UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS
DEPARTAMENTO DE ENGENHARIA ELETRICA

Plataforma baseada em Android para
auxilio na eletroencefalografia

Autor: Jodo Pedro Berti Ligabd

Orientador: Dr. Evandro L. L. Rodrigues

Sao Carlos
2014






JOAO PEDRO BERTI LIGABO

Plataforma baseada em Android para
auxilio na eletroencefalografia

Trabalho de Conclusao de Curso apresentado a

Escola de Engenharia de Sao Carlos
Universidade de Sao Paulo

Curso de Engenharia Elétrica com énfase em Eletronica

Orientador: Dr. Evandro L. L. Rodrigues

Sao Carlos
2014



AUTORIZO A REPRODUGAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ligabd, Jodo Pedro Berti

L723p Plataforma baseada em Android para auxilio na
eletroencefalografia / Jodo Pedro Berti Ligabd;
orientador Evandro Luis Linhari Rodrigues. S&o Carlos,
2014.

Monografia (Graduacdo em Engenharia Elétrica com
énfase em Eletrdnica) -- Escola de Engenharia de Sé&o
Carlos da Universidade de Sdao Paulo, 2014.

1. EEG. 2. OpenEEG. 3. Android. 4. Bluetooth. I.
Titulo.




FOLHA DE APROVAGAO

Nome: Jodo Pedro Berti Ligabo

Titulo: “Plataforma baseada em Android para auxilio na
eletroencefalografia”

Trabalho de Conclusido de Curso defendido e aprovado
em25141 1 26/

com NOTA 4/ (] J (Le2_, 2&Z¢) ), pela Comissio Julgadora:

Prof. Associado Evandro Luis Linhari Rodrigues - (Orientador -
SEL/EESC/USP)

Prof. Dr. Marcelo Andrade da Costa Vieira - (SEL/EESC/USP)

Prof. Dr. José Marcos Alves - (SEL/EESC/USP)

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Prof. Associado Homero Schiabel






Agradecimentos

Agradeco a todas as pessoas que fizeram parte diretamente e indiretamente na

minha breve existéncia.

Agradeco, em particular, a todos aqueles que frequentam a Universidade de
Sdo Paulo e a todas as pessoas que pude conhecer durante o tempo em que estudei

na Franca.

Agradeco a todos aqueles que colocam a educagdo e o conhecimento como

prioridades em suas vidas.

Agradeco aos grandes nomes da histéria que construiram as bases do nosso

conhecimento e que sdo a razdo por nossos principios atuais.

Agradeco a Deus.






”S6 sei que nada sei.”

(Socrates)






Resumo

Este trabalho faz a transmissdo dos sinais cerebrais obtidos no couro cabeludo
por meio de um dispositivo opensource chamado OpenEEG para um celular com
Android. Primeiramente os sinais fisioldgicos cerebrais interessantes, que sdo da
ordem de microvolts, foram obtidos no couro cabeludo por meio do OpenEEG e em
seguida transmitidos via serial por meio da USB para uma plataforma mével onde foi
feito o tratamento de sinais necessarios, em seguida estes sinais foram transferidos
via bluetooth para um celular com Android onde foram, finalmente, plotados no tempo
com o auxilio da biblioteca Androidplot.

Palavras chaves: EEG, OpenEEG, Android, Bluetooth, Androidplot






Abstract

This work aims to develop the transmission of the electrical activity along the
scalp to an Android application. First, the useful physiological signals, which mea-
sure about microvolts, were obtained along the scalp with the help of an opensource
hardware called OpenEEG and then transfered through the serial communication
using the USB to a mobile platform, where the signal processing occurred, after,
these signals were transfered via Bluetooth to a smartphone with Android where
they were finally plotted with the help of a library called androidplot.

Keywords: EEG, OpenEEG, Android, Bluetooth, Androidplot



12



Lista de Figuras

1.1 Primeiro EEG por Hans Berger [2] . . . ... ... ... ......... 20
1.2 Visualizacggodeum EEG . . . . . ... ... ... L 23
1.3 Fluxograma da transmissdodosdados . . . . . ... ... ... .. .. 24
2.1 Sistema Internacional 10-20 [10] . . . . . . . . . . .. ... ... ... .. 26
2.2 Etapa inicial do processo de aquisi¢do dos sinais EEG [12] . .. .. .. 27
2.3 Amostragem e envio do sinal EEG do microcontrolador para a USB [12] 28
24 USB Bluetooth Dongle [14] . . . . . . ... .. ... ... .. ....... 31
25 Ciclodevidadeumaactivity [19] . . . . . . ... .. ... ... ... 33
31 KitEEGOlimex[24] .. ... .. ... ... ... .. ... .. ...... 36
3.2 OpenEEGcomeletrodos . . ... ... ................... 36
41 Diagrama das activities e threads do aplicativo . . . . . ... ... ... 40
4.2 Requisi¢do de acesso ao modo descoberta [15] . . ... ... ... ... 40
4.3 Layout da activity para plotarosinal EEG . . . .. ... ... ... ... 41
5.1 Aplicativo sendo executado em temporeal . ... ... ... ... ... 44
5.2 Tlustracdo do processo completo . . . ... ..... .. ... ... ... 44
A.1 Esquema completo do OpenEEGdaOlimex . . . ... ... ... .. .. 51

13



14



Lista de Tabelas

2.1 Banda de frequéncias em EEG [7]

2.2 Especifica¢des gerais do projeto OpenEEG [11] . . . ... .. ... ...

15



Siglas

EEG = Eletroencefalografia / Eletroencefalograma
EOG = Eletrooculograma / Eletrooculografia

DIY = Do It Yourself

USB = Universal Serial Bus

FTDI = Future Technology Devices International

CC = Corrente Continua

AC = Corrente Alternada

UUID = Universally Unique 1Dentifier



Sumario

1 Introducao

1.1 Explicagbes Iniciais . . . . .. .. ... ... L oo

1.2 Relevancia . . . . . . . . e e

1.3 Objetivos

1.4 Principios

14.1 Sinais Fisiolégicos . . . . ... ... ... ... ... . ...
142 Processamento Digital . . . . ... ....... .. .. ......
1.4.3 Estudodo Hardware . . . . . . . . . . . . . . .

2 Embasamento Teérico

2.1 Sinais Fisiol6gicos . . . . . . . ...
2.2 Estudo do hardware envolvido no projeto . . . .. ... ... ... ...
2.2.1 Dos sensores até o sistema embarcado . . . . . . ... ... ...
2.2.2 Do sistema embarcado até ocelular . . . . ... ... ... ...
2.3 Programacdoem Javaparaandroid . . . .. ... .. ... .. ... ...

3 Materiais

3.1 OpenEEG

4 Aplicacdes

17

19

19

32

35

35

37



41 Estudodo Hardware . . . . . . . . . .

5 Resultados

5.1 Resultadosobtidos . . . . . . . . . . . . . ..

6 Conclusoes

6.1 Conclusdes finais . . . . . . . . . .

Referéncias Bibliograficas

A Esquema completo do OpenEEG

B Firmware do OpenEEG

C Transmissao do OpenEEG para o celular

D Cédigos em Java do android

18

43

43

45

45

47

51

53

59

63



Capitulo 1

Introducao

1.1 Explicacdes Iniciais

Este trabalho visa o estudo da EEG (Eletroencefalografia) através de uma
aplicagdo utilizando sinais cerebrais de modo ndo invasivo, ou seja, utilizando eletro-
dos no couro cabeludo para medir os sinais fisiol6gicos provenientes da comunicagao

entre os neur6nios.

Para o projeto do EEG, foi considerado um aparelho opensource DIY (Do It
Yourself) onde o intuito foi utilizar um aparelho com todas as etapas do processamento
de sinais utilizadas em hardwares robustos profissionais mas sem empregar grandes
recursos financeiros, o que é bastante dificil para este nivel de projeto pois os sinais
medidos sdo da ordem de microvolts. Em seguida foi implementada uma aplicagdo

onde o sinal captado no couro cabeludo foi exibido em um celular com android.

Tudo comegou em 1929 quando um psiquiatra alemdo chamado Hans Berger
(que trabalhava em Jena/Alemanha) anunciou ser possivel registrar as atividades
cerebrais em um papel sem a necessidade de uma intervencéao cirtrgica (figura 1.1),
ele chamou este método de eletroencefalografia. Ele também descobriu que estes
sinais variavam se a pessoa estivesse dormindo ou ndo, se a pessoa tivesse certas

doengas como a epilepsia e no caso da falta de oxigénio (hipdxia).

Essas descobertas foram revoluciondrias e Berger conseguiu assim inovar a

medicina, criando um ramo inteiramente novo, a neurofisiologia clinica. [1]

19



/ LA

,f T | , !

/ [ -wﬁq.” “‘Nv \
'*“u'u’p/‘ VY

I |
Vit “W#.W“’ru !
MAMAAMAMAMMAAMAMAMAMAMAMAN

Figura 1.1: Primeiro EEG por Hans Berger [2]

1.2 Relevancia

O uso da EEG esta ainda muito distante de ser uma tecnologia a ser empregada
de forma corriqueira uma vez que a medicdo das ondas cerebrais ndo é uma tarefa
facil pois para se ter uma precisdo razodvel é necessario fazer o uso de eletrodos a
gel (visto que a regido capilar dificulta a utilizagdo de eletrodos secos) assim como
também os sinais 14 medidos ndo sdo significantes perto da grande quantidade de
ruido que pode ser gerado se tal sistema fosse utilizado de forma mével. Ha também
um certo tempo de calibracdo para a utiliza¢do do sistema e também outros cuidados

que tornam este tipo de sistema pouco robusto ainda.

Por outro lado, a EEG pode ser usado e também é promissor nas dreas: médica
(para a deteccdo de diversas patologias), jogos (consegue-se hoje manipular com-
pletamente um personagem dentro de um jogo), deficientes fisicos (é possivel que
deficientes fisicos se locomovam e também escrevam uma mensagem através de um
editor de texto a base de estimulos neurais), e diversas outras interacdes homem-

maquina. [3], [4]

O uso da eletroencefalografia é bastante difundido no caso de pacientes no
estado “locked in” onde ha uma lesdo extensa das conexdes neurais do cérebro com

os movimentos do corpo, estado onde o paciente estd consciente mas é incapaz de

20



demonstrar isso pois perdeu todos os movimentos do corpo, exceto o movimento

vertical dos olhos. [5]

Este trabalho pode ser utilizado em casos em que o uso do EEG se faz necesséario
para uma avalia¢do prévia do estado do sujeito, como por exemplo: avaliagdo rapida
da presenca de epilepsia no paciente, acompanhamento do estado mental do paciente
em uma anestesia, identificagdo de regides no cérebro onde o paciente apresenta

traumas, convulsdes e tumores, entre outras aplicagdes. [6]

1.3 Objetivos

¢ Entender e manipular como é feito o sensoriamento da EEG encaminhando este
sinal para uma plataforma mével, ou seja, responder a questdo de como captar
as ondas no couro cabeludo e envié-las até um celular com Android.

