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Resumo 

Este trabalho consiste de um estudo quanto a viabilidade do uso de Filtros de Partículas 

aplicados ao contexto de navegabilidade de Veículos Aéreos Não Tripulados (VANTs). Estimar 

o estado de um dispositivo é essencial quando se trata de tomada automatizada de decisões. No 

contexto de VANTs, esse estado normalmente é caracterizado pela posição, velocidade e 

orientação da aeronave. Entretanto, estimar o estado da aeronave durante o voo nem sempre é 

simples devido a fatores como ruído nas medidas dos sensores e forças externas ao sistema. 

Construiu-se um filtro capaz de fazer uso dos dados advindos de uma Unidade de Medida 

Inercial (IMU – Inertial Measurement Unit) bem como de um receptor de Sistema de 

Posicionamento Global (GPS – Global Positioning System) a fim de obter uma estimativa mais 

precisa do estado da aeronave e avaliar a viabilidade de tal filtro para fusão sensorial em 

navegação de VANTs. Foram realizadas simulações de voo utilizando-se de dados sensoriais 

de dispositivos IMU e receptores de GPS para estudar a capacidade do filtro de estimar 

corretamente o estado da aeronave quando utilizado como módulo de fusão de dados sensoriais. 
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CAPÍTULO 1: INTRODUÇÃO 

1.1. Contextualização e Motivação 

Medir precisamente o estado de um dispositivo é essencial quando se trata de tomada 

automatizada de decisões. No contexto de Veículos Aéreos Não Tripulados (VANTs), esse 

estado normalmente é caracterizado pela posição, velocidade e orientação. Dois tipos de 

sensores se destacam na determinação do estado de um VANT, a Unidade de Medida Inercial 

(IMU – Inertial Measurement Unit) e o receptor de Sistema de Posicionamento Global (GPS 

– Global Positioning System) são frequentemente utilizados nesse contexto. 

Apesar de ambos os sensores serem capazes de proporcionar informações sobre o 

estado da aeronave, as particularidades de cada sensor justificam o uso de ambos em 

conjunto para obtenção de uma melhor estimativa do estado. A IMU é um dispositivo que 

mede a força específica, velocidade angular e, em alguns casos, a orientação do corpo 

utilizando-se de um conjunto de dispositivos incluindo acelerômetros, giroscópios. Algumas 

IMUs também fazem uso de magnetômetros. Os pontos positivos de uma IMU se 

caracterizam por sua elevada taxa de atualização e capacidade de prover dados variados sem 

depender de um sistema externo. Porém, uma grande desvantagem normalmente apresentada 

por IMUs é o acúmulo de erros ao longo do tempo, o que pode resultar em uma situação 

onde a posição medida e a posição real estão cada vez mais distantes. O sensor de GPS, por 

sua vez, é um dispositivo capaz de produzir medidas consistentes ao longo do tempo, 

evitando o acúmulo de erros, porém suas medidas não possuem grande precisão, além de 

apresentar uma taxa de atualização significativamente menor do que a de uma IMU. 

Dadas as vantagens e desvantagens de ambos os dispositivos, nenhum deles seria 

capaz de produzir uma estimativa aceitável do estado atual de posição e orientação da 

aeronave. Entretanto, utilizar ambos os sensores em conjunto torna possível contornar suas 

deficiências individuais e obter estimativas adequadas à navegação de uma aeronave. Para 

tal, pode-se fazer uso de diversos filtros, cada um com suas vantagens e desvantagens. 

 



 

2 

 

1.2. Objetivos 

O objetivo deste trabalho é estudar a viabilidade do uso de Filtros de Partículas 

aplicados ao contexto de navegabilidade de VANTs. Espera-se construir um filtro capaz de 

fazer uso dos dados advindos tanto da IMU quanto do sensor de GPS a fim de obter uma 

estimativa precisa do estado de uma aeronave. 

 

1.3. Organização do Trabalho 

No Capítulo 2 são abordados os conceitos utilizados no desenvolvimento deste 

trabalho. São discutidas as características e limitações dos sensores bem como sua aplicação 

no sistema de navegabilidade. São discutidas as características do filtro utilizado e o seu 

papel, incluindo as vantagens que o seu uso traz em comparação com um sistema que não 

faz uso de um filtro para unir dados de diferentes sensores. A seguir, no Capítulo 3, é 

discutida a abordagem adotada no trabalho, bem como os resultados obtidos. Finalmente, no 

Capítulo 4 apresentam-se as conclusões, contribuições deste trabalho e os possíveis trabalhos 

futuros. A relação deste trabalho com o curso de Engenharia da Computação também é 

discutida no Capítulo 4. 
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CAPÍTULO 2: REVISÃO BIBLIOGRÁFICA 

2.1. Considerações Iniciais 

Este capítulo apresenta conceitos relacionados aos sensores utilizados, discutindo seu 

papel na obtenção da orientação bem como as vantagens e limitações de cada sensor. A 

seguir, é apresentada uma introdução aos conceitos de um filtro de partículas, explorando a 

teoria e descrevendo resumidamente as etapas necessárias a fusão dos dados do sensor. Vale 

notar que, salvo a presença de uma citação explícita, a teoria apresentada na Seção 2.3, 

dedicada aos conceitos relacionados a um filtro de partículas, foi embasada na explicação 

fornecida em (THRUN, BURGARD, & FOX, 2006). 

 

2.2. Sensores 

Os sensores utilizados na determinação do estado do VANT foram a Unidade de 

Medida Inercial (IMU – Inertial Measurement Unit) e o receptor de Sistema de 

Posicionamento Global (GPS – Global Positioning System). Individualmente, ambos são 

capazes de produzir dados relevantes a obtenção do estado da aeronave, entretanto o uso de 

apenas um dos sensores não produz resultados satisfatórios devido as suas limitações e 

particularidades. 

 

2.2.1. IMU 

A IMU é um dispositivo que mede a posição, velocidade e aceleração de um veículo 

por meio do uso de acelerômetros e giroscópios. IMUs possuem uma alta taxa de atualização 

e são capazes de operar independentemente de sistemas externos. Segundo (SICILIANO & 

KHATIB, 2008, p. 484), esses dispositivos são sensíveis a erros nas medidas dos 

acelerômetros e giroscópios. Desalinhamentos nos giroscópios podem levar a estimativas 

incorretas da orientação do veículo em relação a gravidade resultando no cancelamento 

parcial do vetor da gravidade. Como não é possível eliminar completamente o vetor de 

gravidade e os se erros acumulam ao longo do tempo, a distância entre a posição real e a 
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posição medida pelo sistema cresce indefinidamente. Esse problema é considerado inerente 

ao funcionamento desse dispositivo devido as suas limitações. 

