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RESUMO

Linardi Rossi, D. Redes Neurais Artificiais Empregadas no Reconhecimento e
Classificaçao de eventos em series temporais. 2024. 57 p. Monografia (MBA em
Inteligência Artificial e Big Data) - Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos, 2024.

O presente trabalho tem como objetivo o estudo dos sinais gerados por sensores MEMs
(Micro-Electro-Mechanical Systems), utilizar os sinais gerados e aquisitados por estes
sensores atraves de um smartphone que foi colocado dentro de um veiculo que efetuou
manobras especificas, e atraves da inteligencia artifical criar uma rede neural para classificar
os tipos de eventos ou manobras que foram aquisitados.

Palavras-chave: MEMs. Inteligencia Artifical. Series Temporais. Redes Neurais. CNN.
LSTM. Tese.





ABSTRACT

Linardi Rossi, D. Event Recognition in Time Series using Artificial Neural
Networks. 2024. 57 p. Monograph (MBA in Artificial Intelligence and Big
Data) - Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos, 2024.

This work aims to analyze the MEMs (Micro-Electro-Mechanical Systems), sensors and
its signals, use the MEMs generated signals during specific vehicle maneuvers that were
recorded by a Smartphone that was set into the vehicle, and use artificial intelligence and
neural networks to classify the event types and maneuvers that were recorded.

Keywords: MEMs, Artifical Inteligence, Temporal Series, CNN, LSTM, Thesis.
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1 INTRODUÇÃO
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Devido ao desenvolvimento de novos softwares e hardwares cada vez mais potentes e
sistemas cada vez mais conectados, várias possibilidades são encontradas para a utilizando
os sinais de sensores presentes nos smartfones (acelerômetros, giroscópios, GPS, etc.).

1.0.1 Justificativa e importância:

Um exemplo é a utilização de redes neurais para classificar situações de direção de
automóveis baseadas em sinais de sensores de aceleração aquisitados de um smartfone.

Identificada uma situação específica de direção (frenagem, aceleração, curvas, etc.)
será possível conectar outros tipos de sensores e ou equipamentos, bem como o próprio
smartfone, que poderão utilizar estas informações para criar novas aplicações uteis ao
usuário.

Exemplo podem ser, alarmes em caso de acidentes, one o smartfone pode, de
maneira autonoma, efetuar uma chamada ao hospital ou ao departamento de polícia,

1.0.2 Objetivos:

O objetivo principal é criar uma rede neural, a ser executada por um aplicativo
rodando em um smartfone, que seja capaz, através da utilização dos sinais dos sensores de
aceleração e giroscópios, identificar situações de direção de um veículo.

Parado, acelerando, freando, curvas a esquerda/direita,

1.0.2.1 Objetivos Específicos:

1. Estudar os sinais dso sensores MEMs aquisitados pelo smartfone: acelerômetros,
giroscópio e campo magnético.

2. Associar estes sinais a situações especificas de direção.

3. Estudar redes neurais artificiais e como uma rede neural artificial pode ser treinada
para reconhecer um evento específico.

4. Estudar como esta rede neural pode depois ser implementada em um aplicativo
de celular ou em um equipamento embarcado onde os recursos computacionais são
escassos e limitados quando comparados a um computador pessoal cluster no qual a
rede neural foi primeiramente implementada.

5. Estudo e aprendizado: o estudo das tecnologias de aprendizado de maquinas, redes
neurais, aprendizado profundo, tratamento de dados. A metodologia é analisar e estu-
dar os dados disponíveis e aplicar inteligência computacional e realizar a classificação
de situações de frenagem e aceleração bruscas. Os diferentes tipos de aprendizado: su-
pervisionado, não supervisionado e por reforço, devem ser compreendidos e utilizados
caso necessários.
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6. Implementação do algoritmo: Serão estudados alguns algoritmos que sejam capazes de
realizar os trabalhos de predição e seleção necessários. Dentre esses serão considerados
inicialmente: Regressão Linear, Regressão Polinomial, K-means, Árvores de Decisão
[2]. Com esse estudo será possível determinar qual ou quais algoritmos são melhores
para a resolução desse problema.

