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RESUMO

Costa, V. R. Uso de Transformada de Pacotes Wavelet e Aprendizado Profundo
no Reconhecimento de Emoções na Fala: Aplicações nas Bases CORAA e
SofiaFala. 2024. 78p. Monografia (MBA em Inteligência Artificial e Big Data) - Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2024.

O reconhecimento de emoções na fala é fundamental para uma variedade de aplicações,
desde interfaces de usuário mais empáticas até soluções assistivas para o suporte a
tratamentos de fonoaudiologia e para o aprimoramento de ferramentas educacionais.
A metodologia deste trabalho explora o uso da transformada de pacotes de Wavelet,
aplicada para decompor o espectrograma Mel dos áudios em sub-bandas de frequência,
combinada com redes neurais convolucionais para a classificação das emoções, visando
o reconhecimento de emoções na fala, com foco na base de fala espontânea CORAA,
composta por dados em português. O objetivo principal foi desenvolver um modelo capaz
de lidar com as complexidades de dados de fala natural, com potencial aplicação em
projetos como o SofiaFala, aplicativo assistivo projetado para apoiar o tratamento de
pessoas com deficiências de fala. Os experimentos demonstraram que, embora a proposta
tenha alcançado resultados comparáveis aos melhores obtidos com a base CORAA e
próximos aos obtidos com a transformada discreta de Wavelet, o uso de redes neurais
pré-treinadas ainda se mostrou superior. Adicionalmente, foram realizadas avaliações com
outras bases de dados, como EMODB, SAVEE e RAVDESS, para verificar a generalização
do modelo. Ao aplicar o modelo nos dados do SofiaFala, observou-se um possível viés de
classificação em áudios de pessoas com deficiência de fala. O modelo atribuiu a mesma
classificação a todos os áudios de um mesmo falante, independentemente do conteúdo
emocional, tornando-o inadequado para esse tipo de aplicação. Este trabalho conclui que,
apesar dos resultados promissores, há espaço para melhorias, incluindo o uso de modelos
pré-treinados, técnicas adicionais de aumento de dados e ajustes finos nos parâmetros de
extração de características. Além disso, seria interessante realizar uma marcação mais
detalhada da base SofiaFala, o que poderia levar a uma melhoria nos resultados.

Palavras-chave: Reconhecimento de Emoções na Fala. Transformada de Pacotes Wavelet.
Aprendizado Profundo. Rede Neural Convolucional. Fala Espontânea.





ABSTRACT

Costa, V. R. Use of Wavelet Packet Transform and Deep Learning in Speech
Emotion Recognition: Applications on the CORAA and SofiaFala Datasets.
2024. 78p. Monograph (MBA in Artificial Intelligence and Big Data) - Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2024.

Speech emotion recognition is essential for a variety of applications, ranging from more
empathetic user interfaces to assistive solutions supporting speech therapy treatments
and the enhancement of educational tools. The methodology of this work explores the
use of the Wavelet Packet Transform, applied to decompose the Mel spectrogram of
audio signals into frequency sub-bands, combined with convolutional neural networks
for emotion classification, aiming at speech emotion recognition, with a focus on the
spontaneous speech corpus CORAA, which consists of data in Portuguese. The main
goal was to develop a model capable of handling the complexities of natural speech
data, with potential applications in projects like SofiaFala, an assistive app designed to
support the treatment of people with speech disorders. The experiments demonstrated
that, although the proposed model achieved results comparable to the best obtained with
the CORAA corpus and close to those obtained with the Discrete Wavelet Transform, the
use of pre-trained neural networks still proved to be superior. Additionally, evaluations
were conducted with other datasets, such as EMODB, SAVEE, and RAVDESS, to verify
the model’s generalization. When applying the model to SofiaFala’s data, a possible
classification bias was observed in the audio of individuals with speech impairments. The
model assigned the same classification to all audios from the same speaker, regardless of
emotional content, making it unsuitable for this type of application. This study concludes
that, despite promising results, there is room for improvement, including the use of
pre-trained models, additional data augmentation techniques, and fine-tuning of feature
extraction parameters. Furthermore, a more detailed annotation of the SofiaFala dataset
could lead to better results.

Keywords: Speech Emotion Recognition. Wavelet Packet Transform. Deep Learning.
Convolutional Neural Network. Spontaneous Speech.





LISTA DE FIGURAS

Figura 1 – Exemplo de arquitetura de RNC . . . . . . . . . . . . . . . . . . . . . 32
Figura 2 – Exemplo de kernel de convolucao em ação . . . . . . . . . . . . . . . . 32
Figura 3 – Exemplo de max-pooling de filtro 2x2 e stride = 2 . . . . . . . . . . . . 33
Figura 4 – Exemplo de comparação entre TDW e TWP . . . . . . . . . . . . . . . 38
Figura 5 – Número de trabalhos aceitos e rejeitados por etapa de triagem . . . . . 41
Figura 6 – Número de trabalhos rejeitados por critério de exclusão . . . . . . . . . 42
Figura 7 – Fluxograma de desenvolvimento do trabalho . . . . . . . . . . . . . . . 45
Figura 8 – Distribuição de classes de emoções na base CORAA . . . . . . . . . . . 46
Figura 9 – Distribuição de tempo de aúdio na base CORAA . . . . . . . . . . . . 46
Figura 10 – Distribuição de classes de emoções na base SAVEE . . . . . . . . . . . 47
Figura 11 – Distribuição de tempo de aúdio na base SAVEE . . . . . . . . . . . . . 48
Figura 12 – Distribuição de classes de emoções na base RAVDESS . . . . . . . . . 49
Figura 13 – Distribuição de tempo de aúdio na base RAVDESS . . . . . . . . . . . 49
Figura 14 – Distribuição de classes de emoções na base EMODB . . . . . . . . . . 50
Figura 15 – Distribuição de tempo de aúdio na base EMODB . . . . . . . . . . . . 50
Figura 16 – Distribuição de tempo de aúdio na base SofiaFala . . . . . . . . . . . . 51
Figura 17 – Exemplo de aplicação de SpecAugment . . . . . . . . . . . . . . . . . . 53
Figura 18 – Arquitetura do modelo RNC-10 . . . . . . . . . . . . . . . . . . . . . . 53
Figura 19 – Exemplo de curva ROC . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figura 20 – Etapas de execução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figura 21 – Matrizes de confusão comparando TDW e TWP . . . . . . . . . . . . . 59
Figura 22 – Matriz de confusão obtida com parametros da combinação 3 . . . . . . 61
Figura 23 – Matrizes de confusão para o modelo com SpecAugment e VAD . . . . . 62
Figura 24 – Matrizes de confusão para as bases EMODB, SAVEE e RAVDESS

utilizando TPW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figura 25 – Tempos de processamento médio por fold para as bases SAVEE, EMODB,

CORAA e RAVDESS . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figura 26 – Comparativo de desempenho entre TPW e TDW nas diferentes bases

de dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figura 27 – Comparativo de acurácia entre TPW e TDW nas bases EMODB, SAVEE

e RAVDESS por emoção . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figura 28 – Distribuição de tempo de aúdio no subconjunto de áudios validados do

SofiaFala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figura 29 – Distribuição das classificações de áudios em neutro e não neutro no

conjunto de dados SofiaFala . . . . . . . . . . . . . . . . . . . . . . . . 70





LISTA DE TABELAS

Tabela 1 – Critérios de inclusão e exclusão de trabalhos . . . . . . . . . . . . . . . 40
Tabela 2 – Número de trabalhos encontrados por biblioteca . . . . . . . . . . . . . 41
Tabela 3 – Resultado final do mapeamento sistemático . . . . . . . . . . . . . . . 43
Tabela 4 – Melhores resultados de acurácia encontrados nos estudos . . . . . . . . 44
Tabela 5 – Resultados de F1 score macro obtidos nos testes iniciais com espec-

trograma Mel de 128 mels, janela de 400 pontos e deslocamento de
200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Tabela 6 – Combinações de parâmetros testadas para a extração do espectrograma
Mel e TPW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Tabela 7 – Melhores resultados obtidos para cada combinação de parâmetros testados 60
Tabela 8 – Resultados de desempenho do modelo com SpecAugment e VAD . . . . 62
Tabela 9 – Melhores resultados obtidos para as bases EMODB, SAVEE e RAVDESS

utilizando a melhor combinação de parâmetros . . . . . . . . . . . . . 63
Tabela 10 – Acurácia por emoção nas bases EMODB, SAVEE e RAVDESS, utili-

zando TPW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Tabela 11 – Melhores resultados de F1 score obtidos na PROPOR 2022 . . . . . . . 68





LISTA DE ABREVIATURAS E SIGLAS

AE Autoencoder

CASIA Chinese Natural Emotional Database

EESDB Elderly Emotional Speech Database

EMODB Berlin Emotional Database

IA Inteligência Artificial

IEMOCAP Interactive Emotional Dyadic Motion Capture Database

LSTM Long Short-Term Memory

LSVM SVM linear

MFCC Coeficientes Cepstrais da Frequência Mel

PLN Processamento de Linguagem Natural

RAVDESS Ryerson Audio-Visual Database of Emotional Speech and Song

RCP Rede de Crença Profunda

RNA Rede Neural Artificial

RNC Rede Neural Convolucional

RNR Rede Neural Recorrente

RSVM SVM com função de base radial

SAVEE Survey Audio-Visual Expressed Emotion

SVM Support Vector Machine

TCW Transformada Contínua de Wavelet

TDW Transformada Discreta de Wavelet

TF Transformada de Fourier

TFCT Transformada de Fourier de Curto Tempo

TPW Transformada de Pacotes Wavelet

TW Transformada de Wavelet

VAD Detecção de Atividade de Voz





SUMÁRIO

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.1 Contextualização e Motivação . . . . . . . . . . . . . . . . . . . . . . 25
1.2 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3 Organização do texto . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 FUNDAMENTAÇÃO TEÓRICA . . . . . . . . . . . . . . . . . . . . 29
2.1 Aprendizado Profundo . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.1 Rede Neural Convolucional . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Reconhecimento de Emoção da Fala . . . . . . . . . . . . . . . . . . 33
2.2.1 Pré-processamento e Extração de Características de Emoção na Fala . . . . 34
2.3 Transformada de Wavelet . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Transformada de Pacotes de Wavelet . . . . . . . . . . . . . . . . . . . . 37

3 TRABALHOS RELACIONADOS . . . . . . . . . . . . . . . . . . . . 39

4 MATERIAIS E MÉTODOS . . . . . . . . . . . . . . . . . . . . . . . 45
4.1 Conjuntos de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.1 CORAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.2 SAVEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.3 RAVDESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.4 EMODB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.5 Base de Áudios do SofiaFala . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Ambiente de Execução e Ferramentas Utilizadas . . . . . . . . . . . 51
4.3 Pré-processamento de dados . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Modelo de Classificação . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Métricas de Avaliação de Modelos . . . . . . . . . . . . . . . . . . . . . . 53

5 EXPERIMENTOS E RESULTADOS . . . . . . . . . . . . . . . . . . 57
5.1 Realizando os experimentos . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Comparando a performance dos modelos . . . . . . . . . . . . . . . . 65
5.3 Aplicando o modelo no SofiaFala . . . . . . . . . . . . . . . . . . . . . 68

6 CONCLUSÕES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Referências . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75





25

1 INTRODUÇÃO

1.1 Contextualização e Motivação

Os estudos sobre linguagens são antigos, mas pertinentes até os dias de hoje. A
própria origem da fala é um tema muito relevante e possui algumas hipóteses consideráveis,
que podem descrevê-la de forma satisfatória. Da teoria de Chomsky da codificação da fala
em nosso genoma até as teorias que defendem uma origem empírica das línguas, entender
melhor o surgimento da nossa linguagem, assim como os assuntos relacionados, nos ajuda
até mesmo a entender o que é ser humano (FONTANARI, 2009).

A linguagem é um instrumento projetado, de forma engenhosa, para descrever
lugares, pessoas, objetos, eventos e até mesmo pensamentos e emoções. Utilizamos a
linguagem para criar experiências compartilhadas com outras pessoas. Ao compartilhar
nossas vivências e conhecimentos, podemos tornar a convivência, a aprendizagem, o
ensino, enfim, a comunicação mais eficiente (CORBALLIS, 2002). A comunicação é o
processo pelo qual as ideias da linguagem são transmitidas de uma pessoa a outra, seja de
forma verbal, escrita, ou por meio de gestos. A relação entre linguagem e comunicação é
interdependente: enquanto a linguagem fornece as ferramentas para organizar e expressar
pensamentos complexos, a comunicação utiliza essas ferramentas para garantir que a
mensagem seja transmitida com clareza, facilitando a compreensão e a interação entre as
pessoas(FONTANARI, 2009).

A comunicação desempenha um papel crucial em todas as esferas da vida, sejam
pessoal, profissional ou social. No ambiente de trabalho, a comunicação eficaz é fundamental
para o sucesso profissional. Ela permite a colaboração, promove a inovação e ajuda a
resolver conflitos. Assim como na vida pessoal, uma boa comunicação ajuda a manter
relacionamentos saudáveis e duradouros.

Muitas pessoas enfrentam dificuldades de comunicação, especialmente em relação à
fala, que transmite 38% das informações pelo tom de voz e 7% pelas palavras; enquanto os
outros 55% são expressos por meio da linguagem corporal (The World of Work Project,
2019). Isso demonstra a essencialidade da fala, não apenas pelo seu conteúdo linguístico,
mas também pelo impacto que exerce na transmissão de uma mensagem.