 

2.2.2. Receptor de GPS 

O receptor de GPS é um sensor capaz de fornecer uma referência absoluta ao sistema 

já que ele é capaz de estimar a localização de um objeto em coordenadas absolutas 

tridimensionais. Isso significa que esse sensor é capaz de prevenir o acúmulo de erros ao 

longo do tempo que seria criado pela IMU, porém, de forma geral, suas medidas não 

possuem elevada precisão e apresentam uma taxa de atualização significativamente menor 

do que a de uma IMU. Sendo assim, o seu uso principal no sistema é a capacidade de fornecer 

uma referência absoluta que limita o acúmulo de erros por meio do uso de um filtro. No caso 

deste projeto, o filtro escolhido é um Filtro de Partículas. 

 

2.3. O Filtro de Partículas 

De acordo com (ARULAMPALAM, MASKELL, GORDON, & CLAPP, 2002, p. 

4), o filtro de partículas é uma técnica para implementação de um filtro bayesiano recursivo, 

cuja base para a maioria dos filtros de partículas é dada pelo algoritmo SIS (Sequential 

Importance Sampling). Outras variações, como Sampling Importance Resampling (SIR), 

Auxiliary Sampling Importance Resampling (ASIR) e Regularized Particle Filter (RPF) 

existem, mas normalmente são casos especiais derivados a partir do SIS. 

(THRUN, BURGARD, & FOX, 2006, p. 96) explicam que um filtro de partículas é 

uma implementação não paramétrica do filtro de Bayes no qual a probabilidade a posteriori 

é aproximadamente representada por um número finito de partículas. O ponto principal desse 

filtro é representar a posteriori 𝑏𝑒𝑙(𝑥𝑡) por um conjunto de estados aleatórios retirados dessa 

posteriori. Ou seja, a ideia de criar uma representação paramétrica é descartada em favor de 

representar a distribuição por um conjunto de amostras retiradas dessa distribuição. Essa 

representação é aproximada, entretanto é não paramétrica e, portanto, pode representar uma 

gama muito maior de distribuições quando comparadas a outras representações. De forma 
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geral, podemos definir as vantagens e desvantagens do filtro conforme apresentado na 

Tabela 1. 

Tabela 1 – Filtro de Partículas: Vantagens e Desvantagens 

Vantagens Desvantagens 

• Altamente paralelizável. 

• Precisão tende a crescer com a 

quantidade de processamento 

dedicado ao filtro. 

• Não paramétrico. Permite grande 

flexibilidade nos tipos de 

distribuições que o filtro é capaz de 

representar. 

• Extremamente flexível quanto aos 

modelos de medida e movimento 

que o filtro é capaz de suportar. 

• Independe do número de dimensões 

apresentados pelo sistema, ou seja, é 

capaz de modelar sistemas que 

possuem elevado número de 

dimensões. Entretanto, um maior 

número de dimensões costuma 

implicar em um maior custo 

computacional dependendo dos 

modelos de observação e movimento 

utilizados. 

• Tende a ser computacionalmente 

caro.  

• Filtro requer mais processamento 

quanto maior o número de 

subestados contido em cada 

partícula. 

• Não existe relação direta entre a 

quantidade de partículas e a precisão 

obtida. 

• Não determinístico. Pode ser 

desvantajoso em situações que se 

requer uma solução imediata. 

• Dificuldade na medida de 

performance. 

• Não oferece garantia de confiança 

nos resultados. 

 

É interessante ressaltar a relação entre o ponto positivo do filtro de ser capaz 

de trabalhar com sistemas modelando elevados números de dimensões a custo de um 
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maior requerimento de poder de processamento. O número de dimensões que o 

sistema trabalha tente a ter um impacto considerável no custo computacional do 

filtro. 

 

2.3.1. Descrição e Características Gerais 

Em um filtro de partículas, as amostras de uma distribuição a posteriori são 

chamadas partículas e são representadas pela Equação (1). 

𝑋𝑡 ≔ 𝑥𝑡
[1]
, 𝑥𝑡
[2]
, … , 𝑥𝑡

[𝑀] (1) 

 

Cada partícula 𝑥𝑡
[𝑚](1 ≤ 𝑚 ≤ 𝑀) é uma instanciação concreta de um estado no 

tempo t. Ou seja, a partícula é uma hipótese do que o estado real pode ser no tempo t. Vale 

notar que M representa o número de partículas no conjunto M (normalmente esse valor é um 

número elevado). Dado que o conjunto de partículas 𝑋𝑡 é uma aproximação da posteriori 

𝑏𝑒𝑙(𝑥𝑡), a probabilidade de cada hipótese 𝑥𝑡  pertencer ao conjunto 𝑋𝑡 é proporcional a 

posteriori 𝑏𝑒𝑙(𝑥𝑡) e consequentemente quanto mais densamente populada for a sub-região 

do espaço de estados, maiores serão a probabilidade do estado verdadeiro estar presente 

nessa região. Essa característica pode ser observada na Figura 1. Nota-se que áreas de maior 

probabilidade em ambas distribuições são representadas por uma concentração maior de 

partículas. Como a construção da distribuição a posteriori 𝑏𝑒𝑙(𝑥𝑡) é feita recursivamente a 

partir da distribuição 𝑏𝑒𝑙(𝑥𝑡−1) e dado que a distribuição é representada por um conjunto de 

partículas, dá-se que o filtro constrói o conjunto 𝑋𝑡 recursivamente a partir do conjunto 𝑋𝑡−1. 
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Figura 1 - Representação de uma Distribuição por meio de Partículas 

 

Fonte: (THRUN, BURGARD, & FOX, 2006, p. 97) 

 

De forma geral, o algoritmo de um filtro de partículas pode ser descrito pelas 

seguintes etapas: 

 1. Inicialização 

 a) O filtro deve receber o conjunto de partículas 𝑋𝑡−1, a variável de controle 𝑢𝑡 e a 

leitura, normalmente dos sensores, 𝑧𝑡. 

 b) O conjunto de partículas 𝑋𝑡−1 consiste num conjunto de M amostras do estado 

estimado pelo filtro na iteração t-1. 

 c) A variável de controle 𝑢𝑡 é determinada segundo o modelo adotado pelo sistema. 
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 d) A variável 𝑧𝑡 depende do formato de saída dos sensores utilizados. Caso o filtro 

seja incapaz de trabalhar com os dados no formato original, pode-se realizar um processo de 

conversão dos dados para uma estrutura mais adequada ao filtro. 

