UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS

Guilherme Claudino e Silva

Estudo de ferramentas computacionais para simulacao e

visualizacao de aplicacoes de drones

Sao Carlos

2021

Guilherme Claudino e Silva

Estudo de ferramentas computacionais para simulacao e

visualizacao de aplicacoes de drones

Monografia apresentada ao Curso de Enge-
nharia Aeronautica, da Escola de Engenharia
de Sao Carlos da Universidade de Sao Paulo,
como parte dos requisitos para obtencao do
titulo de Engenheiro Aeronautico.

Orientador: Prof. Dr. Glauco Augusto de
Paula Carin

Sao Carlos
2021

AUTORIZO A REPRODUGCAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalogréfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Claudino e Silva, @il herne
C615e Estudo de ferranentas computaci onais para
simul acdo e visualizagcdo de aplicacbes de drones /
Gui |l herme Claudino e Silva; orientador d auco Augusto
de Paul a Caurin. Sdo Carlos, 2021.

Monogr afi a (Graduagdo em Engenharia Aeronautica)
-- Escol a de Engenharia de S&o Carl os da Universi dade
de Sédo Paul o, 2021.

1. Ailrsim 2. RCS. 3. Drones. 4. Vants. 5.
Simul acdo. 6. GUI. |I. Titulo.

Eduardo Graziosi Silva - CRB - 8/8907

http://www.tcpdf.org

FOLHA DE APROVAGAO

Candidato: Guilherme Claudino e Silva

visualizagao de aplicagoes de drones

Titulo do TCC: Estudo de ferramentas computacionais para simulagao e

Data de defesa: 20/08/2021

Comissao Julgadora Resultado
Prof. Titular Fernando Martini Catalano 9,5
Instituicdo: EESC - SAA

Prof. Dr. Jorge Henrique Bidinotto 9,5

Instituicdo: EESC - SAA

Presidente da Banca: Prof. Titular Fernando Martini Catalano

”

—A), A

(assinatura)

AGRADECIMENTOS

Acredito que os agradecimentos de um Trabalho de Conclusao de Curso devem
se estender para além das pessoas que contribuiram ativamente para o projeto. O TCC
marca o fim de toda uma etapa que, no meu caso, representa mais de 25% da minha vida e
boa parte das minhas memorias. Assim, gostaria de dedicar algumas palavras de gratidao

também aquelas pessoas que me marcaram ao longo desse periodo.

Primeiramente, agradeco minha familia, em especial minha mae Angela e minha
irma Aline que sempre estiveram ao meu lado, me apoiando em todas minhas decisoes
ao longo do curso. Agradeco ainda a Renata, minha companheira, que foi um suporte
muito importante em diversos momentos da minha caminhada e sem duvida contribuiu

ativamente para que eu superasse os diversos desafios que enfrentei até aqui.

Na sequéncia, gostaria de agradecer a Universidade de Sao Paulo e a Escola de
Engenharia de Sao Carlos por todas as portas que me abriu, todos os ensinamentos e
pessoas maravilhosas que pude conhecer. Sem duvida, sem essa estrutura, sem os incentivos
que recebi e sem o auxilio de pessoas tao marcantes quanto o técnico José Claudio, a
secretaria Gisele Lavadeci e servidores como o Bruno Sevciuc e Joao Bettoni que sempre

estiveram a disposi¢ao quando precisei.

Agradeco também todos os professores com quem convivi ao longo do curso, em
especial aos Professores Glauco Augusto, Ricardo Angélico, Fernando Catalano, Hernan
Munoz e Jorge Bidinotto por todos os ensinamentos dentro e fora de sala de aula. Acredito

que essa lista poderia ser bem mais longa, mas comego a ter pouco espaco para tal.

Também dedico um agradecimento especial & Ecole Centrale de Lille, universidade
na qual pude, ndo somente conviver com pessoas que me ajudaram tanto como Monique
Bukowski, Armand Toguyeni e Veronique Dzwiniel e foi uma grande fonte de aprendizado,

contribuindo para que eu me formasse nao s6 como engenheiro mas como pessoa.

Ademais, agradego meus tutores de estagio, Susanna Cortes-Borgmeyer, Cyril Dietz,
Marc Tamm, Phillip Laval e Rodrigo Andrade com os quais pude conviver e aprender de

maneira mais direta os deveres e atribui¢goes de um engenheiro.

Por fim, mas ndo menos importante, agradego os amigos que me apoiaram nessa ca-
minhada, dentro e fora da sala de aula. Vocés foram, sem divida alguma, parte fundamental

dessa caminhada.

RESUMO

CLAUDINO E SILVA, G. Estudo de ferramentas computacionais para
simulacio e visualizacdo de aplicagoes de drones. 2021. 89p. Monografia (Trabalho
de Conclusao de Curso) - Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo,
Sao Carlos, 2021.

Na industria aerondutica, alguns dos principais de exemplos de aplicacao das tecnologias
de VANTS (Veiculos Aéreos Auténomos). Esses veiculos, também conhecidos como drones,
sdo um termo de crescente interesse em diversos paises. O presente trabalho visa avaliar
diferentes ferramentas computacionais para simulacdo de Drones e suas missoes, buscando
avaliar comparativamente pros e contras de algumas das principais solugoes existentes
como ROS e GAZEBO e Airsim. Avaliadas as ferramentas, o projeto visa construir uma
interface grafica para dialogar com o Airsim, o software de simulacao escolhido, propondo
rotinas de validagdo da ferramenta através de perfis de missao pré-definidas com anélises

comparativas de trajetérias e geragado de imagens e animacoes.

Palavras-chave: Airsim. ROS. Drones. Vants. Simulacao. GUI.

Figura 1 —

Figura 2 —
Figura 3 —

Figura 4 —

Figura 5 —

Figura 6 —

Figura 7 —

Figura 8 —

Figura 9 —
Figura 10 —

Figura 11 —
Figura 12 -
Figura 13 —

Figura 14 —

Figura 15 —
Figura 16 —

Figura 17 —

Figura 18 —
Figura 19 -

LISTA DE FIGURAS

Resultado de uma pesquisa sobre Drones no Google Trends, feita em
maio de 2021. Nota-se aqui um grafico onde o interesse de pesquisa
do termo apresentou uma grande crescente na ultima década e mais
abaixo, um mapa do Brasil com o interesse por estados. Retirado de
(GOOGLE, 2021b). o o o 20
Versoes de ROS atualmente disponiveis para Download. (OSRF, 2021) 24
Esquema simplificado de como funciona a compatibilidade entre as
versoes de ROS, Gazebo e Ubuntu. 25
Exemplo de interface grafica desenvolvida usando o MATLAB App
Designer. Essa interface foi desenvolvida pelo autor para auxiliar num
projeto de dimensionamento e andlise de sistemas propulsivos. 26
Exemplo de Simulacao Conduzida em Simulink visualizada pelo Software
FlightGear de um modelo de Foguete Representativo do Projeto Perseus.
Retirado do acervo pessoal do autor. 27

Modelo simplificado do quadricoptero de base do Airsim. Retirado de

(SHAH et al., 2017). 28
Exemplo de Simulacdo de Acidente em Voo realizada com o suporte da
Unreal Engine. Retirado de (ATTACHE, 2021). 29
Drone de base voando em um ambiente de simulagao com o modelo
Blocks, padrao do Airsim. 29
Exemplo de pesquisas desenvolvidas com Airsim nos tltimos anos. . . . 30

Exemplo de modelo padrao de ambiente para o AWS RoboMaker.

Retirado de (AWS, 2021). o o 31
Levantamento de perfil dos participantes do estudo. 35
Levantamento da relacao dos participantes com o mundo dos drones. . 35

Levantamento da relacao dos participantes sobre sistemas operacionais
e uso de maquinas virtuais/dual boot 36
Levantamento da relacao dos participantes com maquinas virtuais e
configuragoes de dual boot. 36
Qual sua ferramenta de programagao preferida? 37
Esquema simplificado dos componentes inicialmente idealizados para a
simulacao computacional de drones escolhida. 41

Exemplo de modificacao do ambiente Blocks na Unreal Engine com a

adicao de carros. 44
Drone sobrevoando alguns carros no ambiente final de simulacao. . . . 44
Defini¢ao de Eixos na Unreal Engine. 45

Figura 20 — Esquema simplificado de como um voo retangular foi definido no programa. 46

Figura 21 — Esquema simplificado de como um voo circular foi definido no programa. 47

Figura 22 —
Figura 23 —
Figura 24 —
Figura 25 —

Figura 26 —

Figura 27 —
Figura 28 —

Figura 29 —

Figura 30 —

Figura 31 —

Figura 32 —

Figura 33 —

Figura 34 —

[lustragao de diferentes niveis de discretizacdo para um circulo.

Ideia de base para o design da interface grafica via Tkinter.

Versao de desenvolvimento da interface grafica de usuario feita com o

auxilio da biblioteca Tkinter.

Exemplificagdo de processos com um tnico fio de execucao (thread) e

com multiplos. Retirado de (BELL, 2006).

Esquema simplificado da arquitetura atual da solucao computacional

para simulacdo com AirSim.

GUI em seu estado final obtido no projeto.

Resultado para um voo partindo da posigao inicial [0,0,0] indo até o

ponto 0 [0,0,50].

Resultado para um voo partindo da posicao inicial [0,0,0] para o ponto

final [0,4,10].

Resultado para um voo partindo da posicao inicial [0,0,0] para um vetor

com inclinacao de aproximadamente 82 com a vertical. O ponto final é

Algumas imagens capturadas com o drone em movimento durante o

caminho da trajetoria descrita pela figura 30.

Resultado de uma missao circular iniciada no ponto [0,0,50] para uma

circunferéncia com 40 m de didmetro.

Resultado para um voo partindo da posi¢ao inicial [0,0,50] para um

retangulo com 30 m de comprimento e 20 m de largura. Essa trajetéria

foi obtida usando uma velocidade de 10 m/s.

Resultado para um voo partindo da posi¢ao inicial [0,0,50] para um

retangulo com 30 m de comprimento e 20 m de largura. Essa trajetéria

foi obtida usando uma velocidade de 2 m/s.

48
49

LISTA DE TABELAS

Tabela 1 — Pontos positivos e negativos dos diferentes softwares base 38
Tabela 2 — Pontos positivos e negativos das diferentes ferramentas de programacgao 39
Tabela 3 — Matriz de Decisao para os Softwares de Simulacao 40
Tabela 4 — Matriz de Decisao para as Ferramentas de Programacao 41

Tabela 5 — Lista de missoes enviadas via GUI para o simulador. 53

API

CNES

CNI

GUI

IBGE

OSRF

PIB

PSF

ROS

SO

UAVs

VANTs

WSL

LISTA DE ABREVIATURAS E SIGLAS

Application Programming Interface - Interface de programacao de apli-

cagoes

Centre National d’Etudes Spatiales - Centro Nacional de Estudos Espa-

ciais

Confederacao Nacional da Industria

Graphical User Interface - Interface Gréfica do Usuario
Instituto Brasileiro de Geografia e Estatistica

Open Source Robotics Foundation - Fundagao de Robética de Codigo

Livre

Produto Interno Bruto

Python Software Foundation - Fundacao de Software Python
Robot Operating System - Sistema Operacional de Robos
Sistema Operacional

Unmanned Aerial Vehicles - Veiculos Aéreos Auténomos
Veiculos Aéreos Auténomos

Windows Subsystem Linux - Subsistema Linux para Windows

LISTA DE SIMBOLOS

Cr - Comprimento do Retangulo

[y - Largura do Retangulo

R - Raio de circunferéncia

rAB - Vetor Posicao de um ponto A em relagdo a um ponto B
cos(a) - Cosseno de um angulo qualquer

sin(a) - Seno de um angulo qualquer

k - Ponto atual da discretizagao

n - Ntimero de lados em um poligono

0 - Angulo da trajetéria circular

(z,y,2)o - Variaveis de posi¢ao ao inicio de um movimento

(,y,2)c - Variaveis de posicao do centro de uma circunferéncia

1.1
1.2

2.1
2.1.1
2111
2.1.2
2.1.21
2.1.3
2.1.4
2.2
221
2.2.2
2.2.3
2.3
23.1
2.3.2

3.1
3.2
3.2.1
3.2.2
3221
3.2.2.2
3.2.2.3
3.2.3

4.1
4.2

SUMARIO

INTRODUCAO ittt e e e e e e et e et e e 19
Objetivos 20
Estrutura do Trabalho L 21
REVISAO BIBLIOGRAFICA ittt 23
Softwares de Interesse 23
ROS . . . 23
GAZEBO 24
MATLAB/Simulink 25
Flight Gear 27
AirSim . e 28
Outras Solucdes 31
Ferramentas de Programacao 32
C/CH/CHH... o 32
MATLAB . . . 32
Python 33
Escolha da Ferramenta Final 34
Pesquisa de Opinido 34
Decisdo Final 37
IMPLEMENTACAO ittt e et e it e 43
Familiarizacao com a Ferramenta 43
Criacdao do Projeto 44
Definicdo da Missdo 45
Rotinas Principais 48
Interface Grafica 48
Threads 50
Outras Rotinas 51
Arquitetura resultante Lo 52
RESULTADOS EDISCUSSAOt 53
Simulacbes 53
Discussao 54
CONCLUSAOt et 61

REFERENCIAS e e e e e e e e s s s i 63

Appendices 65
APENDICE A - CODIGO GERADOR DA INTERFACE GRAFICA 67
APENDICE B - CODIGO DAS THREADS 71

APENDICE C - CODIGO DAS FUNCOES PRINCIPAIS 75

19

1 INTRODUCAO

Atualmente, a industria é sem duvida, um elemento central de toda e qualquer
sociedade. No Brasil, mesmo com o PIB em queda e a industria desacelerada, como
apontam os dados mais recentes do IBGE, indicando uma retracao de 4.1% para o ano de
2020 (G1, 2021), é invidvel imaginar o pais sem uma base industrial. Soma-se & isso, o
elevado contingente de trabalhadores empregados no setor: 9,7 milhdes de pessoas, segundo
informagoes da CNI (CNI, 2021). Ademais, de acordo com dados do Banco Mundial,
extraidos de sua plataforma Databank, nos tltimos 20 anos, a participacao do segundo
setor no PIB nacional, se manteve acima de 17% durante todo o periodo. Ainda segundo
a plataforma Databank, esse valor é similar a de paises considerados referéncia mundial
na industria, como a Franca e o Reino Unido com, respectivamente, 17,1% e 17,4% de
participagao em 2019. No entanto, paises como a Coreia do Sul, que apresentou um
crescimento de seu Produto Interno préximo de 29,6% entre 2011 e 2019, conta com uma

participagdo industrial mais expressiva, se aproximando dos 33% (MUNDIAL, 2021).