As dificuldades de fala podem resultar de diversas causas, como acidente vascular ce-
rebral, lesão cerebral, perda auditiva, atrasos no desenvolvimento, fissura palatina, paralisia
cerebral ou até questões emocionais ou do envelhecimento. Esses fatores estão associados
a questões médicas, genéticas, neurodesenvolvimentais, miofuncionais e linguísticas. As
dificuldades de fala podem ser categorizadas como funcionais (afetando aspectos motores
ou linguísticos) ou orgânicas (relacionadas a problemas neurológicos, estruturais, sensoriais
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ou perceptuais). Por exemplo, surdez e perda auditiva são impedimentos orgânicos na
produção de sons da fala, causados por distúrbios sensoriais ou perceptuais (OLIVEIRA;
GOULART; CHIARI, 2013). De modo geral, o termo transtorno de sons da fala refere-se a
dificuldades na percepção, produção motora de sons da fala (articulação) ou representação
fonológica dos sons e segmentos da fala.

Pessoas com histórico de transtornos de fala podem apresentar piores resultados
em diversos domínios, tais como comunicação, realização educacional e status ocupacional,
quando comparadas a seus pares sem deficiências (JOHNSON; BEITCHMAN; BROWNLIE,
2010). Problemas de fala afetam não só aqueles que os possuem, mas também podem afetar
a vida de pessoas próximas, como chefes, colegas de trabalho, amigos de escola e os próprios
pais de pessoas com distúrbios de fala (ARAS et al., 2014). Até mesmo a autopercepção
vocal do disfônico pode geral uma pior percepção sobre o impacto da disfonia em sua
qualidade de vida (KASAMA; BRASOLOTTO, 2007). Assim, o tratamento respeitoso e
personalizado de pessoas com transtornos de fala é crucial para promover a inclusão social,
proporcionando-lhes meios adequados para expressar suas ideias e contribuir plenamente
para a diversidade e riqueza da comunicação humana.

Procurar formas de auxiliar no tratamento de transtornos de fala é fundamental
para auxiliar as pessoas com deficiência de fala, oferecendo-lhes oportunidades de melhorar
sua comunicação, permitindo que expressem suas ideias de maneira mais inteligível.
Os tratamentos destes transtornos devem ser feitos com fonoaudiólogos. Contudo, o
treinamento com exercícios de fortalecimento de musculaturas da boca, da língua e de
treinamento fonético devem ser feitos, além do consultório do terapeuta. Normalmente,
esses exercícios são realizados em casa, no trabalho e em outros ambientes sem a presença do
profissional e servem de reforço à terapia realizada em consultório. Dado que se tem parte
do tratamento sendo feito longe da presença direta de um fonoaudiólogo, as tecnologias
assistivas podem ser muito úteis para auxiliar no tratamento de transtornos da fala. Nesse
contexto, o projeto o SofiaFala1 propõe soluções para auxiliar os profissionais da saúde no
acompanhamento de pessoas com deficiências de fala. O aplicativo SofiaFala foi utilizado
em diversos pacientes, de forma a agregar acompanhamento e métricas aos trabalhos
dos fonoaudiólogos, aumentando o potencial de análise em seus pacientes (RISSATO;
MACEDO, 2021; MACEDO et al., 2024).

Além dos exercícios tradicionais de fortalecimento e treinamento para fala, o uso de
tecnologias assistivas pode desempenhar um papel fundamental no apoio à comunicação.
Os sons capturados em áudio podem ser explorados de muitas formas, permitindo a
extração de diversas características que, por sua vez, podem ser utilizadas para aplicações
baseadas em fala humana. Essas ferramentas podem capturar a fala do usuário e permitir,
por exemplo, o monitoramento da qualidade vocal. A capacidade de reconhecer emoções e

1 http://dcm.ffclrp.usp.br/sofiafala/
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suas flutuações em áudio podem auxiliar, por exemplo, na identificação de frustração, e
assim, pode desempenhar um papel crucial no aprimoramento de produtos de software
destinados a apoiar processos de aprendizagem e treinamento (KOŁAKOWSKA et al.,
2014). Assim, ferramentas educacionais podem ser aprimoradas, por meio da compreensão
das emoções dos usuários, por exemplo. Um software poderia ser projetado para identificar
sinais de emoções negativas durante uma atividade, adaptando dinamicamente o nível de
dificuldade ou fornecendo sugestões personalizadas para ajudar o usuário. Isso poderia
aumentar sua eficácia e também melhorar a experiência do usuário. Outras tarefas dessas
aplicações incluem: reconhecimento de fala, aprimoramento de fala, reconhecimento de
locutor (e/ou gênero), detecção de atividade vocal, análise de fala patológica e também
reconhecimento de emoções (SHARMA; UMAPATHY; KRISHNAN, 2020).

Na literatura, existem diversos algoritmos de aprendizado de máquina que já foram
utilizados para o reconhecimento de emoções na fala. Desde modelos mais tradicionais,
como árvore de decisão, SVM (do inglês Support Vector Machine, ou Máquina de Vetores
de Suporte) e modelo de mistura gaussiana, até modelos de aprendizado profundo, como
redes neurais convolucionais, redes neurais recorrentes e redes neurais de autoencoder,
entre outros (Shah Fahad et al., 2021). A aplicação de redes neurais na identificação de
sentimentos pode ser complementada por técnicas adicionais que auxiliam na extração
de características dos áudios, tais como análise de frequência Mel, VAD (do inglês Voice
Activity Detection, ou Detecção de Atividade de Voz), e transformadas de Fourier e Wavelet.
Essas abordagens, assim como várias outras, podem aprimorar a qualidade do resultado
na análise de sentimentos, gerando um potencial considerável para pesquisa nas áreas
relacionadas ao reconhecimento de emoção na fala, com muitos trabalhos focados na
utilização de estratégias diferentes, por meio das técnicas complementares citadas. Em
uma pesquisa relacionada dentro do grupo no qual este trabalho está inserido, Vieira
(2023) utiliza a transformada de Wavelet contínua para reconhecimento da emoção na fala.
Em sua conclusão, Vieira (2023) conseguiu bons resultados (acurácia de 0,795 e F1 score
de 0,566 para base CORAA) e sugere a exploração de outras estratégias de transformada
de Wavelet.

1.2 Objetivos

O objetivo deste trabalho é desenvolver e avaliar um modelo de reconhecimento
de emoções na fala, aplicando técnicas de aprendizado profundo e a transformada de
pacotes Wavelet. Esse modelo foi avaliado, a partir do uso da base de dados CORAA
(MARCACINI; JUNIOR; CASANOVA, 2022) e, posteriormente, será aplicado na base de
dados de áudio do SofiaFala.
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1.3 Organização do texto

O trabalho está organizado da seguinte forma: Capítulo 2 faz uma revisão de
conceitos importantes relacionados ao tema do trabalho; Capítulo 3 faz um mapeamento
sistemático de trabalhos da literatura relacionados; Capítulo 4 descreve a metodologia
escolhida, as bases de dados utilizadas, pré-processamento e execução do modelo ; Capítulo
5 apresenta os testes realizados e seus resultados; Capítulo 6 encerra o trabalho destacando
os resultados-chave e sugere direções para futuras pesquisas.
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2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo introduz os conceitos teóricos que fundamentam este trabalho,
apresentando-os da seguinte forma: Na seção 2.1, são abordados conceitos de apren-
dizado profundo; Na seção 2.2, são abordados conceitos de reconhecimento de emoção
da fala e extração de características; por fim, na seção 2.3, a transformada de Wavelet é
apresentada.

2.1 Aprendizado Profundo

Sistemas de Inteligência Artificial (IA) podem ser criados exclusivamente com
conhecimento codificado e pré-programado, mas ao capacitar esses sistemas para adquirirem
conhecimento próprio ao identificar padrões em dados brutos, estamos falando do conceito
de aprendizado de máquina. A utilização dessa abordagem permite aos computadores lidar
com problemas do mundo real e tomar decisões, que podem até mesmo parecer ou ser
subjetivas (GOODFELLOW; BENGIO; COURVILLE, 2016).

O aprendizado de máquina é amplamente explorado na sociedade moderna em
diversas tarefas, abrangendo desde buscas na web até a filtragem de conteúdo em redes
sociais (LECUN; BENGIO; HINTON, 2015). Esses sistemas podem ser empregados para
identificação de objetos em imagens, transcrições de fala para texto, gerando resultados
relevantes e muitas outras aplicações (LECUN; BENGIO; HINTON, 2015). A resolução de
tarefas de IA frequentemente envolve a criação de um conjunto apropriado de características
a serem extraídas para a tarefa em questão, as quais são fornecidas a um algoritmo de
aprendizado de máquina (GOODFELLOW; BENGIO; COURVILLE, 2016).

Dado que as técnicas tradicionais de aprendizado de máquina enfrentam limitações
em lidar com dados de linguagem natural de forma bruta, as Redes Neurais Artificiais
(RNA) surgiram como uma solução. Essas redes são compostas por neurônios artificiais
organizados em camadas, capazes de aprender representações de dados complexos por meio
de conexões otimizadas. Por muito tempo, uma das poucas formas de trabalhar com dados
brutos foi através da construção de sistemas como as RNA, capazes de identificar padrões
nesses dados e extrair suas características, criando uma representação mais adequada
das informações (LECUN; BENGIO; HINTON, 2015). Uma solução para esse problema
é usar o aprendizado de máquina para descobrir não apenas a saída, mas também a
própria representação dos dados (GOODFELLOW; BENGIO; COURVILLE, 2016). As
representações aprendidas frequentemente resultam em desempenho muito melhor do que
pode ser obtido com representações projetadas manualmente, segundo (GOODFELLOW;
BENGIO; COURVILLE, 2016). Assim, o aprendizado de representação é um conjunto de
métodos que permite que uma máquina receba dados brutos e descubra automaticamente
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as representações necessárias para tarefas como detecção e classificação (LECUN; BENGIO;
HINTON, 2015).

Uma dificuldade em muitas aplicações de IA é que muitos fatores influenciam cada
pedaço de dados observados. Ao analisar gravações de fala, pode-se observar, por exemplo,
o sexo, a idade e até mesmo o sotaque do falante. Contudo, extrair estas características
de alto nível de dados brutos não é uma tarefa trivial (GOODFELLOW; BENGIO;
COURVILLE, 2016, pp.2-26).

O aprendizado profundo aborda o desafio de representar múltiplos fatores de varia-
ção, criando e permitindo que a máquina aprenda representações mais complexas a partir
de mais simples (GOODFELLOW; BENGIO; COURVILLE, 2016, pp.2-26). O método
pode ser descrito como um conjunto de etapas de aprendizado de representação com vários
níveis de representação (LECUN; BENGIO; HINTON, 2015). Assim, o método começa
com módulos não lineares simples, que transformam gradualmente a representação inicial
dos dados brutos em níveis mais altos e abstratos, capazes de capturar características mais
complexas e refinadas dos dados (LECUN; BENGIO; HINTON, 2015). Dessa forma, o
aprendizado profundo é um subconjunto do aprendizado de máquina, que utiliza uma cas-
cata de múltiplas camadas de transformações para aprender funções complexas (SHINDE;
SHAH, 2018).

O aprendizado profundo é capaz de descobrir estruturas complexas em grandes
conjuntos de dados, utilizando um algoritmo de retropropagação. Este algoritmo vai
indicar como o computador deve alterar seus parâmetros internos, de modo a calcular a
representação em cada camada com base na representação da camada anterior (LECUN;
BENGIO; HINTON, 2015). Este tipo de IA ganhou destaque nos últimos tempos, não
apenas por sua capacidade de trabalhar com conjuntos de dados complexos, mas também
pelo aumento significativo de capacidade de processamento de microchips e redução
considerável no custo de hardware de computação (SHINDE; SHAH, 2018). Esses avanços
permitiram a criação e utilização de diversas técnicas diferentes de aprendizado profundo,
como Autoencoder (AE), Rede de Crença Profunda (RCP), Rede Neural Convolucional
(RNC), Rede Neural Recorrente (RNR) e muitas outras (SHINDE; SHAH, 2018). Existem
também diversas estruturas que podem ser utilizadas para implementação de técnicas de
Aprendizado Profundo como, por exemplo, TensorFlow (da empresa Google) e PyTorch
(da empresa Facebook). As estruturas assim como as técnicas são selecionadas, de acordo
com o tipo de problema a ser resolvido e a plataforma usadas para desenvolver as soluções
(SHINDE; SHAH, 2018).

As aplicações convencionais de Aprendizado Profundo abrangem diferentes áreas
da Ciência da Computação como visão computacional, predição, análise semântica e
processamento de linguagem natural. Dentro da visão computacional, existem sub áreas
como detecção de objetos, reconhecimento de imagens e também reconhecimento e pro-
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cessamento de áudios (SHINDE; SHAH, 2018). A utilização de aprendizado profundo
melhorou, de forma significativa, o estado da arte no reconhecimento de voz, uma vez
que a utilização de RNC trouxe grande avanço para o processamento de voz e imagem
(LECUN; BENGIO; HINTON, 2015).

2.1.1 Rede Neural Convolucional

Uma RNC é um tipo de RNA bem conhecido, composto por neurônios que
se otimizam automaticamente durante o processo de aprendizado, assim como outras
RNAs.(O’SHEA; NASH, 2015). Da mesma forma que a RNA tradicional, os neurônios
vão receber uma entrada e realizar uma operação, mas a RNC utiliza uma operação
matemática linear entre as matrizes chamada de convolução (GOODFELLOW; BENGIO;
COURVILLE, 2016). A RNC recebe esse nome por utilizar a convolução (em vez da multi-
plicação geral de matrizes) em pelo menos uma de suas camadas (ALBAWI; MOHAMMED;
AL-ZAWI, 2017). De forma resumida, a convolução é uma operação matemática no qual
um filtro (ou kernel) desliza sobre a entrada, multiplicando e somando os valores da
entrada pelo filtro em cada posição em que ele foi aplicado (GOODFELLOW; BENGIO;
COURVILLE, 2016).