1.4 Principios

1.4.1 Sinais Fisioldégicos

Pode-se observar que os sinais medidos em torno do neurocranio sdo da ordem
de alguns microvolts e variam entre 1 a 40 Hz, visto que a medicao foi feita de forma
ndo invasiva, os eletrodos se encontram muito distantes de onde o sinal é produzido
sendo assim necessdria uma grande quantidade de neurdnios transportando um sinal
(gerando assim uma onda) para uma medigdo relevante do sinal cerebral. Além dos
problemas de atenuacdo existem também problemas de precisdo pois a condugdo
dos sinais gerados pelos neurdnios até o couro cabeludo se da de forma cadtica por
meio da conducdo através dos diferentes materiais organicos. Por exemplo pode-
se observar numa topografia cerebral 2D/3D que uma mancha na parte esquerda
frontal/central do cérebro aparece (indicando que esta drea estd ativa) quando move-

se a mao direita (ou quando imagina-se esse movimento).[7] [8] [9]

1.4.2 Processamento Digital

Para se fazer uma medicdo relevante e em tempo real de tais sinais é pre-

ciso certos cuidados com o tratamento de sinais, visto que eles sdo complexos, ndo

21



estaciondrios, possuem alta dimensado (dependendo da quantidade de eletrodos uti-
lizados) e possuem muito ruido. Sendo assim é necessario saber a melhor maneira
de explorar o sinal medido como por exemplo: explorar a resposta temporal a um
estimulo externo ou explorar a densidade de poténcia do sinal em uma determi-
nada banda de frequéncias, entre outras. Deste modo é necessario aproveitar as
informagdes geométricas da geragdo do sinal (onde ele é gerado) e também sua

natureza (frequéncia e forma).

Para a utilizacdo de uma forma satisfatéria e em tempo real do sinal é extrema-
mente recomendado por diversos autores atuais [8] uma primeira etapa de calibra¢do
do sinal. Esta etapa se mostra importantissima pois cada pessoa € tinica, sendo que
a localidade dos sinais gerados assim como a percepgdo ha certos estimulos se d4 de
uma maneira desigual entre as pessoas.

Ap0s a etapa de calibracdo pode-se utilizar o sistema online, sendo que assim
sua performance serd muito maior pois o sistema ja foi treinado para reconhecer o

tipo de resposta de cada pessoa.

H& também uma etapa de remoc¢ado do ruido onde a relacdo sinal/ruido pode
ser melhorada, pois a influéncia dos olhos (um piscar de olhos pode gerar sinais da
ordem de milivolts em torno da cavidade ocular sendo propagada através da pele
e atingindo principalmente os eletrodos frontais da EEG, como visto na figura 1.2)
assim como a influéncia de varios outros fatores como: a friccdo da mandibula, o
movimento dos bragos, a propria tensdo natural da pessoa, entre diversos outros
sinais que podem ser muito superiores em amplitude que os sinais provenientes da

EEG. [8], [9]

22



Piscar de (gNQﬁQW |

ruido para nal EEG) : : : :

1277 P P M e s P T R L B J‘VWW =

e ncontra-se com 0s olhos

fechados)

st A A A A A Ak A st

Figura 1.2: Visualiza¢do de um EEG

1.4.3 Estudo do Hardware

Vale ressaltar desde ja que o nivel das aplicacdes e resultados obtidos com um
hardware mais barato sdo bastante inferiores comparados com aqueles resultados
obtidos com um hardware mais robusto (caro) porém o principio de funcionamento
e as etapas para a confecg¢do destes sdo bastante semelhantes, sendo que o estudo
realizado sobre o OpenEEG proporcionou um grande conhecimento sobre as etapas

necessarias para a instrumentacdo e processamento do sinal.
Para o estudo do hardware foram consideradas as etapas da figura 1.3

Nesta etapa do trabalho foi feito a comunicacdo serial do OpenEEG para o
computador, a comunicagdo via bluetooth do computador para o celular e o desen-
volvimento de um aplicativo para a visualizagdo das ondas cerebrais. Para isso foi
necessdrio compreender o funcionamento de todas as etapas do processamento de

sinais fisiol6gicos.

23



Aquisicao do 5inal EEG
por meio de eletrodos >

Amplificador
Instrumental | ———m Filtro passa-alta

G=12
Amplificad or
Operacional » Amplificador
G=40 Filtro passa-alta [—3m Operacional F—»
G=13

Filtro passa-baixa

Y

Conversor AD |————3

CPU

— Transmissao serial

Microcontrolador

h 4
Isolador r a Chip USB
OpenEEG
h 4
Dongle USB ]
para modulo bluetooth > Celular com android

PC ou RaspberryPi

Figura 1.3: Fluxograma da transmissdo dos dados

24




Capitulo 2

Embasamento Teorico

Para uma melhor compreensdo deste assunto é preciso utilizar um vocabulario
comum, sendo assim, abaixo seguem algumas convencdes para facilitar o entendi-

mento:

2.1 Sinais Fisiol6gicos

Os sinais presentes no couro cabeludo se encontram numa faixa de frequéncias
que vai de 0.1 a 40 Hz aproximadamente, sendo que estes sdo classificados em bandas
de acordo com a tabela 2.1. Estas informagdes sdo importantes pois é muito comum
explorar a densidade de poténcia do sinal nas diferentes bandas para assim extrair

informagdes importantes do sinal.

Banda | Dominio de frequéncia
Delta 0.1-3,5
Theta 4-7,5
Alfa 8-13
Beta 14-30
Gamma > 30

Tabela 2.1: Banda de frequéncias em EEG [7]

Nao serdo discutidos aqui o porqué da frequéncia de tais sinais fisiol6gicos e
nem o porqué de sua localidade pois seria preciso um conhecimento mais especifico
sobre o funcionamento do cérebro mas podemos obter da literatura atual uma grande
quantidade de informagdes pertinentes ao projeto atual sem a necessidade de uma
tal especializacdo. A figura 2.1 ilustra o Sistema Internacional de posicionamento dos

eletrodos nas diferentes partes da cabega para a exploracdo do sinal na drea desejada.

25



Figura 2.1: Sistema Internacional 10-20 [10]

2.2 Estudo do hardware envolvido no projeto

2.2.1 Dos sensores até o sistema embarcado

Um sinal EEG é normalmente captado por meio de eletrodos banhados a cloreto
de prata embora as vezes possa ser utilizados outros materiais como a prata pura e
o ouro. No caso do hardware baseado no projeto OpenEEG aqui estudado, o sinal é
capturado por dois eletrodos e passa pelo circuito de protecdo que tem a fungdo de

proteger o circuito contra descargas eletrostaticas.

Antes do sinal ser tratado ele precisa ser amplificado algumas milhares de vezes
pois sua amplitude é da ordem de microvolts, devido a essa sua natureza fragil o
sinal estd exposto a introdugdo de diferentes fontes de ruido como por exemplo a

inducao elétrica da corrente que passa nos fios ao redor do aparelho.

Para cuidar disso o sinal é primeiramente amplificado por um amplificador
instrumental (com ganho por volta de 12) de qualidade no qual se mede a diferenga
de potencial entre duas regides do couro cabeludo, muitos ruidos externos sao elimi-
nados nesta parte pois ambos os eletrodos estdo suscetiveis a mesma fonte de ruido,

o que serd cancelado pelo amplificador operacional posteriormente.

26



Em seguida o sinal passa por filtros passa-alta (com polos em 0.16 Hz) com o
intuito de bloquear o sinal continuo propagado até aqui pois muitos eletrodos sdo
polarizdveis, ou seja, eles podem acumular carga elétrica em sua superficie, gerando
assim um grande potencial CC, sendo que algumas vezes este sinal é da ordem de
mV saturando assim completamente o amplificador e inviabilizando a captura do
sinal EEG.

Em seguida o sinal é amplificado por meio de amplificadores normais (com
ganho por volta de 40 e 13) e sdo utilizados filtros passa-baixa para minimizar a
distorcdo causada por ‘aliasing’ quando o sinal for amostrado para se tornar um

sinal digital. A figura 2.2 representa esta etapa inicial. [11]

ND ‘y
- Instrumental Amplifier High-Pass fiter Non-Inverter Amplifier High-Pass fiter 3rd order *Besselworth” filer, fc = 59 Hz
H rejection Figh Voliage profection G=12.36 1 pale G=11..101 1 pole The rd pole is located on the digital part.
A Fo=0.16Hz G=40 Fo=0.16Hz G=13

Rightieg driver (DRL) notes:

If TR3 is needed, adjust potentiometer so DRL=Dm (referred to V_REF)
when _all_ amplifier inputs are shorted to the DRL output (R_LEG).

Lo | 7 Impartant usage instructions for the DRL
Qe Il Ifyou only want o use one channel, never et the ofher chamnal float
AGND ‘Aways connect the unused terminals to V_REF, or the DRL will not work properly.
DRL design‘fom hiphwnw.Sosemi com/publcatonsarikelZ.1tm, i 3

.

Figura 2.2: Etapa inicial do processo de aquisi¢do dos sinais EEG [12]

Abaixo dos amplificadores de sinais e com a orientagdo contréria a esses, se
encontra o DRL, cujo propésito é a rejeicdo do sinal de modo comum como por

exemplo os sinais da rede elétrica.

Apoés esta etapa analdgica o sinal é amostrado pelo microcontrolador (neste
caso foi usado um ATMEGA16) e enviado para o computador de forma serial através
de uma porta USB. Para proteger o usudrio de problemas elétricos o sistema é isolado

do computador e de fontes externas de energia. De acordo com a figura 2.3.