 2. Estado Esperado 

 a) Construção da Distribuição a Posteriori Temporária 𝑏𝑒𝑙(𝑥𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 b) A partícula 𝑥𝑡
[𝑚]

 é construída a partir da partícula 𝑥𝑡−1
[𝑚]

 e do controle 𝑢𝑡. Essa 

etapa é iterada M vezes e representa a transição do estado 𝑋𝑡 para o estado 𝑋𝑡−1. 

 c) Essa distribuição representa qual seria o estado esperado pelo filtro no tempo t. 

Ela é apenas uma aproximação da distribuição 𝑏𝑒𝑙(𝑥𝑡) que representa de fato o estado do 

sistema no tempo t. 

 3. Amostragem por Importância 

 a) Construção da Distribuição a Posteriori 𝑏𝑒𝑙(𝑥𝑡). 

 b) Calcula-se o peso 𝑤𝑡
[𝑚]

 de cada partícula baseado na medida 𝑧𝑡. Ou seja, o peso 

representa a probabilidade da medida 𝑧𝑡 ser verdadeira dado o estado representado pela 

partícula 𝑥𝑡
[𝑚]

. 

 c) Este novo conjunto de partículas e seus respectivos pesos representam 

aproximadamente a posteriori 𝑏𝑒𝑙(𝑥𝑡). 

 4. Reamostragem 

 a) Construção do Conjunto de Partículas 𝑋𝑡. 

 b) Força o conjunto de partículas 𝑋𝑡 a se aproximar da distribuição a posteriori 

𝑏𝑒𝑙(𝑥𝑡) 

 c) M novas partículas são extraídas do conjunto temporário criado na etapa anterior 

𝑋𝑡−1 segundo o seu peso. Ou seja, quanto maior o peso de uma partícula, maior a 

probabilidade de ela pertencer ao conjunto 𝑋𝑡. É importante notar que apesar da abordagem 

padrão ser extrair M novas partículas, é possível construir um filtro que altera o número de 

partículas utilizadas iteração, normalmente utiliza-se o grau de certeza que o filtro apresenta 

na estimativa obtida como métrica para alterar o número de partículas do conjunto. 
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 d) O conjunto 𝑋𝑡 normalmente contém várias partículas duplicadas dado que esse 

conjunto costuma possuir o mesmo número de partículas que o conjunto 𝑋𝑡 e que partículas 

com um peso elevado tendem a ser selecionadas mais de uma vez.  

 e) Partículas com peso pequeno normalmente são eliminadas nessa etapa. Essa 

característica é importante dado que esse peso representa a probabilidade de dada partícula 

representar o estado verdadeiro. 

 

2.3.2. Propriedades e Possíveis Problemas do Filtro de Partículas 

• Ausência de uma estimativa contínua 

Dado que o filtro representa a distribuição por meio de um conjunto de partículas 

discretas, ele não é imediatamente compatível com aplicações que necessitem de uma 

estimativa contínua da função de densidade. Todavia, existem abordagens capazes de 

realizar uma extração da função de densidade a partir de um conjunto de amostras, como por 

exemplo, o processo de estimativa de densidade por Kernel. 

• Variância inerente ao processo de amostragem 

As características de uma densidade de probabilidade são levemente alteradas sempre 

que um número finito de amostras é extraído. Ou seja, o processo de amostragem do filtro 

gera um certo nível de erro inerente ao filtro de partículas. Entretanto, esse efeito se reduz 

conforme aumenta-se o número de amostras. 

• Amostragem polarizada 

Dado que é utilizado um número finito de amostras durante a execução do filtro, tem-

se um efeito de bias na distribuição a posteriori. Esse efeito diminui quanto maior o número 

de amostras utilizadas. 

• Depleção de partículas em dada região 

Devido à natureza não determinística do filtro, pode ocorrer de não existirem 

partículas em uma região correta do espaço de estados. Na prática, entretanto, essa situação 

ocorre apenas para casos em que um número reduzido de partículas é utilizado, seja em 

número absoluto de partículas ou em número de partículas relativo ao espaço de estado que 



 

10 

 

está sendo mapeado. Uma abordagem prática para reduzir o efeito desse problema é gerar 

aleatoriamente algumas partículas em cada etapa de reamostragem. Idealmente, essas 

partículas podem ser geradas utilizando-se de informações disponíveis sobre o estado atual 

do sistema. 

 

2.3.3. Amostragem por Importância e Reamostragem 

As etapas de amostragem por importância e reamostragem são fundamentais ao 

mecanismo de operação do filtro de partículas. É possível criar um filtro de partículas que 

não executa a etapa de reamostragem, representando a distribuição a posteriori do estado 

apenas com o uso de amostras avaliadas conforme a sua probabilidade de representarem 

estados válidos, ou seja, os pesos das partículas são atualizados a cada etapa sem extrair uma 

nova amostragem do conjunto de partículas original. Entretanto esse filtro tende a apresentar 

resultados significativamente inferiores a um filtro que realiza a etapa de reamostragem dado 

que várias das partículas ocupariam regiões de probabilidade muito baixa. Isso implica que 

esse filtro necessitaria de muito mais partículas para representar o estado do sistema quando 

comparado a um filtro que executa a reamostragem. 

A etapa de reamostragem tem a função de forçar o conjunto de partículas a se 

aproximar da distribuição a posteriori 𝑏𝑒𝑙(𝑥𝑡) por meio de uma abordagem similar à 

abordagem empregada nos algoritmos genéticos. Segundo (THRUN, BURGARD, & FOX, 

2006, p. 100), a reamostragem é uma implementação probabilística do processo Darwiniano 

de sobrevivência do mais apto, processo no qual as partículas continuam a existir ou 

desaparecem conforme o seu peso. Apesar de essencial para o mecanismo de operação do 

filtro, o processo de reamostragem também causa consequências negativas. O fato de as 

partículas sobreviverem ou desaparecerem conforme o seu peso pode levar a perda de 

diversidade das partículas (propriedade descrita na Seção 2.3.2). Outra consequência 

indesejável que o processo de reamostragem pode causar é o aumento da variância do 

conjunto de partículas devido ao processo de amostragem (propriedade descrita na Seção). 

