Sys 1944498

-~
90
ADRIANA JACOTO :
. J w L (jW‘\.Ub)
ANDRE DE BESSA SANTOS

I@M\(ISUAL
: MR DE

'dll».. *"’*

- - J-.'.'H‘\'

Trabalho de Formatura
a Escola Politécnica

l)iiv\mm de Sio Paulo

Prof. Orientador: José Reinaldo Silva

Sao Paulo

1999

SUMARIO

1 DT OAUGRO 5o vevesistieniesaisiinniarensnosssnssasesassnnssssonssassosssansnsasses saisesanransnts ssStMEit vuys tt 4
2 O problema de planeamentococersneimiinesmmisaes 6
3 Sistemas de planejamento baseados em JA.........ccciiniinnninniiniiennnenne 9
3.1 A estruturac@o baseada em IA e Redes de Petri ..cccevevveveeveerecinininniiinnnnas 10

4 Osistema STRIPS........ccooinimiinniinninrisiiaisisisnsssarissssesssssassssssesssssssesssnesss 13
4.1 A operagao do STRIPS..........icirnsrs s esre s sssassane 13
4.1.1 A estratégia de buscac.ocurcvernrciniiiiiinimnisnienees 15

5 As Redes de Petri na modelagem de sistemas de planejamento.................. 19
5.1 Tipos de Redes de Petri.....criviiiimiimiiinenenenescsessnsssesesnssssennssens 19
5.2 A andlise das Redes de PetTi.......coccienirisnnsinnrncinnninieieescesserenseseenans 20

6 A anomalia de SUSSIMAN........cccieireciirnr it ees 22
7 Solugoes existentes para o problema de planejamentocouercnverneinerinns 24
7.1 Sistemas ClasSiCoS.......cimmininisisiriiiesnsssassnssessssssssassasaasassssaee 24
7.2 Sistemas integrados de planejamento e execugao.........cceueveviirisirnisnseniens 25

8 Osistema hibrido JA / Redes de Petri.......ieininnininnenencnncnnennn. 27
9 Implementacado elementar do roteador de helicopteros........orverrenrnieeneanncne 30
10 A arquitetura do programa em Visual Prolog.....c..ccccccinmecncniccenniciiininens 37

11 Teste funcional de cada um dos itens do MEeNU......ccveirerirrressersrrssessassessennes 68

12 Upgrade e debugging.........cccevevimiininiennenninnenise e ssstsssssssassnsns 74

13 Modificagoes implementadascovirrerirniericssssssnsenssnsnannnsscsiesnsssanns 77
13.1 Requisicdes de viagem por peso transportado.........coeevccnciscioricsininas 77
13.2 Otimizacao de subredes ..., 78
13.3 Interface grafica........cmciciiiis 84

14 Apéndice I- Trabalho apresentado no SICUSP 97cveiereiiiciinnicscrennns 86

15 Apéndice II - Trabalho apresentado no SICUSP 98.......cccnicnineiinrniiennnnens 94

16 Bibliografia......ccoccoevvivciiiiniinnncininieninninniirssns s s scssses s ssnsassases 103

Implementagdo em Visual Prolog de um Roteador de Helicdpteros

1 Introdugdo

O roteador de helicépteros é constituido de um sistema para
elaborar a programacdo de vdos de helicopteros entre uma base
localizada em terra e plataformas de petréleo localizadas no mar. Este
tipo de transporte consiste em levar passageiros a partir do aeroporto no
litoral, denominado de base, até os heliportos localizados nas
plataformas no mar e recolher passageiros a partir destes e leva-los até a
base. O objetivo é atender 4 demanda de passageiros no menor tempo de
atendimento e com o menor custo, considerando a disponibilidade de
helicépteros.

O sistema roteador é uma aplicagio de uma metodologia
envolvendo a andlise de uma estrutura em Redes de Petri e Inteligéncia
Artificial na solugao de um problema de “planning”. Nesta abordagem, a
partir da andlise da estrutura da Rede de Petri do modelo do dominio,
pode-se obter critérios de escolha da préxima acdo a ser efetuada no
plano que estd sendo elaborado e, deste modo, dirigir o processo de
busca da solugdo. A arquitetura do sistema ¢ a de um planejador semi-
reativo.