7. Avaliação qualitativa e quantitativa: Para avaliarmos quantitativamente o resultado
desse trabalho vamos utilizar métricas estatísticas já conhecidas como: Acurácia, F1
Score e Precisão.

8. Testes e Ajustes: Após a identificação dos possíveis ajustes, é importante que tais
ajustes sejam de fato implementados e uma nova avaliação seja feita em um cenário
real, sendo assim após os ajustes necessários para que consigamos uma melhor
qualidade nos indicadores de avaliação,

9. Implementação do sistema: O algoritmo será implementado em um computador
pessoal poderá futuramente ser executado em um aplicativo em um smartfone.

1.0.3 Resultados e Impactos Esperados:

É esperado que o algoritmo consiga reconhecer/classificar as diferentes situações
de direção do veículo, e com isso outros dispositivos/algoritmos possam utilizar esta
informação.
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2 FUNDAMENTAÇÃO TEÓRICA
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2.1 Series temporais

Em matematica, uma seria temporal é um conjunto de numeros indexados (ou
representados em um grafico) em ordem de tempo. Mais comumente, uma sequencia de
tempo discreto é uma serie temporal constituida de dados acquisitados em um intervalo
constante de tempo. Exemplos de series temporais sao dados de temperatura, pressao e
aceleracao coletados de um sistema.

Uma serie temporal é frequentemente plotada em um grafico cujo eixo x representa
uma definida unidade de tempo. As series temporais sao usadas em estatística, processa-
mento digital de sinais, reconhecimento de padroes, matematica financeira, engenharia de
controle, comunicacoes, etc.

A figura 1 mostra dados acquisitados de sensores de um smartphone colocado
dentro de um veiculo. O veiculo realisa uma manobra na qual muda para uma a esquerda
de maneira agressiva (Ferreira et al., 2017).

2.2 Redes Neurais - Fundamentos

2.2.1 Perceptron

A forma mais basica de uma rede neural é o perceptron, mostrado na figura 2,
que é a representacao artificial de um neuronio que possui tres componentes importantes:
os dendritos, o corpo celular e o axônio. Este modelo foi proposto em 1958 por Frank
Rosenblatt (Rosenblatt, 1958) , um psicólogo que desenvolveu o algoritmo para ajustar os
pesos da rede e provou sua convergência.

É importante ressaltar a existencia de um peso (bias), que serve para aumentar os
graus de liberdade, permitindo assim uma melhor adaptacao da funcao neuronal.

O perceptron é um classificador binario, que é capaz de possuir varias variaveis de
entrada, ou seja, um vetor de entrada. Este neuronio artificial pode aprender atraves de
diferentes valores de entrada (vetores de entrada), gerando apenas uma resposta binaria
de classificacao.

O aprendizado é o processo pelo qual os parâmetros livres de uma rede neural são
adaptados por meio de um processo de estímulo pelo ambiente. O tipo de aprendizado é
definido pela maneira com que acontecem as mudanças nos parâmetros.

Toda a vez que ele é treinado, os pesos podem variar a gerar o mesmo resultado na
saida. Isto nos leva a termos um problema com varias solucoes. Os componentes basicos do
perceptron sao: entradas, pesos, funcao de ativacao e saida, onde os pesos sao os principais
componentes. Vale salientar que o perceptron só funciona para problemas linearmente
separáveis.
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Figura 1 – Dados de sensores: acelerometros, giroscopio e magnetrometro plotados no
tempo (Ferreira et al., 2017).

2.2.2 Multi-Layer Perceptron Networks

Multi-Layer Perceptrons (MLP) sao caracterizadas pela presenca de pelo menos uma
camada intermediaria, como mostrado na figura 3. Uma rede neural para ser considerada
multi-layer, deve ter, no minimo, duas camadas. O algoritmo de aprendizado de uma MPL
é chamado de algoritmo Back-Propagation.

