ERICO LUIZ ENCARNAGAO ROCHA

E DRIVEN DEVELOPMENT) E

UTILIZAGAO DE FDD (FEATUR
SMARTRe (REQUISITOS REUTILIZAVEIS) NA GESTAO DE PROJETOS

SCRUM

S3o Paulo
2013

ERICO LUIZ ENCARNAGAO ROCHA

UTILIZAGAO DE FDD (FEATURE DRIVEN DEVELOPMENT) E
SMARTRe (REQUISITOS REUTILIZAVEIS) NA GESTAO DE PROJETOS
SCRUM

Dissertacdo apresentada a Escola
Politécnica da Universidade de Sao
Paulo para obtengdo do titulo de
Especialista em Tecnologia da
Informagao

Orientador: Prof. Eduardo de
Qliveira

530 Paulo
2013

AGRADECIMENTOS

Ao professor Eduardo de Oliveira, pela orientagéo, por todo apoio e por ter me

ajudado e me guiado durante todo o processo.
Agradego aos amigos, familiares e companheiros de trabalho pelo suporte,

apoio, paciéncia durante esta fase de minha vida.
Por Ultimo agradego a Deus por todas as alegrias, pela saude e forga que me

concedeu, para que eu conseguisse concluir mais este desafio.

Um bom comego € a metade.
(Aristoteles)

RESUMO

Segundo Margal (2007) o Scrum & um método que aceita que o desenvolvimento de
software é imprevisivel e formaliza a abstragéo, sendo aplicavel a ambientes volateis. Ele se
destaca dos demais métodos ageis pela maior énfase dada ao gerenciamento do projeto. No
Scrum os requisitos sao definidos pela User Story, que é uma pequena e simples descrigéo de
uma funcionalidade dita da perspectiva da pessoa que deseja a nova capacidade, usualmente
um usuario ou cliente do sistema. SMARTRe é um guia para a escrita de requisitos reutilizaveis
desenvolvido por Keepence (1995) que consiste em uma categorizagdo dos requisitos em néo
reusaveis, diretamente reusaveis ou baseado em parametros. A reutilizacdo de requisitos
proposta pelo SMARTRe conduz a uma melhora substancial na qualidade do processo de
engenharia de requisitos reduzindo o tempo de construgéo, aumentando a qualidade do produto
(PEREDNIKAS, 2008). FDD (Feature Driven Development) € uma metodologia agil para
gerenciamento e desenvolvimento de software. Ela combina as melhores préticas do
gerenciamento &gil com uma abordagem completa para engenharia de software. O alvo de
estudo é uma pequena empresa de desenvolvimento de softwares (o nome sera mantido em
sigilo por questéo de confidencialidade) que ufiliza a metodologia de gestéo agil Scrum. Nesta
empresa alguns prazos ndo sio cumpridos (Atrasos efou N&o entregas) e o time de
desenvolvimento reclama da falta de especificacdo de alguns requisitos. As User Stories ndo
estdo sendo suficientes para especificar tecnicamente os requisitos quando algumas
funcionalidades s3c muito complexas ou necessitam de dados técnicos para que o
desenvolvedor compreenda corretamente o que deve ser feito. A énfase no gerenciamento da
empresa de desenvolvimento de software, em conjunto com a falta de um levantamento de
requisitos mais completo e a falta de uma documentagdo mais técnica, gerou atrasos,
impossibilidade de entrega de algumas funcionalidades novas, incompreenséo das tarefas por
parte dos desenvolvedores e retrabalho. A utilizagéo da escrita de requisitos SMARTRe e FDD
possibilita a énfase também em engenharia de software, além de um nivel de maior
entendimento dos requisitos por parte do time de desenvolvedores. Com uma especificagao
mais técnica e bem organizada, os desenvolvedores compreendem meihor as tarefas,
diminuindo retrabalho e atrasos, sem perder a agilidade proposta pelo Scrum.

Palavras-Chave: Scrum. FDD. SmartRe. Engenharia de Software, Desenvolvimento de software.

ABSTRACT

According Marcal (2007) Scrum is a method that accepts that softiware development is
unpredictable and formalizes the abstraction and applies to volatile environments. Scrum stands
out among agile methods by greater emphasis on project management. In Scrum requirements
are defined by the user story that is a short and simple description of a feature told from the
perspective of the person who wants the new capacity, usually a system user or client.
SMARTRe is a guide for writing reusable requirements developed by Keepence et al. (1995)
which consists of a categorization of requirements in is not reusable, reusable or directly based
on parameters. The reuse of requirements proposed by SMARTRe leads to a substantial
improvement in the quality of requirements engineering process reduces construction time and
increase product quality (PEREDNIKAS, 2008). FDD (Feature Driven Development) is an agile
methodology for software development and management. If combines the best practices of Agile
management with a comprehensive approach to software engineering. The aim of the study is a
small software development company (the name wili be kept secret for reasons of
confidentiality) which uses the Scrum agile management methodology. In this company some
deadiines are not met (delays and / or not deliveries) and the development team complains
about the lack of specification of certain requirements. The user stories are not sufficient to
specify technical requirements when certain features are very complex and require technical
data for the developer to understand correctly what should be done. The emphasis in the
management of software development company, in combination with the lack of a more
complete requirements elicitation and the lack of a more technical documentation, generated
delays, inability to deliver some new features, incomprehension of the tasks by developers and
rework. The use of writing requirements SMARTRe FDD and also allows the emphasis in
software engineering, as well as a greater level of understanding of the requirements by the
development team. With a more technical specification and well organized, the developers better
understand the tasks, reducing rework and delays, without losing the agility proposed by Scrum.

Keywords: Scrum. FDD. SmartRe. Software Engeneering. Software Development.

LISTA DE ILUSTRACOES

Figura 1 — Ciclo de uma SPrint SCTUM. ...t b e 14
Figura 2 — Figura adaptada de ‘Os 5 processos do FDD e suas saidas’..........cc.oovnoini 17
Figura 3 — Grafico burndown da primeira Sprint da EIMDIESA. oottt e 2D
Figura 4 — Framework Scrum com as técnicas de FDD e SmartRe..........cooo i, 28
Figura 5 — Grafico Burndown Sprint 2 Release 3 do projeto — com a utilizagao de FDD e SmartRe em

COMJUNED GOM SOTUMNL .1 tterseertatr i eeee soc et st he st aa e e e as b e e eE e bR S b EE e bR R Ao E e b s 36

LISTA DE TABELAS

Tabela 1 — Lista de funcionalidades dos Relatdrios..........coocvecreii i 31
Tabela 2 — Estimativa apés o processo de planejamento por funcionalidade.......................n, 32
Tabela 3 — Categorizagao dos requisitos no projeto da ferramenta de formularios...............cnn 32

FDD
PO
SM
TOD
Tl
UML
XP

LISTA DE ABREVIATURAS E SIGLAS

Feature Driven Development
Product Owner

Scrum Master

Test Driven Develpment
Tecnologia da Informagéo
Unified Modeling Language
Extreme Programming

SUMARIO

T-INTRODUGAOD ..ot ettt e ee e 8
1.1 COoNSIHeragtEs INICIAIS.ot e et e e s s e tar et eseseesaaeen et eetataennans 8
U2 @ B O IMIOR. . e e e 1 i S e TR e e e e L e i S s 9
1.3 JUSHTICALIVA ..ot ettt et s e a e e 9
LI N o T T gV [T o T S PP OOPSO T S 10
BT 1= oo o] Lo T 1 - L S 10
1.6 Estrutura da MonOgrafiaottt e 11

2 - REFERENGIAL TEORICOociiinieiinieeieeetce et 12
2.1 BERUIM ..o o b o e s e e RO, S0, S e el e 510 12
2.2 FDD (Feature Driven Development)o e s e s e e e eeeavanrerrarrnrrres 16
PR I L = O USSR 19

3 — PRATICAS DE ENGENHARIA DE SOFTWARE FDD E ESCRITA DE

REQUISITOS SMARTRE NA GESTAO SCRUMoooviiiiieiceee, 22
3.1 Histérico da experiéncia da empresa COM SCIUMoviiiiiieiiorie i rraeere e e 22
3.2 Proposta para utilizar FDD e SmartRe em conjunto com Scrum ..o, 27
3.3 Pratica das técnicas utitizadas em conjunto ... 30

: 3.4 Resultados da experiéncia realizada na empresa de desenvolvimento de software......... 35

B CONCLUSEGL ... v oo o et st B 2B ool o e o 37

5. REFERENCIAS BIBLIOGRAFICASc.oooiiviiie e 38

1 INTRODUCAO

1.1 Consideragoes iniciais

O contexto utilizado para o desenvolvimento desta monografia € o de uma
pequena empresa de desenvolvimento de softwares, que atua no mercado nacional,
tem aproximadamente 30 funcionarios e utiliza a metodologia de gestao agil Scrum (o
nome da empresa sera mantido em sigilo por questao de confidencialidade).

Esta empresa atua no contexto de fabrica de software, onde é necessario rever
constantemente decisdes estratégicas para conseguir atender as necessidades de
diversos clientes em diferentes areas. A reducdo de custos operacionais e também a
adaptacdo de processos e servigos sdo outros desafios que a organizagao enfrenta a
cada dia. Segundo Kruger (2012) a metodologia agil Scrum e baseada no
desenvolvimento iterativo e incremental de software e entre os beneficios da sua
aplicagao estdo o aumento do retorno sobre o investimento, maior flexibilidade em
relagao as mudangas no mercado e diminuicdo do tempo entre a concepgéo e o projeto
do produto até a disposicido do mesmo para os clientes.

