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RESUMO

OLIVEIRA, G. Estratégia de controle hibrida para exoesqueleto do joelho
utilizando realimentagao de biosinais. 2024. 60 p. Monografia (Trabalho de
Conclusao de Curso) - Escola de Engenharia de Sdo Carlos, Universidade de Sao Paulo,
Sao Carlos, 2024.

A reabilitacao robdtica tem se mostrado uma ferramenta promissora para auxiliar na
recuperacao de pacientes com deficiéncias motoras. Considerando este contexto, o presente
projeto de conclusao de curso propoe o desenvolvimento e a analise de um sistema de
controle hibrido para um exoesqueleto de joelho, utilizando a realimentacao de biossinais.
A estratégia de controle hibrida incorpora dados angulares do joelho para compensar o
desalinhamento entre o movimento humano e o robo, controlando a interagao fisica entre a
perna do paciente e o dispositivo robético. A abordagem de controle é adaptativa, baseada
no principio de Assist-as-Needed (Assisténcia conforme Necessario). O projeto enfatiza
a importancia da seguranca no desenvolvimento de sistemas de reabilitagao robética. A
integracao de mecanismos de feedback e controle adaptativo visa reduzir o risco de lesoes
e desconforto, garantindo que o exoesqueleto funcione em harmonia com o movimento
natural do joelho. A eficiacia do sistema foi avaliada mediante a testes experimentais com
individuos saudaveis, utilizando métricas de desempenho motor, conforto e seguranca.
Esta abordagem melhora a eficidcia e a seguranca dos sistemas de reabilitacao robdtica,
contribuindo para o desenvolvimento de estratégias de assisténcia robodtica mais eficientes

e seguras.

Palavras-chave: Controle hibrido. Biosinais. Exoesqueleto. Redes Neurais. Robotica de

Assisténcia. Reabilitacao.






ABSTRACT

OLIVEIRA, G. Hybrid control strategy for knee exoskeleton using biosignal
feedback. 2024. 60 p. Monograph (Conclusion Course Paper) - Escola de Engenharia de
Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2024.

Robotic rehabilitation has proven to be a promising tool for assisting in the recovery
of patients with motor impairments. Considering this context, the present final year
project proposes the development and analysis of a hybrid control system for a knee
exoskeleton, utilizing biosignal feedback. The hybrid control strategy incorporates angular
data from the knee to compensate for misalignment between human movement and the
robot, controlling the physical interaction between the patient’s leg and the robotic device.
The control approach is adaptive, based on the principle of Assist-as-Needed. The project
emphasizes the importance of safety in the development of robotic rehabilitation systems.
The integration of feedback mechanisms and adaptive control aims to reduce the risk of
injury and discomfort, ensuring that the exoskeleton operates in harmony with the natural
movement of the knee. The system’s effectiveness was evaluated through experimental
tests with healthy individuals, using metrics of motor performance, comfort, and safety.
This approach enhances the effectiveness and safety of robotic rehabilitation systems,

contributing to the development of more efficient and safer robotic assistance strategies.

Keywords: Hybrid Control. Biosignals. Exoskeleton. Neural Networks. Assistance robotics.
Rehabilitation.
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1 INTRODUCAO

O Acidente Vascular Cerebral (AVC), uma preocupagao de saide global significativa,
¢é a principal causa de incapacidades permanentes. Estima-se que a prevaléncia do AVC,
bem como de outras doencas neurolégicas, impactara a vida de aproximadamente 350
milhoes de pessoas até 2030 (Pérez-Ibarra; Siqueira; Krebs, 2015). Os robds utilizados em
sessoes de reabilitagdo podem proporcionar um treinamento mais intensivo e frequente,
reduzindo a carga de trabalho do terapeuta em comparacgao com as formas convencionais
de treinamento de marcha assistida, além de auxiliar o paciente com suporte de peso

corporal (Koopman et al., 2014).

As abordagens classicas de assisténcia robdtica tendem a considerar apenas as
informacoes dindmicas e cinematicas do robo. No entanto, a interacao desses robos
com humanos durante o treinamento terapéutico exige um alto grau de seguranca e
confiabilidade. Os dispositivos roboticos de reabilitacao devem ser capazes de identificar
as atividades realizadas pelo usudrio/paciente e adaptar sua assisténcia para atingir os
objetivos de treinamento pré-definidos. Portanto, o monitoramento da atividade fisica
humana e a retroalimentagao desta informagao no sistema de controle sao cruciais para
o projeto de estratégias de assisténcia robotica mais eficientes e seguras. Nesse contexto,
o controle de impedancia é uma abordagem de assisténcia roboética de reabilitagao na
qual o auxilio oferecido pelo robd é ajustado pelo sistema conforme a necessidade do
paciente. O controle de impedancia pode ser definido como um esquema adequado para
lidar com tarefas de interacdo mecanica que envolvem processos de contato, relacionando-se

dinamicamente entre as varidveis de movimento do manipulador e a forga de contato (Song;
Yu; Zhang, 2017).

Pesquisas relacionadas a exoesqueletos para uso humano comecaram a surgir por
volta de 1960, porém, focadas no aprimoramento de habilidades em humanos aptos,
principalmente para uso militar (Dollar; Herr, 2008). Técnicas de implementacgao destes
dispositivos robéticos para assisténcia e reabilitacao de caminhada, tiveram inicio somente
no século XXI. A terapia de caminhada é um método de reabilitacao utilizado para
melhorar a saude e habilidade de locomocao de individuos com alguma disfungao nos
membros inferiores, tendo isto em vista, o treinamento locomotor assistido por robos pode

ter efeitos benéficos para os sistemas cardiovasculares e musculoesquelético (Hubli; Dietz,

2013).

1.1 Justificativa

Tradicionalmente, o controle de trajetoria em sistemas de interacao humano-robo

assume um alinhamento perfeito entre os membros do robo e da pessoa. No entanto, na
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pratica, esse alinhamento perfeito raramente é alcancado devido as varia¢oes antropomor-
ficas entre os usudarios quando vestem os dispositivos robdticos. O uso de biossinais na
realimentacao do sistema de controle do exoesqueleto pode permitir uma melhor interacao
entre o exoesqueleto e o usuario e uma assisténcia personalizada e mais ergonémica do

usuario.

