
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

Guilherme Claudino e Silva

Estudo de ferramentas computacionais para simulação e
visualização de aplicações de drones

São Carlos

2021

Guilherme Claudino e Silva

Estudo de ferramentas computacionais para simulação e
visualização de aplicações de drones

Monografia apresentada ao Curso de Enge-
nharia Aeronáutica, da Escola de Engenharia
de São Carlos da Universidade de São Paulo,
como parte dos requisitos para obtenção do
título de Engenheiro Aeronáutico.

Orientador: Prof. Dr. Glauco Augusto de
Paula Carin

São Carlos
2021

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Claudino e Silva, Guilherme

 C615e Estudo de ferramentas computacionais para
simulação e visualização de aplicações de drones /
Guilherme Claudino e Silva; orientador Glauco Augusto
de Paula Caurin. São Carlos, 2021.

Monografia (Graduação em Engenharia Aeronáutica)

-- Escola de Engenharia de São Carlos da Universidade
de São Paulo, 2021.

1. Airsim. 2. ROS. 3. Drones. 4. Vants. 5.

Simulação. 6. GUI. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

 1 / 1

http://www.tcpdf.org

9,5

9,5

AGRADECIMENTOS

Acredito que os agradecimentos de um Trabalho de Conclusão de Curso devem
se estender para além das pessoas que contribuíram ativamente para o projeto. O TCC
marca o fim de toda uma etapa que, no meu caso, representa mais de 25% da minha vida e
boa parte das minhas memórias. Assim, gostaria de dedicar algumas palavras de gratidão
também àquelas pessoas que me marcaram ao longo desse período.

Primeiramente, agradeço minha família, em especial minha mãe Angela e minha
irmã Aline que sempre estiveram ao meu lado, me apoiando em todas minhas decisões
ao longo do curso. Agradeço ainda à Renata, minha companheira, que foi um suporte
muito importante em diversos momentos da minha caminhada e sem dúvida contribuiu
ativamente para que eu superasse os diversos desafios que enfrentei até aqui.

Na sequência, gostaria de agradecer a Universidade de São Paulo e a Escola de
Engenharia de São Carlos por todas as portas que me abriu, todos os ensinamentos e
pessoas maravilhosas que pude conhecer. Sem dúvida, sem essa estrutura, sem os incentivos
que recebi e sem o auxílio de pessoas tão marcantes quanto o técnico José Claudio, a
secretária Gisele Lavadeci e servidores como o Bruno Sevciuc e João Bettoni que sempre
estiveram a disposição quando precisei.

Agradeço também todos os professores com quem convivi ao longo do curso, em
especial aos Professores Glauco Augusto, Ricardo Angélico, Fernando Catalano, Hernan
Muñoz e Jorge Bidinotto por todos os ensinamentos dentro e fora de sala de aula. Acredito
que essa lista poderia ser bem mais longa, mas começo a ter pouco espaço para tal.

Também dedico um agradecimento especial à École Centrale de Lille, universidade
na qual pude, não somente conviver com pessoas que me ajudaram tanto como Monique
Bukowski, Armand Toguyeni e Veronique Dzwiniel e foi uma grande fonte de aprendizado,
contribuindo para que eu me formasse não só como engenheiro mas como pessoa.

Ademais, agradeço meus tutores de estágio, Susanna Cortes-Borgmeyer, Cyril Dietz,
Marc Tamm, Phillip Laval e Rodrigo Andrade com os quais pude conviver e aprender de
maneira mais direta os deveres e atribuições de um engenheiro.

Por fim, mas não menos importante, agradeço os amigos que me apoiaram nessa ca-
minhada, dentro e fora da sala de aula. Vocês foram, sem dúvida alguma, parte fundamental
dessa caminhada.

RESUMO

CLAUDINO E SILVA, G. Estudo de ferramentas computacionais para
simulação e visualização de aplicações de drones. 2021. 89p. Monografia (Trabalho
de Conclusão de Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo,
São Carlos, 2021.

Na indústria aeronáutica, alguns dos principais de exemplos de aplicação das tecnologias
de VANTS (Veículos Aéreos Autônomos). Esses veículos, também conhecidos como drones,
são um termo de crescente interesse em diversos países. O presente trabalho visa avaliar
diferentes ferramentas computacionais para simulação de Drones e suas missões, buscando
avaliar comparativamente prós e contras de algumas das principais soluções existentes
como ROS e GAZEBO e Airsim. Avaliadas as ferramentas, o projeto visa construir uma
interface gráfica para dialogar com o Airsim, o software de simulação escolhido, propondo
rotinas de validação da ferramenta através de perfis de missão pré-definidas com análises
comparativas de trajetórias e geração de imagens e animações.

Palavras-chave: Airsim. ROS. Drones. Vants. Simulação. GUI.

LISTA DE FIGURAS

Figura 1 – Resultado de uma pesquisa sobre Drones no Google Trends, feita em
maio de 2021. Nota-se aqui um gráfico onde o interesse de pesquisa
do termo apresentou uma grande crescente na última década e mais
abaixo, um mapa do Brasil com o interesse por estados. Retirado de
(GOOGLE, 2021b). 20

Figura 2 – Versões de ROS atualmente disponíveis para Download. (OSRF, 2021) 24
Figura 3 – Esquema simplificado de como funciona a compatibilidade entre as

versões de ROS, Gazebo e Ubuntu. 25
Figura 4 – Exemplo de interface gráfica desenvolvida usando o MATLAB App

Designer. Essa interface foi desenvolvida pelo autor para auxiliar num
projeto de dimensionamento e análise de sistemas propulsivos. 26

Figura 5 – Exemplo de Simulação Conduzida em Simulink visualizada pelo Software
FlightGear de um modelo de Foguete Representativo do Projeto Perseus.
Retirado do acervo pessoal do autor. 27

Figura 6 – Modelo simplificado do quadricóptero de base do Airsim. Retirado de
(SHAH et al., 2017). 28

Figura 7 – Exemplo de Simulação de Acidente em Voo realizada com o suporte da
Unreal Engine. Retirado de (ATTACHE, 2021). 29

Figura 8 – Drone de base voando em um ambiente de simulação com o modelo
Blocks, padrão do Airsim. 29

Figura 9 – Exemplo de pesquisas desenvolvidas com Airsim nos últimos anos. . . . 30
Figura 10 – Exemplo de modelo padrão de ambiente para o AWS RoboMaker.

Retirado de (AWS, 2021). 31
Figura 11 – Levantamento de perfil dos participantes do estudo. 35
Figura 12 – Levantamento da relação dos participantes com o mundo dos drones. . 35
Figura 13 – Levantamento da relação dos participantes sobre sistemas operacionais

e uso de máquinas virtuais/dual boot 36
Figura 14 – Levantamento da relação dos participantes com máquinas virtuais e

configurações de dual boot. 36
Figura 15 – Qual sua ferramenta de programação preferida? 37
Figura 16 – Esquema simplificado dos componentes inicialmente idealizados para a

simulação computacional de drones escolhida. 41
Figura 17 – Exemplo de modificação do ambiente Blocks na Unreal Engine com a

adição de carros. 44
Figura 18 – Drone sobrevoando alguns carros no ambiente final de simulação. . . . 44
Figura 19 – Definição de Eixos na Unreal Engine. 45

Figura 20 – Esquema simplificado de como um voo retangular foi definido no programa. 46
Figura 21 – Esquema simplificado de como um voo circular foi definido no programa. 47
Figura 22 – Ilustração de diferentes níveis de discretização para um círculo. 48
Figura 23 – Ideia de base para o design da interface gráfica via Tkinter. 49
Figura 24 – Versão de desenvolvimento da interface gráfica de usuário feita com o

auxílio da biblioteca Tkinter. 49
Figura 25 – Exemplificação de processos com um único fio de execução (thread) e

com múltiplos. Retirado de (BELL, 2006). 50
Figura 26 – Esquema simplificado da arquitetura atual da solução computacional

para simulação com AirSim. 52
Figura 27 – GUI em seu estado final obtido no projeto. 52
Figura 28 – Resultado para um voo partindo da posição inicial [0,0,0] indo até o

ponto o [0,0,50]. 54
Figura 29 – Resultado para um voo partindo da posição inicial [0,0,0] para o ponto

final [0,4,10]. 55
Figura 30 – Resultado para um voo partindo da posição inicial [0,0,0] para um vetor

com inclinação de aproximadamente 8º com a vertical. O ponto final é
o [-2,2,10]. 56

Figura 31 – Algumas imagens capturadas com o drone em movimento durante o
caminho da trajetória descrita pela figura 30. 57

Figura 32 – Resultado de uma missão circular iniciada no ponto [0,0,50] para uma
circunferência com 40 m de diâmetro. 57

Figura 33 – Resultado para um voo partindo da posição inicial [0,0,50] para um
retângulo com 30 m de comprimento e 20 m de largura. Essa trajetória
foi obtida usando uma velocidade de 10 m/s. 58

Figura 34 – Resultado para um voo partindo da posição inicial [0,0,50] para um
retângulo com 30 m de comprimento e 20 m de largura. Essa trajetória
foi obtida usando uma velocidade de 2 m/s. 59

LISTA DE TABELAS

Tabela 1 – Pontos positivos e negativos dos diferentes softwares base 38
Tabela 2 – Pontos positivos e negativos das diferentes ferramentas de programação 39
Tabela 3 – Matriz de Decisão para os Softwares de Simulação 40
Tabela 4 – Matriz de Decisão para as Ferramentas de Programação 41
Tabela 5 – Lista de missões enviadas via GUI para o simulador. 53

LISTA DE ABREVIATURAS E SIGLAS

API Application Programming Interface - Interface de programação de apli-
cações

CNES Centre National d’Études Spatiales - Centro Nacional de Estudos Espa-
ciais

CNI Confederação Nacional da Indústria

GUI Graphical User Interface - Interface Gráfica do Usuário

IBGE Instituto Brasileiro de Geografia e Estatística

OSRF Open Source Robotics Foundation - Fundação de Robótica de Código
Livre

PIB Produto Interno Bruto

PSF Python Software Foundation - Fundação de Software Python

ROS Robot Operating System - Sistema Operacional de Robôs

SO Sistema Operacional

UAVs Unmanned Aerial Vehicles - Veículos Aéreos Autônomos

VANTs Veículos Aéreos Autônomos

WSL Windows Subsystem Linux - Subsistema Linux para Windows

LISTA DE SÍMBOLOS

cr - Comprimento do Retângulo

lr - Largura do Retângulo

R - Raio de circunferência

~rAB - Vetor Posição de um ponto A em relação a um ponto B

cos(α) - Cosseno de um ângulo qualquer

sin(α) - Seno de um ângulo qualquer

k - Ponto atual da discretização

n - Número de lados em um polígono

θ - Ângulo da trajetória circular

(x, y, z)0 - Variáveis de posição ao início de um movimento

(x, y, z)c - Variáveis de posição do centro de uma circunferência

SUMÁRIO

1 INTRODUÇÃO . 19
1.1 Objetivos . 20
1.2 Estrutura do Trabalho . 21

2 REVISÃO BIBLIOGRÁFICA . 23
2.1 Softwares de Interesse . 23
2.1.1 ROS . 23
2.1.1.1 GAZEBO . 24
2.1.2 MATLAB/Simulink . 25
2.1.2.1 Flight Gear . 27
2.1.3 AirSim . 28
2.1.4 Outras Soluções . 31
2.2 Ferramentas de Programação . 32
2.2.1 C/C#/C++... 32
2.2.2 MATLAB . 32
2.2.3 Python . 33
2.3 Escolha da Ferramenta Final . 34
2.3.1 Pesquisa de Opinião . 34
2.3.2 Decisão Final . 37

3 IMPLEMENTAÇÃO . 43
3.1 Familiarização com a Ferramenta . 43
3.2 Criação do Projeto . 44
3.2.1 Definição da Missão . 45
3.2.2 Rotinas Principais . 48
3.2.2.1 Interface Gráfica . 48
3.2.2.2 Threads . 50
3.2.2.3 Outras Rotinas . 51
3.2.3 Arquitetura resultante . 52

4 RESULTADOS E DISCUSSÃO . 53
4.1 Simulações . 53
4.2 Discussão . 54

5 CONCLUSÃO . 61

REFERÊNCIAS . 63

Appendices 65

APÊNDICE A – CÓDIGO GERADOR DA INTERFACE GRÁFICA 67

APÊNDICE B – CÓDIGO DAS THREADS 71

APÊNDICE C – CÓDIGO DAS FUNÇÕES PRINCIPAIS 75

19

1 INTRODUÇÃO

Atualmente, a indústria é sem dúvida, um elemento central de toda e qualquer
sociedade. No Brasil, mesmo com o PIB em queda e a indústria desacelerada, como
apontam os dados mais recentes do IBGE, indicando uma retração de 4.1% para o ano de
2020 (G1, 2021), é inviável imaginar o país sem uma base industrial. Soma-se à isso, o
elevado contingente de trabalhadores empregados no setor: 9,7 milhões de pessoas, segundo
informações da CNI (CNI, 2021). Ademais, de acordo com dados do Banco Mundial,
extraídos de sua plataforma Databank, nos últimos 20 anos, a participação do segundo
setor no PIB nacional, se manteve acima de 17% durante todo o período. Ainda segundo
a plataforma Databank, esse valor é similar à de países considerados referência mundial
na indústria, como a França e o Reino Unido com, respectivamente, 17,1% e 17,4% de
participação em 2019. No entanto, países como a Coreia do Sul, que apresentou um
crescimento de seu Produto Interno próximo de 29,6% entre 2011 e 2019, conta com uma
participação industrial mais expressiva, se aproximando dos 33% (MUNDIAL, 2021).