Esta empresa de desenvolvimento de software, mesmo seguindo as
especificagdes da metodologia Scrum, verificou que alguns prazos nao sao cumpridos
(Atrasos e/ou Nao entregas).

Alem desses problemas com os prazos, o time de desenvolvimento reclama da
falta de especificagdo de alguns requisitos e da dificuldade em estimar as horas que
serao utilizadas para a realizagdo das novas funcionalidades. Neste caso da empresa
de desenvolvimento de software, as user sfories definidas pelo Scrum, uma pequena e
simples descri¢do de uma funcionalidade dita da perspectiva da pessoa que deseja a
nova capacidade, ndo estdo sendo suficientes para esta fungdo quando algumas
funcionalidades sdo muito complexas ou necessitam de dados técnicos para que o

desenvolvedor compreenda corretamente o que deve ser feito.

1.2 Objetivo

O objetivo desta monografia € utilizar praticas de engenharia de software FDD
(Feature Driven Development) e escrita de requisitos SmartRe (requisitos reutilizaveis)
na gestao de projetos Scrum, visando mitigar os atrasos, criar uma documentagcdo mais
completa que inclui especificagdes técnicas, fornecer informag6es mais precisas para o
time de desenvolvimento iniciar suas tarefas e evitar retrabalho. O estudo sera realizado
em uma das Sprints de um projeto de uma ferramenta web para criagdo e
gerenciamento de formularios, desenvolvido pela empresa analisada por esta presente

monografia.

1.3 Justificativa

Segundo Margal (2007) o Scrum & um método que aceita que o desenvolvimento
de software é imprevisivel e formaliza a abstragao, sendo aplicavel a ambientes
volateis. Ele se destaca dos demais métodos ageis, como por exemplo, extreme
programming (XP) e Crystal, pela maior énfase dada ao gerenciamento do projeto.

Essa énfase no gerenciamento ocorre na empresa analisada e evidencia que a
falta de um levantamento de requisitos mais completo e a falta de uma documentagéo
mais técnica gerou atrasos, impossibilidade de entrega de algumas funcionalidades
novas, incompreenséo das tarefas por parte dos desenvolvedores e retrabalho.

Ao utilizar a escrita de requisitos SMARTRe e FDD é possivel dar énfase
também em engenharia de software, além de detalhar melhor os requisitos para o time
de desenvolvedores. Com uma especificacao mais técnica e bem organizada, o0s
desenvolvedores compreendem melhor as tarefas, diminuindo retrabalho e atrasos,

sem perder a agilidade proposta pelo Scrum.

10

1.4 Abrangéncia

Esta monografia abrange a metodologia agil de desenvolvimento de software
Scrum utilizada por uma empresa que desenvolve softwares e faz consultoria em
tecnologia da informagdo, técnicas de engenharia de software FDD (Feature Driven
Development) por ser uma metodologia agil com uma abordagem completa no quesito
engenharia de software, e escrita de requisitos reutilizaveis SmartRe que visa uma
economia de recursos com a reusabilidade de requisitos. O projeto de uma ferramenta
web para criacdo e gerenciamento de formularios foi selecionado para analise, pois
existe um histérico recente com a metodologia Scrum. Os processos de
desenvolvimento de software e gestdo Scrum deste projeto serdo utilizados como base

para o estudo que segue.

1.5 Metodologia

Estudo preliminar e diversas pesquisas exploratdrias sobre os temas scrum, FDD
(Feature Driven Development) e SMARTRe, Engenharia de Software e Engenharia de
Requisitos.

Estudo de caso em uma empresa de desenvolvimento de software, aplicando as
técnicas pesquisadas, durante um ciclo de desenvolvimento Scrum com duragéo de
duas semanas.

Analise dos resultados obtidos com a proposta desta monografia e comparagao
com resultados anteriores, da mesma empresa de desenvolvimento de software, sem a

utilizagao das praticas propostas.

11

1.6 Estrutura da Monografia

O capitulo 1 apresenta as consideragoes iniciais a respeito desta monografia, os
objetivos que serdo alcancados, justificativa, abrangéncia, metodologia utilizada e
estrutura geral da monografia.

O capitulo 2 descreve as teorias necessarias para o entendimento da
monografia, e que sustentam a solugéo proposta pela presente monografia.

O capitulo 3 apresenta uma forma de utilizagao de técnicas de engenharia de
software e de engenharia de requisitos em conjunto com a metodologia agil Scrum com
a finalidade de complementar a metodologia e chegar aos resultados esperados.

O capitulo 4 contém as consideragdes finais a respeito da monografia e a
apresentagdo dos resultados obtidos com as pesquisas. Além de tais consideragdes
este capitulo contém as contribuigbes dadas pela monografia e sugere temas para

evolugdo do tema.

12

2 REFERENCIAL TEORICO

2.1 SCRUM

Segundo Martin Ota (2010) Scrum € um método de gerenciamento do
desenvolvimento de produtos e organizagdo de trabalho. Definitivamente é adequado
para conduzir uma equipe a desenvolver um produto. Pode ser definido tambem como
uma forma de iteragao continua, com o cliente presente durante o desenvolvimento de
seu produto e um jeito de comunicacdo no time de desenvolvimento. Ainda na
concepgao do autor, Scrum é uma ferramenta para melhoria continua dos métodos
utilizados, um processo exatamente e estritamente determinado.

O termo Scrum vem do Rtgbi, um esporte originario da Inglaterra, e € uma
jogada onde oito jogadores da equipe se unem em um bloco e atuam juntos para
conseguir ganhar a bola. O time trabalha integrado, cada membro tem seu papel bem
definido e o time todo tem o foco em uma unica meta. No time de desenvolvimento os
membros devem entender bem o seu papel e as tarefas de cada incremento. O time
todo deve ter apenas um foco e as prioridades devem ser muito bem definidas (RISING;
JANOFF, 2000).

Hayata e Han (2011) dizem que Scrum é um método agi! geral, que tem o foco
em gerenciar o desenvolvimento de software iterativo em vez de abordagens técnicas
especificas de desenvolvimento agil de software e projetos de TI. O processo Scrum
consiste em 3 fases. A primeira & um esbogo para estabelecer os objetivos gerais do
projeto e a arquitetura de software. A segunda fase é uma série de ciclos (sprints), onde
cada ciclo desenvolve uma nova parte ou funcionalidade do sistema. A terceira fase € o
encerramento do projeto, onde € gerada a documentacdo necessaria e é feita uma
avaliagdo das ligbes aprendidas com o projeto.

O Scrum Guide (2012) define que o Scrum & um framework estrutural que &

utilizado para gerenciar o desenvolvimento de produtos complexos desde o inicio de

13

1990. Scrum nio & um processo ou uma técnica para construir produtos, em vez disso,
& um framework dentro do qual vocé pode empregar varios processos ou técnicas. O
Scrum deixa visivel a eficacia relativa das praticas de gerenciamento e desenvolvimento
de produtos, de modo que vOcé possa melhora-ias.

De acordo com Laurie Willians (2011) a metodologia Scrum & um processo agil
de desenvolvimento de software que funciona como um invélucro para as praticas de
engenharia de software no desenvolvimento iterativo e incremental. Esta definicéo de
Laurie Willians (2011) é a definicdo base para a metodologia Scrum adotada para o
desenvolvimento desta monografia.

De acordo com o Scrum Guide (2012), esse framework se apoia em frés pilares

fundamentais:

1 Transparéncia: Aspectos significativos do processo devem estar visiveis
aos responsaveis pelos resultados.

2 inspegdo. Os usuarios Scrum devem, frequentemente, inspecionar os
artefatos Scrum e o progresso em direcdo ao objetivo para detectar
indesejaveis variagbes. Esta inspegao, ndo deve no entanto, ser t&o
frequente que atrapalhe a propria execucéo das tarefas.

3 Adaptagio: Se um inspetor determina que um ou mais aspectos de um
processo desviou para fora dos limites aceitaveis, e que o produto resultado
sera inaceitavel, o processo ou o material que esta sendo produzido deve
ser ajustado. O ajuste deve ser realizado ¢ mais breve possivel para evitar
mais desvios.

Segundo Emerson José Morgado Brito (2012), para inspeg&o e adaptagao o
Scrum estabelece quatro eventos formais:

“A primeira reunigo é de planejamento a sprint planning, que da inicio a
um ciclo de desenvolvimento, onde s&o definidos quais requisitos do produto
chamados de backiog do produto ou product backlog, seréo selecionados para
o sprint e chamados de backlog do sprint ou Sprint Backlog, a segunda
oportunidade s&o as Reunices diarias as Daily Meetings, que sao realizadas
diariamente durante o ciclo, a terceira oportunidade ¢ a reunido de Reviséo
Spint Review realizada ao termino do ciclo, com a finalidade de apresentar o
incremento de produto ao cliente, a quarta oportunidade & a reunido de
retrospectiva Sprint Retrospective, onde os aspectos relevantes do ciclo séo
discutidos, analisados e meihorias s&o propostas, encerrando assim um ciclo de
desenvolvimento.” (2012, p. 21).