Assim sendo, o desenvolvimento industrial do Brasil é crucial para manter o
funcionamento do pais - garantindo empregos, renda e poder de compra a milhdes de
brasileiros - e recuperar sua economia fragilizada - permitindo uma retomada do PIB
e uma menor dependéncia de produtos importados, trabalhando também no alivio da
balanca comercial. Tal necessidade pode muito bem se aproveitar das tecnologias propostas
pela Quarta Revolugao Industrial, também chamada de Industria 4.0, para alavancar uma
nova onda de industrializacao e producao tecnoldgica "tupiniquim”. O termo surgiu na
Alemanha em 2011 (SILVEIRA, 2017) e descreve as atuais mudangas que tem ocorrido na
industria ao redor do mundo, podendo ser resumido como sendo um vocabulo chave para
novas tecnologias e conceitos para organizacao da cadeia de valor, contando com fabricas
e servicos inteligentes que s6 foram possiveis de serem atingidos com as recentes evolugoes

digitais (HERMANN; PENTEK; OTTO, 2016).

Neste sentido, a Industria 4.0 pode ser dividida em 9 pilares principais, os chamados
Big Data e Analytics, a utilizagdo de Robos Autdénomos, as Ferramentas de Simulacao
Computacional, a Internet das Coisas, a Seguranca Digital, as Tecnologias de Nuvem, a
Integragao de Sistemas, a Realidade Aumentada e a Manufatura Aditiva (ERBOZ, 2017).
Esses pilares, muitas vezes se interconectam em projetos de engenharia como, por exemplo,
em sensores inteligentes que utilizam ferramentas em nuvem para analisar dados e fornecer
informagoes 1teis para gestores que passariam muitas vezes despercebidas. No que diz
respeito as tecnologias aeronauticas que fazem parte dessa revolucao, os VANTSs, também

conhecidos pelo termo Drones, sao uma das tecnologias de maior destaque atualmente.

No Brasil, dados do Google Trends, mostram que o interesse por pesquisas ligadas

20

ao termo cresceu consideravelmente na ultima década, com destaques para estados como
Mato Grosso e Roraima com pontuagao maxima de interesse (GOOGLE, 2021b), como
mostra a Figura 1. Esses veiculos autéonomos, podem atuar em solug¢oes que interligam
diferentes pilares da Industria 4.0 e podem atuar promovendo solugdes para todos os
setores da economia. Desta maneira, estudar o tema e desenvolver tecnologias relacionadas
se mostra nao s6 uma possibilidade de evolucao para o segundo setor brasileiro, como
também representa uma demanda nacional. Um exemplo de aplicagao pratica do uso de
drones por empresas brasileiras, é o caso da EDP que em junho de 2021 teve autorizada
a utilizagao de veiculos aéreos autonomos para o monitoramento de suas redes elétricas
(EDP, 2021).

Brasil 13/05/2011 - 13/05/2021 Todas as categorias ¥ Pesquisa na Web +

|4
~
Y
A

Interesse ao longo do tempo

Observagio

Interesse por sub-regido Sub-regido ¥

1 Mato Grosso

2 Roraima

3 Distrito Federal

4 Tocanting

|4
~
'
N

5 Santa Catarina

Mostrando 1 a 5 de 27 sub-regides >

Figura 1 — Resultado de uma pesquisa sobre Drones no Google Trends, feita em maio de
2021. Nota-se aqui um grafico onde o interesse de pesquisa do termo apresentou
uma grande crescente na ultima década e mais abaixo, um mapa do Brasil com

o interesse por estados. Retirado de (GOOGLE, 2021b).

1.1 Objetivos

O presente trabalho visa avaliar diferentes métodos de simulagdo computacional
para Veiculos Aéreos Autonomos. Apds a realizacdo de uma analise de pontos positivos e
negativos de diferentes métodos e plataformas, uma rotina computacional foi desenvolvida
visando fornecer as bases para simular missoes de monitoramento aéreo de rodovias

através de drones que podera, futuramente, ser adaptada para sistemas mais complexos,

21

permitindo inclusive teste de ferramentas como cadmeras e outros sensores diversos que
poderao interagir com o ambiente simulacional. Essa rotina permitiu a criagao de uma
interface grafica de usuario de forma a facilitar as intera¢oes de usudrios com diferentes
niveis de conhecimento para com a plataforma. Simular VANT’s se mostra cada vez mais
uma necessidade em uma sociedade onde as missoes para essas aeronaves se tornam cada
vez mais complexas e universais, atuando desde pequenos galpoes terrestres, até em missoes

interplanetarias.

1.2 Estrutura do Trabalho

O trabalho inicia-se com uma revisao bibliografica de ferramentas e meios ja
existem de programacao para robdtica moével, buscando compreender em que situagoes
uma ferramenta seria preferivel a outra, definindo assim a ferramenta de trabalho de base
para o estudo, sendo apresentado na secao 2. Na sequéncia, sao abordados os métodos
utilizados para desenvolver as rotinas computacionais usadas para a validagdo do ambiente
de simulacao na secao e as principais escolhas de projeto 3, enquanto os resultados obtidos
e os testes realizados serdo abordados e discutidos na sec¢ao 4. Por fim, uma conclusiao do

trabalho é feita, abordando também possiveis vias de desenvolvimento futuras.

23

2 REVISAO BIBLIOGRAFICA

Visando compreender melhor as ferramentas e possibilidades existentes, uma revisao
bibliografica das ferramentas de simulacao existentes, visando compreender vantagens e
desvantagens de cada uma das solugoes. Nessa secao, também serao discutidas algumas
das linguagens de programacao que podem ser utilizadas em conjunto com cada um
dos programas e suas principais aplicagdes e funcionalidades. Para a escolha final da
ferramenta, uma pesquisa de opiniao foi realizada com diversos estudantes e engenheiros
para complementar a decisdo. A primeira parte, trata das principais solugoes existentes no
mercado para simular e visualizar o comportamento dos veiculos aéreos. A segunda, avalia
ferramentas e linguagens de programacao diversas que podem ser utilizadas de maneira
complementar aos softwares, visando fornecer comandos e permitir a interacao usuario

maquina. Por fim, a escolha final da ferramenta é abordada.

2.1 Softwares de Interesse

O levantamento bibliografico deste trabalho inicia-se através de uma avaliagao de
diferentes ferramentas de simulagdo para robos e VANTs. As ferramentas foram avaliadas
de diferentes pontos de vista, considerando trabalhos existentes e os materiais disponiveis

no site de cada uma destas.

2.1.1 ROS

Iniciando a andlise das ferramentas destaca-se a existéncia do ROS (Sistema Opera-
cional de Robds). ROS conta com uma série de ferramentas para auxiliar na programagao
e simulacao de robos com aplicagoes diversas, desde pequenos aspiradores de p6 automa-
tizados até grandes drones. Esse Sistema Operacional (SO) é utilizado em pesquisas e

trabalhos de diversas entidades como a ETH Zurique a EPFL e a Universidade Técnica de
Darmstadt. (OSRF, 2021)

O ROS conta ainda com uma série de ferramentas e bibliotecas que incluem funcio-
nalidades como envio de mensagens, estimativas de posicao e ferramentas de visualizacao
de imagens. ROS é uma das referéncias na programacao e simulacao de robos e constan-
temente renova seus programas e funcionalidades. Atualmente, 3 versoes de ROS estao

disponiveis de maneira simultanea, conforme é possivel ver na figura 2 (OSRF, 2021):

e ROS Melodic, com suporte previsto até 2023 e compativel com o Ubuntu 18.04;
o ROS Noetic, disponibilizado em 2020, com suporte previsto até 2025 e compativel
com o Ubuntu 20.04;

24

o ROS Foxy, distribuicao de ROS compativel com outros SO’s que nao linux é feita

utilizando ROS2, versao do sistema operacional que é bem menos utilizada.

Além dessas distribuigdes, existiram outras como ROS Kinetic e Indigo que foram
recentemente descontinuadas e eram idealizadas preferencialmente para os SO’s Ubuntu
16.04 e 14.04 respectivamente, embora seja alegado que possam funcionar com algumas
limitacoes em outros sistemas. Destaca-se também que, usualmente, as versoes de dis-
tribuicao de ROS contam também com a possibilidade de instalagao do GAZEBO, um

software de visualizacao grafica das simulagoes.

Install

Get ROS Noetic Ninjemys on Ubuntu Linux Get ROS Foxy Fitzroy on Ubuntu Linux, mac05, or Windows 10
Get ROS Melodic Morenia on Ubuntu Linux
(Recommended for Latest ROS 1 LTS) (Recommended for Latest ROS 2 LTS)

m Install
Donate to ROS

Donate to ROS Donate to ROS

For more options, consult the installation guide.

Figura 2 — Versoes de ROS atualmente disponiveis para Download. (OSRF, 2021)

2.1.1.1 GAZEBO

GAZEBO ¢é um software de simulagao voltado para aplicagoes de robdtica. Essa
ferramenta foi desenvolvida para permitir uma visualizacao mais completa do que esta

sendo programado (GAZEBO, 2021). Entre suas principais funcionalidades destacam-se:

» Existéncia de modelos prévios de robos e objetos;

« Vasta gama de sensores disponiveis para implementacao;

« Grande biblioteca de modelos disponiveis providenciados e liberados ao ptblico como
¢ o caso do quadrirrotor Hector (MEYER et al., 2012).

Essas bibliotecas de modelos ja existentes permite uma implementacao mais rapida
das ferramentas e c6digos necessarios para implementar uma rotina de validagao de ferra-
mentas para robos existentes, compativel com SO’s Linux. No caso do Hector, desenvolvido
pela Universidade Técnica de Damrstadt, apresenta um modelo de aeronave com diversas
bibliotecas ja validadas experimentalmente (MEYER et al., 2012). No entanto, embora o
Hector seja uma prova de todo o potencial desse conjunto de ferramentas, ele também
¢ um exemplo de um dos seus maiores problemas. Desenvolvido em 2012, o modelo foi
concebido para versoes do software que foram descontinuadas: as distribui¢oes Kinetic e

Indigo.

25

ROS ﬁazebo

Noetic

ROS

Melodic Gazebo
9

Figura 3 — Esquema simplificado de como funciona a compatibilidade entre as versoes de
ROS, Gazebo e Ubuntu.

No entanto, para o bom funcionamento do ROS e suas dependéncias, ele precisa
trabalhar quase como um quebra-cabeca, ligando a versao correta do software com a
distribuicao do Ubuntu e do GAZEBO adequadas como ilustrado na figura 3. Embora
as distribuic¢oes sejam constantemente atualizadas, cada versao de GAZEBO conta com
bibliotecas proprias o que faz com que para que um projeto construido para versdes
anteriores do ROS funcionar com uma nova distribuicao do GAZEBO, boa parte das
bibliotecas precisam ser manualmente atualizadas. Na mesma direcao, instalar modelos
de ROS em uma versao do Ubuntu diferente da mais adequada pode trazer problemas
de compatibilidade. Assim, mesmo que existam modelos de base para simulagao, caso os
blocos nao estejam muito bem alinhados, erros podem aparecer e atrapalhar o processo de

simulagao.

Esta dificuldade foi experimentada ao longo do desenvolvimento deste projeto
durante a fase de avaliagdo das ferramentas. Diversas tentativas de instalagdo e aplicagao
de modelos utilizando o conjunto ROS e GAZEBO foram feitas. Algumas, usando maquinas
virtuais como a interface Windows Subsystem Linux - WSL - desenvolvida pela Microsoft.
Em outras, tentativas de acesso remoto a uma maquina com uma configuracao Linux
pré-existente foram realizadas. Em todos os testes realizados no decorrer do projeto,
colocar em pratica uma solucao funcional e comandavel se mostrou um grande desafio e os

problemas de compatibilidade resultaram em diversas falhas.

2.1.2 MATLAB/Simulink

MATLAB e Simulink (MATHWORKS, 2021) possuem uma vasta gama de aplica-

¢oes de engenharia como: controle e automacao, andalises estatisticas, calculos estruturais,

26

Indicadores Resultados
Inputs Extras - TurboFan

RC - Fan BP 0

Inputs RC - Fan LP 0
Tipo de Motor Turbofan v Escolha aqui o motor que deseja analisar

Ramjet RC - 0
e gy [0 | [- 0
T >

urbojet

Mach Fii M
Rt uxos Massicos

N turb 0 F1. de Ar como input off @ on Velocidade do Ar na entrada Temperatura Atmoslérica (°C)

RP_turb 0 Mar (kg/s) Y

N_comp 0 FI. Massico como Input ~ Off @il ' On

RP_comp 0 Fl. Massico (kgfs) 0

Executer [After-Bumer o @ on
Fl. Massico - AB (kg/s) 0

Altimetro (ft) Temperatura do Ar na saida (°C x100)

Figura 4 — Exemplo de interface gréafica desenvolvida usando o MATLAB App Desig-
ner. Essa interface foi desenvolvida pelo autor para auxiliar num projeto de
dimensionamento e analise de sistemas propulsivos.

desenvolvimento de aplicativos e muito mais. De maneira geral, MATLAB é um ambiente
de programacao que utiliza sua propria linguagem. Esse ambiente conta com diversos

recursos que buscam facilitar o desenvolvimento de rotinas computacionais como:

1. MATLAB Live Script: Criador de codigos e rotinas ao vivo. Esse sub-ambiente
permite que os cddigos sejam executados em bloco, permitindo um dinamismo maior

na hora de executar programas complexos.

2. MATLAB App Designer: Sub-ambiente de programacao que auxilia na criagdo de
Interfaces Graficas de Usudrio (GUI’s) por meio de um sistema arraste e solte.
As interfaces podem entao ser complementadas com codigo para executar rotinas
distintas e trabalhar com outras func¢oes pré-existentes. A figura 4 mostra um
exemplo do que pode ser feito utilizando a interface. O App Designer conta ainda
com ferramentas voltadas para aplicacoes aeroespaciais, com a possibilidade de

insercao de elementos como altimetros e velocimetros.

3. Simulink: Ambiente do MATLAB de programacao por blocos. O Simulink possui
diversas ferramentas para simulacoes de eventos e é amplamente utilizado para
o desenvolvimento de rotinas de controle. O Simulink também é conhecido por
apresentar extensas bibliotecas como a Aerospace Toolbox e possuir uma interface de
programagcao multi-fisica conhecida como Simscape, ampliando enormemente sua

quantidade de aplicagoes.

