
Ana Emília Hernandes Dib

Projeto de irrigação de jardim utilizando
Internet das Coisas

São Paulo, SP

2020

Ana Emília Hernandes Dib

Projeto de irrigação de jardim utilizando Internet das
Coisas

Trabalho de formatura apresentada à Escola
Politécnica da Universidade de São Paulo
como parte dos requisitos para obtenção do
grau de Bacharel em Engenharia Mecatrô-
nica.

Universidade de São Paulo

Escola Politécnica

Orientador: Prof. Dr. Fabrício Junqueira

São Paulo, SP
2020

 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Catalogação-na-publicação

Dib, Ana Emília Hernandes
 Projeto de irrigação de jardim utilizando Internet das Coisas / A. E. H. Dib -
 São Paulo, 2020.
 80 p.

 Trabalho de Formatura - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos.

1.Internet das Coisas 2.Jardim 3.Automação residencial I.Universidade de
São Paulo. Escola Politécnica. Departamento de Engenharia Mecatrônica e de
Sistemas Mecânicos II.t.

Agradecimentos

Ao meu orientador Fabrício, por toda orientação, paciência e ajuda. Aos meus pais
pelo suporte durante todos os anos da graduação.

Ao Nilton, ao Daniel e principalmente ao Luciano pelo apoio e compreensão durante
esse tempo. Ao Lucas pela experiência transmitida e também pelos conselhos oferecidos
para a realização deste trabalho.

Resumo
A Internet das Coisas é um termo utilizado para se referir à conexão de objetos "comuns"do
dia-a-dia à internet. No contexto de Indústria 4.0, existe cada vez mais uma tendência a
objetos e máquinas operarem conectados, com informações em tempo real. Neste trabalho,
é proposto e desenvolvido um projeto de automação residencial, de sistema autônomo de
irrigação de jardins, utilizando um Raspberry Pi modelo B+ e um módulo NodeMCU
com microcontrolador ESP8266. O sistema é capaz de se conectar à internet para obter
a previsão do tempo e fazer comunicação entre seus componentes, e utiliza sensor de
umidade e fluxo para verificar a umidade do solo e medir o volume de água utilizado,
respectivamente. Além disso, o sistema oferece a possibilidade de operação automática,
em que faz irrigações periódicas constantes, independente da previsão do tempo. Após
levantados os requisitos de projeto, o sistema foi modelado a partir de diagramas UML
e implementado em três frentes: controlador, processador e interface com usuário. Após
implementado, o sistema foi colocado em execução, e obteve resultados consistentes com o
objetivo esperado.

Palavras-chave: Internet das Coisas. Jardim. Automação residencial.

Abstract
Internet of Things is a term used to refer to the connection of "common" everyday objects to
the internet. In the context of Industry 4.0, there is an increasing tendency for objects and
machines to operate connected, with real-time information. This monography proposes and
develops a home automation project, with an autonomous garden irrigation system, using
a Raspberry Pi model B + and a NodeMCU module with ESP8266 microcontroller. The
system is capable to connect to the internet to get the weather forecast and to communicate
between the components, and uses the humidity and flow sensors to verify the soil moisture
and measure the volume of water used, respectively. In addition, the system offers the
possibility to operate in automatic mode, in which it makes constant periodic irrigations,
regardless of the weather forecast. After defining the project requirements, the system
was modeled using UML diagrams and implemented based on three fronts: controller,
processor and user interface. After implemented, the system was put into execution, and
the results obtained were consistent with the objective expected.

Keywords: Internet of Things. Garden. Home automation.

Lista de ilustrações

Figura 1.1 – Patente US1997901A . 16
Figura 2.1 – Computador e dispositivo IoT conectados pela internet 23
Figura 2.2 – Estrutura de uma arquitetura cliente-servidor. 24
Figura 2.3 – Estrutura padrão do MQTT . 26
Figura 2.4 – Exemplo de fluxo de mensagens usando protocolo MQTT 28
Figura 3.1 – Sensor de umidade do solo. 34
Figura 3.2 – Válvula solenoide. 35
Figura 3.3 – Módulo relé 3,3V. 36
Figura 3.4 – Sensor de fluxo de água. 36
Figura 3.5 – Placa de desenvolvimento NodeMCU ESP-12 37
Figura 3.6 – Raspberry Pi 3 modelo B+. 38
Figura 3.7 – Pinagem do NodeMCU. 39
Figura 3.8 – Esquemático de montagem elétrica do projeto. 40
Figura 3.9 – Diagrama de casos de uso. 41
Figura 3.10–Diagrama de atividades do caso de uso: Irrigação Inteligente. 44
Figura 3.11–Diagrama de atividades do caso de uso: Irrigação Automática. 45
Figura 3.12–Diagrama da atividade: Irrigação . 46
Figura 3.13–Diagrama de atividades do caso de uso: Consulta do consumo de água. 47
Figura 3.14–Diagrama de atividades do caso de uso: Informar previsão do tempo. . 48
Figura 3.15–Diagrama de atividades do caso de uso: Informar hora. 49
Figura 3.16–Diagrama de classes. 50
Figura 4.1 – Lógica de controle utilizada na decisão. 61
Figura 4.2 – Widget de previsão obtido por meio da API. 62
Figura 5.1 – Montagem dos componentes eletrônicos. 63
Figura 5.2 – Montagem eletrônica e hidráulica. 64
Figura 5.3 – Sistema integrado com uma planta. 64
Figura 5.4 – Página inicial na versão desktop. 65
Figura 5.5 – Página de consulta de dados na versão desktop. 65
Figura 5.6 – Página de modos de operação na versão desktop. 66
Figura 5.7 – Página inicial na versão mobile. 67
Figura 5.8 – Páginas na versão mobile. 68

Lista de tabelas

Tabela 2.1 – Tipos de mensagem do protocolo MQTT 27
Tabela 2.2 – Camadas do protocolo TCP/IP . 29
Tabela 4.1 – Resultados do teste do sensor de fluxo. 54
Tabela 4.2 – Parâmetros da API para a cidade de São Paulo. 60

Lista de abreviaturas e siglas

API Application Programming Interface

AWS Amazon Web Services

ID Identificação

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IBM International Business Machines

IoT Internet of Things

IP Internet Protocol

ISO International Organization for Standardization

JSON JavaScript Object Notation

MQTT Message Queuing Telemetry Transport

NBR Norma Brasileira

NTP Network Time Protocol

OASIS Organization for the Advancement of Structured Information Standards

PIB Produto Interno Bruto

PHP Hypertext Preprocessor

SSID Service Set Identifier

TCP Transmission Control Protocol

UML Unified Modeling Language

Sumário

Lista de ilustrações . 9

Lista de tabelas . 10

1 INTRODUÇÃO . 15
1.1 Objetivos . 19
1.2 Motivação . 20
1.3 Organização do texto . 21

2 REVISÃO BIBLIOGRÁFICA . 22
2.1 Internet das Coisas . 22
2.2 Arquitetura cliente-servidor . 23
2.3 Protocolo MQTT . 25
2.4 Protocolo TCP/IP . 28
2.5 Protocolo HTTP . 30
2.6 Protocolo NTP . 30

3 DESCRIÇÃO DO PROJETO . 32
3.1 Requisitos de projeto . 32
3.2 Sistema físico . 33
3.2.1 Componentes . 33
3.2.1.1 Sensor de umidade com módulo comparador 33
3.2.1.2 Válvula solenoide de vazão . 34
3.2.1.3 Módulo relé . 34
3.2.1.4 Sensor de fluxo . 35
3.2.1.5 Módulo ESP8266 NodeMCU-ESP12 . 36
3.2.1.6 Raspberry Pi . 37
3.2.2 Esquemático . 38
3.3 Modelagem comportamental . 40
3.3.1 Diagrama de casos de uso . 41
3.3.2 Diagrama de atividades . 43
3.3.3 Modelagem estrutural . 47

4 IMPLEMENTAÇÃO . 52
4.1 Módulo NodeMCU . 52
4.1.1 Sensores e atuadores . 52
4.1.1.1 Leitura do sensor de umidade do solo . 52

4.1.1.2 Leitura do sensor de fluxo . 53
4.1.1.3 Controle da válvula . 55
4.1.2 Data e hora . 55
4.1.3 Conexão Wi-Fi . 56
4.1.4 Configuração do protocolo MQTT . 56
4.2 Raspberry Pi . 58
4.2.1 Configuração do protocolo MQTT . 58
4.2.1.1 Servidor . 58
4.2.1.2 Cliente . 58
4.2.2 API OpenWeather . 59
4.2.3 Lógica de controle . 60
4.3 Interface gráfica . 61

5 RESULTADOS E DISCUSSÕES . 63
5.1 Resultados . 63
5.2 Discussões . 65

6 CONCLUSÃO . 69
6.1 Próximos passos . 69

REFERÊNCIAS . 71

APÊNDICES 75

APÊNDICE A – ESQUEMÁTICO DO MÓDULO NODEMCU . . . 76

15

1 Introdução

A irrigação é um meio artificial de fornecer água ao solo para o cultivo de plantas
(RODRIGUES; SOUSA, 2018). Ela é necessária para proporcionar a quantidade adequada
de água ao plantio, complementando a água proveniente das chuvas. A irrigação visa
otimizar os recursos hídricos disponíveis para cada região e situação.

De acordo com Neto (2017), essa prática é utilizada desde 4500 a.C. Diversas
civilizações nasceram e se desenvolveram graças à irrigação. O primeiro aspersor giratório
foi desenvolvido em 1926, para aplicação em irrigação de jardim. A invenção do aspersor de
impacto em 1933 gerou uma revolução nos métodos de irrigação no mundo. A Figura 1.1
mostra a patente registrada desse aspersor. Atualmente, o uso da irrigação é feito para
garantir a produção agrícola em regiões com baixo índice pluviométrico, e aumento da
produtividade das culturas e qualidade dos produtos Testezlaf (2017).

Para Lucon e Chaves (2004), a irrigação também é uma prática importante no
cultivo de hortas, que ganha espaço desde a década de 1970, como uma resposta ao
uso abundante de agrotóxicos e conscientização ambiental. Nessas hortas a irrigação é
fundamental para o desenvolvimento das plantas.

Segundo Gengo e Henkes (2013), nas cidades e áreas urbanas, jardins são usados
como um instrumento de gestão ambiental, para melhoria de qualidade de vida, ambiental
e estética urbana. Além disso, o paisagismo é uma solução que vem sendo usada nas
empresas para se adequarem a normas ambientais, como a NBR ISO 14001. O setor de
turismo também investe em paisagismo, visto que os clientes tendem a optar por espaços
sustentáveis. A irrigação se faz necessária na manutenção e prosperidade desses jardins.

Ao passo em que novas tecnologias são desenvolvidas, cresce a demanda de automa-
ção e, consequentemente, a aplicação do uso da internet das coisas em objetos do dia-a-dia.
Desse modo, crescem também a quantidade de aplicações disponíveis para facilitar essa
conexão das coisas por meio da internet.

No mercado existem produtos1 destinados à irrigação de jardim, de topo de linha,
baseados em IoT, que se conectam à rede WiFi e permitem que o usuário controle o
horário e duração da irrigação à distância, por meio de aplicativo de celular. Há produtos
que possuem também inteligência climática, que ajusta os cronogramas de rega baseado
no clima e tipo de solo locais.

No meio acadêmico, pode-se encontrar diversas abordagens de aplicação de irrigação
inteligente de jardins. Na década passada Santos (2010) desenvolveu um sistema de controle

1 Rachio Smart Sprinkle Controller e Orbit B-Hyve, vendidos pela Amazon.

16 Capítulo 1. Introdução

Figura 1.1 – Patente US1997901A

Fonte: Google Patents. Disponível em <https://patents.google.com/patent/US1997901A/en>. Acesso em
16 jun. 2020.

de irrigação automático, porém sem utilizar conceitos de Internet das Coisas. Seu projeto
foi baseado em sensor de temperatura LM352, e se considerou que, em um dia de chuva, a
temperatura ambiente seria mais baixa, deste modo o controle é feito quando a temperatura
atinge um valor mínimo determinado pelo autor.

Para a irrigação, o microcontrolador PIC18F4523 aciona uma bomba por um
intervalo de tempo. O autor destacou que é importante observar o clima local antes de
configurar o sistema. Apesar de concluir o projeto, a plataforma experimental não foi
posta em prática.

Ghizzi (2016) propôs um sistema de irrigação de jardim residencial automatizado.
Seu objetivo principal foi a economia de água. O sistema funciona com base em sensores
de umidade e na previsão de chuva local, de fontes distintas da internet. Caso a leitura do

2 Datasheet disponível em: <http://www.ti.com/lit/ds/symlink/lm35.pdf>. Acesso em 18 mar. 2020.
3 Datasheet disponível em: <https://ww1.microchip.com/downloads/en/DeviceDoc/39564c.pdf>. Acesso

em 18 mar. 2020.

https://patents.google.com/patent/US1997901A/en
http://www.ti.com/lit/ds/symlink/lm35.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/39564c.pdf

17

sensor seja baixa, o sistema busca a informação do tempo para decidir se a irrigação é
necessária ou não. Por meio de sensor de chuva é possível medir a confiabilidade de cada
fonte de previsão do tempo acessada.

Além disso, o autor projetou também um sistema de coleta de águas pluviais para
ser utilizado junto aos bombeamento de água, que faz parte do sistema físico do projeto
Ghizzi (2016). O trabalho no todo, porém, é majoritariamente teórico, abordando com mais
atenção o modelo matemático e as simulações feitas. Ao final, foi feita uma modelagem
satisfatória, de acordo com o julgamento do autor, porém o modelo não foi implementado.

