas distribuidas em ambientes
corporativos. E facil concluir que poderiamos juntar o grande numero de
maquinas presentes na Intranet de uma corporacéo, ligadas em rede, para
tentar constituir um “grande computador” virtual, resultadc das somas das
capacidades de processamento de todas essas maquinas, com suficiente
capacidade de processamento para realizar tarefas até entdo restritas a
dispendiosos sistemas de supercomputagdo. O problema é que a
complexidade de se levar a cabo este “experimento” era de tal forma alta que
simplesmente tornava a possibilidade pouco interessante para a grande
maioria das corporagdes (tanto é que, hoje ainda, ndo se observa nas redes de
grandes corporagdes a computacéo distribuida em sua Intranet).

Com a linguagem Java, entretanto, foi possivel conceber sistemas de
gerenciamento extremamente simples, e ainda, concentrar os esforcos de
projeto e criacdo do sistema na programagio orientada a uma maquina
“virtual”, que recebe em cada maquina real uma implementacéo, permitindo-se
ignorar as diferencas entre as varias maquinas existentes na rede-alvo da
computacdo distribuida. Além dessa vantagem de simplificacao do projeto,
também o gerenciamento disto pode ser incrivelmente simplificado. Colocar um
desktop a disposigdo do grande “computador distribuido” torna-se t&o simples
quanto acessar, com o browser j& instalado do desktop, por exempio, uma
pagina que distribui os recursos da computagéo distribuida dentro da Intranet.
No item seguinte, faremos inicialmente uma discussdo entre os dois grandes
modelos de computacéo paralela, 0 modelo de meméria compartilhada e o
modelo distribuido. Na sequéncia, apresentaremos os principais topicos da
concepgdo de sistemas de computagéo, notadamente o da balanceamento de
processamento entre nods (processadores) e os efeitos de tempos de

comunicacgdo entre nés na performance e sintonia fina destes sistemas.

28

O conhecimento de todos estes aspectos da computagéo distribuida é
necessario para que possamos no capitulo seguinte decidir como implementar
0 sistema de reconhecimento de impressbes digitais da melhor maneira

possivel.

3.7.2 Modelos de Computacgédo Paralela

A chamada computagdc paralela, conforme ja exposto, surgiu
inicialmente em ambientes académicos (laboratério de computacéo de alto
desempenho) e seu primeiro produto foram os computadores paralelos de
memoaria dista compartilhada.

Nestes computadores, o paralelismo se da por meio de uma
implementagdo em hardware. Num computador paralelo de memoria
compartilhada, temos uma maquina onde a memoaria (RAM) é comum a todos
os nds de processamento, podendo todos eles acessar a mesma, desde que
seguindo regras que impedem conflitos entre os nés por uma dada pagina da
memoria.

O paralelismo é implementado via hardware. Nestas maquinas,
tipicamente, temos cada instrugéo “distribuida” para o préximo processador
livre (a ndo ser que o software tome para si a deliberagéo sobre a escolha do
processador para executar uma instrugéo), e dessa forma, temos, na média,
um significativo ganho de desempenho.

Esse modelo de computagio paralela apresenta uma vantagem muito
grande: Ele é, de certa, forma, “transparente” para a aplicag&o. Uma aplicagao
desenvolvida para uma maquina com memoria compartithada n&o precisa se
“preocupar’ em como usar o paralelismo da méquina, j& que o préprio
hardware dessa faré uso do paralelismo, distribuindo a carga entre seus
processadores. A grandes desvantagem é que exatamente por termos que
controlar um numero muito grande de processadores “querendo” acessar uma

memdria unica, temos uma limitagdo quanto aoc numero de processadores que

29

se pode ter numa maquina como essa. Quando observamos a curva de “speed
up” (isto &, a curva que descreve o ganho de desempenho que se obtéem do
uso de mais processadores pelo nlmerc de processadores do sistema), temos
que normalmente a curva para maquinas de memoria compartilhada torna-se
muito ruim (comparando-se com a de outros modelos) quando ultrapassamos
um numero considerado pequeno de processadores.

Naturaimente, ndo sera um sistema de memoéria compartilhada o modelo
gue sera utilizado no presente projeto, uma vez que a elaboragdo de
computadores paralelos fugiria ao escopo deste trabalho.

Um segundo modelo de computacéo paralela € o chamado modelo de
memoria “distribuida”. Neste modelo, ao contrario do anterior, temos a
memoria do sistema “distribuida” entre vérias unidades de processamento
(processadores), de forma que cada unidade de processamento tem sua
por¢céo de memdria. O modelo distribuido permite que tenhamos um numero
muito grande de nés, ja que ndo ha “conflitos” entre os nés pelo acesso a
memdria. Sua maior desvantagem € o fato de ser necesséria, uma vez que a
memoria ndo é compartilhada, muita comunicacdo entre os nds, ja que, numa
situacdo ideal, cada n6 recebe a porgéo de meméria pertinente a realizagio da
subtarefa que estd tentando realizar no momento. Trocas de grandes
“pedagos” de memoria entre os nés acabam congestionando a “rede” gque os
nos utilizam para comunicagao.

No modelo distribuido, entretanto, exige-se ainda do desenvolvedor do
software e sistema operacional uma politica inteligente para lidar com
problemas que limitam a performance do computador paralelo tais como:
Politica de distribuicdc de memdria entre os nods, politica de distribuigéo de
processamento para os nés, politica de sincronizagéo de atividades dos nos.

Em maquinas tipicas de memodria distribuida, temos cada processador
com seu proprio sistema operacional rodando em paralelo, configurando-se
assim 0s modernos computadores paralelos de memoria distribuida como um
conjunto homogéneo de varios computadores de menor desempenho, ligados

por uma rede ultra-rapida (o barramento da méaquina paralela).

30

Além disso, temos o surgimento de sistemas de computagéo paralela
constituidos de um certo nimere de maquinas “inteiras” (isto &, computadores
inteiros) conectados a redes de alto desempenho rodando sistemas
operacionais que fazem cada computador, individualmente, agir como um né
de uma grande maquina distribuida. Um dos borddes repetidos sempre por
Scott McNeeley, CEQO da Sun Microsystems (criadora da linguagem Java) é
que, no futuro, a rede sera o computador. Eo que pretendemos experimentar

neste trabalho.

3.7.3 Balanceamento de carga em sistemas distribuidos

Um dos maiores problemas no design de ambientes de computacgéo
distribuida é o desenvolvimento de técnicas eficientes para distribuir a carga
total de processamento entre as varias unidades de processamento de forma a
obter-se um desempenho global étimo mesmo em face das dificuldades
associadas a essa distribuicdo (que serao exploradas em maior profundidade
em segOes posteriores deste trabalho). O conceito de 6timo, neste caso, é
relativo & variaveis como menor tempo global de execugéo, minimo tempo de
laténcia em comunicagdo entre noés, melhor utilizacdo dos recursos
computacionais (nds) possivel, dentre outros. Alguns ambientes de
computacdo distribuida implementam isso de maneira estatica, outros de
maneira dindmica e a maioria adota uma solugdo hibrida de compromisso

entre as duas alternativas anteriores, como veremos a segurr.

3.7.3.1 Balanceamento estatico

Num sistema com balanceamento estatico de carga, a separacéo de
tarefas por para os diversos processadores é feita antes da execugéo do
programa, ou seja, em tempo de compilagdo. Desta forma, deve-se usar 0s

conhecimentos acerca do ambiente de execugdc (capacidade dos

31

processadores, faténcia e banda de comunicagdo entre os processadores,
principalmente) e da tarefa a ser executada para ainda durante o
desenvolvimento do programa a ser rodado no ambiente distribuido concebé-lo
de forma a separa-lo em tarefas distribuidas entre as unidades de
processamento. O objetivo final, que é reduzir o tempo total de execucéo e
tempos de comunicagdo entre-ndos € alcangado tentando-se predizer o
comportamento do algoritmo a ser paralelizado quando de sua execucéo e
tentando particiona-los em subtarefas tdo locais quanto possivel (isto &, tarefas
que dependam apenas de pequenas porgbes do total dos dados a serem
utilizados e que preferencialmente independam dos resultados da execucgéo
das demais subtarefas). Quanto mais eficiente for esta subdivisdo, menor
necessidade existira de comunicacéo entre os nos, e melhor sera o tempo de
execucao uma vez que teremos maximo uso das capacidades das unidades de
processamento (j& que minimizaremos as paradas de algumas unidade a

espera de dados ainda incompletos de outras unidades).

3.7.3.2 Balanceamento Dinamico

Neste tipo de balanceamento, o mesmo ocorre durante a execugdo do
programa. Isto significa que, no design do programa (tempo de compilacao),
projetou-se o mesmo de forma que este seja capaz de, dependendo das
condigbes do ambiente de processamento, distribuir tarefas entre os nés de
modo a reduzir o tempo total de processamento.

Para tanto, o sistema devera ser capaz de “perceber’ quando algum né
estd sobrecarregado com seu processamento € ser capaz de, neste caso,
particionar a tarefa que o mesmo estd tentando realizar em subtarefas
redistribuidas entre os processadores, sempre levando em conta os requisitos
desta subdivisdo (minimos tempos de comunicagéc e maxima localidade do
processamento).

Na maioria dos sistemas com distribuicdo dinamica, temos a tarefa de

gerenciar essa distribuigdo atribuida a um Unico processador (que pode,

32

entretanto, realizar também outras tarefas). Essa centralizagéo é Util porque
centralizando-se a mesma num Unico processador é facil “ensinar’ a esse
processador parametros muito relevantes na tarefa de distribuicdo, como a
capacidade de cada no, sua eventual especializagZo (a maioria das maquinas
paralelas distribuidas, por exemplo, tém nos “especialistas” em /o, que s&o os
responsaveis pela comunicagdo dos demais, o que significa que tarefas ifo
intensivas devem, numa distribuicdo 6tima, ficar nestes nés e ndo em
quaisquer outros), as condi¢es de comunicagéo as quais cada né ests sujeito
(em ambientes heterogéneos, podemos possuir nés cuja capacidade de
comunicagéo € inferior ou superior, devido a uma maior ou menor banda de

comunicacéo ou laténcia).

3.7.3.3 Balanceamento hibrido

Os sistemas de balanceamentc dinamicos apresentam evidentes
vantagens frente aos sistemas estaticos. Eles s8o muito mais flexiveis e
tolerantes as varia¢des no ambiente de computacéo distribuida. Além disso,
eles permitem o uso em sistemas néo controlados. Imaginemos, por exemplo,
que desejemos executar um processamento num ambiente que é também
utilizado para vérias outras tarefas. Como existe um elemento “perturbador” no
sistema (a existéncia de outro processamento sobre o qual nido temos
qualquer informac&o e que potencialmente pode estar sobrecarregando aiguns
nos), a capacidade de o sistema de computacéo distribuida poder “detectar” a
carga no processador (e portanto, sua “disponibilidade”) para a realizacéo de
tarefas é desejavel e permite um melhor uso dos recursos disponiveis.

Por outro lado, a especializagao e o conhecimento prévio tanto da tarefa
quanto do ambiente de computacdo disponivel pode levar o designer do
sistema inserir neste regras “estaticas” mas eficientes de distribuicdo. Por
exemplo, imaginemos um ambiente com varios processadores idénticos, e uma
tarefa que pode ser subdividida em subtarefas idénticas e independentes. Fica
claro que a distribuigédo ideal é a subdivis&o da tarefa em tantos processadores

33

quanto existirem e atribuicio de tarefas igualmente “pesadas’ para cada um
dos processadores. Um ambiente dinamico provavelmente atribuiria toda a
tarefa para um processador, que ficaria sobrecarregado e repassaria parte da
tarefa para outros, e dessa forma a tarefa seria distribuida. Obviamente, se ©
algoritmo de distribui¢cdo das tarefas for realmente inteligente, com o tempo, a
distribuicao de tarefas tendera para a ideal. Entretanto, um tempo
potencialmente precioso tera sido perdido até que cheguemos a esse ponto.

