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Resumo

Este trabalho consiste de um estudo quanto a viabilidade do uso de Filtros de Particulas
aplicados ao contexto de navegabilidade de Veiculos Aéreos N&o Tripulados (VANTS). Estimar
0 estado de um dispositivo é essencial quando se trata de tomada automatizada de decisfes. No
contexto de VANTS, esse estado normalmente é caracterizado pela posicdo, velocidade e
orientacdo da aeronave. Entretanto, estimar o estado da aeronave durante 0 voo nem sempre €
simples devido a fatores como ruido nas medidas dos sensores e forcas externas ao sistema.
Construiu-se um filtro capaz de fazer uso dos dados advindos de uma Unidade de Medida
Inercial (IMU — Inertial Measurement Unit) bem como de um receptor de Sistema de
Posicionamento Global (GPS — Global Positioning System) a fim de obter uma estimativa mais
precisa do estado da aeronave e avaliar a viabilidade de tal filtro para fusdo sensorial em
navegacdo de VANTSs. Foram realizadas simulacdes de voo utilizando-se de dados sensoriais
de dispositivos IMU e receptores de GPS para estudar a capacidade do filtro de estimar

corretamente o estado da aeronave quando utilizado como médulo de fusdo de dados sensoriais.

Palavras-chave: Filtro de Particulas, IMU, GPS, VANT
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CAPITULO 1: INTRODUGAO

1.1. Contextualizacao e Motivacéao

Medir precisamente o estado de um dispositivo € essencial quando se trata de tomada
automatizada de decisfes. No contexto de Veiculos Aéreos Nao Tripulados (VANTS), esse
estado normalmente é caracterizado pela posicdo, velocidade e orientacdo. Dois tipos de
sensores se destacam na determinacéo do estado de um VANT, a Unidade de Medida Inercial
(IMU — Inertial Measurement Unit) e o receptor de Sistema de Posicionamento Global (GPS

— Global Positioning System) sdo frequentemente utilizados nesse contexto.

Apesar de ambos 0s sensores serem capazes de proporcionar informacgdes sobre o
estado da aeronave, as particularidades de cada sensor justificam o uso de ambos em
conjunto para obtencdo de uma melhor estimativa do estado. A IMU é um dispositivo que
mede a forca especifica, velocidade angular e, em alguns casos, a orientacdo do corpo
utilizando-se de um conjunto de dispositivos incluindo acelerdmetros, giroscopios. Algumas
IMUs também fazem uso de magnetémetros. Os pontos positivos de uma IMU se
caracterizam por sua elevada taxa de atualizacdo e capacidade de prover dados variados sem
depender de um sistema externo. Porém, uma grande desvantagem normalmente apresentada
por IMUs € o acumulo de erros ao longo do tempo, 0 que pode resultar em uma situacao
onde a posicdo medida e a posicéo real estdo cada vez mais distantes. O sensor de GPS, por
sua vez, é um dispositivo capaz de produzir medidas consistentes ao longo do tempo,
evitando o acimulo de erros, porém suas medidas ndo possuem grande precisao, além de

apresentar uma taxa de atualizacdo significativamente menor do que a de uma IMU.

Dadas as vantagens e desvantagens de ambos os dispositivos, nenhum deles seria
capaz de produzir uma estimativa aceitavel do estado atual de posicdo e orientacdo da
aeronave. Entretanto, utilizar ambos 0s sensores em conjunto torna possivel contornar suas
deficiéncias individuais e obter estimativas adequadas a navegacdo de uma aeronave. Para

tal, pode-se fazer uso de diversos filtros, cada um com suas vantagens e desvantagens.



1.2. Objetivos

O objetivo deste trabalho é estudar a viabilidade do uso de Filtros de Particulas
aplicados ao contexto de navegabilidade de VANTS. Espera-se construir um filtro capaz de
fazer uso dos dados advindos tanto da IMU quanto do sensor de GPS a fim de obter uma

estimativa precisa do estado de uma aeronave.

1.3. Organizacao do Trabalho

No Capitulo 2 sdo abordados os conceitos utilizados no desenvolvimento deste
trabalho. S&o discutidas as caracteristicas e limitacGes dos sensores bem como sua aplicacdo
no sistema de navegabilidade. Sdo discutidas as caracteristicas do filtro utilizado e o seu
papel, incluindo as vantagens que 0 seu uso traz em compara¢do com um sistema que nao
faz uso de um filtro para unir dados de diferentes sensores. A seguir, no Capitulo 3, é
discutida a abordagem adotada no trabalho, bem como os resultados obtidos. Finalmente, no
Capitulo 4 apresentam-se as conclusdes, contribuicBes deste trabalho e os possiveis trabalhos
futuros. A relacdo deste trabalho com o curso de Engenharia da Computacdo também é

discutida no Capitulo 4.



CAPITULO 2: REVISAO BIBLIOGRAFICA

2.1. Consideracdes Iniciais

Este capitulo apresenta conceitos relacionados aos sensores utilizados, discutindo seu
papel na obtencdo da orientacdo bem como as vantagens e limitacGes de cada sensor. A
seguir, € apresentada uma introducéo aos conceitos de um filtro de particulas, explorando a
teoria e descrevendo resumidamente as etapas necessarias a fusdo dos dados do sensor. Vale
notar que, salvo a presenca de uma citacdo explicita, a teoria apresentada na Sec¢do 2.3,
dedicada aos conceitos relacionados a um filtro de particulas, foi embasada na explicacdo
fornecida em (THRUN, BURGARD, & FOX, 2006).

2.2. Sensores

Os sensores utilizados na determinacdo do estado do VANT foram a Unidade de
Medida Inercial (IMU — Inertial Measurement Unit) e o receptor de Sistema de
Posicionamento Global (GPS — Global Positioning System). Individualmente, ambos sdo
capazes de produzir dados relevantes a obtencdo do estado da aeronave, entretanto o uso de
apenas um dos sensores ndo produz resultados satisfatorios devido as suas limitaches e

particularidades.