Assim sendo, o desenvolvimento industrial do Brasil é crucial para manter o
funcionamento do país - garantindo empregos, renda e poder de compra a milhões de
brasileiros - e recuperar sua economia fragilizada - permitindo uma retomada do PIB
e uma menor dependência de produtos importados, trabalhando também no alívio da
balança comercial. Tal necessidade pode muito bem se aproveitar das tecnologias propostas
pela Quarta Revolução Industrial, também chamada de Indústria 4.0, para alavancar uma
nova onda de industrialização e produção tecnológica "tupiniquim". O termo surgiu na
Alemanha em 2011 (SILVEIRA, 2017) e descreve as atuais mudanças que tem ocorrido na
indústria ao redor do mundo, podendo ser resumido como sendo um vocábulo chave para
novas tecnologias e conceitos para organização da cadeia de valor, contando com fábricas
e serviços inteligentes que só foram possíveis de serem atingidos com as recentes evoluções
digitais (HERMANN; PENTEK; OTTO, 2016).

Neste sentido, a Indústria 4.0 pode ser dividida em 9 pilares principais, os chamados
Big Data e Analytics, a utilização de Robôs Autônomos, as Ferramentas de Simulação
Computacional, a Internet das Coisas, a Segurança Digital, as Tecnologias de Nuvem, a
Integração de Sistemas, a Realidade Aumentada e a Manufatura Aditiva (ERBOZ, 2017).
Esses pilares, muitas vezes se interconectam em projetos de engenharia como, por exemplo,
em sensores inteligentes que utilizam ferramentas em nuvem para analisar dados e fornecer
informações úteis para gestores que passariam muitas vezes despercebidas. No que diz
respeito às tecnologias aeronáuticas que fazem parte dessa revolução, os VANTs, também
conhecidos pelo termo Drones, são uma das tecnologias de maior destaque atualmente.

No Brasil, dados do Google Trends, mostram que o interesse por pesquisas ligadas

20

ao termo cresceu consideravelmente na última década, com destaques para estados como
Mato Grosso e Roraima com pontuação máxima de interesse (GOOGLE, 2021b), como
mostra a Figura 1. Esses veículos autônomos, podem atuar em soluções que interligam
diferentes pilares da Indústria 4.0 e podem atuar promovendo soluções para todos os
setores da economia. Desta maneira, estudar o tema e desenvolver tecnologias relacionadas
se mostra não só uma possibilidade de evolução para o segundo setor brasileiro, como
também representa uma demanda nacional. Um exemplo de aplicação prática do uso de
drones por empresas brasileiras, é o caso da EDP que em junho de 2021 teve autorizada
a utilização de veículos aéreos autônomos para o monitoramento de suas redes elétricas
(EDP, 2021).

Figura 1 – Resultado de uma pesquisa sobre Drones no Google Trends, feita em maio de
2021. Nota-se aqui um gráfico onde o interesse de pesquisa do termo apresentou
uma grande crescente na última década e mais abaixo, um mapa do Brasil com
o interesse por estados. Retirado de (GOOGLE, 2021b).

1.1 Objetivos

O presente trabalho visa avaliar diferentes métodos de simulação computacional
para Veículos Aéreos Autônomos. Após a realização de uma análise de pontos positivos e
negativos de diferentes métodos e plataformas, uma rotina computacional foi desenvolvida
visando fornecer as bases para simular missões de monitoramento aéreo de rodovias
através de drones que poderá, futuramente, ser adaptada para sistemas mais complexos,

21

permitindo inclusive teste de ferramentas como câmeras e outros sensores diversos que
poderão interagir com o ambiente simulacional. Essa rotina permitiu a criação de uma
interface gráfica de usuário de forma a facilitar as interações de usuários com diferentes
níveis de conhecimento para com a plataforma. Simular VANT’s se mostra cada vez mais
uma necessidade em uma sociedade onde as missões para essas aeronaves se tornam cada
vez mais complexas e universais, atuando desde pequenos galpões terrestres, até em missões
interplanetárias.

1.2 Estrutura do Trabalho

O trabalho inicia-se com uma revisão bibliográfica de ferramentas e meios já
existem de programação para robótica móvel, buscando compreender em que situações
uma ferramenta seria preferível à outra, definindo assim a ferramenta de trabalho de base
para o estudo, sendo apresentado na seção 2. Na sequência, são abordados os métodos
utilizados para desenvolver as rotinas computacionais usadas para a validação do ambiente
de simulação na seção e as principais escolhas de projeto 3, enquanto os resultados obtidos
e os testes realizados serão abordados e discutidos na seção 4. Por fim, uma conclusão do
trabalho é feita, abordando também possíveis vias de desenvolvimento futuras.

23

2 REVISÃO BIBLIOGRÁFICA

Visando compreender melhor as ferramentas e possibilidades existentes, uma revisão
bibliográfica das ferramentas de simulação existentes, visando compreender vantagens e
desvantagens de cada uma das soluções. Nessa seção, também serão discutidas algumas
das linguagens de programação que podem ser utilizadas em conjunto com cada um
dos programas e suas principais aplicações e funcionalidades. Para a escolha final da
ferramenta, uma pesquisa de opinião foi realizada com diversos estudantes e engenheiros
para complementar a decisão. A primeira parte, trata das principais soluções existentes no
mercado para simular e visualizar o comportamento dos veículos aéreos. A segunda, avalia
ferramentas e linguagens de programação diversas que podem ser utilizadas de maneira
complementar aos softwares, visando fornecer comandos e permitir a interação usuário
máquina. Por fim, a escolha final da ferramenta é abordada.

2.1 Softwares de Interesse

O levantamento bibliográfico deste trabalho inicia-se através de uma avaliação de
diferentes ferramentas de simulação para robôs e VANTs. As ferramentas foram avaliadas
de diferentes pontos de vista, considerando trabalhos existentes e os materiais disponíveis
no site de cada uma destas.

2.1.1 ROS

Iniciando a análise das ferramentas destaca-se a existência do ROS (Sistema Opera-
cional de Robôs). ROS conta com uma série de ferramentas para auxiliar na programação
e simulação de robôs com aplicações diversas, desde pequenos aspiradores de pó automa-
tizados até grandes drones. Esse Sistema Operacional (SO) é utilizado em pesquisas e
trabalhos de diversas entidades como a ETH Zurique a EPFL e a Universidade Técnica de
Darmstadt. (OSRF, 2021)

O ROS conta ainda com uma série de ferramentas e bibliotecas que incluem funcio-
nalidades como envio de mensagens, estimativas de posição e ferramentas de visualização
de imagens. ROS é uma das referências na programação e simulação de robôs e constan-
temente renova seus programas e funcionalidades. Atualmente, 3 versões de ROS estão
disponíveis de maneira simultânea, conforme é possível ver na figura 2 (OSRF, 2021):

• ROS Melodic, com suporte previsto até 2023 e compatível com o Ubuntu 18.04;
• ROS Noetic, disponibilizado em 2020, com suporte previsto até 2025 e compatível

com o Ubuntu 20.04;

24

• ROS Foxy, distribuição de ROS compatível com outros SO’s que não linux é feita
utilizando ROS2, versão do sistema operacional que é bem menos utilizada.

Além dessas distribuições, existiram outras como ROS Kinetic e Indigo que foram
recentemente descontinuadas e eram idealizadas preferencialmente para os SO’s Ubuntu
16.04 e 14.04 respectivamente, embora seja alegado que possam funcionar com algumas
limitações em outros sistemas. Destaca-se também que, usualmente, as versões de dis-
tribuição de ROS contam também com a possibilidade de instalação do GAZEBO, um
software de visualização gráfica das simulações.

Figura 2 – Versões de ROS atualmente disponíveis para Download. (OSRF, 2021)

2.1.1.1 GAZEBO

GAZEBO é um software de simulação voltado para aplicações de robótica. Essa
ferramenta foi desenvolvida para permitir uma visualização mais completa do que está
sendo programado (GAZEBO, 2021). Entre suas principais funcionalidades destacam-se:

• Existência de modelos prévios de robôs e objetos;
• Vasta gama de sensores disponíveis para implementação;
• Grande biblioteca de modelos disponíveis providenciados e liberados ao público como

é o caso do quadrirrotor Hector (MEYER et al., 2012).

Essas bibliotecas de modelos já existentes permite uma implementação mais rápida
das ferramentas e códigos necessários para implementar uma rotina de validação de ferra-
mentas para robôs existentes, compatível com SO’s Linux. No caso do Hector, desenvolvido
pela Universidade Técnica de Damrstadt, apresenta um modelo de aeronave com diversas
bibliotecas já validadas experimentalmente (MEYER et al., 2012). No entanto, embora o
Hector seja uma prova de todo o potencial desse conjunto de ferramentas, ele também
é um exemplo de um dos seus maiores problemas. Desenvolvido em 2012, o modelo foi
concebido para versões do software que foram descontinuadas: as distribuições Kinetic e
Indigo.

25

Figura 3 – Esquema simplificado de como funciona a compatibilidade entre as versões de
ROS, Gazebo e Ubuntu.

No entanto, para o bom funcionamento do ROS e suas dependências, ele precisa
trabalhar quase como um quebra-cabeça, ligando a versão correta do software com a
distribuição do Ubuntu e do GAZEBO adequadas como ilustrado na figura 3. Embora
as distribuições sejam constantemente atualizadas, cada versão de GAZEBO conta com
bibliotecas próprias o que faz com que para que um projeto construído para versões
anteriores do ROS funcionar com uma nova distribuição do GAZEBO, boa parte das
bibliotecas precisam ser manualmente atualizadas. Na mesma direção, instalar modelos
de ROS em uma versão do Ubuntu diferente da mais adequada pode trazer problemas
de compatibilidade. Assim, mesmo que existam modelos de base para simulação, caso os
blocos não estejam muito bem alinhados, erros podem aparecer e atrapalhar o processo de
simulação.

Esta dificuldade foi experimentada ao longo do desenvolvimento deste projeto
durante a fase de avaliação das ferramentas. Diversas tentativas de instalação e aplicação
de modelos utilizando o conjunto ROS e GAZEBO foram feitas. Algumas, usando máquinas
virtuais como a interface Windows Subsystem Linux - WSL - desenvolvida pela Microsoft.
Em outras, tentativas de acesso remoto a uma máquina com uma configuração Linux
pré-existente foram realizadas. Em todos os testes realizados no decorrer do projeto,
colocar em prática uma solução funcional e comandável se mostrou um grande desafio e os
problemas de compatibilidade resultaram em diversas falhas.

2.1.2 MATLAB/Simulink

MATLAB e Simulink (MATHWORKS, 2021) possuem uma vasta gama de aplica-
ções de engenharia como: controle e automação, análises estatísticas, cálculos estruturais,

26

Figura 4 – Exemplo de interface gráfica desenvolvida usando o MATLAB App Desig-
ner. Essa interface foi desenvolvida pelo autor para auxiliar num projeto de
dimensionamento e análise de sistemas propulsivos.

desenvolvimento de aplicativos e muito mais. De maneira geral, MATLAB é um ambiente
de programação que utiliza sua própria linguagem. Esse ambiente conta com diversos
recursos que buscam facilitar o desenvolvimento de rotinas computacionais como:

1. MATLAB Live Script: Criador de códigos e rotinas ao vivo. Esse sub-ambiente
permite que os códigos sejam executados em bloco, permitindo um dinamismo maior
na hora de executar programas complexos.

2. MATLAB App Designer: Sub-ambiente de programação que auxilia na criação de
Interfaces Gráficas de Usuário (GUI’s) por meio de um sistema arraste e solte.
As interfaces podem então ser complementadas com código para executar rotinas
distintas e trabalhar com outras funções pré-existentes. A figura 4 mostra um
exemplo do que pode ser feito utilizando a interface. O App Designer conta ainda
com ferramentas voltadas para aplicações aeroespaciais, com a possibilidade de
inserção de elementos como altímetros e velocímetros.

3. Simulink: Ambiente do MATLAB de programação por blocos. O Simulink possui
diversas ferramentas para simulações de eventos e é amplamente utilizado para
o desenvolvimento de rotinas de controle. O Simulink também é conhecido por
apresentar extensas bibliotecas como a Aerospace Toolbox e possuir uma interface de
programação multi-física conhecida como Simscape, ampliando enormemente sua
quantidade de aplicações.

Todas essas funcionalidades se complementam e podem ser trabalhadas em conjunto.
No entanto, seu maior ponto negativo é o acesso à ferramenta. Embora, algumas formações,
como é o caso da engenharia aeronáutica na USP, existam cursos e disciplinas que estimulam
o aprendizado da ferramenta, pode ser uma ferramenta de difícil acesso por se tratar de uma

27

solução paga. De acordo com o site oficial do programa, uma licença perpétua ao programa
custa mais de R$ 12000,00 (MATHWORKS, 2021) com a cotação do dólar de 10 de julho
de 2021 (1 USD = 5.26 BRL) (GOOGLE, 2021a), podendo inviabilizar o desenvolvimento
de uma solução nesse sentido. Esse preço pode ser ainda mais elevado se levadas em conta a
inclusão de bibliotecas adicionais como Aerospace Toolbox (aproximadamente R$ 7900,00)
e o próprio Simulink (aproximadamente R$ 18700,00).

2.1.2.1 Flight Gear

Embora as bibliotecas de programação existentes em MATLAB para aplicações
aeroespaciais sejam, de maneira geral, completas, é interessante utilizar uma ferramenta
externa de processamento gráfico em parceria com os códigos e rotinas de simulação para
auxiliar na visualização e compreensão dos resultados. Nesse sentido, uma interessante
ferramenta de apoio para o trabalho usando o MATLAB é o FlightGear.

