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RESUMO

ALCÂNTARA, L. Coletores Não Lineares de Energia Piezoelétrica para
Chaveamento de Temperatura: Uma Abordagem Analítica, Multifísica e
Experimental. 2024. 80 p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2024.

Este trabalho investiga o comportamento dinâmico de um coletor de energia piezoelé-
trico submetido a variações de temperatura, com foco na aplicação de bifurcações para
monitoramento térmico. O sistema analisado consiste em um oscilador eletromecânico
não linear, cuja resposta é estudada por meio de modelos analíticos, simulações em um
software multifísico e experimentos. As análises incluem a busca pela resistência elétrica
ótima para maximizar a potência e a tensão geradas, além de explorar o comportamento
do sistema sob condições de variação brusca e gradual de temperatura. Observa-se que
o aumento da temperatura faz com que o sistema dilate, resultando em cargas axiais
devido à restrição dos engastes e em uma redução do amortecimento causada pela força
exercida nos parafusos. Essas cargas deslocam a resposta em frequência do sistema e,
consequentemente, a frequência de salto, refletida pelo aumento na saída de tensão elétrica,
o que permite que o sistema seja utilizado como chave térmica. Os resultados mostram
que o desempenho do coletor é influenciado pela taxa de aquecimento, sendo mais eficaz
sob variações térmicas lentas. Este estudo contribui para o desenvolvimento de sistemas
de monitoramento térmico, propondo uma aplicação de coletores de energia piezoelétrica
para o chaveamento de sistemas em condições de temperatura variável.

Palavras-chave: Colheita de energia piezoelétrica. Chaveamento de temperatura. Oscila-
dores não lineares. Modelagem analítica. Modelagem multifísica. Ensaios experimentais.





ABSTRACT

ALCÂNTARA, L. Nonlinear Piezoelectric Energy Harvesters for Temperature
Switching: An Analytical, Multiphysical, and Experimental Approach. 2024. 80
p. Monograph (Conclusion Course Paper) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2024.

This work investigates the dynamic behavior of a piezoelectric energy harvester subjected to
temperature variations, focusing on the application of bifurcations for thermal monitoring.
The analyzed system consists of a nonlinear electromechanical oscillator, whose response
is studied through analytical models, multiphysics simulations, and experiments. The
analyses include identifying the optimal electrical resistance to maximize the generated
power and voltage, as well as exploring the system’s behavior under abrupt and gradual
temperature variations. It is observed that an increase in temperature causes the system to
expand, resulting in axial loads due to clamping restrictions and reduced damping caused
by the forces exerted on the screws. These loads shift the system’s frequency response and,
consequently, the jump frequency, reflected in the increase of the electrical voltage output,
enabling the system to function as a thermal switch. The results show that the harvester’s
performance is influenced by the heating rate, being more effective under slow thermal
variations. This study contributes to the development of thermal monitoring systems by
proposing an application of piezoelectric energy harvesters for switching systems under
variable temperature conditions.

Keywords: Piezoelectric energy harvesting. Temperature switching. Nonlinear oscillators.
Analytical modeling. Multiphysics modeling. Experimental studies.
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1 INTRODUÇÃO

Osciladores, tanto em regime de excitação linear quanto não linear, têm despertado
interesse crescente nas pesquisas da última década (Daqaq et al., 2014), (Li et al., 2020),
(Hossain et al., 2023). Em particular, o uso de não linearidades no modelo de osciladores
surge como uma solução para ampliar a largura de banda da resposta em frequência
(Daqaq et al., 2014). Ademais, essa propriedade pode ter origem física natural, a partir
de relações geométricas e propriedades dos materiais que compõem o sistema (Li et al.,
2020), ou ser induzida, como na adição intencional de uma força restauradora magnética
(Norenberg et al., 2023). Em decorrência da presença das não linearidades, bifurcações,
movimentos caóticos e multiestabilidade podem ser observados.

Nesse contexto, osciladores apresentam-se como uma alternativa interessante para
a colheita de energia, especialmente quando combinados com materiais piezoelétricos.
Coletores piezoelétricos de energia apresentam maior variedade de níveis de tensão elétrica
e densidade de potência quando comparados a outras fontes de coleta (Pradeesh et
al., 2022). Devido a essa vantagem, coletores piezoelétricos têm demonstrado grande
potencial em várias áreas, como em sistemas biomédicos (Latif et al., 2021), na captação
de energia eólica (Ali et al., 2024) e em sistemas microeletromecânicos (MEMS) (Hossain
et al., 2023). As estruturas reportadas, por meio do efeito piezoelétrico direto, geram
cargas elétricas proporcionais à força externa aplicada (Preumont et al., 2006). Entre os
materiais piezoelétricos mais utilizados estão as cerâmicas, que apresentam alta rigidez
em comparação aos Macro Fiber Composites (MFCs). Os MFCs, por sua vez, são mais
flexíveis, o que os torna mais adequados para aplicações em superfícies curvas e cargas de
flexão, como na robótica flexível (Barbosa; Silva, 2023).

De maneira correlata à coleta de energia, osciladores não lineares têm atraído
atenção por suas aplicações no campo do sensoriamento. Estudos mostram que oscilado-
res têm sido utilizados para diversas finalidades de sensoriamento, como na medição de
propriedades de fluidos (viscosidade, densidade) (Waugh; Gallacher; Burdess, 2011) e no
monitoramento de adição de massa (Azizi et al., 2023). Nessas aplicações, a dinâmica não
linear foi explorada para aumentar a sensibilidade e a precisão dos sistemas propostos.
No campo do sensoriamento térmico, aplicações em sistemas eletrônicos (Dhumal; Kul-
karni; Ambhore, 2023) e em baterias de íon-lítio (Hao et al., 2021) também se mostram
promissoras, em que o controle da temperatura é essencial para garantir a segurança e a
durabilidade dos componentes. Sistemas com restrições de temperatura podem, assim, se
beneficiar de sensores baseados em osciladores.

Nesse contexto, este trabalho propõe uma abordagem para proteger sistemas contra
superaquecimento utilizando um coletor de energia piezoelétrica não linear. A proteção
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ocorre por meio da observação do fenômeno de bifurcação, que está relacionado à tempe-
ratura do sistema. Essa relação é estabelecida pela alteração na resposta em frequência
do oscilador em função das variações de temperatura, que, por sua vez, são refletidas
na energia coletada pelo sistema piezoelétrico. Para investigar esse comportamento, são
adotadas três abordagens complementares: o desenvolvimento de um modelo analítico do
sistema, a criação de um modelo multifísico no software COMSOL e a construção de um
protótipo físico para experimentação.

Primeiro, a dedução de uma formulação analítica permite compreender, sob uma
perspectiva física, características fundamentais do sistema, como seus modos de vibração,
frequência natural e resposta no domínio da frequência. Através do modelo, análises
acerca de possíveis bifurcações, bem como das frequências em que ocorrem, podem ser
realizadas e posteriormente validadas experimentalmente. Em seguida, o modelo multifísico
no COMSOL oferece uma visão mais detalhada, aplicando o método de elementos finitos
para resolver o comportamento dinâmico e observar a influência da temperatura no sistema
eletromecânico. Por fim, o protótipo físico valida os modelos teóricos, garantindo que os
fenômenos estudados se manifestem em condições experimentais. Assim, as propriedades
dinâmicas dos osciladores não lineares são utilizadas para desenvolver um método de
chaveamento térmico, acionado pelos sinais elétricos gerados pelo próprio coletor de
energia.

1.1 Objetivos

Os objetivos do trabalho podem ser resumidos nos seguintes tópicos:

• O desenvolvimento de um modelo analítico de um coletor de energia piezoelétrica
não linear;

• A dedução de uma equação que relacione a amplitude de oscilação do sistema com a
frequência de excitação e, a partir dela, determinar as frequências onde ocorrem as
bifurcações;

• O desenvolvimento de um modelo multifísico no COMSOL para analisar a influência
da temperatura no sistema;

• A validação do modelo teórico por meio de experimentos;

• A prova conceitual da possibilidade de utilizar esse sistema para chaveamento térmico.

1.2 Estrutura da monografia

A presente monografia é dividida em 7 capítulos, que explicam todo o desenvolvi-
mento do sistema e apresentam os resultados e conclusões.
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• O Capítulo 1 apresenta uma introdução ao que é desenvolvido nos outros capítulos;

• No Capítulo 2, é feita uma revisão de literatura acerca de assuntos pertinentes ao
trabalho;

• No Capítulo 3, é apresentado o sistema de estudo e realizada toda a dedução de seu
modelo analítico;

• No Capítulo 4, é explicada a construção do modelo multifísico;

• No Capítulo 5, é apresentado o protótipo físico construído e os experimentos realiza-
dos;

• No Capítulo 6, são apresentados os resultados dos modelos desenvolvidos e dos
experimentos realizados;

• Por fim, no Capítulo 7, são apresentadas as conclusões e considerações finais do
trabalho.
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2 REVISÃO DE LITERATURA

2.1 Aplicações e Tecnologias em Coletores de Energia Piezoelétrica

Coletores de energia são dispositivos projetados para converter diversas fontes de
energia, como vibrações mecânicas, calor e radiação solar, em energia elétrica utilizável.
Eles apresentam grande potencial em várias aplicações tecnológicas e sustentáveis (Latif
et al., 2021), (Ali et al., 2024), (Hossain et al., 2023). Entre essas tecnologias, os coletores
piezoelétricos têm ganhado destaque. Uma revisão sobre a aplicação desses coletores foi
apresentada em (Pradeesh et al., 2022), abordando o efeito piezoelétrico, os principais
materiais utilizados (cerâmicas e MFCs) e as geometrias mais comuns desses dispositivos.

No que se refere aos materiais utilizados, os coletores de energia piezoelétrica
abrangem desde cerâmicas piezoelétricas até MFCs. As cerâmicas piezoelétricas são
caracterizadas por sua elevada rigidez, embora sua fragilidade limite o uso em aplicações
que envolvem flexão ou superfícies irregulares. Em contrapartida, os MFCs se destacam por
sua flexibilidade, tornando-se ideais para situações em que o coletor precisa adaptar-se a
superfícies curvas ou suportar maiores deformações mecânicas (Bakhtar; Abdoos; Rashidi,
2023). Essa adaptabilidade amplia as possibilidades de uso dos MFCs, cuja versatilidade
foi comprovada em diversas áreas, como na robótica flexível, onde são utilizados para criar
dispositivos mais adaptáveis e maleáveis (Barbosa; Silva, 2023). Além disso, os MFCs
também têm sido explorados para a atenuação de vibrações em estruturas (Zhou et al.,
2022), o controle ativo de vibrações (Zhang et al., 2023) e a coleta de energia subaquática
(Huang et al., 2024), destacando-se em aplicações variadas. Esses avanços ilustram o
crescente uso das tecnologias piezoelétricas, evidenciando o papel dos MFCs na expansão
das possibilidades de design e implementação de sistemas de conversão de energia.