Dispositivos de sensoriamento vestiveis vem sendo cada vez mais implementados
no monitoramento da atividade fisica humana, sendo os sensores inerciais (IMUs) e de
forga resistivos (FSR) os mais usados para medi¢ao de sinais cinemaéticas, e dindmicas
respectivamente para analise de marcha fornecendo métodos computacionais de quantifica-
¢ao e analise de movimento que ajudam aos terapeutas para complementar as avaliagoes
e atividades planejadas na recuperagao de seus pacientes (Wind et al., 2009). No en-
tanto, problemas persistentes relacionados a alto tempo de processamento da informacao,
fixacdo dos sensores no corpo, complexidade na calibracdo, vida 1util e desgaste nestes
sensores (Seel; Kok; McGinnis, 2020; Swanson et al., 2019) tem motivado pesquisas no
desenvolvimento de novas tecnologias baseadas em sensores suaves (Amjadi et al., 2016;
Vargas-Valencia et al., 2021) os quais se caracterizam por ser construidos com materiais e
estruturas altamente biocompativeis para obter sistemas macios, elasticos e deforméveis

que vao além das abordagens rigidas tradicionais.

1.2 Objetivos

O objetivo deste Trabalho de Conclusao de Curso é o desenvolvimento e andlise
de um sistema de controle hibrido no exoesqueleto Exo-TAO utilizando realimentacao de

biossinais.

O presente trabalho tem como diferencial de incorporar biossinais para obter uma
estratégia de controle mais eficiente. Foi utilizado o sistema sensorial vestivel desenvolvido
em (Jaimes; Oliveira; Siqueira, 2023) para projetar um sistema de controle de posigao
que compense o desalinhamento entre o movimento humano e o rob6. Adicionalmente,
utilizando um conjunto de sensores de forca, foi realizado uma realimentacao no sistema

para um controle de reacao do robho.

A Figura 1 ilustra o escopo deste projeto de pesquisa, partindo dos resultados obtidos
em (Jaimes; Oliveira; Siqueira, 2023), aprimorando-os e projetando a implementacao da

estratégia de controle hibrida no exoesqueleto Exo-TAO.
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Exo-TAO

1
i
7z |
|
|
1

N, (g

Feedback de biosinais

(a) (b)

Figura 1 — Configuragdo experimental (a) Sistema vestivel para monitoramento de ativi-
dade fisica. (b) Proposta de estratégia de controle hibrida para exoesqueleto
do joelho.
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2 EMBASAMENTO TEORICO

Neste capitulo, sao apresentados os fundamentos tedricos relacionados com cada
fase do desenvolvimento deste projeto. A seccao sobre redes neuronais explica a utilizagao
da rede de backpropagation para estimar os angulos do joelho. Em seguida, a seccao sobre
controle digital explica o funcionamento do sistema de controle que rege o exoesqueleto,
abrangendo os sistemas de controle concebidos em tempo continuo (PID), implementados
num sistema computador em tempo discreto, com funcionamento em tempo real para
regular a velocidade, a posicao e a forca do atuador do exoesqueleto. Por fim, na seccao
de célculo do angulo de Euler, é detalhada a teoria utilizada para configurar os sensores
inerciais IMU, que servem de referéncia para validar a estimativa dos angulos do joelho

pela joelheira.

2.1 Redes neurais artificiais

Uma rede neural pode ser definida como um processador distribuido paralelo,
composto de simples unidades de processamento, que tem uma propensao natural em

armazenar conhecimento experimental e torna-lo util (Haykin, 1998).

Para o entendimento do funcionamento basico de uma rede neural artificial (RNA),
se faz necessario compreender primeiramente a unidade fundamental de processamento da
informacao de uma RNA, o neurdnio artificial. O neurénio artificial pode ser apresentado
pelo seu modelo béasico composto por trés elementos (Iyoda, 2000), como apresentados

pela Figura 2.

X1 ==| Wi
X2 = | w2 ’_’%

)=
xR e (W[ — 2

XnC— == | Wn

Figura 2 — Modelo basico de um neurotnio artificial

« Conjunto de sinapses: também denominadas conexdes de entrada, estas sao modula-
das por pesos sinapticos estabelecidos. Assim, para um sinal de entrada X; conectado

a0 neuronio j, o peso sinaptico W; atua multiplicando o valor de X;. No caso de uma
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entrada constante, esse peso sinaptico especifico é referido como bias (polarizagao)
(Iyoda, 2000).

» Juncao somadora: tem a fungdo de realizar a combinacgao aditiva dos sinais de entrada,

cada um ponderado pelos respectivos pesos sinapticos associados ao neuronio

o Funcao de ativagao: apresenta um efeito de saturagao na saida do neurdnio.

Portanto, podemos expressar em formular matematicas a relagao da saida de um

neuronio pelas equacoes 2.1 e 2.2.

SX W= X, W+ Xy Wa o+ o+ X, - W, (2.1)

i=1

n

y=90_ X W) (2.2)

=1

Temos entao a equagao 2.3.

Assumindo agora uma notagao vetorial para as entradas e pesos sinapticos, dadas

por:

x =X, X, ..., X"

w = Wy, Wa, ..., W,]"

Podemos entao reescrever a equacao 2.3, pela equacao 2.4 que descreve a ativagao

de um neuronio.

y(w,z) = glw'z) (2.4)

Como apresentado anteriormente, as func¢oes de ativagao visam apresentar um efeito
de saturagao na saida dos neurdnios, portanto, para cada objeto se faz necessario a utilizagao
de diferentes funcgoes de ativagao, as quais, podem ser definidas em dois grupos principais,
as fungoes parcialmente diferenciaveis — possuem pontos cujas derivadas de primeira
ordem sao inexistentes — e totalmente diferenciaveis — derivadas de primeira ordem
existem, e sdo conhecidos em todos os pontos de seu dominio (Silva; Spatti; Flauzino, 2010).
Os exemplos de fungoes de ativacao dos tipos parcialmente e totalmente diferenciaveis

estao apresentados nas Figuras 3 e 4, respectivamente.-
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Degrau simétrico

Relu
Figura 3 — Funcdes de ativacao parcialmente diferenciaveis.

| —

Tangente hiperbdlica Sigmoide

Figura 4 — Fungoes de ativacao totalmente diferenciaveis.

Temos pelas equagoes 2.5 e 2.6, as fungoes de ativacao degrau simétrico e Relu,

respectivamente apresentadas na Figura 3.

1, x>0
-1, <0
x, v >0
g(x) = (2.6)
0, <0

E para as fungoes de ativacao totalmente diferencidveis, tangente hiperbdlica e

sigmoide (Figura 4) descritas pelas equagoes 2.7 e 2.8, respectivamente.

(2.7)
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1

W)= e

2.1.1 Redes neurais Perceptron multicamadas

As redes Perceptron de miultiplas camadas (PMC) sao caracterizadas pela presenca
de pelo menos uma camada intermediaria (escondida) de neur6nios, situada entre a
camada de entrada e a respectiva camada neural de saida. Consequentemente, as redes
PMC possuem no minimo duas camadas de neuronios, os quais estarao distribuidos entre

as camadas intermedidrias e a camada de saida (Silva; Spatti; Flauzino, 2010).