O ideal, entdo, € uma solugéo de compromisso entre os dois tipos de
balanceamento, e dependera da aplicagéo e das condigbes do ambiente de
computacdo disponivel para a aplicacdo desejada. Deve-se usar todo o
conhecimento prévio possivel para tentar gerar um sistema de distribuic&o
inteligente atentando-se, entretanto, para as provaveis necessidades de

flexibilidade que 0 ambiente de computacéo distribuida exige.

3.7.4 Granularidade

Conforme visto, a eficiéncia da execucdo de uma tarefa com
processamento paralelo depende da forma como particionamos o programa em
modulos de execucéo e os atribuimos as unidades de processamento. Os
fatores que normalmente influenciam negativamente na performance do

sistema como um todo séo:

o Overhead de comunicagéo: Isto & as perdas de tempo habil de
processamento quando um processador espera pela chegada de dados

relevantes para a execugéo do processamento a ele atribuido.

e Overhead de sincronizagdo: Isto & as perdas de tempo habil de
processamento associadas a necessidade de um dado processador
esperar pela execucBo de tarefas ainda em andamento nos demais

processadores, de cujas saidas o processador em questao depende.

34

+ Perda de eficiéncia com a saida de processadores: Isto &, a perda de
eficiéncia (e consequentes atrasos no processamento) quando um né deixa
de estar disponivel (por qualquer motivo) para realizar as tarefas de
processamento desejadas.

e Overhead de gerenciamento do paralelismo: Além dos tempos
anteriores, um sistema com processamento distribuido tem que compensar,
com separacdo das tarefas, o tempo que ele proprioc gasta com o
gerenciamento dos vérios processadores e com os algoritmos executados

para separar as tarefas, sincronizar nos e etc.

Chamamos de granularidade das subtarefas criadas pelo sistema de
gerenciamento e distribui¢io de carga computacional a relagéo entre o tempo
de computacdo desta subtarefa e o overhead de comunicagdo (tempo de
comunicagéo) a ela associada. Desta forma, um bom sistema de distribuicéo
de carga deve objetivar a geracéo de tarefas com alta granularidade (o que
significara que o tempo que se perde com a comunica¢do necessaria 2
obtencéo dos dados dos quais depende o processamento & pequeno
comparado ac tempo que inevitavelmente se perderia com a execugdo do

processamento propriamente dito).

3.7.5 Tempo de vida atil de um né e balanceamento de carga

Conforme visto anteriormente, é desejavel que o sistema de
computacéo distribuida seja tolerante & falhas nos seus nés, isto é, que ele
seja capaz de ‘regenerar” o processamento caso um né tenha sofrido uma
falha drastica (por exemplo, uma auséncia de comunicagdo com o né central

por mais do que um certo tempo, por qualquer motivo).

35

Existem varias formas, dependentes da aplicagdo especifica, de se
regenerar o processamento que um ndé comecou a fazer mais ndo acabou
porque “saiu do ar’. A forma mais usual, entretanto, é simplesmente repetir-se
0 processamento num outro no.

Uma vez que a falha pode acontecer, temos uma regra que contrapbe o
critério da granularidade acerca da distribuicdo do processamento. Conforme
foi exposto, o critério da granularidade nos diz que o processamento deveria
ser dividido em pedagos com alta granularidade, isto é, com muito tempo
computacional relativamente ao tempo de overhead de comunicag@o. Uma
tendéncia natural seria, portanto, tentarmos aumentar ac méximo o tempo de
computagdo de cada subtarefa (desde que n&o aumentassemos demais o
tempo de comunicacdo para realiza-a).

Com a introdugdo da possibilidade de um ndé falhar, entretanto, e
sabendo que caso a falha ocorra o que faremos sera repetir o processamento
em outro nd, temos uma nova limitagdo na distribuigdo de tarefas. Deveremos
dividir o processamento em subtarefas com alta granularidade sim, entretanto,
sem que o fempo de computac¢éo ultrapasse um valor que faga com que na
maioria dos casos 0s nos “saiam do ar’ antes de acabar o processamento.
Matematicamente, temos:

Sendo T o tempo médico que um nd permanece disponivel para o
processamento, sendo Cu., 0 trabalho (computacional) que uma tarefa
envolve @ T O tempo que 0 NG leva para realiza-la, e T4e © tempo de
overhead de rede para esta tarefa, temos que o trabalho total que um né

realiza num periodo T vale:

r

C"’"”r) (T trab + T rede) Ctmb

r

Dessa forma, percebemos que & interessante crescermos Cyap
comparando-o com T.q. (Critério da granularidade), mas ndo podemos crescer

indefinidamente Cy., pois quando o fazemos, crescemos também T ©

36

corremos o risco de que quanto mais esta se aproxima de T, com maior
frequéncia o nd vai sair do ar sem completar a tarefa por inteiro (e além disso,
o “prejuizo” deste evento sera maior porque o trabalho perdido também sera

maior).

37

4. Possiveis Solugdes

Dadas as especificacdes apresentadas no capitulo anterior, serdo
apresentadas neste capitulo as ponderagdes feitas a respeito de cada
caracteristica do projeto, bem como as decisdes que foram tomadas a respeito
de cada uma isoladamente. No capitulo seguinte far-se-& um resumo das
decisbes aqui apresentadas para entdo apresentarmos o projeto final

impiementado.

4.1 Aquisicao de Imagens

Dentre as trés alternativas apresentadas para este item, talvez a que
despertasse maior interesse a priori fosse aquela em que as imagens seriam
obtidas a partir de scanners apropriados para este tipo de aplicacéo. Seria
uma maneira prética e estimulante de proceder os testes, uma vez que as
impressdes digitais processadas poderiam ser dos préprios autores e de
outras pessoas gque estivessem presentes durante as realizagbes dos testes. A
grande desvantagem desta alternativa era seu custo: a grande maioria dos
aparelhos como este disponiveis no mercado nédo oferecem uma interface
simples para a obtencdo de imagens facilmente manipulaveis. E possivel
encontrar no mercado scanners de digitais relativamente baratos (por volta de
US$ 150,00), que porém ndo permitem a obtencdo de imagens, ja4 que em
geral estes scanners vém acompanhado de softwares para aplicagbes
especificas (muitas vezes, incluindo login em redes). Para a aquisicdo de
imagens, estes aparelhos teriam de ser acompanhados por “Developers Kits”
cujo custo em geral chegava a alguns milhares de délares. Considerando
todas estas dificuldades ligadas a esta alternativa, chegou-se a concluséo que

a decis&o deveria ficar entre as outras duas op¢des restantes.

38

Naturalmente a alternativa de scanear imagens diretamente roladas
sobre papel teria um grande inconveniente que seria de efetivamente ter que
conseguir com que muitas pessoas sujassem o dedo em tinta apropriada, além
da faita de praticidade que este método inerentemente traria. Apesar disso,
optou-se por este método de aquisicdo de imagens, j4 que assim seria
possivel a realizac&o de testes mais palpaveis, com as impressdes digitais das
pessoas envolvidas no projeto. A desvantagem do banco de imagens do NIST
consistia no fato de que a qualidade das imagens era deploravel, uma vez que
as mesmas haviam sido obtidas através de impressdes digitais roladas sobre
papel sem esta finalidade, o que ocasionou uma grande parcela das imagens

consideraveimente borradas.

4.2 Linguagem de Programagao

A questdo da linguagem de programacdo a ser escolhida para a
elaboracdo do sistema aqui proposto é talvez a questdo mais direta e facil de
ser resolvida. Por apresentar caracteristicas altamente indicadas para a
linguagem de desenvolvimento do projeto, como utilizar o paradigma da
programacéo orientada a objetos, possuir ferramentas padronizadas para
interface grafica (favorecendo a portabilidade do programa) e ampla
disponibilidade de recursos que facilitam a implementagdo de sistemas
distribuidos, além da vantagem de que o byte-code é independente da
plataforma (dependendo apenas de um interpretador especifico a plataforma),
selecionou-se a linguagem Java para ser utilizada no desenvolvimento do
software proposto. A Unica desvantagem desta escolha reside no fato de que
os programas elaborados nesta linguagem costumam ser mais lentos que
programas equivalentes, plataforma-especificos, elaborados em linguagem C
ou C++ por exemplo, pois o byte-code em Java é interpretado. Ainda sim,
dadas as vantagens desta linguagem, parece imediato que a mesma é a mais
indicada para ser utilizado neste projeto. Além disso, pela pressao resultante

39

de sua imensa popularizagdo, sdo cada vez mais comuns interpretadores Java
rigorosamente otimizados, gue aceleram drasticamente o processamento de
programas Java em alguma plataforma, minimizando as perdas de
desempenho derivadas da interpretag@o do byte-code.

4.3 Segmentagao de Imagens

Levando-se em conta o modo de aquisicdo de imagens selecionado
entre as possibilidades anteriormente propostas, chega-se a seguinte
conclusdo: realmente sera necessario um procedimento de segmentacdo de
imagens, ja que as imagens disponiveis no CD criado pelo NIST sdo imagens
scaneadas de imagens roladas a tinta em cartdes de papel, ndo havendo nada
que garanta uma certa centralizagéo das impressdes digitais nas imagens .wsq
(convertidas para .bmp e posteriormente para .gif ou .jpg). Além disso, em
cada imagem existem palavras impressas correspondentes ao dedo da mao
correspondente & respectiva imagem (thumb, index, ring, little, middie), que
devem ser eliminadas por ndo serem uteis na extracdo de caracteristicas
representativas.

Poder-se-ia adaptar o procedimento de segmentacdo de imagens
utilizado no anteriormente ja citado projeto AFIS (NIST / FBI), implementado
em C++, porém optou-se por elaborar um novo procedimento de segmentacéo
de imagens em Java, uma vez que neste procedimento ja poderiam ser
embutidos alguns calculos locais utilizados em outros escopos do sistema

{conforme explicado mais adiante).

4.4 ldentificag@o de Caracteristicas Representativas de Digitais

Conforme ja foi enfatizado anteriormente, o algoritmo que identificara
um certo numero de caracteristicas representativas de impressodes digitais é

uma aplicacdo exemplo para o Sistema de Computacdo Distribuida aqui

40

proposto. Assim, deseja-se encontrar o algoritmo que tenha maior sinergia e
adaptabilidade para o sistema distribuido em diversas unidades de
processamento e naturalmente deseja-se que o aigoritmo escolhido possa ser
desmembrado em um grande numero de tarefas relativamente independentes
e computacionalmente custosas.