Dentre as diversas áreas que se beneficiam dos avanços nas tecnologias piezoelétricas,
destaca-se o setor biomédico. Em (Latif et al., 2021), a aplicação dessa tecnologia em
dispositivos auditivos demonstrou como a conversão de pequenas vibrações, como sons ou
movimentos corporais, pode alimentar dispositivos de assistência auditiva, reduzindo ou até
eliminando a necessidade de baterias externas. Coletores piezoelétricos também têm sido
estudados para a captura de energia gerada pelo movimento humano. No estudo (Singh et
al., 2024), a implementação em calçados possibilitou que a energia gerada ao caminhar ou
correr fosse convertida e armazenada para alimentar pequenos dispositivos, como sensores
de saúde e rastreadores de atividade física. Essas aplicações revelam o potencial dos
coletores piezoelétricos no desenvolvimento de dispositivos portáteis autossustentáveis.

Na área da sustentabilidade, os coletores piezoelétricos também apresentam aplica-
ções promissoras. A coleta de energia eólica utilizando piezoeletricidade foi investigada
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em (Ali et al., 2024), com discussões sobre as formas de excitação geradas pelo vento e os
aspectos de projeto necessários para otimizar o desempenho desses coletores. De maneira
semelhante, sistemas híbridos que combinam energia solar e cinética foram explorados em
(Huo et al., 2023) para processos de purificação de água, evidenciando o potencial dessas
tecnologias no enfrentamento de desafios ambientais.

Outra aplicação relevante dos coletores piezoelétricos está em dispositivos MEMS.
A revisão apresentada em (Hossain et al., 2023) discute como esses coletores podem ser
integrados a MEMS, aprimorando a eficiência energética de sistemas amplamente utilizados
em sensores, atuadores e sistemas de comunicação (Younis, 2011). Essa integração oferece
uma fonte de energia para componentes em escala micro, atendendo à crescente demanda
por dispositivos autossustentáveis.

Assim, os coletores piezoelétricos destacam-se como uma tecnologia versátil, com
aplicações que vão desde dispositivos biomédicos e sustentáveis até a integração em sistemas
MEMS. Esse amplo alcance evidencia seu potencial para atender a diferentes demandas
tecnológicas, especialmente em um cenário que prioriza soluções autossustentáveis e
ambientalmente responsáveis. Os avanços recentes discutidos demonstram como essa
tecnologia pode contribuir de forma significativa para o desenvolvimento de sistemas
inovadores e eficientes.

2.2 Modelagem Dinâmica de Osciladores Piezoelétricos Lineares e Não Lineares

A modelagem de osciladores lineares e não lineares tem sido amplamente estudada,
com foco na compreensão das propriedades dinâmicas e dos fenômenos característicos
desses sistemas. Os trabalhos pioneiros de (Erturk; Inman, 2009) e (Inman, 2008) abordam
a modelagem de osciladores piezoelétricos lineares, descrevendo o modelo de viga cantilever
com acoplamento piezoelétrico em duas camadas, conhecido na literatura como bimorph.
Esse modelo foi validado experimentalmente e demonstrou eficácia em sistemas operando
próximo à frequência de ressonância, embora apresente limitações quanto à largura de
banda.

Osciladores não lineares, em comparação com os lineares, apresentam maior largura
de banda e desempenho aprimorado fora da frequência natural do sistema (Daqaq et
al., 2014). As não linearidades podem surgir de diferentes fontes, como o acoplamento
piezoelétrico (Stanton et al., 2010), a inserção de forças magnéticas (Norenberg et al.,
2023) ou características geométricas e propriedades dos materiais (Li et al., 2020). Um
exemplo amplamente utilizado na modelagem de sistemas não lineares é o oscilador de
Duffing, caracterizado por uma rigidez cúbica.

Em (Mahmoudi; Kacem; Bouhaddi, 2014), foi desenvolvido um modelo híbrido
piezoeletromagnético, no qual o sistema, descrito pelo oscilador de Duffing, demonstrou
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eficiência superior na coleta de energia em relação a sistemas magnéticos convencionais. De
maneira semelhante, (von Wagner, 2004) propôs um modelo de vibração longitudinal em
barras piezocerâmicas sob campos elétricos fracos, destacando o efeito de softening, com
validação experimental. No estudo de (Xiao; Qie; Bowen, 2021), um coletor piezoelétrico
otimizado para captação de energia hidráulica foi representado por um oscilador de Duffing
com efeito de hardening, em que ajustes geométricos ampliaram significativamente a
potência gerada.

Ademais, (Bayat; Pakar; Ziehl, 2021) utilizou o modelo de Duffing para descrever
um sistema ferroviário, representado por uma viga de Euler-Bernoulli sobre uma fundação
flexível, investigando sua resposta dinâmica sob carga axial. Em outro contexto, (Barbosa;
Kacem; Bouhaddi, 2024) explorou a localização de energia vibracional em cadeias de
osciladores não lineares acoplados, propondo uma metodologia para manipular modos
localizados. Por fim, em (Tan et al., 2017), o oscilador de Duffing foi usado na modelagem
de um coletor piezoelétrico sujeito a excitações de galloping, analisando como parâmetros
geométricos influenciam a potência gerada.

Esses estudos destacam a versatilidade do oscilador de Duffing na modelagem de
sistemas não lineares. Sua aplicação em contextos diversos permite uma análise detalhada
das dinâmicas envolvidas e contribui para a otimização do desempenho em projetos voltados
para a coleta de energia.

2.3 Efeitos de Cargas Axiais e Variações de Temperatura na Dinâmica de Osciladores

A aplicação de cargas axiais em estruturas altera suas características dinâmicas,
particularmente a rigidez e a frequência natural, como demonstrado em (Masana; Daqaq,
2010). Nesse estudo, um coletor piezoelétrico sob carga axial foi modelado como uma
viga biengastada, onde a tensão axial ajusta a frequência natural para valores próximos
à excitação. Além de ajustar a frequência, foi demonstrado que a carga axial aumenta a
transferência de energia para a carga elétrica, amplifica a resposta a excitações externas e
intensifica as não linearidades do sistema. Esses efeitos resultam em aumento de amplitude,
potência de saída e faixa de operação.

Variações de temperatura podem gerar cargas axiais que alteram a dinâmica
estrutural. À medida que a temperatura aumenta ou diminui, o material tende a se
expandir ou contrair. No entanto, se a estrutura estiver restrita por um apoio ou engaste
que limite essa variação de comprimento, surgem tensões axiais (Trinh et al., 2016), (Li;
Zhou, 2004). Em (Li; Zhou, 2004), vibrações de vigas de Euler-Bernoulli sujeitas a cargas
axiais induzidas pela temperatura foram investigadas sob diferentes condições de contorno.
Observou-se que, com o aumento da carga compressiva induzida pela temperatura, a
rigidez da viga diminui até a ocorrência da flambagem, ponto em que a rigidez volta a
crescer com o aumento da carga, alterando o estado de estabilidade do sistema.
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Nos estudos de (Nayfeh; Emam, 2008) e (Emam; Nayfeh, 2004), a estabilidade dos
modos de flambagem em vigas foi analisada considerando diferentes condições de contorno.
Os autores concluíram que o primeiro modo de flambagem é estável em todas as condições
de contorno investigadas, enquanto os modos superiores representam estados de equilíbrio
instáveis. Esses resultados contribuem para a compreensão do impacto da flambagem no
comportamento dinâmico e nas características vibracionais das vigas.

2.4 Sensoriamento Baseado em Osciladores Não Lineares

A utilização de estratégias de sensoriamento baseadas em dinâmicas de oscilação
não linear é uma área em expansão, na qual a dinâmica desses sistemas é explorada para
desenvolver sensores com maior sensibilidade em comparação à sua contraparte linear. Em
(Zhang et al., 2022), foi estudado um sistema composto por duas vigas acopladas, modeladas
como osciladores de Duffing, no qual se observou o fenômeno de localização de modos.
Esse fenômeno possibilitou a identificação de um ponto de operação ótimo, resultando em
uma melhora significativa na precisão e na sensibilidade do sensor. De forma semelhante,
o estudo apresentado em (Waugh; Gallacher; Burdess, 2011) utilizou o fenômeno de
bifurcação para medir a viscosidade e a densidade de fluidos, relacionando a distância
entre os saltos do sistema com essas propriedades. Observou-se que a distância entre os
saltos é influenciada não apenas pela viscosidade e pela densidade, mas também pelas
dimensões da viga. Assim, embora dois fluidos diferentes pudessem apresentar a mesma
distância entre saltos em uma viga específica, o uso de várias vigas com dimensões distintas
permitiria a identificação única do fluido, aumentando a precisão do sensoriamento.

Em (Azizi et al., 2023), foi desenvolvido um sistema para detectar a adição de
massa por meio do deslocamento da resposta em frequência, que se ajusta até atingir
o ponto de salto. Esse deslocamento funcionou como um limiar, permitindo medições
precisas da massa adicionada com base na dinâmica do sistema. No estudo apresentado em
(Potekin et al., 2018), explorou-se o comportamento dos saltos dinâmicos, com o objetivo
de evitar transições abruptas entre estados de amplitude, que poderiam comprometer a
precisão das medições. Ao garantir que a amplitude de excitação fosse suficientemente
alta para prevenir os saltos, tornou-se possível realizar medições de massa com maior
estabilidade, aprimorando a precisão do sensor.

Os estudos apresentados evidenciam o potencial das dinâmicas não lineares para o
desenvolvimento de sensores altamente precisos e sensíveis. Fenômenos como localização
de modos, bifurcações e saltos dinâmicos são explorados para superar as limitações dos
sistemas lineares, permitindo medições mais estáveis e confiáveis em diferentes contextos.
Além disso, estratégias como o ajuste de parâmetros de excitação e o uso de múltiplas
estruturas sensoriais demonstram a capacidade de aprimorar a identificação de propriedades
específicas, como massa, viscosidade e densidade. Esses avanços reforçam a relevância do
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uso de comportamentos não lineares como ferramenta promissora para ampliar a precisão
no sensoriamento de diversas aplicações.

2.5 Estratégias de Gerenciamento Térmico para Segurança e Eficiência de Sistemas

Diversos sistemas requerem operação dentro de uma faixa de temperatura específica
para garantir segurança e eficiência. Quando expostos a temperaturas fora desse intervalo,
estão sujeitos a falhas, redução de desempenho ou até mesmo danos permanentes. No
campo da eletrônica, o gerenciamento térmico desempenha um papel crucial. Em (Dhumal;
Kulkarni; Ambhore, 2023), uma revisão sobre sistemas de gerenciamento térmico na
eletrônica destacou a importância de manter os dispositivos dentro de uma faixa de
temperatura ideal. Esse controle é essencial para prolongar a vida útil dos componentes,
prevenir a degradação dos materiais e garantir o funcionamento adequado dos circuitos.
Soluções como dissipadores de calor, materiais com alta condutividade térmica e sistemas
de refrigeração, tanto ativos quanto passivos, foram abordadas como formas eficazes de
assegurar o funcionamento contínuo e seguro desses dispositivos.