Uma RNC é um tipo de rede neural especializada para processar dados com topolo-
gia semelhante a uma grade, como dados de séries temporais de uma dimensão ou mesmo
imagens cujos os pixels formam uma grade bidimensional (GOODFELLOW; BENGIO;
COURVILLE, 2016). Uma das grandes vantagens da utilização da RNC em relação às
redes neurais tradicionais é a redução do número de parâmetros necessários, possibili-
tando abordar modelos maiores para resolver tarefas mais complexas (GOODFELLOW;
BENGIO; COURVILLE, 2016).

Uma RNC é composta de três tipos de camadas: Convolucional, Pooling e Densa
(totalmente conectada); ao empilhar estas camadas, uma arquitetura de RNC é criada
(O’SHEA; NASH, 2015). A primeira camada da RNC, assim como outras RNAs, é composta
apenas pelos dados de entrada. Os demais tipos de camadas são definidos, de acordo com a
arquitetura desejada. Um exemplo de arquitetura de RNC pode ser visto na Figura 1, onde
à esquerda está representada a entrada de dados correspondente a uma imagem de tamanho
128x128 com 1 canal. Na sequência, uma série de camadas convolucionais é aplicada para
extrair as características mais relevantes da imagem, seguidas por camadas de pooling,
responsáveis por reduzir a dimensionalidade dos dados. Na parte final da arquitetura, uma
camada totalmente conectada (densa) é utilizada para realizar as predições finais.

A camada convolucional é fundamental para criação de uma RNC, seus parâmetros
são definidos nos kernels, que funcionam como filtros de pequena dimensão que se estendem
por toda profundidade de entrada (O’SHEA; NASH, 2015). Os parâmetros destes filtros
são aprendidos, durante o treinamento, e, quando os dados alcançam essa camada, ela
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Figura 1 – Exemplo de arquitetura de RNC

Fonte: Adaptado de Montalbo and Alon (2021)

aplica a convolução a cada filtro resultando na geração de um mapa de ativação (O’SHEA;
NASH, 2015). Esse processo permite que cada neurônio em uma camada convolucional
esteja conectado apenas a uma pequena região de entrada (campo receptivo), permitindo
que a rede aprenda características específicas nessas posições (O’SHEA; NASH, 2015). Um
exemplo do kernel de convolução em ação pode ser observado na Figura 2. À esquerda,
tem-se um kernel de convolução de tamanho 3x3 que é aplicado sobre uma matriz de
entrada representada no campo receptivo. Na primeira convolução, o kernel percorre a
matriz de entrada e gera uma saída, obtida a partir da soma ponderada dos valores do
kernel e da região correspondente da matriz de entrada. O processo continua até que o
kernel tenha percorrido todo o campo receptivo, gerando uma matriz de resultados após a
nona convolução.

Outra característica importante dessas camadas DA RNC é a redução significativa
da complexidade do modelo, por meio dos seguintes três hiperparâmetros: profundidade,
passo (stride) e zero-padding.

Figura 2 – Exemplo de kernel de convolucao em ação

Fonte: Adaptado de Gu et al. (2021)

As camadas de pooling são utilizadas para reduzir os tamanhos das saídas (down-
sampling) das camadas de convolução, otimizando a carga computacional (ZHANG; LEE;
LIU, 2024). Visto de uma ótica de processamento de imagem, o uso da camada de pooling
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realiza um efeito similar a reduzir a resolução de uma imagem (ALBAWI; MOHAMMED;
AL-ZAWI, 2017). Um dos métodos mais comuns de pooling, o max-pooling, pode ser visto
na Figura 3. Divide-se a imagem em sub-regiões e retorna o valor máximo encontrado em
cada sub-região.

Figura 3 – Exemplo de max-pooling de filtro 2x2 e stride = 2

Fonte: Adaptado de Zhang, Lee and Liu (2024)

A última camada de pooling é responsável por transformar a matriz multidimensio-
nal em um vetor unidimensional. Esse vetor unidimensional segue para a camada densa
(totalmente conectada), responsável por gerar um vetor que representa a probabilidade de
uma característica pertencer a uma classe determinada (ZHANG; LEE; LIU, 2024). Essa
camada recebe esse nome, pois todos os neurônios na camada densa são conectados aos
neurônios da camada anterior. Essa camada funciona de forma análoga a redes neurais
tradicionais, e também utiliza uma função de ativação para introduzir a não linearidade
e aprender padrões mais complexos (O’SHEA; NASH, 2015). Um exemplo da camada
densa pode ser observado no final da Figura 1, após a última camada de pooling. No
exemplo citado, após a saída da última camada de pooling, os mapas de características
são achatados em um vetor unidimensional. Esse vetor é então conectado diretamente aos
neurônios da camada densa, formando uma rede neural tradicional responsável por gerar
as predições.

2.2 Reconhecimento de Emoção da Fala

As emoções podem ser descritas como um estado psicológico da combinação entre
a experiência subjetiva, a resposta física e comportamental (LALITHA et al., 2015). Elas
desempenham um papel muito importante nas tomadas de decisões diárias e são uma das
formas de entender o estado psicológico de uma pessoa. As emoções podem ser expressadas,
por meio de expressões faciais, linguagem corporal e também pela fala. Analogamente, a
identificação de emoções pode ser abordada de diversas formas, como análise de expressões
faciais, análise de fala ou mesmo uma abordagem em conjunto das duas (LALITHA et al.,
2015). Deste modo, o reconhecimento de emoções na própria fala pode ser feito extraindo
determinadas características de um sinal de áudio ou de um sinal visual.

Os tipos de emoções reconhecidas podem ser definidos, por meio de distintos
modelos emocionais. Um dos modelos mais influentes no campo das emoções é o de Ekman
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(1992), que, com base em estudos de expressões faciais em diferentes culturas e países,
propôs a caracterização de seis emoções universais: tristeza, raiva, alegria, medo, surpresa e
nojo. No entanto, mesmo com uma definição de emoções universais, nem todos os modelos
seguem fielmente essa classificação. A escolha de um conjunto específico de emoções é
uma etapa essencial para qualquer análise emocional, permitindo que as emoções sejam
organizadas em escores, classificações ou dimensões, conforme a necessidade do modelo
(WANI et al., 2021). Essas emoções podem ser agrupadas de acordo com a intensidade e o
tipo, ou classificadas de forma mais detalhada, dependendo do objetivo da análise.

Outro aspecto a ser considerado, em relação à decisão sobre os tipos de emoções
analisadas, é a dependência do corpus linguístico e de suas marcações. As bases de dados
utilizadas para marcação de emoções podem sofrer variação por diversos motivos, como
cultura, língua, gênero e situação. A emoção é um conjunto complexo de variáveis e sua
análise depende diretamente da qualidade do conjunto de dados, e caso suas marcações
estiverem comprometidas as conclusões tiradas dela podem ser incorretas (WANI et al.,
2021). Os bancos de dados criados para marcação de emoção na fala variam de acordo
com seus objetivos, mas podem ser organizados em três tipos de fala: espontânea, atuada
e provocada (WANI et al., 2021). A fala espontânea, como o próprio nome já diz, é
caracterizada pela espontaneidade do indivíduo que apresentou a emoção, em que muitas
vezes o áudio é analisado sem que a pessoa que gravou o perceba. Já a atuada é um tipo
de fala que atores e artistas profissionais simulam a emoção. Por fim, a fala provocada
consiste em provocar ou induzir a emoção, por meio de alguma situação, e assim registrar
a emoção.

2.2.1 Pré-processamento e Extração de Características de Emoção na Fala

O Processamento de Linguagem Natural (PLN) é uma área da Ciência da Com-
putação que utiliza técnicas computacionais para interpretar e manipular o conteúdo
da linguagem humana (HIRSCHBERG; MANNING, 2015). Entre os focos de estudo do
PLN tem-se o desenvolvimento de tecnologias como tradução automática, a síntese e o
reconhecimento de fala e de sentimentos (HIRSCHBERG; MANNING, 2015). Em alguns
casos, a utilização dessas tecnologias pode ajudar a deixar a interação entre humanos e
máquinas mais natural, uma vez que o computador pode reconhecer um estado emocional
da mesma forma que um humano (KHAN, 2016).

A identificação do sentimento e emoções de uma pessoa em relação a determinados
produtos ou serviços também pode ser muito importante para a melhoria dos mesmos.
Além disso, essa abordagem pode ser utilizada para melhorar a experiência e o tratamento
de pessoas que enfrentam dificuldades na comunicação.

Uma forma de abordar o reconhecimento de emoções em fala é por meio de técnicas
de PLN, que permitem tratar e manipular dados de forma a identificar padrões emocionais.
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Um sistema de reconhecimento de fala pode ser separado em três etapas: pré-processamento,
extração de características e classificação da emoção (MADANIAN et al., 2023). Após
obter os dados, o pré-processamento é a primeira etapa do processo de reconhecimento de
emoção da fala. Nessa etapa, os dados podem passar por algumas fases como: ajuste de
frequências, normalização do volume, remoção de ruídos, aumento sintético de dados e
outros processos responsáveis por normalizar as características (WANI et al., 2021). Deste
modo, as variações nas gravações de áudio não afetam o processo de reconhecimento da
emoção.

Os ajustes de frequência são realizados, pois componentes de alta frequência
são geralmente considerados redundantes, podendo ser utilizados filtros para remover
frequências desnecessárias (Rí; CIARDI; CONCI, 2023). Já a normalização do volume
é uma metodologia para ajustar o áudio de forma a padronizá-lo em todas as amostras
(WANI et al., 2021). Essa normalização também pode incluir ajustes de trimming ou
padding para que todos os áudios fiquem do mesmo tamanho. Trimming refere-se ao corte
do áudio para ajustá-lo a um comprimento específico, enquanto padding envolve adicionar
silêncio (ou zeros) ao áudio para alcançar o comprimento desejado (Rí; CIARDI; CONCI,
2023).

Muitas vezes, o ambiente de geração dos áudios pode ter ruídos e outras interferên-
cias indesejadas. Consequentemente, a remoção de ruido é um processo muito comum na
análise de sinais de fala e pode afetar de forma crítica a acurácia dos modelos (WANI et
al., 2021). Uma das formas de remover ruído, e melhorar a interpretação de emoções nos
sinais de áudio, é por meio da divisão dos sinais em quadros fixos juntamente com uma
função de janela. Estes processos são conhecidos como framing e windowing e ajudam a
reduzir vazamentos espectrais e eliminar descontinuidades (MADANIAN et al., 2023).

Em uma linha muito próxima da redução de ruído, a detecção de ativação por voz
(Voice Activity Detection) também é muito utilizada para detectar silêncios, fala com voz e
fala sem voz (partes da fala sem a utilização de cordas vocais) (WANI et al., 2021). Como
muitas vezes os dados são limitados, outro processo muito comum no pré-processamento é
o aumento sintético de dados (Data Augmentation), nos sinais do conjunto de dados de
treino (Rí; CIARDI; CONCI, 2023).

Uma das fases cruciais no reconhecimento de emoções é a seleção de características e
seu dimensionamento (WANI et al., 2021). A seleção de técnicas é fundamental para evitar
problemas de alta dimensionalidade, aumento no tempo de treinamento e sobre-ajuste
(overfitting) dos classificadores (WANI et al., 2021). Assim, a eficiência e as taxas de
predição do sistema vão depender do classificador utilizado, e também das características
extraídas (KHAN, 2016).

Uma das técnicas clássicas mais utilizadas para extração de características de fala
é o Coeficiente Cepstral de Frequência Mel (MFCC, na sigla em inglês). A técnica extrai
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características espectrais de um sinal de áudio representativo do trato vocal, por meio da
transformada de Fourier (WANI et al., 2021). A utilização da escala Mel é importante, pois
ela se aproxima melhor da percepção humana da voz em comparação a escalas lineares
(VENKATARAMANAN; RAJAMOHAN, 2019). O mel-espectrograma é uma representação
do sinal de áudio em uma escala Mel que corresponde à representação de tempo versus
frequência log-mel, que foi obtida durante o cálculo dos MFCC’s (VENKATARAMANAN;
RAJAMOHAN, 2019). Uma vez que o espectrograma em escala Mel (assim como MFCC’s)
pode ser representado como imagem, essas imagens podem ser utilizadas como entrada
de dados para redes de aprendizado profundo (VENKATARAMANAN; RAJAMOHAN,
2019).

A extração de características pode ser feita de diversas formas, podendo ser com
métodos mais clássicos, obtendo características acústicas (frequência fundamental, intensi-
dade, taxa de variação espectral e etc.) juntamente com características prosódicas (ritmo,
pausas na fala e duração de fonemas) (MADANIAN et al., 2023). A extração de caracterís-
ticas pode ser feita também com técnicas mais recentes, que trabalham com transformada
de Fourier ou transformada de Wavelet para uma análise de tempo e frequência juntamente
com análise de espectrogramas (MADANIAN et al., 2023).

A transformada de Fourier é uma das técnica mais utilizadas no processamento de
sinais para revelar a composição de frequência de uma série temporal transformando-a
do domínio do tempo para o domínio da frequência (GAO; YAN, 2010). Apesar de ser
muito utilizada na Ciência da Computação e na Engenharia, a transformada tem suas
limitações. Para a análise de sinais no domínio tempo-frequência, a transformada de
Fourier não oferece informações locais sobre o sinal, o que é uma limitação significativa
(SIFUZZAMAN; ISLAM; ALI, 2009). Para solucionar este problema, Dennis Gabor
introduziu a transformada de Fourier com janela, também conhecida como Transformada
de Fourier de Curto Tempo (TFCT) (SIFUZZAMAN; ISLAM; ALI, 2009). Essa abordagem
envolve a utilização de uma janela de análise de tamanho específico que se move através do
sinal ao longo do eixo do tempo, permitindo a realização de uma transformada de Fourier
localizada temporalmente (GAO; YAN, 2010).