27



‘HHH

i

FT232RL

Figura 2.3: Amostragem e envio do sinal EEG do microcontrolador para a USB [12]

O circuito completo encontra-se no apéndice, assim como outras especificagdes

dos componentes, mas as informagdes técnicas principais do projeto estdo ilustradas
na tabela 2.2

Ntmero de canais 2 - 6(somente 4 utilizados)

Resolugao 10 bits

Resolugdo da tensdao de entrada 0.5uVv
Miaxima tensao de entrada +/-256 uV
Ruido de banda 1uVp-p

Corrente fornecida (5V ou 9 - 12V tensao) 70 mA

Tensdo de isolamento 2500V por 1 minuto
Tensdo continua de isolamento 480V

Tabela 2.2: Especifica¢des gerais do projeto OpenEEG [11]

2.2.2 Do sistema embarcado até o celular

O sinal serial transmitido por meio da USB é recebido por um computador
ou um dispositivo embarcado como por exemplo uma Raspberry Pi, este dispositivo
deverd conter um médulo de recepgdo serial como ilustrado com os comandos abaixo:

joao@joao-pc:” > lsusb
Bus 002 Device 004: ID 0403:6001 Future Technology Devices International,
Ltd FT232 USB-Serial (UART) IC

No caso aqui o médulo FTDI (FTDI é uma empresa escocesa de semiconduto-

res especializada na manipulacdo de dados via USB) estéd corretamente instalado e

28



pronto para ser usado para a transmissdo serial via USB, esse médulo é necessario
pois a transmissdo dos dados seriais enviados pelo microprocessador sdo primeiro
convertidos para o protocolo USB por meio de um chip da FTDI localizado na dltima
etapa da placa do kit da Olimex. [13]

joao@joao” > lsmod

Module Size Used by
ftdi_sio 48930 O
usbserial 45014 1 ftdi_sio

Com os dados sendo enviados na porta serial, pode-se recuperé-los de di-
versas formas, no linux eles estdo normalmente disponiveis no arquivo/dispositivo
/dev/ttyUSBO, sendo que para visualizar os sinais pode-se usar os comandos (como
superusudrio):

#Configurar a recepcao serial para a porta /dev/ttyUSBO® e taxa de
#transmissao de 57600 bps
stty -F /dev/ttyUSBO® sane 57600

#Recepcdo de 17 bytes por pacote
od /dev/ttyUSBO® -txl1 -wl7

Nota-se que para a recepg¢do correta do sinal é necessario que a transmissao seja
feita a cada 17 bytes pois o pacote possui este tamanho. Esta informacao se encontra

no firmware do microcontrolador, a seguir um pequeno extrato deste:

////////// Packet Format Version 2 ////////////

// 17-byte packets are transmitted from the ModularEEG at 256Hz,

// using 1 start bit, 8 data bits, 1 stop bit, no parity, 57600 bits
// per second.

// Minimial transmission speed is 256Hz *
// = 43520 bps.

sizeof(modeeg_packet) * 10

struct modeeg_packet

{

29



uint8_t sync®; // = 0xa5

uint8_t syncl; // = 0x5a

uint8_t version; // = 2

uint8_t count; // packet counter. Increases by 1 each

// packet.

uintl6_t data[6]; // 10-bit sample (= 0 - 1023) in big
// endian (Motorola) format.

uint8_t switches; // State of PD5 to PD2, in bits 3 to 0.
3

// Note that data is transmitted in big-endian format.

// By this measure together with the unique pattern in sync® and
// syncl it is guaranteed that re-sync (i.e after disconnecting
// the data line) is always safe.

Algumas consideragdes sobre a transmissdo sdo importantes aqui:

1. A velocidade minima de transmissdo dos dados: O microcontrolador vai enviar

os pacotes com uma frequéncia de 256 Hz (256 pacotes por segundo) sendo que a

acotes alavras i
P %1 7P +10 bits  _
s pacotes palavras

velocidade minima entdo para a recepgao serd de: 256

43520bps pois a amostragem é feita utilizando 10 bits.

2. sync0 e syncl serdo utilizados posteriormente para a sincronizagdo do sinal.
Sendo possivel recuperar os dados exatos de cada canal gracas a posicdo relativa
aos bytes de sincronizagdo.

3. Os dados serdo transmitidos em dois bytes consecutivos seguindo o padrao
big-endian (na ordem decrescente dos seus pesos numéricos) ou seja, para
transmitir o valor 200 é necessdrio 2 palavras, sendo a decomposicdo igual a
16*12 + 08, por exemplo.

4. A placa suporta até seis canais, porém foram utilizados 4 neste projeto. [11]

Ap6s todo esse procedimento de regulagem da recepgao serial é preciso con-
figurar o sistema bluetooth para o envio dos dados para o celular (neste caso foi
utilizado um sistema android).

Neste projeto foi utilizado um dongle USB para a conexdo bluetooth entre o

computador e o celular, como ilustrado na figura 2.4

30



Figura 2.4: USB Bluetooth Dongle [14]

Para se fazer uma conexao bluetooth entre dois dispositivos é preciso que um
deles atue como servidor e o outro cliente, para o usudrio final ndo importa qual
papel cada dispositivo vai desempenhar pois os dados podem ser transmitidos em
ambos os sentidos (do servidor ao cliente ou vice-versa) porém é preciso respeitar a

func¢édo de cada um deles como mostrado abaixo: [15]

e Funcdo do servidor bluetooth
O objetivo do servidor é ficar escutando inquisicdes de conexdes (por meio
da variavel BluetoothServerSocket), para isto ele deve manter um canal aberto
onde é informado o nome do servidor e uma UUID, quando uma conexdo é
aceita, é criado uma variavel (BluetoothSocket) no servidor contendo os dados
da conexdo. Sendo que ap0ds a conexdo a varidvel BluetoothServerSocket pode ser

descartada a ndo ser que o servidor queira ficar procurando por novas conexdes.

e Funcao do cliente bluetooth
O objetivo do cliente é procurar por dispositivos que estejam oferecendo uma
conexdo, ap0s ser encontrado um dispositivo o cliente tentard uma conexao
caso os parametros especificados pelo servidor sejam os mesmos do cliente
(o nome do servidor e o UUID), no caso dos dados serem 0s mesmos a co-
nexdo serd estabelecida e o cliente armazenard os dados da conexdo na varidvel
BluetoothSocket.

Ap6s a configuragdo tanto do servidor como do cliente bluetooth é necessério

comecar a transmissdo e tratamento dos dados utilizando um aplicativo para android.

31



2.3 Programacado em Java para android

Agora serdo abordados tépicos necessarios para a programagao e compreensao
de um aplicativo para android (baseado em java). Nao serdo abordados a histéria,
estado de arte e programacdo orientada a objetos pois estes topicos serdo conside-
rados ja compreendidos pelo leitor que ndo quer se fatigar com sua revisdo, sendo

assim apenas o que é interessante para o entendimento do projeto sera exposto aqui.

Primeiramente é preciso ter em mente a defini¢do do que é uma activity e o que
é um thread. [16]

Comecando pelas explica¢des da activity: Uma activity é um componente da
aplicagdo que fornece uma tela na qual o usudrio pode interagir com o intuito de
executar uma agdo, como por exemplo fazer uma ligacdo, tirar uma foto ou enviar
um e-mail. Cada activity possuiseu proprio design sendo que dentro de um aplicativo
é comum haver varias activities que sdo ou ndo ligadas entre si. A activity principal
é chamada de main activity e deve cumprir alguns requisitos especiais como por
exemplo: elanunca pode ser bloqueada durante sua execug¢do por mais de 5 segundos
sendo o programa causara um erro e o aplicativo serd fechado. Mais detalhes sobre
as activities serdo informados na sec¢do de “aplica¢des’. Segue na figura 2.5 o ciclo de
vida de uma activity [17] [18]:

Uma thread pode ser definida por uma unidade de processamento que pode ser
executada concomitantemente com outros processamentos. Toda aplicagdo possui
pelo menos uma thread que serd executada no inicio da aplicagdo. As threads sdo
importantes pois permitem que varios processos sejam executados ao mesmo tempo

liberando o sistema para a execugdo de outras atividades.

No caso da aplicacdo aqui presente, é fundamental a utilizacdo de uma thread
para a utilizagdo do bluetooth pois este servigo requer uma chamada que bloqueia
o servigo, sendo assim a thread que vai tratar da conexdo bluetooth ficard em modo
de escuta e portanto bloqueada até que uma conexao seja estabelecida, desta forma
bloqueia-se uma thread mas o aplicativo continua rodando e o usudrio nem percebe

0 que se passa pois a main thread estard sempre liberada para o uso. [20]

O importante a ser considerado aqui é responder a seguinte questdo: como

fazer a comunicacao entre diferentes activities?

Nao existe uma resposta simples para esta pergunta que satisfaca todas as
aplicagdes pois os objetivos de cada comunicacdo sdo diferentes, por exemplo pode-

se usar uma ActivityforResult, um Broadcast Receiver, um Handler entre outras opgdes.

32



(e
starts

User navigates

Other applications
need mamory |

anCreate()

—

onStart()

—

onRestart() '

onResumel)

—_—

Activity is

running

e

Another activity comas |
l_ in front of the activity

The activity
comes o the
rouind

&

—_—

The activity |
comes to the

. foreground

onPause()

e

[ The activity is no longer visible )

onStop()

—

onDestroy()

e
(&)

33

Figura 2.5: Ciclo de vida de uma activity [19]



Nao serdo detalhados todos os métodos para a comunicacdo entre as activities mas

serd justificado o método utilizado para a aplicagdo. [21]

P2

Um indicio para a resposta desta pergunta estd em saber o que é uma in-
tent. Intents sdo mensagens assincronas que permitem que componentes de uma
aplicagdo requisitem funcionalidades de outras aplica¢des android e permitam in-
teragir também com componentes da mesma aplicagdo. Por exemplo, uma activity
pode requisitar executar uma musica utilizando um outro aplicativo feito para a
execucgdo de musicas. Um intent pode também conter dados utilizando um bundle
sendo que esses dados podem ser usados pelo componente receptor.

A classe intent tem vérias aplicacOes e sua documentacdo é bastante extensa
sendo que aqui sera explorado apenas o seu uso mas é de extrema importancia para
o desenvolvedor de aplicativos android conhecer algumas de suas utilidades. [22]

34



Capitulo 3

Materiais

Atualmente os aparelhos comerciais para medi¢do dos sinais cerebrais sdo muito
caros inviabilizando assim o seu uso para este projeto, restando apenas a opgao da
utilizacdo de um aparelho que ndo seja tdo caro e que atenda satisfatoriamente a

aplicagdo desejada.

3.1 OpenEEG

Inicialmente foi adquirido uma placa da Olimex, representado na figura 3.1 (o
projeto pode ser construido ou comprado por uma média de 100 euros), juntamente
com alguns eletrodos passivos e ativos, baseada no projeto OpenEEG, um projeto
open-source que visa a criagdo de um dispositivo completo de até 6 canais para a

medicdo de tais ondas (em anexo mais detalhes).