MPLs superam as limitações práticas do Perceptron. O modelo de cada neurônio
inclui uma função de ativação não linear e diferenciável e contém uma ou mais camadas
escondidas/ocultas entre a camada de entrada e a camada de saída. MPLs possuem alto
grau de conectividade
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Figura 2 – Perceptron

Figura 3 – Multilayer Perceptron (MLP)
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2.2.3 Back-propagation

Para compreender o algoritmo de Back-propagation é necessario compreender as
sucessivas fases que o compoem, que sao Forward phase e Backward phase.

Durante a Forward phase os pesos sao fixos e o sinal é propagado através da rede,
camada por camada, até a saída. Mudanças só ocorrem nos potenciais de ativação e nas
saídas dos neurônios da rede.

Ja o aprendizado é feito na Backward phase. O sinal de erro produzido comparando
a saída desejada com a obtida. O erro é retropropagado através da rede, camada por
camada, ajustando assim os pesos sinápticos da rede.

Na Backward phase, um calculo matematico é realizado para ajustar os pesos,
podendo ser atraves de derivadas parciais, erro dos minimos quadrados ou entropia cruzada.

2.2.4 Deep Learning - Aprendizado profundo

Deep learning, ou aprendizado profundo, é o subconjunto de metodos de aprendizado
de maquina baseado em redes neurais artificiais. O adjetivo "profundo"se deve ao fato
do uso de multiplas camadas na rede. Os metodos usados podem ser supervisionados,
semi-supervisionados e nao supervisionados (LeCun; Bengio; Hinton, 2015).

Architeturas de redes de aprendizado profundo, redes neurais recorrentes, redes
neurais convolucionais e transformers, tem sido aplicadas em varios campos, como visao
computacional, reconhecimento de fala, processamento de linguagem natural, traducao
automatica, etc., onde os resultados obtidos sao comparaveis ou superiores, em alguns
casos, aos resultados obtidos por humanos.

2.2.5 Redes Neurais Recorrentes

Uma Rede Neural Recorrente (RNNs) é um tipo de rede neural artificial que utiliza
dados sequenciais ou series de dados temporais. Estes algoritmos de sao comumente usados,
por exemplo, no processamento de video e processamento de linguatem. Assim como como
redes feedforward e redes convolucionais, as redes neurais recorrented utilizam dados de
treinamento para aprenderem. Elas sao distinguidas por sua "memoria"assim que utilizam
informacoes de dados de entrada anteriores para influenciar a entrada e a saida atuais.

Enquanto redes neurais profundas tradicionais assumem que entradas e saidas sao
independentes entre si, a saida de uma rede neural recorrente depende dos elementos
passados da sequencia de dados que serve de entrada para essa rede (IBM, 2024), (Cala,
2019).
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2.2.5.1 Arquitetura de Redes Neurais Recorrentes

Redes neurais recorrentes bi-direcionais (BRNN): Esta é uma arquitetura variante
de RNNs. Enquanto RNNs unidireionais podem somente se basear em entradas previas
para realizar predicoes sobre o estado corrente, redes neurais recorrentes bidirecionais
utilizam dados futuros para melhorar a sua acuracia.

Long short-term memory (LSTM): Esta é uma arquitetura comumente usada, que
foi introduzida por Hochreiter e Juergen Schmidhuber como a solucao para acabar com
o problema do gradiente (Hochreiter; Schmidhuber, 1997). Esta architetura endereca o
problema de dependencias de long-term, isto é, se o estado previo que esta influenciando a
predicao atual nao esta situado em um passado recente, o modelo da RNN nao sera capaz
de predizer o estado atual acuradamente.

