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RESUMO

Linardi Rossi, D. Redes Neurais Artificiais Empregadas no Reconhecimento e
Classificacao de eventos em series temporais. 2024. 57 p. Monografia (MBA em
Inteligéncia Artificial e Big Data) - Instituto de Ciéncias Matematicas e de Computacao,
Universidade de Sao Paulo, Sao Carlos, 2024.

O presente trabalho tem como objetivo o estudo dos sinais gerados por sensores MEMs
(Micro-Electro-Mechanical Systems), utilizar os sinais gerados e aquisitados por estes
sensores atraves de um smartphone que foi colocado dentro de um veiculo que efetuou
manobras especificas, e atraves da inteligencia artifical criar uma rede neural para classificar

os tipos de eventos ou manobras que foram aquisitados.

Palavras-chave: MEMs. Inteligencia Artifical. Series Temporais. Redes Neurais. CNN.
LSTM. Tese.






ABSTRACT

Linardi Rossi, D. Event Recognition in Time Series using Artificial Neural
Networks. 2024. 57 p. Monograph (MBA in Artificial Intelligence and Big

Data) - Instituto de Ciéncias Matematicas e de Computagao, Universidade de Sao Paulo,
Sao Carlos, 2024.

This work aims to analyze the MEMs (Micro-Electro-Mechanical Systems), sensors and
its signals, use the MEMs generated signals during specific vehicle maneuvers that were
recorded by a Smartphone that was set into the vehicle, and use artificial intelligence and

neural networks to classify the event types and maneuvers that were recorded.

Keywords: MEMs, Artifical Inteligence, Temporal Series, CNN, LSTM, Thesis.
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Devido ao desenvolvimento de novos softwares e hardwares cada vez mais potentes e
sistemas cada vez mais conectados, varias possibilidades sao encontradas para a utilizando

os sinais de sensores presentes nos smartfones (acelerdmetros, giroscépios, GPS, etc.).

1.0.1 Justificativa e importancia:

Um exemplo ¢ a utilizacao de redes neurais para classificar situacoes de direcao de

automoveis baseadas em sinais de sensores de aceleragao aquisitados de um smartfone.

Identificada uma situagao especifica de direcao (frenagem, aceleracao, curvas, etc.)
sera possivel conectar outros tipos de sensores e ou equipamentos, bem como o proprio
smartfone, que poderao utilizar estas informacoes para criar novas aplicagoes uteis ao

usuario.

Exemplo podem ser, alarmes em caso de acidentes, one o smartfone pode, de

maneira autonoma, efetuar uma chamada ao hospital ou ao departamento de policia,

1.0.2  Objetivos:

O objetivo principal é criar uma rede neural, a ser executada por um aplicativo
rodando em um smartfone, que seja capaz, através da utilizacao dos sinais dos sensores de

aceleracao e giroscopios, identificar situagoes de direcao de um veiculo.

Parado, acelerando, freando, curvas a esquerda/direita,
1.0.2.1 Objetivos Especificos:

1. Estudar os sinais dso sensores MEMs aquisitados pelo smartfone: acelerometros,

giroscépio e campo magnético.
2. Associar estes sinais a situagoes especificas de direcao.

3. Estudar redes neurais artificiais e como uma rede neural artificial pode ser treinada

para reconhecer um evento especifico.

4. Estudar como esta rede neural pode depois ser implementada em um aplicativo
de celular ou em um equipamento embarcado onde os recursos computacionais sao
escassos e limitados quando comparados a um computador pessoal cluster no qual a

rede neural foi primeiramente implementada.

