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RESUMO

Almeida, F.M.J. Utilização de aprendizado de máquina em sistemas de
digestores comerciais. 2023. 59p. Monografia (MBA em Inteligência Artificial e Big
Data) - Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos, 2023.

A crescente preocupação com o tratamento adequado de resíduos orgânicos tem estimulado a
busca por soluções eficientes para lidar com esse desafio ambiental. Dentre as várias soluções
disponíveis no mercado para abordar o aumento dos resíduos orgânicos, as máquinas
digestoras de resíduos orgânicos se destacam como uma das opções mais sustentáveis.
Essas máquinas viabilizam a decomposição desses materiais de maneira limpa, contribuindo
para a redução no acúmulo de lixo em aterros sanitários e lixões, e seus efeitos adversos.
Alguns dos sistemas existentes, disponibilizam na nuvem os dados do processo de digestão
para que os gestores possam avaliar a eficiência e identificar possíveis falhas. Este recurso
facilita muito a gestão do negócio, entretanto, quando realizado por pessoas, passa a se
tornar inviável na medida que o número de digestores escala (podendo chegar a alguns
milhares). Diante desse cenário, este estudo tem como objetivo auxiliar na análise e
manutenção eficaz dessas máquinas, por meio da aplicação de aprendizado de máquina.
Ao analisar séries temporais de dados de peso obtidos das máquinas digestoras, este
trabalho procura desenvolver um sistema capaz de identificar padrões característicos e
comportamentos anômalos, contribuindo, assim, para a operação eficiente e a gestão dessas
máquinas.

Palavras-chave: Máquinas Digestoras de Resíduos Orgânico. Aprendizado de Máquina.
Séries Temporais. Classificação.





ABSTRACT

Almeida, F.M.J. Use of machine learning in commercial digesters systems.. 2023.
59p. Monograph (MBA in Artificial Intelligence and Big Data) - Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2023.

The growing concern regarding the proper treatment of organic waste has spurred the
search for efficient solutions to address this environmental challenge. Among the various
solutions available in the market to tackle the increase in organic waste, organic waste
digesters stand out as one of the most sustainable options. These machines enable the
decomposition of these materials in a clean manner, contributing to the reduction of waste
accumulation in landfills and dumpsites and their adverse effects. Some of the existing
systems make the digestion process data available in the cloud so that managers can
assess efficiency and identify possible failures. This feature greatly facilitates business
management; however, when done by humans, it becomes unfeasible as the number of
digesters scales (potentially reaching several thousand). In light of this scenario, this study
aims to facilitate the monitoring and effective maintenance of these machines through the
application of machine learning. By analyzing time-series weight data obtained from the
digesters, this work seeks to develop a system capable of identifying characteristic patterns
and anomalous behaviors, thus contributing to the efficient operation and management of
these machines.

Keywords: Organic Waste Digesters. Machine Learning. Time Series. Classification.
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1 INTRODUÇÃO

1.1 Contextualização e Problemática

O problema de descarte do lixo no mundo é um grande desafio para a sustenta-
bilidade ambiental e afeta a qualidade de vida de muitas pessoas. A geração de resíduos
sólidos tem aumentado significativamente em todo o mundo, impulsionada pelo cresci-
mento populacional, urbanização, mudanças nos padrões de consumo e hábitos de descarte
inadequado.

Muitos países enfrentam dificuldades para lidar com o lixo de maneira adequada,
com consequências ambientais e de saúde pública. O descarte inadequado de resíduos
pode poluir o solo, a água e o ar, afetando a biodiversidade e a qualidade de vida das
comunidades. Além disso, a presença de lixo em áreas urbanas e rurais pode atrair vetores
de doenças e representar riscos para a saúde das pessoas.

"A Política Nacional de Resíduos Sólidos (PNRS) do Brasil estabelece
que somente devem ser enviados para aterros sanitários os resíduos que não
tenham mais nenhuma possibilidade de recuperação ou reciclagem, ou seja os
rejeitos."(RESíDUOS. . . , 2021)

"Apesar disso, atualmente menos de 2% dos resíduos orgânicos são composta-
dos no Brasil, o que em 2019 representou 300 mil toneladas de resíduos orgânicos
reciclados. A maior parte ainda segue sendo disponibilizada para a coleta con-
vencional e vai acabar em aterros sanitários ou, pior, em lixões."(RESíDUOS. . . ,
2021)

Além do problema dos lixões, nos grandes centros urbanos o descarte de resíduos,
por legislação municipal, deve ser realizado por contratação de veículos de coleta, onerando
o custo do negócio associado, aumentando o tempo entre a geração e destinação do resíduo
além de contribuir com aumento de emissões de gases de efeito estufa por depender de
transporte de veículos motorizados para o descarte.

Visando promover uma solução para o lixo orgânico, principalmente das áreas
urbanas, uma empresa desenvolveu um digestor comercial que executa uma série de
processos onde micro organismos transformam as moléculas de lixo orgânico em uma
água rica em nutrientes que pode servir como base para compostos fertilizantes, ou ser
descartada diretamente no sistema de esgoto.

Esta solução é ideal para estabelecimentos que produzem grande quantidade de
resíduos orgânicos diariamente como restaurantes, supermercados, indústrias alimentícias,
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condomínios e até navios, em que não há descarte deste lixo durante a viajem. Dentre
as vantagens do uso deste equipamento pode-se listar melhor limpeza/higiene do local,
por não precisar armazenar lixo orgânico; economia com caminhões de coleta; redução de
"carboon footprint", medida das emissões de gases de efeito estufa, que são liberadas na
atmosfera como resultado das atividades humanas; e principalmente menos lixo orgânico
nos aterros sanitários.

1.2 Justificativa

A solução do produto comercializado pelo fabricante integra um sistema de moni-
toramento dos digestores em tempo real. Este sistema de monitoramento coleta dados de
sensores, controladores, usuários, drivers, etc. de todos os diferentes modelos de maquinas
e seus periféricos. A coleta desses dados é armazenada em um servidor em nuvem que
atualmente é acessada pelo fabricante que faz o monitoramento e atualização dos sistemas
remotamente.

Nesse contexto, a aplicação de algoritmos de inteligência artificial (IA) sob as bases
de dados do sistema pode ser extremamente benéfica. Os algoritmos de IA são capazes
de analisar grandes quantidades de dados em tempo real, identificar padrões e prever
possíveis falhas e necessidades de manutenção. A identificação precoce de problemas pode
ajudar a evitar perdas econômicas significativas, reduzir o tempo de inatividade e garantir
maior confiabilidade e segurança do produto.

Portanto, a justificativa e motivação para esta monografia é apresentar uma análise
detalhada dos benefícios da aplicação de algoritmos de IA na previsão de falhas e manu-
tenções e possíveis otimizações em sistemas que controlam digestores, bem como explorar
as principais técnicas e metodologias utilizadas nesse contexto.

1.3 Objetivos

Este trabalho tem por objetivo principal utilizar de algoritmos de inteligência
artificial na base de dados do sistema com intuito de antecipar a ocorrência de falhas e
identificar padrões que possibilitam a otimização dos sistemas.

Os objetivos específicos incluem:

• Analise temporal do peso do material digerido.