O Scrum é composto por equipes associadas a seus papéis, eventos, artefatos e
regras. Cada componente dentro do Scrum serve a um propésito especifico e €

essencial para o uso e o sucesso do Scrum. O time Scrum é formado pelo P.O.

14

(Product Owner), Scrum Master, ¢ a equipe de desenvolvimento (SCHWABER,;
SUTHERLAND; 2010).

Segundo Laurie Willians (2011) o P.O. cria os requisitos, prioriza esses requisitos
e também documenta-os no chamado Product Backlog (visdo geral do produto) durante
o plano da Release (Verséo do produto). No Scrum esses requisitos séo chamados de
caracteristicas. A autora descreve que as equipes trabalham em iteragbes curtas de
duas a quatro semanas, e cada iteragdo tem o nome de Sprint. Depois que a Sprint foi
iniciada ndo & permitido incluir novas caracteristicas no planejamento, e tais
caracteristicas entram no planejamento da préxima Sprint a ocorrer.

A figura 1 demonstra o ciclo de uma Sprint Scrum.

Scrum - Ciclo da Sprint
1-4 semanas

ReuniSes
Dijras

Planeizmento
da S?rin’c

Backlog da
Sprint

T Wi "

wilm o @@
g Qv e

‘ﬁ?,.*ﬂ‘"

Bicklog do
Produto

Incremento do
Produto
= potenciglmente
Py e.‘. | - entregivel
_‘ k.' T n A /
~— ! Y ; / —

Revisio 43 Sprint
Retrospediva da Sprint
opyright fc) 2010, Innolution, LLC & Kenneth 5. Rubin. All Rights Reverved

Figura 1 — Ciclo de uma Sprint Scrum.

Todos os dias durante a Sprint é realizada uma reunido com a equipe de
desenvolvimento, em que todos falam o que fizeram no ultimo dia, as dificuldades
encontradas, e o plano do que fardo no dia atual. Essas reunides costumam durar entre
dez e quinze minutos e séo feitas em pé com o propésito de nao se estenderem além
desse tempo.

O Scrum Guide (2012) sugere que apés cada Sprint seja feita uma revisao do
que houve durante a iteragdo e que seja feita também uma reuniao de retrospectiva,

15

onde a equipe de desenvolvimento levanta os pontos positivos e os pontos a melhorar
para a proxima iteracdo. Dessa forma o Scrum leva a equipe a um aprendizado e uma
melhora continua em seus processos de desenvolvimento.

O Framework Scrum é simples de entender, mas muito dificil de seguir
(KRISHNA; BASU, 2011). Martin Ota (2010) demonstra que o Scrum descreve a viséo,
fixa um quadro (geralmente orgamento e tempo) e entrega a vis@o passo-a-passo,
desde as partes mais importantes para as menos importantes do projeto. Ele declara a
mudanga como um evento bem vindo, mas tem uma gestéo rigorosa de mudanca, que
afeta o time apenas no inicio de cada Sprint (tipicamente um dia por duas semanas). O
Scrum trabalha com listas de prioridades, que podem ser vistas como as listas de
requisitos.

Os requisitos ou caracteristicas no Scrum sédo definidos por Users Stories.
Segundo Mike Cohn:

“User story & uma pequena e simples descrigdo de uma funcionalidade dita da
perspectiva da pessoa que deseja a nova capacidade, usualmente um usuario
ou um cliente do sistema. Essas pequenas documentagdes fazem parte do
Backlog do Produto, principalmente porque no backlog do produto deve conter
as necessidades dos clientes e n&c as funcionalidades do software a ser
desenvolvido”. (Apud ETTINGER, 2011).
Colin Doyle (2011) diz que as vezes as user stories ndo sao o bastante no sentido de
documentacdo de requisitos. A user story é uma pega muito importante de
documentagdo no scrum, mas documenta apenas as necessidades dos clientes nao
abrangendo a parte técnica que € fundamental pra o time de desenvolvimento.
De acordo com Ken Schwaber e Jeff Sutherlan (2010) o Scrum é adequado para
a gestao de projetos de software, pois evidencia, de forma transparente, todas as
perspectivas do projeto, desde o andamento até os produtos gerados a cada iteragao.
Também é possivel concluir que o Scrum & um framework preparado para lidar com as
mudancas no decorrer do projeto, pois ja € de sua natureza a convivéncia com
mudangas constantes. Em relagéo a parte técnica e Engenharia de Software, o Scrum
possui uma necessidade de integragdo com outras ferramentas e processos para que o

projeto de desenvolvimento de software seja bem sucedido.

16

2.2 FDD (Feature Driven Development)

Jeff De Luca e Peter Coad criaram FDD em 1997 quando Jeff De Luca era
gerente de projeto de um grande projeto de desenvolvimento de software em
Singapura. O projeto era muito complexo e Jeff percebeu que a missdo em suas maos
ndo poderia ser concluida no tempo determinado, com os recursos disponiveis e
usando a estratégia tradicional de desenvolvimento de software. Ele, portanto, com a
ajuda de Peter Coad e outros, criaram a técnica de modelagem em cor e do conceito de
desenvolvimento orientado a caracteristica. A primeira impressao disso foi publicada no
livro "Modelagem Java em cores com UML", escrito por Peter Coad em 1999.

Segundo Sadhna Goyal (2007) FDD (Feature Driven Development -
Desenvolvimento Orientado a Caracteristicas) é um processo de desenvolvimento de
software agil e altamente adaptativo que ¢ curto e altamente iterativo, com muita énfase
em qualidade em todos os passos, entrega frequentemente resultados tangiveis em
todos os passos, fornece informagdes significativas de progresso e status do projeto
com o minimo de interrupgdes no time de desenvolvimento e é apreciado por clientes,
gerentes e desenvolvedores.

Segundo Rychly e Ticha (2008), Feature Driven Development (FDD) € um
processo incremental e iterativo de desenvolvimento de software. Embora seja um
método agil de desenvolvimento de software, ele & construido em torno de praticas
tradicionais reconhecidas pela inddstria e derivadas da engenharia de software,
incluindo fases de planejamento, design e documentagdo, com um refinado sistema de
decomposigao de funcionalidades e responsabilidades dos desenvolvedores, reiatorios
precisos de progresso, verificagdo frequente, etc.

Sadhna Goyal (2008) define feature como uma funcionalidade ou caracteristica
que faz parte de um projeto de software. Deve ser pequena o suficiente para ser
implementada em uma iterag3o, além de oferecer valor ao cliente.

A aplicacdo do método FDD leva a uma melhor consisténcia do desenho do

software, implementagéo, e documentagéo, pois em alguns processos sdo criados

17

modelos que auxiliam a implementagdo e sdo parte da documentagdo (PALMER;
FELSING, 2002)

FDD comecga com a criagdo de um modelo abrangente em colaboragdo com
especialistas do dominio. Usando informacdes da atividade de modelagem e de
quaisquer outras atividades de requisitos que ocorreram, 0s desenvolvedores passam a
criar uma lista de caracteristicas. Em seguida,
responsabilidades s&o atribuidas (GOYAL, 2008).

Em seu livro “4 Practical Guide to Feature-Driven Development” Palmer e Felsing

um plano é elaborado e as

(2002), definem que para cada processo do FDD é necessario um critério para entrada
e um critério para saida. Isso significa que para um processo iniciar € necessario que o
processo anterior tenha sido finalizado e que as saidas previstas para o processo
estejam de acordo com o planejado, ou seja, as farefas do processo devem estar

concluidas.

Processos i] 1 Y \'4

Dasenvolver
um modelo
abrangente

Criaruma lista de Planejar por
funcionalidades 3 funcioralidade

Desenhar por Construir por
funcionalidade =3 funcionalidade

acordo com dreas

funcionalidades

de objeto

v v
{Mais forma do Uma listade Um plano de Pacote de desenho Completada a
que contetdo) funcionalidades desenvalvimento {sequencias) funcionalidade
Modelo de agrupadas em Proprietério de classe Adiciona mais com valor para
Qbjeto conjuto e de Conjunto de conteddo ao modelo o cliente

proprietarias

Figura 2 — Figura adaptada de ‘Os 5 processos do EDD e suas saidas' (PALMER, SR., FELSING, apud
GOYAL 2008).

FDD é composto por cinco fases conforme mostra a figura 2 e Kanwal, Junaid e
Fahiem (2010) definem estas fases da seguinte maneira:
A primeira fase é desenvolver um modelo abrangente (Develop an Overall

Modef). A maior énfase desta fase é na coleta e andlise de requisitos, principalmente os

18

requisitos funcionais. A formacéo da equipe, e os documentos de requisitos funcionais
séo a principal saida desta fase.

A segunda fase é criar uma lista de Funcionalidades (Build a Feature List). A fase
de criagdo da lista de funcionalidades especifica que a extracao de caracteristicas e
funcionalidades & a base sob a qual o plano de desenvolvimento de software &
preparado. Esta fase é dedicada & construgédo de uma lista composta por essas
caracteristicas ou funcionalidades. O dominioc & decomposto em areas (major feature
sets) abrangendo atividades (feature sets) que contem cada funcionalidade, 0 que
representa um passo em uma atividade.