5. Estudo e aprendizado: o estudo das tecnologias de aprendizado de maquinas, redes
neurais, aprendizado profundo, tratamento de dados. A metodologia é analisar e estu-
dar os dados disponiveis e aplicar inteligéncia computacional e realizar a classificacao
de situagoes de frenagem e aceleragao bruscas. Os diferentes tipos de aprendizado: su-
pervisionado, nao supervisionado e por reforco, devem ser compreendidos e utilizados

Caso Necessarios.
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6. Implementacao do algoritmo: Serdo estudados alguns algoritmos que sejam capazes de
realizar os trabalhos de predicao e selecao necesséarios. Dentre esses serao considerados
inicialmente: Regressao Linear, Regressao Polinomial, K-means, Arvores de Decisao
[2]. Com esse estudo serd possivel determinar qual ou quais algoritmos sao melhores

para a resolucao desse problema.

7. Avaliacao qualitativa e quantitativa: Para avaliarmos quantitativamente o resultado
desse trabalho vamos utilizar métricas estatisticas ja conhecidas como: Acurécia, F1

Score e Precisao.

8. Testes e Ajustes: Apos a identificacdo dos possiveis ajustes, é importante que tais
ajustes sejam de fato implementados e uma nova avaliagao seja feita em um cenario
real, sendo assim apds os ajustes necessarios para que consigamos uma melhor

qualidade nos indicadores de avaliacao,

9. Implementacao do sistema: O algoritmo serd implementado em um computador

pessoal podera futuramente ser executado em um aplicativo em um smartfone.

1.0.3 Resultados e Impactos Esperados:

E esperado que o algoritmo consiga reconhecer/classificar as diferentes situagoes
de dire¢ao do veiculo, e com isso outros dispositivos/algoritmos possam utilizar esta

informagao.






2 FUNDAMENTACAO TEORICA
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2.1 Series temporais

Em matematica, uma seria temporal é um conjunto de numeros indexados (ou
representados em um grafico) em ordem de tempo. Mais comumente, uma sequencia de
tempo discreto é uma serie temporal constituida de dados acquisitados em um intervalo
constante de tempo. Exemplos de series temporais sao dados de temperatura, pressao e

aceleracao coletados de um sistema.

Uma serie temporal é frequentemente plotada em um grafico cujo eixo x representa
uma definida unidade de tempo. As series temporais sao usadas em estatistica, processa-
mento digital de sinais, reconhecimento de padroes, matematica financeira, engenharia de

controle, comunicacoes, etc.

A figura 1 mostra dados acquisitados de sensores de um smartphone colocado
dentro de um veiculo. O veiculo realisa uma manobra na qual muda para uma a esquerda

de maneira agressiva (Ferreira et al., 2017).

2.2 Redes Neurais - Fundamentos
2.2.1 Perceptron

A forma mais basica de uma rede neural é o perceptron, mostrado na figura 2,
que ¢ a representacao artificial de um neuronio que possui tres componentes importantes:
os dendritos, o corpo celular e o axonio. Este modelo foi proposto em 1958 por Frank
Rosenblatt (Rosenblatt, 1958) , um psicologo que desenvolveu o algoritmo para ajustar os

pesos da rede e provou sua convergéncia.

E importante ressaltar a existencia de um peso (bias), que serve para aumentar os

graus de liberdade, permitindo assim uma melhor adaptacao da funcao neuronal.

O perceptron é um classificador binario, que é capaz de possuir varias variaveis de
entrada, ou seja, um vetor de entrada. Este neuronio artificial pode aprender atraves de
diferentes valores de entrada (vetores de entrada), gerando apenas uma resposta binaria

de classificacao.

O aprendizado é o processo pelo qual os parametros livres de uma rede neural sao
adaptados por meio de um processo de estimulo pelo ambiente. O tipo de aprendizado é

definido pela maneira com que acontecem as mudancas nos parametros.

Toda a vez que ele é treinado, os pesos podem variar a gerar o mesmo resultado na
saida. Isto nos leva a termos um problema com varias solucoes. Os componentes basicos do
perceptron sao: entradas, pesos, funcao de ativacao e saida, onde os pesos sao os principais
componentes. Vale salientar que o perceptron sé funciona para problemas linearmente

separaveis.
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Aggressive left lane change captured by sensors (data downsampled to 20 Hz)
Sensor Axes - x <y <z
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Figura 1 — Dados de sensores: acelerometros, giroscopio e magnetrometro plotados no
tempo (Ferreira et al., 2017).