2.2.1. IMU

A IMU ¢é um dispositivo que mede a posicado, velocidade e aceleracdo de um veiculo
por meio do uso de acelerdmetros e giroscopios. IMUs possuem uma alta taxa de atualizacdo
e sdo capazes de operar independentemente de sistemas externos. Segundo (SICILIANO &
KHATIB, 2008, p. 484), esses dispositivos sdo sensiveis a erros nas medidas dos
acelerdmetros e giroscopios. Desalinhamentos nos giroscépios podem levar a estimativas
incorretas da orientacdo do veiculo em relacdo a gravidade resultando no cancelamento
parcial do vetor da gravidade. Como ndo é possivel eliminar completamente o vetor de

gravidade e os se erros acumulam ao longo do tempo, a distancia entre a posicéao real e a



posicdo medida pelo sistema cresce indefinidamente. Esse problema é considerado inerente

ao funcionamento desse dispositivo devido as suas limitagdes.

2.2.2. Receptor de GPS

O receptor de GPS é um sensor capaz de fornecer uma referéncia absoluta ao sistema
ja que ele € capaz de estimar a localizacdo de um objeto em coordenadas absolutas
tridimensionais. Isso significa que esse sensor é capaz de prevenir 0 acumulo de erros ao
longo do tempo que seria criado pela IMU, porém, de forma geral, suas medidas nédo
possuem elevada precisdo e apresentam uma taxa de atualizacgéo significativamente menor
do que ade uma IMU. Sendo assim, 0 seu uso principal no sistema é a capacidade de fornecer
uma referéncia absoluta que limita o acimulo de erros por meio do uso de um filtro. No caso

deste projeto, o filtro escolhido € um Filtro de Particulas.

2.3. O Filtro de Particulas

De acordo com (ARULAMPALAM, MASKELL, GORDON, & CLAPP, 2002, p.
4), o filtro de particulas é uma técnica para implementacdo de um filtro bayesiano recursivo,
cuja base para a maioria dos filtros de particulas é dada pelo algoritmo SIS (Sequential
Importance Sampling). Outras variacbes, como Sampling Importance Resampling (SIR),
Auxiliary Sampling Importance Resampling (ASIR) e Regularized Particle Filter (RPF)

existem, mas normalmente séo casos especiais derivados a partir do SIS.

(THRUN, BURGARD, & FOX, 2006, p. 96) explicam que um filtro de particulas é
uma implementagdo ndo paramétrica do filtro de Bayes no qual a probabilidade a posteriori
é aproximadamente representada por um nimero finito de particulas. O ponto principal desse
filtro é representar a posteriori bel(x;) por um conjunto de estados aleatdrios retirados dessa
posteriori. Ou seja, a ideia de criar uma representagdo paramétrica é descartada em favor de
representar a distribuicdo por um conjunto de amostras retiradas dessa distribuicdo. Essa
representacdo é aproximada, entretanto é ndo paramétrica e, portanto, pode representar uma

gama muito maior de distribui¢cbes quando comparadas a outras representaces. De forma



geral, podemos definir as vantagens e desvantagens do filtro conforme apresentado na
Tabela 1.

Tabela 1 — Filtro de Particulas: Vantagens e Desvantagens

Vantagens

Desvantagens

Altamente paralelizavel.

Precisao tende a crescer com a
quantidade de processamento

dedicado ao filtro.

N&o paramétrico. Permite grande
flexibilidade nos tipos de
distribuicdes que o filtro € capaz de

representar.

Extremamente flexivel quanto aos
modelos de medida e movimento

que o filtro é capaz de suportar.

Independe do nimero de dimenses
apresentados pelo sistema, ou seja, €
capaz de modelar sistemas que
possuem elevado ndmero de
dimensdes. Entretanto, um maior
numero de dimensdes costuma
implicar em um maior custo
computacional dependendo dos
modelos de observagdo e movimento

utilizados.

Tende a ser computacionalmente

caro.

Filtro requer mais processamento
guanto maior o numero de
subestados contido em cada

particula.

Né&o existe relacdo direta entre a
quantidade de particulas e a precisdo
obtida.

N&o deterministico. Pode ser
desvantajoso em situacOes que se

requer uma solucéo imediata.

Dificuldade na medida de

performance.

N&o oferece garantia de confianga
nos resultados.

E interessante ressaltar a relagao entre o ponto positivo do filtro de ser capaz

de trabalhar com sistemas modelando elevados nimeros de dimensdes a custo de um
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maior requerimento de poder de processamento. O numero de dimensdes que 0
sistema trabalha tente a ter um impacto consideravel no custo computacional do
filtro.

2.3.1. Descricéao e Caracteristicas Gerais

Em um filtro de particulas, as amostras de uma distribuicdo a posteriori sao

chamadas particulas e sdo representadas pela Equacédo (1).

X = xt[l],xt[z], ...,xt[M] (D

Cada particula x£m1(1 <m < M) é uma instanciacdo concreta de um estado no
tempo t. Ou seja, a particula é uma hipotese do que o estado real pode ser no tempo t. Vale
notar que M representa o nimero de particulas no conjunto M (normalmente esse valor € um
namero elevado). Dado que o conjunto de particulas X; € uma aproximacao da posteriori
bel(x;), a probabilidade de cada hipdtese x;, pertencer ao conjunto X, é proporcional a
posteriori bel(x;) e consequentemente quanto mais densamente populada for a sub-regido
do espaco de estados, maiores serdo a probabilidade do estado verdadeiro estar presente
nessa regido. Essa caracteristica pode ser observada na Figura 1. Nota-se que areas de maior
probabilidade em ambas distribuices sdo representadas por uma concentracdo maior de
particulas. Como a construcdo da distribuicdo a posteriori bel(x;) é feita recursivamente a
partir da distribuicdo bel(x;_) e dado que a distribuicdo é representada por um conjunto de

particulas, da-se que o filtro constréi o conjunto X, recursivamente a partir do conjunto X;_;.