O gerenciamento térmico é igualmente crítico para baterias, especialmente as de
íon-lítio, amplamente utilizadas em dispositivos móveis, veículos elétricos e sistemas de
armazenamento de energia. Em (Hao et al., 2021), foi desenvolvido um circuito para
monitoramento em tempo real da tensão elétrica e temperatura de pacotes de baterias de
íon-lítio. Esse sistema possibilita a identificação rápida de situações em que a temperatura
excede o limite seguro, prevenindo sobreaquecimentos que poderiam causar falhas ou de-
gradação das células. Dessa forma, garante-se que as baterias operem dentro de parâmetros
seguros, aumentando a segurança e a durabilidade do sistema.

Ademais, o uso de materiais termo-responsivos tem emergido como uma solução
promissora para a proteção térmica de baterias. Em (Zhang et al., 2022), foi apresentado
um cátodo fabricado com material termo-responsivo que, ao detectar altas temperaturas,
interrompe as reações eletroquímicas no eletrodo. Quando a temperatura retorna a níveis
seguros, as reações são retomadas automaticamente. Esse comportamento de chaveamento
protege as baterias contra superaquecimentos de forma autônoma, oferecendo segurança
adicional sem comprometer a eficiência energética ou o desempenho do sistema.
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3 MODELO MATEMÁTICO ELETROMECÂNICO

3.1 Descrição do sistema

Na Fig. 1, é representado o sistema estudado neste trabalho, composto por uma
viga biengastada com um ímã cúbico localizado no centro de seu comprimento, um MFC
em uma das extremidades e uma chapa de aço de mesma medida do MFC na extremidade
oposta. O ímã central reduz a frequência natural do sistema e possibilita, em trabalhos
futuros, a coleta de energia por meio de bobinas. A chapa oposta ao MFC tem como
função compensar a redução da frequência natural causada pelo ímã, reduzindo os efeitos
da adição do ímã no centro da viga, efeito avaliado por meio das análises multifísicas.
A Fig. 1 a) apresenta uma vista tridimensional do sistema, destacando as dimensões
geométricas dos elementos. A Fig. 1 b) ilustra uma vista frontal, indicando a disposição e
as posições dos componentes. Já a Fig. 1 c) exibe a viga em estado deformado, evidenciando
o deslocamento transversal relativo (wrel). Por fim, a Fig. 1 d) mostra a seção transversal
do sistema, destacando a posição das superfícies em relação à linha neutra. O sistema é
submetido a variações de temperatura que promovem dilatação ou contração térmica da
viga. No entanto, devido à restrição imposta pelos engastes, essas variações se traduzem
em tensões axiais na estrutura, alterando a rigidez e o comportamento dinâmico do sistema
(Li; Zhou, 2004).

wrel
hb

hc

ha
hs

hp

linha neutra

hsb

Lp

L

hp

Viga Massa 
cúbica

MFC Chapa 
de aço

z

x=0

x=Lpi x=Lpf

 x=L

 x=L/2

a)                                                                   b) 

c)                                                                   d) 

Figura 1 – Representação esquemática do sistema: a) vista tridimensional destacando
as dimensões dos componentes, b) representação das posições em x ao longo
do comprimento da viga, c) curvatura da viga sob deformação indicando
deslocamento transversal relativo wrel, d) Seção transversal da viga, mostrando
a linha neutra e posições em relação à linha neutra da superfície inferior da
viga, da superfície inferior da camada piezoelétrica e da posição da superfície
superior da camada piezoelétrica, ha, hb e hc, respectivamente.
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3.2 Dedução do modelo

Nesta seção é deduzido o modelo do sistema, assim, a equação de Euler-Bernoulli é
utilizada para obter a equação mecânica do sistema, então o efeito do alongamento do
plano central e de carga axial são adicionados, gerando as não linearidades do modelo.
A equação elétrica é obtida a partir das relações da piezoeletricidade aplicadas na lei
de Gauss. De posse das equações diferenciais parciais não lineares que descrevem ambos
os domínios mecânico e elétrico, uma discriminação do sistema em bases modais é feita,
chegando a uma equação de Duffing com acoplamento eletromecânico. Por fim, o método
do balanço harmônico é utilizado para encontrar a resposta do sistema no domínio da
frequência, encontrando também as frequências onde as bifurcações ocorrem e a resistência
ótima para obter o máximo de potência gerada.

O artigo (Inman, 2008) é usado como alicerce teórico para a dedução das equações
eletromecânicas do sistema. Nele foi desenvolvido um modelo de um coletor de energia
composto por uma viga cantilever com uma camada de piezocerâmica. Entretanto, no
modelo do atual projeto a condição de contorno do sistema é engastada-engastada, com
uma massa de geometria cúbica em seu centro, que é modelada a partir da hipótese de
massa pontual. Tais diferenças fazem com que os modos de vibrar dos sistemas sejam
distintos, porém a dedução é análoga. Outra diferença entre os modelos é que o elemento
piezoelétrico usado no projeto é um MFC e não ocupa todo o comprimento da viga.
Ademais, as não linearidades geométricas surgem na equação que descreve o sistema a
partir de um efeito chamado midplane stretching ou alongamento do plano central (Younis,
2011). A dedução das não linearidades é feita para uma viga sem acoplamento elétrico e
os termos adicionais devido à carga axial e alongamento do plano central são adicionados
à equação em um momento seguinte.

Em (Xiao; Qie; Bowen, 2021) foi deduzida uma expressão para a resposta do
sistema no domínio da frequência por meio da utilização do método de balanço harmônico.
Embora o sistema seja diferente do proposto neste projeto, serve de base para essa etapa
da dedução, pois o sistema do artigo é também descrito por um oscilador de Duffing. No
artigo também são encontradas as frequências onde ocorrem as bifurcações no sistema e a
resistência ótima para maximizar a saída de potência.

Outro ponto a se considerar no desenvolvimento do modelo é que a modelagem
do acoplamento eletromecânico de MFCs difere da abordagem tradicional usada para
cerâmicas piezoelétricas. Em geral, as relações entre as grandezas físicas em piezocerâ-
micas são descritas por equações lineares, o que não é diretamente aplicável aos MFCs
devido à sua estrutura composta de camadas alternadas de material piezoelétrico e epóxi,
perpendiculares aos eletrodos (Shahab; Erturk, 2016). O MFC utilizado no trabalho é do
tipo P2, cuja técnica de homogeneização pode ser encontrada no artigo (Deraemaeker et
al., 2009), onde os autores, através do somatório dos efeitos de unidades representativas de
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volume, conseguiram identificar propriedades equivalentes, que permitem que o MFC do
atual trabalho seja modelado de forma análoga a uma única cerâmica piezoelétrica.

3.2.1 Equação mecânica

A Equação Diferencial Parcial (EDP) que descreve o movimento da viga sujeita a
excitação de base é dada pela equação a seguir:

∂2M(x, t)
∂x2 + csI

∂5wrel(x, t)
∂x4∂t

+ ca
∂wrel(x, t)

∂t
+ m(x)∂2wrel(x, t)

∂t2

= −m(x)∂2wb(x, t)
∂2t

− ca
∂wb(x, t)

∂t
,

(3.1)

onde wrel(x, t) é a deflexão da viga em relação à base na posição x e no tempo t, wb(x, t) é
a deflexão da base, M(x, t) é o momento fletor interno, cs é o coeficiente de amortecimento
interno, ca é o coeficiente de amortecimento viscoso do ar, I é o momento de inércia
da seção transversal da viga, m(x) = ρA + Mconcδ(x − L/2) é a massa por unidade de
comprimento da viga, sendo ρ a densidade da viga, A a área transversal da viga, Mconc a
massa concentrada no meio da viga e L o comprimento da viga.

O momento fletor na Eq. (3.1) é descrito pela relação

M(x, t) = −b

(
[H(x − Lpi) − H(x − Lpf )]

∫ hc

hb

T p
1 y dy +

∫ hb

ha

T s
1 y dy

)
, (3.2)

onde b é a largura da viga, H(x − d) é a função de Heaviside no ponto d, ha, hb e hc são
as posições da superfície inferior da viga em relação à linha neutra, da superfície inferior
da camada piezoelétrica em relação à linha neutra, que coincide com a superfície superior
da viga e a posição da superfície superior da camada piezoelétrica em relação à linha
neutra(ver Fig. 1(d), as expressões que as relacionam com aspectos geométricos e módulos
de Young da viga e da camada piezoelétrica foram obtidas em (Inman, 2008)), Lpi e Lpf

são as posições do início e fim da camada piezoelétrica. T s
1 e T p

1 são as tensões axiais na
viga e na camada piezoelétrica, respectivamente, e são dadas pelas relações constitutivas:

T s
1 = YsS

s
1; T p

1 = Yp(Sp
1 − d31E3), (3.3)

onde Ys é o módulo de Young da viga, Yp é o módulo de Young da camada piezoelétrica a
campo elétrico constante, d31 é a constante piezoelétrica e E3 é a componente do campo
elétrico na direção de y, escrito em função da tensão elétrica v(t) e espessura da camada

piezoelétrica hp (E3(t) = −v(t)
hp

). Sp
1 e Ss

1 são os componentes de deformação axial específica
no material piezoelétrico e na viga, respectivamente, dados pela equação a seguir:
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S1(x, y, t) = −y
∂2wrel(x, t)

∂x2 . (3.4)

Substituindo as Eqs. (3.3) e (3.4) na Eq. (3.2), é obtida a relação entre o momento fletor,
o deslocamento transversal e a tensão elétrica:

M(x, t) = (EIs+EIp[H(x−Lpi)−H(x−Lpf )])∂2wrel(x, t)
∂x2 −ϑ[H(x−Lpi)−H(x−Lpf )]v(t),

(3.5)
onde EIs é a rigidez à flexão da viga, EIp é a rigidez à flexão da camada piezoelétrica e ϑ

é o termo de acoplamento, mostrados a seguir:

EIs = bYs(h3
b − h3

a)
3 ; EIp = bYp(h3

c − h3
b)

3 ; ϑ = −bYpd31(h2
c − h2

b)
2hp

. (3.6)

Dessa forma, substituindo a Eq. (3.5) na Eq. (3.1), obtém-se a equação mecânica
de movimento do sistema com acoplamento elétrico, mostrada a seguir:

EIs
∂4wrel(x, t)

∂x4 + EIp[H(x − Lpi) − H(x − Lpf )]∂
4wrel(x, t)

∂x4

+csI
∂5wrel(x, t)

∂x4∂t
+ ca

∂wrel(x, t)
∂t

+ m(x)∂2wrel(x, t)
∂t2

+ϑv(t) ×
[

dδ(x − Lpi)
dx

− dδ(x − Lpf )
dx

]
= −m(x)∂2wb(x, t)

∂t2 − ca
∂wb(x, t)

∂t
,

(3.7)

onde δ(x − d) é a função delta de Dirac no ponto d, que satisfaz a seguinte relação:

∫ +∞

−∞

dnδ(x − x0)
dxn

f(x) dx = (−1)n dnf(x0)
dxn

. (3.8)

A Eq. (3.7) é linear, assim como o modelo obtido no artigo; entretanto, o sistema
em questão neste trabalho apresenta grande influência de não linearidades geométricas,
que são deduzidas na subseção seguinte.