FlightGear, é um simulador de voo de código aberto que aceita contribuições de
diferentes desenvolvedores ao redor do mundo. O programa pode ser usado para simular
diferentes tipos de veículos aéreos, indo desde pequenas aeronaves, até mesmo foguetes
como apresentado na figura 5. Entre as características que colocam o software em posição
de destaque, ressalta-se:

• Existência de bibliotecas prévias em MATLAB e Simulink para a realização de
simulações com FlightGear;

• Existência de modelos distintos de aeronaves de base que poderiam ser utilizadas
para simulações simplificadas;

• Utilizado por projetos que envolvem diferentes atores aeronáuticos como o CNES,
como pode ser visto na figura 5;

• Desenvolvimento contínuo da ferramenta, contando com diversas atualizações para
sua modernização, tendo sua versão mais recente lançada em dezembro de 2020.

Figura 5 – Exemplo de Simulação Conduzida em Simulink visualizada pelo Software
FlightGear de um modelo de Foguete Representativo do Projeto Perseus.
Retirado do acervo pessoal do autor.

28

2.1.3 AirSim

Na sequência, destaca-se o Airsim, uma ferramenta de código aberto desenvolvida
pela Microsoft em mais uma de suas investidas em fornecer ambientes de trabalho de
código aberto, como foi feito com o WSL. O software, inspirado em ferramentas como
o próprio Gazebo e trabalhos como o Hector segue um design modular, contando com
modelos pré-definidos de veículos, condições físicas já estabelecidas, e uma larga gama
de sensores já inclusos, como diferentes tipos de câmeras e barômetros para dar mais
realismo à simulação (SHAH et al., 2017). Falando da simulação de drones em específico, o
ambiente conta com um modelo padrão de aeronave, um quadricóptero cuja representação
simplificada está presente na figura 6.

Figura 6 – Modelo simplificado do quadricóptero de base do Airsim. Retirado de (SHAH
et al., 2017).

Os modelos físicos por trás da simulação são descritos em (SHAH et al., 2017), onde
é possível verificar, por exemplo, as equações de forças e momentos de cada um dos rotores,
as rotinas de cálculo que apoiam sensores como os acelerômetros, o modelo de arrasto
utilizado e o modelo de gravidade. Além disso, as condições de pressão e temperatura
da atmosfera se baseiam em modelos padrões de atmosfera. Como a ferramenta ainda
é nova, diversas novas funcionalidades vem sendo adicionadas, como as bibliotecas para
classificação de imagens que foram adicionadas em junho de 2021 nos dados do programa.
(MICROSOFT, 2021)

Diferentemente das soluções anteriores, o Airsim conta com a possibilidade de
interfacear a parte de programação com as soluções visuais de motores de desenvolvimento
de jogos como a Unreal Engine, de maneira operacional, e a Unity, ainda em fase de
implementação. A principal vantagem de contar com motores gratuitos de desenvolvimento
de jogos é que existe uma indústria crescente de mídias visuais que está sempre investindo
em novas ferramentas para trazer realismo aos seus produtos, de maneira participativa por
diversos usuários que podem enviar modelos de partes e ambientes. Desta forma, é de se
esperar, não somente encontrar uma vasta gama de objetos que possam ser incorporados,
como simulações graficamente mais completas, podendo acrescentar veículos, pedestres e

29

diversos outros itens de interesse. Na figura 7, é possível ver um exemplo de uma simulação
de um acidente aéreo gerada utilizando o ambiente da Unreal (ATTACHE, 2021). Já na
figura 8, é possível ver o drone de base do Airsim em um ambiente padrão de simulação
chamado Blocks. Para que o motor de jogos funcione corretamente, uma aplicação do
Visual Studio é aberta e a rotina principal é executada. A partir daí, o usuário do software
pode controlar, seja um carro, seja um drone. Embora existam modelos padrão para ambos
os veículos, também é possível que o usuário envie seus próprios modelos tal qual ocorre
com o ROS e o Gazebo. (MICROSOFT, 2021)

Figura 7 – Exemplo de Simulação de Acidente em Voo realizada com o suporte da Unreal
Engine. Retirado de (ATTACHE, 2021).

Figura 8 – Drone de base voando em um ambiente de simulação com o modelo Blocks,
padrão do Airsim.

Ainda segundo a documentação do Airsim (MICROSOFT, 2021), para o controle
dos veículos, algumas opções estão disponíveis e já implementadas, como:

1. Controle manual usando teclado (somente carros);

2. Controle usando controle remoto e/ou controle de videogame (carros e drones via
software de acesso livre QGroundControl);

30

3. API’s em Python e C++ para controle dos veículos.

Ademais, o software está disponível para utilização em múltiplos SO’s incluindo
Windows, o que pode facilitar o acesso à ferramenta. Destaca-se também, a crescente
utilização do programa para a validação de diversas pesquisas e atividades de competição,
mostrando o crescente interesse da comunidade acadêmica no Airsim. Entre estas atividades,
menciona-se:

• Atividades de pesquisa de classificação de imagens com o drone em movimento, como
pode ser visto na figura 9a (AGGARWAL et al., 2018);

• Estudos de geração de trajetórias, tal qual apresentado na figura 9b (BHUSHAN,
2019);

• Pesquisas com a utilização de redes neurais para aprendizado no ambiente simulado,
conforme imagem da figura 9c (MERTENS, 2018);

• Simulações de múltiplas aeronaves em situações diversas como corridas, conforme
consta na imagem 9d (MADAAN et al., 2020).

(a) Exemplo de simulação no Airsim para
criação de programas de classificação
de imagens para drones. Retirado de
(AGGARWAL et al., 2018).

(b) Exemplo de simulação no Airsim para
estudos diversos de geração de trajetó-
rias. Retirado de (BHUSHAN, 2019).

(c) Exemplo de simulação no Airsim com
o estudo de redes neurais. Retirado de
(MERTENS, 2018).

(d) Simulação de múltiplos drones no contexto de uma corrida. Retirado
de (MADAAN et al., 2020).

Figura 9 – Exemplo de pesquisas desenvolvidas com Airsim nos últimos anos.

31

Todas essas razões tornam o Airsim um candidato cada vez mais interessante para
utilização em simulações de drones.

2.1.4 Outras Soluções

Entre as outras soluções de destaque para a programação de drones, destaca-se
a plataforma RoboMaker desenvolvida pela Amazon Web Services - AWS. Essa solução
de computação em nuvem pode permitir que usuários realizem trabalhos complexos de
simulação de robôs sem a necessidade de possuir uma máquina com elevado poder de
processamento de dados. A figura 10, mostra um exemplo de um ambiente gerado usando
a ferramenta WorldForge para simulações com RoboMaker Destaca-se ainda, a integração
da solução desenvolvida pela AWS pode contar com o suporte de outras ferramentas da
companhia, incluindo soluções para:

• Aprendizado de Máquinas;
• Gerenciamento de Banco de Dados;
• Internet das Coisas;
• e outros...

Figura 10 – Exemplo de modelo padrão de ambiente para o AWS RoboMaker. Retirado
de (AWS, 2021).

Destaca-se, porém, que as ferramentas da AWS podem acabar se tornando muito
custosas para o desenvolvimento de simulações, visto que, não somente os preços são com
base na cotação do dólar como também o uso de diferentes funcionalidades pode acarretar
custos adicionais em todas as aplicações.

32

2.2 Ferramentas de Programação

Buscando descrever as ferramentas que complementam os softwares de simulação de
drones, essa seção visa descrever as ferramentas e linguagens de programação que podem
ser utilizadas para criar as rotinas de diálogo com os softwares.

2.2.1 C/C#/C++...

Iniciando a discussão sobre possíveis linguagens de programação a serem utilizadas
no desenvolvimento do trabalho, temos C, uma linguagem de programação orientada
objeto. Desenvolvida no início dos anos 70, C é uma das linguagens mais difundidas no
mundo da programação. A linguagem surgiu a partir do trabalho de pesquisadores da Bell
Labs e começou a se espalhar mais fortemente na década de 80 em virtude do sucesso de
alguns experimentos de portabilidade (RITCHIE, 1993). C é considerada uma linguagem
capaz de fornecer as ferramentas essenciais para todos os programadores e otimizada.
Atualmente, a linguagem C recebeu dois sucessores C# e C++ que compartilham muitas
de suas características. C++, por exemplo, é uma linguagem muito utilizada em controla-
dores como ocorre com os produtos da Microchip (MICROCHIP, 2021), além de possuir
compatibilidade com Interfaces de programação de Aplicações (APIs) do Airsim e com
ROS.

C se tornou a linguagem de programação de diversos cursos de engenharia, mas
alguns pesquisadores buscam a anos alternativas que sejam mais adaptadas para que
os estudantes possam ter um contato mais apropriado com a primeira linguagem de
programação (WIRTH; KOKVESI, 2006), (FANGOHR, 2004) por ser considerada de
sintaxe complexa e por possuir menos bibliotecas disponíveis que outras soluções como
MATLAB e Python.

2.2.2 MATLAB

Como esperado, MATLAB é a ferramenta de programação desenvolvida pela
MATHWORKS (MATHWORKS, 2021) para uso dentro do seu software, com diversas
funcionalidades adicionais como conversão de código MATLAB para outras linguagens e
possibilidade de chamar rotinas de MATLAB por outros ambientes. Essa ferramenta é
considerada uma linguagem de script (FANGOHR, 2004), na qual o código é interpretado
durante sua execução. Com o crescimento da utilização da ferramenta na indústria, diversas
instituições tem pensado e aplicado a linguagem como ferramenta de ensino à programação
para engenharia (WIRTH; KOKVESI, 2006), como é o caso da própria Universidade de
São Paulo e o curso de Engenharia Aeronáutica. O artigo de Wirth e Kokvesi destaca
ainda propriedades fundamentais da linguagem como:

• Sintaxe facilitada auxiliando a aprendizagem e permitindo que os programadores se
foquem mais em solucionar problemas do que na escritura do código e compilação,

33

fato também ressaltado pelo artigo de Fangohr;
• Sistema claro de reportar erros, auxiliando na correção de problemas;
• Existência de um grande ambiente de apoio para programação.

Ainda segundo os autores, essas vantagens superam problemas como a falta de
otimização comparado a linguagens mais clássicas como C. Destaca-se, porém, que a
utilização da linguagem enfrenta os mesmos problemas de acesso que o software em si,
devido ao alto custo de utilização e aquisição de licenças, embora constantes bibliotecas
estejam sendo desenvolvidas e novas atualizações da interface sejam feitas de forma
rotineira.

2.2.3 Python

Python é uma linguagem de código aberto gerida pela Python Software Foundation
(PSF, 2021). Essa linguagem é descrita em seu site como sendo de fácil aprendizado e
intuitiva. Python é uma linguagem considerada por alguns autores (FANGOHR, 2004)
como ainda mais fácil e intuitiva que MATLAB para utilizar como primeira forma de
aprendizado de programação, tendo vantagens como:

• Acesso grátis por se tratar de uma linguagem de código aberto;
• Existência de compiladores para diversos sistemas operacionais;
• Existência de bibliotecas de programação que acrescentam funcionalidades de de-

sempenho e visualização de dados.

O autor destaca ainda que a linguagem passou por um grande salto de utilização
sendo referência em trabalhos ligados à NASA e ao Google, por exemplo. Ademais, foi
realizado um estudo comparativo do uso de Python, C e MATLAB em sala de aula e os
autores destacam que Python foi uma excelente linguagem para estudantes de engenharia
e ciências (FANGOHR, 2004). Ainda sobre a linguagem, a fundação destaca em sua
documentação (PSF, 2021) uma série de bibliotecas de interesse como:

1. Tkinter - Biblioteca para a criação de interfaces gráficas de usuário;

2. Threading - Biblioteca para a execução e criação de fios de execução distintos;

3. Email - Biblioteca que pode gerenciar mensagens de e-mail, auxiliando os códigos à
se conectarem à internet.

Todas essas bibliotecas complementam e muito o potencial de utilização da lingua-
gem para diversas aplicações. Destaca-se ainda que além das bibliotecas básicas, existem
diversas bibliotecas disponibilizadas gratuitamente por usuários diversos em repositórios
online com o Pypi (PYPI, 2021).

34

2.3 Escolha da Ferramenta Final

A partir do levantamento bibliográfico presente no capítulo 2, foi possível se traçar
um panorama global das principais ferramentas utilizadas atualmente no ambiente de
programação robótica, sobretudo aquelas ligadas à operação de veículos aéreos. Embora
algumas soluções como utilizar a dupla ROS/GAZEBO ou ainda o trio MATLAB/Simu-
link/FlightGear se mostrem promissores para a solução de problemas reais de engenharia,
é preciso se conhecer de maneira aprofundada seus pontos positivos e negativos antes de
realizar a escolha definitiva.

2.3.1 Pesquisa de Opinião

No ambiente de trabalho de engenharia, a interdisciplinaridade sempre foi muito
importante. Num projeto de um veículo aéreo, diversas áreas se interconectam para fazer
o produto final. Aerodinâmica, estruturas, programação, eletrônica e gerenciamentos de
projeto são só alguns exemplos de onde o engenheiro pode atuar num projeto aeronáutico.
Ao mesmo tempo, para cumprir sua missão, o engenheiro precisa dialogar com diferentes
pessoas envolvidas no tema que não necessariamente terão a mesma formação e assim, é
importante não somente saber se comunicar como também entender as necessidades de
cada um dos atores envolvidos na cadeia de desenvolvimento. Assim, uma pesquisa de
opinião foi conduzida visando entender um pouco melhor a formação de engenheiros de
diferentes escolas do Brasil, seu interesse pelo tema e sua familiaridade com diferentes
ferramentas computacionais.