2.2.2  Multi-Layer Perceptron Networks

Multi-Layer Perceptrons (MLP) sao caracterizadas pela presenca de pelo menos uma
camada intermediaria, como mostrado na figura 3. Uma rede neural para ser considerada
multi-layer, deve ter, no minimo, duas camadas. O algoritmo de aprendizado de uma MPL

¢é chamado de algoritmo Back-Propagation.

MPLs superam as limitagoes praticas do Perceptron. O modelo de cada neur6nio
inclui uma funcao de ativacao nao linear e diferenciavel e contém uma ou mais camadas
escondidas/ocultas entre a camada de entrada e a camada de saida. MPLs possuem alto

grau de conectividade
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Figura 2 — Perceptron

Sinais de entrada
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de entrada oculta 1 oculta 2 de saida

Figura 3 — Multilayer Perceptron (MLP)



31

2.2.3 Back-propagation

Para compreender o algoritmo de Back-propagation é necessario compreender as

sucessivas fases que o compoem, que sao Forward phase e Backward phase.

Durante a Forward phase os pesos sao fixos e o sinal é propagado através da rede,
camada por camada, até a saida. Mudancas s6 ocorrem nos potenciais de ativagao e nas

saldas dos neurodnios da rede.

Ja o aprendizado ¢é feito na Backward phase. O sinal de erro produzido comparando
a salda desejada com a obtida. O erro é retropropagado através da rede, camada por

camada, ajustando assim os pesos sinapticos da rede.

Na Backward phase, um calculo matematico ¢ realizado para ajustar os pesos,

podendo ser atraves de derivadas parciais, erro dos minimos quadrados ou entropia cruzada.

2.2.4 Deep Learning - Aprendizado profundo

Deep learning, ou aprendizado profundo, é o subconjunto de metodos de aprendizado
de maquina baseado em redes neurais artificiais. O adjetivo "profundo'se deve ao fato
do uso de multiplas camadas na rede. Os metodos usados podem ser supervisionados,

semi-supervisionados e nao supervisionados (LeCun; Bengio; Hinton, 2015).

Architeturas de redes de aprendizado profundo, redes neurais recorrentes, redes
neurais convolucionais e transformers, tem sido aplicadas em varios campos, como visao
computacional, reconhecimento de fala, processamento de linguagem natural, traducao
automatica, etc., onde os resultados obtidos sao comparaveis ou superiores, em alguns

casos, aos resultados obtidos por humanos.

2.2.5 Redes Neurais Recorrentes

Uma Rede Neural Recorrente (RNNs) é um tipo de rede neural artificial que utiliza
dados sequenciais ou series de dados temporais. Estes algoritmos de sao comumente usados,
por exemplo, no processamento de video e processamento de linguatem. Assim como como
redes feedforward e redes convolucionais, as redes neurais recorrented utilizam dados de
treinamento para aprenderem. Elas sao distinguidas por sua "memoria'assim que utilizam

informacoes de dados de entrada anteriores para influenciar a entrada e a saida atuais.

Enquanto redes neurais profundas tradicionais assumem que entradas e saidas sao
independentes entre si, a saida de uma rede neural recorrente depende dos elementos
passados da sequencia de dados que serve de entrada para essa rede (IBM, 2024), (Cala,
2019).
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2.2.5.1 Arquitetura de Redes Neurais Recorrentes

Redes neurais recorrentes bi-direcionais (BRNN): Esta é uma arquitetura variante
de RNNs. Enquanto RNNs unidireionais podem somente se basear em entradas previas
para realizar predicoes sobre o estado corrente, redes neurais recorrentes bidirecionais

utilizam dados futuros para melhorar a sua acuracia.