3.2.2 Midplane stretching e carga axial

Para iniciar, são descritas as relações geométricas da viga, a Fig. 2(a) mostra um
segmento da linha central da viga submetido a um deslocamento axial u e transversal w.
A partir dela é encontrada a posição deslocada do segmento da viga, dada por:

x̃ = x + u; ỹ = w. (3.9)
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Figura 2 – Representação de um elemento infinitesimal de uma viga e seu diagrama de
corpo livre. Em (a), temos posição inicial e deslocamento de um elemento da viga
sob deformação. A posição antes da deformação é (x, 0) e após a deformação,
(x̃, ỹ). A inclinação local é representada por θ = dỹ

dx̃
. Em (b), temos o diagrama

de corpo livre do elemento deformado. O momento M (verde), a força cortante
V (laranja), a força axial N (azul) e o ângulo θ variam ao longo do comprimento
da viga, com incrementos diferenciais dM , dV , dN e dθ, respectivamente. A
força distribuída F (x, t) atua transversalmente ao longo do elemento.

A variação da posição no elemento deformado é encontrada a partir da diferenciação das
Eqs. (3.9):

dx̃ = dx + ∂u

∂x
dx = (1 + u′)dx; dỹ = ∂w

∂x
dx = w′dx, (3.10)

nas quais o apóstrofo representa diferenciação em relação a x. Assim, utilizando os
diferenciais da Eq. (3.10) é encontrada a expressão para o diferencial ds:

ds =
√

dx̃2 + dỹ2 =
(√

(1 + u′)2 + (w′)2
)

dx. (3.11)

A partir dos diferenciais das Eqs. (3.10) e (3.11), é encontrada a deformação axial específica,
dada pela razão entre a diferença no comprimento da viga, pelo comprimento inicial:

ε = ds − dx

dx
=
(√

(1 + u′)2 + (w′)2
)

− 1. (3.12)
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Aplicando a expansão em série de Taylor na Eq. (3.12) e mantendo termos até ordem
cúbica em w′:

ε = u′ + (w′)2

2 + ... (3.13)

Ainda a partir da Fig. 2(a), são encontrados os seno e cosseno do ângulo de deformação θ,
dados a seguir:

sin θ = dỹ

ds
; cos θ = dx̃

ds
. (3.14)

Substituindo a Eq. (3.10) na Eq. (3.14):

sin θ = w′√
(1 + u′)2 + (w′)2

; cos θ = 1 + u′√
(1 + u′)2 + (w′)2

. (3.15)

Aplicando a expansão em série de Taylor na Eq. (3.15) e mantendo termos até ordem
cúbica em w′:

sin θ = w′ − u′w′ − (w′)3

3 + ...; cos θ = 1 − (w′)2

2 + ... (3.16)

Considerando os seno e cosseno do ângulo na outra extremidade do elemento deformado:

sin (θ + θ′dx̃) = sin θ + (sin θ)′dx̃; cos (θ + θ′dx̃) = cos θ + (cos θ)′dx̃. (3.17)

A partir do diagrama de corpo livre na Fig. 2(b), é aplicada a segunda lei de
Newton na direção horizontal, obtendo a equação:

(N + N ′dx̃) cos (θ + θ′dx̃) − N cos θ = ρAdx̃ü, (3.18)

na qual pontos duplos representam derivada segunda em relação ao tempo. Substituindo a
expressão para o cosseno da Eq. (3.17) e descartando termos de ordem superior em dx̃, é
obtida a equação:

(N cos θ)′ = ρAü. (3.19)

Aplicando a segunda lei de Newton na vertical:

V − (V + V ′dx̃) + Fdx̃ − N sin θ + (N + N ′dx̃) sin (θ + θ′dx̃) = ρAdx̃ẅ, (3.20)

substituindo a expressão para o seno da Eq. (3.17) e descartando termos de ordem superior
em dx̃, é obtida a equação:
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−V ′ + F + (N sin θ)′ = ρAẅ, (3.21)

e a força axial se relaciona com a deformação axial pela equação:

N = EAε = EA

(
u′ + (w′)2

2 + ...

)
. (3.22)

Aplicando a segunda lei de Newton para a rotação na lateral do elemento:

M + ∂M

∂x
dx̃ − M −

(
V + ∂V

∂x
dx̃

)
dx̃ + (Fdx̃)dx̃

2 = 0, (3.23)

simplificando a Eq. (3.23) e descartando termos de ordem superior, é obtida a relação
entre V e M :

V = ∂M

∂x
. (3.24)

O momento interno se relaciona com o deslocamento transversal pela teoria de vigas de
Euler-Bernoulli, mostrada a seguir:

M = EI
∂2w

∂x2 , (3.25)

substituindo a Eq. (3.22) na Eq. (3.19) e as Eqs. (3.24), (3.24) e (3.19) na Eq. 3.21 são
obtidas as EDPs não lineares acopladas que governam a dinâmica de vigas com alongamento
no plano central:

ρAü − EAu′′ = EA

(
(w′)2

2

)′

; (3.26)

ρAẅ + (EIw′′)′′ = EA

(
u′w′ + (w′)3

2

)′

+ F. (3.27)

No presente projeto, o sistema é adotado como uma viga esbelta, dessa forma o termo
inercial na Eq. (3.26) pode ser ignorado e com isso ela é reduzida para:

u′′ = −
(

(w′)2

2

)′

. (3.28)

Integrando a Eq. (3.28) duas vezes em função de x, é encontrada a expressão para o
deslocamento axial da viga:

u = −1
2

∫ x

0
(w′)2dx + c1(t)x + c2(t). (3.29)

Assumindo que a viga está fixada axialmente em uma extremidade e na outra sofre uma
força axial N constante, as condições de contorno são dadas a seguir:
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u(0, t) = 0; u(L, t) = NL

EA
, (3.30)

substituindo a Eq. (3.30) na Eq. (3.29) são encontrados os valores para funções arbitrárias
obtidas na integração, o que permite substituir a Eq. (3.29) na Eq. (3.27) para encontrar
a EDP não linear simplificada que descreve a vibração transversal de uma viga sujeita a
carga axial N :

ρAẅ + (EIw′′)′′ = w′′
(

N + EA

2L

∫ L

0
(w′)2dx

)
+ F. (3.31)

É de interesse do estudo analisar a influência de cargas axiais geradas pela temperatura.
Dessa forma, N é uma carga axial que surge no sistema a partir de variações na temperatura
que dilatariam a viga, porém, devido às restrições, geram cargas axiais. Também destaca-se
o efeito do elemento piezoelétrico na força axial observada na Eq. (3.22), de modo que
o módulo de Young, assim como a área da seção transversal variam com a presença do
elemento, além da tensão elétrica influenciar a tensão mecânica, contribuindo para a força
axial. Nesta dedução é adotada a simplificação de desconsiderar esses efeitos.

3.2.3 Equação elétrica

Para a dedução da equação elétrica é considerada a relação constitutiva piezoelétrica:

D3 = d31T
p
1 + ε̄T

33E3, (3.32)

onde D3 é a componente do deslocamento elétrico, e ε̄T
33 é a componente da permissividade

à tensão constante. Substituindo a Eq. (3.3) na Eq. (3.32) e escrevendo E3 em função da
tensão elétrica v(t) a relação se torna:

D3 = d31YpSp
1(x, t) − ε̄s

33
v(t)
hp

, (3.33)

onde ε̄s
33 é a permissividade à deformação constante, dada por ε̄s

33 = ε̄T
33 − d2

31Yp. Ademais,
é adotada uma simplificação ao analisar a deformação axial Sp

1 , na qual é considerada uma
média de seu valor em função da distância hpc do centro da camada piezoelétrica até a
linha neutra, dessa forma a parcela não linear é desconsiderada na equação. A deformação
axial na camada piezoelétrica escrita como uma média é:

Sp
1(x, t) = −hpc

∂2wrel(x, t)
∂x2 , (3.34)

dessa forma, a tensão de saída do circuito é obtida a partir da lei de Gauss:

d
dt

(∫
Ap

D · ndAp

)
= v(t)

R1
, (3.35)
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onde D é o vetor deslocamento elétrico na camada piezoelétrica, Rl é a resistência de carga,
n é o vetor unitário normal e a integração é feita sobre a área do eletrodo Ap. Substituindo
as Eqs. (3.33) e (3.34) na Eq. (3.35) é obtida a equação elétrica do sistema:

ε̄S
33bLp

hp

dv(t)
dt

+ v(t)
Rl

= −ē31hpcb
∫ Lp

0

∂3wrel(x, t)
∂x2∂t

dx, (3.36)

onde b, hp e Lp são a largura, espessura e comprimento da camada piezoelétrica, respecti-
vamente e ē31 é a constante da tensão piezoelétrica, dada pelo produto: ē31 = d31Yp.

3.2.4 Modos de vibrar

A expansão modal do sistema não linear ocorre a partir da base modal do problema
linear, livre e não amortecido. Assim, é considerada a equação que descreve uma viga
biengastada sujeita a tensões axiais com uma massa concentrada na metade de seu
comprimento:

EI
∂4w(x, t)

∂x4 − N
∂2w(x, t)

∂x2 + (ρA + Mconcδ(x − L/2))∂2w(x, t)
∂t2 = 0, (3.37)

e suas condições de contorno definidas por:

w(0, t) = 0; ∂w(x, t)
∂x

∣∣∣∣∣
x=0

= 0;

w(L, t) = 0; ∂w(x, t)
∂x

∣∣∣∣∣
x=L

= 0.
(3.38)

Além das condições de contorno mostradas na Eq. (3.38), devido a massa concentrada no
meio da viga é necessária uma condição de contorno a mais, mostrada a seguir:

w(L/2, t) = w(L/2, t). (3.39)

Essa condição parece trivial, mas ela permite que seja encontrada a equação adicional
necessária para solução da equação sem o surgimento de novos coeficientes desconhecidos.
A solução da equação (3.37) é assumida da forma w(x, t) = ϕ(x) [Acos(ωt) + Bsen(ωt)],
onde, ϕ(x) é o modo de vibrar da estrutura e depende apenas da coordenada x. O que
implica nas condições de contorno para o modo de vibrar:
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ϕ(0) = 0; dϕ(x)
dx

∣∣∣∣∣
x=0

= 0;

ϕ(L) = 0; dϕ(x)
dx

∣∣∣∣∣
x=L

= 0;

ϕ(L/2, t) = ϕ(L/2, t).