Figura 1 - Representacdo de uma Distribuicdo por meio de Particulas

ply) | — Function g(x) |
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X

Fonte: (THRUN, BURGARD, & FOX, 2006, p. 97)

De forma geral, o algoritmo de um filtro de particulas pode ser descrito pelas

seguintes etapas:

1. Inicializacdo

a) O filtro deve receber o conjunto de particulas X;_, a variavel de controle u; e a

leitura, normalmente dos sensores, z;.

b) O conjunto de particulas X,_; consiste num conjunto de M amostras do estado

estimado pelo filtro na iteragéo t-1.

c) Avariavel de controle u, é determinada segundo o modelo adotado pelo sistema.



d) A varidvel z; depende do formato de saida dos sensores utilizados. Caso o filtro
seja incapaz de trabalhar com os dados no formato original, pode-se realizar um processo de
converséo dos dados para uma estrutura mais adequada ao filtro.

2. Estado Esperado

a) Construcédo da Distribuigdo a Posteriori Temporaria bel(x;)

b) A particula xgm] ¢ construida a partir da particula x,'[’_"i e do controle u;. Essa

etapa € iterada M vezes e representa a transicdo do estado X, para o estado X;_.

c) Essa distribuicdo representa qual seria o estado esperado pelo filtro no tempo t.
Ela é apenas uma aproximacéao da distribuicdo bel(x,) que representa de fato o estado do

sistema no tempo t.
3. Amostragem por Importancia

a) Construcédo da Distribuigdo a Posteriori bel(x;).

b) Calcula-se o peso wt[m] de cada particula baseado na medida z;. Ou seja, 0 peso

representa a probabilidade da medida z; ser verdadeira dado o estado representado pela

particula x™.

c) Este novo conjunto de particulas e seus respectivos pesos representam

aproximadamente a posteriori bel(x;).
4. Reamostragem
a) Construcdo do Conjunto de Particulas X;.

b) Forca o conjunto de particulas X, a se aproximar da distribuicdo a posteriori
bel(x;)

c) M novas particulas sdo extraidas do conjunto temporario criado na etapa anterior
X;_, segundo o seu peso. Ou seja, quanto maior 0 peso de uma particula, maior a
probabilidade de ela pertencer ao conjunto X,. E importante notar que apesar da abordagem
padrdo ser extrair M novas particulas, é possivel construir um filtro que altera o nimero de
particulas utilizadas iteracdo, normalmente utiliza-se o grau de certeza que o filtro apresenta

na estimativa obtida como métrica para alterar o numero de particulas do conjunto.



d) O conjunto X; normalmente contém varias particulas duplicadas dado que esse
conjunto costuma possuir o mesmo namero de particulas que o conjunto X, e que particulas

com um peso elevado tendem a ser selecionadas mais de uma vez.

e) Particulas com peso pequeno normalmente sdo eliminadas nessa etapa. Essa
caracteristica € importante dado que esse peso representa a probabilidade de dada particula
representar o estado verdadeiro.

2.3.2. Propriedades e Possiveis Problemas do Filtro de Particulas

e Auséncia de uma estimativa continua

Dado que o filtro representa a distribuicdo por meio de um conjunto de particulas
discretas, ele ndo é imediatamente compativel com aplicacdes que necessitem de uma
estimativa continua da funcdo de densidade. Todavia, existem abordagens capazes de
realizar uma extracdo da funcéo de densidade a partir de um conjunto de amostras, como por

exemplo, o processo de estimativa de densidade por Kernel.
e Variancia inerente ao processo de amostragem

As caracteristicas de uma densidade de probabilidade sdo levemente alteradas sempre
qgue um numero finito de amostras € extraido. Ou seja, 0 processo de amostragem do filtro
gera um certo nivel de erro inerente ao filtro de particulas. Entretanto, esse efeito se reduz

conforme aumenta-se o nimero de amostras.
e Amostragem polarizada

Dado que é utilizado um namero finito de amostras durante a execucao do filtro, tem-
se um efeito de bias na distribuicdo a posteriori. Esse efeito diminui quanto maior o nimero

de amostras utilizadas.
e Deplecéo de particulas em dada regido

Devido a natureza ndo deterministica do filtro, pode ocorrer de ndo existirem
particulas em uma regido correta do espago de estados. Na prética, entretanto, essa situacdo
ocorre apenas para casos em que um numero reduzido de particulas é utilizado, seja em

numero absoluto de particulas ou em nimero de particulas relativo ao espaco de estado que



estd sendo mapeado. Uma abordagem pratica para reduzir o efeito desse problema é gerar
aleatoriamente algumas particulas em cada etapa de reamostragem. Idealmente, essas
particulas podem ser geradas utilizando-se de informacGes disponiveis sobre o estado atual

do sistema.

2.3.3. Amostragem por Importancia e Reamostragem

As etapas de amostragem por importancia e reamostragem sdo fundamentais ao
mecanismo de operacdo do filtro de particulas. E possivel criar um filtro de particulas que
ndo executa a etapa de reamostragem, representando a distribuicdo a posteriori do estado
apenas com o uso de amostras avaliadas conforme a sua probabilidade de representarem
estados validos, ou seja, 0s pesos das particulas sdo atualizados a cada etapa sem extrair uma
nova amostragem do conjunto de particulas original. Entretanto esse filtro tende a apresentar
resultados significativamente inferiores a um filtro que realiza a etapa de reamostragem dado
que Vvarias das particulas ocupariam regides de probabilidade muito baixa. I1sso implica que
esse filtro necessitaria de muito mais particulas para representar o estado do sistema quando

comparado a um filtro que executa a reamostragem.

A etapa de reamostragem tem a funcdo de forcar o conjunto de particulas a se
aproximar da distribuicdo a posteriori bel(x;) por meio de uma abordagem similar a
abordagem empregada nos algoritmos genéticos. Segundo (THRUN, BURGARD, & FOX,
2006, p. 100), a reamostragem é uma implementacéo probabilistica do processo Darwiniano
de sobrevivéncia do mais apto, processo no qual as particulas continuam a existir ou
desaparecem conforme 0 seu peso. Apesar de essencial para 0 mecanismo de operacdo do
filtro, 0 processo de reamostragem também causa consequéncias negativas. O fato de as
particulas sobreviverem ou desaparecerem conforme o seu peso pode levar a perda de
diversidade das particulas (propriedade descrita na Secdo 2.3.2). Outra consequéncia
indesejavel que o processo de reamostragem pode causar € 0 aumento da variancia do
conjunto de particulas devido ao processo de amostragem (propriedade descrita na Secao).
Algumas estratégias podem ser empregadas a fim de reduzir ou, em alguns casos, evitar
essas consequéncias como por exemplo o0 uso de um algoritmo de reamostragem com baixa

variancia. De forma geral, deve-se evitar realizar reamostragens desnecessariamente, por
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exemplo quando é conhecido que o estado ndo mudou. Além disso, utilizar um algoritmo de

reamostragem eficiente e que apresenta baixa variancia se mostra benéfico nesse contexto.