Todas essas funcionalidades se complementam e podem ser trabalhadas em conjunto.
No entanto, seu maior ponto negativo é o acesso a ferramenta. Embora, algumas formagoes,
como € o caso da engenharia aeronautica na USP, existam cursos e disciplinas que estimulam

o aprendizado da ferramenta, pode ser uma ferramenta de dificil acesso por se tratar de uma

27

solugdo paga. De acordo com o site oficial do programa, uma licenga perpétua ao programa
custa mais de R$ 12000,00 (MATHWORKS, 2021) com a cotagao do ddlar de 10 de julho
de 2021 (1 USD = 5.26 BRL) (GOOGLE, 2021a), podendo inviabilizar o desenvolvimento
de uma solugao nesse sentido. Esse preco pode ser ainda mais elevado se levadas em conta a
inclusdo de bibliotecas adicionais como Aerospace Toolbox (aproximadamente R$ 7900,00)

e o préprio Simulink (aproximadamente R$ 18700,00).

2.1.2.1 Flight Gear

Embora as bibliotecas de programacao existentes em MATLAB para aplicagoes
aeroespaciais sejam, de maneira geral, completas, é interessante utilizar uma ferramenta
externa de processamento grafico em parceria com os co6digos e rotinas de simulagdo para
auxiliar na visualizagao e compreensao dos resultados. Nesse sentido, uma interessante

ferramenta de apoio para o trabalho usando o MATLAB ¢ o FlightGear.

FlightGear, é um simulador de voo de c6digo aberto que aceita contribuigoes de
diferentes desenvolvedores ao redor do mundo. O programa pode ser usado para simular
diferentes tipos de veiculos aéreos, indo desde pequenas aeronaves, até mesmo foguetes
como apresentado na figura 5. Entre as caracteristicas que colocam o software em posi¢ao

de destaque, ressalta-se:

o Existéncia de bibliotecas prévias em MATLAB e Simulink para a realizacao de
simulagoes com FlightGear;

« Existéncia de modelos distintos de aeronaves de base que poderiam ser utilizadas
para simulagoes simplificadas;

« Utilizado por projetos que envolvem diferentes atores aeronauticos como o CNES,
como pode ser visto na figura 5;

e Desenvolvimento continuo da ferramenta, contando com diversas atualizagoes para

sua modernizacao, tendo sua versao mais recente lancada em dezembro de 2020.

Figura 5 — Exemplo de Simulacdo Conduzida em Simulink visualizada pelo Software
FlightGear de um modelo de Foguete Representativo do Projeto Perseus.
Retirado do acervo pessoal do autor.

28

2.1.3 AirSim

Na sequéncia, destaca-se o Airsim, uma ferramenta de c6digo aberto desenvolvida
pela Microsoft em mais uma de suas investidas em fornecer ambientes de trabalho de
codigo aberto, como foi feito com o WSL. O software, inspirado em ferramentas como
o proprio Gazebo e trabalhos como o Hector segue um design modular, contando com
modelos pré-definidos de veiculos, condigoes fisicas ja estabelecidas, e uma larga gama
de sensores ja inclusos, como diferentes tipos de cameras e bardmetros para dar mais
realismo a simulacao (SHAH et al., 2017). Falando da simulagao de drones em especifico, o
ambiente conta com um modelo padrao de aeronave, um quadricéptero cuja representacao

simplificada esta presente na figura 6.

Figura 6 — Modelo simplificado do quadricéptero de base do Airsim. Retirado de (SHAH
et al., 2017).

Os modelos fisicos por tras da simulagao sao descritos em (SHAH et al., 2017), onde
é possivel verificar, por exemplo, as equagoes de forcas e momentos de cada um dos rotores,
as rotinas de calculo que apoiam sensores como os acelerémetros, o modelo de arrasto
utilizado e o modelo de gravidade. Além disso, as condi¢oes de pressao e temperatura
da atmosfera se baseiam em modelos padroes de atmosfera. Como a ferramenta ainda
é nova, diversas novas funcionalidades vem sendo adicionadas, como as bibliotecas para

classificacao de imagens que foram adicionadas em junho de 2021 nos dados do programa.
(MICROSOFT, 2021)

Diferentemente das solugoes anteriores, o Airsim conta com a possibilidade de
interfacear a parte de programacao com as solugdes visuais de motores de desenvolvimento
de jogos como a Unreal Engine, de maneira operacional, e a Unity, ainda em fase de
implementacdo. A principal vantagem de contar com motores gratuitos de desenvolvimento
de jogos é que existe uma industria crescente de midias visuais que esta sempre investindo
em novas ferramentas para trazer realismo aos seus produtos, de maneira participativa por
diversos usuarios que podem enviar modelos de partes e ambientes. Desta forma, é de se
esperar, nao somente encontrar uma vasta gama de objetos que possam ser incorporados,

como simulagoes graficamente mais completas, podendo acrescentar veiculos, pedestres e

29

diversos outros itens de interesse. Na figura 7, é possivel ver um exemplo de uma simulagao
de um acidente aéreo gerada utilizando o ambiente da Unreal (ATTACHE, 2021). J4 na
figura 8, é possivel ver o drone de base do Airsim em um ambiente padrao de simulagao
chamado Blocks. Para que o motor de jogos funcione corretamente, uma aplicacao do
Visual Studio é aberta e a rotina principal é executada. A partir dai, o usuario do software
pode controlar, seja um carro, seja um drone. Embora existam modelos padrao para ambos
os veiculos, também é possivel que o usuario envie seus proprios modelos tal qual ocorre
com o ROS e o Gazebo. (MICROSOFT, 2021)

Figura 7 — Exemplo de Simulagdo de Acidente em Voo realizada com o suporte da Unreal
Engine. Retirado de (ATTACHE, 2021).

Figura 8 — Drone de base voando em um ambiente de simulacao com o modelo Blocks,
padrao do Airsim.

Ainda segundo a documentacao do Airsim (MICROSOFT, 2021), para o controle
dos veiculos, algumas opcoes estao disponiveis e ja implementadas, como:
1. Controle manual usando teclado (somente carros);

2. Controle usando controle remoto e/ou controle de videogame (carros e drones via

software de acesso livre QGroundControl);

30

3. API's em Python e C++ para controle dos veiculos.

Ademais, o software esta disponivel para utilizacdo em multiplos SO’s incluindo
Windows, o que pode facilitar o acesso a ferramenta. Destaca-se também, a crescente
utilizacao do programa para a validagao de diversas pesquisas e atividades de competicao,
mostrando o crescente interesse da comunidade académica no Airsim. Entre estas atividades,

menciona-se:

o Atividades de pesquisa de classificagdo de imagens com o drone em movimento, como
pode ser visto na figura 9a (AGGARWAL et al., 2018);

» Estudos de geragao de trajetorias, tal qual apresentado na figura 9b (BHUSHAN,
2019);

o Pesquisas com a utilizagao de redes neurais para aprendizado no ambiente simulado,
conforme imagem da figura 9¢ (MERTENS, 2018);

o Simulagoes de multiplas aeronaves em situagoes diversas como corridas, conforme
consta na imagem 9d (MADAAN et al., 2020).

Time

Possible Trajectories Airsim Simulator

(a) Exemplo de simulagdo no Airsim para

criagdo de programas de classificacao (b) Exemplo de simula¢ao no Airsim para
de imagens para drones. Retirado de estudos diversos de geragao de trajeté-
(AGGARWAL et al., 2018). rias. Retirado de (BHUSHAN, 2019).

(c) Exemplo de simulagdo no Airsim com
o estudo de redes neurais. Retirado de
(MERTENS, 2018).

(d) Simulagdo de multiplos drones no contexto de uma corrida. Retirado
de (MADAAN et al., 2020).

Figura 9 — Exemplo de pesquisas desenvolvidas com Airsim nos tltimos anos.

31

Todas essas razoes tornam o Airsim um candidato cada vez mais interessante para

utilizacao em simulacdes de drones.

2.1.4 Outras Solugoes

Entre as outras solucoes de destaque para a programacao de drones, destaca-se
a plataforma RoboMaker desenvolvida pela Amazon Web Services - AWS. Essa solucao
de computacao em nuvem pode permitir que usuérios realizem trabalhos complexos de
simulacao de rob6s sem a necessidade de possuir uma méaquina com elevado poder de
processamento de dados. A figura 10, mostra um exemplo de um ambiente gerado usando
a ferramenta WorldForge para simulacoes com RoboMaker Destaca-se ainda, a integracao
da solugao desenvolvida pela AWS pode contar com o suporte de outras ferramentas da

companhia, incluindo solugoes para:

o Aprendizado de Maquinas;
o Gerenciamento de Banco de Dados;
o Internet das Coisas;

e ¢ outros...

Figura 10 — Exemplo de modelo padrao de ambiente para o AWS RoboMaker. Retirado
de (AWS, 2021).

Destaca-se, porém, que as ferramentas da AWS podem acabar se tornando muito
custosas para o desenvolvimento de simulagoes, visto que, ndo somente os pregos sao com
base na cotacao do ddlar como também o uso de diferentes funcionalidades pode acarretar

custos adicionais em todas as aplicagoes.

32

2.2 Ferramentas de Programacao

Buscando descrever as ferramentas que complementam os softwares de simulagao de
drones, essa se¢ao visa descrever as ferramentas e linguagens de programagao que podem

ser utilizadas para criar as rotinas de dialogo com os softwares.

2.2.1 C/C#/CH+...

Iniciando a discussao sobre possiveis linguagens de programacao a serem utilizadas
no desenvolvimento do trabalho, temos C, uma linguagem de programagao orientada
objeto. Desenvolvida no inicio dos anos 70, C é uma das linguagens mais difundidas no
mundo da programacao. A linguagem surgiu a partir do trabalho de pesquisadores da Bell
Labs e comegou a se espalhar mais fortemente na década de 80 em virtude do sucesso de
alguns experimentos de portabilidade (RITCHIE, 1993). C é considerada uma linguagem
capaz de fornecer as ferramentas essenciais para todos os programadores e otimizada.
Atualmente, a linguagem C recebeu dois sucessores C# e C++ que compartilham muitas
de suas caracteristicas. C++, por exemplo, ¢ uma linguagem muito utilizada em controla-
dores como ocorre com os produtos da Microchip (MICROCHIP, 2021), além de possuir
compatibilidade com Interfaces de programagao de Aplica¢oes (APIs) do Airsim e com
ROS.

C se tornou a linguagem de programacao de diversos cursos de engenharia, mas
alguns pesquisadores buscam a anos alternativas que sejam mais adaptadas para que
os estudantes possam ter um contato mais apropriado com a primeira linguagem de
programagao (WIRTH; KOKVESI, 2006), (FANGOHR, 2004) por ser considerada de
sintaxe complexa e por possuir menos bibliotecas disponiveis que outras solu¢des como

MATLAB e Python.

2.2.2 MATLAB

Como esperado, MATLAB é a ferramenta de programagao desenvolvida pela
MATHWORKS (MATHWORKS, 2021) para uso dentro do seu software, com diversas
funcionalidades adicionais como conversao de codigo MATLAB para outras linguagens e
possibilidade de chamar rotinas de MATLAB por outros ambientes. Essa ferramenta é
considerada uma linguagem de script (FANGOHR, 2004), na qual o c6digo é interpretado
durante sua execugao. Com o crescimento da utilizagdo da ferramenta na industria, diversas
instituicoes tem pensado e aplicado a linguagem como ferramenta de ensino a programagcao
para engenharia (WIRTH; KOKVESI, 2006), como é o caso da prépria Universidade de
Sao Paulo e o curso de Engenharia Aeronautica. O artigo de Wirth e Kokvesi destaca

ainda propriedades fundamentais da linguagem como:

» Sintaxe facilitada auxiliando a aprendizagem e permitindo que os programadores se

foquem mais em solucionar problemas do que na escritura do cédigo e compilacao,

33

fato também ressaltado pelo artigo de Fangohr;
» Sistema claro de reportar erros, auxiliando na corre¢do de problemas;

» Existéncia de um grande ambiente de apoio para programacao.

Ainda segundo os autores, essas vantagens superam problemas como a falta de
otimizacao comparado a linguagens mais classicas como C. Destaca-se, porém, que a
utilizagdo da linguagem enfrenta os mesmos problemas de acesso que o software em si,
devido ao alto custo de utilizagdo e aquisicao de licencas, embora constantes bibliotecas
estejam sendo desenvolvidas e novas atualizacoes da interface sejam feitas de forma

rotineira.

2.2.3 Python

Python é uma linguagem de codigo aberto gerida pela Python Software Foundation
(PSF, 2021). Essa linguagem é descrita em seu site como sendo de facil aprendizado e
intuitiva. Python é uma linguagem considerada por alguns autores (FANGOHR, 2004)
como ainda mais facil e intuitiva que MATLAB para utilizar como primeira forma de

aprendizado de programacao, tendo vantagens como:

o Acesso gratis por se tratar de uma linguagem de cédigo aberto;
» Existéncia de compiladores para diversos sistemas operacionais;
» Existéncia de bibliotecas de programacao que acrescentam funcionalidades de de-

sempenho e visualizacao de dados.

O autor destaca ainda que a linguagem passou por um grande salto de utilizacao
sendo referéncia em trabalhos ligados a NASA e ao Google, por exemplo. Ademais, foi
realizado um estudo comparativo do uso de Python, C e MATLAB em sala de aula e os
autores destacam que Python foi uma excelente linguagem para estudantes de engenharia
e ciéncias (FANGOHR, 2004). Ainda sobre a linguagem, a fundagao destaca em sua

documentagao (PSF, 2021) uma série de bibliotecas de interesse como:

1. Tkinter - Biblioteca para a criacdo de interfaces graficas de usuario;
2. Threading - Biblioteca para a execucao e criacao de fios de execucgao distintos;

3. Email - Biblioteca que pode gerenciar mensagens de e-mail, auxiliando os cédigos a

se conectarem a internet.

Todas essas bibliotecas complementam e muito o potencial de utilizacao da lingua-
gem para diversas aplicagoes. Destaca-se ainda que além das bibliotecas basicas, existem
diversas bibliotecas disponibilizadas gratuitamente por usuarios diversos em repositérios
online com o Pypi (PYPI, 2021).

34

2.3 Escolha da Ferramenta Final

A partir do levantamento bibliografico presente no capitulo 2, foi possivel se tracar
um panorama global das principais ferramentas utilizadas atualmente no ambiente de
programacao robdtica, sobretudo aquelas ligadas a operacao de veiculos aéreos. Embora
algumas solugoes como utilizar a dupla ROS/GAZEBO ou ainda o trio MATLAB/Simu-
link /FlightGear se mostrem promissores para a solugao de problemas reais de engenharia,
é preciso se conhecer de maneira aprofundada seus pontos positivos e negativos antes de

realizar a escolha definitiva.