Long short-term memory (LSTM): Esta é uma arquitetura comumente usada, que
foi introduzida por Hochreiter e Juergen Schmidhuber como a solucao para acabar com
o problema do gradiente (Hochreiter; Schmidhuber, 1997). Esta architetura endereca o
problema de dependencias de long-term, isto é, se o estado previo que esta influenciando a
predicao atual nao esta situado em um passado recente, o modelo da RNN nao sera capaz

de predizer o estado atual acuradamente.

Gated recurrent units (GRUs): Esta arquitetura de RNN é similar a LSTMs. Foram
introduzidas em 2014 por Kyunghyun Cho et al(Cho et al., 2014). A GRU é como uma
LSTM com um mechanismo de gating para introduzir ou desconsiderar algumas funcoes,
mas nao possui um vetor de contexto ou um gate de saida, resultando em um numero menor
de parametros quando comparada a uma LSTM. Ela tambem trabalha para solucionar o

problema de memoria de short-term.

Conforme demonstrado em (Chung et al., 2014) as redes LSTMs (Long Short-Term
Memory) sao indicadas para a classificacao de eventos em series temporais por varias

razoes:

Habilidate de capturar as dependencias de tempos longos: LSTMs sao projetadas
para capturar dependencias de tempos longos em dados sequenciais, assim elas sao indicadas

para a classificacao de eventos onde a relacao entre dados atraves do tempo sao importantes.

Capacidade de lidar com sequencias de tempo variavel: LSTMs podem lidar com
sequencias de entrada de comprimento variavel, o que é comum em series temporais. onde

o comprimento dos eventos pode variar.

Memoria de informacoes passadas: LSTMs possuem uma celula de memoria que
pode armazenar informacoes passadas, possibilitando-as reter contextos importantes de

dados passados contidos nas series temporais.

Sao robustas a ruidos e dados incompletos: LSTMs sao robustas ao ruido e a dados
incompletos se sao comuns em series temporais, tornando-as adequadas para tratar dados

reais.

Habilidade de aprender padroes complexos: LSTMs sao capases de aprender padroes
complexos e relacionamentos dentro das series temporais, fazendo-as efetivas para capturar

a dinamica intricada de series temporais.

No geral, as LSTMs sao muito adequadas par a classificacao em series temporais
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devido a sua capacidade de capturar dependencias de long-term, tratar sequencias de
tempo variaveis, relembrar informacoes passadas e aprender padroes complexos existentes

nos dados.

Ja as CNNs (Convolution Neural Network) sao efetivas em capturar padroes em
eventos espaciais e temporais. No contexto de dados gerados a partir de acelerometros,
as CNNs podem aprender a extrair aspectos relevantes das series de dados. As camadas
convolucionais da CNN podem processar eficientemente sequencias de dados geradas por

sensores.

A combinacao CNN-LSTM pode ser beneficial para capturar tanto as dependencias
locais quanto as globais em uma serie temporal. A CNN pode ser usada para a extracao
de caracteristicas e reducao de dimensionalidade, enquanto a LSTM pode efetivamente

modelar a dinamica temporal e as dependencias de long-term dentro das sequencias.

2.3 Micro-Electromechanical Systems MEMS

Sistemas micro-eletromecanicos (MEMS) sao componentes de tamanho microscopico
que incorporam tanto eletronica quanto partes mecanicas moveis. MEMS sao feitos a partir
de componentes que tem em torno de 1 a 100 micrometros. Usualmente consistem em uma
unidate central de processamento (um circuito integrado como um microprocessador) e
varios componentes que interagem com o meio ambiente, como microsensores (Gabriel et
al., 1988).

OS MEMS comecaram a ser fabricados usando tecnologias de fabricacao de semi-
condutores, normalmente usadas em eletronica. Isso inclui tecnicas como molding, plating,
wet etching (KOH, TMAH) e dry etching (RIE and DRIE), electrical discharge machining
(EDM), e outras tecnologias capazes de fabricar pequenos componentes (?7). A figura 77?7

mostra um exemplo de MEMS utilizado no setor automotivo.