Algumas estratégias podem ser empregadas a fim de reduzir ou, em alguns casos, evitar 

essas consequências como por exemplo o uso de um algoritmo de reamostragem com baixa 

variância. De forma geral, deve-se evitar realizar reamostragens desnecessariamente, por 
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exemplo quando é conhecido que o estado não mudou. Além disso, utilizar um algoritmo de 

reamostragem eficiente e que apresenta baixa variância se mostra benéfico nesse contexto. 

Ao contrário da etapa reamostragem, a etapa de amostragem por importância 

normalmente é obrigatória. Segundo (THRUN, BURGARD, & FOX, 2006, p. 100), esse 

processo pode ser representado pela Equação (2). Tem-se que I é a função indicadora com 

valor igual a 1 se o seu argumento for verdadeiro e 0 caso contrário. A função de densidade 

f(x) representa a distribuição conhecida enquanto a função de densidade g(x) representa a 

distribuição alvo. 

𝐸𝑓[𝐼(𝑥 ∈ 𝐴) = ∫𝑓(𝑥)𝐼(𝑥 ∈ 𝐴)𝑑𝑥

= ∫
𝑓(𝑥)

𝑔(𝑥)
𝑔(𝑥)𝐼(𝑥 ∈ 𝐴)𝑑𝑥 (2)

= ∫𝑤(𝑥) 𝑔(𝑥)𝐼(𝑥 ∈ 𝐴)𝑑𝑥

= 𝐸𝑔[𝑤(𝑥)𝐼(𝑥 ∈ 𝐴)

 

O termo w(x) = f(x)/g(x) é o fator de importância que representa a diferença entre f(x) 

e g(x). A Figura 2 ilustra esse processo. Em (a), apresenta-se a distribuição f(x) e o conjunto 

de partículas que representaria essa distribuição, nota-se que esse conjunto não é conhecido. 

De (b) para (c), pode-se observar a relação entre g(x) e f(x). Apesar de apenas o conjunto de 

partículas que representa g(x) ser conhecido, pode-se aproximar um conjunto de partículas 

capaz de representar f(x) por meio do cálculo do peso de cada partícula pertencente ao 

conjunto que representa g(x). A partir desse ponto, a etapa de reamostragem transforma o 

conjunto de partículas de g(x) no novo conjunto que representa f(x) conforme o peso de cada 

partículas. 
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Figura 2 - Processo de Amostragem Por Importância 

 

Fonte: (THRUN, BURGARD, & FOX, 2006, p. 101) 
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2.3.4. O Filtro de Partículas no Contexto de Localização 

Um exemplo básico do algoritmo de um filtro de partículas é apresentado no 

Algoritmo 1. Pode-se observar as etapas de inicialização (linha 2), obtenção do estado 

esperado e a etapa de amostragem por importância (linhas 3 a 7) e a etapa de reamostragem 

(linhas 8 a 11).  

Algoritmo 1 - Filtro de Partícula Básico 

 

Fonte: (THRUN, BURGARD, & FOX, 2006, p. 98) 

Quando aplicado ao contexto de localização, um filtro sensorial baseado na estratégia 

do filtro de partículas pode ser representado pelo algoritmo apresentado no Algoritmo 2. 

Pode-se perceber uma das grandes vantagens do filtro de partículas. Ele é relativamente 

independente do sistema ao qual ele é aplicado. De forma geral, para alterar o sistema a que 

o filtro é aplicado, basta mudar os modelos de movimento e de medida. 
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Algoritmo 2 – Algoritmo Monte Carlo Localization (MCL) 

 

Fonte: (THRUN, BURGARD, & FOX, 2006, p. 252) 

 

Os exemplos apresentados anteriormente no Algoritmo 1 e no Algoritmo 2 são 

exemplos da versão básica do filtro de partículas. Existem diferentes abordagens que alteram 

o algoritmo base a fim de neutralizar efeitos indesejados que se manifestam decorrente do 

uso do filtro básico, como por exemplo as propriedades citadas na Seção 2.3.2, ou para obter 

melhores resultados. 

 

2.4. Considerações Finais 

A familiarização com diversos conceitos foi necessária para a realização deste 

trabalho, a implementação do filtro requer conhecimentos tanto da área de estatística como 

da área de aeronáutica. Esses conceitos foram abordados brevemente neste capítulo e servem 

de base para o desenvolvimento do trabalho que é descrito no Capítulo 3. 
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CAPÍTULO 3: DESENVOLVIMENTO DO 

TRABALHO 

3.1. Considerações Iniciais 

Este capítulo apresenta o trabalho desenvolvido e discute etapas executadas ao longo 

do projeto em detalhes. Dentre as atividades realizadas, destacam-se a adaptação do modelo 

de navegabilidade, construção do filtro e a realização de simulações. A Seção 3.2 discute o 

contexto geral do projeto de forma a providenciar uma descrição sucinta das atividades 

realizadas. A Seção 3.3 discute as atividades realizadas durante o projeto em maiores 

detalhes. Na Seção 3.4 são apresentados tanto os resultados obtidos com a simulações quanto 

uma análise comparativa entre eles. A Seção 3.5 trata das dificuldades e limitações do 

projeto. Finalmente, a Seção 3.6 discute as considerações finais pertinentes ao Capítulo 3. 

 

3.2. Contexto do Projeto 

O projeto desenvolvido a fim de analisar a viabilidade da aplicação de um filtro de 

partículas como módulo responsável pela fusão dos dados sensoriais num VANT  está dentro 

do contexto dos projetos do Laboratório de Sistemas Embarcados Críticos. Serão analisados 

3 aspectos principais do desenvolvimento do projeto, sendo eles o modelo de navegabilidade 

utilizado, o conjunto de dados que foi gerado para realização das simulações e o 

planejamento e desenvolvimento do filtro. 

Criou-se um modelo de navegabilidade capaz de utilizar os dados disponíveis para 

simular uma rota de um VANT, tendo a sua disposição as medidas de uma IMU contendo 

acelerômetros, giroscópios e barômetros. A modelagem do sistema de navegabilidade 

utilizado neste projeto foi baseada no sistema de navegabilidade apresentado em (SILVA, 

WILSON, & BRANCO, 2015). 