Este dispositivo possui vdrias limita¢des (pouca quantidade de canais, seus
eletrodos (figura 3.2) sdo desconfortaveis e de dificil implementacédo e o sinal obtido
apresenta muito ruido) mas foi a tnica solu¢do de hardware vidvel para a elaboragdo

deste projeto. [23]

Ele foi utilizado durante a etapa da coleta dos sinais no couro cabeludo para

sua posterior visualizagdo em um aplicativo Android.

35



(a) Box do kit (b) Circuito do kit

Figura 3.1: Kit EEG Olimex [24]

CH1+ CH1- CH2+ CH2-

EEG-SMT °
http:/lopenEEG. sourceforge.net

OUPTEX snrwatmar.com

(a) Eletrodo ativo da Olimex [25] (b) Kit Olimex OpenEEG pronto para ser usado

Figura 3.2: OpenEEG com eletrodos

36



Capitulo 4

Aplicacoes

41 Estudo do Hardware

Ointuito do projeto foi de aprender sobre o hardware a ser utilizado no processo
de obtengédo do sinal EEG, sendo que o sinal nesta parte do trabalho ndo foi tratado
numericamente da mesma maneira e intensidade quando se faz o uso de softwares

especificos para o seu tratamento, como por exemplo o OpenVibe [26].

A aplicagdo aqui apresentada consiste em extrair o sinal EEG por meio de um
hardware de baixo custo (OpenEEG) e exibi-los em tempo real em um aplicativo
Android.

Para médicos ou pessoas com experiéncia na leitura de um EEG, é relativamente
facil a visualizagdo de certas patologias como a epilepsia sendo que esta aplicacdo
apresenta uma relevancia na drea de instrumenta¢do médica no intuito de diminuir

os custos para certos exames que ndo demandam uma grande precisao.

A visualizacdo do EEG em tempo real também permite o acompanhamento da

eficdcia de uma anestesia e algumas outras aplicagdes médicas.

Nesta sec¢do serd explicado em mais detalhes o percurso da informacdo desde

sua captura no couro cabeludo até sua visualizacdo em um aplicativo Android.

Primeiramente o sinal extraido se encontra na faixa de -256 uV 256uV , pois
a resolugdo do sistema é de 0,5uV , a amostragem é feita utilizando 10 bits e os
amplificadores possuem ganhos para optimizar a recep¢do do sinal nesta faixa de
valores. O sinal é recebido por meio da transmissdo serial USB e se encontra na

forma a seguir: (representagdo da recepcdo de 5 pacotes de informagao) [11]

37



joao@joao-PC > sudo od /dev/ttyUSBO® -txl -wl7

a5 5a 02 3e 01 fe 01 fe 01 £f5 01 ed 01 e5 01 df Of
a5 5a 02 3f 01 fe 01 fe 01 £7 01 f0 01 e9 01 e2 Of
a5 5a 02 40 01 fd 01 fe 01 fb 01 £7 01 f2 01 ec 0f
a5 5a 02 41 01 fe 01 fe 01 fa 01 f6 01 f1 01 eb 0f
a5 5a 02 42 01 fe 01 £ff 01 £7 01 ef 01 e8 01 e2 07

Conforme explicado na se¢do de embasamento tedrico, o pacote se apresenta

com 17 palavras, sendo que as informagdes importantes sdo as seguintes (em ordem):

a5: representa o sync®

5a: representa o syncl

02: representa a versao do firmware

xx: contador

CHlp_H: byte mais significativo do canall positivo
CHlp_L: byte menos significativo do canal 1 positivo
CHIn_H: byte mais significativo do canall negativo
CHIn_L: byte menos significativo do canal 1 negativo
CH2p_H: byte mais significativo do canal2 positivo
CH2p_L: byte menos significativo do canal 2 positivo
CH2n_H: byte mais significativo do canal2 negativo
CH2n_L: byte menos significativo do canal 2 negativo
CH3p_H: byte mais significativo do canal3 positivo
CH3p_L: byte menos significativo do canal 3 positivo
CH3n_H: byte mais significativo do canal3 negativo
CH3n_L: byte menos significativo do canal 3 negativo

xx: byte nao importante para o projeto.

Apoés extrair as informacoes tteis utilizando um computador ou um sistema
embarcado, é preciso transferir estes pacotes para o aplicativo Android por meio do

bluetooth, sendo assim a configuracado utilizada neste projeto, é a seguinte:

e Celular faz o papel do servidor, sendo que ele vai receber os dados.

e Computador ou sistema embarcado faz o papel do cliente, sendo que ele vai

enviar os dados.

O lado do cliente, foi feito utilizando um algoritmo em python para facilitar esta
etapa de transmissdo. Segue abaixo um trecho do algoritmo utilizado (no apéndice

encontra-se o algoritmo completo):

38



import sys
from bluetooth import *
from time import sleep
service_matches = find_service( name = "android_servidor",
uuid = "5b553d50-4b4£f-11e4-916c-0800200c9a66" )
if len(service_matches) ==
print "servico nao encontrado!"
sys.exit(0)
first_match = service_matches[0]
port = first_match["port"]
name = first_match["name"]
host = first_match["host"]
print "connecting to ", host
sock=BluetoothSocket( RFCOMM )
sock.connect((host, port))
k=int (1)
while True:
sock.send(str(k))
sleep(1)
k=k+1
if k==15:
break
sock.close()

O cliente procura primeiramente por um servidor com o nome android_ servidor
e a UUID = 5b553d50-4b4f-11e4-916¢-0800200c9a66, no caso do servigo encontrado,
o cliente vai criar uma variavel sock do tipo BluetoothSocket e vai conectar com o
servidor, fazendo com que o servico de envio de dados possa ser estabelecido. Neste
exemplo, o programa vai enviar os algarismos de 1 a 15 a cada segundo, porém na
aplicacdo real é preciso enviar o sinal obtido a uma frequéncia de pelo menos 128
Hz pois os sinais EEG visualizados contém frequéncias menores que 64 Hz. Apés o

envio dos dados a conexdo é fechada.

O lado do servidor (localizado no aplicativo android e programado em Java)

segue o fluxo da figura 4.1

39



Botao: Plotar graficos
ﬁ_ ;I LocalBroadcast Receiver

/ Configuracao do layout dos graficos
Ligacao entre a classe de
dados e um chserver Atualizar observer

Thread para plotar os graficos

| Thread que procura um cliente

Y

| Thread gue recebe os sinais

onCreate onCreate onResume

Main Activity Activity Plotar_Gréfico

Figura 4.1: Diagrama das activities e threads do aplicativo

Sendo que as etapas importantes sdo explicadas a seguir:

1. habilitar o descobrimento do bluetooth (tarefa que vai automaticamente habilitar
o bluetooth)

O celular ficara visivel para todos os dispositivos bluetooth durante um tempo
de 300 segundos (figura 4.2), este é o tempo padrdo que um dispositivo fica em
estado de descoberta e pode ser mudado por meio de algumas opgdes nesta
funcao.

Bluetooth permission
request

An application on your phone
is requesting permission to
turn on Bluetooth and to

make your phone
discoverable by other devices
for 300 seconds. Do you want
to do this?

Figura 4.2: Requisigdo de acesso ao modo descoberta [15]

2. criacdo de uma thread para obter o socket de comunicagdo com o cliente

Esta thread pode ser fechada assim que o socket for obtido, a ndo ser que o

sistema queira procurar por novas conexdes. [15]

40



3. criacdo de uma thread para receber os dados do cliente.

Esta thread faz a recepcdo dos dados do cliente e os envia por meio de um
LocalBroadcast a segunda activity responsédvel pela plotagem dos gréficos, ela
também envia a um handler uma mensagem com os dados que podem ser
visualizados tanto na main activity como na segunda activity. Esta thread s6 sera
interrompida, ou seja, o processo de envio dos dados s6 serdo interrompidos

por ordem explicita do usudrio ou quando o programa for fechado.

Tudo isso ocorre sem o usudrio perceber o que estd acontecendo pois a conexao
bluetooth é feita automaticamente (pois neste caso tanto o servidor como o cliente

possuem os mesmos dados para conexdo, que sdo o nome do servidor e a UUID).

Plotar_grafico_Activity

CANAL 1 CANAL 2

Grafico EEG (uV x segundos)

i 5 10 15 20
Domain Canal 1 EEG

Figura 4.3: Layout da activity para plotar o sinal EEG

41



Em seguida o usudrio pode comegar a segunda activity onde sera plotado um
grafico para cada canal do EEG.

Visto que neste trabalho foram utilizados apenas dois canais, o layout dos
graficos foi escolhido para ser o da figura 4.3

Sendo que no caso de mais canais utilizados, seria possivel inclui-los em mais

abas fixas ou moveis.

Para exibir os graficos foi utilizada uma biblioteca chamada androidplot que é
responsdvel pela criacdo de diversos tipos de gréficos, sendo necessario para esse pro-
jeto a configuracdo das diversas varidveis desta biblioteca para se fazer a visualiza¢do
correta dos dados.

Encontra-se no apéndice como fazer a visualiza¢do dindmica dos dados, sendo
necessdrio o conhecimento de notifications em android para a compreensdo do funci-

onamento da atualiza¢do dos dados. [27]

42



Capitulo 5

Resultados

5.1 Resultados obtidos

A etapa de transferéncia do sinal EEG para um aplicativo Android foi executada
com sucesso, sendo que o0s objetivos propostos foram atendidos conforme propostos

incialmente.

Pode-se observar o resultado do aplicativo na figura 5.1, onde os dados foram
plotados em tempo real durante uma janela de 10 segundos (pois a amostragem do
sinal para esta figura foi de 64 Hz) e com um filtro de Butterworth passa faixa (entre

3 e 20 Hz), conforme c6digo de envio do sinal presente no apéndice C.

Nota-se também a presenca do ruido proveniente do EOG (os dois picos da
tigura 5.1 que representam dois piscares de olhos), pois os eletrodos estdo localizados

na regido frontal da cabeca.

A etapa referente ao estudo do hardware foi concluida onde comegou o estudo
referente ao processamento digital do sinal, mostrando assim a completude do tra-

balho, como pode ser visualizado na figura 5.2.

43



@5 XN a2 11:56

Plotar_grafico_Activity

CANAL 1 CANAL 2

-106
-131
-156
-181
-206
231
-256
0 2 256 384
Domain Canal 1 EEG

Figura 5.2: Ilustragdo do processo completo

44



Capitulo 6

Conclusoes

6.1 Conclusoes finais

Quando aidéia de fazer a transferéncia do sinal EEG para um aplicativo Android
foi lancada, a tinica coisa que estava clara era o produto final (a visualizagdo das
ondas cerebrais no visor do celular) sendo que todo o processo para sua realizacdo
era desconhecido. Desta forma, este projeto se mostrou bastante eficiente do ponto

de vista dos resultados alcancados pois estes estavam bem claros desde o inicio.