Na primeira etapa do trabalho, foram estudados t6picos relativos
ao problema de planejamento em geral e a aplicagdo de técnicas de
Inteligéncia Artificial (IA) na resolugao de problemas de planejamento,
relcaionados & implementagio do roteador de helicépteros. Estes estudos
foram realizados tendo como base a tese de doutorado de Liicio Mitio
Shimada [1], que propde uma estruturacéo do problema de planejamento
baseada em Inteligéncia Artificial e Redes de Petri. A tese também
apresenta uma aplicacdo da abordagem proposta para um roteador de

helic6épteros.

Implementagdo em Visnal Prolog de um Roteador de Helicdpteros

Paralelamente ao estudo teérico também foi realizado um
treinamento na linguagem de programacao Visual Prolog, a partir da
documentacao especializada [11], [12], [13] e [14].

Na segunda etapa, foi feita a andlise do programa em Visual
Prolog feito por Shimada, quando da implementacdo elementar de um
roteador de helicopteros em sua tese de doutorado. A partir da
arquitetura do software e dos diagramas obtidos a partir desta
engenharia reversa, foram relizados testes funcionais para a
implementacéo "AntigoOK" do roteador.

Por fim, apos a depuragao e atualizagdo desta versdo preliminar
foi desenvolvida a implementagdo de modificacoes do software original,
incluindo a defini¢do de pesos para as requisicdes de viagens, e a
redefinicdo dos bolsdes de helipontos a partir da analise do problema
corrente. Foi também desenvolvida uma interface grafica para o roteador

de helicépteros utilizando os recursos do Visual Prolog,.

Implementacio em Visual Prolog de um Roteador de Helicépteros

2 O problema de planejamento

A aplicagdo de Inteligéncia Artificial (IA) a problemas de
planejamento remete a idéia que estd em geral associada a seres
inteligentes: formas de vida capazes de tomar decisbes elaborando
planos de agao de modo que sua interagdo com o meio ambiente permita
que estes seres possam lidar com os problemas do mundo real de
maneira eficaz. Esse comportamento "inteligente" se opde a mecanismos
do tipo estimulo-resposta, caracteristicos de seres inferiores.

Similarmente, para a solucdo de problemas de planejamento, sédo
necessarios sistemas capazes de escolher, dentre intimeras
possibilidades, a acdo a ser tomada a cada instante, visando atingir
determinado objetivo. As agdes efetuadas pelo sistema, por sua vez,
influenciam o meio-ambiente de forma variada e dinédmica, estando
também este em estado de mudanga continua.

Assim, para a obten¢édo de um sistema de planejamento, torna-se
necessério estabelecer um modelo do mundo {meio-ambiente em que se
deseja atuar) e um modelo de a¢do (formas através das quais é possivel
atuar sobre este meio-ambiente).

E razoavel esperar que a eficacia do planejador seja tanto maior
quanto mais fiel forem esses modelos a realidade. Entretanto, para o caso
em que se deseja obter tal sistema visando sua implementagdo com o
auxilio do computador, como para o sistema roteador de helicépteros, é
importante salientar que da simplicidade e capacidade de sintese desses
modelos dependeri a eficiéncia do sistema, ja que para que o planejador
seja capaz de tomar decisdes num ambiente complexo e mutavel é
necessdrio que estas sejam obtidas num tempo de processamento

compativel.

Implementacio em Visual Prolog de um Roteador de Helicépteros

Além disso, é preciso que estes modelos fornecam uma descricdao
clara, que auxilie a tomada de decisdes para o caso de existéncia de
metas conflitantes.

O modelo de mundo pode ser aberto, ou seja, abranger todos os
eventos que ocorrem no mundo, incluindo aqueles sobre os quais o
planejador ndo tem controle, ou fechado, em que apenas sédo
consideradas as caracteristicas do mundo conhecidas pelo planejador. O
modelo de mundo fechado é mais restrito, e também menos complexo do
ponto de vista computacional. Neste tipo de modelo, se o planejador ndo
conhece a interpretacdo de determinada clausula l6gica, esta é assumida
como sendo falsa.

O modelo de acao corresponde a descri¢do de um evento efetuado
pelo planejador. Quando um evento ocorre, causa a modificagdo do
mundo, de um estado para outro, ou seja, modifica determinadas
caracteristicas do mundo. Desse modo, um plano consiste numa
sequéncia de acgdes a serem tomadas pelo sistema de planejamento, de
modo que o mundo passe por uma determinada sequénca de estados
que o leve de um estado inicial conhecido até um estado final desejado.