As simulações de execução do filtro foram feitas utilizando-se de um conjunto de 

dados providenciado pelo Laboratório de Sistemas Embarcados Críticos. Para fins de 

comparação e validação, uma versão sem ruído e uma versão com ruído foram 

providenciadas. 
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Quanto ao desenvolvimento do filtro, modelou-se as etapas de predição e atualização 

a partir do modelo de navegabilidade. Incorporou-se os dados dos acelerômetros e 

giroscópios na etapa de predição, efetivamente utilizando os dados desses sensores como 

leituras indiretas do comando de controle que a aeronave recebeu. Já na etapa de atualização, 

utilizou-se os dados do receptor de GPS e do barômetro para cálculo dos pesos de cada 

partícula. Essa abordagem adotada caracteriza o sistema como um sistema de navegação 

inercial auxiliado por GPS. Como medida de avaliação, analisou-se os valores RMS (Root 

Mean Square) das distâncias envolvidas, ou seja, calculou-se a raiz quadrada da média 

aritmética dos quadrados dos valores de distâncias obtidos durante cada iteração da execução 

do filtro. 

 

3.3. Descrição das Atividades Realizadas 

As atividades realizadas consistiram de criar um filtro de partículas baseado no 

modelo de navegabilidade desenvolvido previamente e posterior simulação e análise do 

comportamento do filtro. O projeto foi desenvolvido utilizando-se da ferramenta MATLAB 

versão R2015a. 

3.3.1. Modelo de Navegabilidade 

O modelo de navegabilidade foi baseado no modelo descrito em (SILVA, WILSON, 

& BRANCO, 2015, p. 3). Ele utiliza as equações padrões para mecanização inercial, com os 

valores de posição e de velocidade dentro da referência de navegação e uma representação 

da atitude da aeronave por meio de quaternions, conforme apresentado no conjunto de 

Equações (3). 

 

𝑝 = [𝑝𝑛, 𝑝𝑒 , 𝑝𝑑]
𝑇

𝑣 = [𝑣𝑛, 𝑣𝑒 , 𝑣𝑑]
𝑇 (3)

𝑞 = [𝑞1, 𝑞2, 𝑞3, 𝑞4]
𝑇
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A referência de navegação é uma referência tangencial à Terra no nível local e 

tangente à gravidade. As equações de mecanização inercial que compõem o modelo de 

navegabilidade são apresentadas no conjunto de Equações (4). 

 

𝑝̇ = 𝑣

𝑣̇  = 𝐶𝑏
𝑛𝑎̃ + 𝑔𝑛 (4)

𝑞̇  =
1

2
Ω𝑤̃𝑞

 

 

Tem-se que Ω𝑤̃ é a forma antissimétrica de 𝑤̃ que por sua vez representa a angulação 

do corpo com relação a referência de navegação. 𝑔𝑛 é o vetor gravidade na referência de 

navegação e 𝑎̃ é o vetor de força específica medido pelos acelerômetros. 𝐶𝑏
𝑛 é uma matriz 

de cossenos diretores utilizada na transformação de vetores da referência do corpo para a 

referência de navegação. 𝐶𝑏
𝑛 é dado pela Equação (5), enquanto Ω𝑤̃ é dado pela Equação (6). 

 

𝐶𝑏
𝑛 = (

𝑞1
2 + 𝑞2

2 − 𝑞3
2 − 𝑞4

2 2(𝑞2𝑞3 − 𝑞1𝑞4) 2(𝑞2𝑞4 + 𝑞1𝑞3)

2(𝑞2𝑞3 + 𝑞1𝑞4) 𝑞1
2 − 𝑞2

2 + 𝑞3
2 − 𝑞4

2 2(𝑞3𝑞4 − 𝑞1𝑞2)

2(𝑞2𝑞4 − 𝑞1𝑞3) 2(𝑞3𝑞4 + 𝑞1𝑞2) 𝑞1
2 − 𝑞2

2 − 𝑞3
2 + 𝑞4

2

) (5) 

 

Ω𝑤̃ =

(

 
 

0 𝑤̃𝑝 𝑤̃𝑞 𝑤̃𝑟
−𝑤̃𝑝 0 −𝑤̃𝑟 𝑤̃𝑞
−𝑤̃𝑞 𝑤̃𝑟 0 −𝑤̃𝑝
−𝑤̃𝑟 −𝑤̃𝑞 𝑤̃𝑝 0

)

 
 

(6) 

 

No modelo adotado, os dados do barômetro são utilizados para o cálculo da altura 

referente à altura de inicialização conforme as Equações (7) e (8). A Equação (7) é utilizada 

na etapa de inicialização para obtenção dos parâmetros iniciais de referência enquanto a 

Equação (8) é utilizada na etapa de amostragem por importância e faz parte do modelo 

utilizado para o cálculo do peso de cada partícula. 
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𝜌ℎ0 = 𝜌0 (1 − 
𝐿ℎ0
𝑇0
)

𝑅𝐿
𝑔𝑀

(7) 

 

ℎ̃ =
𝑇0
𝐿
(1 − (

𝜌̃

𝜌ℎ0
)

𝑅𝐿
𝑔𝑀

) (8) 

 

Nas Equações (7) e (8), 𝐿, 𝑔,𝑀, 𝑅, 𝑇0 são as constantes atmosféricas padrão 

enquanto 𝜌0 e ℎ0 representam a pressão atmosférica inicial e a altura inicial, 

respectivamente. 

 

3.3.2. Implementação do Filtro de Partículas 

O sistema foi modelado como um sistema de navegação inercial auxiliado por GPS, 

ou seja, o filtro de partículas desenvolvido pode ser subdividido em duas grandes etapas que 

se repetem a cada iteração: a etapa de predição e a etapa de atualização. Cada etapa por sua 

vez pode ser subdivida em diferentes atividades. 

A etapa de predição é caracterizada pela atividade de movimentação e é realizada em 

todas as iterações do filtro. Nessa etapa, os dados dos acelerômetros e giroscópios são 

utilizados como o vetor de controle para alteração do conjunto de partículas conforme as 

equações de mecanização inerciais. O código que executa as operações das equações 

inerciais foi fornecido por Laboratório de Sistemas Embarcados Críticos. Ele recebe como 

entrada a leitura das medidas geradas pelos acelerômetros e giroscópios, o intervalo de 

tempo decorrido desde a última atualização dos sensores, o vetor gravidade e um vetor de 

10 posições o qual representa o estado do sistema no final da iteração anterior. Este vetor 

contém as informações consolidadas de posição, velocidade e os quaternions representados 

pelo conjunto de Equações (3). Vale notar que devido ao cálculo da velocidade, é necessário 

fornecer também o vetor de quaternions do início da iteração anterior. O resultado da etapa 
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predição é um novo vetor de 10 posições consolidando as informações de posição e 

velocidade, bem como os quaternions que representam o estado da aeronave. Dado que o 

filtro de partículas utiliza uma partícula para representar cada um dos estados estimados, esta 

etapa é realizada tantas vezes em uma iteração quanto o número de partículas definidas para 

o filtro. Cada partícula possui o seu próprio vetor para representar um estado completo com 

as informações de posição, velocidade e quaternions. 