A pesquisa contou com a participação de 51 pessoas de 7 universidades distintas.
Cada uma das pessoas teve que responder sobre alguns temas como:

• Interesse por drones;
• Linguagens de programação e sistemas operacionais mais usados;
• Linguagens de programação inicialmente estudadas.

As figuras 11, 12, 13 e 14 resumem algumas das respostas apresentadas ao levanta-
mento de informações para perguntas de múltipla escolha. Além dessas perguntas, alguns
campos de opinião foram deixados aberto para quaisquer comentários adicionais pudessem
ser usados para complementar este trabalho.

Assim, como é possível ver na Figura 11, mais de três quartos dos participantes
eram alunos de graduação (grupo 1), enquanto 23.5% eram graduados ou pós-graduandos
(grupo 2). Nota-se também uma predominância de percursos de formação ligados às
engenharias civil, aeronáutica e mecânica. Por sua vez, a figura 12 traz uma informação
interessante sobre veículos aéreos autônomos. Entre os participantes da enquete, embora
quatro quintes possua interesse por temas ligados à drones, menos de 12% dessas pessoas
acabam trabalhando com o tema, seja de maneira direta (projeto e afins), de maneira

35

indireta (consultoria) ou por passatempo. Esse comportamento por parte dos entrevistados
chama a atenção visto que pode indicar a existência de possíveis entraves para acesso a
esse tipo de tecnologia.

(a) Levantamento de nível de formação
da pesquisa de opinião.

(b) Levantamento de nível de formação da pes-
quisa de opinião.

Figura 11 – Levantamento de perfil dos participantes do estudo.

(a) Você tem interesse por temáticas ligadas
à drones?

(b) Você trabalha com drones, de ma-
neira direta ou indireta?

Figura 12 – Levantamento da relação dos participantes com o mundo dos drones.

Na sequência, o gráfico da figura 13a mostra que a ampla maioria dos entrevistados
consideram o Windows como seu SO mais familiar. Ao mesmo tempo, como é mostrado
na figura 13b, mais de três quartos dos entrevistados tiveram que em algum momento
da vida, trabalhar com mais de um sistema operacional rodando na mesma máquina. De
maneira complementar, as figuras 14a e 14b mostram que a maioria dos entrevistados
precisou realizar tal configuração para conseguir acesso a sistemas Linux sendo que 76.9%
de todas as configurações foram por alguma obrigatoriedade ligada ao sistema. Isso mostra
que muito embora os entrevistados demonstrem habilidade para trabalhar com múltiplos

36

sistemas, a maior parte só o fez por necessidades muito específicas. Além disso, alguns
participantes relataram dificuldades do processo de configuração de máquinas virtuais e
dual boot, o que pode atrapalhar na implementação dessas ferramentas.

(a) Qual o SO com o qual você tem mais
familiaridade?

(b) Você já teve que trabalhar com má-
quinas virtuais/dual boot?

Figura 13 – Levantamento da relação dos participantes sobre sistemas operacionais e uso
de máquinas virtuais/dual boot

(a) Seu interesse por máquinas virtuais/dual boot
foi para conseguir acesso à qual SO?

(b) Você precisou fazer isso pela neces-
sidade de um programa? Por exem-
plo, código que só roda em Linux.

Figura 14 – Levantamento da relação dos participantes com máquinas virtuais e configu-
rações de dual boot.

Por fim, os dois gráficos da figura 15 mostram também outra característica muito
peculiar dos entrevistados. Como esperado, MATLAB e C (e variações) foram as principais
ferramentas de programação que os participantes tiveram contato. C, costuma ser a
linguagem de programação de diversos cursos de iniciação às ciências da computação,
enquanto MATLAB é a primeira forma de programação apresentada no curso de Engenharia
Aeronáutica da USP. No entanto, Python e outras linguagens como Java, foram aprendidas

37

pelos participantes e passaram a ocupar o lugar de preferência. Desta forma, embora a
figura 15a mostre que somente 5.9% das pessoas tiveram seu contato inicial com ferramentas
que não fossem C (e variações) e MATLAB, a figura 15b mostra que somente 33.3% dos
participantes as tem como ferramentas preferidas. Assim, é possível inferir que, embora,
uma parte considerável dos estudantes de engenharia tenham seu primeiro contato com a
programação somente durante a universidade, suas atividades os levam a ter contato com
uma gama muito maior de linguagens, permitindo que encontrem aquelas mais adaptadas
a seus interesses e atividades.

(a) Qual a primeira ferramenta de
programação que você teve con-
tato com? (b) Qual sua ferramenta preferida atualmente?

Figura 15 – Qual sua ferramenta de programação preferida?

2.3.2 Decisão Final

Finalizada a etapa de levantamento bibliográfico, as tabelas 1 e 2 foram confeccio-
nadas e listam alguns dos principais pontos positivos e negativos encontrados para cada
uma das ferramentas e linguagens analisadas.

38

Tabela 1 – Pontos positivos e negativos dos diferentes softwares base

Software Principal Prós Contras

ROS/Gazebo

- Existência de Modelos de Base
- Comunidade Grande e Participativa
- Gratuito
- Crescente Interesse em Pesquisa

- Difícil compatibilidade de
versões e SO’s
- Ao invés de as versões
serem atualizadas elas são
descontinuadas e novas
versões são lançadas
tornando os códigos
obsoletos
- Problemas de
retrocompatibilidade

MATLAB/Simulink

- Excelente Poder Computacional
- Desenvolvimento constante de novas
ferramentas de suporte
- Capacidade de integrar diversas
funcionalidades para uma simulação
completa
- Capacidade de criar GUI’s

- Elevado preço para utilização
do software
- Software não necessariamente
conhecido por um grande número
de usuários
- Necessidade de procurar
aplicações de terceiros para
uma boa visualização gráfica

Airsim

- Capacidade de utilizar todo o potencial
gráfico da Unreal Engine
- Compatibilidade com Windows
- Possibilidade de utilizar
controles remotos para teste
- API’s existentes para Python e C
- Constante desenvolvimento de novas
funcionalidades

- Menor liberdade para criação
de modelos de robôs
- Necessidade de maior poder
computacional para utilizar a
Unreal Engine
- Diversas funcionalidades
ainda estão em fase de
desenvolvimento

39

Tabela 2 – Pontos positivos e negativos das diferentes ferramentas de programação

Ferramentas de
Programação Prós Contras

MATLAB

- Primeira Ferramenta vista no
curso de Engenharia Aeronáutica
da USP
- Excelente gama de bibliotecas
existentes
- Possibilidade de diálogo direto com
o Simulink

Os mesmos da utilização do soft-
ware, somados à perda de inte-
resse por parte de diversos alu-
nos, como indicou a pesquisa de
opinião.

C/C#/C++...

- Primeira Ferramenta vista em diversos
outros cursos de engenharia
- Utilização gratuita
- Rápido processamento
- Existência de diversos compiladores e
tutoriais
- Extensa comunidade online

- Complexidade maior para escri-
tura dos códigos
- Necessidade de controlar a ges-
tão de memória
- Menor quantidade de bibliotecas
disponíveis
- Também apresentou perda de
interesse na pesquisa

Python

- Excelente gama de bibliotecas
existentes
- Utilização gratuita
- Linguagem preferida pela maior parte
dos participantes da pesquisa
- Linguagem de sintaxe amigável
- Constante expansão de suas aplicações
- Extensa comunidade online

- Ainda não é a primeira lingua-
gem de contato nos cursos de
engenharia
- Não pode utilizar ponteiros

Assim, após análise das diferentes possibilidades existentes e com base nos resultados
da pesquisa de opinião e nos levantamentos de informações acima realizados, optou-se
por realizar a implementação computacional utilizando o conjunto Airsim, Unreal e
Python. Esse triplete foi escolhido como o mais adequado para o trabalho por apresentar
características como:

• Compatibilidade com múltiplos sistemas operacionais, incluindo Windows;
• Constante desenvolvimento de novas ferramentas o que pode auxiliar em desenvolvi-

mento de simulações futuras e seu uso crescente em competições;
• Possibilidade de contar com a Unreal Engine para a visualização de cenários extre-

mamente realistas, podendo incluir pessoas e afins;
• Existência de API’s em Python para trabalhar com o simulador permitindo uma

ligação com uma linguagem de programação conhecida por diversos estudantes e
engenheiros;

• Com exceção de alguns ambientes e ferramentas que possam complementar o ambiente
da Uneral, todas as ferramentas são gratuitas;

• Possibilidade de contar com as diversas bibliotecas de Python já existentes para

40

análise de dados, geração de gráficos e criação de interfaces gráficas.

Estas características contribuíram para o excelente desempenho do conjunto nas
matrizes de decisão apresentadas nas tabelas 3 e 4. A matriz apresenta os pesos definidos
para cada um dos principais tópicos avaliados com notas variando entre 1 até 3. O conjunto
escolhido conta com a maior média ponderada pelos pesos adotados. Abaixo, um breve
resumo dos critérios adotados:

1. Custos: diz respeito à facilidade de acesso à solução. No caso do Airsim, embora
o software seja de acesso livre, a Unreal Engine acaba por exigir uma capacidade
computacional mais elevada e assim, é necessário ter uma máquina mais potente;

2. Compatibilidade: trata da possibilidade de utilizar sistemas operacionais e versões
distintas do software;

3. Facilidade de Implementação: avalia a facilidade de instalar o software e realizar
simulações com a ferramenta;

4. Capacidade computacional necessária/Processamento: critérios que buscam compre-
ender qualitativamente quantos recursos são necessários para executar a solução;

5. Bibliotecas existentes: diz respeito à existência de conjuntos pré-prontos de códigos
para a realização de funções diversas;

6. Complexidade: trata de possíveis entraves para a implementação de novos códigos e
rotinas;

7. Tradição: aborda a quanto tempo a ferramenta é utilizada para resolver problemas
de engenharia ligados ao tema;

8. Continuabilidade: principal parâmetro ligado à pesquisa de opinião, aborda as
preferências de usuários para a continuabilidade da solução para o futuro.

Tabela 3 – Matriz de Decisão para os Softwares de Simulação

Software de simulação
Critério Peso ROS Airsim MATLAB
Custos 4 3 2 1
Compatibilidade 3 1 3 2
Facilidade de Implementação 3 1 3 2
Capacidade computacional necessária 3 3 1 2
Tradição 2 3 1 2
Continuabilidade 2 1 3 2
Média Ponderada 2,1 2,2 1,8

41

Tabela 4 – Matriz de Decisão para as Ferramentas de Programação

Ferramenta de Programação
Critério Peso C/C#/C++... Python MATLAB
Custos 4 3 3 1
Bibliotecas Existentes 3 1 2 3
Processamento 3 3 2 1
Complexidade 3 1 3 2
Tradição 2 3 1 2
Continuabilidade 2 1 3 2
Média Ponderada 2,1 2,4 1,8

Desta forma, convencionou-se a criação de um projeto inicial como o apresentado
na figura 16, onde uma interface gráfica desenvolvida com Tkinter interage com o ambiente
da Unreal gerido pelo Airsim.

Figura 16 – Esquema simplificado dos componentes inicialmente idealizados para a simu-
lação computacional de drones escolhida.

43

3 IMPLEMENTAÇÃO

Definida a ferramenta e a arquitetura de base desejada para o sistema, foi possível
passar para a parte de implementação

3.1 Familiarização com a Ferramenta

A familiarização com a ferramenta Airsim ocorreu por duas frentes principais. A
primeira, uma interação direta com o software e seu ambiente. Para tal, o Airsim oferece
duas possibilidades principais:

1. Interação direta via comandos de teclado;

2. Interação via controle remoto.

A interação direta via comandos de teclado funciona somente com o ambiente de
simulação configurado para a utilização de veículos terrestres. Com isso, é possível realizar
alguns pequenos comandos indicando para onde o veículo deve ir em terra, permitindo
um pouco melhor o conhecimento de como a ferramenta se comporta. Já a interação via
controle remoto é proporcionada por meio do software de acesso livre QGroundControl.
Essa possibilidade de utilização de controles externos é extremamente interessante, pois
poderá permitir no futuro a criação de uma rotina computacional mista que permita tanto
o controle direto da aeronave via controle remoto, quanto o controle via interface gráfica,
tudo isso, com rotinas computacionais sendo executadas para auxiliar na missão final do
VANT.

A segunda possibilidade de familiarização é a utilização de algumas rotinas de
teste pré-desenvolvidas para verificar na prática o que algumas funções e comandos fazem.
Algumas rotinas como a HelloDrone.py ensinam o utilizador à se conectar via Python ao
ambiente de simulação enquanto outras mostram como adicionar efeitos ambientais como
vento. Essas rotinas foram ligeiramente adaptadas para a realização de alguns testes de
simulação e depois as adaptações foram incluídas direta ou indiretamente na solução final.

Por fim, o ambiente da Unreal Engine foi levemente modificado adicionando modelos
gratuitos de veículos para verificar como o ambiente de criação de mundo se comporta e
quais os procedimentos necessários para se criar um mundo mais parecido com a realidade.

A figura 17 mostra que alguns carros foram adicionados ao ambiente, enquanto
a figura 18 mostra uma condição na qual a aeronave padrão do Airsim sobrevoa alguns
desses automóveis.