Visto que o caminho a ser percorrido para a obten¢do do resultado final foi
dificil e trabalhoso, este foi também bastante enriquecedor para o aprendizado do
processo como um todo, que forneceu a compreensdo desde o tratamento analégico

do sinal até a criagdo de um aplicativo Android.

Vale ressaltar aqui algumas melhorias que podem ser feitas ao projeto mas que
ndo foram feitas pela limitagdo dos recursos disponiveis (tempo e recursos financei-
ros), ficando deste modo para aperfeicoamentos futuros.

e Melhoria do processo de obtencdo do sinal EEG: para esta etapa foi utilizada
uma placa da Olimex, sendo que o desempenho do sistema foi confiado a ela,
visto que é bastante importante a etapa de amplificacdo do sinal EEG, seria

melhor se esta etapa fosse melhorada.

e Melhoria da integracdo dos hardwares: considerando que o projeto fosse a
criagdo de um produto comercial, a melhoria da integracdo das diferentes eta-
pas do fluxo do sinal seria imprescindivel para o custo e performance do projeto.

Aqui foi utilizada uma placa da Olimex que envia o sinal digital do microcon-

45



trolador para uma porta USB e em seguida é necessario recuperar o sinal USB
por meio de um computador ou sistema embarcado para o envio do sinal via
bluetooth, sendo que este processo poderia ter sido otimizado (envio do sinal do
microcontrolador ao bluetooth diretamente) se o kit da Olimex fornecesse este
grau de liberdade. Do ponto de vista do aprendizado foi bastante interessante
o que foi feito.

Melhoria dos cédigos a serem utilizados: para este projeto foram utilizados
cédigos em python que ndo é a linguagem mais eficiente a ser utilizada porém
a performance final obtida foi condizente com o planejado. O programa para
Android feito em Java pode ser melhorado para evitar possiveis falhas de va-
zamento de memoria e os métodos utilizados para se fazer a transferéncia de
dados entre duas activities poderiam ser melhores estudados para se ter um
maior desempenho, porém o objetivo final foi cumprido pois ndo foram feitas
especificacdes mais severas quanto ao aplicativo a ser produzido, sendo que

para um projeto comercial, estas considera¢des deveriam ter sido feitas.

Melhoria do programa para Android para fornecer diversas liberdades como:
a mudanga nas escalas x(temporal) e y(valores de tensdo), filtros temporais e
frequenciais para uma melhor visualiza¢do do sinal, reconhecimento de outros
dispositivos e ndo s6 o OpenEEG e etc. Vale ressaltar que foi feita neste trabalho
toda a base para o estudo do hardware envolvido no processamento de sinal,
sustentando assim a premissa utilizada no estudo do software.

46



Referéncias Bibliograficas

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

A Histéria do Eletroencefalograma. Disponivel em:
http://www.cerebromente.org.br/n03/tecnologia/historia_ p.htm Acessado dia
20/10/2014.

Berger H. Uber das Elektrenkephalogramm des Menchen. Archives fiir
Psychiatrie. 1929; 87:527-70.

The Applications of EEG. Disponivel em: http://www.neuroelectrics.com/about_
eeg/applications Acessado dia 20/10/2014.

Medical Applications of EEG Wave Classification. Disponivel em:
http://pages.cs.wisc.edu/ gangluo/eegll_chance.pdf Acessado dia 20/10/2014.

Sindrome de Locked-in. Disponivel em: http://www.neuroelectrics.com/about_
eeg/applications Acessado dia 20/10/2014.

What Can EEG Show? Disponivel em:
http://www.epilepsy.com/learn/diagnosis/eeg Acessado dia 20/10/2014.

How is EEG studied. Disponivel em: http://www.neuroelectrics.com/about_
eeg/how-is-EEG-studied Acessado dia 20/10/2014.

E. Lotte. A tutorial on EEG Signal Processing Techniques for Mental State

Recognition in Brain-Computer Interfaces. Springer book.

Jonathan R. et al. WOLPAW. Brain—computer interfaces for communication and
control. Clinical neurophysiology, v. 113, n. 6, p. 767-791, 2002.

Sistema internacional 10-20. Disponivel em:
http://what-when-how.com/neuroanaesthesia-and-neurointensive-
care/neurophysiology-monitoring-and-imaging-part-1/ Acessado
17/10/2014.

Modular EEG Design. Disponivel em: http://openeeg.sourceforge.net/doc
/modeeg/modeeg_ design.html Acessado dia 17/10/2014.

47



[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Olimex EEG-SMT Schematic. Disponivel em:
https://www.olimex.com/Products/EEG/OpenEEG/EEG-SMT/resources/EEG-
SMT-SCHEMATIC-REV-B.pdf Acessado

17/10/2014.

FTDI. Disponivel em: http://www.ftdichip.com/ Acessado dia 20/10/2014.

USB Bluetooth Dongle. Disponivel em: http://www.icisp.net.au/store/product_
print.php?products_id=255 Acessado dia 17/10/2014.

Bluetooth Guide for Android. Disponivel em
http://developer.android.com/guide/topics/connectivity/bluetooth.html
Acessado dia 17/10/2014.

Activity. Disponivel em: http://developer.android.com/reference/android/
app/Activity.html Acessado dia 20/10/2014.

Activities. Disponivel em: http://developer.android.com/guide/components/
activities.html Acessado dia 20/10/2014.

Android Development Tutorial. Disponivel em:
http://developer.android.com/guide/components/activities.html Acessado dia
20/10/2014.

Ciclo de vida de uma activity. Disponivel em:
http://androideity.com/2011/07/06/ciclo-de-vida-de-una-actividad/ Acessado
dia 17/10/2014.

Threads and Processes. Disponivel em: http://developer.android.com/guide/
components/processes-and-threads.html Acessado dia 20/10/2014.

Painless threading. Disponivel em:
http://android-developers.blogspot.com.br/2009/05/painless-threading.html
Acessado dia 20/10/2014.

Android Background Processing with Handlers and AsyncTask and Loaders -
Tutorial. Disponivel em:
http://www.vogella.com/tutorials/AndroidBackgroundProcessing/article.html
Acessado dia 20/10/2014.

OpenEEG Project. Disponivel em: http://openeeg.sourceforge.net/doc/
Acessado dia 20/10/2014.

OLIMEX PRODUCTS. Disponivel em: https://www.olimex.com/Products
/EEG/OpenEEG/EEG-SMT/open-source-hardware Acessado dia 17/10/2014.

48



[25] Low cost open source EEG device active electrodes with 1m shielded cable.
Disponivel em: https://www.olimex.com/Products/EEG/Electrodes/EEG-AE/
Acessado dia 20/10/2014.

[26] OpenViBE User Documentation. Disponivel em:
http://openvibe.inria.fr/documentation-index/# User+Documentation
Acessado dia 20/10/2014.

[27] Android Notifications - Tutorial. Disponivel em:
http://www.vogella.com/tutorials/AndroidNotifications/article. html Acessado
dia 20/10/2014.

49



50



Apéndice A
Esquema completo do OpenEEG

‘ e 1. 1 Lo L L s
e e T L e e |

o T o] —

.
| es 3

! 214

! el
(. #F 323

| £1
1 e
- h A} 1 k
}é g TR | HH
| 3 v il
18 f 15€T " || |5 ¢
R ek o e N g% 8
! {
! gl : y .
N - 51
A P o
L ide |
: o
I
= e S oo

w H
T g o
2l = 3 w
T L] - g
) TRy
@ o . BpE0 ~ % &
N (RS
— - i 8
i B I S g
E £ £ =4 1] 1
z E
43 Gl
86
E

Figura A.1: Esquema completo do OpenEEG da Olimex

51



52



11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

Apéndice B

Firmware do OpenEEG

ModularEEG firmware for one-way transmission, v0.5.4-p2
* Copyright (c) 2002-2003, Joerg Hansmann, Jim Peters, Andreas Robinson
License: GNU General Public License (GPL) v2
* Compiles with AVR-GCC v3.3.
* Note: -p2 in the version number means this firmware is for packet version 2.
*/
L1117 777 7077777777777 777777777777777777777777777777777777777
/‘.'r
////////// Packet Format Version 2 ////////////
// 17-byte packets are transmitted from the ModularEEG at 256Hz,
// using 1 start bit, 8 data bits, 1 stop bit, no parity, 57600 bits per second.

// Minimial transmission speed is 256Hz sizeof(modeeg_packet) * 10 = 43520 bps.

struct modeeg_packet

{
uint8_t sync@; // = 0xas
uint8_t syncl; // = 0x5a
uint8_t version; // = 2
uint8_t count; // packet counter. Increases by 1 each packet.
uintlé6_t datal[6]; // 10-bit sample (= 0 - 1023) in big endian (Motorola) format.
uint8_t switches; // State of PD5 to PD2, in bits 3 to 0.
3

// Note that data is transmitted in big-endian format.

// By this measure together with the unique pattern in sync® and syncl it is guaranteed,

// that re-sync (i.e after disconnecting the data line) is always safe.

// At the moment communication direction is only from Atmel-processor to PC.

// The hardware however supports full duplex communication. This feature

// will be used in later firmware releases to support the PWM-output and

// LED-Goggles.

*/

[1717777777777777777777777777777777777777/777777777/777777/77777

/7’:
* Program flow:

When 256Hz timer expires: goto SIGNAL (SIG_OVERFLOWO®)

* SIGNAL(SIG_OVERFLOW®) enables the ADC

* Repeat for each channel in the ADC:

*

53




41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Sampling starts. When it completes: goto SIGNAL(SIG_ADC)
SIGNAL(SIG_ADC) reads the sample and restarts the ADC.
SIGNAL(SIG_ADC) writes first byte to UART data register
(UDR) which starts the transmission over the serial port.
* Repeat for each byte in packet:
* When transmission begins and UDR empties: goto SIGNAL (SIG_UART_DATA)

Start over from beginning.