Em uma abordagem diferente, Correia, Rocha e Rissino (2016) apresentam uma
proposta de protótipo de monitoramento remoto e controle de irrigação, calculando a
quantidade de água necessária na rega a partir da evapotranspiração do solo, ou seja, a perda
simultânea da água do solo por evaporação e transpiração. O cálculo da evapotranspiração
possui como parâmetro a temperatura, desse modo justifica o uso deste tipo de sensor no
projeto. A rega, caso necessária, é feita em horário pré-determinado pelo usuário.

O projeto de Correia, Rocha e Rissino (2016) utilizou a plataforma Arduino4 para
fazer o controle e monitoramento do sistema, com acionamento à distância via internet.
Como o Arduino não possui módulo de conexão à internet, foi utilizado o circuito integrado
HLK-RM045 para fazer essa comunicação, usando protocolos TCP/IP e HTTP. Após a
fase de testes os autores concluíram que a interface do aplicativo WEB é intuitiva aos
usuários, e que o sistema foi capaz de reduzir em 25% o consumo de água em seu modo
automático.

Já Grehs (2016), em sua pesquisa, desenvolveu um sistema doméstico de irrigação
baseado em dispositivos que medem a umidade do solo e controlam a liberação de água.
As informações lidas pelos sensores são então enviadas à nuvem. O usuário, por meio de
aplicativo de celular, tem acesso a essas informações e consegue monitorar e controlar o
valor de umidade limite para o qual deseja a liberação de água pelos atuadores.

Na implementação do projeto, o autor priorizou o quesito econômico, focando no
baixo custo. Sendo assim, utilizou um sensor de umidade do tipo HL-696, e uma válvula
de solenoide, conectados a um microcontrolador ESP82667. O protocolo utilizado para
comunicação entre microcontrolador e internet foi o MQTT8. As informações de leitura
ficam disponíveis na nuvem e ao usuário por meio do aplicativo desenvolvido.

4 Mais informações em: <https://www.arduino.cc/.>
5 Datasheet disponível em: <https://e-radionica.com/productdata/2013042218402981701.pdf>. Acesso

em 18 mar. 2020.
6 Mais informações em: <http://www.fecegypt.com/uploads/dataSheet/1480854383_water%20and%

20soil.pdf>. Acesso em: 18 mar. 2020.
7 Datasheet disponível em: <http://www.electroschematics.com/wp-content/uploads/2015/02/

esp8266-datasheet.pdf>. Acesso em: 19 mar. 2020.
8 Documentação disponível em: <http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf>. Acesso

em 19 mar. 2020.

https://www.arduino.cc/.
https://e-radionica.com/productdata/2013042218402981701.pdf
http://www.fecegypt.com/uploads/dataSheet/1480854383_water%20and%20soil.pdf
http://www.fecegypt.com/uploads/dataSheet/1480854383_water%20and%20soil.pdf
http://www.electroschematics.com/wp-content/uploads/2015/02/esp8266-datasheet.pdf
http://www.electroschematics.com/wp-content/uploads/2015/02/esp8266-datasheet.pdf
http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf

18 Capítulo 1. Introdução

O funcionamento do projeto foi validado a partir de testes realizados. A única
ressalva foi que o aplicativo desenvolvido não é intuitivo ao usuário. O autor vê a possi-
bilidade de seu protótipo se transformar em um produto, adicionando-se protocolos de
segurança, outros sensores para melhorar a precisão e uma interface amigável (GREHS,
2016).

Em seu artigo, Gonçalves et al. (2018) desenvolvem um projeto parecido com o de
Grehs (2016), um sistema baseado em IoT que realiza irrigação automática, controlando
tempo de irrigação. A rega é ativada de acordo com limites definidos para umidade do
solo. No trabalho em questão, optou-se por desenvolver uma página na internet, em PHP,
onde o usuário tem acesso ao monitoramento da umidade do solo.

O microcontrolador utilizado foi o NODECMU9, que possui também o módulo
ESP8266 integrado, que controla uma bomba de água. A bomba é acionada quando o
sensor lê o limite mínimo e desligada no limite máximo de umidade, pré estabelecidos
pelos autores. Os dados são enviados pela internet a uma página por meio do protocolo
HTTP.

Gonçalves et al. (2018) sugerem que, para melhora do projeto, o microcontrolador
deve ser capaz de armazenar temporariamente as informações, para evitar falhas de
comunicação e perda de dados. O projeto funcionou de acordo com o esperado, podendo
ser aplicado em diversas situações de irrigação.

Considerando a tendência de as pessoas se preocuparem com sua saúde e buscarem
alimentos livres de agrotóxicos, Marino, Vasconcelos e Moraes (2017) desenvolveram um
ambiente de irrigação inteligente de plantas para jardim que é ativado de acordo com a
necessidade e monitorado à distância. Seu funcionamento é baseado em leitura de sensor
de umidade para decidir se o jardim deve ser irrigado ou não.

A arquitetura inicial do projeto consistiu em utilizar um Arduino UNO10, pos-
teriormente substituído por um microcontrolador NODEMCU, pois este possui módulo
WiFi integrado. O hardware faz a leitura dos sensores e ativação da bomba d’água. As
informações obtidas são transmitidas, por meio do protocolo MQTT, a um Raspberry
Pi11, que faz o tratamento de dados e se comunica com os serviços da Amazon (AWS)12.
Estes serviços enviam notificações por e-mail para o usuário.

Após diversos testes e validações, os autores concluíram que o ambiente desenvolvido
desempenhou o papel proposto satisfatoriamente, e destacam que os serviços da Amazon são

9 Documentação disponível em: <https://nodemcu.readthedocs.io/en/master/>. Acesso em: 05 mai.
2020

10 Datasheet disponível em: <https://www.farnell.com/datasheets/1682209.pdf>. Acesso em:19 mar.
2020.

11 Datasheet disponível em: <https://www.raspberrypi.org/documentation/hardware/computemodule/
datasheets/rpi_DATA_CM3plus_1p0.pdf>. Acesso em 19 mar. 2020.

12 Amazon Web Services. Mais informações em: <https://aws.amazon.com/>. Acesso em 19 mar. 2020.

https://nodemcu.readthedocs.io/en/master/
https://www.farnell.com/datasheets/1682209.pdf
https://www.raspberrypi.org/documentation/hardware/computemodule/datasheets/rpi_DATA_CM3plus_1p0.pdf
https://www.raspberrypi.org/documentation/hardware/computemodule/datasheets/rpi_DATA_CM3plus_1p0.pdf
https://aws.amazon.com/

1.1. Objetivos 19

promissores na área de Internet das Coisas. Por fim, reconhecem que para ser transformado
em produto, devem ser estudadas a autenticação e criptografia das mensagens trocadas
via internet Marino, Vasconcelos e Moraes (2017).

É válido ressaltar que a inovação científica e tecnológica está em contínuo desenvol-
vimento, e isso faz com que sempre surjam novas aplicações de diferentes tecnologias no
mercado.

Na literatura, existem diferentes propostas e projetos de sistemas automáticos de
irrigação de jardins baseados em conceitos de Internet das Coisas. Pode-se concluir que
para gerar resultados, uma tecnologia pode ser aplicada de diversas maneiras, e seu uso é
sempre capaz de inovar.

A Internet das Coisas é um assunto que surgiu há 20 anos e até hoje está em
destaque, e possui diversas aplicações visando maior conforto, segurança e confiabilidade à
população.

Na área residencial, os usuários são capazes de controlar e monitorar o ambiente
remotamente, incluindo seu consumo de água. A aplicação dessas tecnologias permite
otimizar o consumo e cortar gastos desnecessários.

É válido destacar que não existe um padrão de uso para esta tecnologia, que pode
sempre se inovar.

1.1 Objetivos

O objetivo deste trabalho é projetar e construir um sistema de irrigação de jardins
autônomo utilizando o conceito de Internet das Coisas, ou seja, de que um objeto comum
do dia-a-dia tenha acesso à internet e possa se comunicar e compartilhar dados disponíveis
na rede com outro objeto. Nesse caso, necessita dos dados referentes à previsão do tempo,
provenientes da rede.

Para alcançar o objetivo principal, o sistema deve levar em conta a leitura da
umidade do solo e a previsão do tempo local e ser capaz de tomar uma decisão, sem
interferência do usuário, se deve irrigar o jardim ou não. Na situação em que a previsão do
tempo indicar que irá chover em breve, o sistema deve entender que não há necessidade
de irrigar o jardim, pois o solo será molhado em breve pela chuva. No caso que considera
necessário irrigar, deve ser também capaz de realizar a irrigação.

Além do objetivo principal, também é meta do trabalho fazer com que esse sis-
tema seja capaz alterar o modo de operação, ao comando do usuário, e irrigar o jardim
automaticamente, e também informar ao usuário sobre as irrigações realizadas.

20 Capítulo 1. Introdução

1.2 Motivação

Atualmente as pessoas têm se preocupado mais com conforto e economia de recursos.
Uma maneira de providenciá-los à população é por meio da automatização residencial.

A presença da automação na economia global é crescente e ultrapassou as
fronteiras das instalações industriais. O esforço diário de conjugação de
dispositivos automáticos com ferramentas organizacionais e matemáticas
tem levado à criação de sistemas complexos aplicáveis às várias atividades
humanas. Assim, não somente a manufatura e processos industriais vêm
sendo automatizados, como também os serviços de infra-estrutura, os
escritórios e, até mesmo, os lares.(GUTIERREZ; PAN, 2008)

Um projeto de irrigação de jardins autônomo é um projeto de engenharia que busca
a otimização dos recursos hídricos de uma casa disponíveis para o jardim e, com isso,
maior conforto para os residentes da casa.

Além disso, o agronegócio é um setor muito forte na economia brasileira. Segundo
dados do Cepea-Esalq/USP (Centro de Estudos Avançados em Economia Aplicada), o
agronegócio correspondeu a 21, 4% do PIB (Produto Interno Bruto) do Brasil no ano
de 201913, porcentagem equivalente a R$1, 56 trilhões.14 No primeiro trimestre de 2020,
houve um crescimento de 3, 3%15. Mais precisamente, o ramo agrícola cresceu 1, 91% nesse
período.

A agropecuária é o setor da economia que mais consome água. De acordo com a
Conjuntura dos recursos hídricos no Brasil (2019), no ano de 2018 somente a irrigação
correspondeu a 66, 1% do total de água consumida no Brasil, o que equivale a um consumo
de 1.101m3/s de água. O relatório também indica que a previsão de demanda é crescente
ao longo dos anos, podendo aumentar 26% até a próxima década. Também segundo a
Agência Nacional de Águas (ANA), quase metade da água utilizada na agropecuária é
desperdiçada por diversos motivos, como irrigações mal executadas e falta de controle da
quantidade de água utilizada.

Sendo assim, o projeto descrito e desenvolvido tem um potencial econômico muito
forte, pois pode ser adaptado e expandido para modernizar e gerar economia de água,
energia e recursos em grande escala.

13 Dados disponíveis em: <https://www.cnabrasil.org.br/assets/arquivos/boletins/sut.pib_dez_2020.
5mar2020vf.pdf>. Acesso em 17 jun. 2020.

14 Fonte: IBGE <https://www.ibge.gov.br/explica/pib.php>. Acesso em 20 jun. 2020.
15 Dados disponíveis em <https://www.cepea.esalq.usp.br/upload/kceditor/files/Cepea_PIB_Agro_

marco_junho2020(2).pdf>. Acesso em 17 jun. 2020.

https://www.cnabrasil.org.br/assets/arquivos/boletins/sut.pib_dez_2020.5mar2020vf.pdf
https://www.cnabrasil.org.br/assets/arquivos/boletins/sut.pib_dez_2020.5mar2020vf.pdf
https://www.ibge.gov.br/explica/pib.php
https://www.cepea.esalq.usp.br/upload/kceditor/files/Cepea_PIB_Agro_marco_junho2020(2).pdf
https://www.cepea.esalq.usp.br/upload/kceditor/files/Cepea_PIB_Agro_marco_junho2020(2).pdf

1.3. Organização do texto 21

1.3 Organização do texto
Esta monografia está dividida em 6 capítulos. O Capítulo 1 introduz o problema

tratado no trabalho, bem como sua contextualização, motivação e objetivos.

O Capítulo 2 apresenta a revisão bibliográfica, que engloba toda a base teórica que
estrutura o projeto de irrigação proposto. Neste capítulo, são apresentados o conceito de
Internet das Coisas, a arquitetura cliente-servidor utilizada em redes de computadores, o
protocolo MQTT usado em aplicações de Internet das Coisas, e o protocolo TCP/IP.

A descrição do sistema é apresentado no Capítulo 3, onde são levantados os
requisitos de projeto e desenvolvidos os projetos de hardware, que engloba a definição dos
componentes físicos e o esquemático eletrônico, e de software, que descreve a modelagem
do comportamento lógico do sistema.

O Capítulo 4 trata da implementação da modelagem do software previamente
descrita no capítulo anterior, e também alguns testes de validação individuais realizados.
Essa implementação é dividida pelas frentes implementadas.

Em seguida, o Capítulo 5 apresenta os resultados obtidos e algumas discussões
sobre o projeto ao todo.

Por fim, o Capítulo 6 apresenta as conclusões do projeto, bem como as propostas
de trabalhos futuros levando como base o presente trabalho.

2 Revisão Bibliográfica

Com o objetivo de entender a fundamentação teórica por trás da Internet das
Coisas, foi feito, primeiramente, um estudo sobre seu conceito e aplicações.

Em seguida, foi realizada uma revisão bibliográfica referente à transmissão de
mensagens pela internet, que engloba a arquitetura cliente-servidor e os protocolos utilizados
durante o desenvolvimento deste projeto.