A primeira grande desvantagem que apresenta o algoritmo baseado nas
orientacdes locais € a exigéncia por parte deste de pesados calculos durante o
pré-processamento da imagem, uma vez que este algoritmo seria muito
prejudicado caso a imagem n&o tivesse passado por um filtro de realce de
contraste. Estes calculos sao fundamentalmente globais e ndc apresentariam
grande ganho de performance se executados em diferentes unidades de
processamento. Além disso, a Transformagdo de Karhunen-Loéve exige que
se calcule uma matriz de covariancia baseada num grande numero de
amostras, o que foge do escopo do presente projeto, ja que ndo se trata de um
classificador {como o PCASYS) e sim um extrator de caracteristicas
representativas. Neste sentido o algoritmo fuzzy se destaca por trabalhar na
imagem original, uma vez que em cada por¢géo da imagem se trabalha com
médias locais, possibilitando a distribuicgdo em diferentes processadores de
maneira razoavelmente independente. Alem disso, o processamento de cada
imagem independe de um grande numero de amostras; na verdade o resultado
de cada imagem depende Unica e exclusivamente dela propria, 0 que significa
que cada processador podera realizar todo o processamento sem, em nenhum
momento, depender de dados que néo “estejam” nele localizados (ndo seréo
necessarios ‘page faults” de memoria, e portanto os requisitos de sincronia
entre os processadores s&0 minimos).

Um outro fator importante a favor do algoritmo fuzzy € a exigéncia
computacional deste algoritmo, que ¢é maior (sem considerar o0s
processamentos de imagens dos outros métodos, que nao sao distribuiveis ou
pelo menos, ndc sido recomendaveis a distribuicdo) que os outros
apresentados anteriormente, uma vez que cada porgac da imagem ¢ tratada

muitas vezes (pois para dois biocos n x n consecutivos considerados, ha uma

41

superposicdo de pixels, evitando que uma minlcia que se encontrasse
exatamente entre dois blocos consecutivos sem superposicdo passasse
despercebida).

Desta forma, a aplicacéo exemplo para nosso Sistema de Computagéo
Distribuida consistira num algoritmo que faz uso da légica fuzzy para identificar

mintcias em imagens de impressées digitais.

4.5 Processamento de imagens

Baseado no algoritmo selecionado para a extracdo de caracteristicas
representativas de impressdes digitais (utilizando fuzzy logic para a
identificacdc de minucias nas impressdes), elimina-se a necessidade da
implementacéo de quaisquer métodos de binarizagdo de imagem, e mesmo de
qualquer tipo de realce de contraste, ja que inerentemente o algoritmo fuzzy ja
tem como parametro as médias locais (conforme explicado anteriormente).
Desta forma, também n&o sera necessaria a implementagéo de um filtro do tipo
FFT que seria exigido caso 0 algoritmo selecionado tivesse side aquele que se
baseia nas orientacdes locais, nem qualquer esqueletizacao da imagem, o que
seria necesséario caso o algoritmo escolhido tivesse sido o mapeamento de

mindcias através das linhas de 1 pixel de largura.

4.6 Comparacdao de Impressodes Digitais

A escolha do metodo fuzzy como algoritmo do presente projeto descarta
algumas hipdteses de comparagdes entre as caracteristicas representativas de
impressdes digitais, principalmente aqueles que se baseavam na comparacéo
de matrizes decorrentes do meétodo de extracdo de orientagcdes locais e
posterior Transformagao de Karhunen-Loéve.

O algoritmo selecionado proporcionara como saida da etapa de

identificacéo de caracteristicas uma série de minucias, suas coordenadas, sua

42

natureza e sua orientagdo. Como optou-se por adquirir as imagens
fundamentalmente através do grande banco de dados disponivel no CD do
projeto PCASYS, e ndo foi possivel utilizar um scanner proprio para este tipo
de aplicagéo, optou-se por dar as orientagdes das minucias uma importancia
secundaria, ja que néo haveria como garantir que naoc houvesse pequenas
rotagdes relativas entre as imagens correspondenies a mesma impresséo
digital que poderiam comprometer uma eventual compara¢do dando grande
importancia as crientagdes das minucias.

Assim sendo, optou-se apenas por comparar as imagens de impressdes
digitais procurando correspondéncia de mindcias nas imagem consideradas.
Dada uma digital ja processada, testar-se-a se na imagem candidata hé uma
mindcia em posigdo equivalente (relativamente ao centrdide), naturalmente
dentro de uma tolerdncia a ser determinada. Também encontrar-se-a
experimentalmente um numero minimo de mindcias que devem ser
correspondidas para que o sistema considere que duas imagens s&o

efetivamente das impressdes digitais de uma mesma pessoa.

4.7 Computacao Distribuida

A escolha pelo sistema de computacdo distribuida foi, em parte,
realizada com a simples adog¢éo da linguagem Java como a linguagem de
programacao.

Isto porgue as versdes mais novas da linguagem (e gue foram utilizadas
nesse projeto, a 1.1.7) possuem uma especificacdo de API| para paralelismo
bem definida e estudada com os principais desenvolvedores de solugbes de
computagéo paralela.

Essa APIl, chamada RMI (Remote Method Invocation), especifica como
sistemas de computacéo distribuida baseados em Java dever&o se comportar,
e um estudo detalhado da mesma foi proveitoso para entender a forma de

computacéo distribuida que a linguagem oferecia, e portanto, adaptar nosso

43

projeto para nao fugir ac RMI, j& que esse é um padrdo “de facto” em
aplicagbes distribuidas em linguagem Java.

Dessa forma, a computacgdo distribuida ficou baseada num sistema de
objetos “client-side” e “server-side” que interagem por meio de métodos
remotos, isto &, de métodos do objeto-servidor que s@o “exportados’ e ficam a
disposi¢&o do objeto-client, isto &, o objeto-client pode chamar remotamente o
método do objeto-server, e vice versa.

Essas transagdes (entre objetos de maquinas distintas) sdo gerenciadas
por uma camada gue intermedia as chamadas de métodos remotos e os
detalhes de implementagdo dos mesmos (comunicagdo fcpfip entre as
maquinas, efc), chamado RMIRegistry (heredeiro funcional das antigas RPC —
Remote Procedure Calls).

Por meio do RMIRegistry, portanto, é possivel ndo sé compartilhar
métodos com maquinas remotas, bem como receber e passar parametros que
séo objetos, desde que estes cumpram caracteristicas definidas pela interface
Java.io.Serializable. Quando assim o s&o, tais objetos podem ser passados
como argumentos de fungdes remotas, ou ainda, podem ser o retorno das
mesmas, permitindo o design de objetos-processos no ambiente “server-side”
e posterior exportacdo do mesmo para as maquinas-client que o executario.

O sistema, entdo, fica composto de um elemento servidor, e um ndmero
arbitrario de clients. O servidor, através de métodos remotos do client, informa
os clients de suas tarefas, eventualmente passando objetos completos para
estes, contendo o processamento a ser realizado, e o mesmo & realizado do
lado dos clients.

O design e gerenciamento do sistema de distribuicdo de tarefas e
controle de sua realizacdo nos varios processadores fica inteiramente
confinado ao lado do servidor no fluxograma de execucao.

Para o balanceamento de carga, foi adotado um balanceamento hibrido,
em que tarefas s&o criadas pelo servidor e passadas aos clients, que entéo as

executam e dinamicamente chamam um método no servidor responséavel por

44

processar eventos que os processadores geram (como a identificagao de uma
dada mintcia, de um dado tipo, numa dada posi¢éo da imagem original).

A granularidade das tarefas distribuidas pelos processadores paralelos
foi alterada no decurso do projeto, para grande o suficiente para evitar
excessivos overhead de comunicagdo, e pequenas o suficiente para n&o
permitir que diferengas anormais da capacidade de processamento de cada no

pudessem prejudicar muito o desempenho final do sistema.

45

5. Especificagbes Finais do Projeto

No capitulo 3, enunciamos as questées que deveriam ser solucionadas
para que pudéssemos proceder a implementagdo do software, separando
varias caracteristicas de maneira tdo independente quantc possivel e
sugerindo vérias alternativas para a solugéo de cada problema. No capitulo
seguinte, ponderou-se as vantagens e desvantagens de cada uma das
alternativas para cada caracteristica do projeto, chegando-se as conclusdes de
quais seriam as melhores solugdes para cada aspecto do presente trabalho
cientifico, sem nunca perder de vista nossos objetivos. Neste capitulo,
sintetizaremos como sera o conjunto completo do software e especificaremos
em maior detalhe cada parte dos algoritmos a serem implementados.

O principio do algoritmo fuzzy para extragéo de mintcias € o seguinte:

1. Divide-se a imagem ja segmentada em varios blocos;

2. Toma-se separadamente cada bloco da imagem da impresséo digital (de
tamanho arbitrario; fizemos testes para 16 x 16, 12x 12, 9x 9, 8 x 8) que
tenha sobrevivido a segmentagio e que ainda tenha apenas blocos vizinhos
que também tenham sobrevivido a segmentacéo, o que ja € uma condi¢ao
de borda;

3. Avalia-se a media dos pixels para aguele bloco (o tamanho de bloco
decidico foi de 12x 12);

4. Divide-se o bloco em 8 sub-blocos (norte, sul, leste, oeste, nordeste,

noroeste, sudeste, sudoeste) conforme a figura seguinte;

46

E

-

Figura 9 - Bloco 12 x 12 e sub-janelas

5. Avalia-se a média local de cada um dos sub-blocos;

6. De posse das meédias locais e da media global do bloco, aplica-se uma
funcéo fuzzy que atribui a cada sub-bloco um valor de dark e bright (cuja
somae 1);

7. Com base nos valores das propriedades dark e bright de cada sub-bloco,
atribui-se a ele um valor associado a cada tipo de mintcia e sua orientacéo
(ou seja, existem 16 fipos possiveis de minucias: bifurcagcbes (com 8
orientagbes possiveis) e fins de linha (com 8 orientacdes possiveis)). Este
valor é calculado baseado na regra do minimo (para um determinado tipo de
mindcia bifurcagéo Norte , por exemplo, que exige que os sub-blocos O, SO,
S, SE, E sejam dark e o sub-bloco N seja bright, associa-se a este sub-bloco
uma propriedade Bif.Norte cujo valor é 0 minimo das propriedades dark dos
sub-blocos O, SO, S, SE, E e da propriedade bright do sub-bloco N. Isto
significa que se uma das janelas consideradas n&o se enquadrar naquele
tipo de mintcia (Bif.Norte, no caso) tendo um valor proximo de zero para a
propriedade considerada, o sub-bloco tera um valor baixo para aquele tipo
de minticia, sendo posteriormente avaliado que nao ocorre este tipo de
minUcia ali. A seguir estdo aiguns exemplos de minucias e como elas se

enquadram no algoritmo descrito.

47

Figura 10 - Bifurcag&o do tipo NE
O valor associado & minlcia Bif NE da figura anterior é dado pelo

minimo entre as propriedades dark das sub-janelas SO, S, SE, E, NE e da

propriedade dark da sub-janela NO.

Figura 11 - Ridge End do tipo S

O valor associado & minucia Ridge_S da figura anterior € dado pelo
minimo entre as propriedades dark da sub-janela N e das propriedade bright
das sub-janelas E, SE, S, O, SO.

Tendo, para cada sub-bloco, sido avaliados os valores para cada tipo
de mintcia, toma-se o valor maximo para um dos tipos de minuUcia e compara-
se com um valor minimo de referéncia (empirico). Caso este valor seja maior
que a referéncia, considera-se que o bloco contém uma minucia do respectivo
tipo.

Repete-se o procedimento para o préximo bloco. Observe-se que ©
préximo bloco ndo é o bloco n x n imediatamente seguinte ao Ultimo bloco

analisado e sim o bloco formado pelos n x n pontos cujo primeiro ponto esta

48

imediatamente a direita do primeiro ponto do bloce anterior. Em suma,
transladou-se apenas 1 coluna para a direita, e todos 0s outros (n-1) x n pixels
s&0 05 mesmos do bloco anterior, ocorrendo uma superposicio, e cada pixel
(quandc n3o se encontra na borda) faz parte de n® blocos analisados. Isso

gera duas consequéncias:

¢ Uma mesma minucia pode ser identificada em varios blocos n x n
proximos, ou seja, deve-se considerar como minucia valida apenas
uma minucia dentro de uma regiao ao redor de um bloco n x n;

o Esta superposicdo evita que minucias que porventura estivessem
exatamente na divisa entre dois blocos n x n consecutivos nao
fossem identificadas.