Um exemplo de rede neural com topologia PMC, pode ser observada pela Figura
5, apresentando em sua forma trés neurdnios em sua camada de entrada, duas camadas

ocultas contendo 10 neurdnios cada, e por fim, um neurénio em sua camada de saida.

Figura 5 — Rede neural Perceptron de multicamadas

Estas redes PMC, pertencem a arquitetura feedforward, e como sao redes multica-
madas, apresentam em sua forma ao menos uma camada oculta. O papel dos neurénios de
sua camada escondida, neste tipo de arquitetura, é de intervir entre a camada de entrada e
a de saida, tendo suas conexoes sempre no sentido (como seu nome induz — feedforward)
entrada — saida (Furtado, 2019).

2.1.1.1 Back-propagation

O treinamento de redes neurais do tipo Perceptron Multicamadas (MLP) é realizado
por meio de aprendizado supervisionado, empregando algoritmos de retro propagacao de
erros (error back-propagation algorithm para a otimizagdo dos pesos sindpticos (Haykin,
1998).

O aprendizado por retro propagacgao de erros consiste basicamente em dois passos, o

de forward pass e backward pass. O passo de forward pass, implica na transmissao dos dados
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de entrada através da arquitetura da rede neural, culminando na geracdo de uma saida. O
procedimento ¢é executado sequencialmente, iniciando na camada de entrada e progredindo
até a camada de saida, perpassando todas as camadas intermediarias, também conhecidas
como camadas ocultas. O resultado da etapa de forward pass é uma saida predita pela

rede, sendo entdao usada para calcular o erro de predigao (error signal) (Haykin, 1998).

Por sua vez, este erro de predicao é propagado no sentido oposto as direcoes das
conexoes sinapticas, ajustando entao os valores dos pesos das entradas dos neurtnios das

camadas da rede neural, esta etapa entao é definida como backward pass (Haykin, 1998).

2.2 Controle digital

Diferente do controle continuo, o controle digital opera com dados em intervalos
de tempo discretos, permitindo uma maior flexibilidade e precisao através do uso de
algoritmos computacionais avancados e facilidade de integragao com sistemas digitais
modernos. A topologia basica de um controlador digital, pode ser observada na Figura 6
(Franklin et al., 1998).

T, +
rit) rikT) e(kT) Controlador ulkT) » D/A ult) » P:;a(n;a y(t)
A s
Clock —
A
T
l A/D 4—\ v{t) Sensor |«

Figura 6 — Diagrama de blocos de um sistema com controle digital

No processo de controle digital de sistemas, a aquisicdo e manipula¢do do sinal
de saida da planta sao criticas, conforme ilustrado na Figura 6. Inicialmente, um sensor
analogico captura o sinal de saida continuo y(t). Posteriormente, este sinal é amostrado
periodicamente com um intervalo de tempo definido T, conhecido como periodo de
amostragem. Apods a amostragem, o sinal analégico é convertido em um formato digital
por meio de um conversor analégico-digital (A/D). O resultado dessa conversdo é o sinal
discretizado y(kT), onde k denota o indice de amostra correspondente aos multiplos do

periodo de amostragem.

Simultaneamente, o sinal de entrada r(t) também é submetido a um processo de
amostragem e conversao analoga para a forma discretizada r(kT). A subtragao do sinal
discretizado de saida y(kT) pelo sinal de entrada amostrado r(kT) resulta na formagao
do sinal de erro discreto e(kT)(Franklin et al., 1998).

Apés a formagao do sinal de erro discreto e(kT), este é encaminhado para o

controlador. O papel do controlador é fundamental, pois, uma aproximacao discreta das
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equagoes diferenciais que foram inicialmente projetadas para regular o sistema. Essa
implementagao discreta transforma o sinal de erro e(kT) em um sinal de controle u(kT),
através da aplicacdo de algoritmos especificos que refletem as estratégias de controle

desejadas.

Posteriormente, o sinal de controle u(kT) é convertido de sua forma digital para
analdgica por meio de um conversor digital-analégico (D/A). Este processo de conversao
¢é essencial para a interface entre o controlador digital e os componentes analogicos do
sistema, como os atuadores. O sinal u(t), agora em sua forma continua, é entdao aplicado ao
atuador. Este ultimo atua diretamente no processo ou na planta sob controle, impactando
as variaveis do sistema conforme o ajuste realizado pelo sinal de controle, e assim busca-se

atingir o desempenho desejada para o sistema(Franklin et al., 1998).

2.2.1 Controlador PID

O PID, abreviacao de Proporcional, Integral e Derivativo, ¢ um dos algoritmos
de controle mais prevalentes na engenharia de controle. Ele é empregado para regular
e controlar a saida de um sistema em resposta a um sinal de erro, o qual representa a
discrepancia entre o valor desejado (referéncia) e o valor real obtido do sistema. O controle
de realimentacao proporcional, representado pela equacao 2.9, estd associado a mitigacao
de erros causados por distirbios e ao aumento da velocidade de resposta do sistema.
Entretanto, é observado que mesmo com esse tipo de controle, persistem erros de estado
estacionario, além de ser comum a ocorréncia de um elevado valor de overshoot durante o

regime transiente (Franklin et al., 1998).

u(t) = Ke(t) = D(s) = K (2.9)

A acao integral, equagao 2.10, é proporcional a acumulacao dos erros ao longo do
tempo. Essa integragao permite a corricao de erros residuais, eliminando o erro estatico
que persiste apos a agdo proporcional. A agdo integral visa eliminar o erro acumulado ao

longo do tempo, ajustando gradualmente a saida do sistema (Franklin et al., 1998).

K
=7

K

/Ot e(n)dn = D(s) = Tos (2.10)

u(?)

A acao derivativa, equagao 2.11, é proporcional a taxa de variagao do erro. Esta
parte do controlador antecipa o comportamento futuro do erro com base em sua taxa de
variacao atual. A acdo derivativa é eficaz para prevenir oscilagbes excessivas e estabilizar a

resposta do sistema.

u(t) = KTpé(t) = D(s) = KTps (2.11)
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Aproximando as equacoes 2.9, 2.10 e 2.11 de controle, para equacoes algébricas de
controle digital, temos entao as equagoes 2.12, 2.13 e 2.14, para os controles proporcional,

integral e derivativo, respectivamente.

u(k) = Ke(k) (2.12)
w(k) = u(k — 1) + gTe(k) (2.13)
(k) = KJTD le(k) — e(k — 1)] (2.14)

2.3 Calculo dos angulos de Euler

Nesta secao, descreveremos o método utilizado para calcular os angulos de Euler
com base nos dados vetoriais de acelerdmetros (8) e giroscopios (5 =[x, 9y, 9:]), utilizando
como ferramenta o filtro de Mahony. Esta ferramenta é um algoritmo de filtragem que
combina informagoes do acelerdmetro e do giroscopio para estimar a orientacao do objeto
no espaco. Ele utiliza uma abordagem de filtro de Kalman complementar para realizar

essa fusao de sensores (Ludwig; Burnham, 2018).