Gated recurrent units (GRUs): Esta arquitetura de RNN é similar a LSTMs. Foram
introduzidas em 2014 por Kyunghyun Cho et al(Cho et al., 2014). A GRU é como uma
LSTM com um mechanismo de gating para introduzir ou desconsiderar algumas funcoes,
mas nao possui um vetor de contexto ou um gate de saida, resultando em um numero menor
de parametros quando comparada a uma LSTM. Ela tambem trabalha para solucionar o
problema de memoria de short-term.

Conforme demonstrado em (Chung et al., 2014) as redes LSTMs (Long Short-Term
Memory) sao indicadas para a classificacao de eventos em series temporais por varias
razoes:

Habilidate de capturar as dependencias de tempos longos: LSTMs sao projetadas
para capturar dependencias de tempos longos em dados sequenciais, assim elas sao indicadas
para a classificacao de eventos onde a relacao entre dados atraves do tempo sao importantes.

Capacidade de lidar com sequencias de tempo variavel: LSTMs podem lidar com
sequencias de entrada de comprimento variavel, o que é comum em series temporais. onde
o comprimento dos eventos pode variar.

Memoria de informacoes passadas: LSTMs possuem uma celula de memoria que
pode armazenar informacoes passadas, possibilitando-as reter contextos importantes de
dados passados contidos nas series temporais.

Sao robustas a ruidos e dados incompletos: LSTMs sao robustas ao ruido e a dados
incompletos se sao comuns em series temporais, tornando-as adequadas para tratar dados
reais.

Habilidade de aprender padroes complexos: LSTMs sao capases de aprender padroes
complexos e relacionamentos dentro das series temporais, fazendo-as efetivas para capturar
a dinamica intricada de series temporais.

No geral, as LSTMs sao muito adequadas par a classificacao em series temporais
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devido a sua capacidade de capturar dependencias de long-term, tratar sequencias de
tempo variaveis, relembrar informacoes passadas e aprender padroes complexos existentes
nos dados.

Ja as CNNs (Convolution Neural Network) sao efetivas em capturar padroes em
eventos espaciais e temporais. No contexto de dados gerados a partir de acelerometros,
as CNNs podem aprender a extrair aspectos relevantes das series de dados. As camadas
convolucionais da CNN podem processar eficientemente sequencias de dados geradas por
sensores.

A combinacao CNN-LSTM pode ser beneficial para capturar tanto as dependencias
locais quanto as globais em uma serie temporal. A CNN pode ser usada para a extracao
de caracteristicas e reducao de dimensionalidade, enquanto a LSTM pode efetivamente
modelar a dinamica temporal e as dependencias de long-term dentro das sequencias.

2.3 Micro-Electromechanical Systems MEMS

Sistemas micro-eletromecanicos (MEMS) sao componentes de tamanho microscopico
que incorporam tanto eletronica quanto partes mecanicas moveis. MEMS sao feitos a partir
de componentes que tem em torno de 1 a 100 micrometros. Usualmente consistem em uma
unidate central de processamento (um circuito integrado como um microprocessador) e
varios componentes que interagem com o meio ambiente, como microsensores (Gabriel et
al., 1988).

OS MEMS comecaram a ser fabricados usando tecnologias de fabricacao de semi-
condutores, normalmente usadas em eletronica. Isso inclui tecnicas como molding, plating,
wet etching (KOH, TMAH) e dry etching (RIE and DRIE), electrical discharge machining
(EDM), e outras tecnologias capazes de fabricar pequenos componentes (??). A figura ??
mostra um exemplo de MEMS utilizado no setor automotivo.

Existem 2 tipos basicos de tecnologia MEMS: capacitiva e resistiva. MEMS capa-
citivos sao compostos por placas que se movem ou elementos sensiveis, que mudam de
capacitancia. MEMS resistivos sao controlados eletrostaticamente, e podem falhar por
fadiga, pois seus componentes podem se deformar com o uso.

