
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

Plataforma baseada em Android para
auxı́lio na eletroencefalografia

Autor: João Pedro Berti Ligabô

Orientador: Dr. Evandro L. L. Rodrigues

São Carlos
2014





JOÃO PEDRO BERTI LIGABÔ

Plataforma baseada em Android para
auxı́lio na eletroencefalografia

Trabalho de Conclusão de Curso apresentado à
Escola de Engenharia de São Carlos

Universidade de São Paulo

Curso de Engenharia Elétrica com ênfase em Eletrônica

Orientador: Dr. Evandro L. L. Rodrigues

São Carlos
2014



AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ligabô, João Pedro Berti
 L723p Plataforma baseada em Android para auxílio na 

eletroencefalografia / João Pedro Berti Ligabô;
orientador Evandro Luís Linhari Rodrigues. São Carlos,
2014.

Monografia (Graduação em Engenharia Elétrica com 
ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2014.

1. EEG. 2. OpenEEG. 3. Android. 4. Bluetooth. I. 
Título.



3





Agradecimentos

Agradeço a todas as pessoas que fizeram parte diretamente e indiretamente na
minha breve existência.

Agradeço, em particular, a todos aqueles que frequentam a Universidade de
São Paulo e a todas as pessoas que pude conhecer durante o tempo em que estudei
na França.

Agradeço a todos aqueles que colocam a educação e o conhecimento como
prioridades em suas vidas.

Agradeço aos grandes nomes da história que construı́ram as bases do nosso
conhecimento e que são a razão por nossos princı́pios atuais.

Agradeço a Deus.





”Só sei que nada sei.”
(Sócrates)





Resumo

Este trabalho faz a transmissão dos sinais cerebrais obtidos no couro cabeludo
por meio de um dispositivo opensource chamado OpenEEG para um celular com
Android. Primeiramente os sinais fisiológicos cerebrais interessantes, que são da
ordem de microvolts, foram obtidos no couro cabeludo por meio do OpenEEG e em
seguida transmitidos via serial por meio da USB para uma plataforma móvel onde foi
feito o tratamento de sinais necessários, em seguida estes sinais foram transferidos
via bluetooth para um celular com Android onde foram, finalmente, plotados no tempo
com o auxı́lio da biblioteca Androidplot.

Palavras chaves: EEG, OpenEEG, Android, Bluetooth, Androidplot





Abstract

This work aims to develop the transmission of the electrical activity along the
scalp to an Android application. First, the useful physiological signals, which mea-
sure about microvolts, were obtained along the scalp with the help of an opensource
hardware called OpenEEG and then transfered through the serial communication
using the USB to a mobile platform, where the signal processing occurred, after,
these signals were transfered via Bluetooth to a smartphone with Android where
they were finally plotted with the help of a library called androidplot.

Keywords: EEG, OpenEEG, Android, Bluetooth, Androidplot



12



Lista de Figuras

1.1 Primeiro EEG por Hans Berger [2] . . . . . . . . . . . . . . . . . . . . . 20

1.2 Visualização de um EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Fluxograma da transmissão dos dados . . . . . . . . . . . . . . . . . . . 24

2.1 Sistema Internacional 10-20 [10] . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Etapa inicial do processo de aquisição dos sinais EEG [12] . . . . . . . 27

2.3 Amostragem e envio do sinal EEG do microcontrolador para a USB [12] 28

2.4 USB Bluetooth Dongle [14] . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Ciclo de vida de uma activity [19] . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Kit EEG Olimex [24] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 OpenEEG com eletrodos . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Diagrama das activities e threads do aplicativo . . . . . . . . . . . . . . 40

4.2 Requisição de acesso ao modo descoberta [15] . . . . . . . . . . . . . . 40

4.3 Layout da activity para plotar o sinal EEG . . . . . . . . . . . . . . . . . 41

5.1 Aplicativo sendo executado em tempo real . . . . . . . . . . . . . . . . 44

5.2 Ilustração do processo completo . . . . . . . . . . . . . . . . . . . . . . 44

A.1 Esquema completo do OpenEEG da Olimex . . . . . . . . . . . . . . . . 51

13



14



Lista de Tabelas

2.1 Banda de frequências em EEG [7] . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Especificações gerais do projeto OpenEEG [11] . . . . . . . . . . . . . . 28

15



Siglas

EEG = Eletroencefalografia / Eletroencefalograma

EOG = Eletrooculograma / Eletrooculografia

DIY = Do It Yourself

USB = Universal Serial Bus

FTDI = Future Technology Devices International

CC = Corrente Contı́nua

AC = Corrente Alternada

UUID = Universally Unique IDentifier



Sumário

1 Introdução 19

1.1 Explicações Iniciais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Relevância . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Princı́pios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.1 Sinais Fisiológicos . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Processamento Digital . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.3 Estudo do Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Embasamento Teórico 25

2.1 Sinais Fisiológicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Estudo do hardware envolvido no projeto . . . . . . . . . . . . . . . . . 26

2.2.1 Dos sensores até o sistema embarcado . . . . . . . . . . . . . . . 26

2.2.2 Do sistema embarcado até o celular . . . . . . . . . . . . . . . . 28

2.3 Programação em Java para android . . . . . . . . . . . . . . . . . . . . . 32

3 Materiais 35

3.1 OpenEEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Aplicações 37

17



4.1 Estudo do Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Resultados 43

5.1 Resultados obtidos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Conclusões 45

6.1 Conclusões finais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Referências Bibliográficas 47

A Esquema completo do OpenEEG 51

B Firmware do OpenEEG 53

C Transmissão do OpenEEG para o celular 59

D Códigos em Java do android 63

18



Capı́tulo 1

Introdução

1.1 Explicações Iniciais

Este trabalho visa o estudo da EEG (Eletroencefalografia) através de uma
aplicação utilizando sinais cerebrais de modo não invasivo, ou seja, utilizando eletro-
dos no couro cabeludo para medir os sinais fisiológicos provenientes da comunicação
entre os neurônios.

Para o projeto do EEG, foi considerado um aparelho opensource DIY (Do It
Yourself ) onde o intuito foi utilizar um aparelho com todas as etapas do processamento
de sinais utilizadas em hardwares robustos profissionais mas sem empregar grandes
recursos financeiros, o que é bastante difı́cil para este nı́vel de projeto pois os sinais
medidos são da ordem de microvolts. Em seguida foi implementada uma aplicação
onde o sinal captado no couro cabeludo foi exibido em um celular com android.

Tudo começou em 1929 quando um psiquiatra alemão chamado Hans Berger
(que trabalhava em Jena/Alemanha) anunciou ser possı́vel registrar as atividades
cerebrais em um papel sem a necessidade de uma intervenção cirúrgica (figura 1.1),
ele chamou este método de eletroencefalografia. Ele também descobriu que estes
sinais variavam se a pessoa estivesse dormindo ou não, se a pessoa tivesse certas
doenças como a epilepsia e no caso da falta de oxigênio (hipóxia).

Essas descobertas foram revolucionárias e Berger conseguiu assim inovar a
medicina, criando um ramo inteiramente novo, a neurofisiologia clı́nica. [1]

19



Figura 1.1: Primeiro EEG por Hans Berger [2]

1.2 Relevância

O uso da EEG está ainda muito distante de ser uma tecnologia a ser empregada
de forma corriqueira uma vez que a medição das ondas cerebrais não é uma tarefa
fácil pois para se ter uma precisão razoável é necessário fazer o uso de eletrodos a
gel (visto que a região capilar dificulta a utilização de eletrodos secos) assim como
também os sinais lá medidos não são significantes perto da grande quantidade de
ruı́do que pode ser gerado se tal sistema fosse utilizado de forma móvel. Há também
um certo tempo de calibração para a utilização do sistema e também outros cuidados
que tornam este tipo de sistema pouco robusto ainda.

Por outro lado, a EEG pode ser usado e também é promissor nas áreas: médica
(para a detecção de diversas patologias), jogos (consegue-se hoje manipular com-
pletamente um personagem dentro de um jogo), deficientes fı́sicos (é possı́vel que
deficientes fı́sicos se locomovam e também escrevam uma mensagem através de um
editor de texto a base de estı́mulos neurais), e diversas outras interações homem-
máquina. [3], [4]

O uso da eletroencefalografia é bastante difundido no caso de pacientes no
estado “locked in” onde há uma lesão extensa das conexões neurais do cérebro com
os movimentos do corpo, estado onde o paciente está consciente mas é incapaz de

20



demonstrar isso pois perdeu todos os movimentos do corpo, exceto o movimento
vertical dos olhos. [5]

Este trabalho pode ser utilizado em casos em que o uso do EEG se faz necessário
para uma avaliação prévia do estado do sujeito, como por exemplo: avaliação rápida
da presença de epilepsia no paciente, acompanhamento do estado mental do paciente
em uma anestesia, identificação de regiões no cérebro onde o paciente apresenta
traumas, convulsões e tumores, entre outras aplicações. [6]

1.3 Objetivos

• Entender e manipular como é feito o sensoriamento da EEG encaminhando este
sinal para uma plataforma móvel, ou seja, responder à questão de como captar
as ondas no couro cabeludo e enviá-las até um celular com Android.

1.4 Princı́pios

1.4.1 Sinais Fisiológicos

Pode-se observar que os sinais medidos em torno do neurocrânio são da ordem
de alguns microvolts e variam entre 1 à 40 Hz, visto que a medição foi feita de forma
não invasiva, os eletrodos se encontram muito distantes de onde o sinal é produzido
sendo assim necessária uma grande quantidade de neurônios transportando um sinal
(gerando assim uma onda) para uma medição relevante do sinal cerebral. Além dos
problemas de atenuação existem também problemas de precisão pois a condução
dos sinais gerados pelos neurônios até o couro cabeludo se dá de forma caótica por
meio da condução através dos diferentes materiais orgânicos. Por exemplo pode-
se observar numa topografia cerebral 2D/3D que uma mancha na parte esquerda
frontal/central do cérebro aparece (indicando que esta área está ativa) quando move-
se a mão direita (ou quando imagina-se esse movimento).[7] [8] [9]

1.4.2 Processamento Digital

Para se fazer uma medição relevante e em tempo real de tais sinais é pre-
ciso certos cuidados com o tratamento de sinais, visto que eles são complexos, não

21



estacionários, possuem alta dimensão (dependendo da quantidade de eletrodos uti-
lizados) e possuem muito ruı́do. Sendo assim é necessário saber a melhor maneira
de explorar o sinal medido como por exemplo: explorar a resposta temporal a um
estı́mulo externo ou explorar a densidade de potência do sinal em uma determi-
nada banda de frequências, entre outras. Deste modo é necessário aproveitar as
informações geométricas da geração do sinal (onde ele é gerado) e também sua
natureza (frequência e forma).