Mesmo sendo capaz de representar temporalmente as frequências, a transformada
de Fourier de curto tempo também é limitada pelo princípio da incerteza de Heisenberg,
que implica um compromisso entre a resolução temporal e a frequência (GAO; YAN, 2010).
Dessa forma, quanto maior a precisão no tempo, menor será a precisão na frequência e
vice versa. A escolha do tamanho da janela influencia diretamente na resolução temporal
e de frequência, e escolher o tamanho ideal não é uma tarefa trivial. Por esse motivo, os
pesquisadores têm buscado técnicas mais adequadas para analisar sinais não estacionários
(GAO; YAN, 2010). Dentro deste cenário, a transformada de Wavelet se mostra como uma
das possíveis soluções para esse problema.
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2.3 Transformada de Wavelet

A Transformada de Wavelet (TW) é uma técnica matemática que converte um sinal
em uma forma diferente, assim como a TFCT. O termo TW é um termo genérico, uma
vez que existem diferentes formas de fazer essa transformada. Entre as mais conhecidas,
tem-se a Transformada de Wavelet Continua (TWC) e a Transformada Discreta de Wavelet
(TDW) (GUIDO et al., 2020). A transformada utiliza uma função para converter um
sinal de entrada s(t) , onde t é o tempo para o domínio de tempo-frequência. A função
utilizada para fazer essa operação é conhecida como Wavelet mãe ψ(x) (GUIDO et al.,
2020). Segundo Guido et al. (2020), uma TWC pode ser descrita pela seguinte equação:

TCW (a, b) = 1√
a

∫ ∞

−∞
s(t)ψ

(
t− b

a

)
dt, a > 0, b ∈ R (2.1)

Na Equação 2.1, a é um parâmetro de escala de contração (ou dilatação), enquanto
b é é um parâmetro de deslocamento. O princípio de funcionamento da TW é baseado na
correlação entre o sinal de entrada e o número infinito de possibilidades de dilatação e
translação da função de onda mãe, à medida que a e b variam (GUIDO et al., 2020). Isso
captura o suporte temporal das frequências presentes no sinal, permitindo uma análise
detalhada do comportamento do sinal em diferentes escalas de tempo e frequência (GUIDO
et al., 2020).

As operações TFCT e TWC compartilham propriedades matemáticas semelhantes.
Ambas as funções de base são localizadas em frequência e a matriz de transformação
inversa é a transposta da matriz original (GRAPS, 1995). Isso as torna transformações
que podem ser vistas como rotações no espaço de funções para um domínio diferente
(GRAPS, 1995). No caso da TFCT, esse novo domínio contém funções de base que são
senos e cossenos, enquanto a TW contém uma função de base mais complexa (GRAPS,
1995).

Outra informação importante da TDW é em relação a seus parâmetros de contração
e deslocamento. Eles podem variar continuamente, gerando informações redundantes
(GAO; YAN, 2010). Uma forma de reduzir a redundância nos coeficientes de wavelet, sem
comprometer a informação do sinal original, é empregar uma abordagem que utilize valores
discretos nos parâmetros de escala e translação (GAO; YAN, 2010). Essa transformação
para valores discretos é responsável por gerar a TDW. Diferentemente da TWC, para a
TDW, é necessário utilizar um par de filtros de alta e baixa passagem para separar o sinal
contínuo (GUIDO et al., 2020).

2.3.1 Transformada de Pacotes de Wavelet

Embora a TDW ofereça uma resolução flexível no domínio tempo-frequência, ela
apresenta uma resolução relativamente baixa na região de alta frequência. Essa limitação
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dificulta a diferenciação de componentes de alta frequência (GAO; YAN, 2010). Na
transformada de pacotes de wavelet (TPW), o sinal é decomposto em um conjunto mais
amplo de sub-bandas de frequência. Isso permite uma decomposição ainda maior na região
de alta frequência, superando o problema de resolução da TDW (GAO; YAN, 2010). A
diferença na decomposição do sinal pode ser observada na Figura 4, na qual as caixas de
filtro azuis representam o máximo da decomposição da TDW, e as caixas de filtro verdes
representam os ganhos de decomposição nas regiões de alta frequência, obtidos pela TPW.

Figura 4 – Exemplo de comparação entre TDW e TWP

Fonte: Autoria própria

A TPW proporciona uma análise em múltiplos níveis, decompondo o sinal tanto
em componentes de baixa quanto de alta frequência, o que resulta em uma resolução
mais precisa no domínio da frequência em comparação à TDW. Com a TPW, há uma
flexibilidade adicional na escolha de funções wavelet em diferentes escalas e frequências,
permitindo adaptar a base de decomposição ao conteúdo específico do sinal. Isso possibilita
uma análise mais detalhada e eficiente para capturar padrões oscilatórios ou periódicos,
particularmente úteis em áudios de fala, onde as variações frequenciais rápidas exigem um
tratamento mais refinado (GOKHALE; KHANDUJA, 2010).

A TDW é capaz de destacar mudanças instantâneas na evolução espectral, sendo
essa uma característica estendida pela TPW, tornando essas transformadas alternativas
para decompor ou reconstruir sinais de áudio (Shah Fahad et al., 2021). Essa técnica
auxilia na análise mais adequada dos detalhes e mudanças rápidas em áudios de fala, o
que pode ser difícil de ser realizado com a TFCT (Shah Fahad et al., 2021). Ainda assim,
a TW sofre devido à sua natureza linear e não adaptativa, possibilitando interpretações
incorretas dos dados (Shah Fahad et al., 2021). Dessa forma, características obtidas pela
TW são úteis para classificação de emoções. No entanto, é necessário selecionar uma
wavelet adequada para o reconhecimento de emoções, segundo (Shah Fahad et al., 2021).
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3 TRABALHOS RELACIONADOS

Na literatura, muitos estudos tratam do reconhecimento de emoções na fala,
variando em suas abordagens, desde a escolha dos dados até o uso de modelos de inteligência
artificial e atributos extraídos dos áudios para treinamento. O reconhecimento de emoção
na fala pode ser abordado de diversas formas. A utilização da Transformada de Pacotes
de Wavelet (TPW), dentro deste cenário relativamente recente, possui poucos resultados
publicados na literatura. Para entender o uso de TPW em reconhecimento de fala na
literatura, foi realizado um mapeamento sistemático.

O processo de mapeamento foi conduzido em várias etapas, visando uma compre-
ensão abrangente do tema. Foi utilizada a ferramenta on-line Parsifal 1 para auxiliar na
organização e desenvolvimento da pesquisa. Essa ferramenta foi utilizada na definição
das perguntas de pesquisa, objetivando criar uma string de busca adequada e fazer a
triagem dos trabalhos. Após essas etapas, os trabalhos mais relevantes foram analisados e
os resultados apresentados nessa seção.

Para encontrar na literatura os trabalhos de reconhecimento de emoção na fala que
utilizam a TPW juntamente com algoritmos de aprendizado profundo, foram criadas três
perguntas principais:

• “Qual algoritmo de aprendizado de máquina foi utilizado?”

• “Qual família de wavelet mãe foi utilizada?”

• “Qual conjunto de dados foi utilizado para o desenvolvimento do modelo?”

Para encontrar trabalhos relacionados e relevantes ao tema, as bibliotecas digitais
ACM Digital Library, El Compendex (Engineering Village), IEEE Digital Library, ISI
Web of Science, PubMed, ScienceDirect e Scopus foram selecionadas para as buscas. Os
critérios para incluir ou excluir os trabalhos encontrados nas bibliotecas são mostrados
na Tabela 1. Além desses critérios para validar os resultados encontrados pelas buscas,
três artigos encontrados no mapeamento sistemático realizado por (VIEIRA, 2023) foram
escolhidos para balizar o refinamento da string de busca. Os trabalhos escolhidos para
balizamento foram (FENG; YANG, 2018), (MENG et al., 2021), e (HUANG et al., 2019).
Eles se enquadram perfeitamente aos objetivos do mapeamento realizado, uma vez que
ratam de reconhecimento de emoção da fala utilizando TPW em modelos de aprendizado
profundo.
1 https://parsif.al/
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Tabela 1 – Critérios de inclusão e exclusão de trabalhos

Critério de Inclusão Critério de Exclusão

Estudos que utilizam a TPW e aprendizado de
máquina para reconhecimento de emoção na
fala.

Capítulos de livro, pôsteres, páginas da web e
slides.

Estudos anteriores a 2014.
Estudos duplicados.
Estudos secundários.
Fora do tema de pesquisa.
Estudo que não utiliza áudio.
Não trata de reconhecimento de emoção na
fala.
Não utiliza a TPW.
Não utiliza aprendizado de máquina.
Sem acesso.
Teses, Monografias e Dissertações.

Fonte: Autoria própria

Para realizar as buscas, foi criada a seguinte string principal: (“speech emotion
recognition” OR “ser” OR “speech emotion classification” OR “speech emotion detection”)
AND (“deep learning” OR “CNN” OR “DNN” OR “LSTM” OR “MLP” OR “deep
network” OR “machine learning” OR “neural network”) AND (“wavelet packet” OR
“WPD” OR “wavelet packet analysis” OR “wavelet packet decomposition” OR “wavelet
packet transform”). Essa string foi refinada, levando em consideração os três artigos
iniciais, e foi utilizada para a maioria das pesquisas, exceto para as bibliotecas PubMed
e ScienceDirect. Essas bibliotecas possuem limitações quanto ao tamanho das strings,
impedindo a utilização da string principal, e por esse motivo foram criadas duas novas
strings para essas bibliotecas. Para ScienceDirect foi utilizada a string (“speech emotion
recognition” OR “ser” OR “speech emotion”) AND (“CNN” OR “DNN” OR “LSTM” OR
“MLP” OR “machine learning”) AND (“wavelet packet” OR “WPD”), e para PubMed
(speech emotion recognition OR ser OR emotion recognition) AND (wavelet packet OR
WPD).

As strings utilizadas ajustam a abrangência da busca de acordo com a natureza de
cada repositório. A string principal utilizada nas buscas é a mais abrangente e inclui termos
relacionados ao reconhecimento de emoções na fala, a uma ampla gama de técnicas de
aprendizado profundo e aprendizado de máquina, bem como à análise por TPW. Essa string
é projetada para cobrir o maior espectro possível de pesquisas nas áreas de interesse. Dessa
string principal derivam duas versões mais específicas. A string utilizada para ScienceDirect
mantém o foco no reconhecimento de emoções na fala e aprendizado de máquina, além da
análise de TPW. Por sua vez, a string para PubMed é ainda mais simplificada, focando
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apenas em reconhecimento de emoções na fala e TPW, sem mencionar técnicas específicas
de aprendizado de máquina. Além das strings outro critério de busca utilizado foi filtrar
trabalhos publicados a partir de 2014. As buscas nas bibliotecas foram realizadas no dia
18/02/2024, e as quantidades de artigos recuperados por bibliotecas científicas digitais
buscadas são apresentadas na Tabela 2. A diferença entre os números apresentados se
justifica pela natureza de cada repositório e no caso de PubMed e ScienceDirect, pelas
diferentes strings utilizadas. O maior número de estudos foi encontrado na ScienceDirect,
base multidisciplinar com menos termos na string de busca.

Tabela 2 – Número de trabalhos encontrados por biblioteca

Biblioteca N° de trabalhos encontrados

ACM Digital Library 13
El Compendex 26

IEEE Digital Library 3
ISI Web of Science 7

PubMed 13
ScienceDirect 50

Scopus 8

Total 120

Fonte: Autoria própria

A primeira fase de triagem foi feita considerando critérios de exclusão que poderiam
ser analisados sem necessidade de ler o resumo das publicações. Os critérios analisados para
primeira etapa foram: estudos duplicados, estudos fora do assunto e estudos secundários.
Na Figura 5, é possível observar que aproximadamente 30% dos trabalhos foram aceitos
para a segunda etapa de triagem.

Figura 5 – Número de trabalhos aceitos e rejeitados por etapa de triagem

Fonte: Autoria própria

A segunda etapa de triagem foi realizada considerando critérios que necessitariam
de mais informações sobre os trabalhos, portanto, foi necessária a leitura e a análise de
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palavras-chave e o resumo de cada artigo. Os critérios analisados para segunda etapa
foram: trabalhos que não utilizam TPW, trabalhos que não tratam de reconhecimento de
emoção na fala, e trabalhos que não utilizam dados de áudio. Ao final da segunda triagem,
também observada na Figura 5, somente 10 estudos (8% do total inicial) passaram pelos
critérios. Na Figura 6, é mostrado o número de trabalhos rejeitados pelos seus respectivos
critérios.

Figura 6 – Número de trabalhos rejeitados por critério de exclusão

Fonte: Autoria própria

No último processo de triagem, realizou-se mais um filtro de data, garantindo que
os estudos encontrados não fossem precedentes aos três artigos utilizados para validação
citados, reduzindo o período avaliado a trabalhos mais recentes. Isso implicou em um filtro
de estudos não anteriores a 2018, resultando na remoção de três trabalhos. Uma observação
importante sobre os três trabalhos iniciais foi a descoberta de que o trabalho de (HUANG
et al., 2019) havia sido publicado anteriormente em 2016 com pequenas mudanças no
texto, e por este motivo esse trabalho acabou por não aparecer na última etapa de triagem.
Somente dois trabalhos não identificaram a família de wavelet mãe utilizada. Por este
motivo, somente os trabalhos anteriores ao novo filtro de data foram removidos, chegando
a um total final de seis trabalhos (5% do total inicial). O resultado final do mapeamento
sistemático é apresentado na Tabela 3 , mostrando os modelos utilizados, família de wavelet
mãe e bancos de dados utilizados no treino.