2.3.1 Acelerometros MEMS

Acelerometros MEMS capacitivos detectam a aceleracao explorando o movimento
de uma massa sismica. O movimento dessa estrutura mecanica, que afasta e aproxima
placas capacitivas, assim alterando a capacitancia do circuito ao qual o componente esta
conectado. A figura 5 mostra um acelerometro MEMS, suas estruturas eletromecanicas
assim como o diagrama do circuito em que é conectado.
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Figura 4 – Sensor MEMS

(Bosch, 2025)

Figura 5 – Acelerometro MEMS
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Figura 6 – Principio fisico de funcionamento do giroscopio MEMS

Figura 7 – Arquitetura da construcaodo do giroscopio MEMS

2.3.2 Giroscopio MEMS

Em sua configuracao mais comum, silício é usado para fabricar um par de massas,
que sao submetidas a uma oscilacao, causada por campos eletricos. Estes campos eletricos
oscilantes fazem com que as massas oscilem constantemente em direcoes opostas, comforme
mostrado na figura 6. Quando uma velocidade angular é aplicada, o efeito de Coriolis afeta
cada massa tambem em direcoes opostas, o que resulta em uma mudanca de capacitancia
entre elas. Esta mudanca é o que principio do funcionamento do sensor. Quando as duas
massas sao submetidas apenas a aceleracao linear, elas se movem na mesma direcao, nao
ocasionando mudanca na capacitancia entre elas.

A fig mostra 7 a arquitetura da construcao de um giroscopio MEMS (Willers et al.,
2020)
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3 METODOLOGIA
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Tipo de manobra Amostras
Frenagem agressiva 12
Aceleracao agressiva 12
Curva agressiva a esquerda 11
Curva agressiva a direita 11
Troca de faixa agressiva a esquerda 4
Troca de faixa agressiva a direita 5
Eventos nao agressivos 14
Total 69

Tabela 1 – Eventos e Amostras

3.1 Descricao dos Dados e Amostragem

O objetivo do trabalho é o de treinar uma rede neural a fim de reconhecer padroes
de manobras de um veiculo, com base em sinais de sensores coletados de um smartfone.

A base deste trabalho sera a que foi apresentada em (Ferreira et al., 2017), na qual
coleta de dados foi realizada. Os mesmos dados serao utilizados para o treinamento e teste
da rede neural.

Os dados foram coletados utilizando um Motorola XT1058 com Android versao
5.1; e um veiculo Hoda Civic 2011. Mais informacoes sobre a coleta de dados podem ser
encontradas na descricao destes

Os dados serao organizados a partir dos eventos e sensores disponiveis.

3.2 Avaliacao do experimento

Como mostrado em (Ferreira et al., 2017) os melhores resultados foram obtidos
utilizando o acelerometro e o giroscopio, portanto inicialmente somente os dados gerados
por estes 2 sensores serao utilizados.

Os dados de sensores utilizados serao os do acelerometro (Acc), acelerometro linear
(LinAcc) e o giroscopio (Gyr). Conforme mostrado na seccao anterior, o acelerometro
mede a aceleracao que foi aplicada no veiculo em metros por segundo ao quadrado (m/s2),
incluindo a forca da gravidade. O giroscopio mede a taxa de rotacao em relacao aos eixos
do veiculo em radianos por segundo (rad/s). Estes sensores fornecem uma serie temporal
em 3 dimensoes (x,y e z) com uma precisao de naosegundos, relativos ao sistema de
coordenadas do veiculo.

Os eixos dos sensores (x, y, z) tambem serao avaliados. No sistema de coordenadas
definido pela norma ISO-885-2011, os eixos do veiculo definem as direcoes de velocidade,
aceleracao e rotacao. Os eixos podem ser vistos na figura 8

Os dados estao distribuidos em grupos que includem os tres eixos, somente eixo x,
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Figura 8 – Eixos do Veiculo de acordo com a norma ISO-885-2011

somente eixo y e somente eixo z. Por exemplo, os dados do acelerometro se originam dos
data-sets com os tres eixos, acelerometro x, acelerometro y e acelerometro z.