São eles: protocolo MQTT (Message Queuing Telemetry Transport), um dos protoco-
los mais populares para aplicações de Internet das Coisas; protocolo TCP/IP (Transmission
Control Protocol/Internet Protocol), padrão mais aceito para envio de mensagens pela in-
ternet; protocolo HTTP, utilizado para sistemas de hipermídia; e protocolo NTP (Network
Time Protocol), usado para sincronizar relógios na internet.

2.1 Internet das Coisas
O termo Internet das Coisas (ou Internet of Things, IoT, em inglês) foi criado em

1999 por Kevin Ashton. Segundo Ashton (2009), sua intenção era dizer que o mundo real
depende de coisas físicas, e não apenas ideias e informações e, por isso, o termo surgiu
com o intuito de juntar as informações sobre as coisas do mundo real na internet. Para o
especialista, a partir do momento em que computadores conseguem reunir informações
dessas coisas ou objetos sem ajuda humana, é possível otimizar diversas atividades e
reduzir perdas e custos. De acordo com o Oxford University Press (OUP) (2019), o
conceito de Internet das Coisas é usado para se referir à interconexão, via internet, de
sistemas embarcados presentes no dia-a-dia, possibilitando que estes recebam e transmitam
informações.

A partir do compartilhamento das informações, a Internet das Coisas origina
uma variedade de novos recursos com dados armazenáveis, que podem ser acessados
remotamente e utilizados nas mais diversas aplicações para a sociedade, por exemplo nas
áreas de saúde, varejo, segurança ou ambientes inteligentes.

Atzori, Iera e Morabito (2010) citam, na área da saúde, o uso de sensores sem fio
que permitem monitorar continuamente o estado do paciente, mesmo à distância. Para
economizar energia é possível conectar os dispositivos da rede elétrica, que compartilham
informações em tempo real e otimizam a distribuição de energia.

No varejo, cita que a aplicação de Internet das Coisas permite monitorar todo
o processo comercial, desde a fabricação do produto até a logística de transporte e
distribuição, e o nível de produtos disponíveis em estoque.

2.2. Arquitetura cliente-servidor 23

Os autores também mencionam ambientes inteligentes, como cidades e casas, onde
as tecnologias são aplicadas para melhorar a qualidade de vida urbana. Nas cidades, por
exemplo, é possível monitorar o estado e desempenho de calçadas, ruas e corredores de
ônibus. A distribuição de energia também pode ser otimizada de acordo com a demanda.
Nas casas inteligentes é possível que o morador gerencie eletrodomésticos e ambientes,
controlando luminosidade e temperatura.

A ideia da Internet das Coisas consiste em uma maneira única de mapear objetos
comuns a representações virtuais, similar à estrutura da internet, uma rede interconectada
de computadores. Esses objetos podem coletar informações sobre si mesmos ou transmitir
dados obtidos a partir de sensores. A Figura 2.1 expressa essa relação. A partir da premissa
de que os objetos possam ser unicamente endereçados e tenham a capacidade de se conectar
à internet, a informação coletada por eles pode fluir da mesma maneira que dados fluem
de computadores à internet, utilizando os mesmos protocolos (AGGARWAL; ASHISH;
SHETH, 2013).

Figura 2.1 – Computador e dispositivo IoT conectados pela internet

Fonte: extraído de Pfister (2011).

2.2 Arquitetura cliente-servidor
A internet como é conhecida atualmente é baseada em uma arquitetura de comuni-

cação chamada cliente-servidor. Essa comunicação pode ser feita por meio de uma rede de
computadores ou por um único computador.

Nesse modelo, o servidor é um software que está sempre em execução, esperando
uma requisição do cliente. Ele é responsável por armazenar ou processar dados ou serviços

24 Capítulo 2. Revisão Bibliográfica

de uma aplicação, e deve estar sempre disponível ao cliente, desde que este saiba sua
localização. Ao receber um pedido, o servidor deve processá-lo e responder fornecendo os
dados ou serviços solicitados ao cliente.

O cliente é um software que inicia a comunicação (conexão) com o servidor para fazer
uma solicitação de dados e espera por uma resposta, utilizando a rede de computadores
para a comunicação. Geralmente o cliente é acionado por um usuário, mas pode também
ser acionado por uma rotina automática (OLIVEIRA, 2017).

A Figura 2.2 mostra a conexão básica entre computadores em uma arquitetura
cliente-servidor para um único servidor. Um cliente pode fazer requisições a diversos
servidores, assim como um servidor pode responder a diversos clientes. Isso permite uma
descentralização dos serviços e dados, que estão distribuídos em servidores pelo mundo
todo. Desse modo, a funcionalidade geral de um serviço fica disponível para todos os
clientes, mas não precisa ser implementada por todos os serviços (SOMMERVILLE, 2013).

Figura 2.2 – Estrutura de uma arquitetura cliente-servidor.

Fonte: autoria própria.

Um dispositivo de Internet das Coisas pode atuar tanto como cliente quanto como
servidor. No papel de cliente, pode-se citar um dispositivo que faz uma solicitação da
previsão do tempo para um servidor externo, ou um dispositivo que faz a leitura de
temperatura do ambiente e comunica a leitura a um banco de dados. Na função de servidor,
o dispositivo pode atuar com as funções mencionadas, como servidor web ou servidor de
banco de dados.

2.3. Protocolo MQTT 25

Para funcionar, o servidor deve ter instalado um sistema operacional, como Linux
ou Windows, que reconheça a rede cliente-servidor. A comunicação entre cliente e servidor
é feita por meio de protocolos. Na arquitetura cliente-servidor é importante que todas as
aplicações consigam se conectar e comunicar pela rede. Para isso, é necessário que utilizem
o mesmo protocolo de comunicação.

2.3 Protocolo MQTT

O protocolo MQTT (Message Queuing Telemetry Transport) é um protocolo de
troca de mensagens assíncronas entre máquinas que segue a arquitetura cliente-servidor.
Ele foi criado em 1999 por Andy Stanford-Clark (IBM) e Arlen Nipper (Eurotech)1. Esse
protocolo é bastante popular em aplicações de Internet das Coisas, pois possui vantagens
como código aberto, flexibilidade, padronização, possui estrutura simples e é um protocolo
leve. Isso permite que seja aplicado em dispositivos e sistemas restritos e em redes com
baixa largura de banda e com alta latência.

Segundo Oliveira (2017), o MQTT utiliza um broker, ou seja, um software in-
termediador que atua como servidor, que tem função de gerenciamento de mensagens,
tanto recebendo quanto repassando mensagens, quando solicitado. Sendo assim, atua nos
dois sentidos, de recebimento e transmissão de dados. O broker deve implementar um
armazenamento de dados estruturado por tópicos.

Por outro lado, "um cliente é qualquer coisa que possa interagir com o broker e
receber mensagens"(YUAN, 2017). Para aplicação em Internet das Coisas, os sensores
geralmente fazem o papel de clientes que se conectam ao servidor para publicar mensagens.
Outros clientes, como aplicativos que processam dados, podem também se conectar ao
servidor para receber essas mensagens (MARTINS; ZEM, 2015). Dessa maneira, os clientes
podem ser tanto a origem quanto o destino das mensagens. Esse é o modelo de publicação-
assinatura (publish-subscribe, em inglês).

Para Yuan (2017), tal modelo funciona da seguinte maneira: primeiramente, um
cliente se conecta ao broker e pode assinar um tópico de mensagens. Essa conexão
cliente-servidor é feita geralmente por meio do protocolo TCP/IP. Então, outro cliente
conecta-se ao broker e publica uma mensagem em determinado tópico. A seguir, o broker
é responsável por encaminhar tal mensagem a todos os clientes assinates do tópico em
questão. A Figura 2.3 esquematiza essa troca de informações:

O MQTT está atualmente na versão 5.0 e já é classificado como padrão OASIS
(Organization for the Advancement of Structured Information Standards, ou Organização
para o Avanço de Padrões em Informação Estruturada em português, que é uma organização

1 Fonte: <http://mqtt.org/faq>.Acesso em 18 jun. 2020.

http://mqtt.org/faq

26 Capítulo 2. Revisão Bibliográfica

Figura 2.3 – Estrutura padrão do MQTT

Fonte: autoria própria.

global sem fins lucatrivos que tem como objetivo legalizar e padronizar serviços web.2)

De acordo com a documentação do MQTT v5.03, existem 16 tipos de mensagens
que podem ser transmitidas pelo protocolo. A Tabela 2.1 apresenta essas categorias. Os
principais tipos são: CONNECT, PUBLISH e SUBSCRIBE. A Figura 2.4 é um diagrama
de sequência que mostra um exemplo de fluxo de mensagens que pode ocorrer entre dois
clientes e um servidor.

Para que uma mensagem possa ser enviada via protocolo MQTT, é necessário
definir o IP do broker, o tópico da mensagem e também algumas configurações de conexão
entre cliente e servidor (como usuário e senha do MQTT, e nome da rede e senha do Wi-Fi
ao qual será feita a conexão), além da mensagem em si que será publicada:

– IP do broker : informação necessária para que a mensagem consiga chegar ao
servidor de destino correto. Tanto o cliente remetente quanto o cliente destinatário
precisam ter acesso ao número do IP para poderem se conectar ao servidor.

– Tópico da mensagem: é a identificação da categoria da informação publicada. O
tópico é usado para enviar as mensagens aos respectivos assinantes, e é composto
por uma string, ou seja, uma sequência de caracteres.

2 Fonte: <https://www.oasis-open.org/org>. Acesso em 20 jun. 2020.
3 Fonte: <http://mqtt.org/documentation>. Acesso em 19 jun. 2020.

https://www.oasis-open.org/org
http://mqtt.org/documentation

2.3. Protocolo MQTT 27

Tabela 2.1 – Tipos de mensagem do protocolo MQTT

Nome Valor Fluxo Descrição
Reserved 0 Proibido Reservado
CONNECT 1 Cliente → Servidor Requisição para conectar ao servidor
CONNACK 2 Servidor → Cliente Reconhecimento da conexão
PUBLISH 3 Cliente →← Servidor Publicação de mensagem
PUBACK 4 Cliente →← Servidor Reconhecimento da publicação
PUBREC 5 Cliente →← Servidor Publicação recebida (garantia de en-

trega parte 1)
PUBREL 6 Cliente →← Servidor Publicação liberada (garantia de en-

trega parte 2)
PUBCOMP 7 Cliente →← Servidor Publicação completa (garantia de en-

trega parte 3)
SUBSCRIBE 8 Cliente → Servidor Requisição de assinatura do cliente
SUBACK 9 Servidor → Cliente Reconhecimento de assinatura
UNSUBSCRIBE 10 Cliente → Servidor Requisição de cancelamento da assi-

natura
UNSUBACK 11 Servidor → Cliente Reconhecimento do cancelamento da

assinatura
PINGREQ 12 Cliente → Servidor Requisição PING
PINGRESP 13 Servidor → Cliente Resposta PING
DISCONNECT 14 Cliente → Servidor Desconexão do cliente
AUTH 15 Cliente →← Servidor Troca de autenticação

Fonte: <https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html>. Acesso em 19 jun. 2020.

– Nome do usuário e senha do MQTT: são valores definidos no arquivo de
configuração do servidor. Essas configurações também devem ser conhecidas pelos
clientes, para obterem acesso ao servidor. Essas configurações não são obrigatórias,
mas é recomendável utilizá-la por questões de segurança.

– Nome da rede Wi-Fi: também chamado de SSID (Service Set Identifier), é o
nome de identificação associado a uma rede Wi-Fi, que se encontra disponível para
o usuário identificar essa rede.

– Senha do Wi-Fi: é a senha de acesso ao Wi-Fi, necessária para que os dispositivos
obtenham acesso à rede.

O protocolo MQTT foi desenvolvido com base no protocolo TCP/IP para fazer a
transmissão de dados, pois necessita de conexões ordenadas, sem perdas e bidirecionais. O
MQTT especifica como são organizados os bytes de dados para transmissão por meio da
rede, usando o TCP/IP (YUAN, 2017).

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html

28 Capítulo 2. Revisão Bibliográfica

Figura 2.4 – Exemplo de fluxo de mensagens usando protocolo MQTT

Fonte: adaptado de Khusnutdinov et al. (2018).

2.4 Protocolo TCP/IP

O protocolo TCP/IP é um conjunto de protocolos que é modelado na estrutura
de camadas e é baseado na arquitetura cliente-servidor. Seu nome tem origem em dois
protocolos: TCP, ou seja, Transmission Control Protocol (em português, Protocolo de
Controle de Transmissão), e IP, ou seja Internet Protocol (em português, Protocolo da
Internet) (PARZIALE et al., 2006).

Esse protocolo possui código aberto e tem o objetivo de construir uma interconexão
entre redes. Sua vantagem é permitir a comunicação entre componentes separadas por

2.4. Protocolo TCP/IP 29

uma grande distância física. De acordo com Parziale et al. (2006), para que possa existir
uma conexão entre duas redes, é necessário haver um computador associado a essas redes,
que seja capaz de encaminhar pacotes de dados entre uma rede e outra. Esse é o chamado
roteador.

O TCP/IP é modelado em uma pilha de camadas. Isso permite que haja uma
divisão de tarefas e a possibilidade de desenvolver implementações alternativas de camadas.
A comunicação entre elas é feita por meio de interfaces. Na estrutura de pilha, uma camada
fornece um serviço à camada diretamente acima dela, e utiliza os serviços da camada
abaixo (PARZIALE et al., 2006).