(3.40)

Assim, a Eq. (3.37) é transformada em uma Equação Diferencial Ordinária (EDO) dos
modos de vibrar para o problema linear, livre e não amortecido:

EI
d4ϕ

dx4 − N
d2ϕ

dx2 − ω2(ρA + Mconcδ(x − L/2))ϕ = 0. (3.41)

Para resolver a Eq. (3.41), são feitas simplificações adotando novos parâmetros,

k4 = ω2ρA

EI
; Nadm = − N

EI
; µ = Mconc

ρA
, (3.42)

assim, a partir dos parâmetros da Eq. (3.42), a Eq. (3.41) se torna:

d4ϕ

dx4 + Nadm
d2ϕ

dx2 − k4(1 + µδ(x − L/2))ϕ = 0, (3.43)

utilizando a transformada de Laplace em ambos os lados da Eq. (3.41), a EDO em x é
transformada numa equação algébrica em s:

Nadms2Lx [ϕ(x)] (s) − Nadmsϕ(0) − Nadm
d

dx
ϕ(x)

∣∣∣∣∣
x=0

−µk4ϕ(L/2)e−sL/2 − k4Lx [ϕ(x)] (s) + s4Lx [ϕ(x)] (s)

−s3ϕ(0) − s2 d

dx
ϕ(x)

∣∣∣∣∣
x=0

− s
d2

dx2 ϕ(x)
∣∣∣∣∣
x=0

− d3

dx3 ϕ(x)
∣∣∣∣∣
x=0

= 0,

(3.44)

aplicando as condições de contorno em x = 0 e isolando Lx [ϕ(x)] (s) na Eq. (3.44):

Lx [ϕ(x)] (s) = µk4ϕ(L/2)e−sL/2

s4 + Nadms2 − k4 + sϕ′′(0)
s4 + Nadms2 − k4 + ϕ′′′(0)

s4 + Nadms2 − k4 . (3.45)

Antes de utilizar a transformada inversa de Laplace, é conveniente reescrever a
equação em um formato que permita sua conversão a partir de transformadas tabeladas,
assim, são definidos os parâmetros auxiliares:
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C =
−Nadm

2 +
(

N2
adm

4 + k4
)0.5

0.5

;

D =
Nadm

2 +
(

N2
adm

4 + k4
)0.5

0.5

,

(3.46)

a partir dos parâmetros auxiliares definidos na Eq. (3.46), a Eq. (3.45) se torna:

Lx [ϕ(x)] (s) = µk4ϕ(L/2)e−sL/2

(s2 − C2)(s2 + D2) + sϕ′′(0)
(s2 − C2)(s2 + D2) + ϕ′′′(0)

(s2 − C2)(s2 + D2) , (3.47)

reescrevendo o denominador da Eq. (3.47) como:

1
(s2 − C2)(s2 + D2) = 1

(C2 + D2)

[
1

(s2 − C2) − 1
(s2 + D2)

]
, (3.48)

para assim utilizar as seguintes expressões e propriedades tabeladas para a transformada
inversa de Laplace:

L−1
x

{
s

[
1

(s2 − C2) − 1
(s2 + D2)

]}
= cosh(Cx) − cos(Dx);

L−1
x

{[
1

(s2 − C2) − 1
(s2 + D2)

]}
= 1

C
senh(Cx) − 1

D
sen(Dx);

L−1
x

{
e−csF (s)

}
= f(x − c)H(x − c),

(3.49)

a fim de obter a expressão para o modo de vibrar:

ϕ(x) =
µk4ϕ(L/2)

(
− sin (D(x−L/2))

D
+ sinh (C(x−L/2))

C

)
H (x − L/2)

C2 + D2

+
ϕ′′′(0)

(
− sin (Dx)

D
+ sinh (Cx)

C

)
C2 + D2 + ϕ′′(0) (− cos (Dx) + cosh (Cx))

C2 + D2 .

(3.50)

Substituindo as 3 outras condições de contorno mostradas na Eq. (3.40), é encontrada a
matriz dos coeficientes das equações em ϕ(L/2), ϕ′′(0) e ϕ′′′(0):
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

1 cos (DL/2) − cosh (CL/2)
C2 + D2

sin (DL/2)
D

− sinh (CL/2)
C

C2 + D2

µk4
(

sin (DL/2)
D

− sinh (CL/2)
C

)
C2 + D2

cos (DL) − cosh (CL)
C2 + D2

sin (DL)
D

− sinh (CL)
C

C2 + D2

µk4(cos (DL/2)−cosh (CL/2))

C2 + D2 −C sinh (CL) + D sin (DL)
C2 + D2

cos (DL) − cosh (CL)
C2 + D2


,

(3.51)
a partir da qual são extraídas as frequências naturais do sistema, tomando seu determinante
e igualando-o a zero. Como o determinante da matriz é nulo, o sistema possui infinitas
soluções, dessa forma, para encontrar o valor do último coeficiente, as funções de modo
são normalizadas a partir da massa do sistema, conforme a equação:

∫ L
0 ϕi(x)m(x)ϕj(x)

ϕi(p0)ϕj(p0)
= δij, (3.52)

onde p0 é o ponto de medição do sistema e δij é o delta de Kronecker, que vale 1 quando
i = j e 0 caso contrário.

3.2.5 Solução das equações

Adicionando o termo proveniente da carga axial e do midplane stretching da Eq.
(3.31) na Eq. (3.7) e agrupando com a Eq. (3.36), são apresentadas as EDP mecânica e
elétrica acopladas que descrevem a oscilação transversal do coletor de energia:

EIs
∂4wrel(x, t)

∂x4 + EIp[H(x − Lpi) − H(x − Lpf )]∂
4wrel(x, t)

∂x4 + csI
∂5wrel(x, t)

∂x4∂t

+ca
∂wrel(x, t)

∂t
+ m(x)∂2wrel(x, t)

∂t2 + ϑv(t) ×
[

dδ(x − Lpi)
dx

− dδ(x − Lpf )
dx

]

−∂2wrel(x, t)
∂x2

N + EA

2L

∫ L

0

(
∂wrel(x, t)

∂x

)2

dx

 = −m(x)∂2wb(x, t)
∂t2 − ca

∂wb(x, t)
∂t

;

(3.53)

ε̄S
33bLp

hp

dv(t)
dt

+ v(t)
Rl

= −ē31hpcb
∫ Lpf

Lpi

∂3wrel(x, t)
∂x2∂t

dx. (3.54)

A oscilação da viga pode ser representada pela série de bases e coordenadas modais
a seguir:

wrel(x, t) =
∞∑

r=1
ϕr(x)ηr(t), (3.55)
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onde ϕr(x) é o modo de vibrar da r-ésima frequência natural, sendo dependente apenas
da coordenada x e ηr(t) é a coordenada modal referente à r-ésima frequência natural,
dependente apenas do tempo t. Nesse estudo, é considerada apenas a primeira frequência
natural, dessa forma, a solução é escrita como um produto do modo de vibrar pela
coordenada modal:

wrel(x, t) = ϕ(x)η(t). (3.56)

Substituindo a Eq. (3.56) nas Eqs. (3.53) e (3.54):

EIs
d4ϕ(x)

dx4 η(t) + EIp[H(x − Lpi) − H(x − Lpf )]d
4ϕ(x)
dx4 η(t) + csI

d4ϕ(x)
dx4

dη(t)
dt

+caϕ(x)dη(t)
dt

+ m(x)ϕ(x)d2η(t)
dt2 + ϑv(t) ×

[
dδ(x − Lpi)

dx
− dδ(x − Lpf )

dx

]

−d2ϕ(x)
dx2 η(t)

N + EA

2L

∫ L

0

(
dϕ(x)

dx
η(t)

)2

dx

 = −m(x)∂2wb(x, t)
∂t2 − ca

∂wb(x, t)
∂t

;

(3.57)

ε̄S
33bLp

hp

dv(t)
dt

+ v(t)
Rl

= −ē31hpcb
∫ Lpf

Lpi

d2ϕ(x)
dx2

dη(t)
dt

dx. (3.58)

Multiplicando ambos os lados da Eq. (3.57) por ϕ(x) e integrando de 0 a L, é utilizada
a propriedade de ortonormalidade das funções normais com p0 = L/2, mostrada na Eq.
(3.52), para simplificar a equação e assim obter um sistema equivalente em função da
coordenada modal. Dessa forma, a Eq. (3.57) se torna:

ϕ2(L/2)d2η(t)
dt2 + c

dη(t)
dt

+ klinη(t) + knlη
3(t) + χv(t) = γ

d2B(t)
dt2 , (3.59)

e a Eq. (3.58) se torna:

Cp
dv(t)

dt
+ v(t)

Rl

= θ
dη(t)

dt
, (3.60)

As Eqs. (3.59) e (3.60) que descrevem o movimento do sistema estão em coordenadas
modais, para fazer a transformação de coordenadas modais para deslocamento transversal
é assumida a posição no centro da viga e a partir da Eq. (3.56) é feita a mudança de
coordenadas, com o modo ϕ(x = L/2) e o deslocamento na metade do comprimento da viga
w(x = L/2, t) = z(t). Também, a aceleração da base é considerada como entrada harmônica
d2B(t)

dt2 = Fcos(ωt), para obter a equação na coordenada espacial de deslocamento
transversal:
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d2z(t)
dt2 + c

ϕ2(L/2)
dz(t)

dt
+ klin

ϕ2(L/2)z(t) + knl

ϕ4(L/2)z3(t) + χ

ϕ(L/2)v(t) = γF

ϕ(L/2)cos(ωt);

(3.61)

Cp
dv(t)

dt
+ v(t)

Rl

= θ

ϕ(L/2)
dz(t)

dt
, (3.62)

nas Eqs. (3.61) e (3.62) as constantes são reescritas de modo a incorporar as mudanças
geradas por mudar da coordenada modal para deslocamento z sem perda de generalidade.
Assim, as EDOs acopladas para o sistema são dadas a seguir:

d2z(t)
dt2 + c

dz(t)
dt

+ klinz(t) + knlz
3(t) + χv(t) = γFcos(ωt); (3.63)

Cp
dv(t)

dt
+ v(t)

Rl

= θ
dz(t)

dt
, (3.64)

nas quais o termo de deslocamento da base proveniente do amortecimento é desprezado e
os coeficientes da equação são indicados abaixo:

klin = 1
ϕ2(L/2)

(
EIs

(∫ L

0
ϕ(x)d4ϕ(x)

dx4 dx

)
− N

(∫ L

0
ϕ(x)d2ϕ(x)

dx2 dx

)

+EIp

(∫ L

0
[H(x − Lpi) − H(x − Lpf )]ϕ(x)d4ϕ(x)

dx4 dx

))
;

c = 1
ϕ2(L/2)

(
csI

(∫ L

0
ϕ(x)d4ϕ(x)

dx4 dx

)
+ ca

(∫ L

0
ϕ(x)ϕ(x) dx

))
;

χ = 1
ϕ(L/2)ϑ

(∫ L

0
ϕ(x)

[
dδ(x − Lpi)

dx
− dδ(x − Lpf )

dx

]
dx

)
;

knl = − 1
ϕ4(L/2)

(∫ L

0
ϕ(x)d2ϕ(x)

dx2 dx

)EA

2L

∫ L

0

(
dϕ(x)

dx

)2

dx

 ;

γ = − 1
ϕ(L/2)

(∫ L

0
ϕ(x)m(x) dx

)
;

Cp = ε̄S
33bLp

hp

;

θ = − ē31hpcb

ϕ(L/2)

∫ Lpf

Lpi

d2ϕ(x)
dx2 dx.