Os dados brutos coletados sao compostos basicamente de valores de 3 eixos e um
timestamp de precisao de nanosegundos, que indica o tempo em que a amostra foi coletada.
Os dados brutos nao sao os dados de entrada para os classificadores da rede neural. Os
dados serao agrupados em conjuntos de amostras de 1 segundo, compondo frames que
depois originaral vetores de atributos. A medida que sao analisados, a janela de tempo é
atualizada sobre a serie temporal. O tamanho da janela dependera do tempo que o evento
de direcao foi realizado, como mostrado na tabela 1.

3.3 Procedimento de aquisicao de dados

Os dados foram coletados em um experimento real, onde um aplicativo executado
smartphone com o sistema operacional Android foi utilisado. Durante o experimento um
motorista executou manobras especificas. O tempos nos quais as manobras foram realisadas
tambem foram gravados.

Ao todo, 4 viagens foram realisadas, cada uma com aproximadamente 13 minutos
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de duracao. As condicoes do experimento foram: (i) o veiculo era um Honda Civic 2011;
(ii) o smartphone era um Motorla XT1058 com Android versao 5.1; (iii) o smartphone
foi fixado ao para-brisas do carro atraves de um suporte, e nao foi tocado, movimentado
ou operado durante a acquisicao dos dados; (iv) a frequencia de aquisicao dos sensores
variou entre 50 e 100Hz, dependendo do sensor; (v) dois motoristas, com mais de 15 anos
de experiencia executaram as manobras; e (vi) as condicoes climatiacas eram favoraveis,
com sol e pista asfaltada e seca.

O proposito foi o de estabelecer um conjunto de eventos que representao situacoes
reais de direcao tais como frenagem, aceleracao, curvas e trocas de faixa, conforme descrito
na tabela 1.
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4 AVALIAÇÃO EXPERIMENTAL
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Figura 9 – Aceleracao agressiva - sensores acelerometros lineares

4.1 Análise dos dados:

Os dados estao sendo analisados conforme os eventos descritos na tabela 1.

Como mostrado na figura 8, durante as manobras de frenagem e aceleracao, os
sinais dos acelerometros lineares, principalmente do eixo x, e do giroscopio, eixo y, sao os
mais proeminentes nas medidas, como mostrado nas figuras 9 e 10

Durante as curvas, a direita e a esquerda, ambas realizadas de maneira agressiva,
os sinais mais proeminentes sao os dos giroscopio, como podemos verificar nas figuras 11
e 12.

Os dados foram divididos pro eventos, conforme a tabela 1, onde cada data set
possui uma duracao de 3 a 5 segundos, dependendo do tempo de cada evento.

Os dados amostrados foram disponibilizados em 4 data sets, onde varios eventos
foram reunidos. Estes dados foram filtrados de acordo com as informacoes disponiveis para
cada evento, conforme mostrado em tabelas como a tabela

4.2 Treinamento da rede neural

Os dados estão sendo trabalhados, e visualizados através da biblioteca NumPy e
Matplotlib.
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Figura 10 – Frenagem agressiva - sensores acelerometros lineares

Figura 11 – Curva direita agressiva - sensores acelerometros
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Figura 12 – Curva esquerda agressiva - sensores acelerometros

Evento Inicio[s] Fim[s]
evento_nao_agressivo 2,00 6,50
curva_direita_agressiva 19,50 23,50
evento_nao_agressivo 30,00 33,50
curva_direita_agressiva 95,00 98,00
curva_esquerda_agressiva 247,00 251,50
curva_esquerda_agressiva 348,70 352,30
evento_nao_agressivo 485,00 489,00
curva_esquerda_agressiva 496,00 499,50
curva_direita_agressiva 587,00 590,00
curva_esquerda_agressiva 750,00 753,80
curva_direita_agressiva 840,70 844,00
curva_direita_agressiva 980,00 983,20
curva_esquerda_agressiva 1087,40 1090,90
troca_faixa_direita_agressiva 1139,80 1142,00
troca_faixa_direita_agressiva 1201,00 1202,90
troca_faixa_direita_agressiva 1211,40 1213,50

Tabela 2 – Eventos - Inicio e Fim.
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Os dados deverão ser lidos, e como diferentes escalas não são ideais para redes
neurais, mas primeiro deverão ser normalizados, pois cada sensor tem um sinal e diferente
(baseando somente em acelerômetros e giroscópio).