Existem 2 tipos basicos de tecnologia MEMS: capacitiva e resistiva. MEMS capa-
citivos sao compostos por placas que se movem ou elementos sensiveis, que mudam de
capacitancia. MEMS resistivos sao controlados eletrostaticamente, e podem falhar por

fadiga, pois seus componentes podem se deformar com o uso.

2.3.1 Acelerometros MEMS

Acelerometros MEMS capacitivos detectam a aceleracao explorando o movimento
de uma massa sismica. O movimento dessa estrutura mecanica, que afasta e aproxima
placas capacitivas, assim alterando a capacitancia do circuito ao qual o componente esta
conectado. A figura 5 mostra um acelerometro MEMS, suas estruturas eletromecanicas

assim como o diagrama do circuito em que é conectado.
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Figura 4 — Sensor MEMS
(Bosch, 2025)
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Figura 5 — Acelerometro MEMS
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Figura 6 — Principio fisico de funcionamento do giroscopio MEMS
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Figura 7 — Arquitetura da construcaodo do giroscopio MEMS

2.3.2 Giroscopio MEMS

Em sua configuracao mais comum, silicio é usado para fabricar um par de massas,
que sao submetidas a uma oscilacao, causada por campos eletricos. Estes campos eletricos
oscilantes fazem com que as massas oscilem constantemente em direcoes opostas, comforme
mostrado na figura 6. Quando uma velocidade angular é aplicada, o efeito de Coriolis afeta
cada massa tambem em direcoes opostas, o que resulta em uma mudanca de capacitancia
entre elas. Esta mudanca é o que principio do funcionamento do sensor. Quando as duas
massas sao submetidas apenas a aceleracao linear, elas se movem na mesma direcao, nao

ocasionando mudanca na capacitancia entre elas.

A fig mostra 7 a arquitetura da construcao de um giroscopio MEMS (Willers et al.,
2020)
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Tipo de manobra Amostras
Frenagem agressiva 12
Aceleracao agressiva 12

Curva agressiva a esquerda 11

Curva agressiva a direita 11

Troca de faixa agressiva a esquerda | 4

Troca de faixa agressiva a direita 5

Eventos nao agressivos 14

Total 69

Tabela 1 — Eventos e Amostras

3.1 Descricao dos Dados e Amostragem

O objetivo do trabalho é o de treinar uma rede neural a fim de reconhecer padroes

de manobras de um veiculo, com base em sinais de sensores coletados de um smartfone.

A base deste trabalho sera a que foi apresentada em (Ferreira et al., 2017), na qual
coleta de dados foi realizada. Os mesmos dados serao utilizados para o treinamento e teste

da rede neural.

Os dados foram coletados utilizando um Motorola XT1058 com Android versao
5.1; e um veiculo Hoda Civic 2011. Mais informacoes sobre a coleta de dados podem ser

encontradas na descricao destes

Os dados serao organizados a partir dos eventos e sensores disponiveis.

3.2 Avaliacao do experimento

Como mostrado em (Ferreira et al., 2017) os melhores resultados foram obtidos
utilizando o acelerometro e o giroscopio, portanto inicialmente somente os dados gerados

por estes 2 sensores serao utilizados.

Os dados de sensores utilizados serao os do acelerometro (Acc), acelerometro linear
(LinAcc) e o giroscopio (Gyr). Conforme mostrado na seccao anterior, o acelerometro
mede a aceleracao que foi aplicada no veiculo em metros por segundo ao quadrado (m/s2),
incluindo a forca da gravidade. O giroscopio mede a taxa de rotacao em relacao aos eixos
do veiculo em radianos por segundo (rad/s). Estes sensores fornecem uma serie temporal
em 3 dimensoes (x,y e z) com uma precisao de naosegundos, relativos ao sistema de

coordenadas do veiculo.