A etapa de atualização, consiste na amostragem por importância e na reamostragem. 

Na amostragem por importância é realizado o cálculo do peso de cada partícula. Na 

reamostragem, um novo conjunto de partículas é gerado conforme o peso de cada partícula 

do conjunto original. Ao contrário da etapa de predição, a qual é realizada em toda iteração, 

a etapa de atualização deve ser executada apenas quando certas condições forem satisfeitas. 

No caso do nosso sistema essas condições são dadas por: 

• O receptor de GPS está ativo 

• A posição indicada pelo receptor de GPS se alterou desde a última medida. 

Essas condições foram impostas a fim de minimizar o impacto das consequências 

negativas da etapa de reamostragem, principalmente em casos nos quais o filtro não elevaria 

sua taxa de confiança quanto a posição real do VANT bem como para ganho de performance 

ao evitar gastar processamento com essa atividade a menos que necessário. Visto que o filtro 

já é computacionalmente caro, esse ganho é bem-vindo. 

 

3.3.3. Amostragem por Importância 

O processo de amostragem por importância é essencial ao filtro desenvolvido e uma 

das razões pelas quais filtros de partícula são considerados versáteis. Essa etapa requer 

apenas que seja modelada uma metodologia de como classificar cada partícula segundo sua 

probabilidade de ser uma estimativa correta. A modelagem utilizada foi a mesma modelagem 

utilizada pelos dados fornecidos pelo Laboratório de Sistemas Embarcados Críticos quanto 

aos sensores, ou seja, modelou-se os dados tanto do receptor de GPS como do barômetro 

como uma gaussiana independente em cada uma das dimensões aplicáveis. Conforme 

apresentado no conjunto de Equações (9), os dados do GPS foram modelados em 3 

coordenadas espaciais com média igual ao resultado do receptor de GPS e desvio padrão 
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𝜎𝐺𝑃𝑆. Para o barômetro, a abordagem foi um pouco diferente, como os dados do barômetro 

são utilizados para cálculo da altura, a qual representa a média da gaussiana, derivou-se das 

simulações realizadas um desvio padrão 𝜎𝐺𝑃𝑆ℎ𝑒𝑖𝑔ℎ𝑡  para a altura calculada a partir das 

informações de pressão do barômetro. 

 

𝜎𝐺𝑃𝑆𝑥=2.5
𝜎𝐺𝑃𝑆𝑦=2.5 (9)

𝜎𝐺𝑃𝑆𝑧=4.0
𝜎𝐺𝑃𝑆ℎ𝑒𝑖𝑔ℎ𝑡=0.8

 

 

Adotou-se uma abordagem por meio do uso de uma distribuição normal multivariada 

na qual as 4 gaussianas mencionadas foram modeladas como variáveis independentes. Sendo 

assim, o peso de uma partícula qualquer é dado pela função de densidade de probabilidade 

(FDP) da distribuição normal multivariada utilizada no modelo, representada pela Equação 

(10). 𝑝𝑡
[𝑚]

 é um vetor coluna contendo as posições nos 3 eixos dado pelo GPS e a altura do 

ponto representado pela partícula em questão, ou seja, 𝑝𝑡
[𝑚]
= [𝑝𝑥, 𝑝𝑦, 𝑝𝑧 , (𝑝𝑧  −  𝑝𝑧0)]

𝑇
. 

Quanto a variável 𝜇𝑖, esta contém os mesmos dados que 𝑝𝑡
[𝑚]

, contudo os valores são 

derivados dos sensores de GPS e pressão. 

𝑤𝑡
[𝑚] =

𝑒𝑥𝑝 (−
1
2 (𝑝𝑡

[𝑚] −𝜇𝑡)
𝑇

∑−1 (𝑝𝑡
[𝑚]−𝜇𝑡))

√(2𝜋)4|∑|
(10)

 

 

 ∑−1 e |∑| representam o inverso da a matriz de covariância e o determinante da 

matriz de covariância, respectivamente. Segundo (CHUONG, 2008, p. 4), uma distribuição 

normal multivariada com uma matriz de covariância diagonal (𝜎1
2, 𝜎2

2, . . . , 𝜎𝑛
2) é o mesmo 

que uma coleção de variáveis gaussianas aleatórias com média 𝜇𝑖 e variância 𝜎𝑖
2, 

respectivamente. Sendo assim, a matriz de covariância é dada pela Equação (11). 
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∑ =

(

 
 

𝜎𝐺𝑃𝑆𝑥
2 0 0 0

0 𝜎𝐺𝑃𝑆𝑦
2 0 0

0 0 𝜎𝐺𝑃𝑆𝑧
2 0

0 0 0 𝜎𝐺𝑃𝑆ℎ𝑒𝑖𝑔ℎ𝑡
2

)

 
 

(11) 

 

3.3.4. Reamostragem 

A etapa de reamostragem foi implementada baseando-se no algoritmo de 

reamostragem do tipo Stochastic Universal Sampling (SUS) sugerido no curso (THRUN, 

Artificial Inteligence for Robotics). Entretanto, conforme discutido na Seção 2.3.2, o 

processo de reamostragem pode acarretar em consequências indesejáveis para o bom 

funcionamento do filtro. Por esse motivo, o algoritmo foi modificado para que durante o 

processo de reamostragem, duas medidas corretivas fosse utilizadas. 

A primeira medida se caracteriza por cerca de 10% das partículas serem alteradas de 

forma aleatória com o objetivo de prevenir ou amenizar os problemas de depleção de 

partículas e o “problema do robô sequestrado,” (problema que discute o cenário no qual o 

robô é retirado de sua posição atual e reposicionado sem receber informações dessa 

alteração). Apesar de a abordagem utilizada envolver aleatoriedade, informações 

determinísticas dos sensores e do conjunto de partículas são utilizados a fim de melhorar a 

precisão dessa abordagem. Dado que os dados do receptor de GPS fornecem uma posição 

absoluta da região em que a aeronave deveria estar, pode-se inferir que a região ao redor da 

medida indicada pelo GPS é uma região de alta probabilidade de o estado estar correto. Ou 

seja, 10% das partículas escolhidas pelo processo de reamostragem terão sua posição 

alterada para uma região próxima do indicado pelo GPS. 