(3.65)
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A expressão para klin descrita na Eq. (3.65) mostra o efeito da força axial e do ele-

mento piezoelétrico na frequência natural do sistema. O termo EIs

ϕ2(L/2)

(∫ L

0
ϕ(x)d4ϕ(x)

dx4

)
representa o quadrado da frequência natural da viga caso não houvesse carga axial e um
material piezoelétrico acoplado, dessa forma, o deslocamento da resposta em frequência
do sistema devido a cargas axiais é previsto pelo modelo. Ademais, as constantes de
acoplamento eletromecânico θ e χ são iguais, o que é mostrado a seguir. A expressão de θ

pode ser simplificada para:

θ = − ē31hpcb

ϕ(L/2)

 dϕ(x)
dx

∣∣∣∣∣
Lpf

− dϕ(x)
dx

∣∣∣∣∣
Lpi

 , (3.66)

enquanto a expressão de χ a partir da Eq. (3.8) e do valor de ϑ mostrado na Eq. (3.6)
pode ser simplificada para:

χ = −bYpd31(h2
c − h2

b)
2hpϕ(L/2)

 dϕ(x)
dx

∣∣∣∣∣
Lpf

− dϕ(x)
dx

∣∣∣∣∣
Lpi

 , (3.67)

também, a partir das expressões para as posições das superfícies do sistema em relação à
linha neutra, obtidas em (Inman, 2008), a seguinte relação é encontrada:

h2
c − h2

b

2hp

= hpc. (3.68)

Assim, o parâmetro χ pode ser reescrito como:

χ = −Ypd31hpcb

ϕ(L/2)

 dϕ(x)
dx

∣∣∣∣∣
Lpf

− dϕ(x)
dx

∣∣∣∣∣
Lpi

 = θ. (3.69)

Dessa forma, o acoplamento eletromecânico nas equações mecânica e elétrica são iguais e
representados por θ.

As Eqs. (3.63) e (3.64) representam um oscilador de Duffing com acoplamento
eletromecânico, o sistema equivalente obtido é apresentado na Fig. 3. A seguir, as equações
são adimensionalizadas de modo a simplificar o tratamento algébrico, procedimento adotado
em (Xiao; Qie; Bowen, 2021). Definindo os seguintes parâmetros adimensionais:

y = z

z0
, z0 = γF

klin

, ωn =
√

klin, ζ = c

2ωn

, Ω = ω

ωn

,

τ = ωnt, α = knlz
2
0

klin

, υ = Cpv

θz0
, β = 1

RlCpωn

, κ2 = θ2

klinCp

,

(3.70)

é possível reescrever as Eqs. (3.63) e (3.64) como:
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m

klin knl c θ θ Cp Rℓ

a)                                       b)F(t)
z

Figura 3 – Sistema equivalente das Eqs. (3.63) e (3.64), o elemento inercial m do sistema
mecânico é unitário nas equações encontradas, devido a normalização dos
modos, descrita na Eq. (3.52). Em a) está mostrado o sistema mecânico e em
b) o sistema elétrico.

d2y

dτ 2 + 2ζ
dy

dτ
+ y + αy3 + κ2υ = cos(Ωτ); (3.71)

dυ

dτ
+ βυ = dy

dτ
. (3.72)

3.2.6 Balanço harmônico

Para encontrar a resposta em frequência do sistema é utilizado o método do balanço
harmônico (Peng et al., 2008), assim, assume-se a solução das equações (3.71) e (3.72)
como harmônica:

y = Y cos(Ωτ + φx);
υ = V cos(Ωτ + φv),

(3.73)

onde Y e V são as amplitudes das respostas mecânica e elétrica, respectivamente e φx

e φv são as fases das respostas mecânica e elétrica, respectivamente. Substituindo a Eq.
(3.73) na Eq. (3.71):
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(
−V κ2 sin (φv) − 2Y Ωζ cos (φx) +

(
−3Y 3α

4 + Y Ω2 − Y

)
sin (φx)

)
sin(Ωτ)

+
(

V κ2 cos (φv) − 2Y Ωζ sin (φx) +
(

3Y 3α

4 − Y Ω2 + Y

)
cos (φx) − 1

)
cos(Ωτ)

+(...) sin(3Ωτ) + (...) cos(3Ωτ) = 0.

(3.74)

Ignorando termos harmônicos superiores e igualando os termos que multiplicam sin(Ωτ) e
cos(Ωτ) a 0 na Eq. (3.74):

V κ2 sin (φv) + 2Y Ωζ cos (φx) +
(

3Y 3α

4 − Y Ω2 + Y

)
sin (φx) = 0;

V κ2 cos (φv) − 2Y Ωζ sin (φx) +
(

3Y 3α

4 − Y Ω2 + Y

)
cos (φx) = 1.

(3.75)

Substituindo a Eq. (3.73) na Eq. (3.72):

(−V Ω cos (φv) − V β sin (φv) + Y Ω cos (φx)) sin(Ωτ)

+ (−V Ω sin (φv) + V β cos (φv) + Y Ω sin (φx)) cos(Ωτ)

+(...) sin(3Ωτ) + (...) cos(3Ωτ) = 0,

(3.76)

ignorando termos harmônicos superiores e igualando os termos que multiplicam sin(Ωτ) e
cos(Ωτ) a 0 na Eq. (3.76), são isolados sin(φv) e cos(φv), chegando a:

cos (φv) = Y Ω (Ω cos (φx) − β sin (φx))
V (Ω2 + β2) ;

sin (φv) = Y Ω (Ω sin (φx) + β cos (φx))
V (Ω2 + β2) .

(3.77)

Aplicando a identidade trigonométrica fundamental para o ângulo φv, com as expressões
para seno e cosseno dadas na Eq. (3.77) é encontrada a relação entre a amplitude elétrica
V e a amplitude mecânica Y :

V 2 = Y 2Ω2

Ω2 + β2 . (3.78)

Substituindo as relações de seno e cosseno dadas na Eq. (3.77) na Eq. (3.75) e
isolando sin(φx) e cos(φx):
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cos (φx) = Y

((
1 − Ω2 + 3Y 2α

4

)
+ Ω2κ2

Ω2 + β2

)
;

sin (φx) = Y

(
2ζΩ + κ2βΩ

Ω2 + β2

)
.

(3.79)

Aplicando a identidade trigonométrica fundamental para o ângulo φx, com as expressões
para seno e cosseno dadas na Eq. (3.79) é encontrada a relação entre a amplitude mecânica
Y e a frequência Ω:

(
Y

(
1 − Ω2 + Ω2κ2

Ω2 + β2

)
+ 3Y 3α

4

)2

+
(

2Y ζΩ + κ2βY Ω
Ω2 + β2

)2

= 1. (3.80)

Expandindo a Eq. (3.80), é obtida uma equação polinomial do terceiro grau em Y 2:

9α2

16 Y 6 + 3α

2

(
1 − Ω2 + κ2Ω2

Ω2 + β2

)
Y 4

+
((

1 − Ω2
)2

+ 4ζ2Ω2 + Ω2κ2 (2 − 2Ω2 + 4ζβ + κ2)
Ω2 + β2

)
Y 2 − 1 = 0.

(3.81)

Escrevendo como um polinômio cúbico genérico, a Eq. (3.81) é da forma:

ax3 + bx2 + cx + d = 0, (3.82)

na qual,

a = 9α2

16 ; b = 3α

2

(
1 − Ω2 + κ2Ω2

Ω2 + β2

)
;

c =
((

1 − Ω2
)2

+ 4ζ2Ω2 + Ω2κ2 (2 − 2Ω2 + 4ζβ + κ2)
Ω2 + β2

)
;

d = −1.

(3.83)

Tomando a substituição y = x − b

3a
na Eq. (3.82), o termo quadrático é eliminado e assim

é encontrado o discriminante da equação, que permite determinar as frequências onde
ocorrem as bifurcações. O polinômio simplificado é da forma:

y3 + py + q = 0, (3.84)

na qual,
p = 3ac − b2

3a2 ;

q = 27a2d − 9abc + 2b3

27a3 ,

(3.85)
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e o discriminante D é dado por:

D =
(

q

2

)2
+
(

p

3

)3
. (3.86)

A partir do estudo do discriminante são encontradas as frequências de salto do
oscilador. Caso D > 0 há apenas uma solução para o sistema, já para D ≤ 0 há três
soluções possíveis para o sistema, dessa forma, as bifurcações, e consequentemente os
saltos, ocorrem quando D = 0.

3.2.7 Resistência ótima

Por fim, são utilizadas as expressões encontradas a partir do balanço harmônico
para encontrar uma resistência ótima para o sistema, isto é, o valor de resistência que
maximiza a potência de saída do sistema.

A potência elétrica é dada pela expressão:

P = v(t)2

Rl

. (3.87)

Reescrevendo v(t) na Eq. (3.87) em função da tensão elétrica adimensional, dada na Eq.
(3.70):

P =

(
υθz0

Cp

)2

Rl

. (3.88)

Substituindo a Eq (3.73) na Eq. (3.88):

P = θ2z2
0

C2
pRl

V 2 cos (Ωτ + φv). (3.89)

Substituindo a Eq. (3.78) na Eq. (3.89):

P = θ2z2
0

C2
pRl

Y 2Ω2

Ω2 + β2 cos (Ωτ + φv). (3.90)

Reescrevendo β em função de Rl e reorganizando a Eq. (3.90):

P = (θ2z2
0Y 2ω2)Rl

(RlCpω)2 + 1 cos (Ωτ + φv). (3.91)

Derivando a amplitude da potência na Eq. (3.91) em relação a Rl e igualando a expressão
encontrada a zero:

dP

dRl

= (θ2z2
0Y 2ω2)

[
(RlCpω)2 + 1 − 2(RlCpω)2

((RlCpω)2 + 1)2

]
= 0. (3.92)
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Simplificando a equação (3.92), se obtém a expressão para resistência ótima:

Rotm = 1
Cpω

. (3.93)
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4 MODELO MULTIFÍSICO

Para o estudo do modelo multifísico é utilizado o software COMSOL Multiphysics.
Este é um software de simulação multifísica que utiliza o método de elementos finitos
(FEM) para discretizar e resolver as equações que governam o comportamento do sistema
em estudo. O FEM, amplamente utilizado há décadas (Zienkiewicz; Taylor, 2005), (Chen,
2011), discretiza o sistema em pequenos elementos e resolve as equações para cada um
deles, permitindo análises entre diferentes domínios físicos. Na Fig. 4 é mostrada uma
vista explodida do desenho em Computer Aided Design(CAD), o qual é composto por uma
viga de aço engastada em estruturas externas de alumínio, com uma massa em formato
cúbico de neodímio no centro do comprimento, uma camada de MFC próxima a um dos
engastes e uma chapa de aço próxima ao outro.