// Last Built with WinAVR-20100110
// Supported processors: ATmega8, ATmegal6 and AT90S4434
)/ =====================================================

#include <avr/io.h>

#include <inttypes.h>

#include <avr/interrupt.h>

#include <compat/deprecated.h>

//#include <avr/signal.h>

#define Debug_Led_On PORTB |= 0x20; DDRB |= 0x20;
#define Debug_Led_Off PORTB &= ("0x20); DDRB |= 0x20;

#if defined (__AVR_ATmega328P__)
#define Crystal_Freq_16MHz 16 //16MHz external crystal oscillator - especially for
Olimexino 328!
#else
#undef Crystal_Freq_16MHz // In all other cases 7.3728MHz crystal is used!
#endif

#define NUMCHANNELS 6

#define HEADERLEN 4

#define PACKETLEN (NUMCHANNELS * 2 + HEADERLEN + 1)
#define SAMPFREQ 256

#define TIMEROVAL 256 - ((7372800 / 256) / SAMPFREQ)
//char const channel_order[]= { ®, 3, 1, 4, 2, 5 };
char const channel_order([]= { 0, 1, 2, 3, 4, 5 };
/** The transmission packet */

volatile uint8_t TXBuf[PACKETLEN];

/** Next byte to read or write in the transmission packet. */
volatile uint8_t TXIndex;

/** Current channel being sampled. */

volatile uint8_t CurrentCh;

/*% Sampling timer (timer 0) interrupt handler */
//SIGNAL (SIG_OVERFLOWO)
ISR(TIMERO_OVF_vect)
{
//Debug_Led_On;
outb (TCNT®, TIMEROVAL); //Reset timer to get correct sampling frequency.
CurrentCh = 0;
// Write header and footer:
// Increase packet counter (fourth byte in header)
TXBuf[3]++;
//Get state of switches on PD2..5, if any (last byte in packet).
TXBuf[2 * NUMCHANNELS + HEADERLEN] = (inp(PIND) >> 2) &O0xOF;
#if defined (__AVR_ATmega8__)

cbi (UCSRB, UDRIE); //Ensure UART IRQ’s are disabled.
sbi (ADCSR, ADIF); //Reset any pending ADC interrupts
sbi (ADCSR, ADIE); //Enable ADC interrupts.

54




97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

127

129

131

133

135

137

139

141

143

145

147

149

151

153

#elif defined (__AVR_ATmegal6__)

cbi (UCSRB, UDRIE); //Ensure UART IRQ’s are disabled.
sbi (ADCSRA, ADIF); //Reset any pending ADC interrupts
sbi (ADCSRA, ADIE); //Enable ADC interrupts.
#elif defined (__AVR_ATmega328P__)
cbi (UCSROB, UDRIE®); //Ensure UART IRQ’s are disabled.
sbi (ADCSRA, ADIF); //Reset any pending ADC interrupts
sbi (ADCSRA, ADIE); //Enable ADC interrupts.
sbi (ADCSRA, ADSC) ; // Start conversion!!!llllrrrrrrrrnrnd
#else//(__AVR_AT90S4434__)
cbi (UCR, UDRIE); //Ensure UART IRQ’s are disabled.
sbi (ADCSR, ADIF); //Reset any pending ADC interrupts
sbi (ADCSR, ADIE); //Enable ADC interrupts.
#endif

}

/** AD-conversion-complete interrupt handler. */

//SIGNAL (SIG_ADC)

ISR(ADC_vect)

{
volatile uint8_t ij;
i = 2 * CurrentCh + HEADERLEN;
TXBuf[i+1] = inp(ADCL);
TXBuf[i] = inp (ADCH);
CurrentCh++;
//Debug_Led_On;
if (CurrentCh < NUMCHANNELS)
{

outb (ADMUX, (channel_order[CurrentCh])); //Select the next channel.

//The next sampling is started automatically.
#if defined (__AVR_ATmega328P__)

sbi (ADCSRA, ADSC) ; // Start conversion!!!!lItirrrrirrrtnl
#endif
}
else
{
outb (ADMUX, channel_order[0]); //Prepare next conversion,

// Disable ADC interrupts to prevent further calls to SIG_ADC.
#if defined (__AVR_ATmega8__) | defined (__AVR_AT90S4434__)

cbi (ADCSR, ADIE);
#elif defined (__AVR_ATmegal6__) | defined (__AVR_ATmega328P__)

cbi (ADCSRA, ADIE);

#endif

#if defined (__AVR_ATmega328P__)
outb (UDR®, TXBuf[0]);

#else
outb (UDR, TXBuf[0]);

#endif

#if defined (__AVR_ATmega8__) | defined (__AVR_ATmegal6__)
sbi (UCSRB, UDRIE);
#elif defined (__AVR_ATmega328P__)
sbi (UCSROB, UDRIE®);
#else//(__AVR_AT90S4434__)
sbi(UCR, UDRIE);
#endif
TXIndex = 1;
//Debug_Led_On;

55

on channel 0.




155

157

159

161

163

165

167

169

171

173

175

177

179

181

183

185

187

189

191

193

195

197

199

201

203

205

207

209

211

}
/*** UART data transmission register-empty interrupt handler ***/
#if defined (__AVR_ATmega328P__)

ISR(USART_UDRE_vect) /* USART, Data Register Empty interrupt */
#else

SIGNAL (SIG_UART_DATA)
#endif

{
#if defined (__AVR_ATmega328P__)
//Debug_Led_On;
outb (UDR®, TXBuf[TXIndex]); //Send next byte
#else
outb (UDR, TXBuf[TXIndex]); //Send next byte
#endif
TXIndex++;
if (TXIndex == PACKETLEN) //See if we’re done with this packet
{
#if defined (__AVR_ATmega8__) | defined (__AVR_ATmegal6__)
cbi (UCSRB, UDRIE); //Disable SIG_UART_DATA interrupts.
//Next interrupt will be a SIG_OVERFLOW®.
#elif defined (__AVR_ATmega328P__)
cbi (UCSROB, UDRIE®); //Disable SIG_UART_DATA interrupts.
//Next interrupt will be a SIG_OVERFLOW®.
#else//(__AVR_AT90S4434__)
cbi (UCR, UDRIE); //Disable SIG_UART_DATA interrupts.
//Next interrupt will be a SIG_OVERFLOWO®.
#endif

/** Initialize PWM output (PB1l = 14Hz square wave signal) */

void pwm_init(void)
{
// Set timer/counter 1 to use 10-bit PWM mode.
// The counter counts from zero to 1023 and then back down
// again. Each time the counter value equals the value
// of OCR1(A), the output pin is toggled.
// The counter speed is set in TCCR1B, to clk / 256 = 28800Hz.
// Effective frequency is then clk / 256 / 2046 = 14 Hz

#if defined (__AVR_ATmega8__) | defined (__AVR_ATmegal6__) | defined (__AVR_ATmega328P__)
outb (OCR1AH,2); // Set OCRIA = 512
outb (OCR1AL,0);
outb (TCCR1A, ((1<<COM1A1l) + (1<<WGM11l) + (1<<WGM10®))); // Set 10-bit PWM mode
outb (TCCR1B, (1 << CS12)); // Start and let run at clk / 256 Hz.
#else // __AVR_AT90S4434__
outb (OCR1AH,2); // Set OCR1 = 512
outb (OCR1AL,®);
outb(TCCR1A, ((1<<COM1A1l) + (1<<PWM11l) + (1<<PWM10®))); // Set 10-bit PWM mode
outb(TCCR1B, (1 << CS12)); // Start and let run at clk / 256 Hz.

#endif

}

int main( void )

{

#if defined (Crystal_Freq_16MHz)

56




213

215

217

219

221

223

225

227

229

231

233

235

237

239

241

243

245

247

249

251

253

255

257

259

261

263

265

267

269

//Devide system clock by two to acheive the same performance and time intervals
sbi (CLKPR,CLKPCE); // Clock Prescaler Change Enable

outb (CLKPR,0x01); // Set prescaller to 1:2
#endif

//Write packet header and footer

TXBuf[0] = 0Oxa5; //Sync 0

TXBuf[1l] = 0x5a; //Sync 1

TXBuf[2] = 2; //Protocol version

TXBuf[3] = 0; //Packet counter

//Set up the ports.
#if defined (__AVR_ATmega8__) | defined (__AVR_ATmega328P__)
outb (DDRD, 0xc2);
outb (DDRB, 0x07);
outb (PORTD, O0Oxff);
outb (PORTB, 0xff);
#elif defined (__AVR_ATmegal6__)

DDRD |= 0x22; // Enable PWM output (PD5/0Cl1A) and TxD output
PORTD |= 0x22; // Set outputs to high
#endif

//Select sleep mode = idle.
#if defined (__AVR_ATmega8__) | defined (__AVR_ATmegal6__) | defined (__AVR_ATmega328P__)
outb (MCUCR, (inp (MCUCR) | (1<<SE)) & ("(1<<SMO®) | "(1<<SM1) | ~(1<<SM2)));
#else // __AVR_AT90S4434__
outb (MCUCR, (inp (MCUCR) | (1<<SE)) & ("(1<<SMO®)) & ("(1<<SM1)) );
#endif
//Initialize the ADC
// Timings for sampling of one 10-bit AD-value:
// prescaler > ((XTAL / 200kHz) = 36.8 =>
// prescaler = 64 (ADPS2 = 1, ADPS1 = 1, ADPSO® = 0)
// ADCYCLE = XTAL / prescaler = 115200Hz or 8.68 us/cycle
// 14 (single conversion) cycles = 121.5 us (8230 samples/sec)
// 26 (lst conversion) cycles = 225.69 us
outb (ADMUX, 0); //Select channel 0
//Prescaler = 64, free running mode = off, interrupts off.
#if defined (__AVR_ATmega8__) | defined (__AVR_AT90S4434__)
outb (ADCSR, ((1<<ADPS2) | (1<<ADPS1)));
sbi (ADCSR, ADIF); //Reset any pending ADC interrupts
sbi (ADCSR, ADEN); //Enable the ADC
#elif defined (__AVR_ATmegal6__) | defined (__AVR_ATmega328P__)
outb (ADCSRA, ((1<<ADPS2) | (1<<ADPS1)));

sbi (ADCSRA, ADIF); //Reset any pending ADC interrupts
sbi (ADCSRA, ADEN); //Enable the ADC
#endif

//Initialize the UART
#if defined (__AVR_ATmega8__) | defined (__AVR_ATmegal6__)

outb (UBRRH,0) ; //Set speed to 57600 bps

outb (UBRRL,7);

outb (UCSRA, 0);

outb (UCSRC, ((1<<URSEL) | (1<<UCSZ1) | (1<<UCSZ®))); // 8 bits data length

outb (UCSRB, (1<<TXEN)); // Transmitter Enabled
#elif defined (__AVR_ATmega328P__)

#if defined (Crystal_Freq_16MHz)

outb (UBRRO®, 8); //Set speed to 57600 bps
outb (UCSROB, (1<<TXENO));

#else
outb (UBRRO, 7); //Set speed to 57600 bps
outb (UCSROB, (1<<TXENO®));

#endif

57




271

273

275

277

279

281

283

285

287

289

291

293

295

#else // __AVR_AT90S4434__

outb (UBRR, 7); //Set speed to 57600 bps
outb (UCR, (1<<TXEN));
#endif

//Initialize timer ® -> used to sample ADC
#if defined (__AVR_ATmega328P__)

outb (TCNTO®, 0); //Clear it.
outb (TCCROB, 4); //Start it. Frequency = clk / 256
outb (TIMSK®, (1<<TOIE®0)); //Enable the interrupts.