¢ Um bloco 12 x 12 é analisado 144 vezes (cada pixel do bloco €
considerado uma vez como sendo ¢ canto superior esquerdo de um
bloco 12 x 12).

Este critério de se avaliar todos os blocos 12 x 12 possiveis & um fator
regulador de sensibilidade e desempenho do sistema, isto €, pode-se chegar a
conclusdo, empiricamente que é suficiente se avaliar um namero menor de
pixels como sendo o canto superior esquerdo de um bloco. Naturalmente o
impacto desta decisdo € quadratica no nimero total de blocos avaliados. O
numero de blocos derivados (n) de um bloco 12 x 12, com um passo p é dado

por:

A seguir &€ mostrado o grafico que expressa as fun¢des Fuzzy Bright e

Fuzzy Dark:

49

e Fungao
uncao Fuzz
= g Bright
1,0
Funcéo
tng 255
0,0 Dark
0 s Madia Valor_pixel
S do Bloco
'
Média - Média +
Kt'uzzy' Kfuzzy

Figura 12 - Fungdes Fuzzy Dark e Bright, aplicadas a cada sub-bloco

Observa-se na figura acima um gréafico explicativo das fungdes Fuzzy
Bright e Dark. O principio das fun¢bes é a seguinte: se um sub-bloco tem sua
média local muito mais escura gue a média do bloco, tera sua propriedade
dark com valor 1 e bright com valor O (parte esquerda do grafico), e a reciproca
também é verdadeira. Porém, se o valor da média do sub-bloco for préximo a
média do bloco inteiro, a fungdo fuzzy atribuira um valor intermediario entre 0 e
1 para as propriedades daquele sub-bloco. Para tanto, € necessario que se
escotha arbitrariamente um Ks.y (que foi determinado apds muitos testes como
25) cujo valor implicara numa maior ocu menor restritividade ao atribuir as

propriedades bright e dark acs sub-blocos.

50

6. Engenharia do Software

Neste capitulo apresentar-se-4 a estrutura do software final

implementado. Primeiramente serdo expostos cada classe, procedimento,

funcdo do software e ao final do capitulo uma sintese do funcionamento global

do projeto sera apresentada.

6.1 Classe Display_grafico

A Classe Display_gréfico é a classe responsavel por toda a interface

grafica do software no servidor. Além disso, apresenta procedimentos como ©

“segmenta”, que é responsavel pela segmentag¢do da imagem.

6.1.1 Segmenta ()

Responsavel pela segmentacio da imagem, este procedimento funciona

da seguinte forma:

Busca uma imagem (832 , 768) ;

Cria um array blocos8x8 de [104][96] blocos 8 x 8 pixels (objeto Bloco8x8[][]
explicado adiante) ;

Atribui valores as propriedades x e y de cada elemento t, | do array
blocos8x8[i][j] ;

Cria um array de inteiros subblocof8*8] ;

Copia os pixels da imagem original para o array subbloco]i] ;

Aplica o método set_pixels em cada elemento [i][j do array blocos8x8
passando como parametro o array subbloco (copiando os pixels da imagem
original para cada bloco8x8) e ja calculando no bloco a média local, o

minimo e 0 maximo) ;

51

Calcula a2 média global da imagem original ;

Estabelece um critério inicial para atribuir a propriedade “sobrevivi® de cada
bloco8x8 como a comparagéo com a média global (caso a média local do
bloco8x8 seja mais escura que a média global da imagem, sobrevivi €
verdadeiro; caso contrario, é falso) ;

Passado o critério inicial acima, a imagem n&o esta continua; existem blocos
8 x 8 no interior da impressé&o digital que foram “eliminades” por sua alta
luminosidade. Procede-se entdc a continuizagéo da imagem, visando evitar
“furos” na impresséao digital;

Percorre a imagem em cada linha. Caso o bloco8x8 da posigéo i tenha
sobrevivido, o da posicdo i+1 ndo tenha sobrevivido, e o da posicéo i+2
tenha sobrevivido, constatou-se um “furo”; atribui-se ao bloco i+1 sobrevivi =
true;

Repete-se 0 mesmo procedimento acima para casos de “furos” de tamanho
de 2 blocos 8 x 8, isto é, se os blocos i e i+3 sobreviveram e os blocos i+1 e
i+2 n&o sobreviveram, atribui-se aos blocos i+1 e i+2 sobrevivi=true,

O mesmo raciocinio apresentado acima é repetido, porém percorre-se a
imagem por colunas. Retira-se furos de 1 ou 2 blocos 8 x 8 pixels;

Até aqui garantiu-se apenas que a imagem tivesse porgbes continuas porém
ainda n&o se procedeu uma eroséo propriamente dita, eliminando-se partes
continuas que ndo fizessem parte da impressao digital;

A erosdo horizonta! é feita da seguinte forma: percorre-se cada linha da
imagem. Quando se encontra um bloco que sobreviveu, comega-se a contar
o tamanho desta regido, e guarda-se a posicdo do primeiro bloco desta
regido valida. Quando, ao final desta regido se encontra um bloco que nao
sobreviveu, testa-se se o tamanho desta regido percorrida é o maior
tamanho de regibes validas naquela linha. Quando se chega ao final da
linha, tem-se a posi¢éo do bloco que precede a maior regido de blocos 8 x 8
que sobreviveram e o tamanho da respectiva regido. Assim, faz-se com que
todos os outros blocos que ndo pertencem a esta regido ndo sobreviverem.

Resumindo, acha-se a maior seqléncia continua de blocos 8 x 8 que

52

sobreviveram em cada linha, e faz-se com que todos os outros biocos ndo
sobrevivam ;

¢ Atualiza-se a tela, repete-se o procedimento acima para cada coluna
(eroséo vertical), e atualiza-se a tela novamente ;

o Computa-se a posi¢éo do centréide através do célcuio das médias das
posigdes dos blocos 8 x 8 que sobreviveram a segmentacéo ;

* Manda mensagem para a interface de que a segmentacao esta finalizada.

Abaixo, temos um exemplo de digital segmentada, com a respectiva

interface “server-side” do sistema:

E}Java Paralie! Machine Server - Versao 2.2

Arquivo estolhido: Clinstpubitffinalimagensidigital_alvaro.gif

Arquivo

Starl

V" Distribuinda imagens

¥ Segmentando

¥ Achando centroide

¥ Distribuindo tarefas

Interface grafica inicializada = [SE sy
Mais uma corexan

Tentando abtir arguivo Clinetpubitffinahimagensidightal_aivaro.gif

Imagem digital carregada

i_ Processadores finalizados

’ I Processadores conectados: 1

Figura 13 — Interface com imagem segmentada

53

6.1.2 Classe Bloco8x8

Esta classe define um bloco de 8 x 8 pixels em um vetor de inteiros, sua
posi¢do dada por um par de inteiros (x, y), e possui ainda as propriedades
max_value (valor do pixel mais escuro do bloco), min_value (valor do pixel
mais claro do bloco) @ med_value (valor médio dos pixels do bloco).

O método set_pixels (entrada[]) recebe um vetor de 64 inteiros e os
atribui ao vetor de inteiros do Bloco8x8, além de calcular a média dos pixels e

acertar o valor de med_value.

6.2 Classe Bloco_Minacia

A classe Bloco_Minucia é responsavel pela identificagéo propriamente
dita das minucias nas impressdes digitais atraves do uso de fuzzy logic. Para
estimar o grau de pertencimento de cada pequeno bloco da imagem aos
conjuntos de cada tipo de mindcia, subdivide-se o bloco considerado (de 12 x
12 pixels) em oito sub-janelas e avalia-se as médias locais em cada uma
delas, comparando-se com a média em todo o bloco considerado. Assim, a
cada sub-janela atribui-se um valor dark e bright (cuja soma é um) e para cada
tipo de mindcia (8 orientacbes de bifurcagéo e ridge end), usa-se a regra do
minimo {um bloco 12 x 12 tem um grau de pertencimento ao conjunto de
minucias ‘x” determinado pelo minimo entre as propriedades dark e bright de
suas sub-janelas nas respectivas posicdes daquele conjunto de minucias).

A classe Bloco_Mintcia é estruturada da seguinte forma:
Propriedades e Variaveis
¢« med_value - Valor médio do Bloco 12 x12 ;

» X,y - Coordenadas do pixel superior esquerdo do bloco ;

o pixels[12*12] - Array que contém os pixels do bloco;

54

» s[8]2] - Array que contera os valores que indicam o grau de dark e bright
de cada sub-janela;

e Ridge_max - Variadvel que contera o valor maximo entre as diversas
orientagbes possiveis de ridge end para um bloco 12 x 12:

* Ridge_qual - Variével que indicara qual é a orientagdo do ridge end mais
provavel de estar no bloco 12 x 12;

e Bif_max - Varidvel que contera o valor méximo entre as diversas
orientagbes possiveis de bifurcagbes para um bloco 12 x 12;

» Bif_qual — Variavel que indicard qual é a orientagdo da bifurcagdo mais

provavel de estar no bloco 12 x 12:

Métodos e Fungoes

» get_pixel (tx, ty) — Retorna o pixel correspondente as coordenadas tx, ty
(relativas);

» put_pixel (x, y, value) — Atribui ao pixel de coordenadas relativas x e y o
valor value;

» set_pixels(entrada[]) — Captura os pixels e os coloca em entrada[], calcula a
média e chama define_fuzzy;

¢ define_fuzzy() — Calcula a média para cada uma das 8 sub-janelas do bloco
12 x 12, e chama as funcbes fuzzy_bright e fuzzy dark para cada delas,
guardando em s{][]. Chama também extrai_ridge_max e extrai_bif max e
dependendo dos valores retornados determina que no bloco existe ou ndo
uma minucia e de que tipo.

e Extrai_ridge_max() — Calcula qual é a orientagdo de ridge end mais
provavel para aquele bloco 12 x 12, e coloca o valor em ridge_max e a
orientacdo em ridge_qual;

e Extrai_bif_max() — Calcula qual é a orientagc@o de bifurca¢&o mais provavel
para aquele bloco 12 x 12, e coloca o valor em bif_max e a orientac&o em

bif_qual;

55

e Fuzzy_dark (valor) — Aplica uma fungéo fuzzy comparando a média de uma

sub-janela com a média do bloco todo. O resultado da fungdo serd 1 caso a
media local seja bem mais escura que a do bloco, e 0 se o contrario
ocorrer. Para valores préximos, ha uma interpolagéo linear entre 0 e 1, cuja
inclinacédo depende de k_fuzzy;

Fuzzy_bright (valor) — Complementar de Fuzzy_dark. Aplica uma fungéo
fuzzy comparando a média de uma sub-janela com a média do bloco todo.
O resultado da fungéo serd 1 caso a média local seja bem mais clara que a
do bloco, e 0 se o contrario ocorrer. Para valores proximos, ha uma
interpolagéo linear entre 0 e 1, cuja inclinagdo depende de k_fuzzy. A soma

de Fuzzy bright e Fuzzy_dark para uma sub-janela sempre é 1.