As camadas são apresentadas na Tabela 2.2 e descritas a seguir:

Tabela 2.2 – Camadas do protocolo TCP/IP

Aplicações
Transporte

Rede de internet
Interface da rede

e hardware
Fonte: Parziale et al. (2006)

– Camada de aplicações: essa camada é fornecida pela aplicação que utiliza o protocolo
para comunicação. Uma aplicação é definida como um processo de usuário que age
em conjunto com outro processo, geralmente em um servidor diferente.

– Camada de transporte: essa camada fornece transferência de dados de uma ponta
a outra. Ela atua entregando dados de uma aplicação ao seu destino remoto. Essa
camada utiliza o TCP, que dá nome ao protocolo. O TCP fornece conexão orientada,
entrega confiável, supressão de dados duplicados, controle de congestionamento e
controle de fluxo.

– Camada de internet: essa camada fornece uma imagem de rede virtual usando o IP,
que, por sua vez, fornece uma função de roteador. Ele é um protocolo sem conexão e
não pode assumir que os dados que vieram abaixo dele são confiáveis.

– Camada de interface e hardware: essa camada é a interface ao hardware. Pode ser
orientada a pacotes ou a transmissões. Não há um protocolo padrão para tratar
dessa camada.

O TCP/IP se tornou o protocolo padrão principal para conexão de redes da internet,
sendo utilizado com diversos propósitos, como aplicações multimídia e uso comercial.

30 Capítulo 2. Revisão Bibliográfica

2.5 Protocolo HTTP
O HTTP (Hypertext Transfer Protocol) é um protocolo da camada de aplicações

do TCP/IP utilizado para obter um documento ou conjunto de documentos construídos
em hipertexto, ou HTML (HyperText Markup Language). Segundo Beock et al. (2011),
uma página construída em HTML, linguagem de marcação de hipertexto utilizada em
páginas Web, é interpretada por um navegador, e este é considerado o cliente da dupla
cliente-servidor.

O HTTP define a estrutura das mensagens trocadas por este protocolo. De acordo
com MDN Web Docs (2017), essas mensagens podem ser requisições ou respostas, que
possuem estruturas diferentes.

As mensagens de requisição possuem os elementos (MDN Web Docs, 2017):

– Método HTTP: é constituído por um verbo ou substantivo que indica a operação que
o cliente requisitou. Alguns exemplos de utilização de métodos são os verbos GET,
usado para obter um recurso da rede, e POST, usado para enviar dados através de
um formulário.

– Caminho do recurso, ou seja, o endereço do objeto requisitado.

– Versão do protocolo HTTP. Atualmente, a versão mais recente é a versão HTTP 3.0.

– Cabeçalho, opcional, contendo informações adicionais.

– Corpo da mensagem, contendo o recurso requisitado, caso seja necessário.

Já as mensagens de resposta estão estruturadas pelos elementos:

– Versão do protocolo HTTP.

– Código de status, que serve para indicar a situação da requisição, ou seja, se ela foi
bem sucedida ou não.

– Mensagem de status, descrição sobre o código de status.

– Cabeçalho HTTP, opcional.

– Corpo da mensagem com dados, também opcional.

2.6 Protocolo NTP
O Protocolo de Tempo para Redes (ou NTP - Network Time Protocol) é um

protocolo utilizado para sincronizar um conjunto de relógios dos dispositivos de uma rede
na ordem de nanossegundos, usando o princípio de cliente-servidor (MILLS, 1985).

2.6. Protocolo NTP 31

Os servidores NTP formam uma rede hierárquica, em que a primeira camada
corresponde a uma referência primária de tempo, como um relógio atômico. Cada camada
fornece o tempo correto à camada seguinte4.

De acordo com Júnior (2007), o objetivo do protocolo NTP é construir uma rede de
sincronização entre relógios de máquinas conectadas à internet com o tempo real mundial.
Um cliente NTP é inicialmente configurado com uma lista de pares que fornecem o tempo.
Então, o protocolo determina o servidor de tempo mais adequado dentre os disponíveis na
lista do cliente.

4 Fonte: extraído de: <https://ntp.br/ntp.php>. Acesso em 08 nov. 2020.

https://ntp.br/ntp.php

3 Descrição do projeto

Neste capítulo, é feita a descrição e detalhamento do sistema de irrigação IoT
desenvolvido.

Primeiramente, são apresentados os requisitos do projeto para que ele seja capaz de
cumprir os objetivos do sistema. Para isso são apresentados os componentes selecionados
para cumprir esses requisitos.

Em seguida, é feita a modelagem comportamental, estrutural e dinâmica do sistema,
por meio de diagramas UML (Unified Modeling Language). O modelo comportamental
descreve os casos de uso do sistema e como ele deve se comportar mediante cada um
desses casos. O modelo estrutural define a organização do software em classes, e o modelo
dinâmico representa as interações do sistema enfatizando o ordenamento cronológico das
ocorrências.

3.1 Requisitos de projeto
A fim de projetar o sistema de irrigação é necessário primeiramente levantar os

requisitos do projeto a partir dos objetivos do sistema, ou seja, as condições ou capacidades
que o sistema deve possuir para cumprir os objetivos levantados.

1. O sistema deve ser capaz de tomar uma decisão sobre irrigar um jardim, baseada na
umidade do solo e na previsão do tempo, e realizar automaticamente essa irrigação.
Para isso, deve ser capaz de:

– Coletar dados referentes à umidade do solo;

– Coletar dados referentes à previsão do tempo na região;

– Processar dados e decidir se deve haver irrigação;

– Fornecer água ao jardim.

2. O sistema deve ser capaz de cumprir uma rotina periódica de irrigação, independente
da umidade solo e da previsão do tempo. Para isso, é necessário:

– Fornecer água ao jardim periodicamente.

3. O sistema deve ser capaz de exibir os dados referentes às irrigações realizadas ao
usuário:

– Registrar a quantidade de água utilizada;

3.2. Sistema físico 33

– Registrar o dia e a hora;

– Possuir interface com o usuário.

Levantados os requisitos de projeto, os componentes necessários são selecionados, e
deve-se então modelar os comportamentos desejados do sistema.

3.2 Sistema físico
Nesta seção são apresentados os componentes físicos utilizados, bem como suas

características, funcionamento e montagem do sistema.

3.2.1 Componentes

No projeto foram utilizados sensores e atuadores no jardim, além de controla-
dores para fazer o processamento das informações obtidas pelos sensores e on-line. Os
componentes são descritos a seguir.

3.2.1.1 Sensor de umidade com módulo comparador

Esse sensor (Figura 3.1) detecta a variação de umidade no solo1. Ele possui uma
saída digital que pode ser regulada por meio de um potenciômetro, e uma saída analógica,
que faz leituras entre 1024 (solo seco) e 0 (umidade alta).

O princípio do funcionamento desse sensor é a variação da resistência de suas
hastes (eletrodos) de acordo com a umidade do solo. A condutividade do solo é medida
aplicando-se uma corrente nas hastes do sensor.

Quando ele está úmido, a condutividade é mais alta, devido à ocorrência de uma
solução iônica no solo e, consequentemente, existe um maior fluxo de corrente entre os
eletrodos. O sensor possui um circuito comparador conectado às hastes capaz de medir a
condutividade.

Suas especificações são:

– Tensão de alimentação: 3,3 a 5V;

– Sensibilidade ajustável por potenciômetro;

– Saídas digital e analógica;

– Led indicador de detecção de umidade;

– Comparador: LM393.
1 Datasheet disponível em: <https://www.curtocircuito.com.br/datasheet/sensor/umidade_do_solo.

pdf>.

https://www.curtocircuito.com.br/datasheet/sensor/umidade_do_solo.pdf
https://www.curtocircuito.com.br/datasheet/sensor/umidade_do_solo.pdf

34 Capítulo 3. Descrição do projeto

Figura 3.1 – Sensor de umidade do solo.

Fonte: extraído de: <https://www.filipeflop.com/produto/sensor-de-umidade-do-solo-higrometro/>

3.2.1.2 Válvula solenoide de vazão

Válvula normalmente fechada, usada para controlar o fluxo de água no jardim
(Figura 3.2). A válvula é alimentada com 12V por uma fonte de alimentação conectada à
rede elétrica, e acionada por um módulo relé.

O controle da válvula é feito por corrente elétrica, que passa por um solenoide, ou
seja, uma bobina enrolada em forma de espiral. A energização dessa bobina cria um campo
magnético que move um êmbolo e abre a válvula. Com a retirada de corrente elétrica do
sistema, a válvula retorna ao seu estado fechado.

Suas especificações são:

– Tensão de operação: 12V;

– Corrente: 250mA;

– Modo de operação: normalmente fechada;

– Rosca de diâmetro 1/2”.

3.2.1.3 Módulo relé

O módulo relé (Figura 3.3) é utilizado para acionar a válvula solenoide. O relé
funciona da seguinte maneira: ele possui uma bobina que, quando é alimentada com
corrente elétrica, cria um campo magnético que atrai um contato e fecha ou abre um
circuito.

https://www.filipeflop.com/produto/sensor-de-umidade-do-solo-higrometro/

3.2. Sistema físico 35

Figura 3.2 – Válvula solenoide.

Fonte: extraído de: <https://www.filipeflop.com/produto/valvula-de-vazao-solenoide-agua-12vdc/>

A válvula é ligada ao contato normalmente aberto do relé. Esse contato se mantém
aberto enquanto a bobina não está energizada, e fecha com a presença de corrente. Desse
modo, o circuito da válvula se fecha apenas quando o pino do relé é energizado. O relé
também possui um circuito normalmente fechado, com comportamento oposto, que se
abre com a passagem de corrente elétrica.

– Tensão de operação: 3, 3V;

– Suporta carga de até: 100A;

– Corrente de operação: 20mA.

3.2.1.4 Sensor de fluxo

O sensor de fluxo (Figura 3.4) é utilizado para medir o fluxo de água que passa
pela válvula2. Ele atua a partir de um sensor de efeito Hall, ou seja, que mede a diferença
de potencial em um condutor elétrico.

O sensor de fluxo possui esse sensor de efeito Hall fixo, e um ventilador com um ímã
em seu eixo, de tal modo que, com o fluxo de água, a hélice gire, alterando a orientação
do ímã. A rotação do ventilador gera então pulsos elétricos na saída do sinal do sensor.

Suas especificações são:

– Modelo: YF-S201B;
2 Datasheet disponível em: <http://www.mantech.co.za/Datasheets/Products/YF-S201_SEA.pdf>.

https://www.filipeflop.com/produto/valvula-de-vazao-solenoide-agua-12vdc/
http://www.mantech.co.za/Datasheets/Products/YF-S201_SEA.pdf

36 Capítulo 3. Descrição do projeto

Figura 3.3 – Módulo relé 3,3V.

Fonte: extraído de: <https://shopee.com.br/%E2%98%80S%E2%98%801PCS-M%C3%B3dulo-de-rel%
C3%A9-de-canal-3V-de-3.3V-i.191704685.7804886212>

– Tipo de sensor: Efeito Hall;

– Fluxo de operação: 1-30 L/min;

– Tensão de operação: 4, 5-24V;

– Rosca de diâmetro 1/2”.

Figura 3.4 – Sensor de fluxo de água.

Fonte: extraído de: <https://www.filipeflop.com/produto/sensor-de-fluxo-de-agua-12-yf-s201/>

3.2.1.5 Módulo ESP8266 NodeMCU-ESP12

Este módulo é uma placa de desenvolvimento e prototipagem que integra o contro-
lador ESP8266-ESP12 (chip que possui Wi-Fi integrado), interface USB-Serial e regulador

https://shopee.com.br/%E2%98%80S%E2%98%801PCS-M%C3%B3dulo-de-rel%C3%A9-de-canal-3V-de-3.3V-i.191704685.7804886212
https://shopee.com.br/%E2%98%80S%E2%98%801PCS-M%C3%B3dulo-de-rel%C3%A9-de-canal-3V-de-3.3V-i.191704685.7804886212
https://www.filipeflop.com/produto/sensor-de-fluxo-de-agua-12-yf-s201/

3.2. Sistema físico 37

de tensão 3, 3 V (Figura 3.5). Ele é muito usado em projetos de Internet das Coisas por
causa da conexão sem fio e da ser facilmente programável pela IDE do Arduino.

O NodeMCU possui 11 pinos digitais e 1 pino analógico. Sua alimentação pode ser
feita por USB ou por pino específico. A programação pode ser feita em linguagem LUA
ou através da IDE do Arduino, que já possui diversas bibliotecas voltadas a essa placa.

Suas especificações são:

– Wireless padrão 802.11 b/g/n;

– Suporta 5 conexões TCP/IP;

– CPU de 32-bits;

– Tensão de operação: 3, 3V;

– Tensão de alimentação: 4, 5-9V;

– 11 pinos GPIO;

– 1 pino analógico com resolução de 10 bits.

Figura 3.5 – Placa de desenvolvimento NodeMCU ESP-12

Fonte: extraído de: <https://www.filipeflop.com/produto/modulo-wifi-esp8266-nodemcu-esp-12/>

3.2.1.6 Raspberry Pi

O Raspberry Pi é um mini computador de baixo custo desenvolvido no Reino
Unido pela Fundação Raspberry Pi. Para utilizá-lo é necessário conectar um teclado, um
mouse USB e um monitor a ele, além de um cartão de memória microSD (Figura 3.6).
Neste projeto, é utilizado o Raspberry Pi 3 modelo B+.

https://www.filipeflop.com/produto/modulo-wifi-esp8266-nodemcu-esp-12/

38 Capítulo 3. Descrição do projeto

No projeto, não está diretamente conectado ao restante dos componentes eletrônicos.
Ele utiliza o sistema operacional Raspbian OS, distribuição Linux criada para rodar nos
Raspberry Pi, e atua como um servidor (broker). Possui função de solicitar a previsão do
tempo a uma API externa e fazer o processamento dos dados recebidos, tanto do sensor
de umidade quanto da previsão do tempo. Ele também faz a comunicação com o módulo
NodeMCU pela rede Wi-Fi.