No processo de planejamento, a decisdo do planejador acerca de
qual curso de acdo tomar é escolhida a partir de um vasto repertério de
possibilidades. Esta decisdo, por sua vez pode influenciar os estados de
mundo de maneiras diversas e complicadas. Tudo isto é realizado num
mundo complexo e dindmico em que o meio-ambiente estd em mudanca
continua. O problema de planejamento possui, portanto, natureza
combinatéria, o que torna inviavel a aplicacdo de algoritmos exatos para
a resolucdo da maioria dos casos.

Desse modo, pode-se dizer que o problema de "planning"
apresenta uma natureza ndo-linear e, geralmente, os espagos das

possiveis solugdes cresce combinatoriamente. Por este motivo, o

Implementacio em Visual Prolog de um Roteador de Helicspteros

problema de "planning" requer um tipo de raciocinio nao monotédnico
para o processo de elaboracéo de solugdes.

Uma das principais aplica¢Ses dos sistemas de planejamento sédo
em Sistemas Integrados de Manufatura (SIM). Nesses sistemas é preciso
realizar o planejamento da produgdo, ou seja, determinar metas
agregadas de produgao para um certo intervalo de tempo. Também é
necessario estabelecer a sequenciacdo das operagdoes de manufatura,
considerando cada peca a ser produzida e seu roteiro de producao, e
também a alocagdo de recursos a estas operacdes. Para automatizar as
fungbes de planejamento e sequenciagéo é imprescindivel um sistema de
planejamento capaz de efetuar essas fungdes de maneira integrada e que
consiga oferecer garantia de qualidade, ou seja, que ndo cometa erros

que comprometam o processo produtivo.

Implementacdo cm Visual Prolog de um Roteador de Helicopteros

Sistemas de planejamento baseados em IA

A aplicacao de Inteligéncia Artificial (IA) na solugéo de problemas
de planejamento vem fornecer uma alternativa aos sistemas analiticos
(que fornecem solucgbes exatas), computacionalmente inviaveis. Esses
sistemas sdo especialmente inapropriados para a aplicacdo em ambientes
dinamicos, ja que em geral utilizam algoritmos baseados em modelagens
rigidas e que requerem elevado tempo de processamento. Ou seja,
qualquer modifica¢do ou perturbagido no estado do mundo requereria
uma nova solugdo do problema desde o comego.

As técnicas de Inteligéncia Artificial visam a obtencéo de sistemas
mais flexiveis, capazes de determinar nao necessariamente a solugéo
6tima, mas uma solugéo boa e viavel do ponto de vista computacional.
Além disso, esses sistemas devem ser capazes de realizar um
replanejamento de forma a adaptar o plano corrente sendo construido,
nao sendo necessario abandona-lo e comecar um novo planejamento.

Porém, a aplicagdo de métodos elementares de IA nao é suficiente
para a solugdo de problemas de planejamento, devido a sua
complexidade. Abordagens anteriores utilizando busca em largura,
busca em profundidade, ou até mesmo a teoria linear de IA (que assume
que uma meta pode ser dividida em submetas, sendo a solucdo para
estas independentes) mostraram que ¢é necessdrio adotar uma
estruturagio auxiliar para se chegar a solugdo do problema.

Nesse sentido, alguns sistemas baseados em IA foram propostos,
como por exemplo o NOAH, em 1975. Este sistema utilizava niveis
hierarquicos de abstracdo, ou seja, considerava o problema de
planejamento em diferentes niveis de detalhamento, solucionando-o para

cada nivel e chegando, por "backtracking" a niveis menores de abstracao.

Implementacio em Visual Prolog de um Roteador de Helicdpteros

3.1

Sendo assim, pode-se afirmar que os sistemas de planejamento
baseados em Inteligéncia Artificial (IA) utilizam bastante conhecimento
implicito e imcompleto, o que torna o desenvolvimento de sistemas para
resolucdo deste tipo de problema muito complexo. Para se obter um
melhor desempenho computacional nestes sistemas, é necessdrio se

adotar mecanismos auxiliares para estruturar o problema.