Ao contrério da etapa reamostragem, a etapa de amostragem por importancia
normalmente é obrigatoria. Segundo (THRUN, BURGARD, & FOX, 2006, p. 100), esse
processo pode ser representado pela Equacéo (2). Tem-se que | é a funcdo indicadora com
valor igual a 1 se o seu argumento for verdadeiro e 0 caso contrario. A fungdo de densidade
f(x) representa a distribuigdo conhecida enquanto a fungéo de densidade g(x) representa a

distribuicdo alvo.

Ef[I(x € A) = Jf(x)[(x € A)dx

= @g(x)l(x € A)dx (2)

g(x)
= jw(x) gx)I(x € A)dx

= Ej[w()I(x € A)

O termo w(x) = f(x)/g(x) € o fator de importancia que representa a diferenca entre f(x)
e g(x). A Figura 2 ilustra esse processo. Em (a), apresenta-se a distribuigéo f(x) e o conjunto
de particulas que representaria essa distribuicdo, nota-se que esse conjunto nao é conhecido.
De (b) para (c), pode-se observar a relacao entre g(x) e f(x). Apesar de apenas o conjunto de
particulas que representa g(x) ser conhecido, pode-se aproximar um conjunto de particulas
capaz de representar f(x) por meio do célculo do peso de cada particula pertencente ao
conjunto que representa g(x). A partir desse ponto, a etapa de reamostragem transforma o
conjunto de particulas de g(x) no novo conjunto que representa f(x) conforme o peso de cada

particulas.
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(b)

(c)

Figura 2 - Processo de Amostragem Por Importancia
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Fonte: (THRUN, BURGARD, & FOX, 2006, p. 101)
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2.3.4. O Filtro de Particulas no Contexto de Localizacdo

Um exemplo bésico do algoritmo de um filtro de particulas é apresentado no
Algoritmo 1. Pode-se observar as etapas de inicializacdo (linha 2), obtencdo do estado

esperado e a etapa de amostragem por importancia (linhas 3 a 7) e a etapa de reamostragem
(linhas 8 a 11).

Algoritmo 1 - Filtro de Particula Bésico

1 Algorithm Particle_filter(X;_q, wu, 2¢):
2: X=X, =0

3: form =1to M do

4 sample LITLm] ~ p(x¢ | -u.;,:zry?f]l)
; ™ — p(, | )

6: X, =X, + {::rl_m] : -wﬁ"”] )

7: endfor

8: form =1to M do

9: draw i with probability ~ -u.rgli]
10: add I;] to X;

11: endfor

12: return X}

Fonte: (THRUN, BURGARD, & FOX, 2006, p. 98)

Quando aplicado ao contexto de localizagdo, um filtro sensorial baseado na estratégia
do filtro de particulas pode ser representado pelo algoritmo apresentado no Algoritmo 2.
Pode-se perceber uma das grandes vantagens do filtro de particulas. Ele € relativamente
independente do sistema ao qual ele é aplicado. De forma geral, para alterar o sistema a que

o filtro é aplicado, basta mudar os modelos de movimento e de medida.
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Algoritmo 2 — Algoritmo Monte Carlo Localization (MCL)

1: Algorithm MCL(X;_1, u¢, z;, m):

2: X=X, =10

3: form =1to M do

4: 2™ = sample_motion_model(u,, z1™))
5 wlm] — measurement_model(z;, :rg'm] M)

1 1 ¢ e T
('tt — f’lf_ —l— {I:L ] 'EU£ ]>

6:

7 endfor
8: form=1to M do

9 [1]

draw ¢ with probability o w;

10: add ;1?';] to X;
11: endfor
12: return X

Fonte: (THRUN, BURGARD, & FOX, 2006, p. 252)

Os exemplos apresentados anteriormente no Algoritmo 1 e no Algoritmo 2 séo
exemplos da versdo basica do filtro de particulas. Existem diferentes abordagens que alteram
o0 algoritmo base a fim de neutralizar efeitos indesejados que se manifestam decorrente do
uso do filtro basico, como por exemplo as propriedades citadas na Secédo 2.3.2, ou para obter

melhores resultados.

2.4. Consideracdes Finais

A familiarizacdo com diversos conceitos foi necessaria para a realizacdo deste
trabalho, a implementacao do filtro requer conhecimentos tanto da area de estatistica como
da area de aeronautica. Esses conceitos foram abordados brevemente neste capitulo e servem

de base para o desenvolvimento do trabalho que é descrito no Capitulo 3.
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CAPITULO 3: DESENVOLVIMENTO DO
TRABALHO

3.1. Consideracdes Iniciais

Este capitulo apresenta o trabalho desenvolvido e discute etapas executadas ao longo
do projeto em detalhes. Dentre as atividades realizadas, destacam-se a adaptacdo do modelo
de navegabilidade, construcdo do filtro e a realizagdo de simulagdes. A Secédo 3.2 discute 0
contexto geral do projeto de forma a providenciar uma descrigdo sucinta das atividades
realizadas. A Secdo 3.3 discute as atividades realizadas durante o projeto em maiores
detalhes. Na Sec¢do 3.4 sdo apresentados tanto os resultados obtidos com a simulagdes quanto
uma analise comparativa entre eles. A Secdo 3.5 trata das dificuldades e limitacbes do
projeto. Finalmente, a Secdo 3.6 discute as consideracdes finais pertinentes ao Capitulo 3.

3.2. Contexto do Projeto

O projeto desenvolvido a fim de analisar a viabilidade da aplicacdo de um filtro de
particulas como mddulo responsavel pela fusdo dos dados sensoriais num VANT esta dentro
do contexto dos projetos do Laboratoério de Sistemas Embarcados Criticos. Serdo analisados
3 aspectos principais do desenvolvimento do projeto, sendo eles 0 modelo de navegabilidade
utilizado, o conjunto de dados que foi gerado para realizacdo das simulacdes e o

planejamento e desenvolvimento do filtro.