• Classificação de padrões e comportamentos anômalos em séries temporais provenien-
tes de máquinas de digestão de resíduos orgânicos
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1.4 Organização do texto

Este trabalho está dividido da seguinte forma. O Capítulo 2 abordará o funciona-
mento de uma máquina digestora de resíduos orgânicos e os tipos de dados que o sistema de
supervisão registra. No Capítulo 3, serão apresentados trabalhos relevantes que serviram de
base para este projeto. No Capítulo 4, será apresentada a metodologia adotada, incluindo
a preparação dos dados e a seleção do modelo de aprendizado de máquina escolhido.
O Capítulo 5 se concentrará no detalhamento da implementação do experimento, suas
configurações específicas e os resultados alcançados. Finalmente, o Capítulo 6 apresentará
a conclusão deste trabalho.





23

2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo descreverá o funcionamento do sistema de digestores, os conceitos e
as definições relacionados a este sistema.

2.1 O digestor comercial

O digestor comercial é uma máquina inspirada no estômago humano que, de
uma maneira resumida, processa a comida (matéria orgânica), absorve os nutrientes e
transforma o restante em outro tipo de matéria a ser descartado pelo organismo. Seguindo
esta ideia, a máquina também recebe matéria orgânica depositada pelo usuário, e com os
movimentos mecânicos de misturadores, água e enzimas o processo de digestão aeróbica é
realizado naturalmente transformando o resíduo orgânico em água que pode ser despejada
diretamente no sistema de esgoto, ou reservada para ser utilizada como base de compostos
fertilizantes. Neste contexto, pode-se dizer que os movimentos mecânicos são análogos aos
músculos do trato gastrointestinal e a água juntamente com as enzimas possuem a mesma
funcionalidade do suco gástrico e bactérias do estômago.

2.2 Sistema de controle e supervisão

A máquina é controlada por um controlador lógico programável (CLP), que coleta
os sinais de sensores da máquina e periféricos, gera outros sinais para controle e sinalização,
e também disponibiliza diversos dados para um sistema de supervisão.

O CLP é basicamente um computar para controle de processos, composto por um
hardware e um software. O hardware é constituído por uma ou mais Unidades Centrais
de Processamento (CPU), interfaces de comunicação (seriais, ethernet, etc.). O software
é responsável por implementar a lógica de controle do processo associado, podendo ser
programado para realizar diversas tarefas, como monitorar sensores, controlar motores e
válvulas, realizar cálculos, se comunicar com outros dispositivos entre outras funções. O
CLP é amplamente utilizado em sistemas de automação industrial, pois permite a criação
de soluções flexíveis e adaptáveis às necessidades específicas de cada processo produtivo,
além de possibilitar a detecção de falhas e a tomada de decisões em tempo real.

Um sistema de supervisão, é um software utilizado para monitorar e controlar
processos e equipamentos geralmente em um ambiente industrial. O sistema de supervisão
coleta dados de sensores, dispositivos e equipamentos de campo, e exibe estas informações
em uma interface gráfica para os operadores. Esses dados podem incluir temperatura,
pressão, nível, fluxo, status de equipamentos, dentre outras variáveis. Além disso, o sistema
de supervisão pode gerar relatórios, históricos, alertas e notificações para os operadores



24

e gestores, permitindo a detecção de falhas ou anomalias, além de fornecer dados para
análises de desempenho e tomada de decisões.

No cenário desta aplicação, cada digestor comercial possui um CLP que é responsável
por executar todo o algoritmo de controle e aquisição de dados do sistema, uma interface
homem-máquina (IHM), que é uma tela que disponibiliza informações coletadas do CLP e
permite que o usuário faça configurações localmente, como configurar receitas; e periféricos
na qual pode-se destacar:

• Motor com velocidade variável programada;

• Sensor de temperatura;

• Sensor de peso;

• Sensor de vazão;

• Sensores digitais;

2.3 Funcionamento do sistema

Este trabalho não tem por objetivo descrever detalhadamente o algoritmo imple-
mentado para controle e monitoração do sistema, pois este é de propriedade da empresa
detectora da solução. Entretanto será listado, de maneira sucinta, as ações que ocorrem
durante o processo de funcionamento da máquina.

• O usuário abre a porta e deposita o lixo orgânico, a ação de abrir a porta é detectada
por sensores digitais conectados ao CLP. Ao fechar a porta, o CLP inicia seu processo
de decomposição do resíduo;

• Através do sensor de peso, o CLP calcula a quantidade total de lixo orgânico
descartado e assim calcula a quantidade de água e a solução de bactérias digestoras
necessária. O controle da água e da mistura de bactérias é realizado por válvulas e
sensores de vazão;

• A velocidade do motor que é acoplado aos misturadores muda durante o processo da
máquina, este é um dos parâmetros a ser programado pela IHM.

• À medida que o tempo passa a matéria orgânica é digerida, transformada em água e
consequentemente o peso da solução vai diminuído.

Durantes o processo, alguns problemas podem ocorrer no sistema como:
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• Falha no giro do motor, devido a descarte inadequado do material no digestor fazendo
com que as hélices dos misturadores fiquem travadas, gerando uma sobrecorrente e
falha no motor.

• Entupimento do ralo de vazão do líquido, também ocasionado por descarte inadequado
e acúmulo de matéria não digerida.

• Deposito de maior quantidade de lixo orgânico que o sistema permite.

Muitos dos problemas que podem ocorrer no sistema podem ser detectados e
notificados aos usuários pelo próprio CLP, por meio de alarmes e envio de mensagens.
Porém, em vários casos, o problema não é pontual e não é detectado imediatamente pelo
controlador, mas decorre de uma sucessão de eventos que se agravam com o tempo, como
é o caso do entupimento do ralo, que geralmente ocorre gradativamente.

2.4 Monitoração do Peso do Sistema

O sistema de supervisão que opera em nuvem, armazena os dados coletados pelo
CLP, como temperatura, velocidade do motor, corrente do motor, peso, sensor de vazão e;
por meio da análise desses dados no tempo, um operador pode visualmente detectar as
anomalias do processo.

As Figuras 1 e 2 representam o comportamento padrão do decaimento do peso
com o tempo. Na Figura 1 o aumento rápido do peso informa que a porta da máquina
foi aberta e uma quantidade de aproximadamente 200 Kg (conforme pode ser observado
entre os instantes 9750 e 9080 na Figura 1) de material orgânico foi adicionado ao sistema.
A medida que o tempo passa o peso diminui, com maior rapidez no início do processo. O
peso nunca chega a zero pois o sistema necessita de matéria orgânica e água para manter
viva a colônia de bactérias responsáveis pela decomposição. Na Figura 2, diversos ciclos
normais sequenciais são ilustrados.

Figura 1 – Gráfico do comportamento padrão do peso (unitário)
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Figura 2 – Gráfico do comportamento padrão do peso no tempo

Nos casos de defeitos no sistema, temos um comportamento diferente. A partir
da Figura 3, que apresenta um comportamento anômalo, evidencia-se que após a adição
de material orgânico ao sistema, o peso inicial permaneceu constante e, posteriormente,
aumentou. Nessa situação, pode-se deduzir um provável entupimento no sistema. No
entanto, observa-se que com o decorrer do tempo, o problema foi solucionado de maneira
espontânea.

Figura 3 – Gráfico do comportamento do peso com entupimento do sistema

Na Figura 4, no intervalo de tempo 9750 a 10000, tem-se um exemplo de um
provável entupimento ou falta de enzimas para decomposição acarretando a necessidade
de intervenção humana para solucionar o problema.
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Figura 4 – Gráfico do comportamento do peso com necessidade de intervenção.