Primeiramente devemos calcular o erro entre a orientacao estimada e a orientagao
medida pelo acelerémetro, definido como o produto vetorial entre o vetor gravitacional
estimado (?), ou seja, os componentes do vetor gravitacional estimado do quaternion
atual, e o vetor gravitacional medido (8), sendo as leituras do acelerometro. Podemos
observar o célculo do erro na equacao 2.15.

— — —
e =vXa

X (2.15)

O erro calculado é entao usado para aplicar feedback proporcional e integral para
corrigir os quaternions do giroscépio. Isso é feito ajustando as taxas de rotacao dos
giroscopios (5) conforme o erro €. As taxas de rotagao ajustadas sao entao usadas para
integrar os quaternions. Isso é feito multiplicando as taxas de rotacao ajustadas pelos
quaternions atualizados (cﬁ = [qa, @B, Ge, qa]) Pela metade do intervalo de tempo entre as
leituras dos sensores e adicionando ao quaternion atual ((Z; = (90, @1, G2, q3]), como esta

apresentado nas equagoes 2.16 a 2.19 (Ludwig; Burnham, 2018).

At
qa=qO+(—qb-gx—qc-gy—qd~gz)-7
At

qbqu+(qa-9x+qc-gz—qd-gy)-7

(2.16)

(2.17)
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At

qczqﬁ(qa-gy—qb-gﬁqd-gx)-7 (2.18)
At
qdZQ3+(qa~gz+qb~gy—qc-gx)-7 (2.19)

Uma vez que os quaternions sao atualizados pelo filtro de Mahony, podemos
converté-los em angulos de Euler observados pela Figura 7. Isso é feito usando equagoes
trigonométricas que calculam os dngulos Roll (¢), Pitch (0) e Yaw (), como podemos

observar pelas equagoes 2.20, 2.21 e 2.22, respectivamente.

Roll = atan?2 (2 (- +aq-qg), 1-2-(¢+ qg)) (2.20)
Pitch =asin (2-(q0 - g2 — g3 - q1)) (2.21)
Yaw = atan?2 (2 (@ @2+ q0-q3), 1—2(ga + q§)> (2.22)

Figura 7 — Representacao dos angulos de Euler em um plano cartesiano
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3 MATERIAIS E METODOS

Nesta secao apresentar-se-a o sistema sensorial vestivel projetado para a analise de
atividades fisicas humanas, bem como os algoritmos formulados para o controle hibrido de

exoesqueletos, os quais empregam a realimentagao de biossinais.

A primeira etapa do trabalho foi a de desenvolvimento do sistema sensorial vestivel,
apresentado pela Figura 8, que tem como conceito o uso de sensores vestiveis suaves para
o monitoramento da atividade fisica da pessoa. A proposta do sistema sensorial consta de
modulos de aquisicao e processamento de dados, um para cada articulacao dos joelhos.
Os modulos tém sua comunicagao com um microcontrolador responsavel pela coleta,
segmentacao dos dados brutos e envio destes dados em tempo real usando tecnologias de
comunicagao Wi-Fi, para outro microcontrolador responséavel pela inferéncia do angulo

do joelho, utilizando uma rede neural MLP treinada para cada conjunto de sensores dos

W I‘%
fibra optica

©R) A

microcontrolador

diferentes joelhos do usuario.

Joelheiras instrumentadas

N s \ /
N e \ 7
< - \ /

Sensor flexivel  Sepsor de

Figura 8 — Sistema de sensores vestiveis proposto para o monitoramento de atividade fisica
humana

Para os dados de entrada das redes neurais utilizadas na inferéncia dos angulos
dos joelhos, foram dispostos sensores do tipo flexivo capacitivo e de fibra ética, como
apresentados pela Figura 8, acoplados em joelheiras modificadas para o presente projeto.
Adicionalmente, foram incorporados sensores inerciais, de Xsens (item 3 da Figura 10),
para validar os dados obtidos pelos sensores flexiveis capacitivos e de fibra 6tica (POF).
Estes sensores inerciais sao IMUs que combina magnetometros, acelerometros e giroscopios,

e sera detalhado na se¢do de validacao de dados.

Apés uma analise positiva dos resultados obtidos pela inferéncia dos angulos das
redes MLP, foi iniciado o processo de implementacao dos biossinais do sistema sensorial
vestivel. Este processo inclui a integracao desses biossinais com um sistema de controle

abrangente, composto por controladores de impedancia, torque e velocidade.
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3.1 Sistema sensorial vestivel

Como apresentado previamente no presente trabalho, para a fixacdo dos sensores
flexivos capacitivos e sensores de fibra oOtica a regiao do joelho, foram utilizados duas
joelheiras ortopédicas de Neoprene (combinacao de uma fatia de borracha expandida sob
alta pressao e temperatura, revestida de tecido), semelhante a apresentada pela Figura 9,

modificadas para possibilitar a inser¢ao dos sensores.

Figura 9 — Joelheira ortopédica de Neoprene

A figura 10 apresenta a montagem experimental do sistema vestivel, composto
pelas joelheiras e sensores. Os sensores flexiveis capacitivos e de fibra dtica (itens 1 e 2,
respectivamente) foram posicionados nas se¢oes laterais de cada joelheira, permitindo
medig¢oes no plano sagital do movimento do joelho. Para garantir o alinhamento e fixacao
adequados dos sensores na joelheira ortopédica, foram desenvolvidas pecas em manufatura
aditiva (impressdo 3D) e costuradas nas posigoes corretas (item 4 da Figura 10), impedindo

a variacao da posicao dos sensores durante os movimentos.
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Figura 10 — Montagem experimental do sistema vestivel 1. Sensor Capacitivo. 2. Fibra
oOtica. 3. Xsens. 4. pecas em 3D.

Adicionalmente, foram incorporados sensores inerciais (IMUs), que combinam
magnetometros, acelerometros e giroscopios (item 3 da Figura 10), para validar os dados
obtidos pelos sensores flexiveis capacitivos e de fibra 6tica (POF), utilizando para treinar
as MLPs como saida desejada. E por fim, os dados dos sensores sao conectados a placa de

aquisicao de dados via barramento.