Criou-se um modelo de navegabilidade capaz de utilizar os dados disponiveis para
simular uma rota de um VANT, tendo a sua disposicao as medidas de uma IMU contendo
acelerdbmetros, giroscopios e barémetros. A modelagem do sistema de navegabilidade
utilizado neste projeto foi baseada no sistema de navegabilidade apresentado em (SILVA,
WILSON, & BRANCO, 2015).

As simulacdes de execucdo do filtro foram feitas utilizando-se de um conjunto de
dados providenciado pelo Laboratorio de Sistemas Embarcados Criticos. Para fins de
comparagdo e validagdo, uma versdo sem ruido e uma versdo com ruido foram

providenciadas.
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Quanto ao desenvolvimento do filtro, modelou-se as etapas de predi¢éo e atualizagdo
a partir do modelo de navegabilidade. Incorporou-se os dados dos acelerometros e
giroscopios na etapa de predicdo, efetivamente utilizando os dados desses sensores como
leituras indiretas do comando de controle que a aeronave recebeu. Ja na etapa de atualizacao,
utilizou-se os dados do receptor de GPS e do bardmetro para célculo dos pesos de cada
particula. Essa abordagem adotada caracteriza o sistema como um sistema de navegacao
inercial auxiliado por GPS. Como medida de avaliacdo, analisou-se os valores RMS (Root
Mean Square) das distancias envolvidas, ou seja, calculou-se a raiz quadrada da média
aritmética dos quadrados dos valores de distancias obtidos durante cada iteracdo da execugdo
do filtro.

3.3. Descricao das Atividades Realizadas

As atividades realizadas consistiram de criar um filtro de particulas baseado no
modelo de navegabilidade desenvolvido previamente e posterior simulacdo e andlise do
comportamento do filtro. O projeto foi desenvolvido utilizando-se da ferramenta MATLAB
versdo R2015a.

3.3.1. Modelo de Navegabilidade

O modelo de navegabilidade foi baseado no modelo descrito em (SILVA, WILSON,
& BRANCO, 2015, p. 3). Ele utiliza as equacdes padrbes para mecanizacao inercial, com 0s
valores de posicdo e de velocidade dentro da referéncia de navegacdo e uma representacédo
da atitude da aeronave por meio de quaternions, conforme apresentado no conjunto de

Equacdes (3).

p = [Pn Pepal”
v = [vni 17e'vd]T (3)

q =191,92,93 94"
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A referéncia de navegacdo é uma referéncia tangencial a Terra no nivel local e
tangente a gravidade. As equacfes de mecanizacdo inercial que compdem o modelo de

navegabilidade sdo apresentadas no conjunto de Equacdes (4).

<
”"d
o
23”
l
I
Q

" (4)

<
Il
N =
)
3
e

Tem-se que Qg é a forma antissimétrica de W que por sua vez representa a angulagao
do corpo com relacdo a referéncia de navegacdo. g™ é o vetor gravidade na referéncia de
navegacdo e a é o vetor de forga especifica medido pelos acelerdmetros. C;' é uma matriz
de cossenos diretores utilizada na transformacéo de vetores da referéncia do corpo para a

referéncia de navegacao. C;} é dado pela Equacéo (5), enquanto Qg é dado pela Equacéo (6).

i + 95— 95— q; 209293 — 4144) 2(q294 + 9193)

Ch=| 2(q293+q19s) ai—q5+q5—q;i 2(q392—q192) | (5)
2

2(q294 — 9193) 2(q394 + 9192) 91— 45 —q5 + 4z

0 Wy Wq W,
—W 0 -w, W
iy = —Wp w 0 —v"g (6)
q T P
—W, Wy Wy 0

No modelo adotado, os dados do barémetro sdo utilizados para o célculo da altura
referente a altura de inicializacdo conforme as Equacdes (7) e (8). A Equacdo (7) é utilizada
na etapa de inicializagdo para obtencdo dos parametros iniciais de referéncia enquanto a
Equacdo (8) é utilizada na etapa de amostragem por importancia e faz parte do modelo

utilizado para o célculo do peso de cada particula.
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Lhy\9M
Pry = Po (1 - T_> (7)
0
RL
- Ty p )gM
h=—|1-|— (8)
L (pho

Nas Equagdes (7) e (8), L, g, M, R, T, Sa0 as constantes atmosféricas padrao
enquanto p, € h, representam a pressdo atmosférica inicial e a altura inicial,

respectivamente.

3.3.2. Implementacao do Filtro de Particulas

O sistema foi modelado como um sistema de navegacdo inercial auxiliado por GPS,
ou seja, o filtro de particulas desenvolvido pode ser subdividido em duas grandes etapas que
se repetem a cada iteracdo: a etapa de predicdo e a etapa de atualizacdo. Cada etapa por sua

vez pode ser subdivida em diferentes atividades.

A etapa de predicdo é caracterizada pela atividade de movimentacdo e é realizada em
todas as iteracGes do filtro. Nessa etapa, os dados dos acelerémetros e giroscopios sdo
utilizados como o vetor de controle para alteracdo do conjunto de particulas conforme as
equacdes de mecanizagdo inerciais. O cddigo que executa as operagdes das equagdes
inerciais foi fornecido por Laboratdrio de Sistemas Embarcados Criticos. Ele recebe como
entrada a leitura das medidas geradas pelos acelerébmetros e giroscopios, o intervalo de
tempo decorrido desde a Ultima atualizacdo dos sensores, 0 vetor gravidade e um vetor de
10 posicdes o qual representa o estado do sistema no final da iteracdo anterior. Este vetor
contém as informac6es consolidadas de posicéo, velocidade e os quaternions representados
pelo conjunto de Equacgdes (3). Vale notar que devido ao célculo da velocidade, € necessario
fornecer também o vetor de quaternions do inicio da iteracdo anterior. O resultado da etapa
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predicdo € um novo vetor de 10 posi¢gdes consolidando as informacgdes de posicdo e
velocidade, bem como os quaternions que representam o estado da aeronave. Dado que o
filtro de particulas utiliza uma particula para representar cada um dos estados estimados, esta
etapa é realizada tantas vezes em uma iteracdo quanto o numero de particulas definidas para
o filtro. Cada particula possui 0 seu préprio vetor para representar um estado completo com

as informacdes de posicéo, velocidade e quaternions.