A estruturacdo baseada em IA e Redes de Petri

O trabalho desenvolvide por Shimada [1], propbes uma
estruturagdo do problema de planejamento baseada em IA e no
formalismo das Redes de Petri (RdP). Essa proposta de estruturagdo esta
baseada na construcio de um modelo conceitual (mc) do problema,
baseado em Redes de Petri. A RdP promove a modelagem do problema
como um Sistema de Eventos Discretos (SED) e pode capturar a
caracteristica principal de um sistema produtivo que é o seu
comportamento dindmico.
O mc é constituido por dois modelos, que representam,
separadamente, os tipos de conhecimento envolvidos no problema de
"planning":
" APPLICATION MODEL?": representa o conhecimento do dominio da
aplicacao

» "PLANNING SELF-MODEL"™ representa o meta-conhecimento
envolvido no processo de "planning", ou seja, representa um plano
para fazer planos

A representacdo do dominio do problema através da Rede de
Petri do "application model" torna possivel a descricao dos modelos de
mundo e de acdo de uma maneira dindmica. Isso significa que todos os

estados e planos possiveis estio contidos na representacdo do
10

Implementacio em Visual Prolog de um Roteador de Helicopteros

"application model". A partir da andlise desta estrutura, ou seja da
estrutura da Rede de Petri que representa o dominio do problema pode-
se estabelecer uma estratégia de resolugdao do problema, isto é, aprender
um metaconhecimento. Utilizamos outra rede de Petri para elaborar o

"planning self-model" que representa este meta-conhecimento.,

DOMINIO
DA
APLICACAO

DESCRICAOIEM TERMOS
DE UMA REBE DE PETRI

=~
"APPLICATION MODEL"
ANALI-SF. DAIESTRUTURA .
' DA REDHIDE PETRI >- Modelo Conceitnal
"PLANNING SELF-MODEL")

Figura 1 Modelo conceitual da estruturacio baseada em 1A e Redes de Petri

O mc é importante tanto para o processo de elaboragao do plano
inicial, assim como no caso ocorrer a necessidade de um replanejamento
na falha, por exemplo, na execugao de alguma tarefa do plano corrente.

A abordagem proposta apresenta diversas vantagens tais como:
planos hierdrquicos nao lineares com diversos niveis de abstragao,
formalismo matematico, visualizacao gréafica, captura de todas as
possiveis solucdes, aprendizado de formas de decompor o problema e de
estratégias de busca de solugdes e capacidade de fazer o replanejamento
na falha. Além disso, a abordagem apresenta a possibilidade de se
implementar um planejador reativo puro e a possibilidade de se fazer a

reutilizagéo de planos.

11

Implementagio em Visual Prolog de um Roteador de Helicopleros

Finalmente, a abordagem proposta ndo depende do dominio da
aplicagio, porque é a andlise da estrutura das Redes de Petr,
independentemente da sua interpretagao para o dominio do problema,
que permite o aprendizado do meta-conhecimento para dirigir o
processo de planejamento. O planejado opera sobre a rede que
representa o conhecimento do dominio, e nédo sobre a sua interpretagao

para um determinado dominio de aplicagao.

12

Implementagcio em Visual Prolog de um Roteador de Helicopteros

O sistema STRIPS

4.1

O STRIPS - STanford Research Institute Problem Solver [2] foi o
primeiro sistema de planejamento em IA bem sucedido. O objetivo do
sistena é encontrar alguma composigao de operadores que transformem
um dado modelo de mundo inicial em outro que satisfaga alguma dada
meta, expressa através de uma férmula bem formada - fbf (ou well-
formed formula - wff).

No STRIPS, um modelo de mundo é representado por um
conjunto de férmulas bem formadas do calculo de predicados de
primeira ordem. Um provador de teoremas, empregando o método de
resolucdo, é utilizado para responder a questdes dentro de um
determinado modelo e a andlise meios-fins empregada no GPS é usada
para procurar através do espa¢o de modelos de mundo por aquele que
satisfaca a meta. Assim os processos de prova de teoremas e procura

através do espaco de modelos de mundo sao inteiramente separados.

A operagao do STRIPS

O espaco do problema para o STRIPS é definido por um modelo
de mundo inicial, o conjunto de operadores disponiveis e seus efeitos nos
modelos de mundo e a meta a ser atingida.