Analisar a relação peso × tempo parece trivial quando se considera um sistema
conforme ilustrado na Figura 2. No entanto, na maioria das situações, o processo não é
uniforme, e a operação de abertura e descarte de resíduos orgânicos varia com base no
perfil do cliente onde o sistema está instalado. Existem máquinas que recebem pequenas
porções de lixo orgânico várias vezes ao dia, enquanto outros sistemas executam o processo
de decomposição apenas uma vez por dia, mas em grandes quantidades, como pode-se
observar pela série temporal da Figura 5, no qual a máquina processa entre 50 a 170 Kg
de lixo orgânico a cada ciclo. Já na Figura 6 tem-se um exemplo em que os resíduos são
despejados na máquina várias vezes ao dia, em quantidades menores de 20 a 45 Kg.

Figura 5 – Perfil do peso em que a máquina executa um ciclo em médio uma vez ao dia.
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Figura 6 – Perfil do peso em que a máquina executa vários pequenos ciclos por dia.

Na Figura 7 tem-se um sistema aparentemente homogêneo porém com um ruído
significativo na coleta de dados.

Figura 7 – Perfil do peso com ruído.

Todas essas análises e conclusões podem ser prontamente realizadas por um operador
com acesso à plataforma de supervisão do sistema. Entretanto, isto exige que periodicamente
o operador consulte a base de cada equipamento para realizar esta análise. Considerando
que podem existir vários ciclos por dia em cada digestor e centenas de equipamentos em
operação, esta tarefa de análise se torna inviável para um operador e onerosa quando se
pensa em uma equipe para esta atividade. Com o objetivo de reduzir a dependência da
análise humana para esses sistemas, este trabalho explora abordagens de aprendizado de
máquina para identificar possíveis problemas nos sistemas através da análise da evolução
do peso ao longo do tempo.
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3 TRABALHOS RELACIONADOS

A seguir, serão apresentados trabalhos que foram utilizados como apoio para o
desenvolvimento deste projeto.

Scachetti (2020) propôs um sistema de previsão de extravasões de esgoto em
elevatórias de esgoto. Este trabalho utiliza informações de séries temporais, como a
corrente dos motores e o nível da elevatória, e registros de ocorrência de extravasão e
falhas de comunicação. O autor utiliza as arquiteturas de redes neurais Convolutional
Neural Network (CNN), Long Short-Term Memory (LSTM) e ConvLSTM para identificar
a melhor opção na previsão de eventos de extravasão. Por fim, opta pela rede neural
recorrente ConvLSTM para a previsão de eventos de extravasão. A tese conclui que os
objetivos propostos foram alcançados, e faz uma avaliação do desempenho dos modelos
em dados de elevatórias com diferentes características das utilizadas no treinamento.

Annam, Mittapalli and Bapi (2011) apresentou um método para análise e agru-
pamento de séries temporais de batimentos cardíacos em Eletrocardiogramas (ECG).
O método proposto utiliza o agrupamento K-medoids em combinação com a métrica
de Alinhamento Temporal Dinâmico (DTW) para identificar anomalias nos batimentos
cardíacos do ECG. O método é aplicado para agrupar batimentos cardíacos com base
nas caraterísticas das ondas QRS (ondas que correspondem às fases de despolarização e
repolarização dos ventrículos do coração), em 5 classes de tipos de batimentos cardíacos.
Neste trabalho aos autores utilizaram dados do Banco de Dados de Arritmia MIT-BIH e
obtiveram uma taxa de precisão de 82,08%.

No trabalho de Sugimura and Matsumoto (2011), é apresentado um sistema que
adquire padrões de características e cria um classificador para dados de séries temporais sem
exigir conhecimento prévio. O sistema começa pela extração de padrões de características
dos dados de séries temporais usando a técnica de peso TF×IDF. O sistema recorta
subsequências dos dados de séries temporais. Diversas sequências representativas são
extraídas dessas subsequências usando técnicas de agrupamento e padrões de características
são adquiridos a partir dessas sequências representativas. Esses padrões de características
são então utilizados como atributos no processo de aprendizado de máquina. Além disso, é
utilizado o algoritmo genético para aprimorar esses padrões de características, resultando
em uma melhoria na precisão da classificação.

As referências mencionadas foram úteis para o estudo e a compreensão de alguns
dos vários métodos aplicados em análise de séries temporais. Esses estudos não estão
diretamente vinculados ao escopo deste projeto de monografia. Não foram identificados
artigos ou publicações que empregassem dados semelhantes aos deste trabalho específico.





31

4 METODOLOGIA

Este capítulo descreve as metodologias utilizadas para o desenvolvimento do traba-
lho nas seguintes etapas:

• Visão geral e caracterização do problema;

• Coleta dos dados;

• Exploração e compreensão dos dados;

• Preparação dos dados;

• Exploração e escolha de modelos;

• Apresentação da solução;

4.1 Visão geral e caracterização do problema

O sistema de digestores comerciais é controlado por uma aplicação executada em
um CLP. Esta aplicação já implementa vários algoritmos para prever falhas, parar a
máquina quando detecta situações extremas, como sobre-corrente do motor, ou adição
de maior conteúdo suportado pela máquina. Quando essas situações ocorrem alarmes são
ativados e enviados à plataforma de monitoramento notificando o fabricante de maquinas
e também seus clientes relacionados. Sendo assim, este trabalho tem por objetivo detectar
situações de falhas que a aplicação executada no CLP não consegue detectar, ou que seja
muito custoso para a aplicação.

A ocorrência de entupimento da saída de água é perceptível a um humano quando
analisado o histórico do peso no tempo, como mostrado na Figura 8. Em geral, ao
adicionar o lixo orgânico a ser processado na máquina, o peso aumenta significativa e
instantaneamente. Porém, logo quando o processo se inicia, o peso do conteúdo da máquina
decresce rapidamente nos primeiros minutos. Esse decaimento do peso diminui com o
tempo até quase se estabilizar. Quando um entupimento ocorre, o peso do conteúdo na
máquina pode apresentar comportamentos anômalos como aumento, decaimento muito
lento ou estabilização. A implementação da detecção desses cenários na aplicação gera um
custo computacional significativo para o controlador lógico programável (CLP). Porém,
estas situações são relativamente simples para um ser humano detectar ao analisar o gráfico
de peso ao longo do tempo.
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Figura 8 – Gráfico do comportamento do padrão com entupimento sucessivos

Tendo este cenário, este trabalho propõe métodos de detecção de entupimento da
máquina digestora comercial através da análise da série temporal do peso de cada uma.

4.2 Coleta dos dados

Os dados de todas as máquinas são historiados em um sistema dedicado em nuvem,
mas para este trabalho foi disponibilizado uma cópia de aproximadamente 80 máquinas
em um banco de dados PostgreSQL1. O tamanho da base de dados de cada máquina
variou entre 150.000 a 2.500.000 registros de peso e data-hora. Foram disponibilizados
também outros registros de monitoramento que não foram utilizados como: "Temperatura",
"Corrente do motor", "Status da Máquina", "Tensão do Motor", "Falha atual inversor",
"Alarme Atual do Inversor", "Frequência do motor"e "Horímetro".

O acesso ao banco de dados foi realizado inicialmente pela interface de administração
do PostgreSQL pgAdmin para visualização e entendimento da estrutura e tabelas do banco
de dados. Posteriormente foram utilizadas as APIs "sql"e "psycopg2"do Python para realizar
as consultas diretamente ao banco de dados.