Esta análise visa estudar como a temperatura influencia o sistema, levando em
conta as dilatações térmicas da viga e dos engastes. Devido aos diferentes coeficientes de
dilatação térmica do alumínio e do aço, o engaste se expande mais que a viga, gerando
cargas de tração que aumentam a frequência natural do sistema. A investigação abrange a
variação da frequência natural com a temperatura, tanto na presença quanto na ausência
da chapa de aço, destacando sua importância para ajustar a frequência natural a valores
específicos. Além disso, a análise examina a potência e a tensão geradas pelo material
piezoelétrico sob diferentes resistências elétricas, comparando os resultados com as análises
analíticas e experimentais para encontrar um valor de resistência ótima para a operação
do sistema.

Para realizar a análise, são utilizadas as interfaces de mecânica dos sólidos, ele-
trostática e circuito elétrico, bem como a interface multifísica de piezoeletricidade do
software. Na interface de mecânica dos sólidos, são definidas as propriedades de expansão
térmica com base em uma temperatura de referência, além da caracterização piezoelétrica
do material piezoelétrico. Também são estabelecidas as condições de contorno do sistema,
considerando as superfícies superior e inferior das estruturas de engaste como fixas. Na
interface de eletrostática, especificam-se a conservação de carga do material piezoelétrico e
as conexões de terminal e terra do circuito. Já na interface de circuito elétrico, é definido
o circuito conectado ao elemento piezoelétrico, configurado como uma carga puramente
resistiva. Por fim, a interface multifísica de piezoeletricidade é responsável por conectar os
domínios mecânico e elétrico, integrando as diferentes áreas de análise.

A malha utilizada no estudo é tetraédrica, com tamanho de elemento definido
como finer, resultando em 38.672 elementos. Para avaliar a variação da frequência com a
temperatura, é realizada uma varredura paramétrica em um estudo estacionário, permitindo
obter a condição inicial do sistema com as deformações térmicas. Em seguida, executa-se
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um estudo das autofrequências do sistema para diferentes condições de temperatura.
Ademais, para determinar a resistência ótima, é feita uma varredura paramétrica no
domínio da frequência, assumindo uma frequência constante. Este procedimento fornece
as respostas de tensão e potência elétrica do sistema para diferentes valores de resistência.

Figura 4 – Vista explodida do sistema
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5 PROCEDIMENTO EXPERIMENTAL

Neste capítulo é descrito o protótipo físico construído, o aparato experimental
utilizado e os experimentos realizados. A Fig. 5 mostra o sistema que foi ensaiado, composto
de duas placas externas de alumínio que confinam uma placa central de aço onde se encontra
a viga (150 × 10 × 0, 8 mm), a qual possui um ímã de neodímio (N42) na metade de seu
comprimento, uma camada de MFC (M2807-P2) em uma de suas extremidades e uma
chapa de aço na outra extremidade. Também, temos conectores de alumínio que sustentam
a estrutura em sanduíche acima de uma estrutura base, também em alumínio, que é
conectada a um excitador, de modo a obtermos excitação de base no sistema. Na Fig. 6
observamos a condição de temperatura na qual o sistema foi montado, essa temperatura
serve como referência para o estudo, de modo que o sistema é considerado não deformado
na temperatura de 20.2°C. Ademais, os parafusos usados para unir a estrutura de engaste
na viga foram apertados até um torque de 0,87 Nm.

Conector

Base

MFC

Placa 
externa

Imã

Chapa metálica

Viga

Conector

Figura 5 – Visão geral do sistema experimental utilizado no estudo, com destaque para os
principais componentes.

Na Figura 7 é mostrado o aparato típico utilizado nos ensaios. O sistema é conectado
à mesa vibratória de um excitador Data Physics V100, associado a um amplificador de
potências modelo DSA5K-1. A aceleração de entrada no sistema é medida através de um
acelerômetro DJB A/600 , localizado na superfície plana da base. Os sinais de tensão
elétrica do MFC, a temperatura do sistema e a velocidade de um ponto localizado na
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Shaker

Estrutura

Viga

Figura 6 – Imagem térmica do sistema ao ser montado, com contorno e indicações do
shaker, estrutura e viga. O retângulo branco mostra a área onde o cálculo da
temperatura média (valor no canto superior direito) é feito.

superfície do ímã no centro da viga são medidos. Para a medição da velocidade, é usado
um vibrômetro a laser Ometron VH300+ e para a temperatura é utilizada uma câmera
térmica Optris XI400. Os sinais são coletados e processados por um analisador espectral
VibPilotE da MP international e posteriormente armazenados num par de computadores
para que possam ser analisados.

Laser

Excitador

Câmera 
Térmica

Sistema

Amplificador 
do excitador

Analisador 
espectral

Computador 
principal

Computador 
auxiliar

Década de 
resistores

Figura 7 – Aparato experimental utilizado para os experimentos, com destaque para os
principais componentes.
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Conforme mostrado na Figura 8 as setas indicam o sentido do fluxo dos sinais
elétricos. Inicialmente, o computador principal envia um sinal indicando em que condições
o sinal de excitação deve ser gerado(1). Então o sinal de excitação é gerado pelo gerador
de sinais do analisador espectral e enviado ao amplificador de potências (2). Este sinal,
amplificado, é então enviado ao excitador (3) para, então, ser aplicado ao protótipo. O
sinal de referência para fins de determinação das FRFs eletromecânicas é a aceleração da
base do dispositivo de engaste que é medido pelo acelerômetro e enviado ao analisador
espectral (4). O sinal da velocidade, tomado em um ponto localizado na superfície do ímã
no centro da viga, é medido através do vibrômetro a laser (5) e enviado ao analisador
espectral. De forma similar, o sinal de tensão do MFC é enviado à uma década resistiva
(6), instrumento este que permite a variação da resistência de carga do resistor do circuito
elétrico de acordo com uma grande faixa de variação de resistências (1 Ω a 10 MΩ). O
sinal de tensão piezoelétrico resultante é então enviado ao analisador espectral. Por fim, a
câmera térmica monitora a temperatura do sistema, enviando periodicamente imagens de
infravermelho da viga para o computador auxiliar(7).

Computador 
principal

Computador 
auxiliar

Analisador 
espectral

Década de 
resistores

Excitador

Sistema

Câmera 
térmica

Laser

Amplificador 
do excitador

MFC

Acelerômetro

(1)
(2)

(3)

(6)

(4)

(5)

(7)

(6)

Figura 8 – Diagrama do aparato experimental. As cores das setas representam sinais de
diferentes domínios físicos, em verde os sinais referentes a grandezas mecânicas,
em azul, grandezas elétricas e em laranja, grandezas térmicas

Os ensaios experimentais são realizados inicialmente variando a resistência do
circuito elétrico, de modo a encontrar a resistência ótima também experimentalmente e
com isso encontrar o valor da resistência a ser usada nos ensaios de circuito fechado. A
tensão obtida na medição pode ser aumentada com o aumento da resistência de carga,
até o limite do circuito aberto, porém, com o aumento da resistência temos também uma
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redução na corrente elétrica do circuito, o que gera uma redução na potência gerada a
partir de um certo valor de resistência. Neste ponto máximo temos a geração máxima
de potência, o valor de resistência para essa condição é a resistência ótima do sistema.
Então são feitos ensaios para obter a resposta do sistema no domínio da frequência para
diferentes temperaturas em circuito fechado com a resistência fixada, de modo a encontrar
relações entre os parâmetros do sistema e a temperatura. Em seguida, o sistema é mantido
oscilando a uma frequência constante e sua temperatura é aumentada utilizando um
aquecedor, com o objetivo de observar a reação do sistema ao aumento da temperatura.
Por fim, são feitos ensaios variando bruscamente a temperatura durante a realização das
medições, além de considerar uma alta taxa de Hz/min no sweep de modo a observar
efeitos transitórios e identificar se o sistema é capaz de responder a variações bruscas da
temperatura.
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6 RESULTADOS

6.1 Estudo parâmetrico da variação da frequência natural

A partir da matriz mostrada na Eq. (3.51) obtida pela equação dos modos, é
encontrada a frequência natural do sistema tomando seu determinante. Então, são inseridos
os valores para os parâmetros físicos do sistema, mostrados na Tabela 1, o que permite
relacionar a frequência natural com a carga axial. Na Fig. 9 é observada a relação entre a
frequência natural e a carga axial imposta no sistema.

Parâmetro Símbolo Valor Unidade
Modulo de Young E 200 GPa

Densidade ρ 7850 kg/m3

Comprimento L 150 mm
Segundo momento de área I 0.43 mm4

Massa concentrada Mconc 2.52 g

Tabela 1 – Parâmetros físicos do protótipo

Figura 9 – Estudo paramétrico da variação da frequência natural obtido a partir da equação
dos modos.

Conforme observado na Fig. 9, cargas axiais trativas (positivas) geram um aumento
na frequência natural, enquanto cargas compressivas (negativas) geram uma redução na
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frequência natural. Também é possível notar que o sistema possui uma carga crítica, que
reduz a frequência natural para 0 Hz. Essa carga crítica é a carga crítica de flambagem,
como observado nos artigos (Trinh et al., 2016) e (Li; Zhou, 2004). A partir desse estudo,
percebemos que a base modal encontrada descreve os fenômenos físicos esperados com a
mudança da carga axial do sistema.

6.2 Resistência ótima

A Fig. 10 mostra a amplitude de resposta do sistema para diferentes resistências, a
partir dela é possível notar que o aumento da resistência gera um aumento na tensão de
saída.

Figura 10 – Amplitudes experimentais de tensão elétrica para diferentes resistências. As
cores escuras são curvas de sweep up, enquanto as de cores claras são curvas
de sweep down. Os dados foram obtidos para T = 23.5°C e F = 0.05g.

O valor da resistência ótima é encontrado a partir do modelo analítico, do modelo
multifísico e dos experimentos realizados para uma frequência de 175 Hz. Para encontrar a
resistência ótima a partir do modelo analítico, é utilizada a Eq. (3.93), de modo que o valor
da resistência depende da capacitância equivalente e da frequência de operação. O valor
de Cp do sistema encontrado experimentalmente é de 20 nF, dessa forma, a resistência
ótima para essas condições é de Rl = 45.5 kΩ.

Na Fig. 11 se observam as curvas de tensão e potência elétrica obtidas a partir do
modelo multifísico, de maneira que se torna evidente o aumento de tensão elétrica com o
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aumento da resistência e também a característica da potência elétrica de apresentar um
ponto de máximo para a resistência ótima. Esse valor máximo da potência ocorre quando
a resistência é R = 47.5 kΩ, sendo esse o valor ótimo obtido a partir do modelo multifísico.

Figura 11 – Curvas de Tensão e Potência Elétrica em função da Resistência de carga
obtidas no software COMSOL.

Na Fig. 12 são observadas as curvas experimentais de tensão elétrica e potência
elétrica obtidas variando a resistência de carga, semelhante ao gráfico obtido para o modelo
multifísico. O valor máximo encontrado para a potência ocorre na resistência de 40 kΩ,
sendo esse o valor ótimo obtido a partir dos experimentos.