A etapa de atualizagéo, consiste na amostragem por importancia e na reamostragem.
Na amostragem por importancia € realizado o calculo do peso de cada particula. Na
reamostragem, um novo conjunto de particulas é gerado conforme o peso de cada particula
do conjunto original. Ao contrario da etapa de predicéo, a qual é realizada em toda iteracéo,
a etapa de atualizacdo deve ser executada apenas quando certas condi¢Ges forem satisfeitas.

No caso do nosso sistema essas condi¢fes sdo dadas por:
e O receptor de GPS estéa ativo
e A posicgdo indicada pelo receptor de GPS se alterou desde a ultima medida.

Essas condi¢Ges foram impostas a fim de minimizar o impacto das consequéncias
negativas da etapa de reamostragem, principalmente em casos nos quais o filtro ndo elevaria
sua taxa de confianca quanto a posicao real do VANT bem como para ganho de performance
ao evitar gastar processamento com essa atividade a menos que necessario. Visto que o filtro

ja é computacionalmente caro, esse ganho é bem-vindo.

3.3.3. Amostragem por Importancia

O processo de amostragem por importéancia e essencial ao filtro desenvolvido e uma
das razdes pelas quais filtros de particula sdo considerados versateis. Essa etapa requer
apenas gue seja modelada uma metodologia de como classificar cada particula segundo sua
probabilidade de ser uma estimativa correta. A modelagem utilizada foi a mesma modelagem
utilizada pelos dados fornecidos pelo Laboratorio de Sistemas Embarcados Criticos quanto
aos sensores, ou seja, modelou-se os dados tanto do receptor de GPS como do barémetro
como uma gaussiana independente em cada uma das dimensdes aplicaveis. Conforme
apresentado no conjunto de Equacgdes (9), os dados do GPS foram modelados em 3
coordenadas espaciais com média igual ao resultado do receptor de GPS e desvio padréo
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O;ps- Para o bardmetro, a abordagem foi um pouco diferente, como os dados do bardmetro
sdo utilizados para calculo da altura, a qual representa a média da gaussiana, derivou-se das

simulacdes realizadas um desvio padrao OGPSpeign: Para a altura calculada a partir das

informagdes de pressdo do barémetro.

0GpS,=2.5
OGpPsy=2.5 (9)
0GpS,=4.0

OGPSheignt=0.8

Adotou-se uma abordagem por meio do uso de uma distribuicdo normal multivariada
na qual as 4 gaussianas mencionadas foram modeladas como variaveis independentes. Sendo
assim, o peso de uma particula qualquer € dado pela funcdo de densidade de probabilidade
(FDP) da distribuicdo normal multivariada utilizada no modelo, representada pela Equacao

(10). p,'[m] é um vetor coluna contendo as posi¢des nos 3 eixos dado pelo GPS e a altura do

[m
t

I = [pxr Py, Dz, (p: — ng)]T-

Quanto a variavel y;, esta contém os mesmos dados que pt[m], contudo os valores sdo

ponto representado pela particula em questdo, ou seja, p

derivados dos sensores de GPS e pressao.

e (=5 (6" =) £ (617~ 1))
wi™ = (10)

V2o X

y~1 e || representam o inverso da a matriz de covariancia e o determinante da
matriz de covariancia, respectivamente. Segundo (CHUONG, 2008, p. 4), uma distribuicao
normal multivariada com uma matriz de covariancia diagonal (¢2,02,...,02) é 0 mesmo
gque uma colecdo de varidveis gaussianas aleatorias com média u; e varidncia o7,

respectivamente. Sendo assim, a matriz de covariancia é dada pela Equacdo (11).
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/ UGZPSX 0 0 \
0 O'GZPS 0 0
Y= Y, I (11)
\ 0 0 Oéps, 0 /
0 0 0 O-épsheight

3.3.4. Reamostragem

A etapa de reamostragem foi implementada baseando-se no algoritmo de
reamostragem do tipo Stochastic Universal Sampling (SUS) sugerido no curso (THRUN,
Artificial Inteligence for Robotics). Entretanto, conforme discutido na Secdo 2.3.2, 0
processo de reamostragem pode acarretar em consequéncias indesejaveis para 0 bom
funcionamento do filtro. Por esse motivo, o algoritmo foi modificado para que durante o

processo de reamostragem, duas medidas corretivas fosse utilizadas.

A primeira medida se caracteriza por cerca de 10% das particulas serem alteradas de
forma aleatéria com o objetivo de prevenir ou amenizar os problemas de deplecdo de
particulas e o “problema do rob6 sequestrado,” (problema que discute o cenario no qual o
robd é retirado de sua posicdo atual e reposicionado sem receber informacdes dessa
alteracdo). Apesar de a abordagem utilizada envolver aleatoriedade, informagdes
deterministicas dos sensores e do conjunto de particulas sdo utilizados a fim de melhorar a
precisdo dessa abordagem. Dado que os dados do receptor de GPS fornecem uma posicao
absoluta da regido em que a aeronave deveria estar, pode-se inferir que a regido ao redor da
medida indicada pelo GPS é uma regido de alta probabilidade de o estado estar correto. Ou
seja, 10% das particulas escolhidas pelo processo de reamostragem terdo sua posicdo

alterada para uma regido proxima do indicado pelo GPS.

A segunda medida corretiva utilizada durante o processo de reamostragem € a
insercdo de uma pequena incerteza na posi¢éo e velocidade da particula durante o processo
de reamostragem. Dado que o filtro tem a tendéncia de escolher particulas com elevado peso
maltiplas vezes, essa é uma abordagem que permite uma melhor cobertura do espago
amostral sem sacrificar a precisdo do filtro quanto a sua posi¢do. Esse processo é reforcado

pelo principio fundamental do filtro, particulas que se aproximarem do estado real com essa
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alteracdo serdo reforcadas por receberem um peso maior e particulas que se afastarem do
estado real seréo descartadas ao longo do tempo.