Como ja mencionado, o STRIPS representa um modelo de mundo

por um conjunto de fbfs. Por exemplo:

13

Implementagiio em Visual Prolog de um Roteador de Helicopteros

Formula bem formada (fbf) Descricao
robo_esta_em (a) Robd estéd na posigdo a
esta_em (B, b) Objeto B estd na posig¢ao b
esta_em (C, ¢) Objeto C esta na posigdo ¢

Tabela 1 Exemplos de férmulas bem formadas utilizadas no STRIPS

Os operadores disponiveis podem ser agrupados em familias
chamadas schemata. Por exemplo o operador va_para (m, n), na verdade
representa um conjunto de operadores diferindo entre si através dos
pontos de saida (1) e/ou chegada (n). Diz-se que va_para (m, n) € um
schema de operador cujos membros sdo obtidos substituindo-se
constantes especificas pelos pardmetros m e n. No STRIPS, quando um
operador for aplicado a um modelo de mundo, seus pardmetros ja
estarao instanciados com constantes especificas.

Cada operador é definido por uma descri¢ao consistindo de duas
partes principais: uma descri¢do dos efeitos do operador, e as sob as
quais o operador é aplicavel. Os efeitos de um operador sao definidos
simplesmente por uma lista de fbfs que devem ser adicionadas ao
modelo e uma lista de fbfs que ndo sao mais verdadeiras e portanto
devem ser eliminadas. E conveniente enunciar a condicao de
aplicabilidade, ou pré condi¢io, para um schema de operador como um fbf
shema. Para determinar se ha uma determinada instancia de um operador
que é aplicavel num determinado modelo de mundo, deve-se provar que
existe uma instancia do fbf schema correspondente que pode ser provada
a partir do modelo.

Como exemplo de um operador STRIPS, observe o operador
empurre(k,m,n) que representa a acéo do rob6 de empurrar um objeto k a

partir de um lugar m até um novo lugar n, como mostrado a seguir:

14

Implementacao em Visual Prolog de um Roteador de Helicopteros

4.1.1

Operador: empurre(k,m,n)
Pré condigao: robo_esta_em(m)
esta_em(k,m)
Lista de eliminagdo: robo_esta_em(m)
esta_em(k,m)
Lista de adicao: robo_esta_em(n)

esta_em(k,n)

Da mesma forma, as metas sdo representadas por fbfs. Por
exemplo, a tarefa: “Obter caixas B e C na posi¢io ' poderia ser
enunciada como a fbf:

esta_em(B,aj nesta em(C,a)

Resumindo, o espago do problema para o STRIPS é definido por
trés entidades:
(1) Um modelo de mundo inicial, que consiste em um conjunto de fbfs
descrevendo o estado presente do mundo.
(2) Um conjunto de operadores, incluindo uma descrigio dos seus efeitos
e dos seus fbf schemata de pré condicao.
(3) Uma meta enunciada como fbf.

O problema esté resolvido quando o STRIPS produz um modelo

de mundo que satisfaz a meta em fbf.

A estratégia de busca

Para evitar a explosdo combinatéria resultante da aplicagio de
todos os operadores possiveis a0 modelo de mundo inicial, gerando uma
série de mundos sucessores aos quais também seriam aplicados todos os
operadores possiveis, e assim por diante, até que a meta pudesse ser

provada em algum modelo, o STRIPS adotou a estratégia GPS de extrair
15

Implementacio em Visual Prolog de um Roleador de Helicopleros

“diferencas” entre o modelo de mundo atual e a meta e identificar
operadores que sejam “relevantes” para reduzir essas diferencas. Uma
vez que um operador relevante tenha sido determinado, tenta-se resolver
o subproblema de produzir um modelo de mundo no qual ele seja
aplicavel. Se tal modelo for encontrado, aplica-se o operador relevante e
reconsidera-se a meta original no modelo resultante.

O STRIPS comeca empregando um provador de teoremas na
tentativa de provar que a meta fbf Go deriva do conjunto Mo de fbfs
descrevendo o modelo de mundo inicial. Se Go realmente deriva de My a
tarefa esta trivialmente resolvida no modelo inicial. Caso contrario, o
provador de teoremas néo conseguira encontrar uma prova. Nesse caso,
a prova incompleta é tomada como sendo a “diferenca” entre Mo e Go. A
seguir, operadores que podem ser relevantes para “reduzit” essa
diferenca sdo procurados. Estes sdo os operadores cujos efeitos no
modelo de mundo permitiriam que a prova fosse comntinuada. Na
determinacdo da relevancia, os parametros dos operadores podem ser
parcial ou totalmente instanciados. A correspondente pré condicdo
instanciada em fbf schemata (do operador relevante) sao entdo tomadas
como sendo as novas submetas,

A hierarquia de meta, submetas e modelos gerados é representada
por uma drvore de busca. Cada n6é da arvore de busca tem a forma
(<modelo de mundo>, <lista de metas>), e representa o problema de se
tentar atingir as submetas na lista de metas (na ordem) a partir do
modelo de mundo indicado.