Figura 12 – Curva experimental da Potência Elétrica em função da Resistência de carga.
As curvas foram medidas para T=27.5°C, F = 0.1g e ω = 175 Hz.
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Os valores para resistência ótima encontrados com os três métodos são próximos,
indicando consistência entre as análises. As diferenças encontradas entre os valores podem
vir de diferentes fatores: o modelo analítico simplifica aspectos geométricos da estrutura e
suas interações, enquanto o COMSOL incorpora maior detalhamento, e o experimento físico
pode sofrer variações inerentes aos materiais e componentes. Entretanto, essas diferenças
não impactam de forma significativa o resultado, pois os valores de saída de tensão e
potência não apresentam variação significativa na faixa de resistência encontrada, como
pode ser observado na Fig. 13. Ademais a resistência ótima depende da frequência de
operação, observado na Eq. (3.93), de modo que seu valor não é constante durante a
realização dos experimentos. Os valores encontrados, porém, determinam uma resistência
que gera saídas de tensão e potência adequadas para a faixa de frequências que os
experimentos são feitos.

40kΩ                50kΩ

Figura 13 – Curva experimental da Potência Elétrica em função da Resistência de carga
com destaque para o intervalo de valores de resistência ótima encontrados
pelos diferentes métodos. As curvas foram medidas para T=27.5°C, F = 0.1g
e ω = 175 Hz.

6.3 Amplitude x Frequência

A Fig. 14 mostra a variação da frequência natural do sistema em função da
temperatura, considerando a presença ou ausência do ímã no meio da viga e da chapa
de aço na extremidade oposta ao MFC. A adição do ímã reduz a frequência natural,
enquanto a chapa de aço a eleva, compensando o efeito do ímã e permitindo o ajuste da
frequência natural conforme as especificações de projeto. A análise multifísica indica que
nem o ímã nem a chapa alteram a sensibilidade do sistema à temperatura, possibilitando
experimentos em outras frequências sem a presença desses componentes. O ímã acoplado
à viga permite explorar estratégias de harvesting baseadas em bobinas, além de ajustar
a frequência natural variando sua posição em relação ao engaste. Já a chapa de aço
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contrabalança os efeitos do ímã, ampliando a flexibilidade no ajuste da frequência. Os
experimentos realizados neste estudo integram pesquisas em dinâmica não linear conduzidas
na University of Franche-Comté, FEMTO-ST Institute, Department of Applied Mechanics,
Besançon, França, 25000. Por estratégia de projeto, optou-se pela utilização da massa e
da chapa para adequação do setup experimental.

Figura 14 – Curvas de Frequência natural pela temperatura obtidas no COMSOL para o
sistema em diferentes combinações de presença do ímã e da chapa de aço.( )
Sem ímã e com chapa, ( ) Sem ímã e sem chapa, ( ) Com ímã e com chapa,
( ) Com ímã e sem chapa

A Fig. 15 mostra três curvas obtidas experimentalmente para diferentes tempe-
raturas sobrepostas com as curvas obtidas a partir do modelo analítico e as imagens
obtidas a partir da câmera térmica. Para cada experimento são feitas duas varreduras,
uma crescente em frequência e uma decrescente, chamadas de sweep up e sweep down.
Os dados experimentais obtidos são utilizados para fazer a calibração dos parâmetros
do modelo de Duffing encontrado nas Eqs. (3.78) e (3.81). Para isso, é usado o método
de algoritmos genéticos para otimizar os valores dos parâmetros e seguido de um ajuste
manual da curva aos dados. Nas tabelas abaixo estão relacionados os parâmetros obtidos,
na Tabela 2 estão os parâmetros que não variam com a temperatura e na Tabela 3 estão
os parâmetros que variam.
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21,3°C

23,1°C 24,5°C

Figura 15 – Curvas experimentais(em tons de amarelo) sobrepostas com curvas obtidas a
partir do modelo analítico(em tons de roxo) para diferentes temperaturas.

Tabela 2 – Parâmetros do sistema que não variam com a temperatura

Parâmetro Valor Unidade
knl 4.5e11 N/m3

γ 4.5 Adimensional
Rl 40 kΩ
Cp 20 nF
θ 9.1e-4 N/V
F 0.05 g

Tabela 3 – Parâmetros do sistema que variam com a temperatura
T (oC) c(Ns/m) klin(N/m) T (oC) c(Ns/m) klin(N/m)
20.85 10.2 1.099e6 22.90 8.22 1.218e6
21.20 9.9 1.114e6 22.90 7.9 1.232e6
21.45 9.7 1.127e6 23.10 7.9 1.235e6
21.70 9.6 1.142e6 23.15 7.8 1.240e6
21.75 9.3 1.154e6 23.20 7.8 1.244e6
22.00 9.1 1.168e6 23.25 7.5 1.267e6
22.25 8.8 1.179e6 23.55 7.5 1.269e6
22.40 8.65 1.197e6 23.75 7.45 1.272e6
22.45 8.65 1.190e6 23.90 7.3 1.281e6
22.50 8.4 1.205e6 24.55 6.6 1.348e6
22.70 8.3 1.212e6 25.05 5.8 1.407e6
22.85 8.0 1.228e6 26.00 5.0 1.515e6
22.85 8.2 1.222e6
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A partir dos parâmetros são encontradas características do sistema, como a frequên-
cia natural e a Eq. (3.86) é utilizada para encontrar as frequências onde ocorrem os saltos
e observar tendências nos dados com a variação da temperatura. Na Fig. 16, estão relacio-
nados os parâmetros obtidos e a temperatura[(a) c e (b) ωn], sendo também mostrado um
ajuste polinomial para observar a tendência dos dados com a variação da temperatura e
a raiz quadrada do erro médio (Root Mean Squared Error) do ajuste. Na Fig. 17 estão
relacionados a frequência em que ocorrem os saltos com a temperatura[(a) jump up,(b)
jump down].

Figura 16 – Gráfico dos parâmetros do sistema variando com a temperatura, com uma
curva polinomial ajustada aos dados. Em a) c x T e em b) ωn x T

Figura 17 – Gráfico das frequências de salto variando com a temperatura, com uma curva
polinomial ajustada aos dados. Em (a) Jump up e em (b) Jump down.
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Conforme observado na Fig. 16(b), o aumento da temperatura gera um aumento na
frequência natural do sistema, o que indica que a viga está sendo tracionada. Esse resultado
destoa do que é observado na literatura, onde o aumento na temperatura gera cargas
compressivas na estrutura. Essa diferença é explicada pela interação entre a estrutura de
engaste com a viga, as placas externas são feitas de alumínio, enquanto a viga é feita de aço
e assim possuem diferentes coeficientes de dilatação térmica, 23 × 10−6 1/°C e 12.3 × 10−6

1/°C, respectivamente, de modo que o alumínio se dilata mais que o aço, gerando cargas
trativas.

Conforme observado na Fig. 16(a), a constante de amortecimento do modelo diminui
com o aumento da temperatura. Um efeito semelhante foi observado em (Teloli et al.,
2022), onde os autores observaram uma diminuição do amortecimento do sistema com
o aumento da pré-carga aplicada nos parafusos de fixação do sistema. Dessa forma, o
aumento da temperatura dilata todo o sistema, o que intensifica as forças de contato entre
os elementos da estrutura, esse aumento na força de contato nos parafusos causa a redução
do amortecimento mecânico do sistema.

6.4 Aumento da temperatura com frequência constante

Figura 18 – Evolução da tensão elétrica e temperatura do sistema com frequência constante
de 190 Hz.

Na Fig. 18 é mostrada a evolução da temperatura e da resposta elétrica do sistema
no tempo, simulando assim uma condição de operação, na qual o sistema não pode
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operar acima de 28°C e ao ultrapassar essa temperatura se observa um aumento elevado
da tensão elétrica medida. Conforme a temperatura se aproxima de um valor crítico,
ocorre o deslocamento da resposta em frequência do sistema, até atingir o ponto onde
a bifurcação do sistema coincide com a frequência especificada e resultando no salto de
amplitude da tensão elétrica. Também se observa que o sistema não reage imediatamente
ao aumento na temperatura, o que sugere uma inércia térmica do sistema, de modo que a
mudança no domínio térmico não é observada simultaneamente nos domínios mecânico
e elétrico. Essa latência na resposta do sistema indica que a detecção das bifurcações e
consequentemente os saltos de amplitude são mais eficientes quanto menor for a taxa
de variação da temperatura, de modo que em uma aplicação prática, a sensibilidade do
sistema à mudanças de temperatura pode ser explorada para projetar dispositivos que
respondam de forma mais precisa em condições de aquecimento lento.

Na Fig. 19 são dadas as respostas do sistema sujeito a variações bruscas de tempe-
ratura com varreduras feitas a uma taxa alta de 40 Hz/min. Devido a alta taxa de variação
da temperatura as curvas obtidas no sweep down e no sweep up estão descompassadas,
essa diferença mostra a sensibilidade do sistema à temperatura e indica que o sistema é
melhor descrito pelo modelo quão mais lenta for a variação da temperatura, reforçando
que em aplicações práticas o sistema é mais preciso em condições de aquecimento lento.

Figura 19 – Deslocamento da curva de resposta com o aumento da temperatura. Condição
de operação: F = 0.02g
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7 CONCLUSÃO

O desenvolvimento e a validação experimental do coletor não linear de energia
piezoelétrica utilizando uma viga biengastada demonstram a possibilidade de utilizar
o sistema como forma de chaveamento de temperatura. O modelo analítico mostra-se
eficaz em reproduzir o comportamento dinâmico do sistema, descrito por um oscilador de
Duffing com efeito de hardening. A simulação multifísica mostra a possibilidade de ajustar
a frequência natural a partir da adição de uma chapa de aço sem alterar a sensibilidade
do sistema à temperatura. Os experimentos realizados confirmam o modelo teórico e
possibilitam observar os efeitos da mudança de temperatura nos parâmetros do sistema.

O aumento da temperatura gera um aumento na rigidez linear klin e redução no
amortecimento c do sistema. Com o aumento da temperatura o sistema expande, porém,
devido às restrições de engaste a viga sofre cargas axiais. Essas cargas são trativas, pois a
diferença nos coeficientes de dilatação térmica mostra que os engastes de alumínio vão
dilatar mais que a viga de aço. A expansão do sistema também aumenta a força de contato
nos parafusos, o que reduz o amortecimento mecânico do sistema.

Os resultados obtidos indicam que o sistema é sensível à temperatura e apresenta
aumento na sua resposta de tensão elétrica ao atingir a temperatura limite, comprovando seu
funcionamento como chave de temperatura. Entretanto, o modelo desenvolvido apresenta
uma inércia térmica, demonstrada na latência entre o aumento da temperatura e o aumento
da tensão elétrica, sendo assim mais adequado para aplicações onde a taxa de variação de
temperatura é baixa.

Assim, este trabalho contribui para o campo de coleta de energia e sensoriamento,
mostrando uma aplicação de coletores de energia para o monitoramento de grandezas
físicas, por meio de sua dinâmica não linear e materiais piezoelétricos. Espera-se que
os conhecimentos desenvolvidos possam ser utilizados como base para pesquisas futuras
e para o desenvolvimento de dispositivos capazes de fazer o monitoramento térmico de
sistemas em condições variadas.
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