3.1.1 Sensores de aquisicao de dados da joelheira

Para a obtenc¢ao dos dados provenientes da joelheira instrumentada, empregados
como entrada nas redes de Perceptrons Multicamadas (MLPs), foram empregados sensores
de tipo flexivo capacitivo e de fibra Optica. Os sensores flexivos capacitivos utilizados
consistem nos Sensores de Flexao de 2 Eixos da empresa Bend Labs, os quais sao dispositivos
bidirecionais e flexiveis, capazes de medir dois dngulos em planos ortogonais. Como
resultado, eles proporcionam uma representagao precisa da orientagao tridimensional de
um objeto. A disposicao dos pinos do sensor capacitivo é ilustrada na Figura 11, e é
possivel observar pelos pinos SDA e SCL que a comunicacao deste sensor ocorre por meio

do protocolo de comunicagao 12C.
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Figura 11 — Disposicao das portas do sensor flexivo capacitivo

Os sensores flexiveis capacitivos desenvolvidos pela Bandlabs operam com base
no fendmeno da capacitancia. Estes dispositivos sdo construidos com materiais flexiveis e
incorporam capacitores que modificam sua capacitancia em resposta a flexdo ou deformacao.
Durante o processo de flexdo ou compressao do sensor, ocorre uma variacdo na distancia
entre as placas do capacitor, resultando em uma alteracdo na capacitancia do sistema. Esta
variagao capacitiva é entao quantificada e convertida em um sinal elétrico, cuja amplitude é
diretamente proporcional a magnitude da deformacao experimentada pelo sensor. Podemos

observar o sensor e uma representagao de seu funcionamento pela Figura 12.
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Figura 12 — Sensor flexivo capacitivo da Bandlabs

Para a implementacao dos sensores de fibra otica, foi desenvolvido o circuito
ilustrado na Figura 13. Esse circuito é composto primordialmente por um fototransistor,
que emite um feixe de luz direcionado a uma fibra 6tica. A referida fibra apresenta uma
incisao sutil, conforme demonstrado na Figura 14, projetada para induzir uma perda
controlada na intensidade luminosa, aumentando assim a sensibilidade do sensor. O feixe
de luz modificado é captado por um fotorreceptor, responsavel por converter o sinal

luminoso em sinal elétrico.
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Figura 14 — Incisdo na fibra 6tica para aumentar a sensibilidade do circuito

Por fim, para auxiliar no treinamento das redes MLPs, e validar os resultados dos
angulos calculados pelo sistema sensorial, foram utilizados Unidades de Medigao Inercial
(IMU, do inglés Inertial Measurement Unit), que consiste em um dispositivo eletrénico
que mede e relata a velocidade, orientagao e forcas gravitacionais de um objeto, utilizando
uma combinagao de acelerébmetros e giroscopios. Acelerdmetros sao sensores que medem
a aceleracao linear (3: laz, ay, a.]), portanto, detectam a aceleragdo em uma ou mais
dire¢des ao longo de seus eixos. A aceleragdo medida pode ser a resultante de fendmenos
fisicos (como a movimentagao ou vibragao do dispositivo) e/ou a aceleragao devida a

gravidade. As informagdes dos acelerometros contidos nas IMUs sao cruciais para:

o Determinar a orientagao do dispositivo em relacao a gravidade
e Medir a aceleragao linear causada pelo movimento ou pela inércia do dispositivo.
_>
Giroscopios, por outro lado, medem a velocidade angular (9= [g,, gy, g]), ou seja,

o quao rapido um objeto esta girando em torno de um ou mais eixos. O giroscopio nao é

afetado pela aceleracao linear, mas apenas pela rotacao, e seus dados permitem:
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e Determinar e monitorar a rotacao do dispositivo.

o Estabilizar a orientacdo do dispositivo ao compensar as rotacoes detectadas.

Com base nos sinais do acelerémetro e giroscépio, podemos definir entdo os angulos
de Euler apresentados na Figura 7, pelas equagoes 2.20, 2.21 e 2.22 dos angulos Roll (¢),
Pitch (0) e Yaw (1), respectivamente.

Utilizando um par de IMUs para cada joelheira instrumentada, foi possivel calcular
o angulo do joelho mediante a determinacao do angulo relativo entre as IMUs. Estes dados
foram empregados como saida desejada para o treinamento de redes neurais implementadas
no estudo. Estes sensores apresentados sao conectados por sua vez a placa de aquisicao
de dados (microcontrolador da familia ESP32), via barramento, estando apresentada na

Figura 15.

Figura 15 — Placa de aquisicao de dados.

A placa de aquisi¢ao de dados é composta basicamente por um microcontrolador
da familia ESP32, e os conectores e trilhas dos barramentos dos sensores. A ESP32 é uma
familia de microcontroladores de baixo custo e baixa poténcia desenvolvida pela Espressif
Systems, a ESP32 é conhecida por sua grande versatilidade e recursos avangados, incluindo
conectividade Wi-Fi e Bluetooth integrada, interfaces SPI, 12C, UART, ADC, DAC. Sua

arquitetura de dois nicleos, baseada em um processador Xtensa LX6, oferece um bom
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desempenho computacional (Espressif, 2023). Os dados sem processamentos coletados pela
placa de aquisicao, a partir da leitura dos sensores, sao entao enviados para a placa de
processamento de dados via WI-FI, que realiza a inferéncia dos angulos a partir das MLPs

previamente treinadas.

3.2 Treinamento e funcionamento da rede neural MLP

Utilizando sensores fixados nas joelheiras e conectados a uma placa de aquisi¢ao
de dados, conduziram-se testes com multiplos participantes para a coleta de informagoes,
destinadas ao treinamento de redes neurais do tipo MLP. A fim de realizar uma analise
preliminar dos dados, foi elaborado um protocolo de testes, onde foram definidos trés
diferentes tipos de atividades, as quais foram executadas uma vez por cada participante e
os dados foram coletados e registrados em uma base de dados. A Tabela 1 apresenta uma

visao geral do protocolo de testes adotado.

Tipo do teste Duracao do teste
Caminhando a 1 m/s 30 s
Caminhando a 2 m/s 30 s
Sentando e levantando D repeticoes

Subindo e descendo escadas 60 s

Tabela 1 — Protocolo experimental para coleta de dados

Apébs a primeira coleta de dados destinada a treinamento da rede neural, foi
realizado um shuffle no conjunto de dados, e entdo foi dividido uma parcela de 75% para
treinamento, e 25% para inferéncia, analisando assim o desempenho do modelo, evitando

possivel overfitting da rede ao conjunto de dados e estimativa de erros.

Diversas analises de topologia de rede foram realizadas, manipulando hiperparame-
tros, quantidade de neurénios nas camadas ocultas e nimero de camadas ocultas. Contudo,
a configuragao que demonstrou os resultados mais promissores na estimativa do angulo
do joelho corresponde aquela delineada na Figura 5. As caracteristicas basicas das redes

neurais escolhidas e desenvolvidas estao apresentadas na Tabela 2.