44

Figura 17 – Exemplo de modificação do ambiente Blocks na Unreal Engine com a adição
de carros.

Figura 18 – Drone sobrevoando alguns carros no ambiente final de simulação.

3.2 Criação do Projeto

Após as etapas de familiarização inicial com a ferramenta, o projeto da interface
gráfica pode ser realizado. Para tal, duas etapas foram necessárias.

1. A definição das missões que o usuário poderia executar com a plataforma;

2. A criação das rotinas computacionais de apoio.

Essas etapas são apresentadas em mais detalhes a seguir. Destaca-se aqui, somente
uma alteração com relação às definições do Airsim. Embora os eixos coordenados como
definidos na Unreal Engine sigam o padrão da figura 19, com os eixos x e y formando
um plano paralelo ao chão e o eixo z vertical para cima, a simulação em si, trata o
eixo z como negativo. Assim, na implementação do código, a interface gráfica recebe os
parâmetros de z conforme a identificação da Unreal Engine e faz a conversão de sinal para
a simulação. O procedimento inverso ocorre quando a GUI recebe um valor do Airsim e
precisa disponibilizá-lo ao usuário.

45

Figura 19 – Definição de Eixos na Unreal Engine.

3.2.1 Definição da Missão

Como a principal motivação do código à ser desenvolvido é permitir a criação de
uma ferramenta de suporte para que os usuários interajam com o Airsim, foi necessário
assumir algumas convenções. A primeira, seria que em condições normais de utilização,
os movimentos do drone seriam divididos em três grandes blocos. Um primeiro, com
movimentações entre pontos distintos que poderia considerar variações de posição nos
3 eixos coordenados, i.e., criação de retas entre dois pontos. Essas retas poderiam ser
unidirecionais, nas quais se parte de um ponto inicial para um final, ou bi-direcionais
nas quais o ponto inicial e o final são os mesmos, mas existe uma posição para a qual
a aeronave se desloca antes de retornar ao início. Já o segundo, aborda movimentações
seguindo formas geométricas pré-determinadas. Esse modelo de movimentação foi escolhido,
por se assemelhar mais a um padrão de possíveis missões reais de monitoramento, onde
a aeronave deve fazer uma varredura de uma região específica e possivelmente buscará
manter sua altitude para a obtenção e análise de dados distintos por meio das câmeras e
sensores instalados. Por fim, o último bloco aborda os movimentos de pouso e decolagem.

Destaca-se que o Airsim conta com API’s pré-existentes para a realização de
movimentos como pouso e decolagem e apresenta rotinas como moveToPositionAsync que
permitem a realização de um movimento indo de um ponto de coordenadas conhecidas
para outro. Já para os movimentos restantes, foi necessário criar algumas convenções
dado que seria necessário combinar algumas das API’s originais com códigos diversos.
Assim, por opção de design, todos os comandos que envolvem trajetórias que divergem da
combinação mais simples, i.e., movimentação entre dois pontos, ocorrerão no “Plano XY”,
muito embora, em virtude da complexidade inerente aos graus de liberdade do sistema, é
de se esperar pequenas variações no plano vertical durante a manobra.

Desta forma, foram configurados comandos para a realização de movimentos
em trajetórias retangulares e circulares em um plano definido, além das operações já
mencionadas acima. A figura 20 apresenta uma representação do que foi convencionado

46

como sendo um movimento retangular. A posição inicial da aeronave é adotada como
um ponto de partida situado em um dos vértices do retângulo. Do repouso, a aeronave
parte em sentido anti-horário percorrendo cada um dos lados do retângulo com dimensão
definida pelo usuário. A equação 3.1 ilustra o caminho percorrido pela aeronave passando
pelos quatro vértices (numerados de 1 até 4) e retornando à posição inicial (x0, y0).

Figura 20 – Esquema simplificado de como um voo retangular foi definido no programa.



x1 y1

x2 y2

x3 y3

x4 y4

x1 y1


=



x0 y0

x0 + cr y0

x0 + cr y0 + lr

x0 y0 + lr

x0 y0


(3.1)

Para controlar a sequência de manobras necessárias para a varredura, foi utilizado
um simples controle de tempo com base numa estimativa de quanto o movimento duraria
caso a velocidade de movimento do drone seja realmente a desejada, como pode ser visto

47

na equação 3.2.

tl
tc

 =
lr/v
cr/v

 (3.2)

Por sua vez, o movimento circular pode ser representado pelo esquema da figura
21. Esse movimento, também realizado no sentido anti-horário é definido principalmente
pelo raio da circunferência. Novamente, adotando a posição inicial do veículo como sendo
o binômio (x0, y0), pode-se definir as coordenadas do centro da circunferência por meio da
equação 3.3.

Figura 21 – Esquema simplificado de como um voo circular foi definido no programa.

xc
yc

 =
x0 −R

y0

 (3.3)

No entanto, embora seja relativamente simples definir geometricamente um círculo,
optou-se por discretizar o círculo, transformando-o num polígono com uma quantidade de
lados determinada pelo utilizador. Quanto mais lados o utilizador escolherá, mais parecida
a trajetória final será de uma circunferência. Para obter a velocidade angular e o período
total, recuperar o ângulo atual e a posição do drone no polígono, utilizou-se as equações
3.4, 3.5, 3.6 e 3.7.

ω = v

R
(3.4)

48

T = ω

2πR (3.5)

θ = ω
T

n
k (3.6)

xθ
yθ

 =
xc +Rcos(θ)
yc +Rsin(θ)

 (3.7)

Figura 22 – Ilustração de diferentes níveis de discretização para um círculo.

3.2.2 Rotinas Principais

De maneira geral, o código construído para a interface gráfica e sua interação com
o ambiente simulacional do Airsim pode ser dividido em algumas partes principais:

1. A criação da GUI propriamente dita, com todos seus itens e ações de retorno;

2. A criação de Threads para gerir ações em tempo real paralelamente ao comando da
GUI;

3. Funções diversas que complementam o código e permitem ações diversas como a
criação de animações.

3.2.2.1 Interface Gráfica

Desta forma, com o intuito de tornar o projeto mais amigável à qualquer usuário,
uma interface gráfica em Python foi desenvolvida com o auxílio da biblioteca Tkinter. A
principal ideia por trás da criação de uma interface gráfica é a possibilidade de difusão
da ferramenta para uma comunidade mais ampla. Com um ambiente de programação
mais amigável, seria possível que pessoas com diferentes níveis de conhecimento e funções
dentro do projeto interajam com a ferramenta e extraiam resultados coerentes com aquilo

49

que lhes é de interesse. A figura 23 mostra como foi pensada a arquitetura inicial para
a Interface Gráfica enquanto a figura 24 mostra uma das versões de desenvolvimento da
interface.

Essa arquitetura trabalha com 4 seções principais:

• Seção de inicialização: responsável por conectar a interface ao ambiente de simulação
do Airsim;

• Seção solo/voo: responsável por permitir o acesso às rotinas de pouso e decolagem;
• Seção de gerenciamento dos movimentos: responsável por permitir e gerir os diferentes

tipos de missão. Essa parte da interface também permite a visualização da trajetória
realizada e da desejada;

• Seção auxiliar: responsável por permitir ao usuário realizar tarefas adicionais como a
geração de animações da trajetória.

Os códigos utilizados para a criação da interface estão presentes de maneira mais
detalhada no Apêndice A.

Figura 23 – Ideia de base para o design da interface gráfica via Tkinter.

Figura 24 – Versão de desenvolvimento da interface gráfica de usuário feita com o auxílio
da biblioteca Tkinter.

50

Para garantir o funcionamento da solução, a interface gráfica contou com a inclusão
de rotinas de retorno que são ativadas com diferentes tipos de interação como pressionar
botões ou alterar o tipo de movimentação via uma lista suspensa. Essas sub-rotinas
interagem de maneira direta ou indireta com outras duas partes da ferramenta: as Threads
e as Outras Rotinas. Ambas são apresentadas em mais detalhes a seguir.

3.2.2.2 Threads

Visando melhorar o desempenho do programa e permitir uma interação em tempo
real entre o ambiente simulacional e o usuário do programa, foi necessário se desenvolver
um sistema de fios de execução, ou threads. Esse sistema se mostrou também crucial
para permitir o funcionamento da interface gráfica por algumas limitações da biblioteca
utilizada. De maneira geral, o Tkinter cria uma operação que é executada continuamente
enquanto a interface se mantém aberta. Isso ocorre para permitir que todas as ações
executadas por um usuário na aplicação sejam tratadas e as respectivas funções de retorno
sejam acionadas. Assim, a execução de uma pausa em decorrência direta de uma ação do
usuário pararia toda e qualquer sub-rotina auxiliar dado que todas as rotinas estariam
contidas no mesmo processo, fazendo que, por exemplo, a aeronave deixe de atualizar sua
posição ao se mover.

Figura 25 – Exemplificação de processos com um único fio de execução (thread) e com
múltiplos. Retirado de (BELL, 2006).

Para contornar esse problema, uma possibilidade é a criação de fios de execução.
Cada thread, representa uma unidade de utilização de CPU e um único processo pode
ter diferentes fios (BELL, 2006), como exemplificado na figura 25. Com isso, é possível

51

executar rotinas de maneira independente da rotina principal de atualização da interface
gráfica. Para a construção dos fios, a biblioteca threading do Python foi utilizada. Com ela,
foi possível criar três sequências de execução em paralelo à rotina principal. Para garantir
o bom funcionamento do esquema, as threads ocorreriam em repetições constantes.

Entretanto, esses fios de execução não poderiam ser diretamente acionados pela
GUI. Caso isso ocorresse, toda a execução poderia ser subitamente encerrada. Desta
forma, optou-se por utilizar diferentes flags ou bandeiras. Essas bandeiras, indicam qual
o estado atual do programa e dependendo de seus valores, as threads executam ações
distintas. Assim, para que o usuário possa interagir com os múltiplos fios sendo executados
simultaneamente, basta que a interface altere o valor das flags.

Assim, as sequências se caracterizam por:

1. Sequência movManager : responsável por escolher o perfil de movimento que o drone
deve realizar ao pedido do usuário e executar a missão. Nessa rotina, o tempo para
passar de um trecho à outro é controlado com base na velocidade de voo desejada;

2. Sequência posUpdater : responsável por manter atualizada informações de movimen-
tação da aeronave, como posição e velocidade. Essa rotina também é responsável
por captar as imagens da câmera e gravar dados de voo em um arquivo de texto;

3. Sequência posSaver : responsável por tratar as informações de movimentação para
serem disponibilizadas no gráfico e transformar as imagens obtidas em arquivos
trabalháveis. Aqui, as posições são salvas enquanto a velocidade for maior que um
limite de 5 ∗ 10−3 m/s.

O código por trás de cada um dos fios de execução está disponível no Apêndice B.

3.2.2.3 Outras Rotinas

Além dessas rotinas principais, outras funções auxiliares foram necessárias e podem
ser acessadas tanto pela janela principal, quanto pelos fios de execução. Essas rotinas
executam funções diversas como:

• Permitir o uso ou retirar a permissão para a utilização de determinados botões,
limitando as ações do usuário conforme a configuração atual do drone;

• Comandar um determinado perfil de missão;
• Gerar animações;
• et. al.

As principais funções auxiliares estão presentes no Apêndice C para conferência
das rotinas.

52

3.2.3 Arquitetura resultante

Definidos os perfis de missão que a aeronave poderia executar e realizado o trabalho
de programação da GUI, dos fios de execução e das funções auxiliares, foi possível se
chegar à arquitetura apresentada na figura 26. A figura detalha os 4 fios existentes, seus
subcomponentes e suas principais funcionalidades. Por fim, a figura 27 mostra a GUI em
sua forma final.

Figura 26 – Esquema simplificado da arquitetura atual da solução computacional para
simulação com AirSim.

Figura 27 – GUI em seu estado final obtido no projeto.

53

4 RESULTADOS E DISCUSSÃO

Após a criação das rotinas computacionais necessárias para a simulação do Drone
usando o Airsim, foi possível obter uma solução gráfica amigável e poderosa, capaz de
realizar ações de diferentes níveis de complexidade com o software de simulação. Essa seção
visa então abordar a execução simulações distintas, a trajetória executada e a obtenção de
imagens utilizando o software.

4.1 Simulações

Para avaliar a capacidade da interface gráfica de dialogar com o Airsim e também a
capacidade do software de lidar com os comandos de missão desejados, 6 perfis de validação
foram definidos. Esses perfis estão presentes na Tabela 5.

Tabela 5 – Lista de missões enviadas via GUI para o simulador.

Missão Detalhes

Ponto a ponto
- Origem em [0,0,0]
- Final em [0,0,50]
- Velocidade 25 m/s

Ponto a ponto
- Origem em [0,0,0]
- Final em [0,4,10]
- Velocidade 2 m/s

Ponto a ponto
- Origem em [0,0,0]
- Final em [-2,2,10]
- Velocidade 5 m/s

Circular

- Raio de 20m
- Início em [0,0,50]
- Velocidade 4 m/s
- Discretização com 10 pontos

Retangular

- Comprimento 30m
- Largura 20m
- Início em [0,0,50]
- Velocidade 10 m/s

Retangular

- Comprimento 30m
- Largura 20m
- Início em [0,0,50]
- Velocidade 2 m/s

Com isso, foi possível utilizar a interface para gerar os comandos de movimentação
e os resultados obtidos são discutidos na Seção 4.2.