Um exemplo de arvore de busca esta representado na Figura 2. O
n6 do topo (Mo, (Go)), representa a tarefa principal de atingir a meta Goa
partir do modelo de mundo M.

Nessa arvore fica clara a geragdo de submetas (Gs, Gi, G, Gu, Go
G)) e a aplicagao de operadores (OP, OPy OP. OP.), gerando novos

modelos de mundo (M:, Mz, Mz, My), até que Go pdde ser provado em
16

Implementacio em Visual Prolog de um Roteador de Helicopteros

My, gerando a solugio do problema, que é consiste na aplicacio de OP,
OP:, e OP,, nessa ordem. Além disso, fica claro também que quando um
operador é determinado como sendo relevante, ainda nao é sabido onde
ele ocorrera no plano final, isto é ele pode ser aplicavel aoc modelo
inicial, e portanto ser o primeiro a ser aplicado, pode implicar na meta, e

portanto ser o tltimo a ser aplicado, ou pode estar em algum passo

intermediério.

(MO’ (GuGD))
0P,

(Ml: (GO))

M, (Go,Go))

/N

(Mo, (Go))

(MO.': (Gb:GO))

=

Ma (Gwa,GO))

/ OPc

Mz, (Gy,Go))
(M, (Go))
(M, (G.,Go))
OP,
Ms, o) | yerminal

Figura 2 Uma tipica drvore de busca STRIPS

Um fluxograma resumindo o processo de busca do STRIPS é

mostrado na Figura 3.

(M, (G Go))

17

Implementaciio em Visual Prolog de um Roteador de Helicopleros

Iniao

N €~ NODRLO DE NUNDO INIIAL

NODE €~ (M, LISTAMETAS)

VISTA-METAS € (META PRINGIPAL) Criandinical

Uy
——'—.

Q€+ FRIMERAMETADA
[ETAMITAR

BATISFAZ

FALHA

1
GERACRODOND SUCESSCR

M € modelo gemdo pala aplicagio
do operadar

asocadoa GaM
LISTA-METAY €= lista formada
removendo-ae G daLISTANETAS
NODE €-(M, LiISTA-NETAS)}

Figura 3 Fluxograma para o STRIPS

atidarando 2 pré omdiciio de OP
aoinido datigra-MELAS
NOLE €= (M, LISTA-METAS)

[

18

Implementagio em Visual Prolog de um Roteador de Helicdpteros

5 As Redes de Petri na modelagem de sistemas de planejamento

As Redes de Petri tém sido tradicionalmente utilizadas na
modelagem de sistemas a eventos discretos. Alguns sistemas de
planejamento baseado em IA tém também se utilizado das Redes de Petri
para representar o plano elaborado, o0 modelo de mundo, ou ainda agbes
primitivas de operadores.

A grande vantagem do uso de Redes de Petri como ferramentas
de modelagem em sistemas de planejamento reside em sua grande
capacidade em representar o cardter dinamico de um sistema. E possivel,
por exemplo, representar através de uma Rede de Petri todos os estados
possiveis num modelo de mundo, utilizando a marcagado da rede para
determinar o estado corrente do sistema.

As Redes de Petri sao especialmente adequadas também para
modelagem em sistemas de planejamento reativos, ja que esses sdo em
geral elaborados para utilizagio em ambientes mutaveis, em que muitos
eventos estdo fora do controle do sistema controlador. O comportamento
do meio ambiente pode ser modelado através da evolucdo das marcas

em uma Rede de Petri representando o dominio do problema.