Rede neural MLP
Camada de 1% camada 2% camada Camada de
entrada oculta oculta saida
n® de 3 10 10 1
neuronios
Fur.lgao~de Relu Tangente hiperbdlica | Tangente hiperbdlica Relu
ativacao

Tabela 2 — Caracteristicas das redes neurais MLP de estimativa de angulo.
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O treinamento das redes neurais foram realizados utilizando a linguagem de pro-
gramagcao Python, e bibliotecas especificas como PyTorch, Sklearn, TensorFlow, entre
outras. Apés realizar a etapa de treinamento (denominada neste trabalho como Etapa
I), iniciou-se a etapa de testes e inferéncia (Etapa II) do treinamento da rede neural,
para avaliar se o treinamento apresentou algum problema de overfitting. Para esta etapa,
foi realizada uma nova coleta de dados, com novos usuarios, e este conjunto de dados foi
passado pela rede neural para avaliar o desempenho da saida da MLP em comparacao

com a saida desejada (4ngulos retornados pelas IMUs).

Apos verificar na etapa II que as redes apresentam bom desempenho e confiabilidade
nos resultados, iniciou-se a etapa de implementagao da MLP no firmware da ESP32 (Etapa
ITT) embarcado na joelheira paramentada. Na etapa III do processo de inferéncia dos
angulos calculados pelo sistema sensorial, diferente do que estava sendo realizado nas
etapas I e II, a inferéncia dos angulos passaram a ser online, ou seja, os angulos sao

calculados em tempo real pelo sistema, enquanto o usuario caminha.

3.3 Controle com realimentacao de biossinais

A Figura 16 apresenta o sistema de controle com realimentacdo de biossinais
proposto neste projeto. Este sistema é baseado na estrutura convencional de controladores
para atuadores eldsticos em série (dos Santos; Caurin; Siqueira, 2017), a qual utiliza
um controle em cascada com trés lagos de realimentacao. Estes lacos de controle sao o
controle de impedancia e controle de torque do atuador na saida da carga e controle de
velocidade do motor. Na Figura pode-se observar em blocos azuis os elementos adicionais
que incorpora o sistema de controle proposto, incluindo uma estratégia de controle hibrido,

a joelheira e o controle de compensacao de gravidade.

C ¢ii0

da gravidade Humano
it d + J ¢ atuador
Trajetoria de hibrido 0 r B contale o Controle Controle de ‘
referencia #(}—b h:;c;ézmz —PC ) de Torque Velocidade do
do robd + " + i + do atuador motor (EPOS) \
Ae 0 velocidade
< I do motor
T A + Torque do
0 | Booder ¢ S
h
Toelheira  Le

Figura 16 — Diagrama de controle com realimentacao de biossinais do exoesqueleto para
assisténcia do joelho

3.3.1 Controle de velocidade do motor

O sistema de controle de velocidade do motor é um controle de baixo nivel im-

plementado por um sistema de placas EPOS (Positioning Controller). A EPOS é um
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controlador de motor de alta precisdo, que recebe comandos de posi¢ao e sinais de feedback
do sistema e ajusta a saida para alcancar a posicao desejada de maneira precisa e eficiente.
A comunicagao entre as EPOS e o computador é realizada através de uma placa CAN insta-
lada no computador para comunicagdo CANopen a uma taxa de transmissao de 500 kbit /s
(Santos, 2013). A placa EPOS realiza o controle de velocidade do motor utilizando um
controlador Proporcional-integral, PI. O ajuste dos banhos desde controlador é realizado

por um autoajuste configurado previamente no software da placa EPOS.

3.3.2 Controle de Torque

O controle de torque do atuador é realizado pelo ajuste da deformacao de uma
mola torsional colocada em série entre a transmissao e a carga dentro atuador. Por meio
da medicao da deformacao na mola, o problema de controle de forca é simplificado a um
controle de posicao ou deformacao da mola ao ser metida a um torque. Um controle PID
de realimentacao gera uma saida desejada a partir do erro de torque calculado a partir da

deformagao da mola. A lei de controle é determinada pela seguinte equagcao:

wfn =er X KPID (31)

onde e, = 7, — 7%, é 0 erro de torque entre o sinal desejado de torque recebido

o
pelo controle de impedancia (7¢) e torque real que experimenta a mola de tor¢ao (7,) do
robo determinado pela lei de Hooke. Kp;p, € o controlador PID descrito na secao 2.2.1,
este controlador minimiza o erro de torque para gerar uma saida desejada de velocidade
de rotagao do motor (w?), para o controlador PI de velocidade da EPOS. o Controle de
torque em cascata com o de velocidade, apresenta um controlador do tipo PI, e controle
de impedancia esta por sua vez em cascata com o de torque, como observado pela Figura

16, apresentando um controle PD (proporcional-derivativo).

3.3.3 Controle de impedancia

O controle de impedancia do atuador elastico em série da junta do exoesqueleto,
regula a relagdo dindmica entre for¢ca e movimento por meio de um controle feedback em

malha fechada determinado pela seguinte equacao:

74 = K,(0, — 6% + B,6, (3.2)

r

Este é basicamente um controle Proporcional-Derivativo que contem ganhos K, e
B, que representam valores virtuais de rigidez e amortecimento, respectivamente, para
obter um torque desejado (7¢) dado uma referéncia, na saida do atuador. O sistema
de controle é caracterizado por uma estrutura de dois niveis, sendo um nivel interno

desempenhado pelos controladores de posicionamento (EPOS - Escravos da Rede), e outro
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nivel em cascata, coordenado pelo computador (Mestre da Rede). Os controladores de
torque e impedéncia foram desenvolvidos em linguagem de programacao C++ utilizando

a plataforma Microsoft Visual Studio, e tem seus parametros apresentados na Tabela 3.

Controlador | K, | K; | Kq4
Torque 380 | 3 | 35
Impedancia | 30 | - D

Tabela 3 — Parametros dos controladores de torque e impedancia

O sinal de entrada 6, apresentado no diagrama de blocos da Figura 16, sdo os
angulos inferidos pela rede neural MLP constituida na joelheira paramentada. Com base
na realimentagao dos biossinais dos angulos do joelho mensurados pelo sistema sensorial
vestivel, no sistema de controle do exoesqueleto do joelho, temos entdao um controle de

impedancia.

3.3.4 Controle hibrido com realimentacao de biosinais

O conceito deste controlador a inclusao da cinematica dos angulos reais das articu-
lagdes do usuario quando veste um exosqueleto dentro do sistema de controle robotico.
Tradicionalmente, o controle de trajetoria em sistemas robdticos em sistemas de interagao
humano-rob6 é assumido um perfeito alinhamento entre os membros do robd e a pessoa,
0 que representa em usar uma variavel tnica, €, para descrever o angulo da trajetéria
da junta do sistema. Se existir uma interacao que gere desalinhamento consideravel, esta
abordagem pode perder rendimento dos controladores quando analisar a eficiéncia da
assisténcia transmitida as articulagoes da pessoa. O controlador proposto aqui consiste em
aplicar uma correcao do desalinhamento entre os angulos do robd e da pessoa na trajetoria

de referéncia do robd conforme a seguinte expressao:

08 = 0,05 + AD, (3.3)

onde A6 = 0, — 0;, representa um fator de desalinhamento definido como as
diferengas dos dngulos medidos pelo encoder do atuador (6,) e a joelheira paramentada
(01), € O, 0 dngulo de referéncia aplicada a entrada do sistema de controle. Este fator é
uma aproximagao simplificada das discrepancias cinematicas nos eixos de rotagdo entre as

juntas.