Para a utilização de uma forma satisfatória e em tempo real do sinal é extrema-
mente recomendado por diversos autores atuais [8] uma primeira etapa de calibração
do sinal. Esta etapa se mostra importantı́ssima pois cada pessoa é única, sendo que
a localidade dos sinais gerados assim como a percepção há certos estı́mulos se dá de
uma maneira desigual entre as pessoas.

Após a etapa de calibração pode-se utilizar o sistema online, sendo que assim
sua performance será muito maior pois o sistema já foi treinado para reconhecer o
tipo de resposta de cada pessoa.

Há também uma etapa de remoção do ruı́do onde a relação sinal/ruı́do pode
ser melhorada, pois a influência dos olhos (um piscar de olhos pode gerar sinais da
ordem de milivolts em torno da cavidade ocular sendo propagada através da pele
e atingindo principalmente os eletrodos frontais da EEG, como visto na figura 1.2)
assim como a influência de vários outros fatores como: a fricção da mandı́bula, o
movimento dos braços, a própria tensão natural da pessoa, entre diversos outros
sinais que podem ser muito superiores em amplitude que os sinais provenientes da
EEG. [8], [9]

22



Figura 1.2: Visualização de um EEG

1.4.3 Estudo do Hardware

Vale ressaltar desde já que o nı́vel das aplicações e resultados obtidos com um
hardware mais barato são bastante inferiores comparados com aqueles resultados
obtidos com um hardware mais robusto (caro) porém o princı́pio de funcionamento
e as etapas para a confecção destes são bastante semelhantes, sendo que o estudo
realizado sobre o OpenEEG proporcionou um grande conhecimento sobre as etapas
necessárias para a instrumentação e processamento do sinal.

Para o estudo do hardware foram consideradas as etapas da figura 1.3

Nesta etapa do trabalho foi feito a comunicação serial do OpenEEG para o
computador, a comunicação via bluetooth do computador para o celular e o desen-
volvimento de um aplicativo para a visualização das ondas cerebrais. Para isso foi
necessário compreender o funcionamento de todas as etapas do processamento de
sinais fisiológicos.

23



Figura 1.3: Fluxograma da transmissão dos dados

24



Capı́tulo 2

Embasamento Teórico

Para uma melhor compreensão deste assunto é preciso utilizar um vocabulário
comum, sendo assim, abaixo seguem algumas convenções para facilitar o entendi-
mento:

2.1 Sinais Fisiológicos

Os sinais presentes no couro cabeludo se encontram numa faixa de frequências
que vai de 0.1 a 40 Hz aproximadamente, sendo que estes são classificados em bandas
de acordo com a tabela 2.1. Estas informações são importantes pois é muito comum
explorar a densidade de potência do sinal nas diferentes bandas para assim extrair
informações importantes do sinal.

Banda Domı́nio de frequência
Delta 0.1-3,5
Theta 4-7,5
Alfa 8-13
Beta 14-30

Gamma > 30

Tabela 2.1: Banda de frequências em EEG [7]

Não serão discutidos aqui o porquê da frequência de tais sinais fisiológicos e
nem o porquê de sua localidade pois seria preciso um conhecimento mais especı́fico
sobre o funcionamento do cérebro mas podemos obter da literatura atual uma grande
quantidade de informações pertinentes ao projeto atual sem a necessidade de uma
tal especialização. A figura 2.1 ilustra o Sistema Internacional de posicionamento dos
eletrodos nas diferentes partes da cabeça para a exploração do sinal na área desejada.

25



Figura 2.1: Sistema Internacional 10-20 [10]

2.2 Estudo do hardware envolvido no projeto

2.2.1 Dos sensores até o sistema embarcado

Um sinal EEG é normalmente captado por meio de eletrodos banhados a cloreto
de prata embora as vezes possa ser utilizados outros materiais como a prata pura e
o ouro. No caso do hardware baseado no projeto OpenEEG aqui estudado, o sinal é
capturado por dois eletrodos e passa pelo circuito de proteção que tem a função de
proteger o circuito contra descargas eletrostáticas.

Antes do sinal ser tratado ele precisa ser amplificado algumas milhares de vezes
pois sua amplitude é da ordem de microvolts, devido à essa sua natureza frágil o
sinal está exposto a introdução de diferentes fontes de ruı́do como por exemplo a
indução elétrica da corrente que passa nos fios ao redor do aparelho.

Para cuidar disso o sinal é primeiramente amplificado por um amplificador
instrumental (com ganho por volta de 12) de qualidade no qual se mede a diferença
de potencial entre duas regiões do couro cabeludo, muitos ruı́dos externos são elimi-
nados nesta parte pois ambos os eletrodos estão suscetı́veis à mesma fonte de ruı́do,
o que será cancelado pelo amplificador operacional posteriormente.

26



Em seguida o sinal passa por filtros passa-alta (com polos em 0.16 Hz) com o
intuito de bloquear o sinal contı́nuo propagado até aqui pois muitos eletrodos são
polarizáveis, ou seja, eles podem acumular carga elétrica em sua superfı́cie, gerando
assim um grande potencial CC, sendo que algumas vezes este sinal é da ordem de
mV saturando assim completamente o amplificador e inviabilizando a captura do
sinal EEG.

Em seguida o sinal é amplificado por meio de amplificadores normais (com
ganho por volta de 40 e 13) e são utilizados filtros passa-baixa para minimizar a
distorção causada por ’aliasing’ quando o sinal for amostrado para se tornar um
sinal digital. A figura 2.2 representa esta etapa inicial. [11]

Figura 2.2: Etapa inicial do processo de aquisição dos sinais EEG [12]

Abaixo dos amplificadores de sinais e com a orientação contrária a esses, se
encontra o DRL, cujo propósito é a rejeição do sinal de modo comum como por
exemplo os sinais da rede elétrica.

Após esta etapa analógica o sinal é amostrado pelo microcontrolador (neste
caso foi usado um ATMEGA16) e enviado para o computador de forma serial através
de uma porta USB. Para proteger o usuário de problemas elétricos o sistema é isolado
do computador e de fontes externas de energia. De acordo com a figura 2.3.

27



Figura 2.3: Amostragem e envio do sinal EEG do microcontrolador para a USB [12]

O circuito completo encontra-se no apêndice, assim como outras especificações
dos componentes, mas as informações técnicas principais do projeto estão ilustradas
na tabela 2.2

Número de canais 2 - 6(somente 4 utilizados)

Resolução 10 bits

Resolução da tensão de entrada 0.5 uV

Máxima tensão de entrada +/-256 uV

Ruı́do de banda 1 uVp-p

Corrente fornecida (5V ou 9 - 12V tensão) 70 mA

Tensão de isolamento 2500V por 1 minuto

Tensão contı́nua de isolamento 480V

Tabela 2.2: Especificações gerais do projeto OpenEEG [11]

2.2.2 Do sistema embarcado até o celular

O sinal serial transmitido por meio da USB é recebido por um computador
ou um dispositivo embarcado como por exemplo uma Raspberry Pi, este dispositivo
deverá conter um módulo de recepção serial como ilustrado com os comandos abaixo:

joao@joao-pc:˜ > lsusb

Bus 002 Device 004: ID 0403:6001 Future Technology Devices International,

Ltd FT232 USB-Serial (UART) IC

No caso aqui o módulo FTDI (FTDI é uma empresa escocesa de semiconduto-
res especializada na manipulação de dados via USB) está corretamente instalado e

28



pronto para ser usado para a transmissão serial via USB, esse módulo é necessário
pois a transmissão dos dados seriais enviados pelo microprocessador são primeiro
convertidos para o protocolo USB por meio de um chip da FTDI localizado na última
etapa da placa do kit da Olimex. [13]

joao@joao˜ > lsmod

Module Size Used by

ftdi_sio 48930 0

usbserial 45014 1 ftdi_sio

Com os dados sendo enviados na porta serial, pode-se recuperá-los de di-
versas formas, no linux eles estão normalmente disponı́veis no arquivo/dispositivo
/dev/ttyUSB0, sendo que para visualizar os sinais pode-se usar os comandos (como
superusuário):

#Configurar a recepção serial para a porta /dev/ttyUSB0 e taxa de

#transmissão de 57600 bps

stty -F /dev/ttyUSB0 sane 57600

#Recepção de 17 bytes por pacote

od /dev/ttyUSB0 -tx1 -w17

Nota-se que para a recepção correta do sinal é necessário que a transmissão seja
feita a cada 17 bytes pois o pacote possui este tamanho. Esta informação se encontra
no firmware do microcontrolador, a seguir um pequeno extrato deste:

////////// Packet Format Version 2 ////////////

// 17-byte packets are transmitted from the ModularEEG at 256Hz,

// using 1 start bit, 8 data bits, 1 stop bit, no parity, 57600 bits

// per second.

// Minimial transmission speed is 256Hz * sizeof(modeeg_packet) * 10

// = 43520 bps.

struct modeeg_packet

{

29



uint8_t sync0; // = 0xa5

uint8_t sync1; // = 0x5a

uint8_t version; // = 2

uint8_t count; // packet counter. Increases by 1 each

// packet.

uint16_t data[6]; // 10-bit sample (= 0 - 1023) in big

// endian (Motorola) format.

uint8_t switches; // State of PD5 to PD2, in bits 3 to 0.

};

// Note that data is transmitted in big-endian format.