54

4.2 Discussão

Os roteiros presentes na seção 4.1 deste relatório foram testados por meio da
interface gráfica foram geradas imagens de câmera ao longo da movimentação da aeronave
e também foram atualizados os gráficos. Destaca-se aqui que embora todas as trajetórias
tenham tirado fotos, elas não serão todas apresentadas, pois os gráficos de movimento
acabam apresentando mais informações do que estas imagens. Além disso, essa análise
de resultados objetiva construir uma avaliação mais qualitativa da ferramenta e da GUI
produzida, focando o estudo na capacidade da GUI de enviar comandos e estes serem
reproduzidos pelo Airsim. Desta forma, não se discutirão os erros entre a posição desejada
e a trajetória real, busca-se, agora, somente que a simulação responda aos comandos de
missão enviados, mesmo que a trajetória não seja perfeitamente reta num voo do tipo
ponto à ponto, retangular ou circular visto que outros fatores como clima, vento e altitude
podem influenciar na simulação e não foram alvos do controle da rotina desenvolvida.
Outro ponto que pode afetar as trajetórias é a forma de controle de passagem de uma
posição à outra, como apresentada no capítulo 3.

A figura 28, apresenta as curvas obtidas para a primeira trajetória da tabela 5. Nela,
é possível ver que no caso de uma movimentação vertical, as trajetórias real e desejada se
confundem e se sobrepõem mesmo com uma velocidade elevada.

Figura 28 – Resultado para um voo partindo da posição inicial [0,0,0] indo até o ponto o
[0,0,50].

55

Destaca-se ainda, que o gráfico não aparentou mostrar oscilações nos eixos x e y em
decorrência desse movimento o que leva a indicar uma boa precisão da ferramenta para a
realização de movimentos unidirecionais no eixo z. A figura 29, por sua vez, mostra que ao
se adicionar movimentos no plano xy, pequenas oscilações (ordem de 10−7 são adicionadas,
mesmo que o plano da aeronave seja se deslocar sob um único eixo. Como a trajetória
enviada não possui etapas adicionais, esse comportamento oscilatório deve ser oriundo dos
métodos e equações por trás do gerenciamento da física do Airsim. No entanto, como a
ordem de grandeza é muito pequena comparada ao deslocamento, essas oscilações podem
ser consideradas desprezíveis.

Figura 29 – Resultado para um voo partindo da posição inicial [0,0,0] para o ponto final
[0,4,10].

Já no que diz respeito à figura 30, é possível verificar que para um comando de
movimentação com componentes de deslocamento nos 3 eixos coordenados, as oscilações
também se fazem presentes. É possível verificar visualmente no gráfico 2 zonas principais
de diferenciação do código: o começo, onde a curva azul se distancia da curva desejada;
e o final, onde as curvas voltam a se diferenciar após uma reaproximação no centro da
trajetória desejada com as curvas novamente se confundindo, embora sejam esperadas
algumas pequenas variações no meio, como foi visto no teste anterior.

56

Figura 30 – Resultado para um voo partindo da posição inicial [0,0,0] para um vetor com
inclinação de aproximadamente 8º com a vertical. O ponto final é o [-2,2,10].

Além disso, as sub-figuras 31a até 31i da figura 31, mostram como as imagens da
câmera se comportaram ao longo da trajetória. Com elas, é possível ver, com o auxílio
dos objetos disponíveis no ambiente da Unreal Engine que a aeronave vai gradualmente,
subindo e se deslocando no plano, trazendo os blocos do fundo para a parte frontal da
câmera, bem como aumentando a área de exposição da esfera laranja e fazendo com que
o carro suma de vista da aeronave. Isso mostra que, caso um código de classificação de
imagens seja implementado no Airsim, é de se esperar que a aeronave consiga alterar
seu percurso ou enviar informações personalizadas em tempo real sobre a condição do
ambiente ao qual ela está sobrevoando visando validar métodos e rotinas. Destaca-se ainda
que estas imagens de câmera também foram geradas pelas outras missões, mas nem todas
serão apresentadas neste documento por apresentar resultados menos informativos que os
gráficos de comparação de trajetória.

Na sequência, a figura 32, conta com os resultados de uma trajetória circular
enviada pela interface gráfica. Essa missão, realizada com os parâmetros da tabela 5.
Embora esta missão apresente uma discretização na qual é possível perceber visualmente
os limites do decágono enviado ao software, mostrou que o drone aproximou-se de uma
trajetória mais homogênea.

57

(a) t = 0[s] (b) t = 1[s] (c) t = 2[s]

(d) t = 3[s] (e) t = 4[s] (f) t = 5[s]

(g) t = 6[s] (h) t = 7[s] (i) t = 8[s]

Figura 31 – Algumas imagens capturadas com o drone em movimento durante o caminho
da trajetória descrita pela figura 30.

Figura 32 – Resultado de uma missão circular iniciada no ponto [0,0,50] para uma circun-
ferência com 40 m de diâmetro.

58

Ademais, é importante mencionar que conforme o drone foi percorrendo a trajetória,
o movimento executado foi se distanciando cada vez mais do inicialmente previsto. Isso está
provavelmente ligado com o sistema de controle da thread movManager que utiliza o tempo
calculado entre dois lados para enviar o próximo comando. Considerando a velocidade da
manobra e o tamanho da circunferência, é possível inferir que a aeronave esteja iniciando
a manobra seguinte sem de fato ter conseguido chegar à posição final do trecho e conforme
avança em sua missão, esses erros vão se somando até ficarem cada vez mais perceptíveis.

Esse mesmo problema é encontrado nas trajetórias retangulares obtidas e mostradas
nas figuras 33 e 34. Embora, ambas as trajetórias constituam os mesmos retângulos partindo
do ponto inicial [0, 0, 50], o primeiro movimento é feito com uma velocidade desejada maior.
Na condição de maior velocidade, o retângulo obtido apresenta uma série de deformações
que descaracterizam o movimento. É possível perceber no trecho inicial do movimento que
o veículo inicia seu voo com um certo distanciamento do lado do retângulo ideal e quando
ele está se aproximando de sua trajetória já inicia a próxima etapa. Nos outros lados do
retângulo o efeito se repete fazendo com que a aeronave se afaste cada vez mais. É notável
aqui a influência do tempo de espera entre os comandos de manobras, mostrando que a
simples relação t = v

∆S não se mostra a mais adequada.

Figura 33 – Resultado para um voo partindo da posição inicial [0,0,50] para um retângulo
com 30 m de comprimento e 20 m de largura. Essa trajetória foi obtida usando
uma velocidade de 10 m/s.

59

Figura 34 – Resultado para um voo partindo da posição inicial [0,0,50] para um retângulo
com 30 m de comprimento e 20 m de largura. Essa trajetória foi obtida usando
uma velocidade de 2 m/s.

Ainda sobre a trajetória da figura 33, é possível ver que no final, a aeronave passa
do ponto inicial, errando por quase 5 metros no eixo y até iniciar uma manobra de
retorno. Já na figura 34, é possível ver que a redução de velocidade permitiu ao drone
seguir a trajetória de maneira mais realista, se afastando do trajeto inicial somente no
fim do primeiro lado do retângulo, chegando a voltar a estar em contato na terceira parte
da trajetória. Neste trecho, a aeronave também demonstrou um menor desvio no final,
voltando à posição inicial de maneira mais direta, mesmo que o controle por tempo de
manobra também tenha mostrado os seus problemas.

Assim, foi possível obter com a interface gráfica e o Airsim, uma série de trajetórias
que se aproximaram dos perfis de missão desejados e passados pelo usuário para o software,
mostrando que a aplicação desenvolvida se encontra funcional com capacidade de geração
de gráficos, registros de posicionamento e também captura de imagens e animações.
Destaca-se, porém, que algumas modificações ainda poderiam ser realizadas para melhorar
a reprodução da trajetória desejada e incrementar as funções disponíveis.

61

5 CONCLUSÃO

Com este trabalho foi possível fazer uma avaliação de diferentes ferramentas
computacionais para a criação de simulações com veículos aéreos. Esse levantamento,
auxiliou na compreensão de que nem sempre, as ferramentas mais tradicionais são as mais
adequadas, é necessário se compreender os objetivos que se buscam atingir e qual público
irá estar em contato com o produto final. Nesse sentido, Airsim e Python se mostraram os
meios ideais para a realização deste projeto de conclusão de curso.

Utilizando estes recursos, foi possível construir uma Interface Gráfica de Usuário
capaz de permitir à usuários com diferentes níveis de conhecimento uma interação com a
ferramenta e controlar quais missões a aeronave irá realizar e extrair dados da ferramenta,
gerando imagens e animações. A ferramenta serviu também para mostrar que o Airsim em
conjunto com a Unreal Engine possui enorme potencial para aplicações mais complexas,
mesmo que as trajetórias divirjam um pouco daquilo que foi enviado, o que é um compor-
tamento normal, considerando a complexidade do sistema. Este trabalho poderá servir de
base para desenvolvimentos futuros e algumas sugestões de vias de melhoria são expressas
aqui nessa conclusão.

Assim, alguns pontos de interesse foram levantados para que a solução aqui desen-
volvida seja complementada em trabalhos futuros de graduação ou pós-graduação.

1. Criação de rotinas ligadas à classificação de imagens. Considerando que a ferramenta
já pode realizar alguns tratamentos básicos de imagem, salvando figuras e criando
animações, uma atualização futura que contemple além dessas ferramentas, uma
análise em tempo real da imagem para dizer, por exemplo, quantos carros estão
presentes na tela ou criar rotas complexas utilizando aprendizado de máquina para
seguir padrões definidos. Além disso, pode ser interessante trabalhar com novos
sensores.

2. Avaliação das diferenças de posição obtidas entre o desejado e o simulado. Con-
siderando que as trajetórias podem ter oscilações e variações com aquilo que era
desejado, seria muito importante implementar meios de validar a obtenção do perfil
de missão desejado por uma análise de erros. Também seria interessante rever os
critérios de definição de fim de etapa para tornar a simulação ainda mais coerente
com o perfil de interesse.

3. Atualização da interface gráfica e das funções para permitir uma gama ainda maior
de comandos por parte do operador. A melhoria da parte computacional também

62

pode ser feita visando otimizar os tempos de execução do código e a capacidade de
processamento necessárias.

4. Implementação de melhorias no ambiente da Unreal Engine. O ambiente da Unreal
possui um grande potencial de personalização. Novos carros podem ser incluídos,
assim como casas, ruas e semáforos. Além disso, cada um desses elementos pode
ter acionamentos e movimentos independentes, i.e., os carros podem se movimentar
nas ruas e os semáforos podem alterar sua sinalização. Assim, uma interessante via
de melhoria seria a criação de mapas mais fidedignos às aplicações de drone que se
deseje avaliar. Também pode ser interessante testar o comportamento do sistema
com variações climáticas e ciclos de dia e noite.

5. Aprimorar a quantidade de rotinas de "usabilidade". É importante prevenir possíveis
erros de usuário como, por exemplo, enviar uma posição inatingível ou utilizar
entradas incorretas nos campos. Essas alterações poderão permitir uma usabilidade
com menos erros.

63

REFERÊNCIAS

AGGARWAL, S. et al. Smart drone. 2018. Atividade Acadêmica da Universidade da
Califórnia São Diego.

ATTACHE, A. Plane Crash Simulation in Unreal Engine 5. 2021. Acesso:
12/06/2021. Disponível em: <https://www.youtube.com/watch?app=desktop&v=h_
DZRBMq81w&feature=youtu.be>.

AWS. Robomaker. 2021. Acesso: 12/06/2021. Disponível em: <https://aws.amazon.
com/pt/robomaker>.

BELL, J. University Illinois Chicago- Course Notes Operating Systems -
Threads. 2006. Acesso: 24/05/2021. Disponível em: <https://www.cs.uic.edu/~jbell/
CourseNotes/OperatingSystems/4_Threads.html>.

BHUSHAN, N. Uav: Trajectory generation andsimulation. 2019. Thesis Substitute Project
- Universidade do Texas Arlington.

CNI. Emprego: indústria foi o setor que mais abriu vagas formais em 2020. 2021.
Acesso: 24/05/2021. Disponível em: <https://noticias.portaldaindustria.com.br/noticias/
economia/emprego-industria-foi-o-setor-que-mais-abriu-vagas-formais-em-2020/>.

EDP. EDP é a primeira empresa do setor elétrico certificada pela ANAC para
monitoramento de redes com uso de drones. 2021. Acesso: 14/06/2021. Disponível
em: <https://bit.ly/2TavglE>.

ERBOZ, G. How to define industry 4.0: The main pillars of industry 4.0. Managerial
Trends Managerial trends in the development of enterprises in globalization
era, 2017. P. 761-767.

FANGOHR, H. A Comparison of C, MATLAB, and Python as Teaching
Languages in Engineering. 2004. Publicado em: In: Bubak M., van Albada G.D.,
Sloot P.M.A., Dongarra J. (eds) Computational Science - ICCS 2004. ICCS 2004. Lecture
Notes in Computer Science, vol 3039. Springer, Berlin, Heidelberg.

G1. PIB do Brasil despenca 4,1% em 2020. 2021. Acesso: 24/05/2021.
Disponível em: <https://g1.globo.com/economia/noticia/2021/03/03/
pib-do-brasil-despenca-41percent-em-2020.ghtml>.

GAZEBO. GAZEBOSIM. 2021. Acesso: 27/05/2021. Disponível em: <https:
//www.gazebosim.org/>.

GOOGLE. Google Finance. 2021. Acesso: 13/05/2021. Disponível em: <https:
//www.google.com/intl/pt-BR/googlefinance>.

. Google Trends. 2021. Acesso: 13/05/2021. Disponível em: <https:
//trends.google.com.br/trends/>.