2.3.1 Pesquisa de Opiniao

No ambiente de trabalho de engenharia, a interdisciplinaridade sempre foi muito
importante. Num projeto de um veiculo aéreo, diversas areas se interconectam para fazer
o produto final. Aerodinamica, estruturas, programacao, eletrénica e gerenciamentos de
projeto sao sé6 alguns exemplos de onde o engenheiro pode atuar num projeto aeronautico.
Ao mesmo tempo, para cumprir sua missao, o engenheiro precisa dialogar com diferentes
pessoas envolvidas no tema que nao necessariamente terao a mesma formacao e assim, é
importante nao somente saber se comunicar como também entender as necessidades de
cada um dos atores envolvidos na cadeia de desenvolvimento. Assim, uma pesquisa de
opiniao foi conduzida visando entender um pouco melhor a formacgao de engenheiros de
diferentes escolas do Brasil, seu interesse pelo tema e sua familiaridade com diferentes

ferramentas computacionais.

A pesquisa contou com a participacao de 51 pessoas de 7 universidades distintas.

Cada uma das pessoas teve que responder sobre alguns temas como:

o Interesse por drones;
» Linguagens de programagcao e sistemas operacionais mais usados;

o Linguagens de programacao inicialmente estudadas.

As figuras 11, 12, 13 e 14 resumem algumas das respostas apresentadas ao levanta-
mento de informagoes para perguntas de multipla escolha. Além dessas perguntas, alguns
campos de opiniao foram deixados aberto para quaisquer comentarios adicionais pudessem

ser usados para complementar este trabalho.

Assim, como é possivel ver na Figura 11, mais de trés quartos dos participantes
eram alunos de graduagao (grupo 1), enquanto 23.5% eram graduados ou pés-graduandos
(grupo 2). Nota-se também uma predominancia de percursos de formagao ligados as
engenharias civil, aerondutica e mecanica. Por sua vez, a figura 12 traz uma informacao
interessante sobre veiculos aéreos autonomos. Entre os participantes da enquete, embora
quatro quintes possua interesse por temas ligados a drones, menos de 12% dessas pessoas

acabam trabalhando com o tema, seja de maneira direta (projeto e afins), de maneira

35

indireta (consultoria) ou por passatempo. Esse comportamento por parte dos entrevistados
chama a atencao visto que pode indicar a existéncia de possiveis entraves para acesso a

esse tipo de tecnologia.

Avrondutica - Mecinies

Grupo 1

Ontras

c " Civil - Amhiental
rupo

Elétrica - Compuiagio

(a) Levantamento de nivel de formagéo (b) Levantamento de nivel de formagao da pes-
da pesquisa de opinido. quisa de opinido.

Figura 11 — Levantamento de perfil dos participantes do estudo.

Miin
(a) Vocé tem interesse por teméaticas ligadas (b) Vocé trabalha com drones, de ma-
a drones? neira direta ou indireta?

Figura 12 — Levantamento da relagao dos participantes com o mundo dos drones.

Na sequéncia, o grafico da figura 13a mostra que a ampla maioria dos entrevistados
consideram o Windows como seu SO mais familiar. Ao mesmo tempo, como é mostrado
na figura 13b, mais de trés quartos dos entrevistados tiveram que em algum momento
da vida, trabalhar com mais de um sistema operacional rodando na mesma maquina. De
maneira complementar, as figuras 14a e 14b mostram que a maioria dos entrevistados
precisou realizar tal configuracao para conseguir acesso a sistemas Linux sendo que 76.9%
de todas as configurac¢oes foram por alguma obrigatoriedade ligada ao sistema. Isso mostra

que muito embora os entrevistados demonstrem habilidade para trabalhar com multiplos

36

sistemas, a maior parte s6 o fez por necessidades muito especificas. Além disso, alguns
participantes relataram dificuldades do processo de configuracao de maquinas virtuais e

dual boot, o que pode atrapalhar na implementacao dessas ferramentas.

Windows

M
Limuix
(a) Qual o SO com o qual vocé tem mais (b) Vocé ja teve que trabalhar com ma-
familiaridade? quinas virtuais/dual boot?

Figura 13 — Levantamento da relacao dos participantes sobre sistemas operacionais e uso
de maquinas virtuais/dual boot

Linux

10.:3%

Windows

(b) Vocé precisou fazer isso pela neces-
(a) Seu interesse por maquinas virtuais/ dual boot sidade de um programa? Por exem-
foi para conseguir acesso a qual SO? plo, cédigo que s6 roda em Linux.

Figura 14 — Levantamento da relagdo dos participantes com maquinas virtuais e configu-
ragoes de dual boot.

Por fim, os dois graficos da figura 15 mostram também outra caracteristica muito
peculiar dos entrevistados. Como esperado, MATLAB e C (e variagoes) foram as principais
ferramentas de programacao que os participantes tiveram contato. C, costuma ser a
linguagem de programagao de diversos cursos de iniciacao as ciéncias da computagao,
enquanto MATLARB é a primeira forma de programacao apresentada no curso de Engenharia

Aeronautica da USP. No entanto, Python e outras linguagens como Java, foram aprendidas

37

pelos participantes e passaram a ocupar o lugar de preferéncia. Desta forma, embora a
figura 15a mostre que somente 5.9% das pessoas tiveram seu contato inicial com ferramentas
que nao fossem C (e variagoes) e MATLAB, a figura 15b mostra que somente 33.3% dos
participantes as tem como ferramentas preferidas. Assim, é possivel inferir que, embora,
uma parte consideravel dos estudantes de engenharia tenham seu primeiro contato com a
programacao somente durante a universidade, suas atividades os levam a ter contato com
uma gama muito maior de linguagens, permitindo que encontrem aquelas mais adaptadas

a seus interesses e atividades.

MATLAR

Python

Outras

Outras on nenhnma

C e variagoes

MATLAB A
. . © VA
(a) Qual a primeira ferramenta de

programacao que vocé teve con-
tato com? (b) Qual sua ferramenta preferida atualmente?

Figura 15 — Qual sua ferramenta de programacao preferida?

2.3.2 Decisao Final

Finalizada a etapa de levantamento bibliografico, as tabelas 1 e 2 foram confeccio-
nadas e listam alguns dos principais pontos positivos e negativos encontrados para cada

uma das ferramentas e linguagens analisadas.

38

Tabela 1 — Pontos positivos e negativos dos diferentes softwares base

Software Principal

Prés

Contras

- Existéncia de Modelos de Base
- Comunidade Grande e Participativa

- Dificil compatibilidade de
versoes ¢ SO’s

- Ao invés de as versoes
serem atualizadas elas sao
descontinuadas e novas

ROS/Gazebo - Gratuito versoes sao lancadas
- Crescente Interesse em Pesquisa tornando os c6digos
obsoletos
- Problemas de
retrocompatibilidade
- El ilizaca
- Excelente Poder Computacional do Seo\;?i(;rfe)re(;o para utilizacao
- Desenvolvimento constante de novas . .
ferramentas de suporte - Software nao necessariamente
. . . hecid de nn
MATLAB/Simulink | - Capacidade de integrar diversas zznusel(ljzlirioospor tHh granide numero
funcionalidades para uma simulagao .
completa - Necessidade de procurar
_ Capacidade de criar GUT’s aplicacoes de terceiros para
uma boa visualizacao grafica
- Capacidade de utilizar todo o potencial | - Menor liberdade para criacao
grafico da Unreal Engine de modelos de robds
- Compatibilidade com Windows - Necessidade de maior poder
Airsim - Possibilidade de utilizar computacional para utilizar a

controles remotos para teste

- APT’s existentes para Python e C

- Constante desenvolvimento de novas
funcionalidades

Unreal Engine

- Diversas funcionalidades
ainda estao em fase de
desenvolvimento

39

Tabela 2 — Pontos positivos e negativos das diferentes ferramentas de programacao

Ferramentas de ,
- Prés Contras
Programacao
- Primeira Ferramenta vista no
curso de Engenharia Aeronautica Os mesmos da utilizagao do soft-
da USP ware, somados a perda de inte-
MATLAB - Excelente gama de bibliotecas resse por parte de diversos alu-
existentes nos, como indicou a pesquisa de
- Possibilidade de didlogo direto com opiniao.
o Simulink
N . . - Complexidade maior para escri-
- Primeira Ferramenta vista em diversos .
. tura dos codigos
outros cursos de engenharia .
e . - Necessidade de controlar a ges-
- Utilizacao gratuita t30 de memdria
C/C#/C++... | - Réapido processamento : .
A . . - Menor quantidade de bibliotecas
- Existéncia de diversos compiladores e . ..
.. disponiveis
tutoriais Também apresentou perda de
- Extensa comunidade online . P . P
interesse na pesquisa
- Excelente gama de bibliotecas
existentes
- Utilizagao gratuita - Ainda nao é a primeira lingua-
Python - Linguagem preferida pela maior parte | gem de contato nos cursos de
Y dos participantes da pesquisa engenharia
- Linguagem de sintaxe amigavel - Nao pode utilizar ponteiros
- Constante expansao de suas aplicagoes
- Extensa comunidade online

Assim, ap6s andlise das diferentes possibilidades existentes e com base nos resultados

da pesquisa de opinidao e nos levantamentos de informagoes acima realizados, optou-se

por realizar a implementacao computacional utilizando o conjunto Airsim, Unreal e

Python. Esse triplete foi escolhido como o mais adequado para o trabalho por apresentar

caracteristicas como:

o Compatibilidade com multiplos sistemas operacionais, incluindo Windows;

Constante desenvolvimento de novas ferramentas o que pode auxiliar em desenvolvi-
mento de simulagoes futuras e seu uso crescente em competigoes;

Possibilidade de contar com a Unreal Engine para a visualizagado de cenérios extre-
mamente realistas, podendo incluir pessoas e afins;

Existéncia de API’s em Python para trabalhar com o simulador permitindo uma
ligacao com uma linguagem de programacao conhecida por diversos estudantes e
engenheiros;

Com excecao de alguns ambientes e ferramentas que possam complementar o ambiente
da Uneral, todas as ferramentas sao gratuitas;

Possibilidade de contar com as diversas bibliotecas de Python j& existentes para

40

analise de dados, geracao de graficos e criacao de interfaces graficas.

Estas caracteristicas contribuiram para o excelente desempenho do conjunto nas
matrizes de decisao apresentadas nas tabelas 3 e 4. A matriz apresenta os pesos definidos
para cada um dos principais tépicos avaliados com notas variando entre 1 até 3. O conjunto
escolhido conta com a maior média ponderada pelos pesos adotados. Abaixo, um breve

resumo dos critérios adotados:

1. Custos: diz respeito a facilidade de acesso a solu¢ao. No caso do Airsim, embora
o software seja de acesso livre, a Unreal Engine acaba por exigir uma capacidade

computacional mais elevada e assim, é necessario ter uma maquina mais potente;

2. Compatibilidade: trata da possibilidade de utilizar sistemas operacionais e versoes

distintas do software;

3. Facilidade de Implementacao: avalia a facilidade de instalar o software e realizar

simulagoes com a ferramenta;

4. Capacidade computacional necessaria/Processamento: critérios que buscam compre-

ender qualitativamente quantos recursos sao necessarios para executar a solugao;

5. Bibliotecas existentes: diz respeito a existéncia de conjuntos pré-prontos de cdédigos

para a realizacao de funcoes diversas;

6. Complexidade: trata de possiveis entraves para a implementacao de novos codigos e

rotinas;

7. Tradi¢dao: aborda a quanto tempo a ferramenta é utilizada para resolver problemas

de engenharia ligados ao tema;

8. Continuabilidade: principal parametro ligado a pesquisa de opinido, aborda as

preferéncias de usuarios para a continuabilidade da solugao para o futuro.

Tabela 3 — Matriz de Decisao para os Softwares de Simulacao

Software de simulacgao
Critério Peso | ROS | Airsim | MATLAB
Custos 4 3 2 1
Compatibilidade 3 1 3 2
Facilidade de Implementacao 3 1 3 2
Capacidade computacional necessaria 3 3 1 2
Tradicao 2 3 1 2
Continuabilidade 2 1 3 2
Média Ponderada 2,1 2,2 1,8

41

Tabela 4 — Matriz de Decisao para as Ferramentas de Programacao

Ferramenta de Programacao
Critério Peso | C/C#/C++... | Python | MATLAB
Custos 4 3 3 1
Bibliotecas Existentes 3 1 2 3
Processamento 3 3 2 1
Complexidade 3 1 3 2
Tradicao 2 3 1 2
Continuabilidade 2 1 3 2
Média Ponderada 2,1 2,4 1,8

Desta forma, convencionou-se a criagao de um projeto inicial como o apresentado
na figura 16, onde uma interface grafica desenvolvida com Tkinter interage com o ambiente

da Unreal gerido pelo Airsim.

Drone Simulation

A

AirSim Gui

Unreal Engine

Figura 16 — Esquema simplificado dos componentes inicialmente idealizados para a simu-
lacao computacional de drones escolhida.

43

3 IMPLEMENTACAO

Definida a ferramenta e a arquitetura de base desejada para o sistema, foi possivel

passar para a parte de implementacgao

3.1 Familiarizacao com a Ferramenta

A familiarizagdo com a ferramenta Airsim ocorreu por duas frentes principais. A
primeira, uma interacao direta com o software e seu ambiente. Para tal, o Airsim oferece

duas possibilidades principais:

1. Interacao direta via comandos de teclado;

2. Interacao via controle remoto.

A interacao direta via comandos de teclado funciona somente com o ambiente de
simulagao configurado para a utilizacao de veiculos terrestres. Com isso, é possivel realizar
alguns pequenos comandos indicando para onde o veiculo deve ir em terra, permitindo
um pouco melhor o conhecimento de como a ferramenta se comporta. Ja a interagao via
controle remoto é proporcionada por meio do software de acesso livre QGroundControl.
Essa possibilidade de utilizagao de controles externos é extremamente interessante, pois
podera permitir no futuro a criagdo de uma rotina computacional mista que permita tanto
o controle direto da aeronave via controle remoto, quanto o controle via interface gréfica,

tudo isso, com rotinas computacionais sendo executadas para auxiliar na missao final do

VANT.

A segunda possibilidade de familiarizagao é a utilizacao de algumas rotinas de
teste pré-desenvolvidas para verificar na pratica o que algumas fungoes e comandos fazem.
Algumas rotinas como a HelloDrone.py ensinam o utilizador a se conectar via Python ao
ambiente de simulagdo enquanto outras mostram como adicionar efeitos ambientais como
vento. Essas rotinas foram ligeiramente adaptadas para a realizagao de alguns testes de

simulagao e depois as adaptacoes foram incluidas direta ou indiretamente na solucao final.