Abaixo, temos e interface client-side do sistema, com o algoritmo de

extracdo de minucias operando:

E;;J'\.pplcl Yiewer: jpm Client

Applet

Achei ridge end em (462,228)
Acheiridge end em (462,240
Acheif ridge end em (464;240)
Achel ndge end em {464,242}
Achel ricige end em {424;254)
Acheiridge end em (426;254)
Achei ridge end em (400;296)
Achei ridge end em (354;316)
Achei ridge end em (364,326)
Acheiridge end em (368;326)
Achel ridge end em (448;336)
Achel ridge end em {346,358}
Achei ridge end em {404,352)
Achel ridge end em (458,354)
Acheiidge end em (460;354)
Achel ridge end em (364;370)
Achei ridge end em (366,370}
Achei ridge end em {372;376)
Achei ridge end ern (448;408)
Achei ridge and erm (384:416}
Athei ridoge end em (386;416)

L

Applet sfarted,

TN L R : .
’ <, |
|

1 [
“ - Tarefas a serem realizadas; 67032

Figura 14 — Interface Client reconhecendo mintcias

56

6.3 Comparagao

A comparacao das digitais é feita utilizando um sistema que especifica
uma tolerancia sobre a posi¢ao das minucias originais e gera regifes onde as
minucias das digitais a serem analizadas deverio estar para que a digital a ser
analisada seja correpondente a original.

Na interface do servidor, temos um exemplo deste procedimento, onde
os quadrados azuis especificam as regides das minucias previas geradas pela

digital original, como mostra a figura:

Figura 15 - Digital originatl com respectivas mindcias

Alraro2

Figura 18 — Digital em que as mintcias estéo coincidindo

57

58

7. Resultados

Neste capitulo serd apresentada uma série de experiéncias e testes
realizada com a versdo final do software implementado. Muitos testes,
realizados durante todo o desenvolvimento do projeto foram essenciais para se
chegar a conclustes relevantes relativas ao desempenho do sistema sob as
mais diversas condigdes e para observar se na pratica as ponderacdes feitas
quanto aos algoritmos de distribuicdo e de identificacdo de minlcias estavam
corretas. Além disso, os testes naturalmente tiveram efeito direto sobre a forma
final do software, uma vez que muitas vezes se deparou com imprevistos que
ocasionaram reviséo de decisées anteriores.

Os seguintes aspectos do desempenho do sistema serdao analisados

separadamente:

» Sensibilidade do algoritmo de deteccdo de minlcias e de comparacéo de
impressdes digitais & constante Kimie,

e Efeito do nimero de processadores no desempenho do sistema (tempos de
distribuigéo de imagens e de processamento puro);

e Desempenho do sistema em Intranets e Internet;

e Performance do sistema para a identificagéo de mintcias e comparagéo de

impressdes digitais.

Em primeiro lugar, deparou-se com o seguinte problema: qual o valor
ideal para km? Conforme explicado anteriormente, Kimie € um valor entre 0 e
1 que é usado para se decidir se um determinado bloco da imagem pode ser
considerado como uma minticia ou ndo. Desta forma, apura-se o valor maximo
entre ridge_max e bif_max e se este valor for superior que Kjmie, CONsidera-se
que naquele bioco existe uma mindcia (cuja natureza é ridge end ou bifurcagdo

dependendo de qual das duas variaveis apresentou © maior valor).

59

Obviamente este valor é pois um ponto critico do sistema, uma vez que ele
determinara decisivamente o sucesso (ou insucesso)} no reconhecimento
efetivo de mindcias.

Desta forma, tdo menor fosse o valor de kimw maior seria a
‘complacéncia” do sistema quanto ao reconhecimento de minGcias, ou seja,
menos restritivo seria o sistema. O ser menos restritivo por um lado poderia
significar ser mais sensivel &s mintcias, e por outro poderia significar ser
pouco rigido, reconhecendo como minticias blocos que n&o deveriam sé-lo.

Uma maneira encontrada para se tentar otimizar o valor de Ky foi a
seguinte: dada uma imagem de impressdo digital @ um conjunto de nove
outras imagens de impress&es digitais (sendo que apenas uma entre as nove
correspondia & mesma impresséo digital considerada separadamente), e
usando o critério selecionado para compara-las, o sistema foi testado com
diferentes valores de ke © classificou-se as nove impressbes digitais
candidatas em ordem crescente de mintcias correspondidas. Naturalmente, a
primeira colocada deveria sempre ser aquela que realmente correspondia &
impress&o digital teste. O critério para se apurar o melhor valor de Kime fOi
simplesmente observar a distancia relativa entre as duas imagens melhor
colocadas na classificag@o. Assim, o melhor Kimi forneceria uma restritividade
ideal que colocaria a segunda imagem mais parecida com a original 0 mais
longe possivel da primeira colocada.

A tabela seguinte mostra os dados coletados nesta experiéncia:

Kiimite Distancia relativa entre a 1° e 2°

impressao digital

0.5 5%

0.6 18%
07 50%
0.8 30%

0.9 10%

60

Para o kimite em 0.5, 0 sistema reconhecia como mintcias a maior parte
do ruido das digitais, gerando um nUmero excessivamente elevado de
minucias. Dessa forma, embora a diferenca absoluta do nimero de mintcias
reconhecidas para entre a primeira e a segunda digital fosse grande, a
diferenca relativa era muito pequena (e de fato, a qualidade do sistema era
baixa ja que quase todas as mintcias eram resultado de ruido).

Aumentando-se 0 kim, @ qualidade do sistema teve uma tendéncia a
melhorar, ja que a razdo sinal/ruido decrescia conforme crescia o rigor do
algoritmo em considerar uma janela como minticia. Entretanto, essa qualidade
passa por um maximo, pois & partir de um dado kimse (entre 0.7 e 0.8), o
sistema ficou tdo rigoroso que passou a ndo considerar mintcias mesmo as
minucias verdadeiras da digital.

Essa analise é melhor observada no gréfico seguinte:

Kiimite X Qualidade de Identificaga

60%]
50% | — - — — —_
m Vi 2%

o ik SR R)

0% B oA - - : : : = . =rre
0.4 0.5 0.8 0.7 08 0.9 1

K|imiln

impressaa

Distancia entre a 1a e 2a melhor

Grafico 1 — Kfuzzy x Qualidade

Num segundo momento, procedeu-se a seguinte experiéncia: realizou-
se toda a fase de identificagdo de mindcias em um nUmero varidvel de
processadores (1 a 6) e cronometrou-se os tempos envolvidos (tempo de

processamento puro e tempo de distribuicdo de tarefas). Este teste foi

61

realizado em uma Infranet composta por 6 Pentium Il 400 Mhz. Obteve-se os
seguintes resultados:

Nam. De Tempo de Tempo de Tempo Tedrico de | Tempo
Processadores { Distribuigdo de | Processamento (s) | Processamento {s) | Total

Tarefas (s) {s)

1 10 140 140 150

2 11 76 70 a7

3 12 56 47 68

4 15 42 35 57

5 17 35 28 52

6 19 31 23 50

Os tempos de distribuigdo de tarefas entre os diversos processadores
foram medidos separadamente dos tempos de processamento real. O tempo
de processamento teédrico foi calculado baseando-se no tempo de
processamento de apenas um processador (140 segundos). Desta forma, o

tempo tedrico & expresso por (n € o nimero de processadores):

140
T —_—

teorice

R

62

O seguinte grafico mostra os resultados obtidos:

Niumero de Processadores x Tempo
160 1
140 &
120 \
¥ 100 +
o \a.‘
g. 80 + -
g 60+ ————— o
40 — -
20 ¢ g 4. + & .
0 + 4 + ; .
1 2 3 4 5 6
Num. de Processadores
—#—T empo Distribuigio —m—Tempo Processamento Tempe Total T empo Proc. Teériic;|

Grafico 2 - Desempenho do sistema x Numero de Processadores

Para esta experiéncia realizada, estimou-se as velocidades de

processamento da seguinte forma:

_ Num.Tarefas

processamento

Tempo

As velocidades de processamento estimadas foram (para um nimero de

aproximadamente 300.000 tarefas realizadas na impresséo digital utilizada):

Num. De Processadores | Tempo Total Velocidade Velocidade Tebrica
{s) (tarefasfs) (tarefas/s)

1 150 2.143 2.143
2 87 3.947 4.286
3 68 5.357 6.429
4 57 7.143 8.571
5 52 8.571 10.714
6 50 9.677 12.857

A curva de “Speed Up” do sistema é mostrada no gréfico seguinte:

63

Curva de "Speed Up" do Sistema

Tarefasls

|
-

1 2 3 4 5 6
Num. de Processadores
L —e— Velocidade -#—Velocidade Tedrica

Grafico 3 - Curva de “Speed Up” do sistema

Uma outra experiéncia que possibilitou importantes conclusées foi testar
o software implementado com quatro maquinas em uma Intranet e uma quinta
maquina remota via Internet. Para tanto, foram colocadas 4 maquinas na rede
local (Vila Mariana), e uma maquina remota (Paulista). A velocidade de
comunicacdo entre as maquinas da rede local e a maquina remota estava
restrita pelo link de 64Kbits/sec que as conectava. Os resultados obtidos foram

0s seguintes:

Nam. De Tempo de Distribuicdo | Tempo de Processamento Tempo
Processadores de Tarefas (s) (s) Total (s)
5 processadores em 17 35 52
Intranet
4 em Intranet e 1 via 27 157 184
Internet

Observa-se que ndo s6 o tempo de distribuigdo de tarefas foi
consideravelmente afetado. O tempo de processamento também foi
extremamente influenciado pela diferenca de velocidades de comunicacéo nos

dois ambientes diferentes (a velocidade de comunicacdo na Intranet era de

64

aproximadamente 3Mb/s enquanto que o link com a Internet era de 64kb/s, ou
seja, 48 vezes maior).

Pode-se estimar assim a parcela do tempo considerado de
processamento utilizado em comunicagdo (e consequentemente a parcela
utilizada em processamento puro).

Seja t; o tempo de processamento das 5 maquinas na Intranet e t; o
tempo de processamento na condigdo em que uma das maquinas era remota,
utilizando-se da Internet. Assim, t,-t; € a diferenca entre os tempos de
processamento (total, englobando comunicacdo e processamento puro) nas
duas condi¢des de rede.

Como ¢ tempo de processamento puro € o mesmo nos dois casos (n&o
importa se a maquina é remota, e sim que o processador também era um
Pentium I 400 Mhz), conclui-se que t-ty é a diferenga entre os tempos de
comunicagao de processamento,

Porem, como é conhecida a velocidade de comunicagio nas duas

condigbes de rede, tem-se que:

E_ 3Mb/s
T 64Kb/s

48
Como sabemos que:

T, -7, =157-35=122s

Pode-se resolver as duas equagdes anteriores e encontrar os valores

dos tempos de comunicagao no processamento para os dois casos:

7, =259

T, =124.6s

65

Como temos os tempos de processamento nos dois casos, pode-se
calcular o tempo de processamento purc (que ndc envolve a comunicacio)

que é:
T,=157-1223=36-128=324s

No primeiro caso, a relacdo enire o tempo de comunicagdo no

processamento sobre o tempo total de processamento é:

E N 2.59% oy

T, 35s

Em contrapartida, no caso em que a comunicagéo foi feita através de
um link de 64 Kb/s via Internet, esta relagéo foi de:

T, 1223s

T 1575

P2

=77.9%

Na Intranet, apenas 7.4% do tempo total de processamento foi
decorrente de tempo gasto em comunicagio engquanto que no caso da Internet,

63.8% do tempo de processamento foi gasto em comunicagéo.