3.3.5. Outras Etapas Implementadas no Filtro

Além das etapas principais do filtro mencionadas anteriormente, algumas outras
operacdes sao executadas, especificamente a etapa de inicializacdo e a etapa de extracéo do
estado estimado do sistema a partir das amostras obtidas. Durante a etapa de inicializacéo,
constroi-se o conjunto inicial de particulas e calcula-se os pardmetros iniciais dos sensores,
como por exemplo o calculo por meio da Equacéo (7) da altura inicial de referéncia e pressdo

inicial de referéncia utilizado pelo bardmetro.

A construcdo do conjunto inicial de particulas pode ser feita de forma aleat6ria, mas
essa abordagem requer um numero muito maior de particulas, pelo menos durante as etapas
iniciais até que o filtro seja capaz de se estabilizar. A abordagem adotada utiliza algumas
informac@es dos sensores ao assumir que sdo conhecidas com um certo grau de certeza tanto
a orientacdo inicial quanto a posicdo inicial acusada pelo sensor de GPS. Ou seja, gera-se
um conjunto de particulas mapeando a regido inicial que se espera encontrar o estado
verdadeiro a fim de melhorar as estimativas iniciais dado que normalmente elas séo as mais
imprecisas devido a necessidade de mapear um espaco muito maior que durante o resto da

execucdo do filtro.

A etapa de extracdo do estado estimado do sistema a partir das amostras obtidas tem
como objetivo produzir uma representagdo concreta do estado estimado. Pode-se adotar
diferentes abordagens, como por exemplo, utilizar a particula com o maior peso como o
estado encontrado pelo filtro. No contexto do projeto, obteve-se uma estimativa mais precisa
do estado verdadeiro ao realizar uma média ponderada segundo o peso de cada particulas.
Dado que o estado é representado pela combinacdo dos vetores de posicdo, velocidade e
quaternions conforme o conjunto de Equacdes (3), extrair a posi¢do e velocidade é apenas
uma questdo de calcular uma média ponderada segundo 0s pesos para todas as particulas,
mas como essa abordagem néo pode ser utilizada para quaternions, utilizou-se a abordagem
descrita em (MARKLEY, CHENG, CRASSIDIS, & OSHMAN) a fim de obter-se o

quaternion esperado. Esse processo deve ser realizado sempre que o conjunto de particulas
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sofrer qualquer alteracdo, considerando a possibilidade de pode-se pular essa etapa sem
perdas ao funcionamento do filtro caso as informacgdes da extracdo ndo sejam necessarias
em uma dada iteracéo.

3.3.6. Simulagobes

Foram utilizados os dados fornecidos pelo Laboratério de Sistemas Embarcados
Criticos para simular o comportamento do filtro numa rota predeterminada ilustrada pela
Figura 3. Os pontos em branco e azul representam a posi¢cdo verdadeira do sensor de GPS,

ou seja, sem ruidos enquanto os pontos em preto representam as medidas do sensor de GPS
quando com o ruido do dispositivo.

Figura 3 - Rota Utilizada durante as Simulacdes

Rota Utilizada nas Simulagoes
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Fonte: Autor

Para cada simulacgéo, tragou-se a rota estimada pelo filtro e calculou-se o valor RMS
da distancia entre a posicao estimada pelo filtro e a posi¢éo real do dispositivo. Para fins de

comparacédo, calculou-se também o valor RMS de outras duas medidas de distancia. O
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primeiro é calculado a partir da distancia entre a posicao estimada pelo filtro e a posicéo
medida pelo receptor de GPS, enquanto o segundo é calculado a partir da distancia entre a
posicdo medida pelo receptor GPS e a posicdo real do dispositivo. Ou seja, tem-se trés

medidas RMS da distancia, sendo elas:

e Valor RMS da distancia entre a posicdo estimada pelo filtro e a posicdo real do

dispositivo (apresentado em verde nos Graficos 1, 2 e 3)

e Valor RMS da distéancia entre a posi¢do estimada pelo filtro e a posi¢cdo medida pelo
receptor GPS (apresentado em azul nos Gréficos 1, 2 e 3)

e Valor RMS da distancia entre a posi¢cdo medida pelo receptor GPS e a posicao real
do dispositivo (apresentado em vermelho nos Gréficos 1, 2 e 3)

3.4. Resultados Obtidos

Foram realizadas simulac@es a fim de comparar os resultados do sistema utilizando
o filtro implementado utilizando-se de todos os sensores contra apenas o uso da IMU. Além
disso, analisou-se a precisdo do filtro quando a etapa de reamostragem ndo é executada. Para
cada uma das simulagdes, tracou-se a rota estimada pelo filtro e calculou-se o valor das
distancias RMS conforme especificado na Secdo 3.3.5. Todas as simulacdes foram

executadas utilizando-se de 200 particulas.

3.4.1. Filtro de Particulas

Para o filtro implementado, obteve-se a estimativa da rota percorrida apresentada na
Figura 4. A rota estimada pelo filtro é representada pelos pontos escuros enquanto a rota da
posicao real do dispositivo de GPS ¢é representada pelos pontos claros. A evolugéo do valor
RMS da distancia ao longo da execucdo da simulacéo € apresentado no Grafico 1 conforme

os critérios discutidos na Secéo 3.3.5.
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Figura 4 - Rota Estimada pelo Filtro de Particulas

Rota da Simulagao - Filtro de Particulas
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Grafico 1 - RMS das distancias ao longo da simulacéo do Filtro de Particulas

Valor RMS das Distancias - Filtro de Particulas
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1 Distancia RMS entre Posicao Real e Sensor de GPS

Fonte: Autor
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3.4.2. Filtro de Particulas — Sem Reamostragem

Para o filtro implementado sem o uso da etapa de reamostragem, obteve-se a
estimativa da rota percorrida apresentada na Figura 5. A rota estimada pelo filtro €
representada pelos pontos escuros enquanto a rota da posicao real do dispositivo de GPS é
representada pelos pontos claros. A evolugdo do valor RMS da distancia ao longo da
execucdo da simulacéo é apresentado no Gréafico 2 conforme os critérios discutidos na Se¢édo
3.3.5.