A terceira fase é planejar de acordo com as Funcionalidades (Plan By Feature).
A principal énfase dessa fase estd nas atribuicées de tarefas para os membros da
equipe. Nessa fase também & incluido um cronograma de projeto de acordo com as
caracteristicas ou funcionalidades.

A quarta fase & desenhar de acordo com as Funcionalidades (Design By
Feature). Esta fase tem foco no projeto detalhado de requisitos funcionais do projeto. O
projeto construide nas fases 1 e 2 é refinado e finalizado. A fase inclui também a
formalizagdo das especificagdes de projeto, na forma de classes. As classes criadas
nesta fase sdo os principais resultados produzidos.

A quinta e ultima fase é construir de acordo com as funcionalidades (Build By
Feature). A orientagéo principal desta fase é a implementacao das especificacbes de
design produzidos na fase anterior. O que determina se o item esta concluido s&o os
testes das funcionalidades, realizados ao final do desenvolvimento de cada item. Se os
itens nio estiverem em conformidade com o que foi especificado na quarta fase, estes
itens devem ser corrigidos para que estejam de acordo com a especificagao.

O método FDD é muito completo no quesito engenharia de software e sua
especificacdo de requisitos & bem detalhada (GOYAL, 2008). Seu modelo de gestio de
projeto &€ um pouco mais complexc que o do Scrum no que diz respeito a papéis. No
Scrum temos o Scrum Master, o time de desenvolvimento e o Product Owner
(SCHWABER; SUTHERLAND, 2010) ja no FDD temos o Administrador do projeto, o

chefe de arquitetura, o responsavel pelas funcionalidades, o responsavel pelas classes,

19

membro do projeto, administrador do dominio, entre outros. (PALMER; FELSING,
2002).

O FDD foi originalmente desenhado para um time com diferentes habilidades
misturadas, diferentes niveis de experiéncia, diversas ragas (chineses, indianos,
americanos, australianos e europeus) e idades. O modelo de gestdo do FDD é criado
para organizar projetos de uma forma que as forgas individuais dos integrantes do time
de desenvolvimento sdo completamente utilizadas e ofere¢gam suporte para possiveis
areas de fraquezas, por isso um namero maior de papéis e papéis mais especificos em
relagdo a suas atribuigdes (PALMER; FELSING, 2002).

2.3 SMARTRe

De acordo com Keepence (1995), SmartRe € uma técnica para escrita de
requisitos em que é possivel identificar e escrever requisitos pensando em sua
reusabilidade em projetos futuros.

Keepence (1995) diz que a engenharia de requisitos consome muito tempo, &
cara, mas é uma fase critica no desenvolvimento de software. O autor afirma também
que ao mesmo tempo, a demanda por software continua a exceder a oferta e o reuso
de software esta no topo da lista da indUstria de computagéo. SMARTRe sugere uma
forma para a escrita de requisitos e descreve algumas técnicas e praticas para escrever
requisitos reutilizaveis (KEEPENCE;MANNION; SMITH, 1995).

Mannion e Keepence (1995) argumentaram que, apesar de ter melhorado nossa
compreensdo da necessidade de produzir especificagbes claras, completas e
consistentes de requisitos, na pratica, ainda ha espago para melhorias.

A técnica derivou da definigo de objetivos em gestdo de psicologia e foi
adaptada para o desenvolvimento de requisitos inteligentes e adaptada para fornecer
orientagdes para os autores de especificagoes de requisitos. A sigla SMART (Specific,

Measurable, Aftainable, Realisable, Timebounded — em portugués: Especifico,

20

Mensuravel, Atingivel, Realizavel, Estimavel) é usado para ajudar as pessoas no
estabelecimento de bons objetivos (KEEPENCE; MANNION; SMITH, 1995).
Na especificacdo de requisitos de software, Keepence, Mannion € Smith (1995)
definem SMART para ser:
Specifc (Especifico)

O requisito deve expressar exatamente a necessidade do cliente.
Especificidade compreende: clareza, coeréncia, simplicidade e um nivel
adequado de detalhe.

Measurable (Mensuravel)

No contexto da engenharia de requisitos, mensuravel quer dizer que &
possivel verificar que a exigéncia do requisito foi cumprida.
Aftainable (Atingivel

Um requisito atingivel é aquele em que & possivel para o sistema
exporimostrar, scb certas condicdes e de maneira real. Alguns requisitos podem
exigir um conhecimento muitoc amplo, & como se estivesse além da
compreensio humana. A consequéncia em tentar responder a este tipe de
requisito &€ que o sistema terd um custo proibitivo, ou nunca seréd aceito ou
ambos.

Realisable (Realizavel

Por realizéavel queremos dizer é que & possivel alcangar os cbjetivos,
dado que se sabe sobre as restricdes previstas pelo cliente sob a qual o
sistema e o projeto deve ser desenvolvido.

Traceable (Rastreavel

A rastreabilidade de requisitos € a habilidade/capacidade de se saber a
origem de um requisito desde sua concepgdo, especificagio, design,
implementacao e teste.

Mannion, Keepence (1995) afirmam que os engenheiros de requisitos, muitas

vezes reconhecem semelhangas em sistemas que ja foram construidos e tentam
identificar oportunidades de reutilizagdo de requisitos. Devido a consideragbes de
orgcamento, no entanto, eles geralmente nao tém motivagéo para se preocupar em fazer
os requisitos reutilizaveis. Por outro lado, um engenheiro de requisitos especialista no
dominio pode ter uma visdo mais ampla.

Mannion, Keepence (1995) identificam as seguintes classes de requisitos:

v Nao Reutilizavel,
v Diretamente Reutilizavel (composigio);
v Parametro Base (geracao).

Néo reutilizavels
Alguns requisitos séo diretamente relacionados ao sistema sendo
construidos apenas para aquele sistema. S&o incluidos nesta categoria
requisitos temporais (por exemplo, prazos). Em um novo documento estes tipos
de requisitos ser&o escritos essencialmente do mesmo jeito que eles foram sem
reutilizar esforgo.
Diretamente reutilizavel (composicéo)
Dentro de um dominio particular, haveré algum requisito que se aplica a
todos os sistemas que s30 desenvolvidos. Estes podem ser atributos naturais
dos sistemas efou normas da industria ou empresa. Em um deminio em que os

21

sistemas desempenham fungbes muito semelhantes em ambientes quase
idénticos & provavel que haja uma quantidade razoavelmente grande de
reutilizagao de requisitos.

Pardmetro ou Requisitos baseado em modelo (geragdo)

Ha muitos requisitos que especificam algum nivel de desempenho ou
uma lista de funcionalidades necessaria. Além da medida real de desempenho
ou os itens da lista, o requisito deve ser reutilizével. Quando os requisitos s&o
copiados e editados, eles tém seus valores alterados ou a lista de elementos
modificada. Um requisito baseado em parametro tem elementos variaveis a ele.
O elemento variavel pode ser algo muito simples, tais como o nimero de
terminais necessarios num sistema ou uma lista de descrigbes funcionais,

O desenvolvimento e gestdo de requisitos reutilizaveis é sempre uma questao
dificil, pois ha o problema adicional de muitas vezes serem escritos em linguagem
natural.

Keepence (1995) diz em seu artigo que a reutilizacdo de requisitos ocorreu
predominantemente através de um método "copiar-e-editar" e que este método de
reutilizagdo raramente € benéfico porque o requisito construido é essencialmente novo
e, portanto, precisa de validagao. As direfrizes de classificagdo e associados
apresentados permitem um maior rigor, aumentando assim o potencial de reutilizagao
de requisitos. O alvo do SmartRe segundo Keepence (1995) e gerar requisitos
diretamente reutilizaveis, por isso, cada requisito que nao seja marcado como tal deve
ser analisado para determinar o por que nao foi considerado reutilizavel.

As diretrizes a seguir, apos a andlise dos requisitos nao reutilizaveis, ajudam a torna-los

reutilizaveis (KEEPENCE, 1995}

1. Remocao de referéncias especificas. E muito comum um assunio ser

constantemente referido em um requisito. Removendo referéncias especificas
aumentara significativamente o numero de requisitos reutilizaveis.

2 Derivando termos comuns: Algumas vezes € comum utilizar diferentes termos
para um mesmo elemento. A caracteristica importante é que a uniformizagéo de
termos nos requisitos aumenta muito © nivel de reutilizagao e que uniformizagéc
de termos néo significa necessariamente semelhanga de definig&o.

3. Diviséio de partes especificas e partes genericas: Alguns requisitos contém

partes que séo especificas e partes genéricas, isso pode reduzir o nivel de
reusabilidade do requisito. Na maioria dos casos a separagdo das partes
especificas das genéricas aumentam a reusabilidade do requisito e transforma
um requisito n&o-reutilizavel em dois requisitos, um parcialmente reutilizavel e

outro diretamente reutilizavel.

22

3 PRATICAS DE ENGENHARIA DE SOFTWARE FDD E ESCRITA DE
REQUISITOS SMARTRE NA GESTAO SCRUM

3.1 Histérico da experiéncia da empresa com Scrum

Segundo Krishna e Basu (2011) Scrum é uma das metodologias para
desenvolvimento iterativo e incremental mais utilizadas. Os autores definem Scrum
como um esqueleto de processo ou estrutura que contem um conjunto de praticas com
papéis pré-definidos em que as paries interessadas estdao envolvidas no
desenvolvimento. Estes foram alguns dos fatores que influenciaram a empresa
analisada a escolher Scrum como metodologia de gestao.