Composi¢io do tempo de processamento

100% +
90% |
80% +
70% +
60% +
50% +
40% |
30% +
20%
10% |

0%]

Intranet Internet

rl Terrpe de comunic. processamento H Temrpo processarrento puro |

Grafico 4 - Composigdo do tempo de processamento

66

Tempo de Processamento x Tempo de Comunicagiio

intranet nternet

E Tempo Total de Processamento B Tempo de comunic. processamento

Gréfico 5 - Tempo de Processamento x Tempo gasto em comunicagéo

Além disso, tivemos que avaliar a performance do sistema no aspecto
de capacidade de identificagdo de mindcias. Seguem algumas imagens de
mindcias identificadas como ridge end e bifurcagges:

2 bifurca¢bes verdadeiras e uma falsa (na ordem)

Figura 19 — Mindcias reconhecidas

67

N&o ha outra maneira para avaliar a capacidade de identificagdo de
minGcias que ndo a visual. Através da evolugéo das formas da janela de
identificagdo de mindcias, chegamos a um algoritmo bem sucedido, que nos
permitiu, conforme serd observado em logo abaixo, um grau confiavel de
reconhecimento.

Finalmente, o melhor teste para o sistema é verificar se ele realmente é
capaz de identificar duas imagens de impressées digitais como sendo de uma
mesma pessoa. Para uma base de dados com 25 impressées digitais
diferentes, e uma unica impresséo digital repetida, obtivemos os seguintes

resultados:

Imagem

Grau de Coincidéncia

Impressao resposta

71

1 35
2 33
3 29
4 27
5 25
6 23
7 21
8 20
9 20
10 19
11 18
12 18
13 17
14 16
15 15
16 12
17 12
18 11
19 11
20 10
21 6
22 5
23 5
24 3
Média 19,28
Desvio Padrao 13,74
Probablilidade Erro 0,008%

68

68

Conforme pode-se observar na tabela acima, obteve-se um grau de
confiabilidade de apenas 0,008% de falsa aceitagdo. O seguinte histograma
mostra a distribuicdo do numero de coincidéncias da base de dados de 25
impressdes digitais em relacdo & impressao teste.

Histograma das Coincidéncias

NUm. ocorréncias

o = N W b OO

0a4 \

ﬂ'
™~
2]
(=]
[a)

Wai4 [k—
40 a 44

50 a 54

60 a 64
70a74

Gréfico 6 — Histograma do nimero de mintcias coincidentes

70

8. Conclusées

Os nlmeros obtidos relativos & confiabilidade do sistema foram
bastante satisfatorios. Considerando a velocidade com que se realiza o
reconhecimento de uma Unica digital (aproximadamente 8s utilizando-se
quatro processadores Pentiumil 400Mhz), o sistema tem uma boa relagao
confiabilidade X custo computacional). SZo conhecidos sistemas com
confiabilidade ainda maior (da ordem de 0.001% de probabilidade de falsos
reconhecimentos) mas consideravelmente mais custosos (cerca de 30s para a
identificacdo de uma Unica digital).

O algoritmo mostrou-se vidvel para aplicagdes baseadas em redes
locais (imensa maioria das redes corporativas), mas comportou-se de forma
comprometedora para redes n&do locais (Extranets com links de baixa
velocidade ou Internet). Para esses ambientes, fica claro que a computagdo
distribuida €, ainda, limitada a aplicagbes de altissima granularidade (e
portatno, muito restritas).

A curva de speed-up ficou muito préxima da curva teoricamente ideal e
apresentou boa porgéo aproximavel por uma reta, o que a caracteriza como
bastante positiva. E bom lembrar que o aspecto desta curva ndo depende
apenas da qualidade do sistema de computagéo distribuida, mas também da
natureza da tarefa a ser realizada. Tarefas pouco granulares (como ray-traces,
por exemplo) geram curvas de speed-up muito ruins, e vice-versa.

O algoritmo Fuzzy mostrou-se muito sensivel & escolha dos parametros
internos o que é bom uma vez que, para um ajuste 6timo, o sistema tende a
trabalhar muito bem, mas ruim porque dessa forma o sistema tem pouca
flexibilidade em se adaptar. Novas formas de captura de digitais, por exemplo,

poderéo exigir uma etapa de otimizacéo destes parametros.

71

9. Trabalho Futuro

0O JPM — Java Parallel Machine, sistema implementado e que foi objeto
de estudo do presente trabalho pode servir de base para futuros trabalhos, que
podem focar tanto o aspecto da computagéo distribuida quanto o aspecto do
reconhecimento de padrdes, mais especificamente na area da biométrica.

No aspecto de computacéo distribuida, uma série de sugestées para

futuras pesquisas, baseadas no JPM, poderiam aqui ser colocadas, tais como:

e Implementagdo do balanceamento dindmico de carga, de maneira a enviar
uma tarefa (ou um pacote com um numero determinado de tarefas) apenas
quando o cliente houver completado a(s) tarefa(s) a ele incumbidas;

* Regeneragdo inteligente, que ocorreria de maneira a tolerar falhas como o
desligamento de um processador cliente. O servidor poderia armazenar as
tarefas enviadas a cada cliente e em caso de falha, o servidor poderia

reenvia-las a outro processador.

Quanto aos algoritmos de reconhecimento de impressdes digitais, seria
interessante se tentar uma implementagéo do algoritmo utilizado pelo NIST,
com a transformada de Karhunen-Loéve na implementagéo paralela, ou ainda,
se tentar uma abordagem inovadora fazendo-se uso de redes neurais. Ainda
poder-se-ia sugerir que se propusessem métodos mais sofisticados de
otimizagéo de parametros como Ky © Kimte, que afetam sensivelmente a

performance do sistema.

72

10. Referéncias Bibliograficas

[1] P. Gladychev, 2 Patel, D. O'Mahony, Cracking RC5 with Java applets

[2] G. Candela, P. Grother, C. Watson, R. Wilkinson, C. Wilson, PCASYS — A
Pattern-level Classification Automation System for Fingerprints, Gaithersburg,
1995

[3] J. Stosz, L. Alyea, Aufomated system for fingerprint authentication using
pores and ridge stfructure, Ft. Maede, 1996.

[4] V. Getov, S. Hummel. 8. Mintchev, High-Performance Parallel Programing in
Java: Exploiting Native Libraries, Yorktown Heights, 1997.

[5] # Alexandrov, M. Ibel, K. Schauser, K. Scheiman, Super-Web: Research
issues in Java-Based Global Computing, Workshop on Java for High
Performance Scientific and Engeneering Computing Simulation and Modelling,

Syracuse University, New York, 1996.

[6] G.Candela, R. Chellapa, Comparative Performence of Classificatiopn
Methods for Fingerprints, Gaithersburg, 1993.

[71 C. Wilson, G. Candela, C. Watson, Neural Network Fingerprint
Ciassification, J, Artificial Neural Networks, 1, No. 2, 1993.

[8] C. Wilson, J. Blue, ° Omidvar, Improving Neural Network Performance for
Character and Fingerprint Classification by Altering Network Dynamics, World
Congress on Neural Networks Proceeding, Washington DC, 1995.

Anexo
Cédigo-Fonte da JPM

(compilado com JDK1.1.7A)

InterfaceServer.java:
package jpm;

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.lang.*;

public interface InterfaceServer extends java.rmi.Remote {
String sayHello{InterfaceClient objeto) throws RemoteException;
void estou_saindo (String qual) throws RemoteException;
void ja_acabel (String qual) throws RemoteException;
void achei minucia{int a, int b) throws RemoteException;

InterfaceClient.java:

prackage jpm:

import java.rmi.*;

public interface InterfaceClient extends Jjava.rmi,Remote |
/* Interface para o applet poder ter metodos seus chamados */
void servidor me chamou(} throws RemoteException;

void adiciona_tarefa(int a, int b) throws RemoteException;
veid le imagem({String n_imagem) throws RemoteException;

Client.java:

package jpm;

import java.applet.Applet;
import java.awt.Graphics;
import java.rmi.Naming;
import java.rmi.*;

import java.rmi.server.*;
import java.rmi.RemoteException;
import java.awt.*;

import java.awt.image.*;
import java.util.?*;

import java.net.*;

import java.lang.*;

import tom.*;

public class Client extends Applet implements InterfaceClient,
java.ic.Serializable {

public String meu nome = "";

private String message = "blank":

Button botaoc sair = new Button("Sair");

Image imagem trabalho;

int[] entrada = new int[832*768];

boolean chamou tarefas = false;

Client thread meu thread;

Display client meu_painel = new Display_client({};

// "obj" is the identifier that we'll use to refer
// to the remote object that implements the "Hello"
// interface
InterfaceServer obj = null;

/* Hashtable tarefas = new Hashtable{5000);*/
Tarefal] tarefas = new Tarefa[50000];
int n_tarefas = 0;
int[] t_x = new int[560000];
int[] t y = new int[5600007];

public synchronized void adiciona_ tarefa(int a, int b}

{

/* tarefas.put(new Integer(n tarefas), nova tarefa);*/
for (int x1=0; x1<12; xl1 = x1+2} {
for (int yl1=0; yi<lZ; vyl vi+2) |

t %[n tarefas] = a + xl;:
t y[n tarefas] = b + yl;
n tarefas++;

}

}

if ({n_tarefas?l9)==0) {
meu painel.n tarefas(n tarefas);

if (n_tarefas>5539900) {
System.out.println("Acabou capacidade "+n tarefas);
1
!

public void servidor me chamou()

{

meu painel.manda mensagem{"Ordem de inicio do servider");
chamou_tarefas = true;
repaint () ;

}

public void inicia tarefas ()

i
for (int i=0; i<n tarefas; i++) {
preocessa tarefa(t x[i],t y([i]};
meu painel.estou na_ tarefa{i,t_x[i]/2,t_y[il/2);

}

n tarefas = 0;
/* Manda mensagem dizendo que acabou suas tarefas */

try {
obj.ja_acabei (meu nome) ;
} catch (Exception e) {};
}

public boclean action(Event evt, Cbject what) |
if (evt.target == botao_sair) {
meu_painel.manda mensagem({"Processador extinto -
disposeALL") ;
if (obj != null) {

try {
obj.estou_saindo (meu nome);

] catch (Exception e) {};
}
}

return(false);

public veid init () {
/* Exportar o applet como cbjetc remoto! */

this.setLayout {new BorderLayout());

add ("North", botao_sair);
add ("Center"”, meu painel);

meu_painel.manda_mensagem({"ClientThread inicializado");
meu thread = new Client thread(this};

try {
meu_painel.manda mensagem("Exportando esse applet como remoto™);

UniEastRemoteObject.exportobject(this);
} catch (Exception e) {

meu_painel.manda mensagem("Erro ao exportar applet como remoto:
")
e.printStackTrace();
}
/* Exportar o applet como objeto remoto! */
try {
obj = {InterfaceServer}Naming.lookup("//" +
getCodeBase () .getHost (} + "/Server");
meu_painel.manda mensagem("Servidor localizado");
meu_nome = obj.sayHello (this});
} catch (Exception e) {
System.out.println{"HelloApplet exception: " +
e.getMessage ());
e.printStackTrace (};

}

public void le_imagem(String n_imagem)

{

MediaTracker tracker;

n_imagem = “imagens/"™ + n_imagem;

System.out.println("Carregande imagem do servidor");
meu_painel.manda mensagem("Carregando imagem do servidor"):
System.out.println("Carregando imagem: " + n_imagem);

tracker = new MediaTracker({this);
imagem trabalho = getImage{getCodeBase(), n_imagem) ;
tracker.addImage{imagem trabalho, 0);
try {
tracker.waitForID(0);
} catch (InterruptedException e) {
System.out.println ("Errc no mediatracker do client™);
return;