// By this measure together with the unique pattern in sync0 and

// sync1 it is guaranteed that re-sync (i.e after disconnecting

// the data line) is always safe.

Algumas considerações sobre a transmissão são importantes aqui:

1. A velocidade mı́nima de transmissão dos dados: O microcontrolador vai enviar
os pacotes com uma frequência de 256 Hz (256 pacotes por segundo) sendo que a
velocidade mı́nima então para a recepção será de: 256pacotes

s ∗17 palavras
pacotes ∗10 bits

palavras =

43520bps pois a amostragem é feita utilizando 10 bits.

2. sync0 e sync1 serão utilizados posteriormente para a sincronização do sinal.
Sendo possı́vel recuperar os dados exatos de cada canal graças à posição relativa
aos bytes de sincronização.

3. Os dados serão transmitidos em dois bytes consecutivos seguindo o padrão
big-endian (na ordem decrescente dos seus pesos numéricos) ou seja, para
transmitir o valor 200 é necessário 2 palavras, sendo a decomposição igual à
16*12 + 08, por exemplo.

4. A placa suporta até seis canais, porém foram utilizados 4 neste projeto. [11]

Após todo esse procedimento de regulagem da recepção serial é preciso con-
figurar o sistema bluetooth para o envio dos dados para o celular (neste caso foi
utilizado um sistema android).

Neste projeto foi utilizado um dongle USB para a conexão bluetooth entre o
computador e o celular, como ilustrado na figura 2.4

30



Figura 2.4: USB Bluetooth Dongle [14]

Para se fazer uma conexão bluetooth entre dois dispositivos é preciso que um
deles atue como servidor e o outro cliente, para o usuário final não importa qual
papel cada dispositivo vai desempenhar pois os dados podem ser transmitidos em
ambos os sentidos (do servidor ao cliente ou vice-versa) porém é preciso respeitar a
função de cada um deles como mostrado abaixo: [15]

• Função do servidor bluetooth
O objetivo do servidor é ficar escutando inquisições de conexões (por meio
da variável BluetoothServerSocket), para isto ele deve manter um canal aberto
onde é informado o nome do servidor e uma UUID, quando uma conexão é
aceita, é criado uma variável (BluetoothSocket) no servidor contendo os dados
da conexão. Sendo que após a conexão a variável BluetoothServerSocket pode ser
descartada a não ser que o servidor queira ficar procurando por novas conexões.

• Função do cliente bluetooth
O objetivo do cliente é procurar por dispositivos que estejam oferecendo uma
conexão, após ser encontrado um dispositivo o cliente tentará uma conexão
caso os parâmetros especificados pelo servidor sejam os mesmos do cliente
(o nome do servidor e o UUID), no caso dos dados serem os mesmos a co-
nexão será estabelecida e o cliente armazenará os dados da conexão na variável
BluetoothSocket.

Após a configuração tanto do servidor como do cliente bluetooth é necessário
começar a transmissão e tratamento dos dados utilizando um aplicativo para android.

31



2.3 Programação em Java para android

Agora serão abordados tópicos necessários para a programação e compreensão
de um aplicativo para android (baseado em java). Não serão abordados a história,
estado de arte e programação orientada a objetos pois estes tópicos serão conside-
rados já compreendidos pelo leitor que não quer se fatigar com sua revisão, sendo
assim apenas o que é interessante para o entendimento do projeto será exposto aqui.

Primeiramente é preciso ter em mente a definição do que é uma activity e o que
é um thread. [16]

Começando pelas explicações da activity: Uma activity é um componente da
aplicação que fornece uma tela na qual o usuário pode interagir com o intuito de
executar uma ação, como por exemplo fazer uma ligação, tirar uma foto ou enviar
um e-mail. Cada activity possui seu próprio design sendo que dentro de um aplicativo
é comum haver várias activities que são ou não ligadas entre si. A activity principal
é chamada de main activity e deve cumprir alguns requisitos especiais como por
exemplo: ela nunca pode ser bloqueada durante sua execução por mais de 5 segundos
senão o programa causará um erro e o aplicativo será fechado. Mais detalhes sobre
as activities serão informados na seção de ’aplicações’. Segue na figura 2.5 o ciclo de
vida de uma activity [17] [18]:

Uma thread pode ser definida por uma unidade de processamento que pode ser
executada concomitantemente com outros processamentos. Toda aplicação possui
pelo menos uma thread que será executada no inı́cio da aplicação. As threads são
importantes pois permitem que vários processos sejam executados ao mesmo tempo
liberando o sistema para a execução de outras atividades.

No caso da aplicação aqui presente, é fundamental a utilização de uma thread
para a utilização do bluetooth pois este serviço requer uma chamada que bloqueia
o serviço, sendo assim a thread que vai tratar da conexão bluetooth ficará em modo
de escuta e portanto bloqueada até que uma conexão seja estabelecida, desta forma
bloqueia-se uma thread mas o aplicativo continua rodando e o usuário nem percebe
o que se passa pois a main thread estará sempre liberada para o uso. [20]

O importante a ser considerado aqui é responder à seguinte questão: como
fazer a comunicação entre diferentes activities?

Não existe uma resposta simples para esta pergunta que satisfaça todas as
aplicações pois os objetivos de cada comunicação são diferentes, por exemplo pode-
se usar uma ActivityforResult, um Broadcast Receiver, um Handler entre outras opções.

32



Figura 2.5: Ciclo de vida de uma activity [19]

33



Não serão detalhados todos os métodos para a comunicação entre as activities mas
será justificado o método utilizado para a aplicação. [21]

Um indı́cio para a resposta desta pergunta está em saber o que é uma in-
tent. Intents são mensagens assı́ncronas que permitem que componentes de uma
aplicação requisitem funcionalidades de outras aplicações android e permitam in-
teragir também com componentes da mesma aplicação. Por exemplo, uma activity
pode requisitar executar uma música utilizando um outro aplicativo feito para a
execução de músicas. Um intent pode também conter dados utilizando um bundle
sendo que esses dados podem ser usados pelo componente receptor.

A classe intent tem várias aplicações e sua documentação é bastante extensa
sendo que aqui será explorado apenas o seu uso mas é de extrema importância para
o desenvolvedor de aplicativos android conhecer algumas de suas utilidades. [22]

34



Capı́tulo 3

Materiais

Atualmente os aparelhos comerciais para medição dos sinais cerebrais são muito
caros inviabilizando assim o seu uso para este projeto, restando apenas a opção da
utilização de um aparelho que não seja tão caro e que atenda satisfatoriamente à
aplicação desejada.

3.1 OpenEEG

Inicialmente foi adquirido uma placa da Olimex, representado na figura 3.1 (o
projeto pode ser construı́do ou comprado por uma média de 100 euros), juntamente
com alguns eletrodos passivos e ativos, baseada no projeto OpenEEG, um projeto
open-source que visa a criação de um dispositivo completo de até 6 canais para a
medição de tais ondas (em anexo mais detalhes).

Este dispositivo possui várias limitações (pouca quantidade de canais, seus
eletrodos (figura 3.2) são desconfortáveis e de difı́cil implementação e o sinal obtido
apresenta muito ruı́do) mas foi a única solução de hardware viável para a elaboração
deste projeto. [23]

Ele foi utilizado durante a etapa da coleta dos sinais no couro cabeludo para
sua posterior visualização em um aplicativo Android.

35



(a) Box do kit (b) Circuito do kit

Figura 3.1: Kit EEG Olimex [24]

(a) Eletrodo ativo da Olimex [25] (b) Kit Olimex OpenEEG pronto para ser usado

Figura 3.2: OpenEEG com eletrodos

36



Capı́tulo 4

Aplicações

4.1 Estudo do Hardware

O intuito do projeto foi de aprender sobre o hardware a ser utilizado no processo
de obtenção do sinal EEG, sendo que o sinal nesta parte do trabalho não foi tratado
numericamente da mesma maneira e intensidade quando se faz o uso de softwares
especı́ficos para o seu tratamento, como por exemplo o OpenVibe [26].

A aplicação aqui apresentada consiste em extrair o sinal EEG por meio de um
hardware de baixo custo (OpenEEG) e exibı́-los em tempo real em um aplicativo
Android.

Para médicos ou pessoas com experiência na leitura de um EEG, é relativamente
fácil a visualização de certas patologias como a epilepsia sendo que esta aplicação
apresenta uma relevância na área de instrumentação médica no intuito de diminuir
os custos para certos exames que não demandam uma grande precisão.

A visualização do EEG em tempo real também permite o acompanhamento da
eficácia de uma anestesia e algumas outras aplicações médicas.

Nesta seção será explicado em mais detalhes o percurso da informação desde
sua captura no couro cabeludo até sua visualização em um aplicativo Android.

Primeiramente o sinal extraı́do se encontra na faixa de -256 µV 256µV , pois
a resolução do sistema é de 0,5µV , a amostragem é feita utilizando 10 bits e os
amplificadores possuem ganhos para optimizar a recepção do sinal nesta faixa de
valores. O sinal é recebido por meio da transmissão serial USB e se encontra na
forma a seguir: (representação da recepção de 5 pacotes de informação) [11]

37



joao@joao-PC > sudo od /dev/ttyUSB0 -tx1 -w17

a5 5a 02 3e 01 fe 01 fe 01 f5 01 ed 01 e5 01 df 0f

a5 5a 02 3f 01 fe 01 fe 01 f7 01 f0 01 e9 01 e2 0f

a5 5a 02 40 01 fd 01 fe 01 fb 01 f7 01 f2 01 ec 0f

a5 5a 02 41 01 fe 01 fe 01 fa 01 f6 01 f1 01 eb 0f

a5 5a 02 42 01 fe 01 ff 01 f7 01 ef 01 e8 01 e2 07

Conforme explicado na seção de embasamento teórico, o pacote se apresenta
com 17 palavras, sendo que as informações importantes são as seguintes (em ordem):

a5: representa o sync0

5a: representa o sync1

02: representa a versão do firmware

xx: contador

CH1p_H: byte mais significativo do canal1 positivo

CH1p_L: byte menos significativo do canal 1 positivo

CH1n_H: byte mais significativo do canal1 negativo

CH1n_L: byte menos significativo do canal 1 negativo

CH2p_H: byte mais significativo do canal2 positivo

CH2p_L: byte menos significativo do canal 2 positivo

CH2n_H: byte mais significativo do canal2 negativo

CH2n_L: byte menos significativo do canal 2 negativo

CH3p_H: byte mais significativo do canal3 positivo

CH3p_L: byte menos significativo do canal 3 positivo

CH3n_H: byte mais significativo do canal3 negativo

CH3n_L: byte menos significativo do canal 3 negativo

xx: byte não importante para o projeto.