Os eixos dos sensores (X, y, z) tambem serao avaliados. No sistema de coordenadas
definido pela norma ISO-885-2011, os eixos do veiculo definem as direcoes de velocidade,

aceleracao e rotacao. Os eixos podem ser vistos na figura 8

Os dados estao distribuidos em grupos que includem os tres eixos, somente eixo x,
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Figura 8 — Eixos do Veiculo de acordo com a norma ISO-885-2011

somente eixo y e somente eixo z. Por exemplo, os dados do acelerometro se originam dos

data-sets com os tres eixos, acelerometro x, acelerometro y e acelerometro z.

Os dados brutos coletados sao compostos basicamente de valores de 3 eixos e um
timestamp de precisao de nanosegundos, que indica o tempo em que a amostra foi coletada.
Os dados brutos nao sao os dados de entrada para os classificadores da rede neural. Os
dados serao agrupados em conjuntos de amostras de 1 segundo, compondo frames que
depois originaral vetores de atributos. A medida que sao analisados, a janela de tempo é
atualizada sobre a serie temporal. O tamanho da janela dependera do tempo que o evento

de direcao foi realizado, como mostrado na tabela 1.

3.3 Procedimento de aquisicao de dados

Os dados foram coletados em um experimento real, onde um aplicativo executado
smartphone com o sistema operacional Android foi utilisado. Durante o experimento um
motorista executou manobras especificas. O tempos nos quais as manobras foram realisadas

tambem foram gravados.

Ao todo, 4 viagens foram realisadas, cada uma com aproximadamente 13 minutos
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de duracao. As condicoes do experimento foram: (i) o veiculo era um Honda Civic 2011;
(ii) o smartphone era um Motorla XT1058 com Android versao 5.1; (iii) o smartphone
foi fixado ao para-brisas do carro atraves de um suporte, e nao foi tocado, movimentado
ou operado durante a acquisicao dos dados; (iv) a frequencia de aquisicao dos sensores
variou entre 50 e 100Hz, dependendo do sensor; (v) dois motoristas, com mais de 15 anos

de experiencia executaram as manobras; e (vi) as condicoes climatiacas eram favoraveis,

com sol e pista asfaltada e seca.

O proposito foi o de estabelecer um conjunto de eventos que representao situacoes

reais de direcao tais como frenagem, aceleracao, curvas e trocas de faixa, conforme descrito
na tabela 1.



4 AVALIACAO EXPERIMENTAL

41



42

aceleracao agressiva
400

3,00

i
"l‘l “ |‘\I l {“l ‘ " I wf

||‘ | ||' 45 Jno 600,00

-2,00

-3,00

—_— —Y —Z

Figura 9 — Aceleracao agressiva - sensores acelerometros lineares

4.1 Analise dos dados:

Os dados estao sendo analisados conforme os eventos descritos na tabela 1.

Como mostrado na figura 8, durante as manobras de frenagem e aceleracao, os
sinais dos acelerometros lineares, principalmente do eixo x, e do giroscopio, eixo y, sao 0s

mais proeminentes nas medidas, como mostrado nas figuras 9 e 10

Durante as curvas, a direita e a esquerda, ambas realizadas de maneira agressiva,
os sinais mais proeminentes sao os dos giroscopio, como podemos verificar nas figuras 11
e 12.

Os dados foram divididos pro eventos, conforme a tabela 1, onde cada data set

possui uma duracao de 3 a 5 segundos, dependendo do tempo de cada evento.

Os dados amostrados foram disponibilizados em 4 data sets, onde varios eventos
foram reunidos. Estes dados foram filtrados de acordo com as informacoes disponiveis para

cada evento, conforme mostrado em tabelas como a tabela

4.2 Treinamento da rede neural

Os dados estao sendo trabalhados, e visualizados através da biblioteca NumPy e
Matplotlib.
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Figura 10 — Frenagem agressiva - sensores acelerometros lineares

Curva direita agressiva - giroscopio
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Figura 11 — Curva direita agressiva - sensores acelerometros
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Curva esquerda agressiva giroscopio