}

meu painel.n img dig(imagem trabalho):;
meu_painel.manda_mensagem({"Imagem carregada®):

try {
PixelGrabber pg = new
PixelGrabber(imagem_trabalho,0,0,832,768,entrada,0,832);
pPg.grabPixels ()} ;
} catch (Exception e} {}

meu_thread.start{);

meu_painel.manda_mensagem("Client Thread inicializado");
repaint{);
!

public void paint(Graphics g) {
/* g.drawString (message, 25, 50): */
Y if (imagem trakalho != null) {

g.drawImage(imagem_trabalho, 0,10,104,96,this};
}
*/ }

synchronized wvoid processa tarefa({int a, int b) {
int[] n_ent = new int([12+*12];

Bloco minucia n_minu new Bloco minucia();:

int quantas minucias 0;

for (int j=0; j<12; j++) |
for {int i=0; i<12; i++) {
n_ent[i + 12*j] = entradal (ati) + 832* (b+3)]:;
}
}

n_minu.set_pixels{n ent);

Image nova_img = getToolkit().createimage (new
MemoryImageSource(lZ,lZ,n_ent,O,lZ));

meu_painel.seta_janela(nova_img.getScaledInstance(48,48,Image.SCALE_FA
5T));

if | (n_minu.ridge max > 0.92f)) {
meu_painel.manda mensagem("Achei ridge end em \t{(" + a + ";" + b
+ ")");
try {
obj.achel minucia(a,b};
} catch (Exception e} ({
System.out.println("Pau em alguma coisa™);

}

quantas minucias++;

meu_painel.seta_janela_fixa(nova_img.getScaledInstance(48,48,Image.SCA
LE_FAST)};

n_minu.novoﬁframe(quantas_minucias, quantas minucias, this);

} else {
if (n minu.bif max > 0,92f) |

meu:painel.manda_mensagem(“Achei bifurcacac em \t{" + a + ";"
+ b + ")‘I);

guantas minucias++;
n_minu.novo_frame(quantas_minucias, guantas minucias, this}:

meu_painel.seta_janela_fixa(nova_img.getScaledInstance(48,48,Image.SCALE_FAS
T)):

} else {
}

class Blocoqminucia {

float k fuzzy=25.0f;
float k_limite=0.75f;
Frame meu_ frame;

public boolean sobrevivi=false;
public int med value;
public int x,y:

public float ridge max=0;
public int ridge qual=0;
public float bif max=0;
public¢ int bif qual=0;

public int[] pixels;

float[][] s:

public void novo frame{int a, int b, Object componente) |

int temp=0;
int s=0;
for {(int j=0; j< 12; j++) {
for {(int i=0; i<12; i++) {
temp = (pixels([s])&0x000000fF;

pixels[s] = Ox£f000000
+ 256* (256*temp) +
256*temp +
temp;
s++;

meu_frame = new Frame ("Minucia®);
meu_ZLrame.setBounds(a,b,70,130);

Image nova = meu_frame.getToolkit().createlmage (new

MemoryImageSource(12,12,pixels,0,12));
Canvas_img n_canvas = new Canvas_img({nova, 48, 48};
meu_frame.add("Center", n_canvas) ;

/* meu frame.show() ;*

Bloco _minueia() {
med value = 0;

x=0;
y=0;
pixels = new int[12*12];
8 = new float[8][2]:
}

int get pixel{int tx, int ty) {
return{pixels[ty*12 + tx]);
}

void put_pixel (int x, int y, int value) {
pixels[y*12 + x] = value;
}

public wvoid set_pixels{int[] entrada) |
ColorModel c¢m = ColorModel.getRGBdefault():;

med value = 0;

int s=0;
for {int j=0; j< 12; j++) {
for (int i=0; i<12; i++) {
pixels[s] = cm.getRed{entradais]};
med value += pixels[s];
s++;
}

}
med value /= 144;

define fuzzy();

}

void define fuzzy() {
int media;

media =
{get_pixel (2,0} +
get pixel(3,0)
get pixel (4,0)
get pixel (5,0)
get pixel(6,0)
get pixel(7,0)
get_pixel(8,0)
get _pixel(9%,0)
get _pixel (3,1}
get pixel (4,1}
get_pixel(5,1)
get pixel(6,1)
get pixel(7,1)
get pixel(B,1)
get pixel(3,2)
get pixel (4,2)
get pixel(5,2)
get pixel (6,2)
get pixel(7,2)

+++F A+ 4+ + 4

get pixel(B,2)
get pixel(4,3)
get_pixel (5,3}
get_pixel (e, 3}
get pixel{7,3)
get pixel(5,4)
get pixel{6,4))/ 26;

+ + + + +

s[0][0] = fuzzy dark(media);
s[01[1] = fuzzy_bright(media);
media =

(get_pixel(1l1,2) +
get_pixel (11, 3)
get pixel{ll,4)
get pixel(ll,5)
get pixel(ll,6)
get_pixel({ll,7)
get pixel(ll,8)
get pixel(11,9)
get pixel (10, 3)
get pixel (10, 4)
get pixel (10,5)
get pixel{10,6)
get pixel (10,7}
get pixel (10, 8)
get pixel(9,3)
get pixel(9,4)
get _pixel(9,5)
get_pixel(9,6)
get pixel (3,7}
get pixel(9,8)
get pixel(8,4)
get pixel(8,5)
get pixel (8,6)
get pixel(8,7)
get_pixel(7,5)
get pixel(7,6)

+ o+

s I T S S R

e
\N}
)}

~

sf2]1[0] = fuzzy dark(media);
s[2][1] fuzzy bright (media);

media =
(get pixel({2,11) +
get_pixel (3,11}
get pixel (4,11)
get pixel{5,11)
get pixel (6,11)
get pixel(7,11)
get pixel(8,11}
get pixel (9,11)
get_pixel (3,10)
get _pixel{4,10)
get pixel(5,10)
get_pixel(6,10)
get pixel (7,10}

el T T M A P S S SRR

get pixel(8,10) +
get pixel(3,9)
get pixel(4,9)
get_pixel(5,9)
get_pixel (6,9)
get pixel(7,9)
get_pizxel(8,9)
get pixel(4,8)
get pixel(5,8)
get_pixel (6, 8)
get_pixel(7,8)
get pixel(5,7)
get pixel(6,7)

S I S S I

.

26;

s[4]1[0] = fuzzy dark{media);
s[4]1[1] fuzzy bright (media};

media =
{get pixel(0,2) +
get pixel (0,3)
get pixel (0,4}
get pixel(0,5)
get_pixel (0,6)
get_pixel(0,7)
get_pixel (0,8)
get pixel (0, 3)
get pixel{l,3)
get pixel(l,4)
get pixel(l1l,5)
get pixel(l,6)
get pixel(1,7)
get pixel(l,8)
get pixel (2, 3)
get_pixel(2,4)
get pixel({2,5)
get pixel(2,6)
get_pixel(2,7)
get pixel(Z, 8}
get pixel(3,4)
get pixel(3,5)
get_pizxel (3, 6)
get pixel(3,7)
get _pixel (4,5)
get_pixel(4,6))}/ 26;

S I e R I I TE Tk T . T Tyt i

5[6][0] = fuzzy dark(media};
s[6]1[1] = fuzzy bright (media);
media =

(get pixel (0,0} +
get pixel(0,1)
get pixel(0,2)
get_pixel (0, 3}
get pixel(l,0)
get pixel(l,1)
get_pixel(l,2)
get pixel(l,3)

+ 4+ o+ + 4+ o+

get pixel(l,4)
get pixel(2,0)
get pixel(2,1)
get pixel(2,2)
get pixel(2,3)
get_pixel(2,4)
get_pixel (3,0)
get_pixel(3,1)
get pixel(3,2)
get pixel (3, 3)
get pixel(3,4)
get pixel (4,1}
get pixel (4,2)
get_pizxel (4, 3)
get pixel (4,4)

I O S T S S SR

~

23;

s{71[0] = fuzzy dark(media);
s[7][1] = fuzzy bright (media);
media =

{get _pixel(7,0) +
get_pizel(7,1)
get_pixel(7,2)
get_pixel (7,3)
get pixel (8, 0)
get pixel(8,1)
get_pixel(8,2)
get pixel(8,3)
get pixel(8,4)
get pixel(9,0)
get _pixel(9,1)
get pixel (9,2)
get_pixel (9, 3)
get pixel(9,4)
get pixel{10,0)
get pixel (10,1}
get pixel (10,2)
get_pixel (10, 3)
get pixel(10,4)
get pixel (11,1)
get _pixel(1l,2)
get_pixel (11, 3)
get _pixel(11,4))}/ 23;

+HFF o+ o+ o+
+ 4+ + + + 4+

s[3]1[0]1 = fuzzy dark(media);
s[51[1] = fuzzy bright (media);
media =

(get_pixel (7,7) +
get_pixel(7,8) +
get_pixel(7,9) +
get_pixel (7,10) +
get pixel{(8,7) +
get pixel (8,8} +
get pixel(8,9) +

get pixel{8,10) +
get pixel(8,11) +
get pixel (9,7) +
get pixel(9,8) +
get_pixel(9,9) +
get pixel(9,10)
get pixel (9,11)
get_pixel{10,7)
get pixel(10,8)
get pixel (10,9}
get pixel (10,10} +

get _pixel (10,11) +
get_pizel (11,8} +

get pixel(11,9) +

get pixel(l1l,10) +

get pixel {11,11))/ 23;

+ 4+ + + +

s[3]i0] = fuzzy_dark(media);
s[3][1] = fuzzy bright (media);
media =

(get pixel(0,7) +
get pixel{0,8) +
get pixel(0,9) +
get pixel{0,10) +
get pixel(1,7) +
get pixel(l,8) +
get pixel{l, 9} +
get_pixel(l,10) +
get pixel(1l,11) +
get pizel(2,7) +
get pixel(2,8}) +
get pixel(2,8) +
get pixel(2,10) +
get_pixel(2,11) +
get pixel (3,7} +
get pixel(3,8) +
get pixel(3,9) +
get_pixel (3,10) +
get pixel(3,11) +
get pixel(4,8) +
get pixel(4,9) +
get pixel(4,10) +
get pixel{4,11))/ 23;

s[1)[0) = fuzzy dark({media);
sf1l]i1] fuzzy bright (media);

extrai_ridge max();
extrai bif max();

if ((ridge max > k limite} ||
(bif max > k limite}) {
sobrevivi = true;
System.out.print (" Sobrevivi - (");
System.out.print (x});
System.out.print{",");

*/
/*

'}

System.out.print{y):
System.out.print ("}

ridge max:

System.out.print (ridge max);

System.out.print ("

bif max: ");

System.out.println(bif_max);_

} else {
sobrevivi = false;

System.out.print ("Nao

System.out.print(x);

System.out.print ("™, };

System.out.print{y):
System.out.print (")

")

Sobrevivi - ("):

ridge max:

System.out.print (ridge max) ;

System.out.print ("

bif max: ");

System.out.println(bif max);

}

float min(float xl1, float x2, float x3, float x4,

float resultado;

resultado = x1;

if (%2 < resultado)} {
resultado = x2;

}

if (x3 < resultado) {
resultado = x3;

}

if {x4 < resultado} {
resultado = x4;

if (x5 < resultado) {
resultade = x5;

if (x6 < resultado)} {
resultado = x6;
}

return({resultado} ;