Após extrair as informações úteis utilizando um computador ou um sistema
embarcado, é preciso transferir estes pacotes para o aplicativo Android por meio do
bluetooth, sendo assim a configuração utilizada neste projeto, é a seguinte:

• Celular faz o papel do servidor, sendo que ele vai receber os dados.

• Computador ou sistema embarcado faz o papel do cliente, sendo que ele vai
enviar os dados.

O lado do cliente, foi feito utilizando um algoritmo em python para facilitar esta
etapa de transmissão. Segue abaixo um trecho do algoritmo utilizado (no apêndice
encontra-se o algoritmo completo):

38



import sys

from bluetooth import *

from time import sleep

service_matches = find_service( name = "android_servidor",

uuid = "5b553d50-4b4f-11e4-916c-0800200c9a66" )

if len(service_matches) == 0:

print "servico não encontrado!"

sys.exit(0)

first_match = service_matches[0]

port = first_match["port"]

name = first_match["name"]

host = first_match["host"]

print "connecting to ", host

sock=BluetoothSocket( RFCOMM )

sock.connect((host, port))

k=int(1)

while True:

sock.send(str(k))

sleep(1)

k=k+1

if k==15:

break

sock.close()

O cliente procura primeiramente por um servidor com o nome android servidor
e a UUID = 5b553d50-4b4f-11e4-916c-0800200c9a66, no caso do serviço encontrado,
o cliente vai criar uma variável sock do tipo BluetoothSocket e vai conectar com o
servidor, fazendo com que o serviço de envio de dados possa ser estabelecido. Neste
exemplo, o programa vai enviar os algarismos de 1 a 15 a cada segundo, porém na
aplicação real é preciso enviar o sinal obtido a uma frequência de pelo menos 128
Hz pois os sinais EEG visualizados contém frequências menores que 64 Hz. Após o
envio dos dados a conexão é fechada.

O lado do servidor (localizado no aplicativo android e programado em Java)
segue o fluxo da figura 4.1

39



Figura 4.1: Diagrama das activities e threads do aplicativo

Sendo que as etapas importantes são explicadas a seguir:

1. habilitar o descobrimento do bluetooth (tarefa que vai automaticamente habilitar
o bluetooth)

O celular ficará visı́vel para todos os dispositivos bluetooth durante um tempo
de 300 segundos (figura 4.2), este é o tempo padrão que um dispositivo fica em
estado de descoberta e pode ser mudado por meio de algumas opções nesta
função.

Figura 4.2: Requisição de acesso ao modo descoberta [15]

2. criação de uma thread para obter o socket de comunicação com o cliente

Esta thread pode ser fechada assim que o socket for obtido, a não ser que o
sistema queira procurar por novas conexões. [15]

40



3. criação de uma thread para receber os dados do cliente.

Esta thread faz a recepção dos dados do cliente e os envia por meio de um
LocalBroadcast à segunda activity responsável pela plotagem dos gráficos, ela
também envia a um handler uma mensagem com os dados que podem ser
visualizados tanto na main activity como na segunda activity. Esta thread só será
interrompida, ou seja, o processo de envio dos dados só serão interrompidos
por ordem explı́cita do usuário ou quando o programa for fechado.

Tudo isso ocorre sem o usuário perceber o que está acontecendo pois a conexão
bluetooth é feita automaticamente (pois neste caso tanto o servidor como o cliente
possuem os mesmos dados para conexão, que são o nome do servidor e a UUID).

Figura 4.3: Layout da activity para plotar o sinal EEG

41



Em seguida o usuário pode começar a segunda activity onde será plotado um
gráfico para cada canal do EEG.

Visto que neste trabalho foram utilizados apenas dois canais, o layout dos
gráficos foi escolhido para ser o da figura 4.3

Sendo que no caso de mais canais utilizados, seria possı́vel incluı́-los em mais
abas fixas ou móveis.

Para exibir os gráficos foi utilizada uma biblioteca chamada androidplot que é
responsável pela criação de diversos tipos de gráficos, sendo necessário para esse pro-
jeto a configuração das diversas variáveis desta biblioteca para se fazer a visualização
correta dos dados.

Encontra-se no apêndice como fazer a visualização dinâmica dos dados, sendo
necessário o conhecimento de notifications em android para a compreensão do funci-
onamento da atualização dos dados. [27]

42



Capı́tulo 5

Resultados

5.1 Resultados obtidos

A etapa de transferência do sinal EEG para um aplicativo Android foi executada
com sucesso, sendo que os objetivos propostos foram atendidos conforme propostos
incialmente.

Pode-se observar o resultado do aplicativo na figura 5.1, onde os dados foram
plotados em tempo real durante uma janela de 10 segundos (pois a amostragem do
sinal para esta figura foi de 64 Hz) e com um filtro de Butterworth passa faixa (entre
3 e 20 Hz), conforme código de envio do sinal presente no apêndice C.

Nota-se também a presença do ruı́do proveniente do EOG (os dois picos da
figura 5.1 que representam dois piscares de olhos), pois os eletrodos estão localizados
na região frontal da cabeça.

A etapa referente ao estudo do hardware foi concluı́da onde começou o estudo
referente ao processamento digital do sinal, mostrando assim a completude do tra-
balho, como pode ser visualizado na figura 5.2.

43



Figura 5.1: Aplicativo sendo executado em tempo real

Figura 5.2: Ilustração do processo completo

44



Capı́tulo 6

Conclusões

6.1 Conclusões finais

Quando a idéia de fazer a transferência do sinal EEG para um aplicativo Android
foi lançada, a única coisa que estava clara era o produto final (a visualização das
ondas cerebrais no visor do celular) sendo que todo o processo para sua realização
era desconhecido. Desta forma, este projeto se mostrou bastante eficiente do ponto
de vista dos resultados alcançados pois estes estavam bem claros desde o inı́cio.

Visto que o caminho a ser percorrido para a obtenção do resultado final foi
difı́cil e trabalhoso, este foi também bastante enriquecedor para o aprendizado do
processo como um todo, que forneceu a compreensão desde o tratamento analógico
do sinal até a criação de um aplicativo Android.

Vale ressaltar aqui algumas melhorias que podem ser feitas ao projeto mas que
não foram feitas pela limitação dos recursos disponı́veis (tempo e recursos financei-
ros), ficando deste modo para aperfeiçoamentos futuros.

• Melhoria do processo de obtenção do sinal EEG: para esta etapa foi utilizada
uma placa da Olimex, sendo que o desempenho do sistema foi confiado à ela,
visto que é bastante importante a etapa de amplificação do sinal EEG, seria
melhor se esta etapa fosse melhorada.

• Melhoria da integração dos hardwares: considerando que o projeto fosse a
criação de um produto comercial, a melhoria da integração das diferentes eta-
pas do fluxo do sinal seria imprescindı́vel para o custo e performance do projeto.
Aqui foi utilizada uma placa da Olimex que envia o sinal digital do microcon-

45



trolador para uma porta USB e em seguida é necessário recuperar o sinal USB
por meio de um computador ou sistema embarcado para o envio do sinal via
bluetooth, sendo que este processo poderia ter sido otimizado (envio do sinal do
microcontrolador ao bluetooth diretamente) se o kit da Olimex fornecesse este
grau de liberdade. Do ponto de vista do aprendizado foi bastante interessante
o que foi feito.

• Melhoria dos códigos a serem utilizados: para este projeto foram utilizados
códigos em python que não é a linguagem mais eficiente a ser utilizada porém
a performance final obtida foi condizente com o planejado. O programa para
Android feito em Java pode ser melhorado para evitar possı́veis falhas de va-
zamento de memória e os métodos utilizados para se fazer a transferência de
dados entre duas activities poderiam ser melhores estudados para se ter um
maior desempenho, porém o objetivo final foi cumprido pois não foram feitas
especificações mais severas quanto ao aplicativo a ser produzido, sendo que
para um projeto comercial, estas considerações deveriam ter sido feitas.

• Melhoria do programa para Android para fornecer diversas liberdades como:
a mudança nas escalas x(temporal) e y(valores de tensão), filtros temporais e
frequenciais para uma melhor visualização do sinal, reconhecimento de outros
dispositivos e não só o OpenEEG e etc. Vale ressaltar que foi feita neste trabalho
toda a base para o estudo do hardware envolvido no processamento de sinal,
sustentando assim a premissa utilizada no estudo do software.

46



Referências Bibliográficas

[1] A História do Eletroencefalograma. Disponı́vel em:
http://www.cerebromente.org.br/n03/tecnologia/historia p.htm Acessado dia
20/10/2014.

[2] Berger H. Uber das Elektrenkephalogramm des Menchen. Archives für
Psychiatrie. 1929; 87:527-70.

[3] The Applications of EEG. Disponı́vel em: http://www.neuroelectrics.com/about
eeg/applications Acessado dia 20/10/2014.

[4] Medical Applications of EEG Wave Classification. Disponı́vel em:
http://pages.cs.wisc.edu/ gangluo/eegII chance.pdf Acessado dia 20/10/2014.

[5] Sı́ndrome de Locked-in. Disponı́vel em: http://www.neuroelectrics.com/about
eeg/applications Acessado dia 20/10/2014.

[6] What Can EEG Show? Disponı́vel em:
http://www.epilepsy.com/learn/diagnosis/eeg Acessado dia 20/10/2014.