—_ ¥ —2

Figura 12 — Curva esquerda agressiva - sensores acelerometros

Evento Inicio[s] | Fim]s]
evento_nao_ agressivo 2,00 6,50
curva_ direita_ agressiva 19,50 23,50
evento_nao_ agressivo 30,00 33,50
curva_ direita_agressiva 95,00 98,00
curva_ esquerda_ agressiva 247,00 | 251,50
curva__esquerda_ agressiva 348,70 | 352,30
evento_nao_ agressivo 485,00 | 489,00
curva_ esquerda_ agressiva 496,00 | 499,50
curva_ direita_agressiva 587,00 | 590,00
curva_ esquerda_ agressiva 750,00 | 753,80
curva_ direita_ agressiva 840,70 | 844,00
curva_ direita_ agressiva 980,00 | 983,20
curva__esquerda_ agressiva 1087,40 | 1090,90
troca_ faixa_ direita_agressiva | 1139,80 | 1142,00
troca_ faixa_direita_agressiva | 1201,00 | 1202,90
troca_ faixa_ direita_ agressiva | 1211,40 | 1213,50

Tabela 2 — Eventos - Inicio e Fim.

700,00
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Os dados deverao ser lidos, e como diferentes escalas nao sao ideais para redes
neurais, mas primeiro deverao ser normalizados, pois cada sensor tem um sinal e diferente

(baseando somente em acelerometros e giroscopio).

Apbs a preparacao dos dados, o modelo de rede neural estda sendo construido, e
devera ser treinado com 80 porcento dos dados disponiveis, e testado com os 20 porcento

restantes.
Os resultados e avaliagoes serao através dos testes de acuracia e perda (loss).

As atividades estdo em andamento e serao apresentadas na conclusao e apresentagao
deste trabalho.
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4.3 Tratamento dos dados

Durante a implementacao, foi constatado que a quantidade de amostras para cada

evento era insuficiente para que um aprendizado da rede fosse bem-sucedido.

O numero total de eventos disponiveis consta em 65, sendo estes distribuidos
conforme indicado na tabela 1. Foi decidido que todos os eventos agressivos seriam
agrupados em uma unica classe, treinando assim a rede neural a identificar um evento

agressivo, sem que este seja especificado em um tipo especifico de manobra.

Conforme mostrado na figura 13, os dados originais utilizados se encontravam
desbalanceados, pois o tempo de amostragem de direcao onde nenhum evento acontece

superava em muito o tempo de amostragem dos eventos agressivos.

Para o balanceamento dos dados, um data frame contendo eventos repetidos foi
construido para que o numero tempo de amostragem de eventos agressivos fosse equiparavel

ao tempo de eventos nao agressivos ou apenas um estado de dire¢ao normal.

O resultado dos dados balanceados e mostrado na figura 14

140000
120000
100000

80000

count

60000

40000

20000

Event

Figura 13 — Desbalanceamento de dados na classificacao de enventos: 1=FEventos agressivos,
0=Eventos nao agressivos
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Figura 14 — Dados balanceados apos tratamento: 1=Eventos agressivos, 0=Eventos nao
agressivos

4.4 Implementacao das redes neurais
4.4.1 Rede Neural LSTM

O primeiro teste foi feito com uma rede neural LSTM.

O codigo de implementagao dessa rede:

model LSTM = keras.Sequential ()
model LSTM. add (
keras.layers. Bidirectional (
keras.layers .LSTM(
units =128,
input_ shape=[X_train.shape[1], X_train.shape[2]]

)

)
model LSTM.add (keras.layers.Dropout(rate=0.5))

model LSTM.add (keras.layers.Dense(units=128, activation="relu’))
model LSTM.add (keras.layers.Dense(y_train.shape[l], activation="softm

model LSTM. compile(loss="binary_crossentropy’, optimizer="adam’, met

# Modell bersicht anzeigen
model LSTM . summary ()
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Layer (type) Output Shape | Param
bidirectional (Bidirectional) | (None, 256) 135,168
dropout (Dropout) (None, 256) 0
dense (Dense) (None, 128) 32,896
dense_ 1 (Dense) (None, 2) 258

Tabela 3 — Sumario do Modelo da Rede Neural LSTM

A tabela 3 mostra o sumario da rede implementada apos o treinamento.