Por fim, o ambiente da Unreal Engine foi levemente modificado adicionando modelos
gratuitos de veiculos para verificar como o ambiente de criagdo de mundo se comporta e

quais os procedimentos necessarios para se criar um mundo mais parecido com a realidade.

A figura 17 mostra que alguns carros foram adicionados ao ambiente, enquanto
a figura 18 mostra uma condigdo na qual a aeronave padrao do Airsim sobrevoa alguns

desses automoveis.

44

Figura 17 — Exemplo de modificacao do ambiente Blocks na Unreal Engine com a adi¢ao
de carros.

Figura 18 — Drone sobrevoando alguns carros no ambiente final de simulagao.

3.2 Criacao do Projeto

Apoés as etapas de familiarizacao inicial com a ferramenta, o projeto da interface

grafica pode ser realizado. Para tal, duas etapas foram necessarias.

1. A definicdo das missoes que o usudrio poderia executar com a plataforma;

2. A criacao das rotinas computacionais de apoio.

Essas etapas sao apresentadas em mais detalhes a seguir. Destaca-se aqui, somente
uma alteragao com relacao as definicbes do Airsim. Embora os eixos coordenados como
definidos na Unreal Engine sigam o padrao da figura 19, com os eixos x e y formando
um plano paralelo ao chao e o eixo z vertical para cima, a simulacao em si, trata o
eixo z como negativo. Assim, na implementacao do cédigo, a interface grafica recebe os
parametros de z conforme a identificacdo da Unreal Engine e faz a conversao de sinal para
a simulagdo. O procedimento inverso ocorre quando a GUI recebe um valor do Airsim e

precisa disponibiliza-lo ao usuario.

45

Figura 19 — Definicao de Eixos na Unreal Engine.

3.2.1 Defini¢do da Missao

Como a principal motivagao do cédigo a ser desenvolvido é permitir a criagao de
uma ferramenta de suporte para que os usuarios interajam com o Airsim, foi necessério
assumir algumas convencgoes. A primeira, seria que em condigdes normais de utilizagao,
os movimentos do drone seriam divididos em trés grandes blocos. Um primeiro, com
movimentagoes entre pontos distintos que poderia considerar variacoes de posicao nos
3 eixos coordenados, i.e., criacao de retas entre dois pontos. Essas retas poderiam ser
unidirecionais, nas quais se parte de um ponto inicial para um final, ou bi-direcionais
nas quais o ponto inicial e o final sao os mesmos, mas existe uma posicao para a qual
a aeronave se desloca antes de retornar ao inicio. J4 o segundo, aborda movimentagoes
seguindo formas geométricas pré-determinadas. Esse modelo de movimentacao foi escolhido,
por se assemelhar mais a um padrao de possiveis missoes reais de monitoramento, onde
a aeronave deve fazer uma varredura de uma regido especifica e possivelmente buscara
manter sua altitude para a obtencao e analise de dados distintos por meio das cameras e

sensores instalados. Por fim, o 1ltimo bloco aborda os movimentos de pouso e decolagem.

Destaca-se que o Airsim conta com API’s pré-existentes para a realizacao de
movimentos como pouso e decolagem e apresenta rotinas como moveToPositionAsync que
permitem a realizacao de um movimento indo de um ponto de coordenadas conhecidas
para outro. J4 para os movimentos restantes, foi necessario criar algumas convengoes
dado que seria necessario combinar algumas das API’s originais com cédigos diversos.
Assim, por opcao de design, todos os comandos que envolvem trajetérias que divergem da
combinagao mais simples, i.e., movimentacao entre dois pontos, ocorrerao no “Plano XY,
muito embora, em virtude da complexidade inerente aos graus de liberdade do sistema, é

de se esperar pequenas variagoes no plano vertical durante a manobra.

Desta forma, foram configurados comandos para a realizacdo de movimentos
em trajetérias retangulares e circulares em um plano definido, além das operagoes ja

mencionadas acima. A figura 20 apresenta uma representacao do que foi convencionado

46

como sendo um movimento retangular. A posicao inicial da aeronave é adotada como
um ponto de partida situado em um dos vértices do retangulo. Do repouso, a aeronave
parte em sentido anti-horario percorrendo cada um dos lados do retangulo com dimensao
definida pelo usuério. A equacgao 3.1 ilustra o caminho percorrido pela aeronave passando

pelos quatro vértices (numerados de 1 até 4) e retornando a posicao inicial (xg, yo).

Inicio/Fim

Larg.

<FC

Comp.

Figura 20 — Esquema simplificado de como um voo retangular foi definido no programa.

1 Y o Yo

T2 Y2 To + Cp Yo

r3 y3| = |To+C Yo+l (3.1)
Ty Ya To Yo+ lr

[L1 Y1 | o Yo |

Para controlar a sequéncia de manobras necessarias para a varredura, foi utilizado
um simples controle de tempo com base numa estimativa de quanto o movimento duraria

caso a velocidade de movimento do drone seja realmente a desejada, como pode ser visto

47

tl . lr/’U
-1

Por sua vez, o movimento circular pode ser representado pelo esquema da figura

na equacao 3.2.

21. Esse movimento, também realizado no sentido anti-horario é definido principalmente
pelo raio da circunferéncia. Novamente, adotando a posigao inicial do veiculo como sendo
o bindmio (xg, yo), pode-se definir as coordenadas do centro da circunferéncia por meio da

equacao 3.3.

Inicio Meio

Figura 21 — Esquema simplificado de como um voo circular foi definido no programa.

-

No entanto, embora seja relativamente simples definir geometricamente um circulo,

l’O—R
Yo

(3.3)

optou-se por discretizar o circulo, transformando-o num poligono com uma quantidade de
lados determinada pelo utilizador. Quanto mais lados o utilizador escolhera, mais parecida
a trajetoria final serd de uma circunferéncia. Para obter a velocidade angular e o periodo

total, recuperar o angulo atual e a posi¢ao do drone no poligono, utilizou-se as equagoes
3.4, 3.5,36e3.7.

=<

48

o w%k (3.6)
[m] _ [Tt Rc'os(e)] (3.7)
Yo Ye + Rsin(6)

AR
&

Figura 22 — Tlustracao de diferentes niveis de discretizagdo para um circulo.

3.2.2 Rotinas Principais

De maneira geral, o codigo construido para a interface grafica e sua interacao com

o ambiente simulacional do Airsim pode ser dividido em algumas partes principais:

1. A criagdo da GUI propriamente dita, com todos seus itens e agoes de retorno;

2. A criacao de Threads para gerir agdes em tempo real paralelamente ao comando da
GUI;

3. Funcoes diversas que complementam o cédigo e permitem acoes diversas como a

criacao de animacoes.

3.2.2.1 Interface Grafica

Desta forma, com o intuito de tornar o projeto mais amigavel a qualquer usuario,
uma interface grafica em Python foi desenvolvida com o auxilio da biblioteca Tkinter. A
principal ideia por tras da criagdo de uma interface grafica é a possibilidade de difusao
da ferramenta para uma comunidade mais ampla. Com um ambiente de programacao
mais amigavel, seria possivel que pessoas com diferentes niveis de conhecimento e fungoes

dentro do projeto interajam com a ferramenta e extraiam resultados coerentes com aquilo

49

que lhes é de interesse. A figura 23 mostra como foi pensada a arquitetura inicial para
a Interface Grafica enquanto a figura 24 mostra uma das versoes de desenvolvimento da

interface.
Essa arquitetura trabalha com 4 secoes principais:

e Secao de inicializagao: responsavel por conectar a interface ao ambiente de simulagao
do Airsim;

 Secao solo/voo: responsavel por permitir o acesso as rotinas de pouso e decolagem;

» Secdo de gerenciamento dos movimentos: responsavel por permitir e gerir os diferentes
tipos de missao. Essa parte da interface também permite a visualizacao da trajetéria
realizada e da desejada;

o Secdo auxiliar: responsavel por permitir ao usuario realizar tarefas adicionais como a

geracao de animagoes da trajetoria.

Os codigos utilizados para a criagao da interface estdo presentes de maneira mais
detalhada no Apéndice A.

Figura 23 — Ideia de base para o design da interface grafica via Tkinter.

Figura 24 — Versao de desenvolvimento da interface grafica de usuario feita com o auxilio
da biblioteca Tkinter.

50

Para garantir o funcionamento da solucdo, a interface grafica contou com a inclusao
de rotinas de retorno que sao ativadas com diferentes tipos de interacdo como pressionar
botoes ou alterar o tipo de movimentagao via uma lista suspensa. Essas sub-rotinas
interagem de maneira direta ou indireta com outras duas partes da ferramenta: as Threads

e as Outras Rotinas. Ambas sdo apresentadas em mais detalhes a seguir.

3.2.2.2 Threads

Visando melhorar o desempenho do programa e permitir uma interagao em tempo
real entre o ambiente simulacional e o usuario do programa, foi necessario se desenvolver
um sistema de fios de execucao, ou threads. Esse sistema se mostrou também crucial
para permitir o funcionamento da interface grafica por algumas limitagoes da biblioteca
utilizada. De maneira geral, o Tkinter cria uma operagao que ¢ executada continuamente
enquanto a interface se mantém aberta. Isso ocorre para permitir que todas as agoes
executadas por um usuario na aplicacao sejam tratadas e as respectivas fungoes de retorno
sejam acionadas. Assim, a execucao de uma pausa em decorréncia direta de uma acao do
usuario pararia toda e qualquer sub-rotina auxiliar dado que todas as rotinas estariam
contidas no mesmo processo, fazendo que, por exemplo, a aeronave deixe de atualizar sua

posicao ao se mover.

thread —— ;

single-threaded process

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
<«— thread

multithreaded process

Figura 25 — Exemplificacdo de processos com um tnico fio de execugdo (thread) e com
multiplos. Retirado de (BELL, 2006).

Para contornar esse problema, uma possibilidade é a criagao de fios de execucao.

Cada thread, representa uma unidade de utilizagdo de CPU e um tnico processo pode

ter diferentes fios (BELL, 2006), como exemplificado na figura 25. Com isso, é possivel

51

executar rotinas de maneira independente da rotina principal de atualizacao da interface
grafica. Para a construcao dos fios, a biblioteca threading do Python foi utilizada. Com ela,
foi possivel criar trés sequéncias de execucao em paralelo a rotina principal. Para garantir

o bom funcionamento do esquema, as threads ocorreriam em repeticdes constantes.

Entretanto, esses fios de execucao nao poderiam ser diretamente acionados pela
GUI. Caso isso ocorresse, toda a execucao poderia ser subitamente encerrada. Desta
forma, optou-se por utilizar diferentes flags ou bandeiras. Essas bandeiras, indicam qual
o estado atual do programa e dependendo de seus valores, as threads executam agoes
distintas. Assim, para que o usuario possa interagir com os multiplos fios sendo executados

simultaneamente, basta que a interface altere o valor das flags.

Assim, as sequéncias se caracterizam por:

1. Sequéncia movManager: responsavel por escolher o perfil de movimento que o drone
deve realizar ao pedido do usudrio e executar a missao. Nessa rotina, o tempo para

passar de um trecho a outro é controlado com base na velocidade de voo desejada;

2. Sequéncia posUpdater: responsavel por manter atualizada informacoes de movimen-
tagdo da aeronave, como posicao e velocidade. Essa rotina também é responsavel

por captar as imagens da camera e gravar dados de voo em um arquivo de texto;

3. Sequéncia posSaver: responsavel por tratar as informagoes de movimentacao para
serem disponibilizadas no grafico e transformar as imagens obtidas em arquivos
trabalhaveis. Aqui, as posi¢oes sao salvas enquanto a velocidade for maior que um
limite de 5% 1073 m/s.

O codigo por tras de cada um dos fios de execucao esta disponivel no Apéndice B.

3.2.2.3 Qutras Rotinas

Além dessas rotinas principais, outras func¢oes auxiliares foram necesséarias e podem
ser acessadas tanto pela janela principal, quanto pelos fios de execucgao. Essas rotinas

executam funcoes diversas como:

e Permitir o uso ou retirar a permissao para a utilizacao de determinados botoes,
limitando as agdes do usuario conforme a configuracao atual do drone;

o Comandar um determinado perfil de missao;

o Gerar animacoes;

e ct. al.

As principais fungoes auxiliares estao presentes no Apéndice C para conferéncia

das rotinas.

52

3.2.3 Arquitetura resultante

Definidos os perfis de missao que a aeronave poderia executar e realizado o trabalho
de programacao da GUI, dos fios de execucao e das fungoes auxiliares, foi possivel se
chegar a arquitetura apresentada na figura 26. A figura detalha os 4 fios existentes, seus
subcomponentes e suas principais funcionalidades. Por fim, a figura 27 mostra a GUI em

sua forma final.

. . . Interactions and
Tkinter mainloop() Window Components Callbacks

Thread movManager() Trajectory Widgets Path Dropdown

Round Trip
Thread posUpdater() Get Airsim Kinematics Record data on .txt

=
o
E
P
<

Rectangular Path
Rework data when Save Pictures & Circular Path

Figura 26 — Esquema simplificado da arquitetura atual da solugdo computacional para
simulacao com AirSim.

¢ Aisim Contrllr
Aiim CONTROLLER

Outras Fungdes

Principal Movimentagéo
Ponto 3 ponto — Update Plot
Pouso Resetara Simulacio Caminho GIF

Gerar Gif

i Status - Por favor ndo mexa
Trajetéria Real x Desejada barads

Figura 27 — GUI em seu estado final obtido no projeto.

53

4 RESULTADOS E DISCUSSAO

Apos a criagdo das rotinas computacionais necessarias para a simulacao do Drone
usando o Airsim, foi possivel obter uma solugao grafica amigavel e poderosa, capaz de
realizar acoes de diferentes niveis de complexidade com o software de simulacao. Essa se¢ao
visa entao abordar a execucao simulagoes distintas, a trajetéria executada e a obtencao de

imagens utilizando o software.

4.1 Simulacdes

Para avaliar a capacidade da interface grafica de dialogar com o Airsim e também a
capacidade do software de lidar com os comandos de missao desejados, 6 perfis de validacao

foram definidos. Esses perfis estdo presentes na Tabela 5.

Tabela 5 — Lista de missoes enviadas via GUI para o simulador.