Para facilitar a utilização dos dados em diferentes ambientes sem depender de
instalações e recuperação de backup, os dados presentes no banco de dados foram exportados
para arquivos no formato CSV (Comma Separated Values). Isto permitiu que o acesso ao
banco de dados não fosse necessária durante o desenvolvimento dos algoritmos e análises.

1 https://www.postgresql.org/
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4.3 Exploração e compreensão dos dados

Para a análise inicial dos dados foi gerado o gráfico de Peso × Tempo de todas as
máquinas e executada uma inspeção visual com objetivo de identificar os diferentes perfis
e partes das séries onde era possível detectar regiões em que ocorreram o entupimento.
Durante esta análise, foi descartadas as séries que apresentaram registros muito ruidosos
ou inapropriados para este trabalho, aproximadamente 20%.

Nesta fase de análise e interpretação dos dados, foi observado que a maioria dos
registros de peso apresentava um intervalo de tempo reduzido, em torno de 1 minuto ou
menos, resultando em uma série com uma quantidade significativa de dados redundantes.
Esta redundância foi tratada durante a etapa de preparação dos dados.

Adicionalmente, constatou-se que os registros dos pesos apresentavam um alto nível
de ruído e uma considerável quantidade de valores inválidos, o que demandou a aplicação
de filtro nos dados durante a etapa de preparação dos dados.

Figura 9 – Redundância de dados e ruídos presentes nos registros do peso

Constatou-se também que os sensores de monitoramento de peso frequentemente
apresentaram problemas, como mau funcionamento, calibração inadequada, falhas tem-
porárias e desconexões físicas. Nessas circunstâncias, os dados registrados tornaram-se
inválidos, exibindo valores extremamente altos ou baixos.

4.4 Preparação dos dados

Como explicado na seção anterior, na análise e interpretação dos dados foram
identificadas a necessidade de:
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• Remoção de redundância de dados;

• Remoção de valores inválidos;

• Filtros para diminuição de ruído;

A eliminação de redundância foi conduzida empregando a estratégia de periodização
da série temporal. Os dados provenientes de uma máquina variavam o intervalo de tempo
de 8 segundos a 1 minuto entre registros. Inicialmente, testes foram conduzidos utilizando
periodização de 3 e 5 minutos. Posteriormente, foi adotado um período de 10 minutos,
resultando em uma redução considerável na quantidade de dados de cada série, sem
comprometer a retenção das informações relevantes.

Com o objetivo de minimizar o ruído, empregou-se o filtro de média móvel dispo-
nibilizado pela biblioteca pandas (MCKINNEY, 2010) do Python, com um parâmetro
de janela N . Especificamente, cada valor registrado na série temporal foi substituído
pela média dos últimos N valores. Essa função proporcionou uma redução nos valores
inválidos registrados. No entanto, séries que apresentavam um número significativo de
dados inválidos não foram incluídas no processo de filtragem, esta seleção foi realizada de
forma manual.

Aplicou-se também a padronização dos dados utilizando a técnica Z-score, que
envolve a transformação dos valores para uma distribuição com média igual a zero e desvio
padrão igual a um. Essa padronização foi realizada por meio da classe StandardScaler
da biblioteca Scikit-learn (sklearn) (BUITINCK et al., 2013). A normalização da série de
dados é uma abordagem útil em diversos casos, especialmente quando os dados apresentam
escalas diferentes ou quando a escala absoluta dos valores não é relevante, mas sim a
relação entre eles. Vale ressaltar que uma desvantagem significativa dessas transformações
é a perda de interpretabilidade dos valores individuais, uma vez que os dados não estão
mais expressos nas unidades originais (KUHN; JOHNSON, 2016). Contudo ainda seria
possível desfazer a normalização, caso necessário, porém no contexto deste trabalho, o
objetivo principal é identificar os diferentes padrões de curvas e não os valores absolutos
dos dados.

Para a remoção de dados de valores ocasionados por falha no sensor, ou desconexão,
geralmente peso igual 0 ou muito altos, empregou-se a técnica de detecção e remoção de
outliers baseada nos quartis do conjunto de dados.

Em resumo, na etapa de preparação dos dados aplicou-se as transformações, na
seguinte ordem:

• Detecção e remoção de outliers;

• Periodização da série;
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• Filtro de média móvel;

• Normalização z-score;

Figura 10 – Transformações na série temporal durante a etapa de preparação dos dados

4.4.1 As sub-séries

Durante a escolha do modelo de aprendizado deste trabalho, que será detalhado na
próxima sessão, fez-se necessário divisão dos dados de uma máquina em "sub-séries".

Para este trabalho, uma subsérie é definida como um conjunto de dados ordenados
pelo tempo, correspondente ao período entre duas adições consecutivas de peso no sistema.
Em outras palavras, uma sub-série representa a série temporal que abrange o intervalo de
tempo entre o início de um ciclo da máquina, que ocorre quando o peso é adicionado, até
o início do próximo ciclo, quando uma nova adição de peso é realizada.

Assim, foi necessário determinar as subséries a partir da análise exclusiva da série
temporal de peso. A identificação foi realizada por meio dos valores da derivada da série, o
método numpy.gradient() disponibilizado pela biblioteca Numpy 2, permitindo identificar
os pontos nos quais o peso aumenta abruptamente. A partir dos índices correspondentes a
essas ocorrências na série, foi possível realizar a segmentação das subséries. A Figura 11
ilustra este procedimento.

Em casos em que há ruído nos pontos de inflexão da série, ou seja índices corres-
pondentes à deriva mínima muito próximos, considerou-se o índice de maior valor, ou seja
o último índice.

Para obter bons resultados com este método, é fundamental que a série seja
previamente filtrada, normalizada e livre de outliers.

2 https://numpy.org/
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Figura 11 – Detecção de pontos de divisão das subséries

4.5 Exploração e escolha de modelos

Inicialmente, utilizou-se modelos preditivos com o intuito de avaliar a viabilidade
de predição em uma série previamente classificada como boa. A proposta inicial consistia
em verificar se a discrepância entre os resultados previstos e os valores reais era mínima,
indicando um desempenho adequado do equipamento. Por outro lado, um alto erro poderia
sinalizar a ocorrência de algum problema na máquina digestora. Contudo, esse modelo
não obteve resultados satisfatórios devido à incapacidade de prever corretamente as séries
consideradas boas, ou mesmo parte delas. Muitas das séries apresentaram perfis distintos
mesmo sem apresentarem problemas. Consequentemente, o erro resultante entre elas foram
altos invalidando a ideia inicial. As figuras Figura 12 e Figura 13 exemplificam alguns dos
primeiros resultados obtidos.
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Figura 12 – Primeiros resultados de predição das séries temporais - Perfil 1.

Figura 13 – Primeiros resultados de predição das séries temporais - Perfil 2.

A segunda abordagem foi utilizar o algoritmo k-means para agrupar as séries
em clusters. O procedimento k-means é facilmente programado e é computacionalmente
econômico, de modo que é possível processar amostras muito grandes em um computador
com pouco processamento. Possíveis aplicações incluem métodos para agrupamento de
similaridade, predição não linear, aproximação de distribuições multivariadas e testes não
paramétricos para independência entre diversas variáveis (MACQUEEN, 1967).