Ficou evidente que existem poucos estudos relacionados ao tema de pesquisa deste
trabalho. Dentre os trabalhos encontrados, a maioria utiliza a família de wavelet mãe
Daubechies e diferentes tipos de modelos e bases de dados. Em relação ao aprendizado de
máquina, são encontrados modelos de RCN, Long Short-Term Memory (LSTM), Support
Vector Machine (SVM) e até mesmo árvore de decisão (junto com SVM). Entre as bases
de dados de treino, a base Berlin Emotional Database (EMODB) (BURKHARDT et al.,
2005) ganhou destaque, pois foi utilizada em quatro dos seis estudos. Além da EMODB
também são citadas e utilizadas as bases Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) (LIVINGSTONE; RUSSO, 2018), Survey Audio-Visual
Expressed Emotion (SAVEE) (JACKSON; HAQ, 2011), Interactive Emotional Dyadic
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Tabela 3 – Resultado final do mapeamento sistemático

Estudo Wavelet Mãe Modelos utilizados Banco de dados
utilizado

(BHANGALE;
KOTHANDARA-
MAN, 2023)

Daubechies RNC 1D EMODB, RAVDESS

(FENG; YANG,
2018)

Daubechies Long Short-Term Memory
(LSTM)

CASIA

(WANG; HUO,
2019)

- Support Vector Machine
(SVM)

CASIA

(PALO; SUBUDHI-
RAY; DAS, 2023)

- Árvore de Decisão, SVM EMODB, SAVEE

(MENG et al.,
2021)

Daubechies LSTM bidirecional com
atenção

EMODB, IEMOCAP

(WANG et al.,
2020)

Daubechies SVM linear (LSVM), SVM
com função de base radial
(RSVM)

EMODB, EESDB

Fonte: Autoria própria

Motion Capture Database (IEMOCAP) (BUSSO et al., 2008), Elderly Emotional Speech
Database (EESDB) (WANG, 2018) e Chinese Natural Emotional Database (CASIA) (BAO
et al., 2014).

Os resultados apresentados na Tabela 4 mostram as melhores acurácias encontradas
em diferentes estudos e bases de dados. Destacam-se as altas acurácias alcançadas em alguns
estudos, como 98,18% no SAVEE e 97,95% no EMODB, conforme (PALO; SUBUDHIRAY;
DAS, 2023). Esses resultados indicam a eficácia das técnicas aplicadas em determinadas
bases de dados. No entanto, é importante ressaltar que a comparação direta dos resultados é
dificultada pela diversidade de técnicas empregadas em cada estudo. Cada abordagem pode
utilizar diferentes algoritmos de aprendizado profundo, métodos de pré-processamento e
técnicas de extração de características. Essa variabilidade dificulta determinar qual técnica
ou configuração é superior de forma geral. Apesar dos resultados terem boa acurácia, a
quantidade de trabalhos encontrados pode sugerir um desafio na aplicação da técnica
TPW para reconhecimento de emoções na fala.
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Tabela 4 – Melhores resultados de acurácia encontrados nos estudos

Estudo Banco utilizado Melhor acurácia

(BHANGALE; KOTHANDARAMAN, 2023) RAVDESS 94,18%
EMODB 93,31%

(FENG; YANG, 2018) CASIA 86%

(WANG; HUO, 2019) CASIA 95%

(PALO; SUBUDHIRAY; DAS, 2023) SAVEE 98,18%
EMODB 97,95%

(MENG et al., 2021) EMODB 82,26%
IEMOCAP 66,9%

(WANG et al., 2020) EMODB 79,2%
EESDB 71,3%

Fonte: Autoria própria
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4 MATERIAIS E MÉTODOS

Esse capítulo apresenta, em mais detalhes, os conjuntos de dados utilizados, assim
como descreve as etapas do desenvolvimento do trabalho. O fluxograma das etapas de
desenvolvimento pode ser visualizado na Figura 7. O conteúdo do capítulo é apresentado
da seguinte forma: na seção 4.1 são apresentadas as bases de dados utilizadas no desenvol-
vimento do trabalho; na seção 4.2, o ambiente de execução e ferramentas utilizadas em
sua preparação são descritos; na seção 4.3, são mostradas as etapas de pré-processamento
dos dados; na seção 4.4, os modelos de classificação utilizados discutidos; e, por fim, na
Seção 4.4.1, são apresentadas as métricas utilizadas na avaliação dos modelos.

Figura 7 – Fluxograma de desenvolvimento do trabalho

Fonte: Autoria Própria

4.1 Conjuntos de Dados

Como visto na Seção 2.2 da fundamentação teórica, existem diferentes tipos de
conjuntos de dados que podem ser utilizados para fazer o reconhecimento da emoção
na fala. Existem também diferentes conjuntos de dados que podem ser utilizados para
realizar o treino de modelos de reconhecimento de emoções. Observando os trabalhos
relacionados, alguns conjuntos de dados se destacam pela sua ampla utilização. Assim,
este trabalho utiliza as bases de dados EMODB (BURKHARDT et al., 2005), RAVDESS
(LIVINGSTONE; RUSSO, 2018), SAVEE (JACKSON; HAQ, 2011). Outra base muito
importante utilizada para treinar os modelos neste trabalho é a base CORAA (MARCA-
CINI; JUNIOR; CASANOVA, 2022), sendo esta uma base de dados na língua portuguesa
do Brasil. Além dessas bases, o conjunto de dados do SofiaFala (RISSATO; MACEDO,
2021) é utilizado como teste de marcação do modelo desenvolvido.

4.1.1 CORAA

Os dados deste conjunto foram apresentados no evento da PROPOR (International
Conference on Computational Processing of Portuguese Language) de 2022, e podem
ser acessados no GitHub1. O conjunto é constituído por 933 arquivos de áudios de fala
espontânea no idioma português do Brasil. Os áudios são falas de homens e de mulheres
sem a marcação de idade. As emoções são rotuladas nas seguintes três classes: homem não-
neutro, mulher não neutro e neutro. As distribuições das emoções podem ser observadas
1 https://github.com/rmarcacini/ser-coraa-pt-br/
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na Figura 8, onde é possível observar que os dados não são balanceados e a categoria
neutra possui um volume muito maior de ocorrências.

Figura 8 – Distribuição de classes de emoções na base CORAA

Fonte: Autoria Própria

A taxa de aquisição dos áudios é de 16kHz em formato mono e tem duração total
de 1 hora e 11 segundos (21 minutos e 49 segundos de teste e 39 minutos e 22 segundos
de treino). Como observado na Figura 9, a duração média dos áudios é de 3 segundos,
podendo oscilar entre 2 e 14 segundos por arquivo. O conjunto de dados é dividido em
dois, com 67% dos arquivos em treino e 33% em teste (625 arquivos de treino e 308 de
teste). Outra observação importante sobre este conjunto de dados é a presença de ruídos e
outros fatores, como a ocorrência de mais de um falante e a mistura de vozes masculinas e
femininas em um mesmo áudio. Esses ruídos podem prejudicar a qualidade da classificação.
Ao analisar algumas amostras de áudio, é possível observar a presença de múltiplas vozes
em alguns arquivos.

Figura 9 – Distribuição de tempo de aúdio na base CORAA

Fonte: Autoria Própria
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4.1.2 SAVEE

Os dados SAVEE (Surrey Audio-Visual Expressed Emotion) foram desenvolvidos
em 2007 pela Universidade Surrey e podem ser acessados em seu site2. O conjunto é
constituído por 480 arquivos de áudios de fala atuada no idioma inglês da Inglaterra.
Os áudios são de quatro atores homens, com idades entre 27 e 31 anos, provenientes
de diferentes regiões do Reino Unido (um do País de Gales, dois do sul da Inglaterra e
um da Escócia). As emoções são rotuladas nas seguintes sete classes: raiva, nojo, medo,
felicidade, tristeza, surpresa e neutro. As distribuições das emoções podem ser observadas
na Figura 10, onde os dados apresentam um certo equilíbrio, uma vez que as emoções estão
distribuídas de forma uniforme. No entanto, nota-se uma predominância de marcações
“neutras”, que são duas vezes mais frequentes do que as outras emoções. A distribuição de
falas entre os atores é balanceada, com 120 arquivos de áudio por ator. Outra informação
importante é o fato de as marcações serem feitas, por meio da análise de expressões faciais,
mas apenas os arquivos de áudio são disponibilizados no conjunto de dados.

Figura 10 – Distribuição de classes de emoções na base SAVEE

Fonte: Autoria Própria

A taxa de aquisição dos áudios é de 44.1kHz em formato mono e tem duração total
30 minutos e 42 segundos, com média de 3 segundos por arquivo, podendo oscilar entre 3
e 5 segundos por arquivo. Como observado na Figura 11, a duração média dos áudios é de
3 segundos. O conjunto de dados é composto por fala atuada, o que pode influenciar a
naturalidade das expressões emocionais capturadas. Outra observação importante deste
conjunto de dados é a diversidade regional dos falantes, que pode introduzir variações
sutis nas características fonéticas dos áudios.

2 http://kahlan.eps.surrey.ac.uk/savee/
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Figura 11 – Distribuição de tempo de aúdio na base SAVEE

Fonte: Autoria Própria

4.1.3 RAVDESS

Os dados RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and
Song) estão disponíveis e publicados no site Zenodo3. O conjunto original é constituído
por 7356 arquivos de dados, incluindo faces e voz, faces e apenas voz. A coleção somente
de áudios é formada por 2452 arquivos, sendo segmentada em músicas (1012 arquivos) e
fala (1440 arquivos). Este trabalho tem como foco a utilização apenas dos áudios de fala.

Os áudios são de fala atuada e foram criados por 24 atores profissionais, 12 homens
e 12 mulheres, na língua inglesa norte-americana. Os critérios de avaliação para os áudios
foram validação emocional, intensidade e genuinidade. As emoções são rotuladas nas
seguintes oito classes: calma, alegria, tristeza, raiva, medo, surpresa, nojo e neutro; com
intensidades normal ou forte. Como observado na Figura 12, as emoções são distribuídas de
forma balanceada, apesar de haver um número menor de registros neutros em comparação
com as outras emoções (metade da quantidade das demais emoções). O menor número de
neutros ocorre devido à ausência de variação de intensidade forte no neutro.

Os arquivos de áudio têm uma taxa de aquisição de 48kHz e são disponibilizados
em formato mono e estéreo. Cada ator realizou 60 falas, totalizando 1440 arquivos de
áudio apenas de fala. A duração total dos áudios é de 88 minutos e 48 segundos. Como
obsevado na Figura 13, os arquivos tem duração média de 3 segundos variando entre 2 e 7
segundos por arquivo.

3 https://zenodo.org/records/1188976
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Figura 12 – Distribuição de classes de emoções na base RAVDESS

Fonte: Autoria Própria

Figura 13 – Distribuição de tempo de aúdio na base RAVDESS

Fonte: Autoria Própria

4.1.4 EMODB

Os dados EMODB (Berlin Database of Emotional Speech) foram desenvolvidos
pelo Instituto de Fala e Comunicação da Universidade Técnica de Berlim e podem ser
acessados em seu site4. O conjunto é constituído por 535 arquivos de áudios de fala atuada
no idioma alemão. Os áudios são de dez atores, cinco homens e cinco mulheres, com idades
entre 21 e 35 anos. As emoções são rotuladas nas seguintes sete classes: raiva, tédio, nojo,
medo/ansiedade, felicidade, tristeza e neutro. As distribuições das emoções podem ser
observadas na Figura 14, onde é possível notar que os dados não são balanceados, com
algumas emoções representadas mais frequentemente do que outras. A emoção com maior
representação é a raiva, que constitui 24% do conjunto de dados, enquanto o nojo (a menor
classe) compõe apenas 9%.

A taxa de aquisição dos áudios é de 48kHz, posteriormente convertida para 16kHz,

4 http://www.emodb.bilderbar.info
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Figura 14 – Distribuição de classes de emoções na base EMODB

Fonte: Autoria Própria

em formato mono, com duração total de 24 minutos e 47 segundos. Como observado na
Figura 15, a duração média dos áudios é de 2 segundos por arquivo, podendo oscilar entre
1 e 9 segundos. O conjunto de dados é composto por fala atuada, com dez frases repetidas
de diversas formas, o que pode influenciar a naturalidade das expressões emocionais
capturadas.

Figura 15 – Distribuição de tempo de aúdio na base EMODB

Fonte: Autoria Própria

4.1.5 Base de Áudios do SofiaFala

A base de dados de fala do SofiaFala foi criada com o objetivo de apoiar o
desenvolvimento de soluções assistivas para terapias de fonoaudiologia. Ela é composta
por um total de 1.387 arquivos de áudio coletados ao longo de vários períodos de tempo,
sendo que a última coleta, realizada entre fevereiro e junho de 2024. A base de dados tem
808 arquivos de áudio, os quais foram utilizados neste trabalho. Esses áudios estão no
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formato .wav e foram gravados em língua portuguesa por homens, mulheres e crianças
com deficiência de fala.

Os arquivos de áudio possuem uma taxa de aquisição de 48KHz, e a base apresenta
uma duração total de 23 minutos e 3 segundos. A duração dos áudios varia entre 0,1
segundos e 21,3 segundos, com uma média de 1,7 segundos. O tempo de áudio está
distribuído de maneira desigual, como pode ser observado na Figura 16. A maioria dos
arquivos de áudio (89%) é mono, com apenas 11% dos arquivos sendo estéreo. Um aspecto
importante desta base é a ausência de rótulos ou informações explícitas sobre as emoções
presentes nos áudios, uma vez que esse conjunto de dados não é formado por fala espontânea,
mas por repetição de frases indicadas em texto e em áudio.