Outros fatores que também influenciaram a empresa analisada a implementar
Scrum como metodologia de gestdo para desenvolvimento de softwares foram o fato de
ser uma metodologia agil com a presen¢a dos interessados durante o processo de
desenvolvimento € o caso de ser transparente e adaptavel (SCRUM GUIDE, 2012).

As primeiras a¢des da empresa em relagdo a adog¢do do Scrum como
metodologia de gestido foram definir os papéis e treinar os funcionarios para que a
metodologia fosse realizada de forma original sem perder suas caracteristicas. Esse
periodo de treinamentos e definicdes de responsabilidades durou por volta de trés
meses, duranie os quais foram realizadas varias turmas organizadas em ciclos. Todos
os ciclos de treinamento foram teéricos e praticos, para todos os papeis necessarios a
metodologia. Na primeira etapa da aplicagdo da metodologia agil a empresa definiu e
selecionou uma equipe composta por cinco desenvolvedores, um Product Owner € um
Scrum Master.

Inicialmente foram definidas as principais caracteristicas do produto em reuniao
conduzida pelo Scrum Master onde o Product Owner explicou para todo o time, do
ponto de vista do negdcio, os detalhes relevantes de cada uma das caracteristicas
fundamentais. Apos esta definigdo, foi criado o Product Backiog e o PO definiu as
prioridades para desenvolvimento.

23

Com a definigdo das prioridades, foi realizada a reunido do time de
desenvolvimento para detalhar as caracteristicas do produto desejado em um conjunto
de requisitos. Nesta etapa, além do Scrum Master, o PO teve participagdo importante
esclarecendo algumas dlvidas em relagdo as caracteristicas que permitiu dar mais
consisténcia aos requisitos para todo o time. Na medida em que cada caracteristica
dava origem a um ou mais requisitos, o time passou estimar o tempo de
desenvolvimento para cada requisito e seu respectivo esforco estimado com base na
complexidade do requisito e na experiéncia da equipe.

O ndmero de desenvolvedores que estariam envolvidos no projeto foi
exatamente o nimero de desenvolvedores disponiveis na empresa no momento em
que esta fase do projeto aconteceu. O Esforgo foi calculado pelas horas estimadas
multiplicadas pelo numero de desenvolvedores envolvidos na execugdo, por exempio:
se um requisito tinha a duragéo de uma hora e dois desenvolvedores fossem trabalhar
juntos nesta hora, entdo a tarefa estaria estimada com duas horas de esforgo (1 hora X
2 funcionarios = 2 horas de esforgo).

Com o Product Backlog desenvolvido e os requisitos estimados o time Scrum
realizou a reunido de planejamento da Sprint. Nesta reunido o time, de posse dos
requisitos e das estimativas, passou a criar o conjunto de farefas que permitiriam
entregar o requisito, no tempo estimado. O resultado desta reuniéo foi o Sprint Backlog.

Com o time e suas respectivas responsabilidades definidos, o Product Backlog
definido, os requisitos estimados e a Sprint planejada chegou a hora de iniciar a
primeira Sprint.

Todos os procedimentos e artefatos do Scrum foram respeitados como, por
exemplo, as reunides diarias de quinze minutos de duragio que ocorriam todos os dias
as nove horas e trinta minutos no periodo da manha com todo o time presente. Foi feito
0 quadro de acompanhamento com as tarefas pendentes, em andamento e concluidas,
alem dos itens ndo planejados e impedimentos ocorridos, para que a gestdo estivesse a
vista de todos os envolvidos no projeto.

Durante as reunides didrias e de acordo com o Scrum Guide, os

desenvolvedores demonstravam o que foi feito desde a ultima reunido até o momento,

24

o que seria feito até a préxima reuniao e quais foram as dificuldades encontradas no
decorrer do caminho.

Os principais requisitos da primeira Sprint foram: criar o ambiente, fazer o
modelo de dados, criar o banco de dados, criar um cadastro para os clientes e criar o
modelo do construtor de pesquisas. O total de horas estimados nos requisitos foi de
448 horas. A velocidade do time composto por 5 desenvolvedores era de 30 horas/dia,
pois 0 combinado era que cada desenvolvedor deveria entregar 6 horas de trabalho por
dia. Ao final de 15 dias de Sprint (3 semanas), o time deveria ser capaz de entregar 450
horas. Nota-se que havia consisténcia enfre a estimativa de tempo para o0s requisitos e
a capacidade do time para entregar a Sprint completa.

O resultado desta primeira Sprint foi 0 seguinte:

1. Nem todos os itens planejados foram entregues;

2. A estimativa de tempo néo foi feita corretamente para alguns itens;

3. A documentagdo foi insuficiente para o entendimento do trabalho por parte
dos desenvolvedores;

4. A equipe nao estava totalmente adaptada a metodologia Scrum;

5. Faltaram alguns conhecimentos técnicos para o desenvolvimento das
tarefas;

8. Ainda se fazia necessario uma melhor definicho dos padroes a serem
utilizados pela empresa.

7. Houve problemas de comunicagdo entre 0s integrantes do time.

Todos os pontos acima foram observados pelo Scrum Master, ou pelo time
durante a reunido de retrospectiva. Quanto & entrega, que &€ um dos pilares do Scrum
Guide, a inspegao foi realizada pelo PO e o time, tendo havido consenso sobre o que
foi entregue e o que foi rejeitado.

No grafico de Burndown da primeira Sprint (ver figura 3} alguns itens mencionados
acima ficam bem claros e explicitos, como por exemplo, o atraso nas entregas, e a

estimativa incorreta de horas para os requisitos.

25

Dias do Projeto Estimatival 1 | 2 | 3 [4 [s [6 [7 [s[oJw][nun[nr][n[u]s
Plano 448 413[388| 358| 328 298| 268 238| 208| 178 148| 118 88 58 28 -2
Horas Planejadas Entregues 23-!— 27,5 35 25 25| 125| 14,5 18 22 15 25| 28,5 26 22 23
Adamento das Entregas 448 425r 397,5| 362,5| 337,5| 312,5] 300| 285,5| 267,5| 245,5| 230,5| 205,5| 177| 151] 129| 106
|Velociadade do Time 30 =l

Burndown - Sprint 01

450
400
350

250
200

mmncs D [yrvey

e Rl
150

100

-50

Figura 3 — Gréafico burndown da primeira Sprint da Empresa.

Ao final da Sprint o time de desenvolvimento deixou de entregar 106 horas, e 0
desvio iniciou a partir do quinto dia de Sprint, aumentando a cada dia até o final da
iteracao.

A metodologia Scrum é simples para compreender, porém extremamente dificil de
aplicar na pratica (KRISHNA; BASU, 2011). Essa primeira Sprint realizada pela
empresa de desenvolvimento de software demonstra o quao verdadeira & esta
observagéo feita por Krishna e Basu (2011).

Apds a retrospectiva da primeira Sprinf a empresa chegou a algumas conclusdes.
As primeiras medidas a tomar seriam reforgar o conhecimento da equipe na
metodologia Scrum e definir os padrdes que seriam utilizados pela empresa, como por
exemplo, padrées de documentacdo de codigo e de modelo de dados. O objetivo
dessas medidas seria evitar surpresas com as mudancas constantes que ocorreram
durante andamento do projeto.

De acordo com Linda Rising e Norman Janoff (2000) atualmente em
desenvolvimento de software os requisitos mudam constantemente e muitas vezes
essas mudangas ocorrem durante o ciclo de vida do desenvolvimento do produto para
atender requisitos de negécios, criando uma dor de cabeg¢a constante para as equipes

de desenvolvimento.

26

A primeira Release do produto da empresa de desenvolvimento de software
entrou em produgdo em abril de 2012 e para a conclusédo desta release ocorreram 7
Sprints. A cada Sprint realizada a empresa executou um breve treinamento de
reciclagem na metodologia Scrum com o intuito de fortalecer os conhecimentos e
aprimorar 0 comportamento da equipe ao longo do projeto.

O projeto teve sua segunda release em produgéo no més de outubro de 2012, e
esta release contou com 5 Sprints.

Nas reunides de refrospectiva das Sprints o time de desenvolvimento néo deixava
de mencionar os pontos negativos e os pontos positivos, gerando um amadurecimento
da equipe ao longo do tempo. Contudo, alguns pontos negativos estavam sendo
repetidamente levantados pelos integrantes do time, como o atraso nas entregas € a
falta de uma especificagdo mais completa para entendimento do desenvolvedor.

Apesar de existir as User Stories que deixavam claros os atores, as agbes e as
funcionalidades, ainda faltava uma especificagdo técnica para melhor compreensao dos
desenvolvedores. Um exemplo dessa necessidade de uma especificagéo técnica foi no
desenvolvimento do mecanismo central da ferramenta que estava sendo desenvolvida,
além de conhecer os atores, agdes e funcionalidades, os desenvolvedores precisaram
de algumas horas de estudo do funcionamento, uma especificagéo de classes e um
detalhamento maior da funcionalidade para ndo alterar a esséncia do mecanismo e
principalmente néo impedir que novas funcionalidades pudessem ser integradas ao
mecanismo.