HERMANN, M.; PENTEK, T.; OTTO, B. Design principles for industrie 4.0 scenarios.
2016 49th Hawaii international conference on system sciences (HICSS). IEEE,
2016. P. 3928-3937.

64

MADAAN, R. et al. Airsim drone racing lab. Proceedings of Machine Learning
Research, 2020. NeurIPS 2019 Competition and Demonstration Track.

MATHWORKS. MATLAB. 2021. Acesso:30/06/2021. Disponível em: <https:
//www.mathworks.com/products/matlab/>.

MERTENS, J. Generating data to train a deep neuralnetwork end-to-end within
a simulated environment. 2018. Master thesis at Department of Mathematics and
ComputerscienceIntelligent Systems and Robotic Labs - Universidade Livre de Berlim.

MEYER, J. et al. Comprehensive simulation of quadrotor uavsusing ros and gazebo.
Conference: Proceedings of the Third international conference on Simulation,
Modeling, and Programming for Autonomous Robots, 2012.

MICROCHIP. MPlab. 2021. Acesso: 27/05/2021. Disponível em: <https:
//www.microchip.com/en-us/development-tools-tools-and-software/mplab-x-ide>.

MICROSOFT. Airsim Documentation. 2021. Acesso: 31/05/2021. Disponível em:
<https://microsoft.github.io/AirSim/index.html>.

MUNDIAL, B. Databank. 2021. Acesso: 24/05/2021. Disponível em: <https:
//databank.worldbank.org/home>.

OSRF. ROS. 2021. Acesso: 27/05/2021. Disponível em: <https://www.ros.org/>.

PSF. Python. 2021. Acesso: 20/05/2021. Disponível em: <https://www.python.org/>.

PYPI. Python Package Index. 2021. Acesso: 27/05/2021. Disponível em:
<https://www.pypi.org/>.

RITCHIE, D. M. The development of the c language. Second History of Programming
Languages conference, 1993.

SHAH, S. et al. Airsim: High-fidelity visual and physicalsimulation for autonomous
vehicles. Field and Service Robotics conference, 2017.

SILVEIRA, C. B. Indústria 4.0: O que é, e como ela vai impactar o mundo. 2017.
Acesso: 24/05/2021. Disponível em: <https://www.citisystems.com.br/industria-4-0/>.

WIRTH, M.; KOKVESI, P. Matlab as an introductory programming language. Computer
Applications in Engineering Education, 2006.

Appendices

67

APÊNDICE A – CÓDIGO GERADOR DA INTERFACE GRÁFICA

Essa seção trata da construção da interface gráfica em si, utilizando a biblioteca
Tkinter. Abaixo, o código detalhado e comentado para a geração da interface final.

Informações genéricas
window = tk.Tk()
window.geometry("1920x1080")
window.protocol("WM_DELETE_WINDOW", closeWindow)
window.title('AirSim Controller')

Criando o arquivo de log
day = datetime.datetime.now()
day_hour = day.strftime("%b-%d-%Y %H_%M_%S")
try:

os.mkdir('Arquivos Txt')
except Exception:

pass
f = open('Arquivos Txt/'+ day_hour + '.txt', "x")

Definição de threads
thread = threading.Thread(target=posUpdater, name="Position Updater")
threadchart = threading.Thread(target=posSaver, name="Position Saver")
threadmov = threading.Thread(target=movManager, name="Gerente de Movimentação")

Interface inicial - conexão da aeronave
greeting = tk.Label(text="AirSim CONTROLLER")
greeting.pack()
b0 = tk.Button(window, text ="Conectar a aeronave", command = connect)
b0.pack()
to = 0

Criação do primeiro subgrupo - pouso e decolagem
labelframe = tk.LabelFrame(window, text="Principal")
b1 = tk.Button(labelframe, text="Decolagem", command = takeoff)
b1.pack()
b10 = tk.Button(labelframe, text="Pouso", command = landing)
b10.pack()

68

Criação do espaço de movimentação na Gui
labelframe2 = tk.LabelFrame(window, text="Movimentação")

tkvar = tk.StringVar(window)
tkvar2 = tk.StringVar(window)

Criação da lista de movimentos
mov_types = { 'Ponto à ponto', 'Bate e Volta','Voo Retangular','Voo em Círculo'}
tkvar.set('Ponto à ponto') # set the default option
tkvar.trace('w', chooseMov)
popupMenu = tk.OptionMenu(labelframe2, tkvar, *mov_types)
popupMenu.pack()

Botão de Reset
b3 = tk.Button(labelframe2, text="Resetar a Simulação", command = reset)
b3.pack()

Espaço para o gráfico de movimentação
fig = plt.Figure(figsize=(8, 8))
ax = fig.add_subplot(111, projection='3d')
ax.grid(True)
ax.set(title = "Trajetória Real x Desejada",

xlabel = "X (m)",
ylabel = "Y (m)",
zlabel = "Z (m)")

plt.show()
canvas = FigureCanvasTkAgg(fig, master=labelframe2)
canvas.draw()
canvas.get_tk_widget().pack()

Criação do botão de voo
b2 = tk.Button(labelframe2, text="Voo Reto", command = fly)
b2.pack()

Caixas de texto para as manobras ponto à ponto e bate e volta
pxt = tk.Text(labelframe2, height = 1, width = 52)
lpx = tk.Label(labelframe2, text = "Posição em x")

69

pyt = tk.Text(labelframe2, height = 1, width = 52)
pxt.insert('end-1c','0')
lpy = tk.Label(labelframe2, text = "Posição em y")
pzt = tk.Text(labelframe2, height = 1, width = 52)
pyt.insert('end-1c','0')
lpz = tk.Label(labelframe2, text = "Posição em z")
tt = tk.Text(labelframe2, height = 1, width = 52)
pzt.insert('end-1c','0')
pvt = tk.Label(labelframe2, text = "Velocidade da manobra")
tt.insert('end-1c','1')
lpx.pack()
pxt.pack()
lpy.pack()
pyt.pack()
lpz.pack()
pzt.pack()
pvt.pack()
tt.pack()

Caixas de texto para a manobra retangular
llr = tk.Label(labelframe2, text = "Largura do Retângulo")
tlr = tk.Text(labelframe2, height = 1, width = 52)
tlr.insert('end-1c','0')
lcr = tk.Label(labelframe2, text = "Comprimento do Retângulo")
tcr = tk.Text(labelframe2, height = 1, width = 52)
tcr.insert('end-1c','0')

Caixas de texto para a manobra circular
tcr.insert('end-1c','1')
lr = tk.Label(labelframe2, text = "Raio do Círculo")
tr = tk.Text(labelframe2, height = 1, width = 52)
tr.insert('end-1c','0')

Criação do espaço para funções auxiliares
labelframe3 = tk.LabelFrame(window, text="Outras Funções")

Botão de atualizar gráfico
b4 = tk.Button(labelframe3, text="Update Plot", command = updateChart)

70

b4.pack()

Criação da interface para geração de animação
gt = tk.Text(labelframe3, height = 1, width = 52)
#gt.config(state='disabled')
lg = tk.Label(labelframe3, text = "Caminho GIF")
lg.pack()
gt.pack()
b4 = tk.Button(labelframe3, text="Gerar Gif", command = gifSaver)
b4.pack()

Interface para flag do movManager
stat = tk.Text(labelframe3, height = 1, width = 52)
lstat = tk.Label(labelframe3, text = "Status - Por favor não mexa")
lstat.pack()
stat.pack()
stat.insert('end-1c','parado')
stat.config(state = 'disabled')

Para salvar posições
pxt2 = tk.Text(labelframe2, height = 1, width = 52)
lpx2 = tk.Label(labelframe2, text = "Última Posição em x")
pyt2 = tk.Text(labelframe2, height = 1, width = 52)
pxt2.insert('end-1c','0')
lpy2 = tk.Label(labelframe2, text = "Última Posição em y")
pzt2 = tk.Text(labelframe2, height = 1, width = 52)
pyt2.insert('end-1c','0')
lpz2 = tk.Label(labelframe2, text = "Última Posição em z")
pzt2.insert('end-1c','0')

Criação do loop do tkinter
window.mainloop()

71

APÊNDICE B – CÓDIGO DAS THREADS

Visando facilitar a compreensão das rotinas computacionais utilizadas, essa seção
traz os códigos desenvolvidos para a criação das threads mencionadas no capítulo 3. Os
códigos das threads são aqui apresentados em ordem alfabética do nome escolhido e não
pela ordem de início por uma mera convenção organizacional.

"""

Thread movManager - Coordena qual tipo de comando de movimentação
será passado à aeronave. Trabalha com dados de posição gerados pela posUpdater
e por meio de uma "flag" chamada "currStat", sabe quando a aeronave deve
voar e qual movimento executar

"""

def movManager():
global posplot # Variável global para a criação de gráficos
while(True):

Definição da possição e status atuais
currStat = stat.get("1.0",'end-1c')
currPos = pos2
posplot = currPos

Checagem do status
if currStat == 'voando':

Verificação de qual tipo de movimentação foi escolhida
currMov = tkvar.get()
if currMov == 'Ponto à ponto':

flyToPosition()
elif currMov == 'Bate e Volta':

flyBateVolta(currPos)
elif currMov == 'Voo Retangular':

flySquare(currPos)
else:

flyCircle(currPos)
Atualização do status após execução

72

stat.config(state = 'normal')
stat.delete(1.0,'end-1c')
stat.insert('end-1c','parado')
stat.config(state = 'disabled')

time.sleep(0.1)

Encerramento
if kill3:

break

"""

Thread posUpdater - Roda paralelamente ao código principal. Serve para retirar
informações importantes do programa em tempo real como posição, velocidade
e também serve para criar a variável que trabalha com a câmera

"""

def posUpdater():
Definição de variáveis globais que serão acessadas
externamente
global pos
global pos2
global pos3
global vel
global responses
while(True):

getKinematics --> Obtém informações do movimento
pos = client.simGetGroundTruthKinematics().position
pos2 = pos
vel = client.simGetGroundTruthKinematics().linear_velocity
Salva as informações no log
f.write('Posição [X, Y, Z]: [' + str(pos.x_val) + ', ' + str(pos.y_val) \
+ ', ' + str(pos.z_val) + '] \n')
getImages --> Captura imagens da camera

responses = client.simGetImages([
airsim.ImageRequest("1", airsim.ImageType.Scene, False, False) #PNG

])
time.sleep(0.1)

73

Encerramento
if kill:

break

"""

Thread posSaver - Roda paralelamente ao código principal. Trabalha com as in-
formações da posUpdater

"""

def posSaver():
Definição de variáveis globais
global responses

Definição de flags e variáveis de apoio
cap = 0
pos_real = np.empty((0,3), float)
flag0 = 0
flag1 = 0
lastpos = []

Salva foto
takePicture(flag1)

while(True):
Atualização da posição atual
posplot = pos2
lastpos = [posplot.x_val, posplot.y_val, -posplot.z_val]
while(True):

posplot = pos
velplot = vel
velcalc = np.sqrt(vel.x_val**2 + vel.y_val**2 + vel.z_val**2)

Verificação se a velocidade está abaixo de um determinado
limite. Caso esteja acima, assume-se movimento

if velcalc <= 5*10**-3:

74

time.sleep(0.1)
if flag0 == 1:

flag0 = 0
flag1 = flag1 + 1

else:
append = [posplot.x_val, posplot.y_val, -posplot.z_val]
print(append)

Plot e atualização da última posição
ax.plot([lastpos[0], append[0]],[lastpos[1], append[1]], \
[lastpos[2], append[2]], 'b', label = 'Posição Real')
lastpos = [posplot.x_val, posplot.y_val, -posplot.z_val]
print('Velocidade Calculada')
print(velcalc)
time.sleep(0.1)

Verificação do tempo para tirar novas fotos
if cap % 10 == 0:

takePicture(flag1)
flag0 = 1
updateChart()
print('Tirando Foto')

Atualização do contador de foto para que ocorra uma vez por
segundo apenas.

cap = cap+1
takePicture()

if kill2:
break

75

APÊNDICE C – CÓDIGO DAS FUNÇÕES PRINCIPAIS

Complementando as informações dos Apêndices A e B, essa seção traz os códigos
desenvolvidos para a criação das Funções Principais mencionadas no capítulo 3. Novamente,
os códigos estão organizados em ordem alfabética por simples convenção organizacional.

"""

Rotina build - Serve para atualizar os status dos botões e os widgets
presentes na GUI após a escolha do tipo de movimento. pack() faz os widgets
aparecerem enquanto pack_forget() os faz sumir.

"""

def build(mov):
if mov == 'Ponto à ponto':

b2['text'] = 'Ponto à ponto'
llr.pack_forget()
tlr.pack_forget()
lcr.pack_forget()
tcr.pack_forget()
pvt.pack_forget()
tt.pack_forget()
lr.pack_forget()
tr.pack_forget()
lpx.pack()
pxt.pack()
lpy.pack()
pyt.pack()
lpz.pack()
pzt.pack()
pvt.pack()
tt.pack()

elif mov == 'Bate e Volta':
b2['text'] = 'Bate e Volta'
llr.pack_forget()
tlr.pack_forget()

76

lcr.pack_forget()
tcr.pack_forget()
pvt.pack_forget()
tt.pack_forget()
lr.pack_forget()
tr.pack_forget()
lpx.pack()
pxt.pack()
lpy.pack()
pyt.pack()
lpz.pack()
pzt.pack()
pvt.pack()
tt.pack()

elif mov == 'Voo Retangular':
b2['text'] = 'Voo Retangular'
lpx.pack_forget()
pxt.pack_forget()
lpy.pack_forget()
pyt.pack_forget()
lpz.pack_forget()
pzt.pack_forget()
pvt.pack_forget()
tt.pack_forget()
lr.pack_forget()
tr.pack_forget()
llr.pack()
tlr.pack()
lcr.pack()
tcr.pack()
pvt.pack()
tt.pack()

else:
b2['text'] = 'Voo em Circulo'
lpx.pack_forget()
pxt.pack_forget()
lpy.pack_forget()

77

pyt.pack_forget()
lpz.pack_forget()
pzt.pack_forget()
pvt.pack_forget()
tt.pack_forget()
llr.pack_forget()
tlr.pack_forget()
lcr.pack_forget()
tcr.pack_forget()
lr.pack()
tr.pack()
pvt.pack()
tt.pack()

"""

Rotina chooseMov - Apenas uma interface para chamar a função build

"""

def chooseMov(*args):
print("Entrando no ChooseMov")
print(tkvar.get())
Verifica a variável e chama a rotina build
build(tkvar.get())

"""

Rotina cleanChart - Serve para apagar o gráfico ao pousar.