[7] How is EEG studied. Disponı́vel em: http://www.neuroelectrics.com/about
eeg/how-is-EEG-studied Acessado dia 20/10/2014.

[8] F. Lotte. A tutorial on EEG Signal Processing Techniques for Mental State
Recognition in Brain-Computer Interfaces. Springer book.

[9] Jonathan R. et al. WOLPAW. Brain–computer interfaces for communication and
control. Clinical neurophysiology, v. 113, n. 6, p. 767-791, 2002.

[10] Sistema internacional 10-20. Disponı́vel em:
http://what-when-how.com/neuroanaesthesia-and-neurointensive-
care/neurophysiology-monitoring-and-imaging-part-1/ Acessado
17/10/2014.

[11] Modular EEG Design. Disponı́vel em: http://openeeg.sourceforge.net/doc
/modeeg/modeeg design.html Acessado dia 17/10/2014.

47



[12] Olimex EEG-SMT Schematic. Disponı́vel em:
https://www.olimex.com/Products/EEG/OpenEEG/EEG-SMT/resources/EEG-
SMT-SCHEMATIC-REV-B.pdf Acessado
17/10/2014.

[13] FTDI. Disponı́vel em: http://www.ftdichip.com/ Acessado dia 20/10/2014.

[14] USB Bluetooth Dongle. Disponı́vel em: http://www.icisp.net.au/store/product
print.php?products id=255 Acessado dia 17/10/2014.

[15] Bluetooth Guide for Android. Disponı́vel em
http://developer.android.com/guide/topics/connectivity/bluetooth.html
Acessado dia 17/10/2014.

[16] Activity. Disponı́vel em: http://developer.android.com/reference/android/
app/Activity.html Acessado dia 20/10/2014.

[17] Activities. Disponı́vel em: http://developer.android.com/guide/components/
activities.html Acessado dia 20/10/2014.

[18] Android Development Tutorial. Disponı́vel em:
http://developer.android.com/guide/components/activities.html Acessado dia
20/10/2014.

[19] Ciclo de vida de uma activity. Disponı́vel em:
http://androideity.com/2011/07/06/ciclo-de-vida-de-una-actividad/ Acessado
dia 17/10/2014.

[20] Threads and Processes. Disponı́vel em: http://developer.android.com/guide/
components/processes-and-threads.html Acessado dia 20/10/2014.

[21] Painless threading. Disponı́vel em:
http://android-developers.blogspot.com.br/2009/05/painless-threading.html
Acessado dia 20/10/2014.

[22] Android Background Processing with Handlers and AsyncTask and Loaders -
Tutorial. Disponı́vel em:
http://www.vogella.com/tutorials/AndroidBackgroundProcessing/article.html
Acessado dia 20/10/2014.

[23] OpenEEG Project. Disponı́vel em: http://openeeg.sourceforge.net/doc/
Acessado dia 20/10/2014.

[24] OLIMEX PRODUCTS. Disponı́vel em: https://www.olimex.com/Products
/EEG/OpenEEG/EEG-SMT/open-source-hardware Acessado dia 17/10/2014.

48



[25] Low cost open source EEG device active electrodes with 1m shielded cable.
Disponı́vel em: https://www.olimex.com/Products/EEG/Electrodes/EEG-AE/
Acessado dia 20/10/2014.

[26] OpenViBE User Documentation. Disponı́vel em:
http://openvibe.inria.fr/documentation-index/# User+Documentation
Acessado dia 20/10/2014.

[27] Android Notifications - Tutorial. Disponı́vel em:
http://www.vogella.com/tutorials/AndroidNotifications/article.html Acessado
dia 20/10/2014.

49



50



Apêndice A

Esquema completo do OpenEEG

Figura A.1: Esquema completo do OpenEEG da Olimex

51



52



Apêndice B

Firmware do OpenEEG

1 /*

* ModularEEG firmware for one-way transmission , v0.5.4-p2

3 * Copyright (c) 2002-2003, Joerg Hansmann, Jim Peters, Andreas Robinson

* License: GNU General Public License (GPL) v2

5 * Compiles with AVR-GCC v3.3.

*

7 * Note: -p2 in the version number means this firmware is for packet version 2.

*/

9 //////////////////////////////////////////////////////////////

/*

11 ////////// Packet Format Version 2 ////////////

// 17-byte packets are transmitted from the ModularEEG at 256Hz,

13 // using 1 start bit, 8 data bits, 1 stop bit, no parity, 57600 bits per second.

15 // Minimial transmission speed is 256Hz * sizeof(modeeg_packet) * 10 = 43520 bps.

struct modeeg_packet

17 {

uint8_t sync0; // = 0xa5

19 uint8_t sync1; // = 0x5a

uint8_t version; // = 2

21 uint8_t count; // packet counter. Increases by 1 each packet.

uint16_t data[6]; // 10-bit sample (= 0 - 1023) in big endian (Motorola) format.

23 uint8_t switches; // State of PD5 to PD2, in bits 3 to 0.

};

25

// Note that data is transmitted in big-endian format.

27 // By this measure together with the unique pattern in sync0 and sync1 it is guaranteed ,

// that re-sync (i.e after disconnecting the data line) is always safe.

29 // At the moment communication direction is only from Atmel-processor to PC.

// The hardware however supports full duplex communication. This feature

31 // will be used in later firmware releases to support the PWM-output and

// LED-Goggles.

33 */

//////////////////////////////////////////////////////////////

35 /*

* Program flow:

37 * When 256Hz timer expires: goto SIGNAL(SIG_OVERFLOW0)

* SIGNAL(SIG_OVERFLOW0) enables the ADC

39 * Repeat for each channel in the ADC:

53



* Sampling starts. When it completes: goto SIGNAL(SIG_ADC)

41 * SIGNAL(SIG_ADC) reads the sample and restarts the ADC.

* SIGNAL(SIG_ADC) writes first byte to UART data register

43 * (UDR) which starts the transmission over the serial port.

* Repeat for each byte in packet:

45 * When transmission begins and UDR empties: goto SIGNAL(SIG_UART_DATA)

* Start over from beginning.

47 */

// =====================================================

49 // Last Built with WinAVR -20100110

// Supported processors: ATmega8, ATmega16 and AT90S4434

51 // =====================================================

53 #include <avr/io.h>

#include <inttypes.h>

55 #include <avr/interrupt.h>

#include <compat/deprecated.h>

57 //#include <avr/signal.h>

#define Debug_Led_On PORTB |= 0x20; DDRB |= 0x20;

59 #define Debug_Led_Off PORTB &= (˜0x20); DDRB |= 0x20;

61 #if defined (__AVR_ATmega328P__)

#define Crystal_Freq_16MHz 16 //16MHz external crystal oscillator - especially for

Olimexino 328!

63 #else

#undef Crystal_Freq_16MHz // In all other cases 7.3728MHz crystal is used!

65 #endif

67 #define NUMCHANNELS 6

#define HEADERLEN 4

69 #define PACKETLEN (NUMCHANNELS * 2 + HEADERLEN + 1)

#define SAMPFREQ 256

71 #define TIMER0VAL 256 - ((7372800 / 256) / SAMPFREQ)

//char const channel_order[]= { 0, 3, 1, 4, 2, 5 };

73 char const channel_order[]= { 0, 1, 2, 3, 4, 5 };

/** The transmission packet */

75 volatile uint8_t TXBuf[PACKETLEN];

/** Next byte to read or write in the transmission packet. */

77 volatile uint8_t TXIndex;

/** Current channel being sampled. */

79 volatile uint8_t CurrentCh;

81 /** Sampling timer (timer 0) interrupt handler */

//SIGNAL(SIG_OVERFLOW0)

83 ISR(TIMER0_OVF_vect)

{

85 //Debug_Led_On;

outb(TCNT0, TIMER0VAL); //Reset timer to get correct sampling frequency.

87 CurrentCh = 0;

// Write header and footer:

89 // Increase packet counter (fourth byte in header)

TXBuf[3]++;

91 //Get state of switches on PD2..5, if any (last byte in packet).

TXBuf[2 * NUMCHANNELS + HEADERLEN] = (inp(PIND) >> 2) &0x0F;

93 #if defined (__AVR_ATmega8__)

cbi(UCSRB, UDRIE); //Ensure UART IRQ’s are disabled.

95 sbi(ADCSR, ADIF); //Reset any pending ADC interrupts

sbi(ADCSR, ADIE); //Enable ADC interrupts.

54



97 #elif defined (__AVR_ATmega16__)

cbi(UCSRB, UDRIE); //Ensure UART IRQ’s are disabled.

99 sbi(ADCSRA, ADIF); //Reset any pending ADC interrupts

sbi(ADCSRA, ADIE); //Enable ADC interrupts.

101 #elif defined (__AVR_ATmega328P__)

cbi(UCSR0B, UDRIE0); //Ensure UART IRQ’s are disabled.

103 sbi(ADCSRA, ADIF); //Reset any pending ADC interrupts

sbi(ADCSRA, ADIE); //Enable ADC interrupts.

105 sbi(ADCSRA, ADSC) ; // Start conversion!!!!!!!!!!!!!!!!!!!

#else//(__AVR_AT90S4434__)

107 cbi(UCR, UDRIE); //Ensure UART IRQ’s are disabled.

sbi(ADCSR, ADIF); //Reset any pending ADC interrupts

109 sbi(ADCSR, ADIE); //Enable ADC interrupts.

#endif

111 }

/** AD-conversion -complete interrupt handler. */

113

//SIGNAL(SIG_ADC)

115 ISR(ADC_vect)

{

117 volatile uint8_t i;

i = 2 * CurrentCh + HEADERLEN;

119 TXBuf[i+1] = inp(ADCL);

TXBuf[i] = inp(ADCH);

121 CurrentCh++;

//Debug_Led_On;

123 if (CurrentCh < NUMCHANNELS)

{

125 outb(ADMUX, (channel_order[CurrentCh])); //Select the next channel.

//The next sampling is started automatically.

127 #if defined (__AVR_ATmega328P__)

sbi(ADCSRA, ADSC) ; // Start conversion!!!!!!!!!!!!!!!!!!!