3.3.5 Controle de compensacao de gravidade

A compensacao de gravidade é uma técnica crucial que visa neutralizar os efeitos
adversos da forga gravitacional sobre sistemas dindmicos. Assumindo que a gravidade

exerce uma forga constante sobre todos os objetos com massa, o objetivo do controle



41

com compensacao de gravidade é calcular e aplicar torques que neutralizem os efeitos
da gravidade, permitindo que o controlador principal do sistema se concentre em outras

dindmicas e perturbagoes.

Assumindo entdao que o compensador de gravidade deve atuar para anular o torque
gerado pela forga gravitacional de atracao do peso da perna do usuario, do sistema sensorial,
e das partes moéveis do exoesqueleto em contato com o usuario, temos entao a seguinte

equagao do compensador da gravidade em 3.4.

Koy =P -g-1,-sin(f) (3.4)

E pela equacao 3.4, P; ¢é o peso total que esta sendo calculado para o compensador,
considerando o peso da perna do usuério, somado ao peso do brago robético e os demais
sensores acoplados ao mesmo, g a aceleragao gravitacional na terra, I, o comprimento
do brago do exoesqueleto (para calculo do torque relativo) e @ o dngulo entre o vetor da
aceleracao gravitacional e do brago do exoesqueleto (para calculo da forga resultante). A
tabela 4 apresenta os parametros identificados para a realizados experimentos de validacgao

com um usuario voluntario.

Ky
Peso elo do exoesqueleto | 2.7 kg
brago exoesqueleto 0,21 m
Peso perna do usuario | 4.0 kg

Tabela 4 — Parametros do controlador de compensacgao de gravidade
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4 RESULTADOS

Conforme anteriormente delineado, o presente estudo teve como objetivo o desen-
volvimento de um sistema sensorial vestivel para a analise de atividade fisica humana, e

a realimentacao destes biossinais em sistemas de controle hibrida para exoesqueleto do

joelho.

4.1 Sistema sensorial vestivel

Para isto, foi desenvolvido uma joelheira instrumentada com sensores flexivos
capacitivos e de fibra 6ptica, para inferéncia do angulo do joelho, utilizando redes neu-
rais Perceptron de multicamadas. Apds definir os hiperparametros adequados para um
melhor resultado no treinamento das redes neuras, podemos analisar os resultados destes
treinamentos pelas curvas de MSE (Mean squared error) loss e R* de cada uma das
redes, nas Figuras 17 a 20 para as redes referentes a joelheira da perna direita e esquerda,

respectivamente.

[ oss - Joelho direito

12

10

Loss

T T T T T T T
0 50 100 150 200 250 300 350 400
Epoca

Figura 17 — loss error (Mean squared error) - joelho direito
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Coeficiente R? dados joelho direito

1.0

0.8 4

0.6

0.4 4

0.2 4
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0.0 4

—0.2 4

—0.4 4

—0.6
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0 50 100 150 200 250 300 350 400
Epocas

Figura 18 — R? - joelho direito

Loss - joelho esquerdo

Loss

T T T T T T
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Epoca

Figura 19 — loss error (Mean squared error) - joelho esquerdo
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Coeficiente R? dados do joelho esquerdo
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Figura 20 — R? - joelho esquerdo

Apébs as etapas de treinamento da rede, foram realizados testes com um novo
conjunto de dados embaralhados, para analisar e validar o funcionamento da rede ainda
com seu funcionamento off-line. Podemos entao observar os resultados destes testes pelas

Figuras 21 e 22 relativos aos joelhos esquerdo e direito, respectivamente.

Saida RN x saida desejada

1.00 1 —— Saida rede neural
[y —— Saida desejada

0.50 4 %

—0.75 1

—1.00 4

T T T T
10850 10860 10870 10880 10890 10900
Amostras

Figura 21 — Resultados dos testes off-line da rede neural da joelheira da perna direita
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Saida rede neural & Saida desejada (joelho esquerdo)

1.0 - —— Saida rede neural
) —— Saida desejada
0.5 1
=
L=
2 0.07
=
ol
—0.5 4
=1.0
T T T T T
5500 5505 5510 5515 5520 5525 5530

Amostras

Figura 22 — Resultados dos testes off-line da rede neural da joelheira da perna esquerda

Para esta andlise de dados, foi obtido uma acuricia da rede em mais de 90%
para ambos os casos, portanto, foi assumido que as redes estavam prontas para serem
implementadas na placa de aquisicao de dados, para uma inferéncia dos angulos em tempo
real. Foram escolhidos dois novos usuarios para realizacao dos testes on-line das joelheiras,
e seus dados estao apresentados nas Figuras 23 e 24 para o usuario A, e Figuras 25 e 26

para o usuario B.
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Angulos obtidos pelas IMUs e pela rede neural em fungao do tempo
(joelho esquerdo)

60
40 A
=
=2
=
on
o
< 20
0 .
—— Angulos da rede neural
—— Angulos das IMUs da Xsens
T T T T T T T
46 48 50 52 54 56 58 60 62

tempo [s]

Figura 23 — Resultados dos testes on-line do Usudrio A (joelho esquerdo)

Angulos obtidos pelas IMUs e pela rede neural em funcio do tempo
(joelho direito)

60 4 —— Angulos da rede neural
—— Angulos das IMUs da Xsens
50

40 -

30 4

i\ngulo [=1

20 4

10 -

_10 4

46 48 50 52 54 56 58 60 62
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Figura 24 — Resultados dos testes on-line do Usudrio A (joelho direito)
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Angulos obtidos pelas IMUs e pela rede neural em fungéo do tempo
(joelho esquerdo)

—— Angulos da rede neural
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Figura 25 — Resultados dos testes on-line do Usudrio B (joelho esquerdo)

Angulos obtidos pelas IMUs e pela rede neural em fungéo do tempo
(joelho direito)

—— Angulos da rede neural
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_10 -
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Figura 26 — Resultados dos testes on-line do Usudrio B (joelho direito)

4.2 Controle hibrido

Observando entao resultados promissores com o treinamento das MLPs, iniciou-se
entao a implementacao dos biossinais do angulo do joelho no sistema de controle de
impedancia apresentado na Figura 16, utilizando entdo o sistema formado pelas joelheiras
instrumentadas e o exoesqueleto, como podemos observar pela Figura 27 dos testes

realizados.
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Figura 27 — Foto da joelheira paramentada e do exoesqueleto utilizado para realizacao dos
testes de controle