Após a preparação dos dados, o modelo de rede neural está sendo construído, e
devera ser treinado com 80 porcento dos dados disponíveis, e testado com os 20 porcento
restantes.

Os resultados e avaliações serão através dos testes de acurácia e perda (loss).

As atividades estão em andamento e serão apresentadas na conclusão e apresentação
deste trabalho.
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4.3 Tratamento dos dados

Durante a implementação, foi constatado que a quantidade de amostras para cada
evento era insuficiente para que um aprendizado da rede fosse bem-sucedido.

O número total de eventos disponíveis consta em 65, sendo estes distribuídos
conforme indicado na tabela 1. Foi decidido que todos os eventos agressivos seriam
agrupados em uma única classe, treinando assim a rede neural a identificar um evento
agressivo, sem que este seja especificado em um tipo específico de manobra.

Conforme mostrado na figura 13, os dados originais utilizados se encontravam
desbalanceados, pois o tempo de amostragem de direção onde nenhum evento acontece
superava em muito o tempo de amostragem dos eventos agressivos.

Para o balanceamento dos dados, um data frame contendo eventos repetidos foi
construído para que o número tempo de amostragem de eventos agressivos fosse equiparável
ao tempo de eventos não agressivos ou apenas um estado de direção normal.

O resultado dos dados balanceados e mostrado na figura 14

Figura 13 – Desbalanceamento de dados na classificacao de enventos: 1=Eventos agressivos,
0=Eventos nao agressivos
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Figura 14 – Dados balanceados apos tratamento: 1=Eventos agressivos, 0=Eventos nao
agressivos

4.4 Implementacao das redes neurais

4.4.1 Rede Neural LSTM

O primeiro teste foi feito com uma rede neural LSTM.

O código de implementação dessa rede:

model_LSTM = keras . Sequent i a l ( )
model_LSTM . add (

keras . l a y e r s . B i d i r e c t i o n a l (
keras . l a y e r s .LSTM(
un i t s =128 ,
input_shape=[X_train . shape [ 1 ] , X_train . shape [ 2 ] ]
)

)
)
model_LSTM . add ( keras . l a y e r s . Dropout ( ra t e =0.5))
model_LSTM . add ( keras . l a y e r s . Dense ( un i t s =128 , a c t i v a t i o n=’ r e l u ’ ) )
model_LSTM . add ( keras . l a y e r s . Dense ( y_train . shape [ 1 ] , a c t i v a t i o n=’ softmax ’ ) )
model_LSTM . compile ( l o s s=’ b inary_crossentropy ’ , opt imize r=’adam ’ , met r i c s =[ ’ acc ’ ] )

# M o d e l l b e r s i c h t anze igen
model_LSTM . summary ( )
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Layer (type) Output Shape Param
bidirectional (Bidirectional) (None, 256) 135,168
dropout (Dropout) (None, 256) 0
dense (Dense) (None, 128) 32,896
dense_1 (Dense) (None, 2) 258

Tabela 3 – Sumario do Modelo da Rede Neural LSTM

A tabela 3 mostra o sumario da rede implementada apos o treinamento.

4.4.1.1 Resultados Rede Neural LSTM

A figura 15 mostra os resultados de treinamento e perda da rede neural.

Figura 15 – Valores de perda e accertividade durante o treinamento da rede neral LSTM
feito em 20 epocas e com batchsize = 64

A figura 16 mostra o resultado da matriz de confusão obtida através da LSTM.