3.1 Tipos de Redes de Petri

As Redes de Petri Condicdao-Evento constituem o tipo mais
elementar de Redes de Petri. Nelas, os estados do sistema sédo
representados pelas condigoes, e a mudanca de estados pelo disparo das

transicbes. Para que determinada transicdo possa ser disparada, é

necessario que ela esteja habilitada, o que significa que todas as suas pré-

19

Implementacido em Visual Prolog de um Roteador de Helicépteros

condi¢des devem ser verdadeiras e todas as suas pés-condicdes devem
ser falsas. Ap6s o disparo, todas as suas pré-condigdes cessam de ser
verdadeiras e todas as suas pds-condi¢oes passam a ser verdadeiras,
permanecendo inalteradas as demais condicdes.

Uma Rede de Petri Condicdo/Evento consiste entdo de um
conjunto de condi¢des, um conjunto de transi¢des, um conjunto de arcos
e uma marcacio, podendo ser representada graficamente por um grafo.

A Rede de Petri Lugar-Transicao é semelhante 4 Rede Condigao-
Evento, com a possibilidade de haver capacidade miltipla para as
condigdes e pesos para os arcos. Ou seja, a marcagio de uma Rede de
Petri Lugar-Transi¢do ndo é mais bindria.

A Rede de Petri estendida orientada a objetos Ghenesys (General
Hierarchical Extended Net System) é utilizada para a modelagem de
sisternas mais complexos, para facilitar a analise estrutural de sistemas
de grande porte. Este tipo de Rede de Petri possui duas classes de
elementos: a classe box (box-capacidade ou box-de-tempo) e a classe
atividade (atividade-simples ou atividade-composta). Possui ainda a

possibilidade de analise em diversos niveis interligados de abstragao.

5.2 A analise das Redes de Petri

A partir de um modelo de um sistema em Rede de Petri, é
possivel extrair diversas caracteristicas comportamentais desse sistema a
partir da analise dessa Rede de Petri. A seguir sdo apresentadas algumas
caracteristicas relevantes que podem ser obtidas:

+ existéncia de conflito: duas transi¢des sdo consideradas como estando
em conflito quando, para uma determinada marcacdo, essas
transi¢des estdo habilitadas e podem ser disparadas individualmente,

mas nao ao mesmo tempo
20

Implementagio em Visual Prolog de um Roteador de Helicdpteros

invariantes de lugar: consiste numa relagio algébrica que permanece
constante, para determinados lugares na rede, qualquer que seja a
marcagao possivel

invariantes de transicio: trata-se de uma sequéncia de eventos que
pode ser repetida indefinidadmente, pois nao modifica a marcacao da
RdP

rede limitada: pode-se dizer que uma Rede de Petri é limitada se o
nimero méaximo de marcars em todos os seus lugares séo limitados
rede ciclica: consiste em uma rede na qual existe uma sequéncia de
transicdes ciclica

vivacidade: se refera a auséncia de deadlocks na rede, pode-se dizer
que uma rede é viva se todas as suas transicbes sdo livres de
deadlocks

reversibilidade: consiste na possibilidade de se alcangar novamente a

marcacdo inicial da rede

21

Implementagio em Visual Prolog de um Roteador de Helicdpteros

6 A anomalia de Sussman

A maioria dos sistemas de planejamento utiliza uma
representagdo do tipo STRIPS. Nesta representacdo, a descri¢ao de uma
acdo apresenta: uma pré-condigdo, uma lista de adicdo e uma lista de
eliminacdo. A lista de adi¢do define clausulas que poderiam ndo ser
verdadeiras no modelo original mas que sdo verdadeiras no novo
modelo que resulta ap6s a aplicagdo do operador. A lista de eliminacdo
especifica clausulas do modelo original que ndo sdo mais verdadeiras no
novo modelo.

Busca-se atingir o modelo do mundo desejado aplicando-se
sucessivamente um conjunto de operadores STRIPS a partir do modelo
do mundo inicial. Os sistemas aplicam agdes para modificar o estado do
mundo se suas pré-condi¢bes forem verdadeiras. O efeito da aplicagéo
de uma acdo estd expresso nas listas de adicdo e de eliminacéo.

Entretanto, esta forma de representagido apresenta problemas,
sendo a sua principal deficiéncia o fato de nao considerar a dependéncia
entre metas concorrentes. Isto porque adotou-se a teoria linear que
assume que quaisquer duas submetas de um problema podem sempre
ser obtidas de uma forma independente. Desta forma, uma conjungao de
metas era dividida em submetas para as quais se tentava obter uma
solucao isoladamente. E claro que esta hipétese nio é verdadeira para a
maioria dos problemas de “planning”. Por este motivo, um sistema que
emprega este tipo de representacio ndao é capaz de contextualizar
corretamente o efeito da aplicacao de uma acéo.