A segunda medida corretiva utilizada durante o processo de reamostragem é a 

inserção de uma pequena incerteza na posição e velocidade da partícula durante o processo 

de reamostragem. Dado que o filtro tem a tendência de escolher partículas com elevado peso 

múltiplas vezes, essa é uma abordagem que permite uma melhor cobertura do espaço 

amostral sem sacrificar a precisão do filtro quanto a sua posição. Esse processo é reforçado 

pelo princípio fundamental do filtro, partículas que se aproximarem do estado real com essa 
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alteração serão reforçadas por receberem um peso maior e partículas que se afastarem do 

estado real serão descartadas ao longo do tempo. 

 

3.3.5. Outras Etapas Implementadas no Filtro 

Além das etapas principais do filtro mencionadas anteriormente, algumas outras 

operações são executadas, especificamente a etapa de inicialização e a etapa de extração do 

estado estimado do sistema a partir das amostras obtidas. Durante a etapa de inicialização, 

constrói-se o conjunto inicial de partículas e calcula-se os parâmetros iniciais dos sensores, 

como por exemplo o cálculo por meio da Equação (7) da altura inicial de referência e pressão 

inicial de referência utilizado pelo barômetro. 

A construção do conjunto inicial de partículas pode ser feita de forma aleatória, mas 

essa abordagem requer um número muito maior de partículas, pelo menos durante as etapas 

iniciais até que o filtro seja capaz de se estabilizar. A abordagem adotada utiliza algumas 

informações dos sensores ao assumir que são conhecidas com um certo grau de certeza tanto 

a orientação inicial quanto a posição inicial acusada pelo sensor de GPS. Ou seja, gera-se 

um conjunto de partículas mapeando a região inicial que se espera encontrar o estado 

verdadeiro a fim de melhorar as estimativas iniciais dado que normalmente elas são as mais 

imprecisas devido a necessidade de mapear um espaço muito maior que durante o resto da 

execução do filtro. 

A etapa de extração do estado estimado do sistema a partir das amostras obtidas tem 

como objetivo produzir uma representação concreta do estado estimado. Pode-se adotar 

diferentes abordagens, como por exemplo, utilizar a partícula com o maior peso como o 

estado encontrado pelo filtro. No contexto do projeto, obteve-se uma estimativa mais precisa 

do estado verdadeiro ao realizar uma média ponderada segundo o peso de cada partículas. 

Dado que o estado é representado pela combinação dos vetores de posição, velocidade e 

quaternions conforme o conjunto de Equações (3), extrair a posição e velocidade é apenas 

uma questão de calcular uma média ponderada segundo os pesos para todas as partículas, 

mas como essa abordagem não pode ser utilizada para quaternions, utilizou-se a abordagem 

descrita em (MARKLEY, CHENG, CRASSIDIS, & OSHMAN) a fim de obter-se o 

quaternion esperado. Esse processo deve ser realizado sempre que o conjunto de partículas 
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sofrer qualquer alteração, considerando a possibilidade de pode-se pular essa etapa sem 

perdas ao funcionamento do filtro caso as informações da extração não sejam necessárias 

em uma dada iteração. 

3.3.6. Simulações 

Foram utilizados os dados fornecidos pelo Laboratório de Sistemas Embarcados 

Críticos para simular o comportamento do filtro numa rota predeterminada ilustrada pela 

Figura 3. Os pontos em branco e azul representam a posição verdadeira do sensor de GPS, 

ou seja, sem ruídos enquanto os pontos em preto representam as medidas do sensor de GPS 

quando com o ruído do dispositivo. 

 

Figura 3 - Rota Utilizada durante as Simulações 

 

Fonte: Autor 

 

 

 

Para cada simulação, traçou-se a rota estimada pelo filtro e calculou-se o valor RMS 

da distância entre a posição estimada pelo filtro e a posição real do dispositivo. Para fins de 

comparação, calculou-se também o valor RMS de outras duas medidas de distância. O 
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primeiro é calculado a partir da distância entre a posição estimada pelo filtro e a posição 

medida pelo receptor de GPS, enquanto o segundo é calculado a partir da distância entre a 

posição medida pelo receptor GPS e a posição real do dispositivo. Ou seja, tem-se três 

medidas RMS da distância, sendo elas: 

• Valor RMS da distância entre a posição estimada pelo filtro e a posição real do 

dispositivo (apresentado em verde nos Gráficos 1, 2 e 3) 

• Valor RMS da distância entre a posição estimada pelo filtro e a posição medida pelo 

receptor GPS (apresentado em azul nos Gráficos 1, 2 e 3) 

• Valor RMS da distância entre a posição medida pelo receptor GPS e a posição real 

do dispositivo (apresentado em vermelho nos Gráficos 1, 2 e 3) 

 

3.4. Resultados Obtidos 

Foram realizadas simulações a fim de comparar os resultados do sistema utilizando 

o filtro implementado utilizando-se de todos os sensores contra apenas o uso da IMU. Além 

disso, analisou-se a precisão do filtro quando a etapa de reamostragem não é executada. Para 

cada uma das simulações, traçou-se a rota estimada pelo filtro e calculou-se o valor das 

distâncias RMS conforme especificado na Seção 3.3.5. Todas as simulações foram 

executadas utilizando-se de 200 partículas. 

 

3.4.1. Filtro de Partículas 

Para o filtro implementado, obteve-se a estimativa da rota percorrida apresentada na 

Figura 4. A rota estimada pelo filtro é representada pelos pontos escuros enquanto a rota da 

posição real do dispositivo de GPS é representada pelos pontos claros. A evolução do valor 

RMS da distância ao longo da execução da simulação é apresentado no Gráfico 1 conforme 

os critérios discutidos na Seção 3.3.5. 
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Figura 4 - Rota Estimada pelo Filtro de Partículas 

 

Fonte: Autor 

Gráfico 1 - RMS das distâncias ao longo da simulação do Filtro de Partículas 

 

Fonte: Autor 
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3.4.2. Filtro de Partículas – Sem Reamostragem 

Para o filtro implementado sem o uso da etapa de reamostragem, obteve-se a 

estimativa da rota percorrida apresentada na Figura 5. A rota estimada pelo filtro é 

representada pelos pontos escuros enquanto a rota da posição real do dispositivo de GPS é 

representada pelos pontos claros. A evolução do valor RMS da distância ao longo da 

execução da simulação é apresentado no Gráfico 2 conforme os critérios discutidos na Seção 

3.3.5.  