Para avaliar a atuagao do sistema de controle, foi aplicado um sinal senoidal a
entrada do controlador de impedancia, juntamente com o sinal do angulo medido pelo
sistema sensorial implementado, tendo sido analisado a resposta do controlador em relagao
ao torque e angulo para trés diferentes testes. No primeiro teste realizado, o usuario
apresenta comportamento passivo em relagdo ao movimento do exoesqueleto, e temos
entao as respostas do torque desejado, e o torque real aplicado pelo atuador do exoesqueleto

apresentado no grafico da Figura 28.
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Torgue x tempo (passivo)

10 4 === torque_d

—— torque_r

Torgque [Nm]

~10 A

T T
0.0 2.5 5.0 75 10.0 12.5 15.0 17.5 20.0
tempo [s]

Figura 28 — Grafico do torque x tempo do teste com usuario atuando de forma passivo

O segundo teste foi realizado com o usuario cooperando com o movimento do
atuador do exoesqueleto, tentando seguir a senoide aplicada na entrada do controlador de

impedancia, temos entao o resultado apresentado pela Figura 29.

Torque x tempo (cooperativo)

10 4+ === torque_d

—— torque_r

Torque [Nm]

—-10 1

.
20.0 225 25.0 27.5 30.0 325 35.0 37.5 40.0
tempo [s]

Figura 29 — Gréfico do torque x tempo do teste com usuario atuando de forma cooperativa

Por fim, foi realizado um teste com o usudario agindo resistivamente em relagao ao
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movimento do atuador do exoesqueleto, temos entdao o grafico do torque efetuado pelo

atuador (torque_r), e o torque de referéncia (torque d) apresentado pela Figura 30.
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Figura 30 — Grafico do torque x tempo do teste com usuério atuando de forma resistiva

A andlise detalhada dos graficos referentes aos resultados do controle de torque
permite identificar que o controlador demonstra uma resposta agil do sistema. Observa-se
que ele ajusta de maneira eficaz os valores de torque, garantindo que o movimento seja
realizado de forma suave e precisa. Essa rapida resposta e a capacidade de regulagao
apropriada do torque sdo essenciais para assegurar que o sistema opere com eficiéncia,

mantendo a transparéncia e a naturalidade do movimento desejado.

Para a analise da resposta do angulo do controlador, foram realizados os mesmos
testes apresentados para analise de controle de torque, e podem ser observados pelas
Figuras 31, 32 e 33, dos testes com o usuario agindo de forma passiva, cooperativa e

resistiva, respectivamente.
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Angulo x tempo (resistivo)
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Figura 33 — Grafico do angulo x tempo do teste com usuario atuando resistivamente

Analisando entao os graficos de controle de angulo do controlador hibrido, podemos
observar que quando o usudrio apresenta uma atitude passiva ao movimento (Figura 31),
o controlador tenta corrigir o &ngulo do robd (6,) em relagdo ao dngulo desejado (6,4),
porém, sem forgar o movimento, mantendo uma seguranga evitando assim possiveis danos
ao usudrio. Para o movimento cooperativo (Figura 32), podemos observar uma resposta
muito rapida de controle, onde o angulo do robd (6,) acompanha precisamente o angulo
do usudrio (#). Por fim, para uma atitude resistiva do usuario (Figura 33), podemos
observar que o rob6 nao forga o usuério a manter o dngulo desejado (6,4), apresentando

assim seguranga ao usuario.

Para o controle com compensacao de gravidade, foram realizados testes com sistema
de controle de impedancia em aberto, e temos entao os resultados com o usuario realizando

movimentos livremente, nas Figuras 34 e 35 de torque e angulo, respectivamente.
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Torque x tempo (compensagao de gravidade)
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Figura 34 — Grafico do torque x tempo do teste de compensagao de gravidade com loop
de impedancia em aberto

Angulo x tempo (compensacio de gravidade)
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Figura 35 — Grafico do angulo x tempo do teste de compensacao de gravidade com loop
de impedancia em aberto

A anélise dos graficos apresentados nas Figuras 34 e 35 evidencia que o controlador
de compensacao de gravidade opera de maneira rapida e eficiente. Este controlador

desempenha um papel crucial ao neutralizar os movimentos indesejados da perna causados
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pela forga gravitacional. Além disso, ele mantém um controle transparente em relagao as
forcas exercidas pelo usuario. Esse comportamento garante que as a¢oes do usuario nao
sejam comprometidas, proporcionando uma interacao natural e precisa com o sistema de
controle. Assim, o controlador nao apenas contrabalanca eficazmente a gravidade, mas

também permite uma resposta sensivel as intenc¢oes do usuério.
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5 CONCLUSAO

O sistema sensorial vestivel desenvolvido demonstra uma capacidade robusta de
captar biossinais essenciais para o controle do exoesqueleto. Os sensores estao integrados
em uma estrutura ergonomicamente projetada para ser confortavel e flexivel, permitindo o

uso prolongado sem causar desconforto ou restringir o movimento do usuario.

A implementacao dos biossinais no controle do exoesqueleto do joelho foi bem-
sucedida, e os resultados experimentais mostram que o sistema responde de maneira
rapida e precisa aos comandos do usuério, proporcionando um controle suave e eficiente
do exoesqueleto. Os testes com participantes indicam que o sistema sensorial vestivel pode
melhorar significativamente a mobilidade e a forca do joelho, evidenciando seu potencial

para aplicacoes em reabilitacao e assisténcia motora.

Além disso, este estudo aborda os desafios associados ao desenvolvimento e imple-
mentacao de sistemas sensoriais vestiveis, como a calibracao dos sensores, o processamento
em tempo real dos biossinais e a integracao com o exoesqueleto. Em conclusao, o desenvolvi-
mento e a implementacao do sistema sensorial vestivel apresentam avancgos significativos na
interface homem-maquina, oferecendo uma solugao eficaz para o controle de exoesqueletos

de joelho.

Com relagao ao controle hibrido proposto, o controle consegue ajustar o desalinha-
mento entre os angulos das articulagoes do usuario e do robd e integrar esse componente
nos controles tradicionalmente implementados em controladores roboéticos para interacao
humano rob6. Embora este fator desalinhamento seja uma simplificagao da verdadeira e
complexa cinematica entre as coordenadas de rotacao das juntas, ele permite ajustar a
trajetoria de referéncia do exoesqueleto com base na diferenca entre os angulos medidos
pelo encoder do atuador e pela joelheira. Essa correcao dinamica resulta em uma assisténcia
mais eficiente e confortavel para o usuario, melhorando assim a transparéncia oferecida

pelo exoesqueleto.
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