49

Figura 16 – Matriz de confusão resultante da LSTM

4.4.2 Rede Neural CNN-LSTM

O segundo teste foi feito com uma rede neural CNN-LSTM.

O código de implementação dessa rede:

import t en so r f l ow as t f
from t en so r f l ow . keras . models import Sequent i a l
from t en so r f l ow . keras . l a y e r s import Conv1D , MaxPooling1D , Flatten , LSTM, Dense , TimeDistr ibuted
from t en so r f l ow . keras . op t im i z e r s import Adam

# Daten e r s t e l l e n
t ime_units = 200
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num_features = 3

# Model l i n i t i a l i s i e r e n
model_CNN_LSTM = Sequent i a l ( )

# Erste CNN−Ebene
model_CNN_LSTM. add (Conv1D(32 , 3 , a c t i v a t i o n=’ r e l u ’ , input_shape=(time_units , num_features ) ) )
model_CNN_LSTM. add ( MaxPooling1D ( 2 ) )

# Zweite CNN−Ebene
model_CNN_LSTM. add (Conv1D(64 , 3 , a c t i v a t i o n=’ r e l u ’ ) )
model_CNN_LSTM. add ( MaxPooling1D ( 2 ) )

# LSTM−Ebene
model_CNN_LSTM. add (LSTM(200 , a c t i v a t i o n=’ r e l u ’ ) )

# Ausgabeebene
model_CNN_LSTM. add ( Dense (2 , a c t i v a t i o n=’ s igmoid ’ ) )

# Model l kompi l i e ren
# Optimizer mit r e d u z i e r t e r Lernrate und Gradient C l ipp ing
opt imize r = Adam( l ea rn ing_rate =0.00005 , c l ipnorm =1.0) #0.00001
model_CNN_LSTM. compile ( opt imize r=opt imizer , l o s s=’ b inary_crossentropy ’ , met r i c s =[ ’ accuracy ’ ] )

# M o d e l l b e r s i c h t anze igen
model_CNN_LSTM. summary ( )

4.4.2.1 Resultados Rede Neural CNN-LSTM

A figura 17 mostra os resultados de treinamento e perda da rede neural.
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Figura 17 – Valores de perda e accertividade durante o treinamento da rede neral CNN-
LSTM feito em 20 épocas e com batchsize = 16

A figura 18 mostra o resultado da matriz de confusão obtida atraves da CNN-LSTM.
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Figura 18 – Matriz de confusão resultante da CNN-LSTM
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5 CONCLUSÕES
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O tratamento dado aos dados demonstrou ter sumaria importância no desempenho
da rede. Experimentos anteriores (não escritos neste documento) demonstravam que a
rede era incapaz de classificar dados desbalanceados. A classificação dos eventos também
deve ser revista, uma vez que a base de tempo descrita no data set esta sujeita a pequenos
erros, o que influencia no resultado de aprendizagem e desempenho das redes.

Como esperado, a rede CNN-LSTM mostrou um melhor desempenho quando
comparada a rede LSTM. A construção e o ajuste dos parâmetros das redes não são
tarefas triviais. Os resultados podem e devem ser melhorados futuramente com um melhor
refinamento da construção e ajuste dos parâmetros. Para isso, mais experimentos com
diferentes combinações de parâmetros devem ser efetuados.

Ferramentas como o Copilot foram utilizadas no desenvolvimento deste trabalho,
como parte do aprendizado sobre o tema.
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Como somente os dados dos acelerômetros foram considerados, os dados do giros-
cópio também poderão trazer resultados melhores na identificação dos eventos.

Com a combinação do sinal dos acelerômetros mais giroscópio, uma tentativa de
qualificar os eventos conforme descritos pela tabela 1 poderá ser feito.

A execução do algoritmo em um aplicativo de celular ou em um sistema embarcado
que possui sensores semelhantes também é uma tarefa interessante que poderá trazer
resultados promissores.
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