Suas especificações são:

– Processador ARM Cortex-A53 Quad-Core;

– Memória RAM 1GB;

– Adaptador Wi-Fi integrado;

Figura 3.6 – Raspberry Pi 3 modelo B+.

Fonte: extraído de: <https://www.filipeflop.com/produto/raspberry-pi-3-model-b/>

Além dos componentes eletrônicos apresentados anteriormente, foram utilizados
também componentes do subsistema hidráulicos para a montagem do sistema. Os compo-
nentes necessários foram mangueiras 1/2”, adaptadores e encaixes para roscas da torneira,
válvula solenoide e sensor de fluxo.

3.2.2 Esquemático

No que diz respeito ao subsistema eletrônico, o módulo NodeMCU atua como um
controlador, pois deve ler os dados recebidos pelos sensores e também acionar a válvula
solenoide através do módulo relé para liberação de água. O esquemático da montagem é
mostrado na Figura 3.8.

https://www.filipeflop.com/produto/raspberry-pi-3-model-b/

3.2. Sistema físico 39

O módulo ESP8266 (placa integrada ao NodeMCU) trabalha com regulador de
tensão com nível de 3, 3V. Dessa maneira, apenas o sensor de umidade e o módulo relé
operam em uma faixa de tensão compatível com o controlador. Já o sensor de fluxo pode
ser alimentado pelo pino VIN, único pino capaz de fornecer tensão de 5V, pois é conectado
à alimentação da placa (interface USB), de acordo com o esquemático da placa. A pinagem
do módulo NodeMCU está apresentada na Figura 3.7.

Desse modo, é necessário utilizar uma fonte de 12V para alimentar a válvula
solenoide. Assim, quando acionado pelo controlador por um pino digital, o relé fecha o
circuito entre a válvula e a fonte, permitindo sua abertura e passagem de água.

Figura 3.7 – Pinagem do NodeMCU.

Fonte: extraído de: <https://blog.eletrogate.com/nodemcu-esp12-introducao-1/>.

As leituras dos sensores são feitas de maneiras distintas para cada sensor: o pino de
saída do sensor de umidade é conectado ao pino analógico do módulo NodeMCU. Desse
modo, o controlador consegue realizar leituras de umidade que variam entre 0 e 1024.

Já o pino de saída do sensor de fluxo é conectado a um dos pinos digitais de entrada,
e o fluxo é calculado, tal como será explicado no capítulo de implementação, a partir da
frequência de pulsos elétricos gerados nesse pino.

https://blog.eletrogate.com/nodemcu-esp12-introducao-1/

40 Capítulo 3. Descrição do projeto

Figura 3.8 – Esquemático de montagem elétrica do projeto.

Fonte: autoria própria.

3.3 Modelagem comportamental

A modelagem comportamental do sistema descreve as funcionalidades que este deve
cumprir. O projeto de software é feito partindo-se de diagramas UML. Eles descrevem,
em detalhes, as tarefas designadas ao sistema e suas estruturas de dados, e também as
relações com os atores que as realizam.

Os diagramas utilizados para modelar o comportamento foram: diagrama de casos de
uso e diagrama de atividades. Esses diagramas descrevem o fluxo de atividades realizadas
pelo sistema. Além destes, utilizou-se também o diagrama de classes para modelar a
estrutura dos objetos que compõe o projeto de software.

3.3. Modelagem comportamental 41

3.3.1 Diagrama de casos de uso

O diagrama de casos de uso tem como objetivo descrever cada cenário de utilização
do sistema, ou seja, o que o sistema deve ser capaz de fazer, porém sem detalhamento em
cada atividade em si Seidl et al. (2015). Esse diagrama deve descrever as relações entre os
atores e os casos de uso do sistema.

As relações entre um caso de uso A e outro caso de uso B podem ser de extensão
ou inclusão. Na relação de extensão, em que B é uma extensão de A, o caso de uso A pode
utilizar o comportamento de B, porém não é necessário que isso ocorra. Essa situação é
representada pela palavra-chave «extend» no diagrama. Já na relação de inclusão, em que
A inclui B, o comportamento de B está integrado ao comportamento de A. Essa situação
é representada pela palavra-chave «include» no diagrama (SEIDL et al., 2015).

Os casos de uso que possuem relação direta com um ator externo ao sistema identi-
ficados foram: irrigação inteligente, irrigação automática, módulo de irrigação, consulta de
dados, informar previsão do tempo e informar data e hora. A Figura 3.9 apresenta esses
casos.

Figura 3.9 – Diagrama de casos de uso.

Fonte: autoria própria.

1. Irrigação inteligente: é o caso de uso principal do sistema desenvolvido. Nele, o

42 Capítulo 3. Descrição do projeto

sistema deve, uma vez ao dia, verificar a umidade do solo e a previsão do tempo e,
com base nesses dados, tomar a decisão de irrigar o jardim ou não.

As pré condições que o sistema deve cumprir para esse caso de uso são: a conexão ao
Wi-Fi e acesso à internet, para troca de mensagens, horário local e também obtenção
da previsão do tempo; a capacidade de leitura do sensor de umidade; e um módulo
de irrigação capaz de controlar o sistema hidráulico. A pós condição atingida por
esse caso é: o jardim não necessita de água, podendo ter ocorrido irrigação ou não.

O ator desse caso é o usuário do sistema, e a ação que inicia o caso de uso é a
solicitação do mesmo pelo modo inteligente.

2. Irrigação automática: nesse caso de uso, o solo é irrigado uma vez ao dia. As
pré condições são o acesso ao Wi-Fi e à internet, para obtenção da data e hora, e
também um módulo de irrigação capaz de controlar o sistema hidráulico. A pós
condição é que o jardim estará irrigado.

O ator desse caso também é o usuário do sistema, e o gatilho inicial é a solicitação
do usuário pelo modo automático.

Esse caso é desenvolvido tanto para efeito de testes e comparação com o caso anterior,
com relação à água economizada, quanto para o caso de o usuário demandar de
irrigação diária, independente da chuva. Isso pode ocorrer, por exemplo, em uma
estufa que é fechada e não permite a entrada de águas pluviais.

3. Módulo de irrigação: esse caso de uso é uma sub-rotina dos casos de irrigação
inteligente e automática. Na situação da irrigação automática, possui relação de
inclusão, enquanto na irrigação inteligente possui relação de extensão.

O módulo de irrigação consiste no ato de irrigação em si, ou seja, liberação de água
para o jardim. Ele é acionado pelos outros casos de uso, não tendo o usuário controle
direto sobre seu gatilho. Sua pós condição é ter o jardim irrigado.

4. Consulta de dados: nesse caso de uso, o usuário é capaz de consultar, por meio de
interface gráfica, os dados da última irrigação. Esses dados consistem em: modo de
irrigação, data e hora em que o sistema irrigou, volume de água utilizado na última
irrigação e, caso a irrigação seja inteligente, a previsão do tempo obtida.

5. Informar previsão do tempo: já nesse caso, uma API externa de previsão do
tempo é consultada pelo sistema. Esta retorna um objeto JSON (JavaScript Object
Notation), formato de dados em linguagem computacional da forma "atributo e
valor", com as informações climáticas da data e local desejados. A pré condição é a
conexão à rede para troca de dados.

3.3. Modelagem comportamental 43

O ator aqui é o servidor externo que hospeda a API, que atua em resposta a uma
solicitação do sistema desenvolvido nesse projeto. Esse caso de uso é uma inclusão
da irrigação inteligente.

6. Informar hora: por fim, o último caso identificado diz respeito à obtenção da data
e hora pelo sistema. Esse caso de uso possui relação de inclusão com ambos os casos
de uso de irrigação, que fazem seu chamado. Seu objetivo é determinar se o sistema
deve se manter em estado de espera ou iniciar as atividades de irrigação.

3.3.2 Diagrama de atividades

O diagrama de atividades modela em maiores detalhes cada caso de uso e as
atividades realizadas durante cada um deles. Ele mostra a relação de ordem e dependência
entre ações que compõe o caso de uso, e o fluxo de controle durante essas ações.

Esse diagrama é usado para descrever processos concorrentes que se comunicam,
e pode ser comparado a uma Rede de Petri (SEIDL et al., 2015). O símbolo t indica
que uma ação por si desencadeia outra atividade, que está hierarquicamente abaixo da
atividade em questão.

1. Irrigação inteligente

Nesse modo de operação de irrigação, o sistema inicialmente faz uma chamada ao
servidor de horário local. Caso o horário obtido esteja entre determinada faixa, faz a
leitura do sensor de umidade. Em seguida, envia os dados via protocolo MQTT ao
Raspberry Pi, atuando como servidor e processador de dados. O Raspberry, então,
solicita a previsão do tempo a uma API externa (OpenWeather3), para verificar se
irá chover no dia atual ou no dia seguinte.

Levando essas duas informações em consideração, o Raspberry então deve tomar
a decisão de irrigar o jardim. Decidindo que sim, envia outra mensagem, também
por meio de comunicação MQTT, para o controlador NodeMCU, que deve, então,
acionar o módulo de irrigação. Ao final, o controlador envia os dados referentes à
irrigação, como volume utilizado e horário da irrigação, ao servidor. O diagrama de
atividades da irrigação inteligente é mostrado na Figura 3.10.

2. Irrigação automática

Na irrigação automática, controlador obtém o horário local, também pela chamada
ao servidor de horário. No horário determinado para irrigação, ativa o módulo de
irrigação, como no caso anterior, porém sem necessidade de medição da umidade do
solo nem consulta à previsão do tempo. A Figura 3.11 mostra o fluxo da atividade.
Ao final, os dados referentes à irrigação também são enviados ao servidor.

3 Disponivel em: <https://openweathermap.org/>.

https://openweathermap.org/

44 Capítulo 3. Descrição do projeto

Figura 3.10 – Diagrama de atividades do caso de uso: Irrigação Inteligente.

Fonte: autoria própria.

3.3. Modelagem comportamental 45

Figura 3.11 – Diagrama de atividades do caso de uso: Irrigação Automática.

Fonte: autoria própria.

3. Módulo de irrigação

O módulo de irrigação é uma sub-rotina dos casos de uso de irrigação inteligente e
automática. Quando é chamado, o módulo deve abrir a válvula solenoide para liberar
a passagem de água. A válvula se encontra conectada a um sensor de fluxo de água.

Quando o sensor indica que o volume pré-determinado é atingido, o controlador
deve fechar a válvula, cessando assim o fornecimento de água ao jardim. O diagrama
representando essas atividades está representado pela Figura 3.12.

4. Consulta de dados

Esse caso de uso diz respeito ao usuário que consulta os dados referentes à última
irrigação realizada. Essa consulta é feita através de uma interface gráfica, hospedada
localmente e servida pelo Raspberry Pi.

Os dados levantados são: consumo de água, horário da irrigação, previsão do tempo
(caso esteja no modo inteligente). A Figura 3.13 apresenta essas atividades.

5. Informar previsão do tempo

46 Capítulo 3. Descrição do projeto

Figura 3.12 – Diagrama da atividade: Irrigação

Fonte: autoria própria.

Nesse caso de uso, o Raspberry Pi faz uma consulta a uma API de servidor externo,
OpenWeather. Essa consulta retorna um objeto em formato JSON contendo o tempo
atual e a previsão para a semana seguinte. O sistema, porém, só necessita do tempo
atual e do dia seguinte. O fluxo de mensagens está representado na Figura 3.14

6. Informar hora

O módulo NodeMCU, que atua como controlador, inicia-se em estado de espera. Ao
"acordar", verificação que é feita periodicamente, faz uma requisição de um NTP)
a um servidor externo que hospeda o Projeto NTP.br (<https://ntp.br/>). Esse
projeto visa disponibilizar meios de sincronizar servidores de internet no Brasil.

Ao receber a hora local, o módulo verifica se a hora está entre um intervalo pré-
configurado para continuar as atividades programadas (irrigação). Caso não esteja,
retorna ao estado de espera. A Figura 3.15 mostra esse fluxo de informações.

https://ntp.br/

3.3. Modelagem comportamental 47

Figura 3.13 – Diagrama de atividades do caso de uso: Consulta do consumo de água.

Fonte: autoria própria.

3.3.3 Modelagem estrutural

A modelagem estrutural é feita a partir de diagramas de classe. Esse tipo de
diagrama é utilizado para modelar a estrutura de um sistema orientado a objetos. Uma
classe é uma construção usada para representar um determinado conjunto de objetos
similares. Um objeto é uma instância de uma classe.

Uma classe possui nome, atributos e operações. Os atributos são as características
relevantes de uma instância da classe que possibilitam o armazenamento de informações,
que podem ter diferentes valores entre os objetos, e as operações são as ações definidas
para um objeto da classe, permitindo que estes se comuniquem e realizem ações e reações
(SEIDL et al., 2015).

Uma interface é uma classe que implementa a interface gráfica do sistema. Ela
possui a palavra-chave «interface» para sua diferenciação e pode ser usada por outras
classes.

Já um diagrama de classes descreve as relações entre as classes existentes. No sistema
modelado, foram identificadas duas classes e uma interface necessárias de implementação.
As outras classes identificadas, referentes à comunicação, conexão Wi-Fi e protocolo
MQTT, são utilizadas a partir de bibliotecas importadas. Elas não foram incluídas no
diagrama visto que não é o escopo do projeto implementar essas bibliotecas, e serão melhor
detalhadas no capítulo seguinte.

48 Capítulo 3. Descrição do projeto

Figura 3.14 – Diagrama de atividades do caso de uso: Informar previsão do tempo.