129 #endif

}

131 else

{

133 outb(ADMUX, channel_order[0]); //Prepare next conversion , on channel 0.

// Disable ADC interrupts to prevent further calls to SIG_ADC.

135 #if defined (__AVR_ATmega8__) | defined (__AVR_AT90S4434__)

cbi(ADCSR, ADIE);

137 #elif defined (__AVR_ATmega16__) | defined (__AVR_ATmega328P__)

cbi(ADCSRA, ADIE);

139 #endif

#if defined (__AVR_ATmega328P__)

141 outb(UDR0, TXBuf[0]);

#else

143 outb(UDR, TXBuf[0]);

#endif

145

#if defined (__AVR_ATmega8__) | defined (__AVR_ATmega16__)

147 sbi(UCSRB, UDRIE);

#elif defined (__AVR_ATmega328P__)

149 sbi(UCSR0B, UDRIE0);

#else//(__AVR_AT90S4434__)

151 sbi(UCR, UDRIE);

#endif

153 TXIndex = 1;

//Debug_Led_On;

55



155 }

}

157 /*** UART data transmission register-empty interrupt handler ***/

#if defined (__AVR_ATmega328P__)

159 ISR(USART_UDRE_vect) /* USART, Data Register Empty interrupt */

#else

161 SIGNAL(SIG_UART_DATA)

#endif

163 {

#if defined (__AVR_ATmega328P__)

165 //Debug_Led_On;

outb(UDR0, TXBuf[TXIndex]); //Send next byte

167 #else

outb(UDR, TXBuf[TXIndex]); //Send next byte

169 #endif

TXIndex++;

171 if (TXIndex == PACKETLEN) //See if we’re done with this packet

{

173 #if defined (__AVR_ATmega8__) | defined (__AVR_ATmega16__)

cbi(UCSRB, UDRIE); //Disable SIG_UART_DATA interrupts.

175 //Next interrupt will be a SIG_OVERFLOW0.

#elif defined (__AVR_ATmega328P__)

177 cbi(UCSR0B, UDRIE0); //Disable SIG_UART_DATA interrupts.

//Next interrupt will be a SIG_OVERFLOW0.

179 #else//(__AVR_AT90S4434__)

cbi(UCR, UDRIE); //Disable SIG_UART_DATA interrupts.

181 //Next interrupt will be a SIG_OVERFLOW0.

#endif

183

}

185 }

/** Initialize PWM output (PB1 = 14Hz square wave signal) */

187

void pwm_init(void)

189 {

// Set timer/counter 1 to use 10-bit PWM mode.

191 // The counter counts from zero to 1023 and then back down

// again. Each time the counter value equals the value

193 // of OCR1(A), the output pin is toggled.

// The counter speed is set in TCCR1B, to clk / 256 = 28800Hz.

195 // Effective frequency is then clk / 256 / 2046 = 14 Hz

197 #if defined (__AVR_ATmega8__) | defined (__AVR_ATmega16__) | defined (__AVR_ATmega328P__)

outb(OCR1AH ,2); // Set OCR1A = 512

199 outb(OCR1AL ,0);

outb(TCCR1A, ((1<<COM1A1) + (1<<WGM11) + (1<<WGM10))); // Set 10-bit PWM mode

201 outb(TCCR1B, (1 << CS12)); // Start and let run at clk / 256 Hz.

#else // __AVR_AT90S4434__

203 outb(OCR1AH ,2); // Set OCR1 = 512

outb(OCR1AL ,0);

205 outb(TCCR1A, ((1<<COM1A1) + (1<<PWM11) + (1<<PWM10))); // Set 10-bit PWM mode

outb(TCCR1B, (1 << CS12)); // Start and let run at clk / 256 Hz.

207

#endif

209 }

int main( void )

211 {

#if defined (Crystal_Freq_16MHz)

56



213 //Devide system clock by two to acheive the same performance and time intervals

sbi(CLKPR,CLKPCE); // Clock Prescaler Change Enable

215 outb(CLKPR,0x01); // Set prescaller to 1:2

#endif

217 //Write packet header and footer

TXBuf[0] = 0xa5; //Sync 0

219 TXBuf[1] = 0x5a; //Sync 1

TXBuf[2] = 2; //Protocol version

221 TXBuf[3] = 0; //Packet counter

//Set up the ports.

223 #if defined (__AVR_ATmega8__) | defined (__AVR_ATmega328P__)

outb(DDRD, 0xc2);

225 outb(DDRB, 0x07);

outb(PORTD, 0xff);

227 outb(PORTB, 0xff);

#elif defined (__AVR_ATmega16__)

229 DDRD |= 0x22; // Enable PWM output (PD5/OC1A) and TxD output

PORTD |= 0x22; // Set outputs to high

231 #endif

//Select sleep mode = idle.

233 #if defined (__AVR_ATmega8__) | defined (__AVR_ATmega16__) | defined (__AVR_ATmega328P__)

outb(MCUCR,(inp(MCUCR) | (1<<SE)) & (˜(1<<SM0) | ˜(1<<SM1) | ˜(1<<SM2)));

235 #else // __AVR_AT90S4434__

outb(MCUCR,(inp(MCUCR) | (1<<SE)) & (˜(1<<SM0)) & (˜(1<<SM1)) );

237 #endif

//Initialize the ADC

239 // Timings for sampling of one 10-bit AD-value:

// prescaler > ((XTAL / 200kHz) = 36.8 =>

241 // prescaler = 64 (ADPS2 = 1, ADPS1 = 1, ADPS0 = 0)

// ADCYCLE = XTAL / prescaler = 115200Hz or 8.68 us/cycle

243 // 14 (single conversion) cycles = 121.5 us (8230 samples/sec)

// 26 (1st conversion) cycles = 225.69 us

245 outb(ADMUX, 0); //Select channel 0

//Prescaler = 64, free running mode = off, interrupts off.

247 #if defined (__AVR_ATmega8__) | defined (__AVR_AT90S4434__)

outb(ADCSR, ((1<<ADPS2) | (1<<ADPS1)));

249 sbi(ADCSR, ADIF); //Reset any pending ADC interrupts

sbi(ADCSR, ADEN); //Enable the ADC

251 #elif defined (__AVR_ATmega16__) | defined (__AVR_ATmega328P__)

outb(ADCSRA, ((1<<ADPS2) | (1<<ADPS1)));

253 sbi(ADCSRA, ADIF); //Reset any pending ADC interrupts

sbi(ADCSRA, ADEN); //Enable the ADC

255 #endif

//Initialize the UART

257 #if defined (__AVR_ATmega8__) | defined (__AVR_ATmega16__)

outb(UBRRH ,0); //Set speed to 57600 bps

259 outb(UBRRL ,7);

outb(UCSRA, 0);

261 outb(UCSRC, ((1<<URSEL) | (1<<UCSZ1) | (1<<UCSZ0))); // 8 bits data length

outb(UCSRB, (1<<TXEN)); // Transmitter Enabled

263 #elif defined (__AVR_ATmega328P__)

#if defined (Crystal_Freq_16MHz)

265 outb(UBRR0, 8); //Set speed to 57600 bps

outb(UCSR0B, (1<<TXEN0));

267 #else

outb(UBRR0, 7); //Set speed to 57600 bps

269 outb(UCSR0B, (1<<TXEN0));

#endif

57



271 #else // __AVR_AT90S4434__

outb(UBRR, 7); //Set speed to 57600 bps

273 outb(UCR, (1<<TXEN));

#endif

275 //Initialize timer 0 -> used to sample ADC

#if defined (__AVR_ATmega328P__)

277 outb(TCNT0, 0); //Clear it.

outb(TCCR0B, 4); //Start it. Frequency = clk / 256

279 outb(TIMSK0, (1<<TOIE0)); //Enable the interrupts.

#else

281 outb(TCNT0, 0); //Clear it.

outb(TCCR0, 4); //Start it. Frequency = clk / 256

283 outb(TIMSK, (1<<TOIE0)); //Enable the interrupts.

#endif

285 //Initialize PWM (optional)

pwm_init();

287 //while(1){ Debug_Led_On; outb(UDR0, 0x55); } // Just for debug purpose!

sei(); // Enable all interrupts

289 //Now, we wait. This is an event-driven program, so nothing much

//happens here.

291 while (1)

{

293 __asm__ __volatile__ ("sleep");

}

295 }

codigos/main.c

58



Apêndice C

Transmissão do OpenEEG para o
celular

Neste código foi utilizado um filtro passa faixa (de 3 a 20 Hz) com o intuito de
melhorar a visualização do sinal pois o sinal bruto é muito ruidoso. Observa-se aqui
o limite entre o tratamento do sinal analógico e digital.

1 import serial

import io

3 import sys

import math

5 from bluetooth import *

from time import sleep

7 import numpy as np

import matplotlib.pyplot as plt

9 from scipy.signal import freqz

from scipy.signal import butter, lfilter

11

13 def butter_bandpass(lowcut, highcut, fs, order=5):

nyq = 0.5 * fs

15 low = lowcut / nyq

high = highcut / nyq

17 b, a = butter(order, [low, high], btype=’band’)

return b, a

19

21 def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):

b, a = butter_bandpass(lowcut, highcut, fs, order=order)

23 y = lfilter(b, a, data)

return y

25

27 #Conexao bluetooth

service_matches = find_service( name = "android_servidor", uuid = "5b553d50 -4b4f-11e4-916c

-0800200c9a66" )

29 if len(service_matches) == 0:

print "couldnot find the service!"