4.4.1.1 Resultados Rede Neural LSTM

A figura 15 mostra os resultados de treinamento e perda da rede neural.

— loss train
acc test

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2
0.0 25 5.0 75 10.0 125 15.0 17.5

Figura 15 — Valores de perda e accertividade durante o treinamento da rede neral LSTM
feito em 20 epocas e com batchize = 64

A figura 16 mostra o resultado da matriz de confusao obtida através da LSTM.
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Figura 16 — Matriz de confusao resultante da LSTM

4.4.2 Rede Neural CNN-LSTM

O segundo teste foi feito com uma rede neural CNN-LSTM.

O cédigo de implementacao dessa rede:

import tensorflow as tf
from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import ConvlD, MaxPoolinglD, Flatten , LSTM,
from tensorflow.keras.optimizers import Adam

# Daten erstellen

time units = 200
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num features = 3

# Modell initialisieren

model CNN_LSTM = Sequential ()

# FErste CNN-Ebene
model CNN_LSTM.add(ConvlD (32, 3, activation="relu’, input_shape=(time_ units,
model CNN_LSTM. add (MaxPooling1D (2))

# Zweite CNN-FEbene
model CNN_LSTM. add (ConvlD (64, 3, activation="relu’))
model CNN_LSTM. add (MaxPooling1D (2))

# LSTM—Fbene
model CNN_LSTM. add (LSTM (200, activation="relu’))

# Ausgabeebene
model CNN_LSTM.add(Dense (2, activation="sigmoid’))

# Modell kompilieren
# Optimizer mit reduzierter Lernrate und Gradient Clipping
optimizer = Adam(learning_ rate=0.00005, clipnorm=1.0) #0.00001

model CNN_LSTM. compile(optimizer=optimizer , loss="binary_ crossentropy’, metr

# Modell bersicht anzeigen
model CNN_LSTM. summary ()

4.4.2.1 Resultados Rede Neural CNN-LSTM

A figura 17 mostra os resultados de treinamento e perda da rede neural.
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Figura 17 — Valores de perda e accertividade durante o treinamento da rede neral CNN-

LSTM feito em 20 épocas e com batch,ize = 16

A figura 18 mostra o resultado da matriz de confusao obtida atraves da CNN-LSTM.
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Figura 18 — Matriz de confusao resultante da CNN-LSTM
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O tratamento dado aos dados demonstrou ter sumaria importancia no desempenho
da rede. Experimentos anteriores (nao escritos neste documento) demonstravam que a
rede era incapaz de classificar dados desbalanceados. A classificacdo dos eventos também
deve ser revista, uma vez que a base de tempo descrita no data set esta sujeita a pequenos

erros, o que influencia no resultado de aprendizagem e desempenho das redes.

Como esperado, a rede CNN-LSTM mostrou um melhor desempenho quando
comparada a rede LSTM. A construcao e o ajuste dos pardmetros das redes nao sao
tarefas triviais. Os resultados podem e devem ser melhorados futuramente com um melhor
refinamento da construcao e ajuste dos parametros. Para isso, mais experimentos com

diferentes combinagoes de parametros devem ser efetuados.

Ferramentas como o Copilot foram utilizadas no desenvolvimento deste trabalho,

como parte do aprendizado sobre o tema.
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Como somente os dados dos acelerdmetros foram considerados, os dados do giros-

copio também poderao trazer resultados melhores na identificagao dos eventos.

Com a combinacao do sinal dos acelerdmetros mais giroscopio, uma tentativa de

qualificar os eventos conforme descritos pela tabela 1 podera ser feito.

A execucao do algoritmo em um aplicativo de celular ou em um sistema embarcado
que possui sensores semelhantes também é uma tarefa interessante que podera trazer

resultados promissores.
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