Fonte: autoria própria.

As classes do sistema e relações entre si estão apresentadas no diagrama da
Figura 3.16. São elas: Jardim, Mensagem, Previsao e InterfaceWeb.

1. Classe Jardim

Essa classe é implementada no módulo NodeMCU e modelada com o intuito de
tratar dos componentes hidráulicos do sistema, como leitura de sensores e controle
da válvula. Ela possui os seguintes atributos:

– contador: variável utilizada para contabilizar os pulsos do sensor de fluxo;

– fluxo: variável que armazena o fluxo de água passando pela mangueira, cujo
cálculo é feito a partir da contagem de pulsos;

– volume: variável destinada à medida do volume total de água usada;

– ultimo_check: variável temporal correspondente à última verificação de horá-
rio que foi realizada pelo controlador.

Já seus métodos são:

– controla_valvula: método que controla a válvula de acordo com seu estado
atual: abre se estiver fechada ou fecha se estiver aberta;

– calcula_fluxo: é o método utilizado para fazer o cálculo do fluxo de água;

3.3. Modelagem comportamental 49

Figura 3.15 – Diagrama de atividades do caso de uso: Informar hora.

Fonte: autoria própria.

– modulo_irrigacao: método responsável por realizar todo o controle da irriga-
ção, que engloba o controle da válvula por feedback do volume de água.

2. Classe Mensagem

Essa classe representa um tipo de objeto que é a mensagem estruturada no formato
necessário de tópico e mensagem para ser transmitida por meio do protocolo MQTT.
Aqui não se considerou o IP do broker nem as configurações de segurança como
atributos da classe, pois se entende que são constantes para o escopo deste sistema.

Essa classe não possui métodos, apenas dois atributos do tipo string. São eles:

– topico: refere-se ao tópico da mensagem, e

– msg: a mensagem em si que é enviada.

50 Capítulo 3. Descrição do projeto

Figura 3.16 – Diagrama de classes.

Fonte: autoria própria.

3. Classe Previsao

Essa classe é implementada no Raspberry Pi com o objetivo de processar os dados
necessários para decidir se o sistema deve ou não irrigar o jardim, ou seja, a previsão
do tempo e a umidade do solo. Ela possui apenas um atributo:

– umidade: é o valor recebido do sensor de umidade, no formato int em porcen-
tagem, usado no método de decisão.

A classe também possui três operações:

– get_condicao: método usado para processar os dados da API utilizada de
previsão do tempo. Ele traduz os códigos de condição climática oriundos da
API em texto, de acordo com a sua documentação.

– get_previsao: operação que obtém a previsão do tempo por meio de uma
requisição HTTP ao servidor da API externa. Além disso, essa operação faz
o processamento dos dados obtidos para obter apenas os dados relevantes da
requisição, que é a previsão do tempo do dia atual e do próximo dia em questão.

3.3. Modelagem comportamental 51

– controle: é o método de decisão, responsável por processar a umidade do solo
e a previsão do tempo e decidir se o sistema deve irrigar o jardim. Em caso
positivo, também é responsável por enviar uma mensagem ao módulo NodeMCU
ativando o módulo de irrigação nele implementado.

4. Classe InterfaceWeb

Essa classe implementa a interface gráfica com o usuário. É por meio dela que o
usuário visualiza os dados dos processos realizados pelo sistema, e também altera o
modo de operação. Ela possui três atributos, sendo eles:

– data: data e hora da última irrigação realizada pelo sistema. Se ainda não
houve irrigações, deve mostrar texto condizente explicando a situação.

– previsao: atributo que mostra qual foi a última previsão do tempo recebida
pelo sistema. Se está em modo automático, não deve mostrar previsão.

– volume: quantidade de água (em litros) utilizada na última irrigação do sistema.
Se ainda não houve irrigação, mostra texto condizente.

E também uma operação:

– altera_modo: essa operação altera o modo de operação do sistema entre modo
inteligente e modo automático, a partir do comando do usuário.

A implementação do sistema é então feita levando a partir dos projetos físico e
estrutural do sistema.

4 Implementação

A implementação do sistema proposto foi feita em três frentes: o módulo NodeMCU,
o Raspberry Pi e a interface gráfica. Para o desenvolvimento da lógica de controle dos
componentes físicos, utilizou-se o ambiente Arduino IDE e linguagem C++, em sistema
Windows, para o NodeMCU. A interface gráfica, bem como a implementação do servidor,
foram desenvolvidos a partir do Visual Studio Code, em sistema Linux, utilizando as
linguagens de programação HTML e Python, respectivamente.

A frente do módulo NodeMCU contempla os sensores e atuadores, a conexão
Wi-Fi e MQTT e também a solicitação de hora. A frente do Raspberry Pi contempla a
implementação do broker e cliente do usuário na conexão MQTT, a solicitação à API de
clima e seu processamento, e a lógica de controle utilizada no modo inteligente. Por fim, a
frente da interface abrange a visualização dos dados referentes às irrigações e também a
troca do modo de operação do sistema.

Para cada frente, são apresentados os métodos utilizados e detalhamento de como
foram feitas essas implementações em cada uma delas.

4.1 Módulo NodeMCU

Nesse componente, é feita a leitura de sensores e conversão desses valores lidos a
valores interpretáveis, e o controle do atuador. Também foi implementada um método de
requisição do horário atual. Nessa frente, por último é necessário implementar as trocas
de mensagens com o servidor, via protocolo MQTT. Para isso, primeiramente deve-se
implementar a conexão Wi-Fi, e depois define-se os tópicos e mensagens trocadas.

4.1.1 Sensores e atuadores

Os sensores do sistema são o sensor de umidade do solo e sensor de fluxo. Já o
atuador é a válvula solenoide.

4.1.1.1 Leitura do sensor de umidade do solo

O sensor de umidade é conectado ao pino analógico A0 do módulo NodeMCU,
e fornece valores entre 1024, indicando solo totalmente seco, e 0, indicando solo muito
úmido. Desse modo, é feito um mapeamento dos valores para 0 a 100, para que a leitura
seja feita em porcentagem.

4.1. Módulo NodeMCU 53

Para obter uma maior precisão na leitura e atenuar erros causados por ruídos, é
feita uma média entre 5 leituras realizadas com intervalos de 10 milissegundos entre elas.

4.1.1.2 Leitura do sensor de fluxo

A leitura deste sensor é feita a partir da contagem de pulsos elétricos gerados pelo
sensor de efeito Hall. Para contar esses pulsos, é utilizada uma interrupção. A interrupção
funciona da seguinte maneira: depois de configurar um pino de interrupção, cada vez que
o módulo detecta o nível HIGH em tal pino, a função principal de loop é interrompida, e o
controlador executa a função de interrupção. Deste modo, basta programar a função de
interrupção como um contador de pulsos para obter o fluxo de água.

Deve-se gravar a função de interrupção na memória RAM, visto que ela pode
ocorrer durante um acesso à memória Flash, e tentar acessar uma interrupção gravada na
Flash ao mesmo tempo pode fazer o sistema entrar em pane.

O datasheet1 do sensor de fluxo fornece alguns dados de calibração e a curva do
fluxo de água Q′ (em L/H) em função da frequência de pulsos f (em Hz). Assumindo um
comportamento linear no domínio especificado, uma regressão linear fornece a seguinte
equação:

Q′ = 7, 779f − 15, 283

Fazendo a conversão para L/min:

Q = 0, 1296f − 0, 2539

Levando-se em consideração o erro indicado de ±5%, adota-se para este sensor um
fator de correção de 7, 5 min/(Ls), ou seja:

Q = f

7, 5

Sendo c o contador de pulsos do sensor durante o intervalo de tempo ∆t (em s)
considerado, a frequência f (em Hz) é calculada da seguinte forma:

f = c

∆t

O fluxo Q (em L/min) é então determinado por:

Q = f

7, 5 = c

7, 5∆t
1 Disponível em: <http://www.mantech.co.za/Datasheets/Products/YF-S201_SEA.pdf>

http://www.mantech.co.za/Datasheets/Products/YF-S201_SEA.pdf

54 Capítulo 4. Implementação

Convertendo o fluxo q para L/s:

q = Q

60

Por fim, o volume total V (em L) pode ser calculado por:

V = q∆t

O dimensionamento do volume de água para irrigação deve ser feito de acordo com
o tamanho do jardim. Para esta implementação, foi determinado um volume fixo de 0, 5 L
por irrigação.

Para validar a calibração, utilizou-se um recipiente com capacidade de meio litro com
água, observando o valor indicado. Esse experimento foi repetido 10 vezes. Os resultados
estão apresentados na Tabela 4.1.

Tabela 4.1 – Resultados do teste do sensor de fluxo.

Teste No Volume (L)
1 0,49
2 0,47
3 0,51
4 0,42
5 0,58
6 0,42
7 0,52
8 0,45
9 0,53
10 0,49

Média 0,49
Desvio 0,05
Fonte: autoria própria.

Os resultados mostram uma medição muito próxima da quantidade desejada e uma
média de 0,49L e um desvio-padrão de 0,05L. Assim, considerou-se a calibração do sensor
adequada para o propósito deste trabalho, visto que o sistema não exige uma precisão
elevada.

Uma observação que pode ser feita é que, no projeto, existe um atraso entre a
passagem de água pela válvula e a sua contabilização pelo sensor de fluxo, tanto pela
distância física entre os componentes quanto pelo tempo computacional envolvido. Dessa
maneira, é possível que o volume de água utilizado na irrigação seja ligeiramente maior do
que o 0, 5L estipulado.

4.1. Módulo NodeMCU 55

4.1.1.3 Controle da válvula

A válvula solenoide deve ser acionada apenas no momento da irrigação, e deve ser
fechada quando a quantidade de água utilizada seja equivalente ao volume determinado
de 0, 5L.

O controle do módulo relé é simples, por meio de um pino digital que abre ou fecha
o circuito do relé. O evento que controla a abertura da válvula é o recebimento de uma
mensagem do servidor indicando que deve haver irrigação. O fechamento da válvula é
controlado pelo feedback da leitura do sensor de fluxo.

No modo inteligente, a mensagem do servidor é enviada apenas se o processamento
dos dados levar o sistema à decisão de que a irrigação é necessária. Já no modo automático,
o módulo controlador recebe a mensagem diariamente, independentemente das leituras de
sensor e da previsão do tempo. O comportamento de fechamento da válvula se mantém o
mesmo em ambos os casos.

4.1.2 Data e hora

A operação do sistema é definida para ocorrer uma vez ao dia. Sendo assim, é
necessário pré-determinar um horário para que ela ocorra. Assim, foi escolhido um intervalo
diário de 30 minutos, e se faz a verificação de hora uma vez a cada 30 minutos, garantindo
que será realizada exatamente uma vez ao dia.

Para contabilizar os milissegundos desde que o programa começou, utilizou-se o
método integrado:

1 millis()

Optou-se por esse método porque ele permite a realização de atividades em paralelo
durante seu tempo de espera, como receber mensagens via protocolo MQTT. Ele utiliza
uma variável do tipo unsigned long, o que é capaz de contabilizar aproximadamente 50
dias. Essa verificação é feita a cada 30 minutos e se verifica se o horário está entre o horário
pré-estipulado para ocorrer a irrigação.

A sincronização com o horário brasileiro é feita por meio do protocolo NTP. O cliente
de tempo que é instanciado faz uma chamada ao servidor de endereço <pool.ntp.org>. De
acordo com a documentação do NTP Pool Project2, fazendo uma requisição ao endereço do
servidor mencionado, o sistema tentará encontrar o servidor mais próximo da localização
física do cliente.

Essa requisição retorna a data e hora oficial UTC+0. Desse modo, assim ainda
é necessário converter ao horário do Brasil, que é UTC-3. É necessário então subtrair o

2 Disponível em: <https://www.ntppool.org/en/>.

pool.ntp.org
https://www.ntppool.org/en/

56 Capítulo 4. Implementação

equivalente em segundos do tempo de 3 horas da resposta obtida. Isso é feito da seguinte
maneira:

1 WiFiUDP ntpUDP;

2 const long utcOffset = -3*60*60;

3 NTPClient timeClient(ntpUDP, "pool.ntp.org", utcOffset);

4 timeClient.begin();

5 timeClient.update();

O método begin inicia o cliente de tempo, e o método update sincroniza o cliente
com o servidor a cada vez que é executada.

4.1.3 Conexão Wi-Fi

A conexão com a rede Wi-Fi é realizada utilizando a biblioteca ESP8266WiFi3.
Ela possui a função de conectar a placa ESP8266 ao Wi-Fi, e foi desenvolvida com base
na biblioteca de mesma funcionalidade para Arduino (GROKHOTKOV, 2017).

A conexão ao Wi-Fi é feita pelo seguinte linha de código:

1 WiFi.begin("network-name", "pass-to-network");

É necessário alterar os campos network-name e pass-to-network pelo nome do
SSID e senha da rede utilizada. Após essa configuração, o módulo NodeMCU se conecta à
rede.

4.1.4 Configuração do protocolo MQTT

Para implementar a troca de mensagens pelo protocolo MQTT, utilizou-se a
biblioteca PubSubClient4. De acordo com o autor dessa biblioteca, Nick O’Leary, ela
implementa um cliente para publicar e receber mensagens com um servidor que suporta o
protocolo MQTT.