"""

def cleanChart():
ax.clear()
print('Gráfico Limpo')

"""

78

Rotina closeWindow - Define procedimentos para o fechamento da janela
da GUI. Os comandos kill = true servem para encerrar as Threads em
execução paralela.

"""

def closeWindow():
if messagebox.askokcancel("Sair", "Você realmente deseja sair?"):
try:

reset()
global kill
kill = True
global kill2
kill2 = True
global kill3
kill3 = True
window.destroy()

except:
window.destroy()

"""

Rotina connect - Cria algumas variáveis globais caso não tenha
sido feito ainda. A rotina é responsável por se conectar ao cliente
do Airsim, permitir o controle deste pela API. Também é possível obter
algumas informações da aeronave como informações de GPS. Aqui se
inicia a Thread posUpdater

"""

def connect():
try:

global client
global Running
global kill
global kill2
global kill3

except:

79

pass

kill = False
kill2 = False
kill3 = False
Running = True

Conexão
client = airsim.MultirotorClient()
client.confirmConnection()

Controle da API
client.enableApiControl(True)
client.armDisarm(True)

Levantamento de informações e print
state = client.getMultirotorState()
s = pprint.pformat(state)
print("state: %s" % s)

imu_data = client.getImuData()
s = pprint.pformat(imu_data)
print("imu_data: %s" % s)

barometer_data = client.getBarometerData()
s = pprint.pformat(barometer_data)
print("barometer_data: %s" % s)

magnetometer_data = client.getMagnetometerData()
s = pprint.pformat(magnetometer_data)
print("magnetometer_data: %s" % s)

gps_data = client.getGpsData()
s = pprint.pformat(gps_data)
print("gps_data: %s" % s)

Alteração em tempo real do Layout da GUI
b0['text'] = 'Ambiente de Execução Conectado'
b0['bg'] = 'green'

80

turnButton(b0)
turnButton(b10)
labelframe.pack(side = tk.LEFT, fill="both", expand="yes")
try: # Tentativa de execução da thread posUpdater

thread.start()
except Exception:

pass
print('Thread Iniciada')
time.sleep(2)

"""

Rotina fly - Serve para atualizar a flag da thread movManager.
A função também pode iniciar a thread caso seja sua primeira execução.

"""

def fly():
Atualização da flag
stat.config(state = 'normal')
stat.delete(1.0,'end-1c')
stat.insert('end-1c','voando')
stat.config(state = 'disabled')

try: # Tentativa de execução da thread movManager
threadmov.start()

except Exception:
pass

"""

Rotina flyBateVolta - Define as funções necessárias para realizar um voo
do tipo bate e volta, indo de uma posição inicial, até uma posição
intermediária e retornando.

"""

def flyBateVolta(position_current):

81

Define posições iniciais
init_pos_bv = position_current
init_x = init_pos_bv.x_val
init_y = init_pos_bv.y_val
init_z = init_pos_bv.z_val

Definição do ponto alvo
mid_x = float(pxt.get("1.0",'end-1c'))
mid_y = float(pyt.get("1.0",'end-1c'))
mid_z = float(pzt.get("1.0",'end-1c'))
positionmod = np.sqrt((mid_x-init_x)**2+(mid_y-init_y)**2+(mid_z-init_z)**2)
vmod = float(tt.get("1.0",'end-1c'))
t = positionmod/vmod

Voo até o alvo
flyToPosition()
time.sleep(0.01)
time.sleep(t)

Atualização do ponto alvo como sendo a origem do movimento
pxt.delete(1.0,'end-1c')
pxt.insert('end-1c', str(init_x))
pyt.delete(1.0,'end-1c')
pyt.insert('end-1c',str(init_y))
pzt.delete(1.0,'end-1c')
pzt.insert('end-1c',str(-init_z))

Voo até a origem
flyToPosition()
time.sleep(t)

"""

Rotina flyCircle - Define as rotinas para a realização de um voo circular

"""

def flyCircle(starting_position, discret=10):
vc = float(tt.get("1.0",'end-1c'))

82

radius = float(tr.get('1.0','end-1c'))
omega_c = vc/radius
tc = 2*np.pi/omega_c
tc_control = tc/discret
xc = starting_position.x_val-radius
yc = starting_position.y_val
zc = starting_position.z_val
xold = starting_position.x_val
yold = yc
zold = -zc
for i in range(1, discret+1):

t_use = tc_control*i
angle = omega_c*t_use
startPlot = [xold, yold, zold]
x_now = xc + np.cos(angle)*radius
y_now = yc + np.sin(angle)*radius
client.moveToPositionAsync(x_now, y_now, zc, vc)
endPoint = [x_now, y_now, zold]
ax.plot([startPlot[0],endPoint[0]],[startPlot[1],endPoint[1]],/
[startPlot[2],endPoint[2]], 'r', label = 'Posição Desejada')
time.sleep(tc_control)
xold = x_now
yold = y_now
print(tc_control)
print("Voo circular")

"""

Rotina flyToPosition - Define as relações para que a aeronave possa voar de um
ponto à outro

"""

def flyToPosition():
print("Andando em Frente...")
labelframe2.pack(fill="both", expand="yes")
init_pos = pos
print(init_pos.x_val)

83

print(init_pos.y_val)
print(init_pos.z_val)
trajectoryDesired(tkvar.get())

try:
client.moveToPositionAsync(float(pxt.get("1.0",'end-1c')),\

float(pyt.get("1.0",'end-1c')),\
-float(pzt.get("1.0",'end-1c')),\

float(tt.get("1.0",'end-1c')))#.join()
#takePicture()
try:

threadchart.start()
except:

pass
except:

tk.messagebox.showerror('Impossível chegar até a posição','Parece que \
você esqueceu que as posições precisam ser \
valores numéricos. Por favor corrija antes \

de executar o código novamente.')

"""

Rotina flySquare - Define as relações para o voo retangular

"""

def flySquare(position_current):
print("Voo retangular")
comp = float(tcr.get("1.0",'end-1c'))
larg = float(tlr.get("1.0",'end-1c'))
curr_speed = float(tt.get("1.0",'end-1c'))
init_pos_r = position_current
init_xr = init_pos_r.x_val
init_yr = init_pos_r.y_val
init_zr = init_pos_r.z_val
t1 = comp/curr_speed
t3 = t1

84

t2 = larg/curr_speed
t4 = t2
print(init_zr)
client.moveToPositionAsync(init_xr+comp, init_yr, init_zr, curr_speed)
startPlot = [init_xr, init_yr, -init_zr]
endPoint = [init_xr + comp, init_yr, -init_zr]
ax.plot([startPlot[0],endPoint[0]],[startPlot[1],endPoint[1]],/
[startPlot[2],endPoint[2]], 'r', label = 'Posição Desejada')
#time.sleep(0.01)
time.sleep(t1)
client.moveToPositionAsync(init_xr+comp, init_yr+larg, init_zr, curr_speed)
startPlot = [init_xr + comp, init_yr, -init_zr]
endPoint = [init_xr + comp, init_yr + larg, -init_zr]
ax.plot([startPlot[0],endPoint[0]],[startPlot[1],endPoint[1]],/
[startPlot[2],endPoint[2]], 'r', label = 'Posição Desejada')
#time.sleep(0.01)
time.sleep(t2)
client.moveToPositionAsync(init_xr, init_yr+larg, init_zr, curr_speed)
startPlot = [init_xr+comp, init_yr+ larg, -init_zr]
endPoint = [init_xr, init_yr + larg, -init_zr]
ax.plot([startPlot[0],endPoint[0]],[startPlot[1],endPoint[1]],/
[startPlot[2],endPoint[2]], 'r', label = 'Posição Desejada')
#time.sleep(0.01)
time.sleep(t3)
client.moveToPositionAsync(init_xr, init_yr, init_zr, curr_speed)
startPlot = [init_xr, init_yr+ larg, -init_zr]
endPoint = [init_xr, init_yr, -init_zr]
ax.plot([startPlot[0],endPoint[0]],[startPlot[1],endPoint[1]],/
[startPlot[2],endPoint[2]], 'r', label = 'Posição Desejada')
#time.sleep(0.01)
time.sleep(t4)

"""

Rotina gifSaver - Objetivo: Criar um gif com as imagens capturadas em

85

takePictures

"""

def gifSaver():
png_dir = os.path.dirname(os.path.abspath(__file__)) + "/" + /
gt.get("1.0",'end-1c')
images = []
for file_name in sorted(os.listdir(png_dir)):

if file_name.endswith('.png'):
file_path = os.path.join(png_dir, file_name)
images.append(imageio.imread(file_path))

imageio.mimsave(png_dir + '/video.gif', images)

"""

Rotina Landing - Função para pousar a aeronave e atualizar os botões.

"""

def landing():
print("Landing...")
client.landAsync()
b1['text'] = 'Drone Pousou - Decole Novamente'
b1['bg'] = 'red'
turnButton(b10)
turnButton(b1)
cleanChart()
#labelframe2.pack(side = tk.LEFT, fill="both", expand="yes")
#labelframe3.pack(side = tk.LEFT, fill="both", expand="yes")

"""

Rotina reset - visa retornar o drone à sua posição inicial fazendo com que
o drone pouse.

86

"""

def reset():
client.reset()
b1['text'] = 'Drone de volta ao estado inicial'
b1['bg'] = 'red'
b0['text'] = 'Ambiente Desconectado'
b0['bg'] = 'red'
turnButton(b0)
turnButton(b1)
turnButton(b10)
labelframe.pack_forget()
labelframe2.pack_forget()
cleanChart()
try:

client.landAsync()
except:

pass

"""

Rotina takeoff - Objetivo: Fazer com que o drone decole, liberar os widgets
escondidos do tkinter e atualizar o comportamento de botões

"""

def takeoff():
print("Taking off...")
client.takeoffAsync()
#client.moveToPositionAsync(0, 0, -10, 2).join()
b1['text'] = 'Drone Decolou'
b1['bg'] = 'green'
turnButton(b1)
turnButton(b10)
labelframe2.pack(side = tk.LEFT, fill="both", expand="yes")
labelframe3.pack(side = tk.LEFT, fill="both", expand="yes")

87

"""

Rotina takePicture - Objetivo: Receber o arquivo da camera do Airsim, criar as
pastas corretas e salvar o arquivo em formato PNG

"""

def takePicture(flag):
#scene vision image in uncompressed RGBA array

response = responses[0]
folderNumb = str(flag)
#print(response)
pictime = datetime.datetime.now()
pichour = pictime.strftime('%H_%M_%S')
picname = pictime.strftime('%b-%d-%Y')
try:

os.mkdir('Pics')
except Exception:

pass
try:

os.mkdir('Pics/' + picname + ' Manobra ' + folderNumb)
except Exception:

pass
gt.delete(1.0,'end-1c')
gt.insert('end-1c','Pics/' + picname + ' Manobra ' + folderNumb)
try:

img1d = np.frombuffer(response.image_data_uint8, dtype=np.uint8)
img_rgb = img1d.reshape(response.height, response.width, 3) array H X W X 3
cv2.imwrite('Pics/' + picname + ' Manobra ' + folderNumb + '/' /
+ pichour + '.png', img_rgb)
print('Imagem Feita em' + pichour)

except Exception:
return

"""

Rotina tracjetoryDesired - auxilia a geração de gráficos caso a trajetória seja

88

bate e volta ou ponto à ponto.

"""

def trajectoryDesired(mov):
plt.clf()
if mov == 'Ponto à ponto' or mov == 'Bate e Volta':

startPoint = pos
startPlot = [float(startPoint.x_val), float(startPoint.y_val), /
float(-startPoint.z_val)]
endPoint = [float(pxt.get("1.0",'end-1c')), /
float(pyt.get("1.0",'end-1c')), float(pzt.get("1.0",'end-1c'))]
ax.plot([startPlot[0],endPoint[0]],[startPlot[1],endPoint[1]],/
[startPlot[2],endPoint[2]], 'r', label = 'Posição Desejada')

#else:
#tk.messagebox.showinfo('Nenhuma trajetória encontrada', 'Nenhuma /
trajetória encontrada')

#updateChart()

"""

Rotina turnButton - serve para definir se um botão é editável ou não

"""

def turnButton(button_name):
if button_name['state'] == 'normal':

button_name['state'] = 'disabled'
else:

button_name['state'] = 'normal'

"""

Rotina updateChart - pode ser chamada por outras rotinas para atualizar
o gráfico após a movimentação.

89

"""

def updateChart():
canvas.draw()
ax.legend(['Trajetória Desejada', 'Trajetória Real'])