}

void extrai ridge max(} {
float valor;

for {int n=0; n< 8; n++) {
valor = min (
s[nl (0],
s[{n+2)%81[1],
s[{n+3}%8][1],
s{(n+4) %8111,
s[(n+5)%81[11,
s[{n+6) %81 [1]
)
if (valor >= ridge max}
ridge max = valor;
ridge qual = n;

{

")

fleoat x5,

float x6)

}

void extrai bif max() {
float wvalor;

for (int n=0; n< 8; nt++) {
valor = min |
s[n] (11,
s[{n+2)%8][01,
s{{n+3})%8][0],
s[(nt4)%8] [0],
s[(nt5)%81[0],
s[{n+6)%8] [0]
y;
if {valor >= bif max) {
bif max = valor;
bif qual = n;

}

float fuzzy dark(int valor) {
float retorno;

float media;
float wvalue;

media = med value;
value = valor;

if (valor < (med _value - k_fuzzy))} {
retorno = 1;
}] else {
if { valor > (med value + k fuzzy) } {
retornoc = 0Q;
} else {

retorno = 0.5f -
(value - media)/{Z*kufuzzy);
}
!

return (retorno) ;

fleat fuzzy_bright (int valor) |
float retorno;

if (valor < (med value - k fuzzy)) {

retorno = 0;

} else {

if (valor > (med value + k_fuzzy)) {
retorno = 1;

} else |

retorno = 0.5f + (valor - med_value)/(2*k_fuzzy):
}
}

return (retorno) ;

class Canvas_img extends Canvas {
Image imagem;
int w,h;
int marca x=0;int marca_ y=0;
boolean marcas=false;

Canvas img(Image n img, int a, int b) {
this.imagem = n_img;
this.w = a;
this.h = b;
repaint (};

}

public void marca(int x, int y) {

if ((x==0) && (y==0)) |
marcas = false;

} else {
marcas = true;

}
marca X = Xj
marca y = y;
repaint () ;

]

public void update(Graphics g) {
paint{(g);
}

public void paint (Graphics g) {

if (imagem!=null) {
g.drawlmage (imagem, 0, 0,w, h, this) ;

}

if {(marcas == true) |
g.setColor(Color.red) ;
g.drawLine(marca_x,o,marca_x,h);
g.drawLine(O,marca_y,w,marca_y);

H

public void update_img(Image n_img) {
imagem = n_img;
repaint () ;

}

class Meu gauge extends Canvas |

int w; int h; int total; int atual;
int coord atual=0;

Graphics offscreengG;

Image offscreenlmg;

boolean nunca passei = true;
boolean reseta=false;

Meu gauge(int a, int b, int n_total) {
this.w = a;
this.h = b;
this.total = n total;
resize(w,h);
System.out.println("Passei por aqui 1");
this.offscreenImg = createlmage (416, 40);
System.out.println("Passei por aqui 2");

/* repaint () ;*/
}

public void set max(int maximo) {
total = maximo;
reseta=true;
repaint{);

]

public void update{Graphics g) {
paint(g);
}

public void reseta() {
reseta=true;
repaint ()} ;
]
public void paint(Graphics g) |
if (reseta==true) {
reseta=false;
g.setColoxr (Color.white);
g.fillRect{0,0,w,h);
g.setColor(Color.blue);
H
g.setColor (Color.blue);
g.drawRect (0,0,w-2,h-2);
g.fillRect(0,0,coord_atual,h—2};
}

public veoid andei(int onde_estou) ({
coord_atual = (onde estou * w)/total;
repaint(};

class Client_thread extends Thread {
Client meu dono;

Client thread(Client n_meu dono) {
this.meu dono = n_meu dono;

}

public void run{) |
while(true) {

if (meu_dono.chamou_tarefas == true) {
meu_dono.chamou tarefas = false;
meu_dono.inicia tarefas();

}

try {
Thread.sleep{500);

} catch (InterruptedExcepticon e} |
e.printStackTrace!():

}

}

class Display client extends Panel {

TextArea textos;
Canvas_img imagem digital;
Label 1l tarefas;

Meu gauge meu gauge;
Canvas _img janela;
Canvas_img janela fixa;

Display client () {
textos = new TextArea():

imagem digital = new Canvas_img(null, 416, 384);
imagem digital.resize(416,384);

janela = new Canvas_img(null, 48,48);
janela.resize (48,48);

janela_fixa = new Canvas_img(null, 48,48);
Janela fixa.resize(48,48);

1_tarefas = new Label ("Todos os processadores aguardando
tarefas™);

1 tarefas.resize(230,48);

meu_gauge = new Meu gauge (416,48, 0);

this.setLayout (new BorderLayout(});

this.add("West"™, textos);
this.add ("East", imagem digital):

Panel pl = new Panel (new BorderLayout());
pl.add("East", 1 tarefas);
Panel p3 = new Panel {new BorderLayout()}):
p3.add("East"”, janela);
p3.add{"West", janela fixa);
pl.add("Center"”, p3);
pl.add{"West"”, meu_gauge);
this.add("South"”, pl);

)

public void manda mensagem{String mensagem) {

textos.append (mensagem + "\n");

}

public void seta_janela(Image n_imagem) {
janela.update img(n_imagem) ;

}

public void seta janela fixa(Image n_imagem) {
janela_fixa.update img(n imagem);
}

public void n_tarefas{int n) {
1 tarefas.setText("Tarefas a serem realizadas: " + n);

meu gauge.set max(n);

}

public void estou na tarefa(int n, int m x, int m y) |{
if (n < 100} {
meu_gauge.reseta();
!
meu_gauge.andel (n) ;
imagem digital.marca(m x, m y);

}

public void n_img dig(Image nova) {
imagem digital.update_img(nova):

}

Server.java:
package jpm;

import java.rmi.Naming;

import java.rmi.RemoteException;

import java.rmi.RMISecurityManager;

import Java.rmi.server.UnicastRemoteCbject;
import java.util.*;

import java.awt.*;

public class Server extends UnicastRemoteObject
implements InterfaceServer |

int tole=18;

int passagem;

public Display grafico meu frame;
String imagem atual;

int[] coincidencias = new int[6];
int[] m X = new int[2000];

int[] m y = new int[2000];

int minucias 0=0;

int centreide x = 0;

int centroide y = 0;

int guantos_acabaram=0;

Tarefa tarefa atual;

Hashtable objetos remotos = new Hashtable(100);
lista tarefa lista de tarefa = new lista tarefa():

int n_tarefas=0;
int k=0;

public Server{() throws RemoteException {
super(};
passagem = 0;

}

public void centroide em(int a, int b) {
centroide x = a;
centreoide y = b;

}

public String sayHello{InterfaceClient objeto) throws RemoteException {

String atual;

for (int t=0; t<6; t++) {
coincidencias|[t] = 0;

}

String retorne = new String{"Helloc World! - ");

retorno = retorno.concat (String.valueOf (passagem)) ;

System.out.print ("Inseri o de numerc: “);

atual = String.valueof(objetos_remotos.size());

System.out.println{atual);

objetos_remotos.put{atual, objeto);

passagemt+;

meu frame.set n conectados (objetos remotos.size (), "Mais uma
conexao") ; o -

return atual;

}

public void marca areas() |
meu_ frame.g imagem.setColor{Color.blue);
for (int t=1; t<=minucias 0; t++) {
meu_frame.g_imagem.drawRect((m x[t] + centroide x - teole)/2Z2,
(m_y[t] + centroide y - tole)/2,
(tole),
{tole)
)i
}

meu frame.g imagem.setColor(Color.black):

}

public synchronized wvoid achei minucia(int a, int b)

{

meu_frame.minucia em(a,b);

a -= centreoide x;
b —= centroide y;
if (k==0) {

minucias_0++;

m _x[minucias 0] = a;
m_y[minucias_O] = b;
} else {
for (int t=1; t<=minucias 0; t++) {
if ((a >= (m_x[t] - tole)) s&

(a <= (m x[t] + tole)) &&
(b »>= {m y{t] - tole)) &s&
(b <= {m y[t] + tole))

coincidencias (k] ++;

public void estou_ sainde (String qual) throws RemoteException {
meu_frame.manda_mensagem("o processador " + qual + " desconectou.");

}

public void ja_acabei (String qual) throws RemoteException
quantos acabaramt+;
meu_frame.manda mensagem{"0 processador " + gqual + " acabou suas
tarefas.");
if (quantos_acabaram==objetos“remotos.size()) {

quantos_acabaram=0;
meu_frame.final_tarefas.setstate(true);

k++;

if (k<=5}) {

n_tarefas = 0;
meu_frame.reseta“checks();
meu_frame.distribui img.setState (true);

meu_frame.le_imagem("bd dig0" + String.valueOf (k) + Y.gif");

meu_frame.manda _mensagem{"Analisando impressao: bg digd" +
String.valueOf (k) + ".gif");

distribui_img();

meu frame.segmenta();

meu_ frame.atualiza imagem{});

marca_ areas();

for (int i=0; i<objetos remotos.size(); i++} {

try |
if (objetos_remotos.containsKey(String.valueof(i})) {
((Interfaceclient)objetos_remotos.get(String.valueOf(i))).servidor_me_chamou
()
} else {

System.out.printin("Nac contem o cbjeto”);
}
} catch {Java.rmi.RemoteException e) {};
}
} else {
for (int t=1; t<=5; t++) {
meu_frame.manda_mensagem(
"Resultado para blocoO" + t + ".gif -> " +
coincidencias([t]);

public static void main(String args[]) |

// Create and install a security manager

if (System.getSecurityManager() == null) {
System.setSecurityManager (new RMISecurityManager({)};

}

try {
Server obj = new Server{};
// Bind this object instance to the name "HelleServer"
Naming.rebind("Server", obj);
System.out.println("Servidor ligado ao registry");
obj.meu frame = new Display grafico();
obj.meu_frame.meu dono = obj;

} catch (Exception e} {
System.out.println("Server err: " 4+ e.getMessage());

e.printStackTrace(};

}

public void starta_processos() f{
meu_frame.reseta checks();
meu_frame.distribui_img.setState(true);

meu_frame.le_ imagem(imagem_atual);
distribui_img(});
meu_frame.segmenta();

meu_ frame.atualiza imagem();

meu_frame.em_paralelo.setState(true);
for {int i=0; i<objetes remotos.size(); i++) {

try |
System.out.println("Entrei no loop de objetos remotos”};
if {objetos_remotos.containsKey(String.valueof(i))) {
System.out.println ("Contem™} ;
((InterfaceClient)objetos_remotos.get(String.valueof(i))).servidor_me_chamou

():
System.out.println{"Chamei processo remoto”) ;

} else {
System.out.println{"Nao contem o objeto”);

}

} catch (java.rmi.RemoteException e} {}:

public void distribul img()

{

for {(int i=0; i<objetos_remotos.size(); i++) |

try {
System.out.println("Entrei no loop de distribuir imgs"™) ;

if (objetos_remotos.containsKey(String.valueof(i))) {

((InterfaceClient)objetos“remotos.get(String.valueOf(i))).le_imagem{meu_fram
e,file in};
System.out.println("Imagem distribuida®);

} else {
System.out.println{"Processador desconectado!”);

}

} catch (java.rmi.RemoteException e} {]};

public synchronized void adiciona_tarefa(int a, int b) f{

int qual processador = n_tarefas % cbjetos_remotos.size();

try {

if
{ocbjetos remotos.containsKey(String.valueOf{qual processador))} {

({InterfaceClient)objetos remotos.get{String.valueOf({qual processador)
)).adiciona_tarefa(a,b};
} else {
System.out.println("Processador desconectados!");
}
} catch {java.rmi.RemoteException e} {}:
n_tarefas++;

}