O Scrum foi seguido conforme os criadores Ken Schwaber e Jeff Sutherland
propdem, sem perder o rigor e sua caracteristica principal, artefatos e cerimbnias time-
boxed (com o tempo pré-definido). Ainda sim havia a necessidade de uma técnica de
engenharia de software para dar suporte aos desenvolvedores em casos Como 0 do
mecanismo central que precisava de um estudo e de uma especificagéo das classes
para ser desenvolvido. O fato desta especificacao técnica nao ter sido elaborada com
detalhes causou significativo atraso na Sprinf e no projeto.

27

3.2 Proposta para utilizar FDD e SmartRe em conjunto com Scrum

Segundo Krishna e Basu (2010), algumas empresas alteram caracteristicas
fundamentais do Scrum, como, por exemplo, aumentar o tempo das reunides diarias
que sdo de 15 minutos ou a duragdo de uma Sprint para um prazo diferente do
proposto pela metodologia (de duas a quatro semanas). O Scrum propde essas
reunides de curta duragio e Sprints de tempo previamente definido exatamente para
dar agilidade ao desenvolvimento. Os autores definem essas alteragbes de
caracieristicas como o “ScrumBUT". A palavra “but” no final da palavra Scrum &€ com o
sentido de “mas”, justificando o porqué de néo seguir 0 proposto pelo Scrum.

Neste mesmo trabalho, Krishna e Basu (2010) também citam empresas e times
que utilizam técnicas para incrementar o processo do Scrum, sem alterar suas
caracteristicas fundamentais, eles chamam de “ScrumAND”. Esta é a proposta desta
presente monografia, adicionar técnicas de engenharia de software ao Scrum,
caracterizando “ScrumAND”, para atender a necessidade de negécios da empresa de
desenvolvimento de software e garantir a agilidade com consisiéncia.

No Scrum Guide {2010) Ken Schwaber e Jeff Sutherland dizem que o Product
Backlog é uma lista ordenada de tudo que deve ser necessario no produto, e € uma
origem unica dos requisitos para qualgquer mudanga a ser feita no produto. Quem fica
responsavel por essa parte é o Product Owner.

Paula Nascimento (2012) afirma que o primeiro passo da metodologia Scrum €
criar a visdo do produto, que apos algumas reunides com o time e o PO formam o
Product Backlog. Na etapa apds a definigdo do Product Backlog € realizada a criagéao
das User Stories como forma de documentagéo e referéncia para os desenvolvedores.

A criagdo do Product Backlog e das User Stories é seguida da reuniao de
planejamento da Sprint, onde o time e o PO definem o Sprint Backlog, ou seja, os itens
do Product Backlog que fardo parte da Sprint. A Sprint inicia e tem duragdo de 2 a 4
semanas, e ao final & realizada uma reunido de revisdo da Sprinf, que ¢ a entrega dos
requisitos ao PO, e uma reunido de retrospectiva pra avaliar os pontos positivos,

negativos e dificuldades enfrentadas. Estas definigbes do Scrum, confirmando a teoria

28

descrita no segundo capitulo desta monografia, ndo devem ser alteradas para a
realizacao da proposta.

Esta monografia tem como proposta incluir algumas técnicas de engenharia de
software em conjunto com o framework Scrum sem que © Scrum perca suas
caracteristicas. A utilizagao de Feature Driven Development e da técnica de requisitos
reutilizaveis SmartRe, tem o objetivo de entregar aos desenvolvedores um material
mais rico para que eles possam exercer melhor ¢ seu trabalho e principaimente garantir
que as eniregas do Scrum sejam feitas com qualidade e no prazo correto.

A figura 4 mostra como seria a proposta do framework Scrum com a utilizagéo de
FDD e SmartRe. Figura adaptada da apresentagdo de Rildo F. Santos (2010).

v ¥
SmartRe
Categorizar
o Requisito

e

Concepgao e Plangjamento Ry
o G Fianejar
umMedele & alistade WP por o o
Abrargents Festures Feature [e
Faatwrs Foalun

|
»

Scrum + FDD + SmartRe

Figura 4 — Framework Scrum com as técnicas de FDD e SmartRe.

O momento da criagdo do Product Backlog seria integrado com os 3 primeiros
processos do FDD, “Desenvolver um modelo abrangente’, “Construir lista de

Funcionalidades” e “Planejar por Funcionalidades”, pois sdo os processos que definem

29

e detalham quais os requisitos e funcionalidades farao parte do produto a ser
desenvolvido, ou seja, do Product Backlog. O projeto inicia com o desenvolvimento de
um modelo abrangente do produto (primeiro processo da FDD), e logo depois se
constréi uma lista de funcionalidades (segundo processo da FDD). Cada funcionalidade
levantada € planejada e neste instante, é verificado as dependéncias entre os recursos,
a complexidade das funcionalidades a serem implementadas e feita a antecipagao de
possiveis riscos, consideragdo de quaisquer marcos externos como pontos de
checagem e feedback.

Quando é realizado o terceiro processo da FDD, “Planejar por Funcionalidade”,
identifica-se a ocasiao ideal para incluir a categorizagédo de requisitos de acordo com a
proposta de Keepence (1995), pois é a etapa em que os requisitos sdo definidos,
estimados e suas relagées de dependéncia aparecem. Os requisitos séo categorizados
por ndo-reutilizaveis, diretamente reutilizadveis e parcialmente reutilizaveis (modelo de
requisito).

O planejamento da Sprint é realizado apo6s essa definicdo das funcionalidades,
dos requisitos e do plano das funcionalidades com a categorizagdo dos requisitos. No
plano da Sprint existem tarefas para detalhar as funcionalidades (quarto processo da
FDD) e para a construgao das funcionalidades (quinto processo da FDD). Nos dois
altimos processos da FDD os requisitos sdo modelados em classes e diagramas de
sequencia e apds este processo sdo implementadas as classes e os métodos, além da
inspegdo de cddigo, testes de unidades desenvolvidas, e da construgdo da
funcionalidade. A metodologia FDD sugere a utilizagdo de UML para a modelagem.

Ao final de cada processo, na empresa de desenvolvimento de software, sera
realizada uma verificagdo das saidas previstas para que o proximo processo possa ser
iniciado.

As caracteristicas do Scrum ndo sdo alteradas em nenhuma situagéo, apesar da
utilizagdo de outras técnicas em conjunto e o Scrum néo perde sua esséncia. Seus
eventos de duragdo pré-definida continuam da mesma forma e seus artefatos nao sao
alterados, além disso sua proposta de agilidade € mantida, permanecendo um
gerenciamento eficaz. As técnicas aparecem como complemento de algumas areas do

desenvolvimento de software em que o Scrum n&o abrange.

30

3.3 Pratica das técnicas utilizadas em conjunto

Na empresa de desenvolvimento de software em que este estudo se baseia, um
de seus produtos &€ uma ferramenta web para criagdo e gerenciamento de formularios.
As técnicas de FDD e SmartRe foram utilizadas em conjunto com o framework Scrum,
motivadas por esta presente monografia ¢ como teste durante um més, abrangendo 0
planejamento e a duragao de uma Sprint. Devido ao sigilo das informagdes, somente
alguns passos do processo realizado foram disponibilizados e foi autorizada a
divulgagdo de apenas um dos requisitos do produto. O requisito selecionado para a
demonstragdo de parte das técnicas aplicadas é o requisito “Relatérios”, que fez parte
da primeira Sprint da terceira Release do produto.

Os topicos utilizados do primeiro processo do FDD, “construir um modelo
abrangente”, foram criar uma explicagao do dominio (a user story foi utilizada com essa
fungdo), modelagem logica dos dados, criar um diagrama de classe, e escrever
observagées do por que o modelo foi escolhido e quais alternativas foram levadas em
consideragao. Ao final o resultado foi um modelo de objetos de alto nivel, que serviu de
referéncia para os desenvolvedores.

A user Story definida para este requisito foi: “Como um usuario da ferramenta
para criagao e gestao de formularios eu quero gerar relatérios com os itens que eu
selecionar e com a totalizacdo de respostas e seus respectivos percentuais para
que seja possivel fazer analises especificas”.

Com a user story definida, com os primeiros diagramas prontos e com as
observagdes a respeito dos diagramas produzidos, foi 0 momento em que iniciou o
segundo processo da FDD “criar uma lista de funcionalidades”.

De acordo com Palmer e Felsing (2002) e a partir dos itens gerados no processo
anterior o dominio foi decomposto em areas neste segundo processo (major feature
sets), e cada area foi separada por atividades de negocios, e cada atividade com sua

lista de funcionalidades. Cada item da lista de funcionalidades foi composto por “a¢éo’,

31

“resultado”’, e “objeto”. O resultado deste processo foi uma hierarquia de
funcionalidades a serem construidas, conhecido no Scrum como Product Backlog. Parte
da lista de funcionalidades gerada para esta iteragdo no requisito “Relatorios” esta na
figura 5.

Esta lista é a saida do segundo processo do FDD e entrada para a terceiro
processo do FDD “planejar por funcionalidade”, aplicando a teoria de Palmer e Felsing
(2002).