Missao Detalhes

- Origem em [0,0,0]
Ponto a ponto | - Final em [0,0,50]

- Velocidade 25 m/s
- Origem em [0,0,0]
Ponto a ponto | - Final em [0,4,10]

- Velocidade 2 m/s
- Origem em [0,0,0]
Ponto a ponto | - Final em [-2,2,10]
- Velocidade 5 m/s
- Raio de 20m

- Inicio em [0,0,50]

- Velocidade 4 m/s
- Discretizacao com 10 pontos
- Comprimento 30m
- Largura 20m

- Inicio em [0,0,50]

- Velocidade 10 m/s
- Comprimento 30m
- Largura 20m

- Inicio em [0,0,50]

- Velocidade 2 m/s

Circular

Retangular

Retangular

Com isso, foi possivel utilizar a interface para gerar os comandos de movimentagao

e os resultados obtidos sao discutidos na Secao 4.2.

54

4.2 Discussao

Os roteiros presentes na secao 4.1 deste relatério foram testados por meio da
interface grafica foram geradas imagens de camera ao longo da movimentagao da aeronave
e também foram atualizados os graficos. Destaca-se aqui que embora todas as trajetérias
tenham tirado fotos, elas nao serdao todas apresentadas, pois os graficos de movimento
acabam apresentando mais informagoes do que estas imagens. Além disso, essa andlise
de resultados objetiva construir uma avaliacao mais qualitativa da ferramenta e da GUI
produzida, focando o estudo na capacidade da GUI de enviar comandos e estes serem
reproduzidos pelo Airsim. Desta forma, nao se discutirao os erros entre a posicao desejada
e a trajetoria real, busca-se, agora, somente que a simulagao responda aos comandos de
missao enviados, mesmo que a trajetoria nao seja perfeitamente reta num voo do tipo
ponto a ponto, retangular ou circular visto que outros fatores como clima, vento e altitude
podem influenciar na simulagao e nao foram alvos do controle da rotina desenvolvida.
Outro ponto que pode afetar as trajetorias é a forma de controle de passagem de uma

posicao a outra, como apresentada no capitulo 3.

A figura 28, apresenta as curvas obtidas para a primeira trajetoria da tabela 5. Nela,
é possivel ver que no caso de uma movimentacao vertical, as trajetorias real e desejada se

confundem e se sobrepéem mesmo com uma velocidade elevada.

Trajetoria Real x Desejada

—— Trajetoria Desejada
— Trajetoria Real

Z{m)

20

10

-0.04
-0.02
0.00
¥ fmy 002 ~0.04
0.04

Figura 28 — Resultado para um voo partindo da posi¢ao inicial [0,0,0] indo até o ponto o
[0,0,50].

55

Destaca-se ainda, que o grafico ndo aparentou mostrar oscilagoes nos eixos x e y em
decorréncia desse movimento o que leva a indicar uma boa precisdo da ferramenta para a
realizagdo de movimentos unidirecionais no eixo z. A figura 29, por sua vez, mostra que ao
se adicionar movimentos no plano zy, pequenas oscilagdes (ordem de 10~7 sdo adicionadas,
mesmo que o plano da aeronave seja se deslocar sob um tnico eixo. Como a trajetoria
enviada nao possui etapas adicionais, esse comportamento oscilatorio deve ser oriundo dos
métodos e equagoes por tras do gerenciamento da fisica do Airsim. No entanto, como a
ordem de grandeza é muito pequena comparada ao deslocamento, essas oscilagdes podem

ser consideradas despreziveis.

Trajetoria Real x Desejada

—— Trajetdria Desejada
—— Trajetoria Real

Z (m)

Figura 29 — Resultado para um voo partindo da posicao inicial [0,0,0] para o ponto final
[0,4,10).

Ja no que diz respeito a figura 30, é possivel verificar que para um comando de
movimentagdo com componentes de deslocamento nos 3 eixos coordenados, as oscilagoes
também se fazem presentes. E possivel verificar visualmente no grafico 2 zonas principais
de diferenciagao do cédigo: o comecgo, onde a curva azul se distancia da curva desejada;
e o final, onde as curvas voltam a se diferenciar apds uma reaproximacao no centro da
trajetéria desejada com as curvas novamente se confundindo, embora sejam esperadas

algumas pequenas variagoes no meio, como foi visto no teste anterior.

56

Trajetdria Real x Desejada

—— Trajetoria Desejada
— Tajetoria Real

Z {m)

Figura 30 — Resultado para um voo partindo da posi¢ao inicial [0,0,0] para um vetor com
inclinagao de aproximadamente 8° com a vertical. O ponto final é o [-2,2,10].

Além disso, as sub-figuras 31a até 31i da figura 31, mostram como as imagens da
camera se comportaram ao longo da trajetéria. Com elas, é possivel ver, com o auxilio
dos objetos disponiveis no ambiente da Unreal Engine que a aeronave vai gradualmente,
subindo e se deslocando no plano, trazendo os blocos do fundo para a parte frontal da
camera, bem como aumentando a area de exposi¢ao da esfera laranja e fazendo com que
o carro suma de vista da aeronave. Isso mostra que, caso um codigo de classificacao de
imagens seja implementado no Airsim, é de se esperar que a aeronave consiga alterar
seu percurso ou enviar informacoes personalizadas em tempo real sobre a condi¢do do
ambiente ao qual ela estd sobrevoando visando validar métodos e rotinas. Destaca-se ainda
que estas imagens de camera também foram geradas pelas outras missoes, mas nem todas
serao apresentadas neste documento por apresentar resultados menos informativos que os

graficos de comparacao de trajetoria.

Na sequéncia, a figura 32, conta com os resultados de uma trajetéria circular
enviada pela interface grafica. Essa missao, realizada com os parametros da tabela 5.
Embora esta missao apresente uma discretizagdo na qual é possivel perceber visualmente
os limites do decagono enviado ao software, mostrou que o drone aproximou-se de uma

trajetéria mais homogénea.

o7

Figura 31 — Algumas imagens capturadas com o drone em movimento durante o caminho

da trajetéria descrita pela figura 30.

Trajetdria Real x Desejada
—— Trajetoria Desejada

—— Trajetoria Real

Z(m)

Figura 32 — Resultado de uma missdo circular iniciada no ponto [0,0,50] para uma circun-

feréncia com 40 m de didmetro.

58

Ademais, é importante mencionar que conforme o drone foi percorrendo a trajetoria,
o movimento executado foi se distanciando cada vez mais do inicialmente previsto. Isso esta
provavelmente ligado com o sistema de controle da thread movManager que utiliza o tempo
calculado entre dois lados para enviar o préximo comando. Considerando a velocidade da
manobra e o tamanho da circunferéncia, é possivel inferir que a aeronave esteja iniciando
a manobra seguinte sem de fato ter conseguido chegar a posicao final do trecho e conforme

avanga em sua missao, esses erros vao se somando até ficarem cada vez mais perceptiveis.

Esse mesmo problema é encontrado nas trajetérias retangulares obtidas e mostradas
nas figuras 33 e 34. Embora, ambas as trajetorias constituam os mesmos retangulos partindo
do ponto inicial [0, 0, 50], o primeiro movimento ¢é feito com uma velocidade desejada maior.
Na condicao de maior velocidade, o retangulo obtido apresenta uma série de deformacoes
que descaracterizam o movimento. E possivel perceber no trecho inicial do movimento que
o veiculo inicia seu voo com um certo distanciamento do lado do retdngulo ideal e quando
ele esta se aproximando de sua trajetoria ja inicia a proxima etapa. Nos outros lados do
retangulo o efeito se repete fazendo com que a aeronave se afaste cada vez mais. E notdvel

aqui a influéncia do tempo de espera entre os comandos de manobras, mostrando que a

v

Ag Nao se mostra a mais adequada.

simples relacao t =

Trajetdria Real x Desejada

- Trajetoria Desejada
= Trajetoria Real

Z {m)

Figura 33 — Resultado para um voo partindo da posi¢ao inicial [0,0,50] para um retdngulo
com 30 m de comprimento e 20 m de largura. Essa trajetéria foi obtida usando
uma velocidade de 10 m/s.

59

Trajetdria Real x Desejada

—— Tajetoria Desejada
— Tajetoria Real

Zm)

20

10

15
X‘-‘”’-’J

25 0

Figura 34 — Resultado para um voo partindo da posicao inicial [0,0,50] para um retdngulo
com 30 m de comprimento e 20 m de largura. Essa trajetoria foi obtida usando
uma velocidade de 2 m/s.

Ainda sobre a trajetoria da figura 33, é possivel ver que no final, a aeronave passa
do ponto inicial, errando por quase 5 metros no eixo y até iniciar uma manobra de
retorno. Ja na figura 34, é possivel ver que a reducao de velocidade permitiu ao drone
seguir a trajetéria de maneira mais realista, se afastando do trajeto inicial somente no
fim do primeiro lado do retangulo, chegando a voltar a estar em contato na terceira parte
da trajetoria. Neste trecho, a aeronave também demonstrou um menor desvio no final,
voltando a posicao inicial de maneira mais direta, mesmo que o controle por tempo de

manobra também tenha mostrado os seus problemas.

Assim, foi possivel obter com a interface grafica e o Airsim, uma série de trajetérias
que se aproximaram dos perfis de missao desejados e passados pelo usuario para o software,
mostrando que a aplicagao desenvolvida se encontra funcional com capacidade de geracao
de graficos, registros de posicionamento e também captura de imagens e animacoes.
Destaca-se, porém, que algumas modifica¢oes ainda poderiam ser realizadas para melhorar

a reproducao da trajetéria desejada e incrementar as fungoes disponiveis.

61

5 CONCLUSAO

Com este trabalho foi possivel fazer uma avaliagao de diferentes ferramentas
computacionais para a criacdo de simula¢des com veiculos aéreos. Esse levantamento,
auxiliou na compreensao de que nem sempre, as ferramentas mais tradicionais sao as mais
adequadas, ¢ necessario se compreender os objetivos que se buscam atingir e qual piblico
ira estar em contato com o produto final. Nesse sentido, Airsim e Python se mostraram os

meios ideais para a realizacao deste projeto de conclusao de curso.

Utilizando estes recursos, foi possivel construir uma Interface Grafica de Usuario
capaz de permitir a usuarios com diferentes niveis de conhecimento uma interagao com a
ferramenta e controlar quais missoes a aeronave ira realizar e extrair dados da ferramenta,
gerando imagens e animagoes. A ferramenta serviu também para mostrar que o Airsim em
conjunto com a Unreal Engine possui enorme potencial para aplicacoes mais complexas,
mesmo que as trajetorias divirjam um pouco daquilo que foi enviado, o que é um compor-
tamento normal, considerando a complexidade do sistema. Este trabalho podera servir de
base para desenvolvimentos futuros e algumas sugestoes de vias de melhoria sdo expressas

aqui nessa conclusao.

Assim, alguns pontos de interesse foram levantados para que a solucao aqui desen-

volvida seja complementada em trabalhos futuros de graduagao ou poés-graduagao.

1. Criacao de rotinas ligadas a classificacao de imagens. Considerando que a ferramenta
ja pode realizar alguns tratamentos basicos de imagem, salvando figuras e criando
animagoes, uma atualizacao futura que contemple além dessas ferramentas, uma
analise em tempo real da imagem para dizer, por exemplo, quantos carros estao
presentes na tela ou criar rotas complexas utilizando aprendizado de maquina para
seguir padroes definidos. Além disso, pode ser interessante trabalhar com novos

sensores.

2. Avaliagao das diferencas de posicao obtidas entre o desejado e o simulado. Con-
siderando que as trajetorias podem ter oscilagoes e variagoes com aquilo que era
desejado, seria muito importante implementar meios de validar a obtencao do perfil
de missao desejado por uma analise de erros. Também seria interessante rever os
critérios de defini¢ao de fim de etapa para tornar a simulacao ainda mais coerente

com o perfil de interesse.

3. Atualizagao da interface grafica e das fungbes para permitir uma gama ainda maior

de comandos por parte do operador. A melhoria da parte computacional também

62

pode ser feita visando otimizar os tempos de execuc¢ao do codigo e a capacidade de

processamento necessarias.

Implementacao de melhorias no ambiente da Unreal Engine. O ambiente da Unreal
possui um grande potencial de personalizagao. Novos carros podem ser incluidos,
assim como casas, ruas e semaforos. Além disso, cada um desses elementos pode
ter acionamentos e movimentos independentes, i.e., os carros podem se movimentar
nas ruas e os semaforos podem alterar sua sinalizacdo. Assim, uma interessante via
de melhoria seria a criagao de mapas mais fidedignos as aplicagoes de drone que se
deseje avaliar. Também pode ser interessante testar o comportamento do sistema

com variagoes climaticas e ciclos de dia e noite.

Aprimorar a quantidade de rotinas de "usabilidade'. E importante prevenir possiveis
erros de usudrio como, por exemplo, enviar uma posicao inatingivel ou utilizar
entradas incorretas nos campos. Essas alteracoes poderao permitir uma usabilidade

COIIl Menos erros.

63

REFERENCIAS

AGGARWAL, S. et al. Smart drone. 2018. Atividade Académica da Universidade da
Califérnia Sao Diego.

ATTACHE, A. Plane Crash Simulation in Unreal Engine 5. 2021. Acesso:
12/06/2021. Disponivel em: <https://www.youtube.com/watch?app=desktop&v=h__
DZRBMg81w&feature=youtu.be>.

AWS. Robomaker. 2021. Acesso: 12/06/2021. Disponivel em: <https://aws.amazon.
com/pt/robomaker>.

BELL, J. University Illinois Chicago- Course Notes Operating Systems -
Threads. 2006. Acesso: 24/05/2021. Disponivel em: <https://www.cs.uic.edu/~jbell/
CourseNotes/OperatingSystems/4__Threads.html>.

BHUSHAN, N. Uav: Trajectory generation andsimulation. 2019. Thesis Substitute Project
- Universidade do Texas Arlington.

CNI. Emprego: induastria foi o setor que mais abriu vagas formais em 2020. 2021.
Acesso: 24/05/2021. Disponivel em: <https://noticias.portaldaindustria.com.br/noticias/
economia/emprego-industria-foi-o-setor-que-mais-abriu-vagas-formais-em-2020/>.

EDP. EDP é a primeira empresa do setor elétrico certificada pela ANAC para
monitoramento de redes com uso de drones. 2021. Acesso: 14/06/2021. Disponivel
em: <https://bit.ly/2TavglE>.

ERBOZ, G. How to define industry 4.0: The main pillars of industry 4.0. Managerial
Trends Managerial trends in the development of enterprises in globalization
era, 2017. P. 761-767.