59



31 sys.exit(0)

first_match = service_matches[0]

33 port = first_match["port"]

name = first_match["name"]

35 host = first_match["host"]

print "connecting to ", host

37 sock=BluetoothSocket( RFCOMM )

sock.connect((host, port))

39 k=int(1)

41

#Estabelece a conexao serial

43 ser = serial.Serial(’/dev/ttyUSB0’,baudrate=57600)

print ser.name

45

47 i=int(0)

xx=[0]*128

49 y=[0]*128

fs=128

51 lowcut = 3

highcut = 20

53

#Recebe os dados da serial

55 while True:

x=ser.read(34)

57 data=x.encode(’hex’)

#print "Data: ", data

59 data_str=str(data)

init_package= data_str.find("a55a02");

61 counter=data_str[init_package+6]+data_str[init_package+7]

data01p_h=data_str[init_package+8]+data_str[init_package+9]

63 data01p_l=data_str[init_package+10]+data_str[init_package+11]

data01n_h=data_str[init_package+12]+data_str[init_package+13]

65 data01n_l=data_str[init_package+14]+data_str[init_package+15]

data02p_h=data_str[init_package+16]+data_str[init_package+17]

67 data02p_l=data_str[init_package+18]+data_str[init_package+19]

data02n_h=data_str[init_package+20]+data_str[init_package+21]

69 data02n_l=data_str[init_package+22]+data_str[init_package+23]

71

#print "data lenght", len(data_str)

73

ch1p = 255*int(data01p_h ,16)+int(data01p_l ,16)

75 ch1n = 255*int(data01n_h ,16)+int(data01n_l ,16)

ch2p = 255*int(data02p_h ,16)+int(data02p_l ,16)

77 ch2n = 255*int(data02n_h ,16)+int(data02n_l ,16)

79 #print ch1p

#print ch1n

81 #print ch2p

#print ch2n

83

ch1 = ch1p-ch1n

85 ch2 = ch2p-ch2n

87 #print ch1

#print ch2

60



89 #print i

xx[i]=int((ch1)/2)

91 #sock.send(str(ch1))

#sleep(0.1)

93 # 128 pacotes por segundo

#Envia dados bluetooth

95 if (i%4==0):

if (y[i]>-256 and y[i]<256):

97 sock.send(str(int(y[i])))

sleep(0.015625)

99 i=i+1

if (i==128):

101 y = butter_bandpass_filter(xx, lowcut, highcut, fs, order=5)

i=0

103 sock.close()

codigos/readusb filter.py

61



62



Apêndice D

Códigos em Java do android

Main Activity

1 package pack1.tcc_v1;

3 import java.io.IOException;

import java.io.InputStream;

5 import java.io.OutputStream;

import java.nio.ByteBuffer;

7 import java.util.ArrayList;

import java.util.Arrays;

9 import java.util.Random;

import java.util.Set;

11 import java.util.UUID;

import android.app.Activity;

13 import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

15 import android.bluetooth.BluetoothServerSocket;

import android.bluetooth.BluetoothSocket;

17 import android.content.Intent;

import android.graphics.Color;

19 import android.os.Bundle;

import android.os.Handler;

21 import android.os.Looper;

import android.os.Message;

23 import android.support.v4.content.LocalBroadcastManager;

import android.view.Menu;

25 import android.view.View;

import android.widget.ArrayAdapter;

27 import android.widget.Button;

import android.widget.ListView;

29 import android.widget.TextView;

import android.widget.Toast;

31 import com.androidplot.xy.FillDirection;

import com.androidplot.xy.LineAndPointFormatter;

33 import com.androidplot.xy.SimpleXYSeries;

import com.androidplot.xy.XYPlot;

35 import com.androidplot.xy.XYSeries;

37 public class MainActivity extends Activity {

63



private final static int REQUEST_ENABLE_BT = 1;

39 private boolean cond;

private TextView label1;

41 private TextView lb_data;

private TextView label3;

43 private Button bt_conectar;

private Button bt_receber;

45 private Button bt_parar;

private ListView lv;

47 private ArrayAdapter <String> mArrayAdapter;

private ArrayList <String> itemsList;

49 private Message msg;

private Thread mthread1;

51 public BluetoothAdapter mBluetoothAdapter;

private AcceptThread mAcceptThread;

53 private receber_dados rd;

55 private Handler mHandler = new Handler() {

@Override

57 public void handleMessage(Message msg) {

super.handleMessage(msg);

59 switch (msg.what) {

case 1:

61 byte[] readBuf = (byte[]) msg.obj;

String string = new String(readBuf);

63 lb_data.setText(string);

Intent intent = new Intent("custom-event-name");

65 // You can also include some extra data.

int transf = 90;

67 transf = Integer.valueOf(string);

intent.putExtra("data1", transf); //

69 LocalBroadcastManager.getInstance(getBaseContext()).sendBroadcast(intent);

break;

71 }

}

73 };

75 private Handler handler_teste = new Handler() { //Looper.getMainLooper()

@Override

77 public void handleMessage(Message msg) {

TextView myTextView = (TextView)findViewById(R.id.textView2);

79 myTextView.setText((String)msg.obj);

}

81 };

83 @Override

public void onCreate(Bundle savedInstanceState)

85 {

super.onCreate(savedInstanceState);

87 setContentView(R.layout.activity_main);

label1 = (TextView)findViewById(R.id.textView1);

89 bt_conectar = (Button)findViewById(R.id.button1);

bt_receber = (Button)findViewById(R.id.button2);

91 bt_parar = (Button)findViewById(R.id.button3);

lb_data = (TextView)findViewById(R.id.textView2);

93 lv = (ListView)findViewById(R.id.listView1);

label3 = (TextView)findViewById(R.id.textView3);

95 mBluetoothAdapter = BluetoothAdapter.getDefaultAdapter();

64



}

97

@Override

99 public boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar if it is present.

101 getMenuInflater().inflate(R.menu.main, menu);

return true;

103 }

105 public void conectar(View view)

{

107 boolean fluxo;

109 if (habilitar_bluetooth())

{

111 label1.setText("Bluetooth habilitado");

habilitar_descobrimento();

113 aparelhos_pareados();

conectar_servidor();

115 }

else

117 {

label1.setText("Bluetooth desabilitado");

119 }

}

121

public void receber(View view)

123 {

125 Intent intent_plot = new Intent(this,Plotar_grafico_Activity.class);

intent_plot.putExtra("data1", 25); //String.valueOf(i1));

127 startActivity(intent_plot);

}

129

131 public void parar(View view)

{

133 if (mAcceptThread!=null)

{

135 mAcceptThread.cancel();

}

137

if (mtesteThread!=null)

139 {

mtesteThread.cancel();

141 }

143 if (rd!=null)

{

145 rd.cancel();

}

147 }

149 public boolean habilitar_bluetooth()

{

151 if (mBluetoothAdapter == null)

{

153 Toast.makeText(getBaseContext(),"Sistema nao suporta bluetooth",Toast.LENGTH_LONG).

65



show();

// Device does not support Bluetooth

155 return false;

}

157 else

{

159 if (!mBluetoothAdapter.isEnabled())

{

161 Toast.makeText(getBaseContext(),"Bluetooth sera habilitado",Toast.LENGTH_LONG).

show();

}

163 return true;

}

165 }

167 public void habilitar_descobrimento()

{

169 Intent discoverableIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);

discoverableIntent.putExtra(BluetoothAdapter.EXTRA_DISCOVERABLE_DURATION , 300);

171 startActivity(discoverableIntent);

}

173

public void aparelhos_pareados()

175 {

Set<BluetoothDevice > pairedDevices = mBluetoothAdapter.getBondedDevices();

177 itemsList = new ArrayList <String >();

mArrayAdapter = new ArrayAdapter(this,android.R.layout.simple_list_item_1 ,itemsList);

179 if (pairedDevices.size() > 0) {

// Loop through paired devices

181 for (BluetoothDevice device : pairedDevices) {

// Add the name and address to an array adapter to show in a ListView

183 itemsList.add(device.getName() + "\n" + device.getAddress());

}

185 }

lv.setAdapter(mArrayAdapter);

187 }

189 public void conectar_servidor()

{

191 mAcceptThread = new AcceptThread();

mAcceptThread.start();

193 }

195 private class AcceptThread extends Thread {

private final BluetoothServerSocket mmServerSocket;

197 public AcceptThread()

{

199 //Comecar servidor

BluetoothAdapter mBluetoothAdapter = BluetoothAdapter.getDefaultAdapter();

201 UUID meu_uuid = UUID.fromString("5b553d50 -4b4f-11e4-916c-0800200c9a66");

BluetoothServerSocket tmp = null;

203 try {

// MY_UUID is the app’s UUID string, also used by the client code

205 tmp = mBluetoothAdapter.listenUsingRfcommWithServiceRecord("android_servidor",

meu_uuid);

} catch (IOException e) { }

207 mmServerSocket = tmp;

}

66



209

public void run()

211 {

BluetoothSocket socket = null;

213 // Keep listening until exception occurs or a socket is returned

while (true) {

215 lb_data.post(new Runnable() {

public void run() {

217 lb_data.setText("Procurando conexao...");

}

219 });

try {

221 socket = mmServerSocket.accept();

} catch (IOException e) {

223 lb_data.post(new Runnable() {

public void run() {

225 lb_data.setText("Erro na procura");

}

227 });

break;

229 }

// If a connection was accepted

231 if (socket != null) {

233 lb_data.post(new Runnable() {

public void run() {

235 lb_data.setText("Conexao aceita!");

}

237 });

239 label3.post(new Runnable() {

public void run() {

241 label3.setText("Conexao aceita!!!");

}

243 });

// Do work to manage the connection (in a separate thread)

245 //manageConnectedSocket(socket);

rd = new receber_dados(socket);

247 rd.start();

}

249 }

}

251

/* Will cancel the listening socket, and cause the thread to finish */

253 public void cancel() {

try {

255 mmServerSocket.close();

} catch (IOException e) { }

257 }

}

259

private class receber_dados extends Thread

261 {

private final BluetoothSocket mmSocket;

263 private final InputStream mmInStream;

//private final OutputStream mmOutStream;

265

public receber_dados(BluetoothSocket socket) {

67



267 mmSocket = socket;

InputStream tmpIn = null;

269 try {

tmpIn = socket.getInputStream();

271 //tmpOut = socket.getOutputStream();

} catch (IOException e) { }

273 mmInStream = tmpIn;

}

275

public void run() {

277 int bytes_recebidos=0; // bytes returned from read()

int availableBytes;

279 // Keep listening to the InputStream until an exception occurs

while (true) {

281 try {

283 // Read from the InputStream

availableBytes = mmInStream.available();