Uma das principais vantagens do k-means é a capacidade de agrupar dados sem
a necessidade de pré-classificação das amostras para o treinamento. No entanto, o k-
means requer um tamanho fixo de dimensionalidade dos dados de entrada, o que pode ser
problemático quando se lida com séries temporais com tamanhos variáveis.

Para incluir séries temporais em modelos estatísticos que são exclusivamente defini-
dos em variáveis univariadas, é necessário extrair características das séries temporais. Isso
denota mapeamentos das séries temporais de RL para R, a fim de obter variáveis univa-
riadas. Um processo automatizado de agregação das séries temporais em características
significativas permite o uso da teoria bem desenvolvida de aprendizado de máquina super-
visionado e não supervisionado em dados temporais. (CHRIST; KIENLE; KEMPA-LIEHR,
2016)
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Sendo assim, para contornar a limitação de séries temporais de tamanhos distintos,
é possível extrair atributos relevantes destas e usá-los como entrada para o algoritmo de
k-means. Esses atributos podem incluir medidas estatísticas, características de frequência
ou outras representações que capturam informações essenciais das séries. Ao utilizar esses
atributos, as séries temporais podem ser representadas por vetores de características de
tamanho fixo, tornando-as adequadas para o k-means.

Inicialmente os atributos das séries escolhidos foram:

• Média;

• Desvio Padrão;

• Valor Mínimo;

• Valor Máximo;

Durante os testes iniciais, quando a qualidade do agrupamento foi avaliada nas
mesmas subséries (geradas conforme descritas na seção anterior) usadas para criar os
grupos, foi observado um desempenho positivo do algoritmo de agrupamento. Ou seja, as
séries que apresentavam predominância de entupimento foram agrupadas em sua maioria
um mesmo cluster. A Figura 14 e Figura 15 ilustram alguns resultados obtidos:

Figura 14 – Séries agrupadas com k-means e atributos básicos.
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Figura 15 – Séries agrupadas com k-means e atributos básicos.

Quando séries distintas foram utilizadas nas gerar os grupos e analisar a qualidade,
os resultados do agrupamento não alcançaram níveis satisfatórios. Consequentemente,
foi necessário aprofundar o estudo dos atributos das séries utilizados para realizar o
agrupamento.

A biblioteca de aprendizado de máquina "tsfresh", baseada em Python, é uma
biblioteca de aprendizado de máquina rápida e padronizada para extração e seleção
automática de características de séries temporais (CHRIST et al., 2018). Esta biblioteca foi
utilizada para coletar atributos mais significantes a serem enviado ao algoritmo k-means.

Os atributos a serem extraídos foram:

ts.mean_abs_change(subseries): Média sobre as primeiras diferenças. Retorna a
média das diferenças absolutas entre os valores de séries temporais subsequentes.

ts.mean_change(subseries): Média ao longo das diferenças de séries temporais. Re-
torna a média das diferenças entre os valores de séries temporais subsequentes.

ts.index_mass_quantile(subseries, {"q": .4}): Calcula o índice relativo i da série
temporal x onde q é porcentagem da massa de x que fica à esquerda de i. Neste caso,
para q = 40%, esta método retornará valor próximo ao centro de massa da série
temporal.

ts.quantile(subseries, 0.6): Método que calcula o quantil q = 0.6 da série temporal.

ts.quantile(subseries, 0.9): Método que calcula o quantil q = 0.9 da série temporal.

ts.time_reversal_asymmetry_statistic(subseries, 3): Este método é usado para
avaliar a assimetria de reversão no tempo de uma série temporal. Em termos simples,
a estatística de assimetria de reversão no tempo tenta quantificar diferença no
comportamento da série quando avançamos no tempo em comparação com quando
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retrocedemos no tempo, calculando uma métrica que reflete como a série e sua versão
invertida no tempo diferem uma da outra.

ts.change_quantiles(subseries, ql=0.2, qh=0.8, isabs=True, f_agg =’mean’):
Método utilizado para avaliar como os quantis de uma série temporal mudam ao
longo do tempo. Calcula a diferença entre os quantis de uma parte inicial (ql=0.2)
da série temporal e os quantis de uma parte subsequente (qh=0.8) da série temporal.
Considerando as diferenças absolutas (isabs=True) e utilizando a média como função
agregadora aplicada às diferenças (f_agg =’mean’).

ts.change_quantiles( subseries, ql=0.1, qh=0.6, isabs=False, f_agg =’var’ ) :
Análogo à função anterior com ql=0.1, qh=0.6, desconsiderando as diferenças ab-
solutas (isabs=False) e utilizando a variância como função agregadora aplicada às
diferenças (f_agg =’var’).

Estes atributos foram selecionados a partir de uma função da biblioteca tsfresh
referenciada com extract_relevant_features(), a qual recebe como parâmetros de entrada
algumas das subséries temporais e a classificação desejada de cada uma delas. O retorno
desta função lista os métodos da biblioteca tsfresh que, aplicados às séries de entrada,
foram mais relevantes para se obter a classificação desejada. Neste trabalho, usamos o
rótulo do grupo de cada subsérie como classificação desejada.

Ao executar extract_relevant_features() com subséries pré-selecionas e classificadas,
a função retornou de 30 a 70 métodos considerados muito relevantes para a classificação
desejada. Como o k-means depende das distâncias euclidianas para atribuir pontos aos
centroides, ele não é ideal para ser utilizado em conjunto de dados com muitos atributos,
pois os pontos podem parecer igualmente distantes uns dos outros, resultando em agru-
pamentos menos precisos e mais dispersos, este fato é conhecido como a "Maldição da
dimensionalidade"(RADOVANOVIć; NANOPOULOS; IVANOVIć, 2010).

Para contornar essa limitação, optou-se por selecionar apenas alguns dos atributos
retornados pela função. Essa seleção foi realizada com base nos melhores resultados obtidos
pelo k-means ao ser aplicado a esses atributos específicos. Dessa forma, reduziu-se a
complexidade do espaço de atributos.

Por fim, foram incluídos mais dois conjuntos de atributos das subséries para
melhorar a qualidade do classificador:

• Os coeficientes da curva logarítmica que mais se aproxima da subsérie

• O p-valor do teste de Kolmogorov-Smirnov para a distribuição exponencial da
subsérie.
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Esses dois conjuntos de atributos tiveram como objetivo parametrizar e quantizar
a subsérie por meio de uma função exponencial.

A subsérie demonstra um comportamento ideal quando exibe uma proximidade
significativa com uma função exponencial. Entretanto, em situações de entupimento, ela
se distancia do padrão exponencial e tende a assumir características semelhantes a uma
reta ou uma distribuição Gamma.

Figura 16 – Perfis de subséries com entupimento.

Ao ajustar os dados da subsérie à função logarítmica a · log(x) + b , obtém-se os
valores de a e b. A partir dos valores de a é possível inferir a tendência da série. Os valores
de b correspondem ao deslocamento vertical (offset) da tendência, porém estes não são
relevantes para esta análise.

Parâmetro Valor Curva
a ∼ −1 Exponencial
a ∼ 0 Reta
a > 0 Logarítmica

Tabela 1 – Exemplos de Curvas

O teste de Kolmogorov-Smirnov é uma técnica não paramétrica usada para comparar
uma distribuição empírica com uma distribuição teórica. Neste trabalho, ele é aplicado
para avaliar o grau de proximidade dos dados de uma subsérie com uma distribuição
exponencial, com base no p-valor resultante do teste.