FANGOHR, H. A Comparison of C, MATLAB, and Python as Teaching
Languages in Engineering. 2004. Publicado em: In: Bubak M., van Albada G.D.,
Sloot P.M.A., Dongarra J. (eds) Computational Science - ICCS 2004. ICCS 2004. Lecture
Notes in Computer Science, vol 3039. Springer, Berlin, Heidelberg.

G1. PIB do Brasil despenca 4,1% em 2020. 2021. Acesso: 24/05/2021.
Disponivel em: <https://gl.globo.com/economia/noticia/2021/03/03/
pib-do-brasil-despenca-41percent-em-2020.ghtml>.

GAZEBO. GAZEBOSIM. 2021. Acesso: 27/05/2021. Disponivel em: <https:
//www.gazebosim.org/>.

GOOGLE. Google Finance. 2021. Acesso: 13/05/2021. Disponivel em: <https:
//www.google.com/intl/pt-BR/googlefinance>.

. Google Trends. 2021. Acesso: 13/05/2021. Disponivel em: <https:
//trends.google.com.br/trends/>.

HERMANN, M.; PENTEK, T.; OTTO, B. Design principles for industrie 4.0 scenarios.
2016 49th Hawaii international conference on system sciences (HICSS). IEEE,
2016. P. 3928-3937.

64

MADAAN;, R. et al. Airsim drone racing lab. Proceedings of Machine Learning
Research, 2020. NeurIPS 2019 Competition and Demonstration Track.

MATHWORKS. MATLAB. 2021. Acesso:30/06/2021. Disponivel em: <https:
//www.mathworks.com/products/matlab/>.

MERTENS, J. Generating data to train a deep neuralnetwork end-to-end within
a simulated environment. 2018. Master thesis at Department of Mathematics and
Computersciencelntelligent Systems and Robotic Labs - Universidade Livre de Berlim.

MEYER, J. et al. Comprehensive simulation of quadrotor uavsusing ros and gazebo.
Conference: Proceedings of the Third international conference on Simulation,
Modeling, and Programming for Autonomous Robots, 2012.

MICROCHIP. MPlab. 2021. Acesso: 27/05/2021. Disponivel em: <https:

//www.microchip.com/en-us/development-tools-tools-and-software/mplab-x-ide>.

MICROSOFT. Airsim Documentation. 2021. Acesso: 31/05/2021. Disponivel em:
<https://microsoft.github.io/AirSim /index.html>.

MUNDIAL, B. Databank. 2021. Acesso: 24/05/2021. Disponivel em: <https:
//databank.worldbank.org/home>.

OSRF. ROS. 2021. Acesso: 27/05/2021. Disponivel em: <https://www.ros.org/>.
PSF. Python. 2021. Acesso: 20/05/2021. Disponivel em: <https://www.python.org/>.

PYPI. Python Package Index. 2021. Acesso: 27/05/2021. Disponivel em:
<https://www.pypi.org/>.

RITCHIE, D. M. The development of the ¢ language. Second History of Programming
Languages conference, 1993.

SHAH, S. et al. Airsim: High-fidelity visual and physicalsimulation for autonomous
vehicles. Field and Service Robotics conference, 2017.

SILVEIRA, C. B. Industria 4.0: O que é, e como ela vai impactar o mundo. 2017.
Acesso: 24/05/2021. Disponivel em: <https://www.citisystems.com.br/industria-4-0/>.

WIRTH, M.; KOKVESI, P. Matlab as an introductory programming language. Computer
Applications in Engineering Education, 2006.

Appendices

67

APENDICE A - CODIGO GERADOR DA INTERFACE GRAFICA

Essa secao trata da construcao da interface grafica em si, utilizando a biblioteca

Tkinter. Abaixo, o codigo detalhado e comentado para a geracdo da interface final.

Informagbes genéricas

window = tk.Tk()

window.geometry("1920x1080")
window.protocol("WM _DELETE WINDOW", closeWindow)

window.title('AirSim Controller')

Criando o arquivo de log
day = datetime.datetime.now()
day_hour = day.strftime("%b-%d-%Y %H_%M_%S")
try:
os.mkdir('Arquivos Txt')
except Exception:
pass

f = open('Arquivos Txt/'+ day_hour + '.txt', "x")

Definicdo de threads
thread = threading.Thread(target=posUpdater, name="Position Updater")
threadchart = threading.Thread(target=posSaver, name="Position Saver")

threadmov = threading.Thread(target=movManager, name="Gerente de Movimentagdo")

Interface inictial - conexdo da aeronave

greeting = tk.Label(text="AirSim CONTROLLER")

greeting.pack()

b0 = tk.Button(window, text ="Conectar a aeronave", command = connect)
b0 .pack()

to =0

Criagdo do primeiro subgrupo - pouso e decolagem

labelframe = tk.LabelFrame(window, text="Principal')

bl = tk.Button(labelframe, text="Decolagem", command = takeoff)
bl.pack()

b10 = tk.Button(labelframe, text="Pouso", command = landing)
b10.pack()

68

Criacdo do espago de movimentac¢do mna Gut

labelframe2 = tk.LabelFrame(window, text="Movimentacdo")

tkvar = tk.StringVar(window)
tkvar2 = tk.StringVar(window)

Criacdo da lista de movimentos

mov_types = { 'Ponto & ponto', 'Bate e Volta','Voo Retangular', 'Voo em Circulo'}
tkvar.set('Ponto & ponto') # set the default option

tkvar.trace('w', chooseMov)

popupMenu = tk.OptionMenu(labelframe2, tkvar, *mov_types)

popupMenu. pack ()

Botdo de Reset
b3 = tk.Button(labelframe2, text="Resetar a Simulagdo", command = reset)
b3.pack()

Espaco para o grafico de movimentacgdo
fig = plt.Figure(figsize=(8, 8))
ax = fig.add_subplot(111l, projection='3d')
ax.grid(True)
ax.set(title = "Trajet6ria Real x Desejada",
xlabel = "X (m)",
ylabel = "Y (m)",
zlabel = "Z (m)")
plt.show()
canvas = FigureCanvasTkAgg(fig, master=labelframe2)
canvas.draw()

canvas.get_tk_widget () .pack()

Criacgcdo do botdo de woo
b2 = tk.Button(labelframe2, text="Voo Reto", command = fly)
b2.pack()

Caizas de texto para as manobras ponto d ponto e bate e wvolta
pxt = tk.Text(labelframe2, height = 1, width = 52)
lpx = tk.Label(labelframe2, text = "Posigdo em x")

69

pyt = tk.Text(labelframe2, height = 1, width = 52)
pxt.insert('end-1c','0")

lpy = tk.Label(labelframe2, text = "Posigdo em y")
pzt = tk.Text(labelframe2, height = 1, width = 52)
pyt.insert('end-1c','0")

lpz = tk.Label(labelframe2, text = "Posigdo em z")
tt = tk.Text(labelframe2, height = 1, width = 52)

pzt.insert('end-1c','0")
pvt = tk.Label(labelframe2, text
tt.insert('end-1c','1"')

"Velocidade da manobra")

lpx.pack()
pxt.pack()
1py.pack()
pyt.pack()
lpz.pack()
pzt.pack()
pvt.pack()
tt.pack()

Caizas de texto para a manobra retangular

1lr = tk.Label(labelframe2, text = "Largura do Retangulo")
tlr = tk.Text(labelframe2, height = 1, width = 52)
tlr.insert('end-1c','0")

lcr = tk.Label(labelframe2, text = "Comprimento do Retangulo")
tk.Text (labelframe2, height = 1, width = 52)

tcr.insert('end-1c','0")

tcr

Caizas de texto para a manobra circular
tcr.insert('end-1c','1")

1lr = tk.Label(labelframe2, text = "Raio do Circulo")
tr = tk.Text(labelframe2, height = 1, width = 52)

tr.insert('end-1c','0"')

Criacdo do espago para fungbes auziliares

labelframe3 = tk.LabelFrame(window, text="Outras Funcdes")

Botdo de atualizar grdafico

b4 = tk.Button(labelframe3, text="Update Plot", command = updateChart)

70

b4 .pack()

Criagcdo da interface para geragdo de animac¢do

gt = tk.Text(labelframe3, height = 1, width = 52)
#gt.config(state="'disabled')

lg = tk.Label(labelframe3, text = "Caminho GIF")

1lg.pack()

gt.pack()

b4 = tk.Button(labelframe3, text="Gerar Gif", command = gifSaver)
b4 .pack()

Interface para flag do movManager
stat = tk.Text(labelframe3, height 1, width = 52)

lstat = tk.Label(labelframe3, text = "Status - Por favor nio mexa')
lstat.pack()

stat.pack()

stat.insert('end-1c', 'parado')
stat.config(state = 'disabled')

Para salvar posigbes

pxt2 = tk.Text(labelframe2, height = 1, width = 52)

1px2 = tk.Label(labelframe2, text = "Ultima Posigdo em x"
pyt2 = tk.Text(labelframe2, height = 1, width = 52)
pxt2.insert('end-1c','0")

1py2 = tk.Label(labelframe2, text = "Ultima Posigdo em y")
pzt2 = tk.Text(labelframe2, height = 1, width = 52)
pyt2.insert('end-1c','0")

1pz2 = tk.Label(labelframe2, text = "Ultima Posigdo em z")

pzt2.insert('end-1c','0")

Criacdo do loop do tkinter

window.mainloop()

71

APENDICE B - CODIGO DAS THREADS

Visando facilitar a compreensao das rotinas computacionais utilizadas, essa se¢ao
traz os codigos desenvolvidos para a criacao das threads mencionadas no capitulo 3. Os
cddigos das threads sao aqui apresentados em ordem alfabética do nome escolhido e nao

pela ordem de inicio por uma mera convengao organizacional.

nimnn

Thread movManager - Coordena qual tipo de comando de movimentacgdo
sera passado d aeronave. Trabalha com dados de posig¢do gerados pela posUpdater
e por meio de uma "flag" chamada "currStat", sabe quando a aeronave deve

voar e qual movimento ezxzecutar

mimnn

def movManager():
global posplot # Varidavel global para a criag¢do de graficos
while(True):
Definicdo da possigdo e status atuats

currStat = stat.get("1.0",'end-1c')

currPos = pos2

posplot = currPos

Checagem do status

if currStat == 'voando':

Verificagdo de qual tipo de movimentagdo fot escolhida

currMov = tkvar.get()

if currMov == 'Ponto a ponto':
flyToPosition()
elif currMov == 'Bate e Volta':

flyBateVolta(currPos)

elif currMov == 'Voo Retangular':
flySquare (currPos)

else:
flyCircle(currPos)

Atualizagdo do status apds execugdo

72

nmmnn

stat.config(state = 'normal')

stat.delete(1.0, 'end-1c')

stat.insert('end-1c', 'parado’')

stat.config(state = 'disabled')
time.sleep(0.1)

Encerramento
if kill3:

break

Thread posUpdater — Roda paralelamente ao cédigo principal. Serve para retirar

tnformagcdes importantes do programa em tempo real como posigdo, veloctidade

e também serve para criar a variavel que trabalha com a camera

nmnn

def posUpdater():

D

Definigdo de varidveis globais que serdo acessadas
externamente
global pos
global pos2
global pos3
global vel
global responses
while(True):
getKinematics —-—> OUbtém informacdes do movimento
pos = client.simGetGroundTruthKinematics() .position
pos2 = pos
vel = client.simGetGroundTruthKinematics().linear_ velocity
Salva as informagdes no log
f . write('Posigdo [X, Y, Z]: [' + str(pos.x_val) + ', ' + str(pos.y_val) \
+ ', ' + str(pos.z_val) + '] \n')
getimages —--> Captura imagens da camera
responses = client.simGetImages([

airsim.ImageRequest("1", airsim.ImageType.Scene, False, False) #PNG

time.sleep(0.1)

73

mnimnn

Thread posSaver - Roda paralelamente ao cédigo principal.

Encerramento
if kill:

break

formagdes da posUpdater

mnimnn

def

posSaver () :
Definicdo de varidaveis globais

global responses

Definicdo de flags e varidveis de apoio

cap = 0

pos_real = np.empty((0,3), float)
flagd = O

flagl = 0

lastpos = []

Salva foto
takePicture(flagl)

while(True):
Atualizagd@o da posig¢do atual

posplot = pos2

Trabalha com as in-—

lastpos = [posplot.x_val, posplot.y_val, -posplot.z_val]

while(True):
posplot = pos
velplot = vel

velcalc = np.sqrt(vel.x val**2 + vel.y_val**2 + vel.z_val**2)

Verificacdo se a velocidade estd abaizo de um determinado

limite. Caso esteja acima, assume—-se movimento

if velcalc <= 5%10**-3:

74

time.sleep(0.1)
if flag0 ==
flagh = O
flagl = flagl + 1

else:

append = [posplot.x_val, posplot.y_val, -posplot.z_val]
print (append)

Plot e atualizacdo da 4ltima posigdo
ax.plot([lastpos[0], append[0]], [lastpos[i], append[1]], \
[lastpos[2], append[2]], 'b', label = 'Posicdo Real')
lastpos = [posplot.x_val, posplot.y_val, -posplot.z_vall
print('Velocidade Calculada')

print(velcalc)

time.sleep(0.1)

Verificagdo do tempo para tirar novas fotos
if cap % 10 == 0O:
takePicture(flagl)
flagh =1
wupdateChart()
print('Tirando Foto')
Atualizagdo do contador de foto para que ocorra uma vez por

segundo apenas.

cap = cap+l

takePicture()

if kill2:

break

75

APENDICE C - CODIGO DAS FUNCOES PRINCIPAIS

Complementando as informagoes dos Apéndices A e B, essa sec¢ao traz os c6digos
desenvolvidos para a criacao das Funcgoes Principais mencionadas no capitulo 3. Novamente,

os codigos estao organizados em ordem alfabética por simples convengao organizacional.

mnimn

Rotina build - Serve para atualizar os status dos botdes e os widgets
presentes na GUI apés a escolha do tipo de movimento. pack() faz os widgets

aparecerem enquanto pack_forget() os faz sumir.

mnimnn

def build(mov):
if mov == 'Ponto & ponto':

b2['text'] = 'Ponto & ponto'
11lr.pack_forget ()
tlr.pack_forget ()
lcr.pack_forget()
tcr.pack_forget ()
pvt.pack_forget ()
tt.pack_forget()
1r.pack_forget ()
tr.pack_forget ()
lpx.pack()

pxt.pack()