Figura 16 – Distribuição de tempo de aúdio na base SofiaFala

Fonte: Autoria Própria

4.2 Ambiente de Execução e Ferramentas Utilizadas

O trabalho foi realizado utilizando o Google Colab Pro5, um ambiente de desenvol-
vimento baseado em nuvem. A configuração utilizada incluía uma GPU NVIDIA T4 com
15 GB de memória dedicada e 12,7 GB de RAM do sistema, permitindo o processamento
eficiente de operações de aprendizado profundo e cálculos intensivos. Os arquivos do projeto
foram armazenados no Google Drive. O ambiente de desenvolvimento foi construído sobre
o Python 3.8.19.

Com suporte da GPU, o sistema utilizou o CUDA 11.7. O desenvolvimento dos
modelos de aprendizado profundo (RNC) foi realizado com o framework Torch 1.13.1,
juntamente com a versão compatível do cuDNN, otimizando o desempenho das operações de
aprendizado profundo. A biblioteca torchaudio 0.13.1+cu117 foi utilizada para manipulação
5 https://colab.research.google.com/
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dos áudios, enquanto torch-audiomentations 0.11.0 e audiomentations 0.30.0 foram usadas
para técnicas de data augmentation.

Além disso, as bibliotecas numpy 1.22.3 e pandas 1.5.2 foram empregadas para
manipulação de dados, enquanto PyWavelets 1.4.1 foi usada para implementar a TPW
no processamento de sinais. Para visualização de dados, foram utilizadas as bibliotecas
matplotlib 3.6.3 e seaborn 0.12.2. O desenvolvimento foi conduzido em Jupyter Notebook
1.0.0 e notebook 6.5.2.

Para avaliar o desempenho dos modelos desenvolvidos, utilizou-se a biblioteca Scikit-
learn 1.5.0, que oferece diversas métricas de avaliação, como precisão (precision), revocação
(recall) e medida F (F1 score), para análise e comparação de diferentes abordagens de
aprendizado de máquina.

4.3 Pré-processamento de dados

Na primeira etapa do processo, os áudios foram pré-processados para otimizar o
uso de processamento na GPU. Todos os áudios foram reamostrados para uma taxa de
8kHz e, quando necessário, transformados para o formato mono, garantindo consistência
na entrada dos dados. Em seguida, foi realizada a normalização dos áudios, ajustando-os
para terem o mesmo comprimento, preenchendo com zeros aqueles que eram mais curtos,
para garantir uniformidade no tamanho das entradas durante o treinamento dos modelos.

Durante a etapa de extração de características, os áudios passaram por um processo
de transformação em espectrograma na escala mel, que é uma representação visual das
frequências do áudio ao longo do tempo, cujas altas frequências foram representadas com
mais detalhes do que as baixas. Em seguida, os espectrogramas foram submetidos a um
processo de data augmentation, utilizando a técnica de SpecAugment, que consiste em
aplicar perturbações aleatórias nos espectrogramas, como mascaramento de frequências e
durações (como observado na Figura 17), a fim de aumentar a robustez e a variabilidade
dos dados durante o treinamento dos modelos.

Para extrair características adicionais, utilizou-se o pacote PyWavelets, com a
wavelet mãe de Daubechies diretamente sobre o espectrograma na escala mel. Isso permitiu
decompor o espectrograma em componentes de frequência e escala diferentes, fornecendo
uma representação mais abrangente e detalhada dos dados de áudio.

4.4 Modelo de Classificação

Para este trabalho foi utilizada uma arquitetura de RNC (RNC-10) desenvolvida
por Kong et al. (2020) e empregada por Gauy and Finger (2022) e por Vieira (2023) em seus
estudos de classificação da base CORAA. A aplicação da RNC-10 nos trabalhos citados
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Figura 17 – Exemplo de aplicação de SpecAugment

Fonte: Autoria Própria

apresentou desempenho superior em comparação com outras redes neurais, destacando-se
como uma arquitetura mais eficiente para essa tarefa.

A arquitetura RNC-10 é composta por vários blocos convolucionais seguidos por
camadas densas. Como observado na Figura 18, a rede é composta por 4 blocos, E cada
bloco contém duas camadas convolucionais de kernel 3x3 seguidas por normalização de
batch, uma função de ativação ReLU e uma camada de pooling médio de kernel 2x2. O
número de canais de saída das camadas convolucionais aumenta progressivamente em cada
bloco: o primeiro bloco tem 64 canais, o segundo 128, o terceiro 256 e o quarto 512. Após
os blocos convolucionais, a rede inclui uma camada de global pooling, que permite agregar
as características espaciais de forma global antes de passar para a camada densa. Em
seguida, a rede possui uma camada densa com 512 unidades e função de ativação ReLU.
A camada final é uma camada densa com um número de unidades igual ao número de
classes da tarefa de classificação, utilizando a função de ativação sigmoide para produzir
as probabilidades de cada classe.

Figura 18 – Arquitetura do modelo RNC-10

Fonte: Autoria Própria

4.4.1 Métricas de Avaliação de Modelos

As métricas de avaliação de acurácia do F1-Score são adotadas neste estudo e
são fundamentais para a análise e validação dos resultados obtidos. A acurácia, apesar
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de transmitir uma falsa impressão de desempenho para dados desbalanceados, também
é considerada como uma métrica de avaliação, pois é a mais amplamente utilizada nos
trabalhos relacionados encontrados durante o mapeamento sistemático. A acurácia fornece
uma visão geral do desempenho do modelo, representando a proporção de previsões corretas
em relação ao total de previsões realizadas. Sua fórmula pode ser observada na Equação 4.1
como uma relação de falsos positivos, falsos negativos, verdadeiros positivos e verdadeiros
negativos.

Acurácia = Verdadeiro Positivo + Verdadeiro Negativo
Total de previsões (4.1)

O F1-Score é uma das principais métricas empregadas, especialmente devido à
sua eficácia em conjuntos de dados desbalanceados. Essa métrica também foi utilizada
no evento da PROPOR para avaliação da base CORAA. Sua fórmula pode ser vista na
Equação 4.4 como uma relação de Precisão e Revocação, que por sua vez também utilizam
os mesmos argumentos usados para o cálculo da acurácia.

Precisão = Verdadeiro Positivo
Verdadeiro Positivo + Falso Positivo (4.2)

Revogação = Verdadeiro Positivo
Verdadeiro Positivo + Falso Negativo (4.3)

F1 score = 2 ∗ (Precisão ∗Revogação)
Precisão+Revogação (4.4)

O estudo utilizou o F1 score e a acurácia como métricas de avaliação em todos os
conjuntos de dados, garantindo uma análise mais abrangente e validação dos resultados. A
acurácia oferece uma visão geral do desempenho do modelo, embora tenha limitações com
dados desbalanceados, uma vez que ela mede a proporção de previsões corretas, mas em um
conjunto desbalanceado, um modelo pode obter uma alta acurácia simplesmente prevendo
a classe majoritária na maioria dos casos. Por exemplo, se 90% dos dados pertencem
a uma classe, um modelo que sempre prevê essa classe terá 90% de acurácia, mas não
terá aprendido a identificar a classe minoritária. O F1 score complementa essa análise,
proporcionando uma avaliação mais precisa nesses cenários. F1 score é útil quando há
desequilíbrio entre as classes. O F1 score dá uma visão melhor do desempenho do modelo
nesses casos, já que não favorece a classe majoritária e dá mais ênfase ao equilíbrio entre
precisão e revocação.

No entanto, o F1 score não é sempre a melhor escolha em todos os contextos.
Em algumas situações, outras métricas como a AUC-ROC podem ser mais adequadas,
especialmente se o objetivo for avaliar a capacidade do modelo de distinguir entre classes
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positivas e negativas. A curva ROC faz a relação entre a taxa de verdadeiros positivos
(Equação 4.5) e a taxa de falsos positivos (Equação 4.6).

Taxa de Verdadeiro Positivo = Verdadeiro Positivo
Verdadeiro Positivo + Falso Negativo (4.5)

Taxa de Falso Positivo = Falso Positivo
Verdadeiro Negativo + Falso Positivo (4.6)

Conforme ilustrado na Figura 19, quanto mais a curva se aproxima do canto superior
esquerdo do gráfico, maior é a capacidade discriminativa do modelo. O valor da AUC, que
varia de 0 a 1, representa a área sob a curva ROC. Um valor de 1 indica uma separação
perfeita entre as classes, enquanto um valor de 0,5 sugere que o modelo está classificando
de forma aleatória.

Figura 19 – Exemplo de curva ROC

Fonte: Autoria Própria
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5 EXPERIMENTOS E RESULTADOS

Este capítulo apresenta os experimentos realizados e os resultados obtidos no
contexto desta pesquisa. O foco dos experimentos foi a análise da base de dados CORAA,
seguindo uma adaptação da metodologia proposta por Vieira (2023). A partir dos experi-
mentos conduzidos, o melhor resultado obtido foi utilizado como referência de parâmetros
para a análise da performance do modelo nas demais bases de dados.

Os dados de treinamento foram divididos em cinco partes utilizando a técnica
de validação cruzada estratificada (k-fold), de forma a manter a mesma proporção de
classes do conjunto original em cada divisão. No caso da base CORAA, a separação
dos conjuntos de treino e validação foi realizada utilizando um subconjunto previamente
definido dentro da própria base, como observado anteriormente na Figura 8. Para os demais
conjuntos de dados, foi adotada uma divisão de 64% para treino, 16% para validação e 20%
teste. Em todas as bases, os arquivos foram divididos aleatoriamente entre os diferentes
falantes utilizando uma mesma semente para a divisão dos dados. Conforme detalhado
anteriormente, os dados da base CORAA consistem em 1.352 arquivos, contendo gravações
de fala espontânea em português. As classes esperadas de saída estão divididas em três
categorias: “homem com emoção”, “mulher com emoção” e “neutro”.

Para a realização dos testes, utilizou-se uma adaptação da metodologia proposta
por Vieira (2023), aplicando inicialmente os mesmos parâmetros de teste que apresentaram
os melhores resultados em sua proposta, uma vez que esta também utiliza a transformada
Wavelet. A adaptação consistiu na implementação da transformada de pacotes Wavelet
(TPW) como etapa de extração de características, enquanto as demais etapas de pré-
processamento e o modelo RNC-10 foram mantidos sem alterações. As etapas de execução
do código, conforme ilustradas na Figura 20, seguiram a seguinte ordem: inicialmente,
realizou-se a extração do espectrograma Mel dos áudios, seguida pela etapa de aumento
de dados (data augmentation). Posteriormente, aplicou-se a transformada Wavelet, e os
coeficientes resultantes dessa transformada foram combinados para formar uma imagem
de um canal. Em seguida, esse resultado foi alimentado no modelo RNC-10, que realizou a
classificação final.

5.1 Realizando os experimentos

O primeiro teste teve como objetivo replicar o melhor resultado do trabalho de
referência, utilizando os mesmos parâmetros, mas aplicando a TPW em vez da transformada
discreta de Wavelet (TDW). Para isso, foi utilizado o espectrograma Mel com 128 mels,
janela de 400 pontos e deslocamento de 200. A Wavelet escolhida foi a “db4” com nível de
decomposição 3. Os resultados de F1 score macro podem ser observados na Tabela 5, cuja
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Figura 20 – Etapas de execução

Fonte: Autoria Própria

replicação utilizando a transformada discreta de Wavelet obteve um F1 score de 0,578
para validação e 0,527 para teste. Já o teste inicial com TPW apresentou um F1 score
de 0,506 para validação e 0,439 para teste. O tempo médio de processamento para cada
fold foi semelhante em ambos os casos, levando cerca de quatro horas por fold, totalizando
aproximadamente 20 horas para a execução completa.

Tabela 5 – Resultados de F1 score macro obtidos nos testes iniciais com espectrograma
Mel de 128 mels, janela de 400 pontos e deslocamento de 200

Método F1 score Validação F1 score Teste

Replica de referência com TDW 0,578 0,527

Teste inicial com TPW 0,506 0,439

Fonte: Autoria própria

Conforme mostrado na Figura 21, que apresenta as matrizes de confusão do primeiro
teste com os dados CORAA, observa-se que a replicação com a TDW tem um índice de
acerto semelhante ao da TPW para a classe “Homem não neutro”. Entretanto, a TPW
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apresenta um desempenho inferior nas classes “Neutro” e “Mulher não neutro”, indicando
uma menor precisão para essas categorias. Essas diferenças de desempenho indicam a
necessidade de ajustes finos nos parâmetros para melhorar o desempenho do modelo em
todas as classes.

Figura 21 – Matrizes de confusão comparando TDW e TWP

Fonte: Autoria Própria

Embora o valor exato do trabalho de referência não tenha sido alcançado, os
resultados ficaram próximos, com uma diferença de 0,039 em relação ao F1 score de
teste do trabalho de referência (0,566). No entanto, a análise das matrizes de confusão e
dos resultados de F1 score indicou que a TDW apresentou melhor desempenho com os
parâmetros testados. Por essa razão, decidiu-se explorar diferentes configurações, realizando
variações na etapa de extração do espectrograma na escala Mel e nos parâmetros da extração
da TWP para buscar melhores resultados.

Para os testes de variação de parâmetros, foram alterados os valores de janela
(TF) e deslocamento para a extração do espectrograma Mel, enquanto o número de
mels foi mantido em 128. Em relação a TPW, variou-se o tipo de Wavelet da família
Daubechies (db), utilizando diferentes ordens, como “db4”, “db6” e “db8”, mantendo o
nível de decomposição fixo em 3. As combinações de parâmetros testadas estão detalhadas
na Tabela 6. Essas combinações foram baseadas na estratégia utilizada pelo trabalho
de referência, que aplicou variações de parâmetros semelhantes para testar diferentes
resoluções temporais e analisar o impacto das diferentes ordens na decomposição dos
sinais. Esses ajustes visaram explorar configurações alternativas que pudessem melhorar o
desempenho do modelo, uma vez que os resultados iniciais indicaram a necessidade de
ajustes finos nos parâmetros.