Sendo assim, inicialmente é necessário criar a instância de um cliente. Isso é feito a
partir das linhas de código:

1 WiFiClient espClient;

2 PubSubClient client(espClient);

Na primeira linha, cria-se uma instância capaz de se conectar à rede Wi-Fi, chamada
espClient e, em seguida, a instância do cliente, chamada client. Em seguida, é necessário
configurar o cliente para se conectar ao servidor do Raspberry. Isso é feito a partir da
seguinte linha:
3 Documentação disponível em: <https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.

html>.
4 Documentação disponível em: <https://pubsubclient.knolleary.net/api>.

https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html
https://pubsubclient.knolleary.net/api

4.1. Módulo NodeMCU 57

1 client.setServer(mqtt_server, 1883);

Em que mqtt_server é o número do IP do Raspberry que atua como broker, e
1883 é a porta padrão reservada para o uso do protocolo MQTT.

Depois de configurado, o cliente deve se conectar ao broker utilizando uma identifi-
cação, ou ID, própria e, caso configurados, o nome do usuário e senha do MQTT:

1 client.connect(ID, user, pass);

A função connect() retorna um código, que pode ser de sucesso ou fracasso.
Caso a conexão tenha falhado, uma boa prática é tentar conectar novamente. Também é
importante verificar a conexão de tempos em tempos, para garantir que o cliente esteja
conectado.

Então, o cliente pode publicar mensagens e fazer uma assinatura de tópicos. Isso é
feito, respectivamente, a partir dos comandos:

1 client.publish(topic, msg);

e

1 client.subscribe(topic);

No projeto, são implementados 4 tópicos:

1. esp8266/modo_operacao: o cliente assina esse tópico que controla qual o modo
de operação que o módulo NodeMCU deve atuar (inteligente ou automático).

2. esp8266/irrigar: o cliente assina esse tópico para saber se o jardim deve ser irrigado.

3. esp8266/umidade: o cliente publica a leitura da umidade do solo.

4. esp8266/volume: o cliente publica o volume de água usado.

Por fim, uma callback é uma função chamada quando o cliente recebe uma mensagem
de algum tópico que assinou. Essa função recebe o tópico, a mensagem e seu comprimento
como parâmetros. Sua lógica deve ser programada para que o controlador realize diferentes
atividades de acordo com qual foi o tópico e conteúdo da mensagem. A callback é configurada
da seguinte maneira:

1 void callback(topic, msg, len) {

2 ...

3 }

4 client.setCallback(callback);

Dessa maneira, o cliente configurado está apto a receber e enviar mensagens via
protocolo MQTT.

58 Capítulo 4. Implementação

4.2 Raspberry Pi
Nessa seção são apresentados os métodos e soluções utilizadas para implementar

um servidor e cliente no Raspberry Pi e também o processamento para a lógica de controle
de decisão para irrigação.

4.2.1 Configuração do protocolo MQTT

No Raspberry Pi, há a necessidade de implementar um servidor e um cliente MQTT.
O servidor tem a função de encaminhar as mensagens recebidas dos clientes. Como o
Raspberry também tem função de enviar, receber e processar mensagens, deve atuar como
cliente.

4.2.1.1 Servidor

O broker MQTT é implementado no Raspberry Pi usando oMosquitto5, um software
open-source e leve, adequado para uso em uma diversidade de dispositivos diferentes. Ele
deve ser o primeiro a ser inicializado e se manter conectado para poder fazer a comunicação
com os clientes.

O projeto Mosquitto também possui dois comandos de utilidades,mosquitto_pub
e mosquitto_sub, ideais para serem usados em ambientes de desenvolvimento e testes.
Eles implementam, respectivamente, um cliente que publica mensagens a um tópico e
um cliente que faz assinatura de um tópico. Esses comandos foram utilizados para fazer
a validação da implementação dos outros clientes, verificando se recebem e publicam
mensagens de acordo com o comportamento estabelecido para o sistema.

4.2.1.2 Cliente

Já o cliente no Raspberry é usado tanto para fazer a integração da interface
gráfica com as mensagens publicadas e recebidas quanto para enviar mensagens que não
incorporam a interface (como a decisão de irrigar o jardim) ao cliente que assina os
respectivos tópicos.

Para implementar o cliente, utilizou-se o Eclipse Paho6, um software open-source
que implementa um cliente MQTT em uma variedade de linguagens de programação. Para
esta implementação, utilizou-se a linguagem Python.

Inicialmente, assim como o cliente anterior implementado no módulo NodeMCU, é
preciso instanciar o cliente. Sua inicialização não requere nenhum parâmetro obrigatório,
e, caso não seja atribuído um ID, este campo é gerado aleatoriamente.
5 Documentação disponível em: <https://mosquitto.org/documentation/>.
6 Documentação disponível em: <https://www.eclipse.org/paho/index.php?page=clients/python/docs/

index.php>

https://mosquitto.org/documentation/
https://www.eclipse.org/paho/index.php?page=clients/python/docs/index.php
https://www.eclipse.org/paho/index.php?page=clients/python/docs/index.php

4.2. Raspberry Pi 59

mqttc = mqtt . C l i en t ()

É necessário configurar também as ações (callbacks) que devem ser tomadas no
momento em que o cliente se conecta e no momento em que recebe uma mensagem. É
possível configurar outras callbacks, porém no escopo deste projeto não é necessário.

Ao se conectar, o cliente deve assinar os tópicos de interesse. Isso é feito da seguinte
maneira:

def on_connect (. . .) :
c l i e n t . sub s c r i b e (top i co1)
c l i e n t . sub s c r i b e (top i co2)
. . .

mqttc . on_connect = on_connect

Para o caso de o cliente assinar diversos tópicos, o Paho permite definir diferentes
funções e as atribuir, respectivamente, aos tópicos assinados. Isso é feito por meio do
método já implementado na biblioteca message_callback_add()

def on_message_topico1 (. . .) :
. . .

def on_message_topico2 (. . .) :
. . .

mqttc . message_callback_add (topico1 , on_message_topico1)
mqttc . message_callback_add (topico2 , on_message_topico2)

Depois das configurações, o cliente deve ser conectado e executado em loop para
permitir o envio e recebimento de mensagens a qualquer momento.

4.2.2 API OpenWeather

A API escolhida para buscar informçações da previsão do tempo foi o OpenWeather7.
Para obter a previsão do tempo, é necessário fazer uma requisição HTTP ao servidor da
API.

Para isso, é necessário especificar a localização da qual se deseja obter os dados e
também uma API key, chave para uso pessoal. A localização é fornecida através da latitude
e longitude da cidade. Para a cidade de São Paulo, esses parâmetros estão definidos na
Tabela 4.2, de acordo com a documentação.

Desse modo, a chamada é feita da seguinte maneira, substituindo os campos
indicados entre { }:

ap i . openweathermap . org /data /2 .5/ weather ? l a t={ l a t }& . . .
7 Documentação disponível em: <https://openweathermap.org/api/one-call-api>

https://openweathermap.org/api/one-call-api

60 Capítulo 4. Implementação

Tabela 4.2 – Parâmetros da API para a cidade de São Paulo.

id 3448439
name São Paulo
lat -23.547501
lon -46.636108

Fonte: OpenWeather.

. . . lon={lon}&appid={API key}

O objeto retornado é do tipo JSON. Como não é possível selecionar na requisição
os campos desejados, faz-se então um pequeno processamento dos dados obtidos para
extrair apenas a previsão do tempo do dia atual e do dia seguinte.

4.2.3 Lógica de controle

Quando o processador obtém o valor da umidade do solo e a previsão do tempo,
precisa decidir se o jardim deve ou não ser irrigado. A lógica utilizada para esse proces-
samento é apresentada na Figura 4.1. No caso de irrigar, publica uma mensagem pelo
respectivo tópico indicando tal decisão.

Inicialmente, o programa verifica se a previsão para o dia atual é de chuva. Em
caso positivo, não precisa irrigar. Em caso negativo, verifica tanto se a previsão para o dia
seguinte é de chuva quanto se a umidade do solo está em 50% ou mais. Novamente, em
caso positivo, não há necessidade de irrigar. Por último, em caso negativo, verifica se a
umidade do solo está maior que 70%. Se nenhuma das condições é cumprida, o jardim é
irrigado.

Para validar a implementação, foi desenvolvido e aplicado também um script de
teste, que testa todos os 12 casos, em que as variáveis são:

1. chove_hoje: 0 (não) ou 1 (sim).

2. chove_amanha: 0 (não) ou 1 (sim).

3. umidade: u ≤ 50, 50 < u ≤ 70 ou u > 70. No teste, utilizou-se os valores arbitrários
u = 40, u = 60 e u = 80.

Como esperado, os três casos em que a irrigação deve ser acionada são:

{chove_hoje, chove_amanha, u} = [{0, 1, 40}, {0, 0, 60}, {0, 0, 40}]

4.3. Interface gráfica 61

Figura 4.1 – Lógica de controle utilizada na decisão.

Fonte: autoria própria.

4.3 Interface gráfica

A interface com o usuário foi implementada por meio de um conjunto de páginas
Web, em linguagem HTML, ligadas por links. Ao todo, foram implementadas três páginas:
a página inicial (home.html), a página de consulta de dados (consulta.html) e a página de
modos de operação (modos.html).

A página inicial contém um Widget com a previsão do tempo, e botões que
redirecionam às outras páginas. O OpenWeather possui um construtor de widgets, no qual
é possível obter o código para uma interface já pronta com a previsão do tempo, bastando
inserir a localidade e a chave API key. A Figura 4.2 mostra o componente selecionado
para compôr a página.

Além disso, todas as páginas possuem um menu lateral com o mapa da aplicação,
sendo possível clicar sobre elas para ser redirecionado.

62 Capítulo 4. Implementação

Figura 4.2 – Widget de previsão obtido por meio da API.

Fonte: OpenWeather.

A página de consulta de dados fornece as três informações básicas: volume utilizado
na última irrigação, data e hora em que ela ocorreu. Caso não tenha ocorrido nenhuma, a
página não mostra nenhuma informação.

Por último, a página de modos de operação contém uma breve informação sobre os
dois modos de operação do sistema (inteligente e automático), e um botão que alterna
entre os dois, indicando qual é o modo ativo no momento.

Para renderizar as páginas, foi utilizado o Flask8, um framework web, ou seja, um
software usado para suportar o desenvolvimento web. Ele é escrito em Python e voltado
para o desenvolvimento de projetos simples, como uma página web básica.

Para utilizá-lo, é necessário definir as rotas da aplicação e as respectivas funções
que serão executadas ao acessar essas rotas. Isso é feito por meio do decorador @route().
Para renderizar uma página, utiliza-se a função integrada render_template().

8 Documentação disponível em: <https://flask.palletsprojects.com/en/1.1.x/api/>.

https://flask.palletsprojects.com/en/1.1.x/api/

63

5 Resultados e discussões

Nesse capítulo são apresentados os resultados da implementação do sistema e dos
testes realizados, bem como discussões pertinentes a todo o processo de desenvolvimento
do projeto.

5.1 Resultados
A montagem do sistema é apresentada a seguir. A Figura 5.1 apresenta o resultado

da montagem do módulo NodeMCU, com destaque para o módulo relé e parte do sensor
de umidade.

A montagem completa do sistema é apresentada na Figura 5.2, que contém a os
componentes eletrônicos e hidráulicos, e na Figura 5.3 mostra o sistema em operação,
juntamente com uma planta.

Figura 5.1 – Montagem dos componentes eletrônicos.

Fonte: autoria própria.

Além disso, houve a implementação da interface gráfica para interação com o
usuário. Ela é feita em três páginas diferentes. As Figuras 5.4, 5.5 e 5.6 mostram esses
resultados na versão desktop.

Já as Figuras 5.7, 5.8a e 5.8b apresentam o resultado da mesma implementação,
porém visualizadas na versão mobile.

64 Capítulo 5. Resultados e discussões

Figura 5.2 – Montagem eletrônica e hidráulica.

Fonte: autoria própria.

Figura 5.3 – Sistema integrado com uma planta.

Fonte: autoria própria.

Como a implementação é feita localmente, apenas os dispositivos com acesso à rede
Wi-Fi possuem acesso às páginas desenvolvidas. Se as páginas fossem hospedadas em um
servidor externo, qualquer dispositivo com acesso à internet teria acesso a elas.

Após a montagem e execução do projeto, foi possível verificar que o sistema se
comportou de acordo com o modelo especificado.

5.2. Discussões 65

Figura 5.4 – Página inicial na versão desktop.

Fonte: autoria própria.

Figura 5.5 – Página de consulta de dados na versão desktop.

Fonte: autoria própria.

5.2 Discussões

Em relação à implementação do sistema, outra maneira possível de limitar a
quantidade de água na irrigação seria através do medidor de umidade: irrigar o solo até
que a umidade atinja certo valor. Porém, isso pode ser susceptível a mais erros pois o solo
demora a absorver a água proveniente da irrigação, levando a um mal dimensionamento

66 Capítulo 5. Resultados e discussões

Figura 5.6 – Página de modos de operação na versão desktop.

Fonte: autoria própria.

do sistema. Também é possível limitar por tempo, ou seja, a irrigação deve durar um certo
período de tempo e depois cessar.

No que diz respeito à interface gráfica, para uma melhor experiência do usuário,
é possível desenvolver aplicações mobile para construir a interface visual. Já existem
algumas soluções prontas disponíveis, como exemplos pode-se citar Node-RED, Blynk e
ThingsBoard. Essas plataformas, além de serem ferramentas de desenvolvimento para a
comunicação entre os dispositivos, possuem integradas interfaces gráficas para o usuário.
Neste trabalho, optou-se por não utilizar essas ferramentas.

Por fim, o fato de o módulo NodeMCU precisar estar disponível para receber
mensagens a qualquer momento o impede de entrar no modo Deep Sleep, em que o
rádio Wi-Fi, CPU e CLOCK são desligados. Sendo assim, existe um trade-off entre a
possibilidade de alterar o modo de operação do sistema e a economia de energia gerada
por colocar o módulo em espera.