285 if (availableBytes >0)

{

287

byte[] buffer = new byte[availableBytes]; // buffer store for the stream

289 // Read from the InputStream

bytes_recebidos = mmInStream.read(buffer);

291 mHandler.obtainMessage(1, bytes_recebidos , -1, buffer).sendToTarget();

293 }

295 }

catch (IOException e) {

297 break;

}

299 }

}

301

/* Call this from the main activity to shutdown the connection */

303 public void cancel()

{

305 try {

mmSocket.close();

307 } catch (IOException e) { }

}

309 }

}

codigos/MainActivity.java

Activity Plotar Gráfico
package pack1.tcc_v1;

2

import java.text.DecimalFormat;

4 import java.util.Arrays;

import java.util.Observable;

6 import java.util.Observer;

import android.app.Activity;

8 import android.content.BroadcastReceiver;

import android.content.Context;

68



10 import android.content.Intent;

import android.content.IntentFilter;

12 import android.graphics.Color;

import android.graphics.DashPathEffect;

14 import android.os.Bundle;

import android.os.Handler;

16 import android.os.Message;

import android.support.v4.content.LocalBroadcastManager;

18 import android.util.Log;

import android.view.Menu;

20 import android.view.MenuItem;

import android.widget.TabHost;

22 import android.widget.Toast;

import android.widget.TabHost.TabSpec;

24 import com.androidplot.Plot;

import com.androidplot.util.PixelUtils;

26 import com.androidplot.xy.BoundaryMode;

import com.androidplot.xy.LineAndPointFormatter;

28 import com.androidplot.xy.SimpleXYSeries;

import com.androidplot.xy.XYPlot;

30 import com.androidplot.xy.XYSeries;

import com.androidplot.xy.XYStepMode;

32

public class Plotar_grafico_Activity extends Activity {

34 private BroadcastReceiver mMessageReceiver = new BroadcastReceiver(){

@Override

36 public void onReceive(Context context, Intent intent) {

int dx = intent.getIntExtra("data1",0);

38 data.receber_os_dados(dx);

}

40 };

42 // redraws a plot whenever an update is received:

private class MyPlotUpdater implements Observer {

44 Plot plot;

46 public MyPlotUpdater(Plot plot) {

this.plot = plot;

48 }

50 @Override

public void update(Observable o, Object arg) {

52 plot.redraw();

}

54 }

56 private XYPlot dynamicPlot;

private MyPlotUpdater plotUpdater;

58 SampleDynamicXYDatasource data;

private Thread myThread;

60 private Intent intent_dados;

private XYPlot xyplot_c1;

62 private int dados_recebidos=0;

private TabHost tabhost;

64

@Override

66 protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

69



68 setContentView(R.layout.activity_plotar_grafico_);

tabhost = (TabHost)findViewById(android.R.id.tabhost);

70 tabhost.setup();

TabSpec spec1=tabhost.newTabSpec("Canal 1");

72 spec1.setContent(R.id.tab1);

spec1.setIndicator("Canal 1");

74 TabSpec spec2=tabhost.newTabSpec("Canal 2");

spec2.setContent(R.id.tab2);

76 spec2.setIndicator("Canal 2");

tabhost.addTab(spec1);

78 tabhost.addTab(spec2);

LocalBroadcastManager.getInstance(this).registerReceiver(mMessageReceiver ,

80 new IntentFilter("custom-event-name"));

// get handles to our View defined in layout.xml:

82 dynamicPlot = (XYPlot) findViewById(R.id.plot_ch1);

plotUpdater = new MyPlotUpdater(dynamicPlot);

84 // only display whole numbers in domain labels

dynamicPlot.getGraphWidget().setDomainValueFormat(new DecimalFormat("0"));

86 // getInstance and position datasets:

data = new SampleDynamicXYDatasource();

88 SampleDynamicSeries sine1Series = new SampleDynamicSeries(data, 0, "Canal 1 EEG");

LineAndPointFormatter formatter1 = new LineAndPointFormatter(

90 Color.rgb(0, 0, 0), null, null, null);

//formatter1.getLinePaint().setStrokeJoin(Paint.Join.ROUND);

92 formatter1.getLinePaint().setStrokeWidth(2);

dynamicPlot.addSeries(sine1Series ,

94 formatter1);

// hook up the plotUpdater to the data model:

96 data.addObserver(plotUpdater);

// thin out domain tick labels so they dont overlap each other:

98 dynamicPlot.setDomainStepMode(XYStepMode.INCREMENT_BY_VAL);

dynamicPlot.setDomainStepValue(128);

100 dynamicPlot.setRangeStepMode(XYStepMode.INCREMENT_BY_VAL);

dynamicPlot.setRangeStepValue(25);

102 dynamicPlot.setRangeValueFormat(new DecimalFormat("###.#"));

// uncomment this line to freeze the range boundaries:

104 dynamicPlot.setRangeBoundaries(-256, 256, BoundaryMode.FIXED);

// create a dash effect for domain and range grid lines:

106 DashPathEffect dashFx = new DashPathEffect(

new float[] {PixelUtils.dpToPix(3), PixelUtils.dpToPix(3)}, 0);

108 dynamicPlot.getGraphWidget().getDomainGridLinePaint().setPathEffect(dashFx);

dynamicPlot.getGraphWidget().getRangeGridLinePaint().setPathEffect(dashFx);

110

}

112

@Override

114 public boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar if it is present.

116 getMenuInflater().inflate(R.menu.plotar_grafico_ , menu);

return true;

118 }

120 @Override

public boolean onOptionsItemSelected(MenuItem item) {

122 // Handle action bar item clicks here. The action bar will

// automatically handle clicks on the Home/Up button, so long

124 // as you specify a parent activity in AndroidManifest.xml.

int id = item.getItemId();

70



126 if (id == R.id.action_settings) {

return true;

128 }

return super.onOptionsItemSelected(item);

130 }

132

@Override

134 protected void onDestroy() {

// Unregister since the activity is about to be closed.

136 LocalBroadcastManager.getInstance(this).unregisterReceiver(mMessageReceiver);

super.onDestroy();

138 }

140

@Override

142 public void onResume() {

LocalBroadcastManager.getInstance(this).registerReceiver(mMessageReceiver ,

144 new IntentFilter("custom-event-name"));

myThread = new Thread(data);

146 data.receber_os_dados(dados_recebidos);

Toast.makeText(getBaseContext(),"broadcastreceiver"+String.valueOf(dados_recebidos),Toast.

LENGTH_LONG).show();

148 myThread.start();

super.onResume();

150 }

152 @Override

public void onPause() {

154 data.stopThread();

super.onPause();

156 }

158 }

160 class SampleDynamicXYDatasource implements Runnable {

// encapsulates management of the observers watching this datasource for update events:

162 class MyObservable extends Observable {

@Override

164 public void notifyObservers() {

setChanged();

166 super.notifyObservers();

}

168 }

170 private static final int SAMPLE_SIZE = 640;

private MyObservable notifier;

172 private boolean keepRunning = false;

private int[] dadosr = new int[SAMPLE_SIZE];

174 private int cont=0;

176 {

notifier = new MyObservable();

178 }

180 public void stopThread() {

keepRunning = false;

182 }

71



184 public void receber_os_dados(int dados){

if (cont<SAMPLE_SIZE)

186 {

dadosr[cont]=dados;

188 cont++;

}

190 else

{

192 cont=0;

}

194 }

196 //@Override

public void run() {

198 try {

keepRunning = true;

200 boolean isRising = true;

202 while (keepRunning) {

Thread.sleep(10); // decrease or remove to speed up the refresh rate.

204 notifier.notifyObservers();

}

206 } catch (InterruptedException e) {

e.printStackTrace();

208 }

}

210

public int getItemCount(int series) {

212 return SAMPLE_SIZE;

}

214

public Number getX(int series, int index) {

216 if (index >= SAMPLE_SIZE) {

throw new IllegalArgumentException();

218 }

return index;

220 }

222 public Number getY(int series, int index) {

if (index >= SAMPLE_SIZE) {

224 throw new IllegalArgumentException();

}

226 double angle = (index + (phase))/FREQUENCY;

double amp = sinAmp * Math.sin(angle);

228 double y = dadosr[index];

230

switch (series) {

232 case SINE1:

return y;

234 case SINE2:

return 1;

236 default:

throw new IllegalArgumentException();

238 }

}

240

72



public void addObserver(Observer observer) {

242 notifier.addObserver(observer);

}

244

public void removeObserver(Observer observer) {

246 notifier.deleteObserver(observer);

}

248

}

250

class SampleDynamicSeries implements XYSeries {

252 private SampleDynamicXYDatasource datasource;

private int seriesIndex;

254 private String title;

256 public SampleDynamicSeries(SampleDynamicXYDatasource datasource , int seriesIndex , String

title) {

this.datasource = datasource;

258 this.seriesIndex = seriesIndex;

this.title = title;

260 }

262 @Override

public String getTitle() {

264 return title;

}

266

@Override

268 public int size() {

return datasource.getItemCount(seriesIndex);

270 }

272 @Override

public Number getX(int index) {

274 return datasource.getX(seriesIndex , index);

}

276

@Override

278 public Number getY(int index) {

return datasource.getY(seriesIndex , index);

280 }

}

codigos/Plotar grafico Activity.java

73


	Introdução
	Explicações Iniciais
	Relevância
	Objetivos
	Princípios
	Sinais Fisiológicos
	Processamento Digital
	Estudo do Hardware


	Embasamento Teórico
	Sinais Fisiológicos
	Estudo do hardware envolvido no projeto
	Dos sensores até o sistema embarcado
	Do sistema embarcado até o celular

	Programação em Java para android

	Materiais
	OpenEEG

	Aplicações
	Estudo do Hardware

	Resultados
	Resultados obtidos

	Conclusões
	Conclusões finais

	Referências Bibliográficas
	Esquema completo do OpenEEG
	Firmware do OpenEEG
	Transmissão do OpenEEG para o celular
	Códigos em Java do android