Um p-valor próximo de 1 indica que os dados da subsérie se aproximam de uma
distribuição exponencial, enquanto um p-valor próximo de 0 caracteriza dados que não
seguem o padrão esperado de uma distribuição exponencial.

4.6 Apresentação da solução

Definido e parametrizados os atributos que serão extraídos de cada subsérie, eles
são passados como parâmetros para o método não supervisionado k-means.
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Para melhorar a eficácia do algoritmo, foi essencial limitar a quantidade de dados
utilizados. Subséries com um grande número de dados podem distorcer os valores dos
atributos resultantes. Porém uma vez que a série foi periodizada e padronizada durante o
pré-processamento dos dados, tem-se os dados necessário para a análise sempre no início
de cada processo.

Outro ajuste importante realizado é a padronização da subsérie. Durante a etapa
de pré-processamento, a série completa é normalizada, e, posteriormente quando a série é
dividida em subséries, cada uma delas é novamente normalizada individualmente.

A seguir descreve-se o algoritmo implementado para a classificação dos dados de
uma máquina digestora de resíduos orgânicos.

Data: Dados de peso no tempo de uma máquina digestora de resíduos orgânicos
Result: Dados agrupados em 3 clusters.

original_data←− carregaDados();
pre_data←− removeOutliers(original_data);
pre_data←− periodizacao(pre_data);
pre_data←− normalizacao(pre_data);
pre_data←− filtro(pre_data);
subseries←− encontraSubseries(pre_data);
while subseries do

subserie_normalizada←− normalizacao(subseries);
subserie_norm_filtrada←− filtro(subserie_normalizada);
atributos_subseres←− extraiAtributos(subserie_norm_filtrada);
y ←− adiciona(atributos_subseres);

end
clusters_result←− k_mean_predict(y);
atribui(originalData, clusters_result)

Algoritmo 1: Algoritmo de agrupamento dos dados de uma máquina digestora de
resíduos orgânicos
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5 AVALIAÇÃO EXPERIMENTAL

Neste capítulo, será apresentada uma descrição mais detalhada da implementação
do algoritmo. Serão abordados o conjunto de dados utilizado, os parâmetros adotados e os
resultados obtidos.

5.1 Conjuntos de Dados

Neste estudo, foram fornecidos dados de 80 máquinas, totalizando cerca de 2.3
gigabytes. Dentro desse conjunto, foi realizada uma seleção das máquinas que predominan-
temente possuíam dados válidos com menor presença de ruído. Esse processo resultou em
dados provenientes de 40 máquinas distintas. Dados foram considerados válidos quando
as séries temporais das subséries apresentavam uma concordância significativa com os
padrões dos grupos. Caso esses padrões não fossem claramente identificáveis por meio de
uma inspeção visual inicial da série temporal da máquina, os dados eram descartados. Na
Figura 17, exemplos de séries descartadas são ilustrados. No gráfico verde, nota-se um
padrão comportado na série temporal, porém que não se encaixa nos grupos definidos
para este estudo. No gráfico vermelho, os pontos de divisão das subséries são de difícil
identificação. No gráfico azul, observa-se alguns dos padrões desejados, mas o sinal possui
um ruído significativo.

Figura 17 – Séries temporais descartadas.

As séries temporais de cada máquina possuíam períodos variando de 8 segundos a
50 segundos. Para padronizar os dados, todas as bases foram periodizadas para intervalos
de 1 minuto, gerando uma cópia de cada base de dados. Ao final, obteve-se um total de
280 megabytes de dados periodizados, que foram utilizados para a etapa de agrupamento.
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5.2 Configuração Experimental

Durante o desenvolvimento do projeto, foram estabelecidas algumas abordagens e
limitações com o objetivo de obter resultados mais precisos. Cada uma dessas decisões
será explicada a seguir:

• Janela de dados de cada subsérie = 50 a 150 registros

Conforme mencionado no capítulo anterior, verificou-se que subséries com muitos
dados distorciam o resultado de seus atributos. Uma subsérie com muitos valores
indica que o tempo entre duas adições consecutivas de material orgânico em uma
máquina foi muito longo. O processo de decomposição do material é iniciado na
adição do peso, assim o sistema trabalha por um tempo e depois para. O restante
do tempo, na qual ainda são armazenados seus dados, a máquina está parada, não
sendo necessário a análise e verificação de seus valores de peso nesse período.

Já subséries com poucos dados informam que foi adicionado peso à máquina de
maneira consecutiva em um curto intervalo de tempo. Avaliar a primeira subsérie
temporal não se torna mais necessário já que a próxima subsérie conterá o peso da
primeira subsérie juntamente ao peso que foi adicionado.

Para este trabalho definiu-se a quantidade entre 50 e 150 pontos de dados. Ou se
seja, subséries com menos de 50 valores foram descartados, assim como os registros
após o item 150 das subséries maiores. A Figura 18 uma subsérie de 48 dados seguida
de uma com mais de 3500 registros.

Figura 18 – Divergências de tamanhos entre subséries.
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• Período = 1 minuto:

A decisão de manter a periodização em intervalos de 1 minuto para os dados das séries
temporais foi tomada visando tornar a verificação do grupo do sistema mais rápida
quando implementada em tempo real. A janela de dados das subséries foi definida
entre 50 a 150, isso implica que o algoritmo de atribuição do grupo deve aguardar
pelo menos 50 minutos para iniciar a verificação. Se optássemos por periodizar os
dados com intervalos maiores, o tempo de espera para a verificação aumentaria
proporcionalmente.

• Filtro da série = 3 e filtro das subséries = 10:

Após normalização da série temporal total é aplicado um filtro com parâmetro de
janela igual 3. Esse valor foi escolhido para eliminar pequenos ruídos sem prejudicar
a etapa de extração das subséries. Se aplicado filtros com janela maiores os pontos
de inflexão das subséries que caracterizam a adição de peso na máquina poderiam
ser mascarados. Assim, após a definição das subséries, optou-se por aplicar um filtro
de janela igual a 10 para a suavização dos dados e a redução de ruídos.

• Normalização das subséries:

A normalização das subséries foi implementada utilizando a técnica Z-score, a
mesma utilizada na série temporal completa no início da preparação dos dados.
Porém nesta etapa considerou-se também a subsérie anterior. Ou seja, os dados da
subsérie corrente foram padronizados considerando os dados da subsérie em questão
juntamente com os dados da subsérie anterior. Esse método permitiu que a subsérie
corrente mantivesse sua "forma"durante a normalização, preservando o seu padrão
original. A Figura 19 ilustra esse processo quando os normalizada unitariamente e
considerando os dados da subsérie anterior.
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Figura 19 – Normalização unitária das subséries

• Deslocamento das subséries:

Com o objetivo de tornar os dados que serão utilizados na geração dos atributos
o mais homogêneo possível, após a normalização das subsérie, seus dados foram
deslocados verticalmente para o eixo 0. Ou seja, o menor valor de cada subsérie será
sempre zero. A Figura 20 ilustra primeiramente cada subsérie dividida e normalizada
e posteriormente os dados limitados e deslocados para o eixo 0.

Figura 20 – Deslocamento dos dados das subséries.