A Tabela 7 apresenta os melhores resultados obtidos para cada uma das combinações
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Tabela 6 – Combinações de parâmetros testadas para a extração do espectrograma Mel e
TPW

Combinação Mels TF Deslocamento Daubechies Nível

1 128 400 200 db4 3

2 128 400 200 db6 3

3 128 400 200 db8 3

4 128 1024 320 db4 3

5 128 1024 320 db6 3

6 128 1024 320 db8 3

Fonte: Autoria própria

de parâmetros testados. Analisando os resultados, a combinação 3 se destacou como a
mais promissora, mostrando um equilíbrio entre o F1 score na validação (0,515) e no teste
(0,494), com uma diferença mínima de 0,021 entre eles. Essa pequena variação sugere que
o modelo alcançou um bom nível de generalização, sem sofrer de overfitting, o que é um
indicador positivo para o desempenho em dados não vistos. Além disso, a combinação 3
apresentou um valor de acurácia de 0,740 e um ROC de 0,701, o que reforça sua robustez
e equilíbrio em termos de sensibilidade e especificidade, quando comparado às demais
combinações.

Tabela 7 – Melhores resultados obtidos para cada combinação de parâmetros testados

Combinação F1 score Validação F1 score Teste Acurácia ROC

1 0,510 0,448 0,727 0,655

2 0,554 0,436 0,672 0,677

3 0,515 0,494 0,740 0,701

4 0,546 0,479 0,818 0,666

5 0,493 0,470 0,766 0,633

6 0,484 0,524 0,672 0,677

Fonte: Autoria própria

Apesar das variações realizadas nos parâmetros de extração de características, o
tempo de processamento permaneceu relativamente constante entre todas as combinações.
Essa estabilidade de processamento indica que as mudanças não impactaram significati-
vamente o custo computacional, mantendo o tempo de fold de aproximadamente quatro
horas.

Conforme mostrado na Figura 22, que apresenta a matriz de confusão da melhor
combinação, observa-se uma melhoria na classificação da classe “Mulher não neutro” em
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comparação ao primeiro teste, aproximando-se dos resultados obtidos com a TDW. No
entanto, a matriz ainda indica um índice de erro mais elevado na classe “Neutro”.

Figura 22 – Matriz de confusão obtida com parametros da combinação 3

Fonte: Autoria Própria

Mesmo após os ajustes realizados, os resultados não superaram o desempenho
alcançado com a TDW, que apresentou um F1 score superior tanto na validação quanto
no teste. Diante disso, outras abordagens foram exploradas na tentativa de melhorar os
resultados. Nesse sentido, aplicou-se técnicas adicionais como o SpecAugment e o VAD, no
pré-processamento dos áudios.

Foi testada a técnica de aumento de dados (SpecAugment) para verificar seu impacto
no desempenho do modelo, utilizando os mesmos parâmetros de extração de características
da melhor combinação identificada anteriormente. No entanto, os resultados obtidos com o
data augmentation foram inferiores aos alcançados sem o uso desta técnica. Como mostrado
na Tabela 8, a combinação com SpecAugment resultou em um F1 score de 0,494 para
validação e 0,414 para teste, com acurácia de 0,744 e ROC de 0,599, indicando uma redução
no desempenho em comparação aos testes anteriores.

O VAD também foi testado utilizando os mesmos parâmetros de extração de
características. A técnica foi aplicada aos áudios brutos, empregando o algoritmo do
WebRTC. Durante os testes, foram apresentadas dificuldades em detectar áudio em alguns
arquivos: em seis deles, não houve detecção de áudio, embora, após uma análise rápida,
tenha sido constatada a presença de som. Mesmo após ajustes nos parâmetros do VAD,
o problema persistiu, e o uso desta técnica resultou em um desempenho pior do que o
esperado. Conforme apresentado na Tabela 8, a aplicação do VAD resultou em um F1
score de 0,457 para validação e 0,456 para teste, com acurácia de 0,779 e ROC de 0,619.

A Figura 23 representa as matrizes de confusão. É possível observar que tanto o
data augmentation quanto o VAD resultaram em uma redução na capacidade do modelo
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Tabela 8 – Resultados de desempenho do modelo com SpecAugment e VAD

Método F1 score Validação F1 score Teste Acurácia ROC

SpecAugment 0,494 0,414 0,744 0,599

VAD 0,457 0,456 0,779 0,619

Fonte: Autoria própria

de identificar as classes “Homem não neutro” e “Mulher não neutro”. Em contrapartida,
houve um pequeno ganho na classificação da classe “Neutro”, especialmente com o uso do
VAD. Esses resultados indicam que as técnicas testadas não proporcionaram a melhoria
desejada no desempenho do modelo e, em alguns casos, até prejudicaram a capacidade
de classificação de determinadas classes. Devido ao seu desempenho insatisfatório, essas
técnicas não foram utilizadas na etapa subsequente de análise do modelo em outras bases
de dados.

Figura 23 – Matrizes de confusão para o modelo com SpecAugment e VAD

Fonte: Autoria Própria

A melhor combinação de parâmetros identificada nos testes anteriores foi utilizada
para avaliar o desempenho do modelo em outras bases de dados, seguindo a divisão
discutida anteriormente. Os melhores resultados obtidos para cada base de dados são
apresentados na Tabela 9.

Os resultados mostraram que a melhor performance foi alcançada com a base de
dados EMODB, com um F1 score de 0,724 na validação e 0,669 no teste, bem como
uma acurácia de 0,689 e um ROC de 0,897. Por outro lado, as bases de dados SAVEE e
RAVDESS apresentaram uma performance inferior. A RAVDESS obteve o pior resultado,
com um F1 score de 0,394 na validação, 0,332 no teste, acurácia de 0,398 e um ROC de
0,817. Esse resultado já era esperado, uma vez que a base EMODB é considerada a mais
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Tabela 9 – Melhores resultados obtidos para as bases EMODB, SAVEE e RAVDESS
utilizando a melhor combinação de parâmetros

Base de Dados F1 score Validação F1 score Teste Acurácia ROC

EMODB 0,724 0,669 0,689 0,897

SAVEE 0,663 0,533 0,579 0,851

RAVDESS 0,394 0,332 0,398 0,817

Fonte: Autoria própria

simples dentre as avaliadas, sendo composta por dados menos complexos do que as outras
bases.

Esses resultados inferiores eram previsíveis, dado que a SAVEE e a RAVDESS
possuem marcações feitas também, por meio da análise de expressões faciais (análise
multimodal), além da análise do áudio. O modelo criado neste trabalho foca exclusivamente
em características acústicas. A ausência da componente visual no processo de classificação
pode ter contribuído para o desempenho inferior nessas bases.

Ao analisar a Figura 24, que apresenta as matrizes de confusão para as bases
SAVEE, EMODB e RAVDESS, é possível identificar padrões específicos de desempenho
do modelo para cada base de dados.

Os resultados de acurácia por emoção estão detalhados na Tabela 10. O desempenho
do modelo pode variar significativamente conforme a base de dados e as características
emocionais de cada conjunto, o que justifica as diferenças observadas nas classificações. Na
base EMODB, os arquivos de áudio em alemão têm as classes de saída divididas em sete
categorias: “Raiva”, “Medo”, “Tristeza”, “Felicidade”, “Nojo”, “Surpresa” e “Neutro”. A
matriz de confusão e tabela de acurácias indicam que o modelo tem um bom desempenho
na classificação de “Neutro”(85%), “Raiva”(86%) e “Medo”(82%), com um desempenho
razoável também para “Nojo”(70%) e “Tristeza”(71%). No entanto, observa-se maior
confusão em classes como “Tédio”(46%) e “Felicidade”(33%), cujas previsões se dispersam
entre várias outras classes. Isso reflete que, embora a base EMODB seja mais simples, o
modelo ainda enfrenta dificuldades em classificar algumas emoções.

Para a base RAVDESS, os arquivos de áudio em inglês têm como classes de
saída oito categorias: “Calmo”, “Felicidade”, “Tristeza”, “Raiva”, “Medo”, “Surpresa”,
“Nojo” e “Neutro”. O valor de ROC foi relativamente alto, mesmo com um F1 score mais
baixo. Isso sugere que o modelo consegue discriminar razoavelmente bem entre algumas
classes específicas. A análise da tabela de acurácias para a base RAVDESS revela um
desempenho mais variado do modelo. As classes “Calmo”(92%) e “Medo”(79%) têm
o melhor desempenho (ajudando a elevar o valor do ROC), enquanto há significativa
confusão entre outras classes, como “Neutro”(2%), “Felicidade”(10%) e “Tristeza”(1%). A
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Figura 24 – Matrizes de confusão para as bases EMODB, SAVEE e RAVDESS utilizando
TPW

Fonte: Autoria Própria

distribuição homogênea de classes na RAVDESS, exceto para “Neutro,” que possui menos
exemplos, pode ter contribuído para o desempenho inferior nessa classe. Comparando com
a base EMODB, o modelo apresentou um desempenho significativamente inferior para
“Raiva” e “Nojo”. Embora o modelo tenha mostrado um bom desempenho para a classe
“Medo”, semelhante ao observado na EMODB, seu desempenho foi significativamente pior
nas outras classes.

A base SAVEE, composta por arquivos de áudio em inglês, apresentou um desempe-
nho intermediário entre EMODB e RAVDESS. Para esta base, as classes de saída dividem-se
em sete categorias: “Neutro”, “Raiva”, “Tristeza”, “Medo”, “Felicidade”, “Surpresa” e
“Nojo”. O modelo demonstra uma boa capacidade de identificar a classe “Neutro”(75%),
que é mais prevalente nesta base, o que pode ter facilitado o aprendizado para essa classe
específica. No entanto, o desempenho para “Medo”(17%) foi consideravelmente inferior, es-
pecialmente quando comparado com as bases EMODB e RAVDESS. Além disso, o modelo
também teve dificuldades em identificar “Felicidade” (27%), que apresentou resultados
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Tabela 10 – Acurácia por emoção nas bases EMODB, SAVEE e RAVDESS, utilizando
TPW

Emoção EMODB SAVEE RAVDESS

Neutro 85% 75% 2%

Raiva 86% 83% 45%

Nojo 70% 70% 41%

Medo 82% 17% 79%

Felicidade 33% 27% 10%

Tristeza 71% 67% 1%

Surpresa - 50% 32%

Calma - - 92%

Tédio 46% - -

Fonte: Autoria própria

inferiores ao da EMODB, mas ligeiramente superiores ao da RAVDESS. Embora a base
SAVEE tenha oferecido um desempenho razoável em algumas classes, o modelo ainda
enfrenta desafios consideráveis na diferenciação de certas emoções.

Também foram analisados os tempos de processamento de cada fold para as
diferentes bases de dados, conforme ilustrado na Figura 25. Os tempos de processamento
variaram significativamente entre as bases: para a base SAVEE (480 arquivos), o tempo
médio por fold foi de 55 minutos; para EMODB (535 arquivos) , 80 minutos; para
CORAA (933 arquivos), 240 minutos; e para RAVDESS (1440 arquivos), 300 minutos.
Essas diferenças refletem a complexidade e o tamanho das bases de dados, com as bases
maiores e mais complexas (RAVDESS e CORAA) demandando tempos de processamento
consideravelmente mais longos.

Além dos tempos de processamento, também foi observado o consumo de recursos
de hardware durante os experimentos. O maior uso de RAM do sistema registrado foi de
5,4 GB, dentro de um total disponível de 12,7 GB, enquanto o maior uso de RAM da GPU
atingiu 5,8 GB, com um total de 15 GB disponíveis. Os testes foram realizados em uma
GPU NVIDIA T4, fornecida pelo Google Colab, utilizando uma unidade de computação
por hora de 1,76, um recurso computacional alocado dinamicamente para a execução dos
notebooks.

5.2 Comparando a performance dos modelos

Finalmente, os resultados obtidos neste trabalho foram comparados com os valores
reportados por Vieira (2023), que utilizou a TDW, conforme mostrado na Figura 26.
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Figura 25 – Tempos de processamento médio por fold para as bases SAVEE, EMODB,
CORAA e RAVDESS

Fonte: Autoria Própria

Foi observado em alguns casos que os resultados de F1 score e acurácia obtidos com a
TPW ficaram próximos aos encontrados na referência. Para as bases de dados CORAA,
EMODB e SAVEE, os valores de F1 score e acurácia apresentaram diferenças relativamente
pequenas em relação aos resultados do trabalho de referência, sugerindo que nestas bases a
estratégia de TPW teve um desempenho comparável ao da TDW. Mesmo com desempenhos
semelhantes para determinadas emoções, é possível identificar tanto acertos em comum
quanto diferenças significativas no desempenho do modelo nas bases de dados.

Entretanto, para a base de dados RAVDESS, os resultados obtidos com a TPW
ficaram significativamente abaixo dos alcançados pela TDW, tanto em F1 score Macro
(0,332 comparado a 0,578) quanto em Acurácia (0,398 comparado a 0,597). Esse resultado
indica que a estratégia de TPW não conseguiu igualar ou se aproximar do desempenho
alcançado pela TDW em uma base de dados de maior complexidade e com características
multimodais. Apesar da TPW mostrar resultados próximos aos da TDW nas bases de
dados CORAA, EMODB e SAVEE, a performance global da estratégia de TPW não
superou os valores estabelecidos pelo trabalho de referência.

Os resultados de acurácia por emoção comparando o modelo baseado em TPW
com o modelo de referência utilizando TDW estão ilustrados na Figura 27. Observa-se que,
na base EMODB, o modelo com TPW apresentou um desempenho superior em “Medo”,
“Nojo” e “Neutro”, superando o modelo com TDW nessas categorias. No entanto, o modelo
com TDW teve um desempenho significativamente melhor em “Raiva” e “Tédio”. Além
disso, a TDW também apresentou uma maior acurácia em “Felicidade” (64%), enquanto o
TPW alcançou apenas 33% de acurácia para essa emoção.