1py.pack()

pyt.pack()

lpz.pack()

pzt.pack()

pvt.pack()

tt.pack()

elif mov == 'Bate e Volta':
b2['text'] = 'Bate e Volta'
11r.pack_forget ()
tlr.pack_forget ()

lcr.pack_forget ()
tcr.pack_forget ()
pvt.pack_forget ()
tt.pack_forget ()
1lr.pack_forget ()
tr.pack_forget ()
1px.pack()
pxt.pack()
1py.pack()
pyt.pack()
lpz.pack()
pzt.pack()
pvt.pack()
tt.pack()

elif mov == 'Voo Retangular':

b2['text'] = 'Voo Retangular'
lpx.pack_forget ()
pxt.pack_forget ()
lpy.pack_forget ()
pyt.pack_forget ()
lpz.pack_forget()
pzt.pack_forget ()
pvt.pack_forget ()
tt.pack_forget ()
1r.pack_forget ()
tr.pack_forget ()
11r.pack()

tlr.pack()

lcr.pack()

tcr.pack()

pvt.pack()

tt.pack()

else:
b2['text'] = 'Voo em Circulo'
1px.pack_forget ()
pxt.pack_forget ()
lpy.pack_forget ()

pyt.pack_forget ()
lpz.pack_forget ()
pzt.pack_forget ()
pvt.pack_forget ()
tt.pack_forget()
11r.pack_forget ()
tlr.pack_forget ()
lcr.pack_forget()
tcr.pack_forget ()
1r.pack()
tr.pack()
pvt.pack()
tt.pack()

mnimnn

Rotina chooseMov - Apenas uma interface para chamar a funcdo dbuild

mmnn

def chooseMov(*args):
print ("Entrando no ChooseMov")
print (tkvar.get())
Verifica a wvartavel e chama a rotina build

build(tkvar.get())

mnimnn

Rotina cleanChart - Serve para apagar o grafico ao pousar.

nimnn

def cleanChart():
ax.clear()

print('Grafico Limpo')

nimnn

78

Rotina closelWindow — Define procedimentos para o fechamento da janela
da GUI. 0Os comandos ktll = true servem para encerrar as Threads em

execucdo paralela.

nmnn

def closeWindow():

1f messagebox.askokcancel ("Sair", "Vocé realmente deseja sair?"):

try:
reset()
global kill
kill = True
global kill2
kill2 = True
global kill3
kill3 = True
window.destroy()

except:

window.destroy ()

nmmnn

Rotina comnect - Cria algumas wvariaveis globais caso ndo tenha

sido feito ainda. A rotina é responsavel por se conectar ao cliente

do Airsim, permitir o controle deste pela API. Também é possivel obter
algumas informagdes da aeronave como informacdoes de GPS. Aqui se

inicta a Thread posUpdater

nimnn

def connect():
try:
global client
global Running
global kill
global kill2
global kill3

except:

79

pass

kill = False
kill2 = False
kill3 = False

Running = True

Conexado
client = airsim.MultirotorClient()

client.confirmConnection()

Controle da API
client.enableApiControl(True)

client.armDisarm(True)

Levantamento de informacgdes e print
state = client.getMultirotorState()

s = pprint.pformat(state)
print("state: %s" % s)

imu_data = client.getImuData()
s = pprint.pformat(imu_data)

print("imu_data: %s" % s)

barometer_data = client.getBarometerData()
s = pprint.pformat(barometer_data)

print ("barometer_data: %s" % s)

magnetometer_data = client.getMagnetometerData()
s = pprint.pformat(magnetometer_data)

print ("magnetometer_data: %s" 7 s)

gps_data = client.getGpsData()
s = pprint.pformat(gps_data)
print("gps_data: %s" % s)

Alteracdo em tempo real do Layout da GUI
bO['text'] = 'Ambiente de Execugdo Conectado'

bO['bg'] = 'green'

80

turnButton (b0)

turnButton(b10)

labelframe.pack(side = tk.LEFT, fill="both", expand="yes")

try: # Tentativa de execugdo da thread posUpdater
thread.start ()

except Exception:
pass

print ('Thread Iniciada')

time.sleep(2)

nmnn

Rotina fly - Serve para atualizar a flag da thread movManager.

A funcdo também pode iniciar a thread caso seja sua primeira erecugdo.

nmnn

def fly(Q):
Atualizacdo da flag
stat.config(state = 'normal')
stat.delete(1.0, 'end-1c"')
stat.insert('end-1c', 'voando"')

stat.config(state = 'disabled')

try: # Tentativa de ezxzecucgdo da thread movManager
threadmov.start ()
except Exception:

pass

nimnn

Rotina flyBatelVolta - Define as funcbes mecessdrias para realizar um voo
do tipo bate e wolta, indo de wuma posig¢do inicial, até uma posigao

intermediaria e retornando.

nnn

def flyBateVolta(position_current):

81

Define posicdées iniciats
init_pos_bv = position_current

init_x = init_pos_bv.x_val

init_y = init_pos_bv.y_val

init_z = init_pos_bv.z_val

Definicdo do ponto alvo

mid_x = float(pxt.get("1.0",'end-1c'))
float(pyt.get("1.0", 'end-1c'))
float(pzt.get("1.0", 'end-1c'))

mid_y

mid_z
positionmod = np.sqrt((mid_x-init_x)**2+(mid_y-init_y)**2+(mid_z-init_z)**2)
vmod = float(tt.get("1.0",'end-1c"'))

t = positionmod/vmod

Voo até o alwo
flyToPosition()
time.sleep(0.01)
time.sleep(t)

Atualizagdo do ponto alvo como sendo a origem do movimento
pxt.delete(1.0, 'end-1c')

pxt.insert('end-1c', str(init_x))

pyt.delete(1.0, 'end-1c"')

pyt.insert('end-1c',str(init_y))

pzt.delete(1.0, 'end-1c')

pzt.insert('end-1c',str(-init_z))

Voo até a origem
flyToPosition()
time.sleep(t)

mnimnn

Rotina flyCircle - Define as rotinas para a realizacdo de um voo circular

nimnn

def flyCircle(starting position, discret=10):
vc = float(tt.get("1.0", 'end-1c'))

82

radius = float(tr.get('1.0','end-1c'))
omega c = vc/radius

tc = 2+#np.pi/omega_c

tc_control = tc/discret

xXc = starting position.x_val-radius
yc
zc = starting position.z_val
xold

starting position.y_val

starting position.x_val
yold = yc
zold = -zc

for i in range(l, discret+1):

t_use = tc_controlx*i

angle = omega_c*t_use

startPlot = [xo0ld, yold, zold]

x_now = xc + np.cos(angle)*radius

y_now = yc + np.sin(angle)*radius

client .moveToPositionAsync(x_now, y_now, zc, vcC)

endPoint = [x_now, y_now, zold]

ax.plot([startPlot [0],endPoint[0]], [startPlot[1],endPoint[1]],/
[startPlot[2],endPoint[2]], 'r', label = 'Posicdo Desejada')
time.sleep(tc_control)

xold = x_now

yold = y_now
print(tc_control)

print("Voo circular")

nnn

Rotina flyToPosition - Define as relagdes para que a aeronave possa voar de um

ponto a outro

nmnn

def flyToPosition():
print ("Andando em Frente...")
labelframe2.pack(fill="both", expand="yes")
init_pos = pos

print(init_pos.x_val)

83

print(init_pos.y_val)
print(init_pos.z_val)

trajectoryDesired(tkvar.get())

try:
client .moveToPositionAsync(float (pxt.get("1.0", " 'end-1c')),\
float(pyt.get("1.0", 'end-1c')),\
-float(pzt.get("1.0", " 'end-1c"')),\
float(tt.get("1.0","end-1c')))#. join()
#takePicture ()
try:
threadchart.start ()
except:
pass
except:
tk.messagebox.showerror (' Impossivel chegar até a posigdo','Parece que \
VOCé esqueceu que as posigdes precisam ser \
valores numéricos. Por favor corrija antes \

de executar o cddigo novamente.')

mnimnn

Rotina flySquare - Define as relagbdes para o voo retangular

mnimnn

def flySquare(position_current):
print("Voo retangular")
comp = float(tcr.get("1.0", 'end-1c'))
larg = float(tlr.get("1.0", 'end-1c'))
curr_speed = float(tt.get("1.0",'end-1c'))

init_pos_r = position_current

init_xr = init_pos_r.x_val

init_yr = init_pos_r.y_val
init_zr = init_pos_r.z_val
tl = comp/curr_speed

t3 = t1

84

t2 = larg/curr_speed

td = t2

print(init_zr)

client .moveToPositionAsync(init_xr+comp, init_yr, init_zr, curr_speed)
startPlot = [init_xr, init_yr, -init_zr]

endPoint = [init_xr + comp, init_yr, -init_zr]
ax.plot([startPlot[0],endPoint [0]], [startPlot[1],endPoint[1]],/
[startPlot[2],endPoint[2]], 'r', label = 'Posicdo Desejada')
#time.sleep (0.01)

time.sleep(tl)

client .moveToPositionAsync(init_xr+comp, init_yr+larg, init_zr, curr_speed)
startPlot = [init_xr + comp, init_yr, -init_zr]

endPoint = [init_xr + comp, init_yr + larg, -init_zr]
ax.plot([startPlot[0],endPoint[0]], [startPlot[1],endPoint[1]],/
[startPlot[2],endPoint[2]], 'r', label = 'Posicdo Desejada')
#time.sleep(0.01)

time.sleep(t2)

client .moveToPositionAsync(init_xr, init_yr+larg, init_zr, curr_speed)
startPlot = [init_xr+comp, init_yr+ larg, -init_zr]

endPoint = [init_xr, init_yr + larg, -init_zr]
ax.plot([startPlot[0] ,,endPoint[0]], [startPlot[1],endPoint[1]],/
[startPlot[2] ,endPoint[2]], 'r', label = 'Posicdo Desejada')
#time.sleep (0.01)

time.sleep(t3)

client .moveToPositionAsync(init_xr, init_yr, init_zr, curr_speed)
startPlot = [init_xr, init_yr+ larg, -init_zr]

endPoint = [init_xr, init_yr, -init_zr]
ax.plot([startPlot[0],,endPoint[0]], [startPlot[1],endPoint[1]],/
[startPlot[2] ,endPoint[2]], 'r', label = 'Posicdo Desejada')
#time.sleep (0.01)

time.sleep(t4)

nimnn

Rotina gifSaver - Objetivo: Criar um gif com as imagens capturadas em

85

takePictures

nimnn

def gifSaver():
png_dir = os.path.dirname(os.path.abspath(__file_)) + "/" + /
gt.get("1.0", " "end-1c")
images = []
for file name in sorted(os.listdir(png dir)):
if file_name.endswith('.png'):
file_path = os.path.join(png dir, file_name)
images.append(imageio.imread(file_path))

imageio.mimsave(png_dir + '/video.gif', images)

mnimnn

Rotina Landing — Funcdo para pousar a aeronave e atualizar os botdes.

nimnn

def landing():
print("Landing...")
client.landAsync()
bi['text'] = 'Drone Pousou - Decole Novamente'
bl['bg'] = 'red'
turnButton(b10)
turnButton(bl)
cleanChart ()
#label frame2.pack(side
#label frame3.pack(side

tk.LEFT, fill="both", expand="yes")
tk.LEFT, fill="both", expand="yes")

mnimnn

Rotina reset - wvisa retornar o dronme d sua posig¢do inicial fazendo com que

o dromne pouse.

86

nmnn

def reset():

client.reset()

bi['text'] = 'Drone de volta ao estado inicial'
bl['bg'] = 'red’

bO['text'] = 'Ambiente Desconectado'

bO['bg'] = 'red'

turnButton (b0)

turnButton(bl)

turnButton(b10)

labelframe.pack _forget()
labelframe2.pack_forget ()
cleanChart ()
try:

client.landAsync()
except:

pass

nmnn

Rotina takeoff — Objetivo: Fazer com que o drone decole, liberar os widgets

escondidos do tkinter e atualizar o comportamento de botdes

nmnn

def takeoff():
print("Taking off...")
client.takeoffAsync()
#client.moveToPositiondsync (0, 0, -10, 2).j50in()
bi['text'] = 'Drone Decolou'
bl['bg'] = 'green'
turnButton(bl)
turnButton(b10)

labelframe2.pack(side = tk.LEFT, fill="both", expand="yes")

tk.LEFT, fill="both", expand="yes")

labelframe3.pack(side

87

mimnn

Rotina takePicture — Objetivo: Receber o arquivo da camera do Airsim, criar as

pastas corretas e salvar o arquivo em formato PNG

mnimnn

def takePicture(flag):

#scene vision image in uncompressed RGBA array
response = responses [0]
folderNumb = str(flag)

#print (response)

pictime = datetime.datetime.now()

pichour = pictime.strftime('%H_%M_%S")

picname = pictime.strftime('}b-%d-%Y")
try:
os.mkdir('Pics')
except Exception:
pass
try:
os.mkdir('Pics/' + picname + ' Manobra ' + folderNumb)
except Exception:
pass
gt.delete(1.0, 'end-1c")
gt.insert('end-1c','Pics/' + picname + ' Manobra ' + folderNumb)
try:
imgld = np.frombuffer(response.image_data_uint8, dtype=np.uint8)
img rgb = imgld.reshape(response.height, response.width, 3) array H X W X 3
cv2.imwrite('Pics/' + picname + ' Manobra ' + folderNumb + '/' /
+ pichour + '.png', img_rgb)
print('Imagem Feita em' + pichour)
except Exception:

return

mimnn

Rotina tracjetoryDesired - auzilia a gerac¢do de graficos caso a trajetéria seja

88

bate e wvolta ou ponto a ponto.

nmnn

def trajectoryDesired(mov):

plt.clfO

if mov == 'Ponto a ponto' or mov == 'Bate e Volta':
startPoint = pos
startPlot = [float(startPoint.x_val), float(startPoint.y_val), /
float(-startPoint.z_val)l
endPoint = [float(pxt.get("1.0",'end-1c')), /
float(pyt.get("1.0", 'end-1c')), float(pzt.get("1.0",'end-1c'))]
ax.plot([startPlot[0],endPoint[0]], [startPlot[1],endPoint[1]],/
[startPlot[2],endPoint[2]], 'r', label = 'Posicdo Desejada')

#else:
#tk.messagebozx. showinfo ('Nenhuma trajetéria encontrada', 'Nenhuma /
trajetéria encontrada')

#updateChart ()

nmmnn

Rotina turnButton - serve para definir se um botdo é editdvel ou ndo

nmnn

def turnButton(button name):

if button_name['state']l == 'normal':
button_name['state'] = 'disabled'’
else:
button name['state']l = 'normal'’

nnn

Rotina updateChart - pode ser chamada por outras rotinas para atualizar

o grafico apés a movimentacgdo.

89

mnimnn

def updateChart():
canvas.draw()

ax.legend(['Trajetdoria Desejada', 'Trajetdoria Real'])