• Número de grupos de classificação (clusters) = 3:

O objetivo proposto para este trabalho é a detecção de ocorrências de entupimento
da maquina digestora de resíduos orgânico pela análise do histórico de peso de cada
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máquina. Logo deveria-se agrupar cada subsérie em um de 2 grupos: "Apresenta
entupimento"e "Não apresenta entupimento". Porém durante o desenvolvimento
deste trabalho percebeu-se que o comportamento dos processos seriam mais bem
representados em 3 grupos:

Grupo 1: Processos em que o conteúdo da máquina é consumido rapidamente e o
peso proporcional decai mais rapidamente em um curto período de tempo. Um
exemplo está representado pela curva azul na Figura 21.

Grupo 2: Processos em que o conteúdo da máquina é processado em um tempo
maior, porém o conteúdo é consumido corretamente. Um exemplo está repre-
sentado pela curva amarela na Figura 21.

Grupo 3: Processos em que não se detecta o decaimento do peso mais acentuado
no início, em alguns casos este decaimento é constante, e podendo até aumentar.
Estes são os casos em que há entupimento. As curvas vermelha e verde da
Figura 21 ilustram estes perfis.

Diante desta constatação optou-se por utilizar o número de clusters para o clas-
sificador k-means igual 3, sendo o grupo 1 e 2 sem entupimento e o grupo 3 com
entupimento.

Figura 21 – Perfis de comportamento do peso

• Seleção do conjunto de treino:

Para formar os dados do conjunto de treino foram selecionadas 32 subséries de
diferentes máquinas, de tamanhos e amplitudes variadas. Estas subséries foram
concatenadas para formar uma série temporal única. Neste caso, não foi necessário
aplicar a remoção de outliers, filtro na série temporal completa, periodização e a
detecção de subséries baseada na derivada. Executou-se apenas a normalização e
filtro de cada subsérie, por fim extraiu-se os atributos selecionados para o algoritmo
k-means, e executou os métodos de criação e atribuição de grupos. A Tabela 2
seguir descreve as características das subséries utilizadas nesta etapa de treino e suas
respectivas classes.
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Os grupos estão enumeradas de 0 a 2 e correspondem aos sequencialmente aos grupos
1, 2 e 3, explicados anteriormente.

Tabela 2 – Características das subséries utilizados na etapa de treino.

Subsérie Quantidade Mínimo Máximo Excursão Cluster
0 763 223.0 493.6 270.6 2
1 1413 144.0 376.0 232.0 1
2 2320 181.0 393.0 212.0 2
3 1544 156.0 338.0 182.0 1
4 1682 235.4 411.0 175.6 2
5 1317 155.0 328.0 173.0 0
6 1538 142.0 314.4 172.4 0
7 1204 137.0 298.0 161.0 0
8 2827 183.0 324.0 141.0 2
9 817 258.0 397.0 139.0 1
10 489 202.7 327.6 124.9 2
11 1013 141.0 243.6 102.6 0
12 405 86.4 184.1 97.7 1
13 441 81.2 177.9 96.7 0
14 665 258.0 344.0 86.0 1
15 443 84.6 159.2 74.6 0
16 411 104.0 173.6 69.6 0
17 1250 274.0 329.0 55.0 0
18 1093 104.6 158.0 53.4 2
19 916 246.0 297.0 51.0 1
20 914 0.0 51.0 51.0 1
21 397 106.0 153.0 47.0 2
22 647 102.0 148.0 46.0 2
23 210 108.7 147.0 38.3 0
24 168 145.5 177.1 31.6 0
25 206 114.0 144.5 30.5 0
26 85 152.9 174.0 21.1 0
27 318 292.0 310.6 18.6 1
28 86 152.1 169.9 17.8 0
29 525 357.0 373.0 16.0 1
30 1464 252.0 354.0 102.0 1
31 321 210.0 227.0 17.0 2

• K-means:

O algoritmo k-means é um método de aprendizado de máquina não supervisionado
utilizado para agrupar um conjunto de dados em grupos, denominados clusters. O
algoritmo opera da seguinte forma: Inicialmente, k centros são escolhidos de forma
aleatória, em que cada objeto inicialmente atua como uma média ou centro de um
cluster. Em seguida, para cada um dos objetos restantes, com base na distância entre
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o objeto e o centro, o objeto é atribuído ao cluster mais próximo. Posteriormente,
um novo centro é calculado para cada cluster, e esse processo se repete até que a
função de critério convirja (MALKI et al., 2016).

O algoritmo k-means utilizado neste trabalho foi o método sklearn.cluster.KMeans()
disponibilizada pela biblioteca scikit-learn. Os parâmetros utilizados neste método
foram:

– n_clusters = 3: O número de clusters, bem como o número de centróides a
serem gerados.

– init = ‘k-means++’: Seleciona centróides iniciais de cluster usando amostragem
com base em uma distribuição de probabilidade empírica da contribuição dos
pontos para a inércia geral. Essa técnica acelera a convergência.

Os outros parâmetros não foram inicializados, sendo assim o método foi executada
com valores default (BUITINCK et al., 2013).

5.3 Resultados e Discussões

Nesta seção, serão expostos os resultados alcançados por meio do algoritmo definido
nas seções anteriores, seguidos de uma análise detalhada desses resultados.

5.3.1 Resultados

Para a execução do teste cada série continha cerca de 7200 pontos de dados, o
que equivale a 5 dias de dados periodizados a cada minuto. Para processar essa série,
foram aplicadas etapas de remoção de outliers, normalização e filtragem. A partir dessa
série transformada, as subséries foram identificadas utilizando os pontos de inflexão, os
quais foram determinados com base nos valores das derivadas. Cada uma das subséries
foi então submetida a um processo adicional de normalização e filtragem. Um método
extraiu seus atributos, e esses atributos foram posteriormente passados para o algoritmo
de agrupamento k-means.

Resultados dos teste:

• Dados processados: 7.260.204;

• Subséries agrupadas: 14.063;

• Cluster 0: 3.361;

• Cluster 1: 6.770;

• Cluster 2: 3.932;



50

• Imagens geradas: 836;

• Tempo de execução: 12 minutos;

Dado que o k-means é um algoritmo de aprendizado não supervisionado, foi
necessário estabelecer um procedimento para avaliar os resultados alcançados. Após a
conclusão do teste de atribuição de grupos, uma imagem foi gerada com o conjunto de
dados avaliados, apresentando o resultado de cada subsérie juntamente com o respectivo
cluster. Essa imagem foi o método utilizado a verificação dos resultados do algoritmo.

Para cada cluster foi atribuído uma cor para facilitar a verificação:

• Cluster 0: subsérie classificada no Grupo 1 - cor azul;

• Cluster 1: subsérie classificada no Grupo 2 - cor verde;

• Cluster 2: subsérie classificada no Grupo 3 - cor vermelha;

As imagens geradas na execução do algoritmo contém dois gráficos. No primeiro tem-
se a série original avaliada, no segundo é apresentado as subséries divididas e normalizadas
em branco, enumeradas, e também os dados de cada subsérie que foram utilizados na
extração dos atributos. O fundo de cada gráfico é colorido de acordo com o seu cluster
resultante. A Figura 22, Figura 23, Figura 23 e Figura 24 ilustram a apresentação final
dos resultados de algumas séries:

Figura 22 – Exemplo 1 de resultado do algoritmo de agrupamento.
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Figura 23 – Exemplo 2 de resultado do algoritmo de agrupamento.

Figura 24 – Exemplo 3 de resultado do algoritmo de agrupamento.

Figura 25 – Exemplo 4 de resultado do algoritmo de agrupamento.