5.2. Discussões 67

Figura 5.7 – Página inicial na versão mobile.

Fonte: autoria própria.

68 Capítulo 5. Resultados e discussões

Figura 5.8 – Páginas na versão mobile.

(a) Consulta de dados. (b) Modos de operação.

Fonte: autoria própria.

69

6 Conclusão

Um dos potenciais da Internet das Coisas é a capacidade de conectar diversos
dispositivos e sensores que transmitem dados em tempo real por meio da Internet. Essas
informações em tempo real oferecem vantagens, pois tornam possíveis análises instantâneas
dos dados e aumentam a velocidade e eficiência nas tomadas de decisões que levam em
conta esses dados.

Levando isso em consideração, e também que atualmente se desperdiça uma
quantidade relevante de água no país, a intenção desse trabalho foi desenvolver um sistema
autônomo completo de irrigação de jardim com acesso à internet. Assim, os dados obtidos
por sensores puderam ser transmitidos e recebidos por outras máquinas, da mesma maneira
que o sistema é capaz de receber dados externos. A capacidade dessa transmissão de dados
é utilizada para gerar economia de água.

O trabalho contemplou todas as fases do projeto, envolvendo pesquisa, revisão da
literatura, modelagem do comportamento do sistema, implementação e execução. Ao final,
obteve-se o sistema desejado.

O propósito do projeto não foi desenvolver um produto final para o mercado,
mas sim obter uma prova de conceito de uma tecnologia em expansão a uma aplicação
em projeto residencial. A aplicação de tecnologias como Internet das Coisas é muito
grande. Este trabalho tratou dessa aplicação na área de automação residencial, porém a
modernização e conexão em tempo real de objetos e sensores já é uma realidade existente
em diversas outras áreas, como saúde, indústria, urbanização ou varejo.

6.1 Próximos passos

Existem diversas propostas de abordagens para trabalhos futuros que contemplam
o tema de irrigação incorporando Internet das Coisas.

Uma proposta de complementação é adaptar a interface e o comportamento do
sistema para uma abordagem mais voltada à experiência do usuário, com parâmetros
customizáveis, como controle por volume ou tempo (e suas respectivas quantidades),
horário e frequência de irrigação.

Outra proposta é implementar um banco de dados e uma inteligência artificial
com foco em aprendizado de máquina, que pode ser treinada para prever as épocas mais
chuvosas e também a necessidade de água do solo, com o intuito de aumentar a economia
de água.

70 Capítulo 6. Conclusão

Levando em conta o viés de automação residencial do projeto, pode-se estender a
amplitude da automação, integrando mais componentes residenciais voltados ao cuidado da
casa por meio da Internet das Coisas, como iluminação, ventilação e umidade do ambiente,
e fazendo do Raspberry um servidor central para todos os componentes autômatos.

Por fim, considerando a questão econômica do Brasil, uma última proposta de
trabalho futuro é a adaptação do presente projeto para atuar em plantações de larga
escala, gerando economia de água em maiores proporções.

71

Referências

Agência Nacional de Águas (ANA). Conjuntura dos recursos hídricos no Brasil 2019:
Informe anual. Brasília, 2019. Disponível em: <http://www.snirh.gov.br/portal/snirh/
centrais-de-conteudos/conjuntura-dos-recursos-hidricos/conjuntura_informe_anual_
2019-versao_web-0212-1.pdf>. Citado na página 20.

AGGARWAL, C. C.; ASHISH, N.; SHETH, A. The internet of things: A survey from the
data-centric perspective. In: AGGARWAL, C. (Ed.). Managing and Mining Sensor Data.
[S.l.]: Springer, 2013. cap. 12. Citado na página 23.

ASHTON, K. That ’internet of things’ thing. RFID Journal, p. 1, 2009. Citado na página
22.

ATZORI, L.; IERA, A.; MORABITO, G. The internet of things: A survey. Computer
Networks, v. 54, p. 2787–2805, 2010. Citado na página 22.

BEOCK, L.; CONSONE, C.; LIMA, L.; PETRICA, E. Protocolo HTTP. [S.l.],
Universidade do Estado de Mato Grosso, 2011. Disponível em: <https://
img.vivaolinux.com.br/imagens/artigos/comunidade/Protocolo%20HTTP.pdf>. Citado
na página 30.

CORREIA, G. R.; ROCHA, H. R. de O.; RISSINO, S. das D. Automação de sistema de
irrigação com monitoramento via aplicativo web. REVENG, Viçosa, MG, v. 24, n. 4, p.
314–325, 2016. Citado na página 17.

GENGO, R. de C.; HENKES, J. A. A utilização do paisagismo como ferramenta na
preservação e melhoria ambiental em área urbana. Revista Gestão e Sustentabilidade
Ambiental, Florianópolis, v. 1, n. 2, p. 55–81, 2013. Disponível em: <http:
//www.portaldeperiodicos.unisul.br/index.php/gestao_ambiental/article/view/1206>.
Acesso em: 08 fev. 2020. Citado na página 15.

GHIZZI, R. B. Sistema automatizado de irrigação residencial com reciclagem de águas
pluviais. Dissertação (Trabalho de Conclusão de Curso (Bacharelado em Engenharia
Mecatrônica) — Escola de Engenharia de São Carlos - USP, 2016. Citado 2 vezes nas
páginas 16 e 17.

GONÇALVES, D.; ARLINDO, J.; PEREIRA, R.; MOURA, V.; JUCA, S. Sistema iot
para monitoramento e controle de irrigação. In: Anais da IV Escola Regional de
Informática do Piauí. Porto Alegre, RS, Brasil: SBC, 2018. p. 310–315. Disponível em:
<https://sol.sbc.org.br/index.php/eripi/article/view/5186>. Citado na página 18.

GREHS, D. H. Sistema de irrigação doméstico baseado em Internet das Coisas.
Dissertação (Trabalho de conclusão de curso (Bacharel em Engenharia de Computação) —
Universidade Federal do Rio Grande do Sul, Porto Alegre, 2016. Citado 2 vezes nas
páginas 17 e 18.

GROKHOTKOV, I. ESP8266WiFi library. [S.l.], 2017. Software Documentation. Disponível
em: <https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html>.
Citado na página 56.

http://www.snirh.gov.br/portal/snirh/centrais-de-conteudos/conjuntura-dos-recursos-hidricos/conjuntura_informe_anual_2019-versao_web-0212-1.pdf
http://www.snirh.gov.br/portal/snirh/centrais-de-conteudos/conjuntura-dos-recursos-hidricos/conjuntura_informe_anual_2019-versao_web-0212-1.pdf
http://www.snirh.gov.br/portal/snirh/centrais-de-conteudos/conjuntura-dos-recursos-hidricos/conjuntura_informe_anual_2019-versao_web-0212-1.pdf
https://img.vivaolinux.com.br/imagens/artigos/comunidade/Protocolo%20HTTP.pdf
https://img.vivaolinux.com.br/imagens/artigos/comunidade/Protocolo%20HTTP.pdf
http://www.portaldeperiodicos.unisul.br/index.php/gestao_ambiental/article/view/1206
http://www.portaldeperiodicos.unisul.br/index.php/gestao_ambiental/article/view/1206
https://sol.sbc.org.br/index.php/eripi/article/view/5186
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html

72 Referências

GUTIERREZ, R. M. V.; PAN, S. S. K. Complexo eletrônico: automação do controle
industrial. Banco Nacional de Desenvolvimento Econômico e Social, Rio de Janeiro, n. 28,
p. 189–231, 2008. Disponível em: <http://web.bndes.gov.br/bib/jspui/handle/1408/9536>.
Acesso em: 17 jun. 2020. Citado na página 20.

JÚNIOR, P. R. T. Caracterizaćão da rede de sincronizaćão na internet. Dissertação
(Mestrado) — Universidade Federal do Paraná, 2007. Citado na página 31.

KHUSNUTDINOV, A.; USACHEV, D.; MAZZARA, M.; KHAN, A.; PANCHENKO,
I. Open source platform digital personal assistant. 32nd International Conference on
Advanced Information Networking and Applications Workshops, 2018. Citado na página
28.

LUCON, C. M. M.; CHAVES, A. L. R. Palestra Horta Orgânica. O Biológico, São Paulo,
SP, v. 66, n. 1/2, p. 59–62, 2004. Citado na página 15.

MARINO, D. R. D. M.; VASCONCELOS, D. R.; MORAES, S. G. Jardim inteligente IoT
- JIIOT. Rev. Tecnol. Fortaleza, v. 38, n. 1, p. 39–54, 2017. Citado 2 vezes nas páginas 18
e 19.

MARTINS, I. R.; ZEM, J. L. Estudo dos protocolos de comunicação MQTT e COAP
para aplicações machine-to-machine e internet das coisas. Revista Tecnológica da Fatec
Americana, Americana, v. 3, n. 1, p. 64–87, 2015. Acesso em: 09 fev. 2020. Citado na
página 25.

MDN Web Docs. Uma visão geral do HTTP. [S.l.], 2017. Disponível em: <https:
//developer.mozilla.org/pt-BR/docs/Web/HTTP/Overview>. Citado na página 30.

MILLS, D. L. Network Time Protocol (NTP). [S.l.], 1985. Citado na página 30.

NETO, J. G. Sistemas de irrigação para jardins e gramados. Belo Horizonte,
2017. Disponível em: <https://www.rainbird.com.br/pdf/?urlredirect=/upload/
ferramentas-detrabalho/Artigos/Irrigacao-para-Paisagismo.pdf>. Acesso em: 7 fev. 2020.
Citado na página 15.

OLIVEIRA, S. de. Internet das Coisas com ESP8266, Arduino e Raspberry Pi. 1. ed. São
Paulo, SP: Novatec Editora Ltda, 2017. Citado 2 vezes nas páginas 24 e 25.

Oxford University Press (OUP). Internet of Things. [s.n.], 2019. Disponível em:
<https://www.lexico.com/definition/internet_of_things>. Acesso em: 18 mar. 2020.
Citado na página 22.

PARZIALE, L.; BRITT, D. T.; DAVIS, C.; FORRESTER, J.; LIU, W. TCP/IP Tutorial
and Technical Overview. 8. ed. [S.l.]: IBM, 2006. Citado 2 vezes nas páginas 28 e 29.

PFISTER, C. Getting Started with the Internet of Things: Connecting Sensors and
Microcontrollers to the Cloud. [S.l.]: O’Reilly, 2011. Citado na página 23.

RODRIGUES, R. A. S.; SOUSA, P. F. C. Irrigação e drenagem. Londrina: Editora e
Distribuidora Educacional S.A., 2018. 232 p. Citado na página 15.

SANTOS, F. de Assis Martins dos. Projeto de irrigação inteligente. Holos, RN, v. 5, n. 26,
p. 37–44, 2010. Citado na página 15.

http://web.bndes.gov.br/bib/jspui/handle/1408/9536
https://developer.mozilla.org/pt-BR/docs/Web/HTTP/Overview
https://developer.mozilla.org/pt-BR/docs/Web/HTTP/Overview
https://www.rainbird.com.br/pdf/?urlredirect=/upload/ferramentas-detrabalho/Artigos/Irrigacao-para-Paisagismo.pdf
https://www.rainbird.com.br/pdf/?urlredirect=/upload/ferramentas-detrabalho/Artigos/Irrigacao-para-Paisagismo.pdf
https://www.lexico.com/definition/internet_of_things

Referências 73

SEIDL, M.; SCHOLZ, M.; HUEMER, C.; KAPPEL, G. UML @ Classroom: An
introduction to object-oriented modeling. Austria: Sprint International Publishing, 2015.
Citado 3 vezes nas páginas 41, 43 e 47.

SOMMERVILLE, I. Engenharia de Software. São Paulo, SP: [s.n.], 2013. Citado na
página 24.

TESTEZLAF, R. Irrigação: Métodos, Sistemas e Aplicações. 1. ed. Campinas, SP: [s.n.],
2017. 215 p. Citado na página 15.

YUAN, M. Getting to know mqtt. IBM Developer, 2017. Disponível em: <https:
//developer.ibm.com/articles/iot-mqtt-why-good-for-iot/>. Citado 2 vezes nas páginas
25 e 27.

https://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/
https://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/

Apêndices

APÊNDICE A – Esquemático do módulo
NodeMCU

77

78 APÊNDICE A. Esquemático do módulo NodeMCU

79

80 APÊNDICE A. Esquemático do módulo NodeMCU

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Lista de ilustrações
	Lista de ilustrações
	Lista de tabelas
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Objetivos
	Motivação
	Organização do texto

	Revisão Bibliográfica
	Internet das Coisas
	Arquitetura cliente-servidor
	Protocolo MQTT
	Protocolo TCP/IP
	Protocolo HTTP
	Protocolo NTP

	Descrição do projeto
	Requisitos de projeto
	Sistema físico
	Componentes
	Sensor de umidade com módulo comparador
	Válvula solenoide de vazão
	Módulo relé
	Sensor de fluxo
	Módulo ESP8266 NodeMCU-ESP12
	Raspberry Pi

	Esquemático

	Modelagem comportamental
	Diagrama de casos de uso
	Diagrama de atividades
	Modelagem estrutural

	Implementação
	Módulo NodeMCU
	Sensores e atuadores
	Leitura do sensor de umidade do solo
	Leitura do sensor de fluxo
	Controle da válvula

	Data e hora
	Conexão Wi-Fi
	Configuração do protocolo MQTT

	Raspberry Pi
	Configuração do protocolo MQTT
	Servidor
	Cliente

	API OpenWeather
	Lógica de controle

	Interface gráfica

	Resultados e discussões
	Resultados
	Discussões

	Conclusão
	Próximos passos

	Referências
	Apêndices
	Esquemático do módulo NodeMCU