Já na base de dados SAVEE, ambos os modelos, usando TPW e TDW, foram
eficazes em identificar a classe “Neutro”, embora o modelo com TDW tenha sido mais
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Figura 26 – Comparativo de desempenho entre TPW e TDW nas diferentes bases de dados

Fonte: Autoria Própria

eficiente, com uma acurácia de 96%. O modelo com TPW, por outro lado, apresentou um
desempenho significativamente superior nas classes “Raiva” e “Nojo” em comparação a
TDW. Ambos os modelos enfrentaram dificuldades na classificação de “Medo”, enquanto
a TDW obteve um resultado melhor em “Felicidade”. Já para a classe “Tristeza”, a TPW
teve um desempenho mais favorável, e para “Surpresa”, ambos os modelos alcançaram
valores semelhantes.

Para a base RAVDESS, o modelo utilizando TPW apresentou um bom desempenho
apenas nas classes “Calmo” e “Medo”, enquanto o trabalho de referência utilizando TDW
obteve melhores resultados em outras emoções, como “Raiva”, “Nojo”, “Surpresa” e
“Neutro”. Diferentemente deste trabalho, o modelo baseado em TDW teve um desempenho
inferior na classe “Medo”, com acurácia de 39%.

Conforme mostrado na Tabela 11, os melhores resultados de F1 score obtidos na
PROPOR 2022 variam entre 0,509 e 0,728. O melhor resultado alcançado neste trabalho,
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Figura 27 – Comparativo de acurácia entre TPW e TDW nas bases EMODB, SAVEE e
RAVDESS por emoção

Fonte: Autoria Própria

com um F1 score de 0,494, ficou abaixo dos resultados apresentados naquele evento,
mas se aproximou dos valores obtidos pelos participantes da quarta posição, com uma
diferença de 0,015. É importante destacar que o grande diferencial do trabalho que obteve
o primeiro lugar (GAUY; FINGER, 2022), com um F1 score de 0,728, foi o uso de um
modelo semelhante ao empregado neste estudo, mas com uma rede neural já pré-treinada
em um conjunto de dados de áudio com mais de 5 mil horas. Esse pré-treinamento em
um grande volume de dados contribuiu significativamente para o desempenho superior
observado. Explorar modelos semelhantes pode ser uma direção para trabalhos futuros de
pesquisa, visando melhorar os resultados alcançados.

Tabela 11 – Melhores resultados de F1 score obtidos na PROPOR 2022

Trabalho F1 score

(GAUY; FINGER, 2022) 0,728

(ALVES et al., 2022) 0,535

(PERIN; MATSUBARA, 2022) 0,525

(SCARANTI et al., 2022) 0,509

Fonte: Autoria própria

5.3 Aplicando o modelo no SofiaFala

Por fim, na última etapa deste trabalho, foram realizados os testes do modelo
desenvolvido utilizando os dados da base de áudios do SofiaFala. Durante essa fase, foi
identificado um problema inicial relacionado ao formato dos arquivos de áudio. Embora os
arquivos estivessem no formato .wav, não era possível abri-los corretamente, pois um erro
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indicava incompatibilidade de formato. Após uma análise mais detalhada, descobriu-se
que os arquivos estavam, na verdade, em um contêiner WebM, e não no formato .wav
conforme esperado. Todos os arquivos foram, então, convertidos corretamente para o
formato .wav. Durante o processo de conversão, foram identificados 10 arquivos vazios,
que foram desconsiderados no restante do trabalho.

Feita a conversão, foi realizada uma análise detalhada da base de dados. Nessa
análise, 465 arquivos (58% do total) foram considerados inadequados para os testes, devido a
problemas como áudios sem som, ruídos excessivamente altos que impediam a identificação
de qualquer trecho de voz, ou distorções causadas por interrupções involuntárias, tornando
impossível a compreensão das frases. Apenas 343 áudios (42% do total) foram considerados
adequados para serem utilizados nos testes.

Analisando os 343 áudios válidos, foi verificado que todos os arquivos possuíam
apenas um canal de áudio (mono). A duração total desse subconjunto foi de 18 minutos e
16 segundos, com os áudios variando entre 1,0 e 21,3 segundos, e uma duração média de
3,2 segundos. A distribuição dos tempos dos áudios, como mostrado na Figura 28, agora
apresenta uma distribuição mais próxima de uma normal, ao contrário da distribuição do
conjunto original.

Figura 28 – Distribuição de tempo de aúdio no subconjunto de áudios validados do Sofia-
Fala

Fonte: Autoria Própria

Após a análise e seleção dos arquivos adequados, foi realizado o teste utilizando
o melhor modelo desenvolvido para a base CORAA, aplicando-o ao novo subconjunto
de dados do SofiaFala. Para simplificar a análise, as classes de saída do modelo foram
agrupadas em apenas duas categorias: “neutro” e “não neutro”, com o objetivo de verificar
a presença de emoções nos áudios, independentemente do tipo de emoção.
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Os resultados das classificações podem ser observados na Figura 29, onde 179
áudios (52%) foram classificados como “não neutro” e 166 áudios (48%) como “neutro”. O
número de áudios identificados como contendo emoção foi relativamente alto. No entanto,
como a base SofiaFala não possui rótulos de emoção, os dados, após serem classificados
pelo modelo, foram analisados de forma qualitativa.

Figura 29 – Distribuição das classificações de áudios em neutro e não neutro no conjunto
de dados SofiaFala

Fonte: Autoria Própria

Ao realizar uma análise dos áudios classificados como “não neutro”, foi difícil
identificar claramente emoções presentes nos áudios. A maioria dos áudios classificados
como contendo emoção não apresenta características emocionais evidentes, podendo ser,
na realidade, considerados neutros. Isso se deve ao fato de a base ter sido criada, a partir
da repetição de frases ou áudios por pessoas com a fala comprometida, não podendo ser
considerada uma base de fala espontânea, conforme descrito anteriormente.

Outro ponto observado é que os arquivos de áudio possuem identificadores no início
do nome, o que permite a identificação de diferentes falantes. Ao analisar os resultados por
identificador de falante, percebeu-se que a classificação de “neutro” ou “não neutro” se
mantém constante para a maioria dos áudios de um mesmo falante. Em outras palavras,
o modelo tende a classificar todos os áudios de uma mesma pessoa da mesma forma,
o que sugere que o modelo está associando a classe mais à pessoa do que ao conteúdo
emocional do áudio. Esse comportamento pode ser problemático para a utilização do
modelo nesse conjunto de dados, uma vez que os falantes possuem deficiência de fala,
e isso pode estar influenciando de forma inadequada as classificações do modelo. Esses
testes foram realizados devido ao envolvimento do autor no grupo de desenvolvimento
da tecnologia SofiaFala. A base de áudios foi originalmente criada para um propósito
diferente, voltado ao acompanhamento de tratamentos de fala e não à identificação de
emoções. No entanto, a base foi utilizada para testar a proposta do modelo com o intuito
de explorar uma possível alternativa para analisar a neutralidade da fala coletada.
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6 CONCLUSÕES

Muitas pessoas enfrentam dificuldades de comunicação pela fala, impactando sua
interação social, qualidade de vida e sucesso profissional. Nesse contexto, o reconhecimento
de emoções na fala é essencial para o desenvolvimento de tecnologias assistivas que ofereçam
suporte a pessoas com deficiências de fala. O objetivo do trabalho foi avaliar a aplicação da
TPW combinada com aprendizado profundo para o reconhecimento de emoções, focando
na base de fala espontânea CORAA. A escolha dessa base se deve à sua relevância para
o desenvolvimento de soluções que possam auxiliar projetos como o SofiaFala1, que se
beneficiariam de modelos capazes de lidar com as complexidades da fala espontânea.

Durante o desenvolvimento, diversos desafios forma enfrentado, começando pela
dificuldade de replicar o modelo utilizado como referência de (VIEIRA, 2023). Esse pro-
blema reforça a importância de garantir todos os requisitos e configurações necessários
para a correta execução de um modelo, já que pequenos detalhes podem impactar significa-
tivamente os resultados ou até mesmo impedir a execução do programa. Outra dificuldade
encontrada foi a escassez de trabalhos na literatura que abordassem o reconhecimento de
emoções utilizando a TPW ou outros tipos de Wavelets.

A classificação dos dados da base CORAA se mostrou desafiadora, não apenas
pela tarefa de identificar emoções em fala espontânea, mas também pela necessidade
de distinguir entre falantes masculinos e femininos. O conjunto de dados apresenta três
classes: homem com emoção, mulher com emoção e neutro, exigindo uma sub-tarefa de
identificação do sexo do falante, o que aumenta a complexidade do problema. Além disso,
os ruídos e perturbações presentes nos áudios da base CORAA representaram outro desafio
significativo, conforme constatado em uma análise qualitativa e corroborado por Alves et
al. (2022), que destacou a presença de vozes sobrepostas, ruídos e variabilidade de gênero
nas vozes.

Além da base CORAA, os resultados nas bases EMODB, SAVEE e RAVDESS
variaram conforme a emoção. Na EMODB, o modelo com a TPW teve bom desempenho
em “Neutro”, “Raiva” e “Medo”, superando a TDW em “Neutro” e “Medo”, mas a TDW
foi melhor em “Raiva” e “Tédio”. Na SAVEE, a TPW se destacou em “Raiva” e “Nojo”,
enquanto a TDW foi superior em “Felicidade”. Ambos os modelos tiveram dificuldades
em “Medo”, com desempenho mais baixo na TPW. Na RAVDESS, a TPW teve bom

1 O Projeto SofiaFala é uma tecnologia desenvolvida com o intuito de melhorar a qua-
lidade de vida de pessoas com dificuldades de fala através da captação e análise de
sons e imagens produzidos durante a execução do exercício fonoaudiológico para indivi-
dualizar a intervenção terapêutica (RISSATO; MACEDO, 2021). Site oficial do projeto
http://dcm.ffclrp.usp.br/sofiafala/
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resultado em “Calmo” e “Medo”, mas a TDW foi melhor em “Raiva”, “Nojo”, “Surpresa”
e “Neutro”. Esses resultados indicam que, embora o modelo com a TPW tenha mostrado
potencial em algumas classes, ele enfrenta desafios em outras e não supera o desempenho
do modelo com a TDW.

Quando comparados aos trabalhos discutidos no Capítulo 3, os resultados obtidos
neste estudo são significativamente inferiores. No entanto, esses estudos utilizaram uma
combinação diversificada de técnicas, como modelos pré-treinados em grandes conjuntos
de dados, métodos de pré-processamento sofisticados e técnicas avançadas de extração de
características. Essa variedade de abordagens não só dificulta a comparação direta entre os
estudos, mas também a comparação com os resultados obtidos neste trabalho de conclusão
de curso. Além disso, é importante destacar que, dos trabalhos encontrados na literatura,
nenhum utilizou uma base de dados de fala espontânea, realizando o reconhecimento de
emoções em condições que podem não ser iguais às da fala espontânea.

Embora os resultados deste trabalho sejam satisfatórios, com um F1 score de 0,494
e uma acurácia de 0,744 na base CORAA, há muitas formas que podem ser exploradas
para melhorar o desempenho, conforme mencionado anteriormente. Técnicas adicionais
de aumento de dados, o uso de algoritmos alternativos de VAD, e a experimentação com
diferentes parâmetros para o espectrograma Mel e a transformada de Wavelet são alguns
dos caminhos possíveis. No entanto, o maior destaque deve ser dado à possibilidade de
utilizar um modelo pré-treinado, como evidenciado pelo melhor resultado alcançado para
a base CORAA. Mesmo com todas as variações de parâmetros testadas neste estudo,
ou comparando a TWP com a TDW, nenhum dos ajustes resultou em um ganho tão
significativo quanto o trabalho que utilizou uma rede neural pré-treinada em um grande
conjunto de dados.

Ao testar o modelo nos dados do SofiaFala, os resultados indicaram um desempenho
insatisfatório, evidenciando um possível viés de classificação. O modelo foi treinado de
forma dependente do falante, permitindo que o mesmo falante apareça tanto no conjunto de
treino quanto no de teste, o que pode ter influenciado os resultados. Esse viés é preocupante,
pois o modelo tende a atribuir uma mesma classe a todos os áudios de um mesmo falante,
independentemente do conteúdo emocional, tornando-o inadequado para aplicação em
pessoas com deficiência de fala.

Para evitar esses problemas e aprimorar o modelo em trabalhos futuros, seria
interessante realizar uma marcação mais detalhada da base SofiaFala, seja por meio
de especialistas humanos ou utilizando outros modelos que possam fornecer resultados
mais robustos. Com essas marcações, seria possível conduzir estudos adicionais para
identificar e entender o viés do modelo ao classificar áudios de pessoas com deficiência de
fala. Além disso, uma marcação mais precisa permitiria o desenvolvimento de soluções
independentes do falante, possibilitando o treinamento de modelos que generalizem melhor
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para diferentes indivíduos, sem depender de dados específicos de cada falante. Essa
abordagem abriria caminho para futuras pesquisas e melhorias no reconhecimento de
emoções em fala espontânea, especialmente no contexto de pessoas com deficiência de
fala. Futuros trabalhos também podem explorar o uso de modelos pré-treinados com
potencial para alcançar melhorias substanciais no reconhecimento de emoções na fala.
Embora seja possível investigar outros parâmetros de wavelet, técnicas de extração de
espectrograma Mel e até testar novos algoritmos de detecção de atividade de voz, o uso de
modelos pré-treinados em grandes volumes de dados foi o que apresentou os resultados
mais promissores entre todas as soluções analisadas.
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