5.3.2 Validação dos Resultados

Para validar os resultados, empregou-se a seguinte abordagem: selecionou-se alea-
toriamente 20 séries a partir das imagens geradas pelo algoritmo de agrupamento. Cada
série foi então subdividida em subséries e analisadas pela autora deste projeto, que re-
alizou o agrupamento manual das subséries em duas categorias: "Sem entupimento"e
"Com entupimento". O método proposto foi aplicado novamente, agrupando também as
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mesmas subséries. As subséries agrupadas pelo método foram re-agrupadas em "Sem
entupimento"para as subséries resultantes dos clusters 0 e 1, e "Com entupimento"para as
subséries agrupadas no cluster 2.

5.3.2.1 Validação 1:

• Subséries agrupadas: 337

• Subséries "Sem entupimento": 240

– agrupadas corretamente pelo algoritmo: 206

• Subséries "Com entupimento": 97

– agrupadas corretamente pelo algoritmo: 64

A matriz de confusão da Figura 26 resume os resultados obtidos:

Figura 26 – Matriz de confusão dos resultados da validação 1.

A acurácia obtida neste experimento foi de 80%.

Para criar uma representação visual dos resultados obtidos na Validação 1, aplicou-
se a técnica de Análise de Componentes Principais (PCA, do inglês Principal Component
Analysis) para reduzir a dimensionalidade do conjunto de dados original, que continha
337 subséries com 10 atributos cada, para apenas 2 atributos. Isso permitiu a geração do
gráfico Figura 27 que ilustra os resultados da Validação 1.
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Figura 27 – Gráfico PCA dos atributos das subséries dos conjunto de Validação 1 com o
resultados de seus clusters.

5.3.2.2 Validação 2:

• Subséries agrupadas: 319

• Subséries "Sem entupimento": 236

– agrupadas corretamente pelo algoritmo: 213

• Subséries "Com entupimento": 83

– agrupadas corretamente pelo algoritmo: 51

A matriz de confusão Figura 28 resume os resultados obtidos:

Figura 28 – Matriz de confusão dos resultados da validação 2.

A acurácia obtida neste experimento foi de 83%.
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A Figura 29 ilustra uma representação visual dos resultados obtidos na Validação
2, pela a técnica PCA.

Figura 29 – Gráfico PCA dos atributos das subséries dos conjunto de Validação 2 com o
resultados de seus clusters.

5.3.3 Análise dos resultados

Na análise dos resultados em que o algoritmo agrupou as subséries de maneira
incorreta foram identificados algumas razões:

• Ruído na série temporal:

Foram identificadas situações em que ruídos significativos no sinal induziam o
algoritmo a detectar erroneamente um ponto de divisão para uma nova subsérie.
Nesses casos, o algoritmo tratava esses dados como pertencentes a uma nova subsérie,
e o comportamento atípico desses dados muitas vezes indicava erroneamente a
presença de entupimento. Isso ocorria porque, na realidade, um novo processo não
havia sido de fato iniciado, resultando em uma não conformidade na queda de peso
esperada.

No exemplo da Figura 30 pode-se perceber que a subsérie 3 é na realidade a
continuação da subsérie 2.
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Figura 30 – Divisão incorreta da subsérie 3.

• Remoção de outliers:

Em séries temporais que não possuíam ruídos excessivos, a etapa de remoção de
outliers resultou na eliminação dos dados com valores mais elevados. Em alguns
casos, isso resultou na exclusão dos dados de valores altos que, de fato, indicavam
entupimento. Dessa forma, ao efetuar a classificação da série, somente os dados
menores foram considerados, levando o algoritmo a não detectar o entupimento
que estava presente. Na Figura 31 pode-se perceber que a subsérie 3 mudou de
comportamento devido a remoção dos outliers da série temporal.

Figura 31 – Remoção dos dados que evidenciava entupimento na subsérie 3.

• Normalização das subséries:

Também se constatou que a etapa de normalização, apesar de empregar a estratégia
de considerar a subsérie anterior para preservar a fidelidade aos dados originais,
frequentemente modificou-se o padrão dos dados, resultando em agrupamentos
incorretos. Houveram casos em que subséries anteriores com valores altos influencia-
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ram a redução dos valores na subsérie corrente, levando o algoritmo a agrupá-las
incorretamente como entupimento.

Figura 32 – Distorção dos dados pela normalização

Por fim, ao realizar a classificação manual, a autora notou que em diversas situações
havia uma incerteza quanto à categorização adequada da subsérie. Nestes casos, a autora
recorreu à análise do comportamento das outras subséries dentro do mesmo conjunto
de dados para auxiliar na decisão. Este fato evidencia que a tarefa de classificação pode
ser complexa e sujeita à ambiguidades. Isso sugere que os padrões que determinam se
uma subsérie possui ou não entupimento podem não ser facilmente discerníveis e podem
depender de fatores sutis e/ou contextuais além dos contidos na própria série.

5.3.4 Discussões

No capítulo de análise de resultados anterior, torna-se evidente que o algoritmo
implementado apresenta algumas falhas e demanda um refinamento maior na etapa de
pré-processamento dos dados. Nota-se que é preciso aplicar filtros mais amplos, mas sem
comprometer a divisão das subséries. Além disso, a detecção das subséries requer um
refinamento. Há também a necessidade de explorar alternativas para padronizar os dados
de maneira mais eficaz, porém preservando melhor seus padrões originais.

Apesar das deficiências detectadas no método, é possível considerar satisfatória a
acurácia de 80% alcançada pelo algoritmo. O propósito deste trabalho foi implementar um
método de aprendizado de máquina que auxiliasse na identificação de comportamentos
anômalos ou desvios do padrão esperado nas máquinas de digestão de resíduos orgânicos.
Embora a classificação exata de cada processo não seja estritamente necessária, os resultados
obtidos das classificações podem ser valiosos para o fabricante dessas máquinas, a fim de
detectar dispositivos que não estejam funcionando adequadamente ou usuários que possam
estar fazendo uso incorreto das mesmas.
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6 CONCLUSÕES

Em conclusão, este trabalho explorou a aplicação do algoritmo k-means de aprendi-
zado de máquina na detecção de padrões e comportamentos anômalos em séries temporais
provenientes de máquinas de digestão de resíduos orgânicos. Mais especificamente, partes
de séries temporais que apresentam um possível padrão de entupimento do peso na má-
quina. Embora os resultados obtidos tenham evidenciado algumas limitações no algoritmo
implementado, a acurácia alcançada demonstrou ser promissora e indicativa de que a
abordagem pode ser eficaz na identificação de desvios do comportamento esperado.

A análise crítica dos resultados permitiu a identificação de áreas que demandam
aprimoramento, tais como a melhoria do pré-processamento dos dados para melhor tratar
ruídos e preservar padrões originais, a otimização da detecção de subséries e a investigação
de métodos alternativos de normalização. Mesmo assim, a capacidade do método em
auxiliar na detecção de máquinas com funcionamento impróprio ou comportamento
incomum representa um valor significativo para os fabricantes e usuários das máquinas.

Este estudo demonstra a complexidade inerente à análise de séries temporais em
cenários reais, onde ruídos, variabilidades e padrões sutis podem influenciar os resultados.
Ao mesmo tempo, ressalta o potencial das abordagens de aprendizado de máquina em
contribuir para soluções automatizadas e eficazes na monitorização de sistemas industriais
e detecção de anomalias.
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