FO5 - Relatorios

FO51 Calcular o total das respostos cc

F052 Calcular o percentual das respostas coletadas em relacdo aos participantes
FO53 Calcular o percentual das respostas coletadas em relagdo aos concluidos
FO54 Calcuwiar o numera de ndo respostas para cada questio

Tabela 1 — Lista de funcionalidades dos Relatérios

Planejar por funcionalidade, de acordo com a ideia de Palmer e Felsing (2002),
foi planejar a ordem que as funcionalidades seriam implementadas, baseado na
dependéncia e na complexidade das funcionalidades a serem implementadas. As
tarefas basicas desse processo nio tem uma sequencia exata. Determinar uma
sequencia para o desenvolvimento de acordo com o valor de negocio para o cliente e
estimar as horas que serdo gastas em cada etapa do processo de desenvolvimento
foram as principais atividades deste processo.

No projeto do software de criagdo e gerenciamento de formularios web os itens
da lista de funcionalidades além de terem sido sequenciados, estimados e classificados
de acordo com o valor de negodcio, foram também classificados em n&o reutilizaveis,
reutilizaveis, e parcialmente reutilizaveis, de acordo com Keepence (1995), como
mostra a tabela 2 abaixo.

P

32

Business Value | Areade Negbcio Codigo Item Dependéncia | Estimativa em haras
100 Relatdrios F051 Calcular o total de respostas coletadas N/& 3,0
50 Relatorios Fo52 Caleular o percentual de respostas em relagdo aos participantes NfA 30
50 Relatérios F053 Caleular o percentual de respostas em relagio aos concluidos N/A | 3,0
80 Relatonos FO54 Calcular o total de ndo respostas para cada questao N/& 3,0
100 Relatdrios FO55 Selecionar as guestdes do relatorio N/A 6.0

1 s 'l
Tabela 2 — Estimativa apés o processo de planejamento por funcionalidade

O valor de negécio de cada item foi estipulado pelo Product Owner, € tem um
valor que varia de 10 a 100. Este intervalo de valores foi definido por todos os
envolvidos no projeto. O valor minimo escolhido foi 10 porque os gestores quiseram
evitar que funcionalidades com valor de negdcio 0 fossem deixadas de lado pelo time
de desenvolvimento.

A categorizagdo dos requisitos foi efetuada no processo de planejamento das
funcionalidades. A Tabela abaixo demonstra como ficaram os requisitos do “Relatério”
categorizados de acordo com Keepence (1995)

Area de Negocio Cédigo | tem Categoria do Requisito
Relatdrios FO51 |Calcular o total de respostas coletadas N3o Reutilizavel
Relatorios F052 Calcular o percentual de respostas em relagdo aos participantes Ndo Reutilizavel
Relatérios F053 Calcular o percentual de respostas em reia;ic aons concluidos Nao Reutilizavel
Relatorios F054 Calcular o total de nJo respostas para cada questdo N&o Reutilizavel
Relatdrios FO55 Selecionar g_sﬂques'-.ées do relatorio = Diretamente Reutilizavel

Tabela 3 — Categorizagao dos requisitos no projeto da ferramenta de formulérios

Os requisitos foram classificados em “ndo reutilizadveis” quando eram
funcionalidades especificas do projeto em questéo, foram classificados em “diretamente
reutilizaveis” quando havia possibilidade da funcionalidade ser utilizada sem alteragtes
em outras paries do projeto efou outros projetos, e foram classificados em
“parcialmente reutilizaveis” os requisitos que poderiam ser utilizados em outras partes
do projeto e/ou em outros projetos contanto que alguns pardmetros fossem alterados.

Além do requisito “Relatérios”, outro requisito, “Graficos”, fazia parte do Product
Backlog. Este outro requisito é o responsave! pela geragéo de graficos dos relatorios
desenvolvidos. A figura acima demonstra que a funcionalidade “F055 — Selecionar

questdes do relatorio” foi classificada como “diretamente reutilizavel’, pois esta mesma

33

funcionalidade faz parte do requisito “Graficos™ do projeto, onde o usuario seleciona a
questdo em que ele quer ver os graficos.

O principal motivo da classificagao dos requisitos em relagéo a sua reutilizacao &
simplesmente por gerar economias futuras com o processo de desenvolvimento e
analise de requisitos. Keepence (1995) afira que esta tarefa de classificagao dos
requisitos pode tornar a primeira fase do projeto mais cara, porém a relagao custo-
beneficio geraimente é significativa quando se trata de outros projetos que reutilizam
requisitos existentes de projetos anteriores.

Os trés primeiros processos FDD (‘criar um modelo abrangente”, “criar uma lista
de funcionalidades” e “planejar por funcionalidade”) e a categorizagdo dos requisitos
(SmartRe) tiveram a duragao de uma semana no total. O Product Owner, 0 Scrum
Master e o time de desenvolvimento foram o0s responsdveis pelo primeiro processo do
FDD inciuido no framework Scrum. O segundo processo, juntamente com o terceiro e a
categorizagdo de requisitos foi de responsabilidade do time de desenvolvimentio,
auxiliados pelo Scrum Master. A atribuicdo do valor de negécio foi feita pelo Product
Owner durante o terceiro processo.

Com os 1rés primeiros processos do FDD, que correspondem ao Product
Backlog, finalizados, a proxima etapa efetuada foi o planejamento da Sprint. Como as
tarefas ja foram estimadas, classificadas, e ordenadas de acordo com a prioridade em
relagdo ao valor dado pelo Product Owner, o procedimento de criar um Sprint Backlog
se tornou mais simples, pois o trabalho se tornou apenas escolher os itens mais
prioritarios e que se encaixavam na disponibilidade de horas do time.

Apds o planejamento da Sprint e apo6s a criagao do Sprint Backlog o ciclo da
Sprint iniciou. A duragao estimada para esta Sprint foi de duas semanas, ou dez dias
teis. O numero de profissionais envolvidos foi de cinco desenvolvedores, um Scrum
Master e um Product Owner. A duragéo da Sprint em horas estava planejada em 300
horas com uma velocidade de 30 horas/dia.

Durante o ciclo da Sprint aconteceram 0s dois Ultimos processos da Feature
Driven Development, “detalhar por funcionalidade” e “construir por funcionalidade”.

A etapa de “detalhar por funcionalidade” consistiu em “desenvolver diagramas de

sequencia” para requisitos complexos, “refinar o modelo de objetos” criado no primeiro

34

processo FDD, “escrever classes e métodos” e “inspegéo de desing” para as classes
obedecerem ao padrdo utilizado pela empresa. Estes passos executados estao de
acordo com as tarefas propostas por Palmer e Felsing (2002).

Esta etapa é finalizada com a entrega dos diagramas de sequencia, modelos de
classes. Apos a finalizagdo do quarto processo da FDD e iniciado o quinto e ultimo
processo da Feature Driven Development que & a “construgdo por funcionalidade”.

Na “consfrucdo por funcionalidade” todo material gerado no processo anterior &
implementado e testado. A implementagéo e os testes sao feitos por unidade, ou seja,
cada funcionalidade é implementada e testada separadamente.

Ao final da Sprint foi realizada uma reunido de revisdo onde a equipe de
desenvolvimento entregou as funcionalidades planejadas ao Product Owner. Apos
testar e validar as entregas, o Product Owner comunicou o que estava de acordo com o
combinado e o que nio estava. Algumas tarefas que o PO né&o aceitou voltaram para a
lista de pendéncias, mas elas ndo tiveram a necessidade de serem replanejadas.
Faltaram apenas pequenos ajustes, como o alinhamento de /ayout.

Depois que os requisitos foram construidos e apresentados para o Product
Owner, foi o momento de realizar a reunido de retrospectiva da Sprint. Os pontos
positivos e negativos da Sprint realizada foram levantados e discutidos, e além disso 0

time propds formas de melhorar o desempenho para o proximo ciclo.

35

3.4 Resultados da experiéncia realizada na empresa de desenvolvimento de

software

Na reunido de entrega de funcionalidades da empresa de desenvolvimento de
softwares o Product Owner aceitou 90% das funcionalidades planejadas, sendo que
estes 10% nao foram aceitos devido a acertos no layout e em um dos casos, acerto de
calculo da funcionalidade. O requisito “Relatérios” foi entregue com sucesso.

Ao final da reunido de revisdo da Sprint é realizada a reunido de retrospectiva da
Sprint. Durante esta reuniao os membros da equipe ressaltaram que o andamento da
Sprint teve uma dindmica melhor e que a complicagdo com o entendimento das tarefas
quase desapareceu, em alguns casos o Scrum Master teve de intervir para auxiliar a
equipe de desenvolvimento. Outro ponto importante levantado na reunido & que, apesar
de 10% do planejado nao ter sido aceito pelo Product Owner, a equipe nao atrasou em
relacdo ao planejado.

O fato de produzir modelos e estudar as funcionalidades antes de comecar o
desenvolvimento, gerou um nimero maior de reunides com os integrantes da equipe.
No primeiro momento foi realizada apenas uma reunido antes do inicio do
desenvolvimento, com esta nova proposta o numero aumentou para 5 reunides. |sso
aumentou o numero de pessoas com conhecimento sobre as funcionalidades e
melhorou a colaboragéo entre os participantes do projeto.