 

Figura 5 - Rota Estimada pelo Filtro de Partículas - Sem Reamostragem 

 

Fonte: Autor 
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Gráfico 2 - RMS das distâncias ao longo da simulação sem reamostragem 

 

Fonte: Autor 

 

3.4.3. Filtro de Partículas – IMU 

Para o filtro implementado com o uso apenas dos acelerômetros e giroscópios, 

obteve-se a estimativa da rota percorrida apresentada na Figura 6. A rota estimada pelo filtro 

é representada pelos pontos escuros enquanto a rota da posição real do dispositivo de GPS é 

representada pelos pontos claros. A evolução do valor RMS da distância ao longo da 

execução da simulação é apresentado no Gráfico 3 conforme os critérios discutidos na Seção 

3.3.5. 
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Figura 6 - Rota Estimada pelo Filtro de Partículas usando apenas IMU 

 

Fonte: Autor 

Gráfico 3 - RMS das distâncias ao longo da simulação com apenas IMU 

 

Fonte: Autor 
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3.4.4. Comparação Entre as Simulações 

Ao comparar-se as rotas estimadas pelo filtro nas três simulações, temos que a rota 

apresentada na Figura 4 melhor aproxima o posicionamento real do dispositivo. Ou seja, o 

filtro obteve os melhores resultados ao executar tanto a etapa de amostragem por importância 

quanto a etapa de reamostragem. Conclui-se o mesmo ao comparar-se o Gráfico 1, Gráfico 

2 e Gráfico 3. A precisão da estimativa de distância é maior quando o filtro executar tanto a 

etapa de amostragem por importância quanto a etapa de reamostragem. 

Conforme previsto pela teoria apresentada no Capítulo 2, o uso exclusivo da IMU se 

mostra inferior a abordagem que faz uso da combinação dos dados sensoriais. O filtro 

utilizando apenas IMU foi capaz de estimar a posição razoavelmente, todavia o erro cresceu 

à medida que o tempo passa. Quanto ao filtro que não executa a etapa de reamostragem 

apesar de utilizar os dados de todos os sensores, tem-se que ele teve problemas ao estimar a 

posição apesar ter sido capaz de reduzir o erro da IMU até certo ponto. Outro fator agravante 

na simulação do filtro sem reamostragem, é que normalmente esse tipo de filtro requer um 

número muito elevado de partículas, porém foram utilizadas o mesmo número de partículas 

das outras duas simulações. 

 

3.5. Dificuldades e Limitações 

Uma das principais dificuldades encontradas durante a implementação do filtro se 

deve ao seu carácter não determinístico. A análise e comparação entre duas configurações 

similares do filtro é dificultada dado que execuções distintas apresentam resultados 

diferentes mesmo com os mesmos dados de entrada. Esse problema não é tão impactante 

quando as configurações apresentam resultados significativamente diferentes, porém em 

grande parte dos casos, as diferenças não eram grandes o suficiente. 

Quanto ao filtro de partículas, esse se mostra limitado pelos fatores de poder 

computacional. Apesar da versatilidade do filtro, outras abordagens podem ser mais 

interessantes para aplicações nas quais o poder computacional disponível é reduzido. Essa 

limitação pode ser aliviada com o uso de paralelismo caso o dispositivo em questão tenha 

essa capacidade. 
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Em relação as dificuldades pessoais do autor, pode-se listar o elevado volume de 

informações relacionadas ao projeto e falta de familiaridade com diversos tópicos. As 

disciplinas de graduação auxiliaram nesse ponto de forma que alguns dos tópicos utilizados 

foram apresentadas durante o curso. Entretanto, diversos tópicos não abordados durante o 

curso, provavelmente por serem específicos das áreas relacionadas ao projeto, mostraram-se 

relevantes.  

3.6. Considerações Finais 

Neste capítulo foi apresentado as atividades desenvolvidas para o projeto do trabalho 

de conclusão do curso. Discutiu-se em detalhes os modelos utilizados, o desenvolvimento e 

implementação do filtro, bem como as simulações realizadas e os resultados obtidos. 

No capítulo seguinte é apresentada uma análise a respeito do trabalho desenvolvido, 

seu relacionamento com o curso de graduação e os possíveis trabalhos futuros. O capítulo 

também apresentará uma discussão sobre o curso de graduação. 
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CAPÍTULO 4: CONCLUSÃO 

4.1. Contribuições 

O filtro de partículas é uma abordagem viável para resolução de problemas no 

contexto de fusão de dados sensoriais. Sua grande flexibilidade permite sua aplicação na 

maioria dos sistemas desde que seja possível criar um modelo estatístico do sistema 

utilizado. Os principais desafios encontrados ao escolher esse filtro, entretanto, encontram-

se na minimização das suas características negativas, como por exemplo alto custo 

computacional. 

O desenvolvimento deste projeto foi desafiador, mas recompensante para o autor. 

Cada problema encontrado durante o projeto foi uma oportunidade de identificar e corrigir 

áreas nas quais a concepção atual do projeto era falha. Esse processo normalmente envolveu 

a busca e utilização de novos conceitos, permitindo assim abordar uma quantidade de tópicos 

significativamente mais abrangente do que inicialmente estimado. 

 

4.2. Trabalhos Futuros 

Dos possíveis trabalhos futuros que podem decorrer desse projeto, se destacam: 

• Paralelização do Filtro 

▪ Paralelizar a execução do filtro é uma excelente oportunidade de amenizar o 

impacto do elevado custo computacional do filtro dado a sua elevada 

compatibilidade com técnicas de paralelização. 

• Analisar a viabilidade de executar o filtro com um número de partículas adaptável 

por meio da técnica de KLD-Sampling 

▪ KLD-Sampling é uma estratégia utilizada para alterar o número de partículas 

do filtro em tempo de execução baseado numa análise estatística do grau de 

certeza do filtro. Ou seja, quanto maior for o grau de certeza de que o estado 

estimado é correto, menos partículas serão utilizadas. Por outro lado, quanto 
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menor for o grau de certeza de que o estado estimado é correto, mais 

partículas serão utilizadas. 
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