#else
outb (TCNTO®, 0); //Clear it.
outb (TCCRO, 4); //Start it. Frequency = clk / 256
outb (TIMSK, (1<<TOIE®)); //Enable the interrupts.

#endif

//Initialize PWM (optional)

pwm_init Q) ;

//while(1){ Debug_Led_On; outb(UDRO®, 0x55); } // Just for debug purpose!
sei(); // Enable all interrupts

//Now, we wait. This is an event-driven program, so nothing much

//happens here.

while (1)
{

__asm__ __volatile__ ("sleep");
}

codigos/main.c

58




11

13

15

17

19

21

23

25

27

29

Apéndice C

Transmissdao do OpenEEG para o

celular

Neste c6digo foi utilizado um filtro passa faixa (de 3 a 20 Hz) com o intuito de
melhorar a visualiza¢do do sinal pois o sinal bruto é muito ruidoso. Observa-se aqui

o limite entre o tratamento do sinal analégico e digital.

import serial

import io

import sys

import math

from bluetooth import *

from time import sleep

import numpy as np

import matplotlib.pyplot as plt

from scipy.signal import freqz

from scipy.signal import butter, 1lfilter

def butter_bandpass(lowcut, highcut, fs, order=5):
nyqg = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype='band’)
return b, a

def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = 1filter(b, a, data)
return y

#Conexao bluetooth
service_matches = find_service( name = "android_servidor", uuid = "5b553d50-4b4f-11e4-916¢C
-0800200c9a66" )
if len(service_matches) ==
print "couldnot find the service!"

59




31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

sys.exit(0)
first_match = service_matches[0]
port = first_match["port"]
name = first_match["name"]
host = first_match["host"]
print "connecting to ", host
sock=BluetoothSocket ( RFCOMM )
sock.connect ((host, port))
k=int (1)

#Estabelece a conexao serial
ser = serial.Serial(’/dev/ttyUSBO’,baudrate=57600)
print ser.name

i=int (0)
xx=[0]1%128
y=[0]1*128
fs=128
lowcut = 3
highcut = 20

#Recebe os dados da serial

while True:
x=ser.read(34)
data=x.encode(’hex’)
#print "Data: ", data
data_str=str(data)
init_package= data_str.find("a55a02");
counter=data_str[init_package+6]+data_str[init_package+7]
data®lp_h=data_str[init_package+8]+data_str[init_package+9]
data®lp_l=data_str[init_package+10]+data_str[init_package+11]
data®ln_h=data_str[init_package+12]+data_str[init_package+13]
data®ln_l=data_str[init_package+l4]+data_str[init_package+15]
data®2p_h=data_str[init_package+l6]+data_str[init_package+17]
data®2p_l=data_str[init_package+18]+data_str[init_package+19]
data®2n_h=data_str[init_package+20]+data_str[init_package+21]
data®2n_l=data_str[init_package+22]+data_str[init_package+23]

#print "data lenght", len(data_str)

chlp = 255*int(data®lp_h,16)+int(data®lp_1,16)
chln = 255*int(data®ln_h,16)+int(data®ln_1,16)
ch2p = 255*int(data®2p_h,16)+int(data®2p_1,16)
ch2n = 255*int(data®2n_h,16)+int(data®2n_1,16)

#print chlp
#print chiln
#print ch2p
#print ch2n

chl = chlp-chiln
ch2 ch2p-ch2n

#print chl
#print ch2

60




89

91

93

95

97

99

101

103

#print i
xx[i]=int ((chl)/2)
#sock.send(str(chl))
#sleep(0.1)
# 128 pacotes por segundo
#Envia dados bluetooth
if (i%4==0):
if (y[i]>-256 and y[i]<256):
sock.send(str(int(y[i])))
sleep(0.015625)
i=i+l1
if (i==128):
y =
i=0
sock.close()

butter_bandpass_filter(xx,

lowcut, highcut, fs, order=5)

codigos/readusb filter.py

61




62



11

13

15

17

19

21

23

25

27

29

31

33

35

37

Apéndice D
Codigos em Java do android

Main Activity

package packl.tcc_vl;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.nio.ByteBuffer;

import java.util.Arraylist;

import java.util.Arrays;

import java.util.Random;

import java.util.Set;

import java.util.UUID;

import android.app.Activity;

import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothDevice;
import android.bluetooth.BluetoothServerSocket;
import android.bluetooth.BluetoothSocket;
import android.content.Intent;

import android.graphics.Color;

import android.os.Bundle;

import android.os.Handler;

import android.os.Looper;

import android.os.Message;

import android.support.v4.content.LocalBroadcastManager;
import android.view.Menu;

import android.view.View;

import android.widget.ArrayAdapter;

import android.widget.Button;

import android.widget.ListView;

import android.widget.TextView;

import android.widget.Toast;

import com.androidplot.xy.FillDirection;
import com.androidplot.xy.LineAndPointFormatter;
import com.androidplot.xy.SimpleXYSeries;
import com.androidplot.xy.XYPlot;

import com.androidplot.xy.XYSeries;

public class MainActivity extends Activity {

63




39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

private final static int REQUEST_ENABLE_BT = 1;
private boolean cond;

private TextView labell;

private TextView lb_data;

private TextView label3;

private Button bt_conectar;

private Button bt_receber;

private Button bt_parar;

private ListView 1lv;

private ArrayAdapter<String> mArrayAdapter;
private ArraylList<String> itemsList;
private Message msg;

private Thread mthreadl;

public BluetoothAdapter mBluetoothAdapter;
private AcceptThread mAcceptThread;

private receber_dados rd;

private Handler mHandler = new Handler () {
@Override
public void handleMessage(Message msg) {
super.handleMessage (msg) ;
switch (msg.what) {
case 1:
byte[] readBuf = (byte[]) msg.obj;
String string = new String(readBuf);
lb_data.setText(string);
Intent intent = new Intent("custom-event-name");
// You can also include some extra data.
int transf = 90;
transf = Integer.valueOf(string);
intent.putExtra("datal", transf); //
LocalBroadcastManager.getInstance (getBaseContext()).sendBroadcast(intent);
break;

};

private Handler handler_teste = new Handler() { //Looper.getMainLooper ()
@Override
public void handleMessage (Message msg) {
TextView myTextView = (TextView) findViewById(R.id.textView2);
myTextView.setText ((String)msg.obj);
}
3

@Override

public void onCreate(Bundle savedInstanceState)

{
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
labell = (TextView)findViewById(R.id.textViewl);
bt_conectar = (Button) findViewById(R.id.buttonl);
bt_receber = (Button)findViewById(R.id.button2);
bt_parar = (Button) findViewById(R.id.button3);
lb_data = (TextView) findViewById(R.id.textView2);
lv = (ListView) findViewById(R.id.listViewl);
label3 = (TextView)findViewById(R.id.textView3);
mBluetoothAdapter = BluetoothAdapter.getDefaultAdapter();

64




97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

127

129

131

133

135

137

139

141

143

145

147

149

151

153

@Override

public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.main, menu) ;
return true;

public void conectar(View view)

{
boolean fluxo;

if (habilitar_bluetooth())

{
labell.setText("Bluetooth habilitado");
habilitar_descobrimento();
aparelhos_pareados();
conectar_servidor();
3
else
{
labell.setText("Bluetooth desabilitado");
3

public void receber(View view)

{
Intent intent_plot = new Intent(this,Plotar_grafico_Activity.class);
intent_plot.putExtra("datal", 25); //String.valueOf(il));
startActivity(intent_plot);

}

public void parar(View view)

{
if (mAcceptThread!=null)
mAcceptThread.cancel () ;
}
if (mtesteThread!=null)
{
mtesteThread.cancel();
}
if (rd!=null)
rd.cancel ();
}
}

public boolean habilitar_bluetooth()

{
if (mBluetoothAdapter == null)

{
Toast.makeText (getBaseContext(),"Sistema nao suporta bluetooth",Toast.LENGTH_LONG).

65




155

157

159

161

163

165

167

169

171

173

175

177

179

181

183

185

187

189

191

193

195

197

199

201

203

205

207

show () ;
// Device does not support Bluetooth
return false;

3
else
{
if (!'mBluetoothAdapter.isEnabled())
{
Toast.makeText (getBaseContext(),"Bluetooth sera habilitado",Toast.LENGTH_LONG).
show () ;
}
return true;
}
}

public void habilitar_descobrimento ()

{
Intent discoverableIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);
discoverableIntent.putExtra(BluetoothAdapter.EXTRA_DISCOVERABLE_DURATION, 300);
startActivity(discoverableIntent);

public void aparelhos_pareados()

{
Set<BluetoothDevice> pairedDevices = mBluetoothAdapter.getBondedDevices();
itemsList = new ArrayList<String>Q);
mArrayAdapter = new ArrayAdapter(this,android.R.layout.simple_list_item_1,itemsList);
if (pairedDevices.size() > 0) {
// Loop through paired devices
for (BluetoothDevice device : pairedDevices) {
// Add the name and address to an array adapter to show in a ListView
itemsList.add(device.getName() + "\n" + device.getAddress());
}
}
lv.setAdapter (mArrayAdapter);
}

public void conectar_servidor ()

{
mAcceptThread = new AcceptThread();
mAcceptThread.start();

private class AcceptThread extends Thread {
private final BluetoothServerSocket mmServerSocket;
public AcceptThread()
{
//Comecar servidor
BluetoothAdapter mBluetoothAdapter = BluetoothAdapter.getDefaultAdapter();
UUID meu_uuid = UUID. fromString("5b553d50-4b4f-11e4-916c-0800200c9a66");
BluetoothServerSocket tmp = null;
try {
// MY_UUID is the app’s UUID string, also used by the client code
tmp = mBluetoothAdapter.listenUsingRfcommWithServiceRecord("android_servidor",
meu_uuid) ;
} catch (IOException e) { }
mmServerSocket = tmp;

}

66




209

211

213

215

217

219

221

223

225

227

229

231

233

235

237

239

241

243

245

247

249

251

253

255

257

259

261

263

265

public void run()