O grafico burndown desta Sprint ficou conforme a figura 5, € comparado com o

das Sprints anteriores fica claro a evolugdo do time.

Dias do Projeto Estimativa | 1 z] 3] 4 5 3 7 s 3 10

Plano 3000 2700| 2400| 2106| 1800 150,0 120,0 30,0 60,0 30,0 - | 36
Horas Planejadas Entregues | 38,0 | 29,0 28.0 31,0 26,0 30.0 29,0 27,0 29,0 33.0 ||
|Andamento das Entregas 300,0| 2620| 2330 2050 174.0 148,0 118.0 89,0 620| 330 . ~|
|Velociadade do Time 30,0

350.0 = |
‘ 300,0 ‘
| | —rlanc
‘ " 250,0
=Andamanto das Ertregas
200.0

1500

1000

£ \

iy 2 3 4 5] 7 B] pUu) 1

Figura 5 — Grafico Burndown Sprint 2 Release 3 do projeto — com a utilizagio de FDD e SmartRe em
conjunto com Scrum.

O primeiro ponto a ser observado € que mesmo com alguns dias com entregas
abaixo do que o time propds a entregar (velocidade do time), ao final da Sprint o time
conseguiu recuperar o ritmo e finalizar com sucesso este ciclo. O segundo ponto a
considerar é que o time néo se distanciou muito do planejado em nenhum dia da Sprint,
isso mostra que o time nac acumulou atrasos. Este € um resultado muito positivo em
comparacéo as Sprints anteriores, pois o aclimuio de atrasos e o distanciamento do
que foi planejado era constante e impossivel de conseguir recuperagio (o time ja
esteve com 106 horas de atraso ao final de uma Sprint como mostrado no item 3.1
deste capitulo).

A dependéncia entre as tarefas tambéem foi um fator que levou o time a nao
cumprir o tempo estabelecido para o dia da Sprint em alguns casos, mas os dias abaixo
do planejado foram compensados por dias acima do esperado. Na visdo geral da Sprint
o planejamento foi bem realizado devido ao resuftado obtido.

O time observou durante a reuniao que esta foi a melhor Sprint realizada até o
momento, levando em consideragdo as entregas para o Product Owner € 0 prazo
estabelecido, que foi cumprido peia primeira vez apesar da necessidade de alguns
ajustes na entrega final.

O fato de planejar por funcionalidades e classificar os requisitos deu uma maior
seguranga para os desenvolvedores no momento da implementagdo e principalmente

no momento de estipular prazos.

37

4 Conclusao

O processo proposto foi realizado de acordo com as especificagdes da Feature
Driven Development (FDD) e das especificacdes de requisitos SmartRe (requisitos
reutilizaveis). O time de desenvolvimento esteve um pouco resistente no inicio do
processo devido a um numero maior de reunides para a definicdo dos requisitos a
serem trabalhados durante a Sprint. Apds esta fase de definicgdo o time de
desenvolvimento esteve mais a vontade e seguro para realizar seu trabalho, pois houve
uma significativa diminuicdo das ddvidas em relagdo as funcionalidades a serem
implementadas.

O time conseguiu manter um ritmo interessante durante toda a duragéo da Sprint
e isso foi primordial para o cumprimento dos prazos estabelecidos. O fato de
estabelecer diretrizes concretas para o desenvolvimento do software em questao trouxe
outros beneficios além do previsto, como o aumento da colaboragao entre os membros
da equipe, melhora no comprometimento com as entregas previstas, comunicagéo do
time e maior facilidade na organizacdo da equipe devido ao melhor sequenciamento
das tarefas. A aplicagdo das novas técnicas concomitantemente com um melhor
entendimento das praticas do Scrum levaram o time a ter um methor desempenho no
andamento do projeto.

Com esta monografia conclui-se que é possivel utilizar praticas de engenharia de
software em conjunto com a metodologia Scrum com o objetivo de aumentar a
produtividade e mitigar atrasos e retrabalho. As técnicas de engenharia de software
Feature Driven Development (FDD) juntamente com as técnicas de escrita de requisitos
reutilizaveis SmartRe se mostraram capazes de diminuir consideravelmente a lacuna
entre a gestdo de projetos Scrum, existente na empresa de desenvolvimento de
software, e as praticas de engenharia de software.

Para trabalhos futuros a sugestdo é a combinagéo de técnicas para aprimorar 0s
testes de software, como por exemplo, a utilizagéo de Test Driven Development (TDD)
em conjunto com as praticas desenvolvidas por esta monografia, com o objetivo de

aperfeicoar a qualidade dos softwares desenvolvidos.

38

REFERENCIAS BIBLIOGRAFICAS

ANAND, Ashok; SEKAR, Vyas, AKELLA, Aditya. SmartRE: An Architecture for Coordinated
Network-wide Redundancy Elimination. Barcelona: SIGCOMM, 2009.

BRITO, Emerson José Morgado. Diretrizes para avaliagdo de ferramentas de gestdo de
projetos utilizando metodologias ageis. Maringa, 2012.

CHOWDHURY, Ashraf Ferdouse: HUDA, Mohammad Nazmul. Comparison between Adaptive
Software Development and Feature Driven Development. IEEE, International Conference on
Computer Science and Network Technology, 2011.

DE LUCA, Jeff. Disponivel em: http:/iwww.step-
10.com/SoftwareProcess/FeatureDrivenDevelopment/. Acesso em: 27/12/2012

ETTINGER, Daniel. O Backlog do Produto e a arte da User Story. Disponivel em:
<http://danielettinger.com/2010/12/30/pb_userstory/>. Acesso em: 26/12/2012

GOYAL, Sadhna. Agile Technigues for Project Management and Software Engineering.
Technical University Munich, 2007/08.

GUANG-YONG, Hu. Study And Practice Of Import Scrum Agile Software Development.
Nanjing: IEEE, 2011.

HAYATA, Tomohiro; HAN, Jianchao. A Hybrid Model for IT Project with Scrum. IEEE, 2011.

KANWAL, Faria; JUNAID, Komal, FAHIEM, Muhammad Abuzar. A Hybrid Software
Architecture Evaluation Method for FDD — An Agile Process Model. IEEE, 2010.

KEEPENCE, Barry; MANNION, Mike; SMITH, Stephen. SMARTRe Requirements: Writing
Reusable Requirements. |[EEE, 1995.

KRISHNA, Vinay; BASU, Anirban. Scrum+ :: Is it “ScrumBut” or “ScrumAnd”. IEEE, India
Conference {INDICON}), 2011.

39

KRUGER, Eduardo. Por que o Scrum é melhor para a sua empresa e seus clientes?
Disponivel em: < http://cic.uol.com.br/opiniao/2012/07/12/por-que-o-scrum-e-melfhor-para-a-sua-
empresa-e-seus-clientes/>. Acesso em: 15/03/2013

MANNION, Mike; KEEPENCE, Barry. SMART Requirements. Software Engineering Notes, Vol.
20, n° 2, 1985.

MELQ, Claudia de; CRUZES, Daniela; KON, Fahio; CONRADI, Reidar. Interpretative case
studies on agile team productivity and management. Elsevier, 2012.

MILLER, Granville. Want a Better Software Development Process? Complement It. |EEE,
September, 2003.

MOE, Nils Brede; DINGS@YR, Torgeir; DYBA Tore. A teamwork model for understanding an
agile team: A case study of a Scrum project. Elsevier, 2009,

NASCIMENTO, Paula. Primeiro passo de um projetoc Scrum: Visdo. Disponivel em:
<htip://blog.myscrumhalf.com/2012/07/qual-o-primeiro-passo-de-um-projeto-scrum-visao>.
Acesso em: 13/01/2013

OTA, Martin. Scrum in Research. Praga: Springer-Vertag Berlin Heideiberg, 2010. Y. Luo (Ed.):
CDVE 2010, LNCS 6240, pp. 109 - 116.

PALMER, Stephen; FELSING, Mac. A Practical Guide to Feature-Driven Development. The
Coad Series, 2002.

PRIES-HEJE, Lene; PRIES-HEJE, Jan. Agile & Distributed Project Management: A Case
Study Revealing Why Scrum Is Useful. ECIS, 2011.

RISING, Linda; JANOFF, Norman. The Scrum Software Development Process for Small
Teams. [EEE Software, Julho/Agosto 2000.

RYCHLY, Marek; TICHA, Paviina. A Tool for Supporting Feature-Driven Development. |FIP
International Federation for Information Processing, 2008.

SCRUM GUIDE. Disponivel em: <http://www.scrum.org>. Acesso em: 18/12/2012

SIDDIQUI, Farheen; ALAM, M. Afshar. Ontology Based Feature Driven Development Life
Cycle. International Journal of Computer Science Issues, Vol. 8, 2012,

40

VLAANDEREN Kevin; JANSEN, Slinger; BRINKKEMPER, Sjaak; JASPERS, Erik. The agile

requirements refinery: Applying SCRUM principles to software product management.
Utrecht: Elsevier, 2010.

WAGH, Ramrao. Using Scrum for Software Engineering Class Projects. Goa: |IEEE -
Computer Society, 2012.

WILLIAMS, Laurie; BROWN, Gabe; MELTZER, Adam; NAGAPPAN, Nachiappan.
Scrum + Engineering Practices: Experiences of Three Microsoft Teams. ESEM, 2011.