Figura 5 - Rota Estimada pelo Filtro de Particulas - Sem Reamostragem
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Gréfico 2 - RMS das distancias ao longo da simulacado sem reamostragem

Valor RMS das Distancias - Filtro sem Reamostragem
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3.4.3. Filtro de Particulas — IMU

Para o filtro implementado com o uso apenas dos acelerdmetros e giroscopios,
obteve-se a estimativa da rota percorrida apresentada na Figura 6. A rota estimada pelo filtro
é representada pelos pontos escuros enquanto a rota da posi¢édo real do dispositivo de GPS é
representada pelos pontos claros. A evolucdo do valor RMS da distancia ao longo da
execucgdo da simulagdo é apresentado no Grafico 3 conforme os critérios discutidos na Secéo
3.35.
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Figura 6 - Rota Estimada pelo Filtro de Particulas usando apenas IMU
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Gréfico 3 - RMS das distancias ao longo da simulacdo com apenas IMU

Valor RMS das Distancias - Filtro com Apenas IMU
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3.4.4. Comparacgéao Entre as Simulacoes

Ao comparar-se as rotas estimadas pelo filtro nas trés simulacdes, temos que a rota
apresentada na Figura 4 melhor aproxima o posicionamento real do dispositivo. Ou seja, 0
filtro obteve os melhores resultados ao executar tanto a etapa de amostragem por importancia
quanto a etapa de reamostragem. Conclui-se 0 mesmo ao comparar-se o Grafico 1, Gréafico
2 e Grafico 3. A precisdo da estimativa de distancia é maior quando o filtro executar tanto a

etapa de amostragem por importancia quanto a etapa de reamostragem.

Conforme previsto pela teoria apresentada no Capitulo 2, o uso exclusivo da IMU se
mostra inferior a abordagem que faz uso da combinagdo dos dados sensoriais. O filtro
utilizando apenas IMU foi capaz de estimar a posicdo razoavelmente, todavia o erro cresceu
a medida que o tempo passa. Quanto ao filtro que ndo executa a etapa de reamostragem
apesar de utilizar os dados de todos 0s sensores, tem-se que ele teve problemas ao estimar a
posicdo apesar ter sido capaz de reduzir o erro da IMU até certo ponto. Outro fator agravante
na simulacdo do filtro sem reamostragem, é que normalmente esse tipo de filtro requer um
nimero muito elevado de particulas, porém foram utilizadas o0 mesmo nimero de particulas

das outras duas simulages.

3.5. Dificuldades e LimitagOes

Uma das principais dificuldades encontradas durante a implementacdo do filtro se
deve ao seu caracter ndo deterministico. A analise e comparacdo entre duas configuracdes
similares do filtro é dificultada dado que execucgdes distintas apresentam resultados
diferentes mesmo com 0s mesmos dados de entrada. Esse problema nédo é tdo impactante
quando as configuracdes apresentam resultados significativamente diferentes, porém em

grande parte dos casos, as diferengas ndo eram grandes o suficiente.

Quanto ao filtro de particulas, esse se mostra limitado pelos fatores de poder
computacional. Apesar da versatilidade do filtro, outras abordagens podem ser mais
interessantes para aplica¢des nas quais o poder computacional disponivel é reduzido. Essa
limitacdo pode ser aliviada com o uso de paralelismo caso o dispositivo em questdo tenha

essa capacidade.
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Em relacdo as dificuldades pessoais do autor, pode-se listar o elevado volume de
informagdes relacionadas ao projeto e falta de familiaridade com diversos tdpicos. As
disciplinas de graduacdo auxiliaram nesse ponto de forma que alguns dos tépicos utilizados
foram apresentadas durante o curso. Entretanto, diversos topicos ndo abordados durante o
curso, provavelmente por serem especificos das areas relacionadas ao projeto, mostraram-se

relevantes.
3.6. Consideracdes Finais

Neste capitulo foi apresentado as atividades desenvolvidas para o projeto do trabalho
de conclusdo do curso. Discutiu-se em detalhes os modelos utilizados, o desenvolvimento e

implementacéo do filtro, bem como as simulagdes realizadas e os resultados obtidos.

No capitulo seguinte é apresentada uma analise a respeito do trabalho desenvolvido,
seu relacionamento com o curso de graduacdo e 0s possiveis trabalhos futuros. O capitulo

também apresentara uma discussao sobre o curso de graduacao.
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CAPITULO 4: CONCLUSAO

4.1. Contribuicbes

O filtro de particulas é uma abordagem viavel para resolucdo de problemas no
contexto de fusdo de dados sensoriais. Sua grande flexibilidade permite sua aplicagdo na
maioria dos sistemas desde que seja possivel criar um modelo estatistico do sistema
utilizado. Os principais desafios encontrados ao escolher esse filtro, entretanto, encontram-
se na minimizacdo das suas caracteristicas negativas, como por exemplo alto custo

computacional.

O desenvolvimento deste projeto foi desafiador, mas recompensante para o autor.
Cada problema encontrado durante o projeto foi uma oportunidade de identificar e corrigir
areas nas quais a concepcao atual do projeto era falha. Esse processo normalmente envolveu
a busca e utilizacao de novos conceitos, permitindo assim abordar uma quantidade de topicos

significativamente mais abrangente do que inicialmente estimado.

4.2. Trabalhos Futuros

Dos possiveis trabalhos futuros que podem decorrer desse projeto, se destacam:
e Paralelizacdo do Filtro

= Paralelizar a execucéo do filtro € uma excelente oportunidade de amenizar o
impacto do elevado custo computacional do filtro dado a sua elevada

compatibilidade com técnicas de paralelizacéo.

e Analisar a viabilidade de executar o filtro com um numero de particulas adaptavel

por meio da técnica de KLD-Sampling

= KLD-Sampling é uma estratégia utilizada para alterar o numero de particulas
do filtro em tempo de execucdo baseado numa anélise estatistica do grau de
certeza do filtro. Ou seja, quanto maior for o grau de certeza de que o estado

estimado é correto, menos particulas serdo utilizadas. Por outro lado, quanto
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menor for o grau de certeza de que o estado estimado é correto, mais

particulas serdo utilizadas.
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