{
BluetoothSocket socket = null;
// Keep listening until exception occurs or a socket is returned
while (true) {
1lb_data.post(new Runnable() {
public void run() {
lb_data.setText("Procurando conexao...");
}
b
try {
socket = mmServerSocket.accept();
} catch (IOException e) {
1b_data.post(new Runnable() {
public void run() {
lb_data.setText ("Erro na procura");
}
b
break;
}
// If a connection was accepted
if (socket != null) {
lb_data.post(new Runnable() {
public void run() {
1b_data.setText("Conexao aceita!");
}
b
label3.post(new Runnable() {
public void run() {
label3.setText("Conexao aceital!!!");
}
b
// Do work to manage the connection (in a separate thread)
//manageConnectedSocket (socket);
rd = new receber_dados(socket);
rd.start();
}
}
}

/¥ Will cancel the listening socket, and cause the thread to finish */
public void cancel() {
try {
mmServerSocket.close();
} catch (IOException e) { }

private class receber_dados extends Thread
{
private final BluetoothSocket mmSocket;
private final InputStream mmInStream;
//private final OutputStream mmOutStream;

public receber_dados(BluetoothSocket socket) {

67




267

269

271

273

275

277

279

281

283

285

287

289

291

293

295

297

299

301

303

305

307

309

mmSocket = socket;
InputStream tmpIn = null;
try {
tmpIn = socket.getInputStream();
//tmpOut = socket.getOutputStream();
} catch (IOException e) { }
mmInStream = tmpIn;

}

public void run() {
int bytes_recebidos=0; // bytes returned from read()
int availableBytes;
// Keep listening to the InputStream until an exception occurs
while (true) {
try {

// Read from the InputStream
availableBytes = mmInStream.available();
if (availableBytes>0)

{

byte[] buffer = new byte[availableBytes]; // buffer store for the stream
// Read from the InputStream

bytes_recebidos = mmInStream.read(buffer);

mHandler.obtainMessage(l, bytes_recebidos, -1, buffer).sendToTarget();

}
}
catch (IOException e) {
break;
}
3
3

/* Call this from the main activity to shutdown the connection */
public void cancel()
{
try {
mmSocket.close();
} catch (IOException e) { }
}

codigos/MainActivity,java

Activity Plotar Gréfico

package packl.tcc_vl;

import java.text.DecimalFormat;

import java.util.Arrays;

import java.util.Observable;

import java.util.Observer;

import android.app.Activity;

import android.content.BroadcastReceiver;
import android.content.Context;

68




10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

import android.content.Intent;

import android.content.IntentFilter;
import android.graphics.Color;

import android.graphics.DashPathEffect;
import android.os.Bundle;

import android.os.Handler;

import android.os.Message;

import android.support.v4.content.LocalBroadcastManager;
import android.util.Log;

import android.view.Menu;

import android.view.Menultem;

import android.widget.TabHost;

import android.widget.Toast;

import android.widget.TabHost.TabSpec;
import com.androidplot.Plot;

import com.androidplot.util.PixelUtils;
import com.androidplot.xy.BoundaryMode;
import com.androidplot.xy.LineAndPointFormatter;
import com.androidplot.xy.SimpleXYSeries;
import com.androidplot.xy.XYPlot;

import com.androidplot.xy.XYSeries;
import com.androidplot.xy.XYStepMode;

public class Plotar_grafico_Activity extends Activity {
private BroadcastReceiver mMessageReceiver = new BroadcastReceiver (){
@Override
public void onReceive(Context context, Intent intent) {
int dx = intent.getIntExtra("datal",0);
data.receber_os_dados (dx);

};

// redraws a plot whenever an update is received:
private class MyPlotUpdater implements Observer {
Plot plot;

public MyPlotUpdater (Plot plot) {
this.plot = plot;
}

@Override

public void update(Observable o, Object arg) {
plot.redraw();

}

private XYPlot dynamicPlot;
private MyPlotUpdater plotUpdater;
SampleDynamicXYDatasource data;
private Thread myThread;

private Intent intent_dados;
private XYPlot xyplot_cl;

private int dados_recebidos=0;
private TabHost tabhost;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

69




68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

setContentView(R.layout.activity_plotar_grafico_);

tabhost = (TabHost)findViewById(android.R.id.tabhost);

tabhost.setup();

TabSpec specl=tabhost.newTabSpec("Canal 1");

specl.setContent (R.id.tabl);

specl.setIndicator("Canal 1");

TabSpec spec2=tabhost.newTabSpec("Canal 2");

spec2.setContent (R.id.tab2);

spec2.setIndicator("Canal 2");

tabhost.addTab (specl);

tabhost.addTab (spec2);
LocalBroadcastManager.getInstance(this).registerReceiver (mMessageReceiver,
new IntentFilter("custom-event-name"));

// get handles to our View defined in layout.xml:

dynamicPlot = (XYPlot) findViewById(R.id.plot_chl);

plotUpdater = new MyPlotUpdater (dynamicPlot);

// only display whole numbers in domain labels
dynamicPlot.getGraphWidget () .setDomainValueFormat(new DecimalFormat("0"));
// getInstance and position datasets:

data = new SampleDynamicXYDatasource();

SampleDynamicSeries sinelSeries = new SampleDynamicSeries(data, 0, "Canal 1 EEG");
LineAndPointFormatter formatterl = new LineAndPointFormatter (

Color.rgb(0, 0, 0), null, null, null);
//formatterl.getlLinePaint () .setStrokeloin(Paint.Join.ROUND);
formatterl.getLinePaint().setStrokeWidth(2);
dynamicPlot.addSeries(sinelSeries,

formatterl);
// hook up the plotUpdater to the data model:
data.addObserver(plotUpdater);
// thin out domain tick labels so they dont overlap each other:
dynamicPlot.setDomainStepMode (XYStepMode.INCREMENT_BY_VAL);
dynamicPlot.setDomainStepValue (128);
dynamicPlot.setRangeStepMode (XYStepMode . INCREMENT_BY_VAL);
dynamicPlot.setRangeStepValue (25);
dynamicPlot.setRangeValueFormat (new DecimalFormat ("###.#"));
// uncomment this line to freeze the range boundaries:
dynamicPlot.setRangeBoundaries(-256, 256, BoundaryMode.FIXED);
// create a dash effect for domain and range grid lines:
DashPathEffect dashFx = new DashPathEffect(
new float[] {PixelUtils.dpToPix(3), PixelUtils.dpToPix(3)}, 0);
dynamicPlot.getGraphWidget () .getDomainGridLinePaint () .setPathEffect (dashFx);
dynamicPlot.getGraphWidget () .getRangeGridLinePaint () .setPathEffect (dashFx);

@Override

public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.plotar_grafico_, menu);
return true;

@Override

public boolean onOptionsItemSelected(Menultem item) {
// Handle action bar item clicks here. The action bar will
// automatically handle clicks on the Home/Up button, so long
// as you specify a parent activity in AndroidManifest.xml.
int id = item.getItemId();

70




126

128

130

132

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

176

178

180

182

if (id == R.id.action_settings) {
return true;
}

return super.onOptionsItemSelected(item);

@Override

protected void onDestroy() {
// Unregister since the activity is about to be closed.
LocalBroadcastManager.getInstance(this).unregisterReceiver (mMessageReceiver);
super.onDestroy();

@Override
public void onResume() {
LocalBroadcastManager.getInstance(this).registerReceiver (mMessageReceiver,
new IntentFilter("custom-event-name"));
myThread = new Thread(data);
data.receber_os_dados(dados_recebidos);
Toast.makeText (getBaseContext (), "broadcastreceiver"+String.valueOf(dados_recebidos), Toast.
LENGTH_LONG) .show () ;
myThread.start();
super.onResume () ;

@Override

public void onPause() {
data.stopThread();
super.onPause();

class SampleDynamicXYDatasource implements Runnable {

// encapsulates management of the observers watching this datasource for update events:
class MyObservable extends Observable {

@Override

public void notifyObservers() {

setChanged () ;

super.notifyObservers();

3

private static final int SAMPLE_SIZE = 640;
private MyObservable notifier;

private boolean keepRunning = false;

private int[] dadosr = new int[SAMPLE_SIZE];
private int cont=0;

notifier = new MyObservable();

public void stopThread() {
keepRunning = false;

71




184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

214

216

218

220

222

224

226

228

230

232

234

236

238

240

public void receber_os_dados(int dados){

if (cont<SAMPLE_SIZE)

{
dadosr[cont]=dados;
cont++;

}

else

{
cont=0;

}

//@0verride

public void run() {

try {
keepRunning = true;
boolean isRising = true;

while (keepRunning) {

Thread.sleep(10); // decrease or remove to speed up the refresh rate.

notifier.notifyObservers();
}
} catch (InterruptedException e) {
e.printStackTrace();
}

public int getItemCount (int series) {

return SAMPLE_SIZE;

public Number getX(int series, int index) {

if (index >= SAMPLE_SIZE) {
throw new IllegalArgumentException();

}

return index;

public Number getY(int series, int index) {

if (index >= SAMPLE_SIZE) {

throw new IllegalArgumentException();

}

double angle = (index + (phase))/FREQUENCY;
double amp = sinAmp * Math.sin(angle);
double y = dadosr[index];

switch (series) {
case SINEL:
return y;
case SINE2:
return 1;
default:
throw new IllegalArgumentException();

72




242

244

246

248

250

252

254

256

258

260

262

264

266

268

270

272

274

276

278

280

public void addObserver (Observer observer) {
notifier.addObserver (observer);

public void removeObserver (Observer observer) {
notifier.deleteObserver (observer);

class SampleDynamicSeries implements XYSeries {
private SampleDynamicXYDatasource datasource;
private int seriesIndex;

private String title;

public SampleDynamicSeries(SampleDynamicXYDatasource datasource, int seriesIndex,
title) {
this.datasource = datasource;
this.seriesIndex = seriesIndex;
this.title = title;

@Override
public String getTitle() {
return title;

@Override
public int size() {
return datasource.getItemCount(seriesIndex);

@Override
public Number getX(int index) {
return datasource.getX(seriesIndex, index);

@Override
public Number getY(int index) {
return datasource.getY(seriesIndex, index);

String

codigos/Plotar_grafico_Activity.java

73




	Introdução
	Explicações Iniciais
	Relevância
	Objetivos
	Princípios
	Sinais Fisiológicos
	Processamento Digital
	Estudo do Hardware


	Embasamento Teórico
	Sinais Fisiológicos
	Estudo do hardware envolvido no projeto
	Dos sensores até o sistema embarcado
	Do sistema embarcado até o celular

	Programação em Java para android

	Materiais
	OpenEEG

	Aplicações
	Estudo do Hardware

	Resultados
	Resultados obtidos

	Conclusões
	Conclusões finais

	Referências Bibliográficas
	Esquema completo do OpenEEG
	Firmware do OpenEEG
	Transmissão do OpenEEG para o celular
	Códigos em Java do android