Uma consequéncia importante desta deficiéncia é a Anomalia de
Sussman. Na Anomalia de Sussman, o atingimento de algumas metas
pode requerer o estabelecimento de submetas para satisfazer pré-

condi¢des que irdo desfazer cldusulas do estado meta anteriormente ja
22

Implementaciio em Visual Prolog de um Roteador de Helicopleros

verdadeiras. Deste modo, o programa entra num processo de “looping”
sem progresso em direcio ao estado meta desejado.

Considerando-se o problema do Mundo de Blocos, suponha-se
que existam trés blocos na mesa, A, B e C, e que se deseja construir uma
pilha onde A esteja sobre B, B sobre C, e este dltimo sobre a mesa.
Nenhuma conjun¢do é encontrada para resolver o problema. Entdo, é
estabelecida uma estratégia de resolugédo. A teoria linear que determina
as conjungdes sugere que, primeiramente, mova-se A sobre B, e depois, B
sobre C. Se as submetas sdo independentes, sua ordem ndo importa,
entdo a ordem arbitraria é adotada. Desta forma, o robé primeiro coloca
A sobre B. Em seguida, tenta colocar B sobre C, mas isto significa que ele
necessita mover B. Mas o robé ndo pode mover B com A sobre ele (existe
uma restrigao fisica a méao do robd), e assim ele remove A de B e coloca A
sobre a mesa. A seguir, coloca B sobre C e considera que a meta foi
atingida. Entretanto, A nao se encontra sobre B.

Este fendémeno acontece porque no modelo de agdo do STRIPS, o
efeito da aplicacao de cada acao nado estd bem contextualizado. A¢des
distintas no seu efeito sao erroneamente avaliadas como equivalentes.
Todos os operadores apresentam igual oportunidade de serem
escolhidos na hora de se decidir qual operador sera aplicado em seguida.
A abordagem meios-fins, criada no GPS, é o tnico critério empregado
para se discriminar os operadores. Se o operador for considerado
relevante para o atingimento do estado meta e se todas as suas pré-

condicdes forem verdadeiras, entdo, o operador é aplicado logo em

seguida.

23

Implemnentaciio em Visual Prolog de um Roteador de Helicdpteros

7 Solugdes existentes para o problema de planejamento

A seguir serdo apresentados diversos sistemas de planejamento ja
apresentados na literatura. Estes podem ser divididos entre os sistemas
classicos, que abordam problemas simples wusando técnicas como
estratégia meios-fins, provadores de teorema e sistemas especialistas, e
os sistemas integrados de planejamento e execugdo, que trabalham com
planos hierarquicos parcialmente elaborados, sendo mais préximos dos

sistemas reais cujo comportamento pretendem modelar.

7.1 Sistemas classicos

+ GPS: criado em 1963 por Newell e Simon, o General Problem Solver
baseia-se na psicologia cognitiva, na pesquisa operacional e na logica
matematica. A principal contribuicdo deste sistema foi a abordagem
meios-fins, que consiste numa forma de atingir uma meta
estabelecendo submetas que, atingidas independentemente, levam ao
sucesso da meta inicialmente proposta.

STRIPS: criado em 1971 por Fikes e Nilsson, o STRIPS tem como
principio a representagdo do modelo de mundo e de agdo a partir de
formulas do célculo de predicados, e a busca de operadores assim
representados capazes de transformar um dado modelo do mundo
inicial num modelo em que uma determinada meta possa ser
provada como sendo verdadeira. Os operadores STRIPS sao descritos
em termos de um conjunto de pré-condi¢des, uma lista de adigéo e

uma lista de eliminacao

24

Implementagio em Visual Prolog de um Roteador de Helicopteros

7.2 Sistemas integrados de planejamento e execugdo

NOAH: criado em 1975 por Sacerdoti, este sistema utiliza um grafo
procedimental para fazer a representacdo do plano em diferentes
niveis de abstra¢do. Desse modo, o procedimento usado para se fazer
o planejamento é hierarquico: inicia no nivel mais alto de abstragéo e
prossegue gerando planos cada vez mais detalhados para os demais
niveis, de maneira "top-down". O sistema envolve ainda a critica de
planos, no que diz respeito a resolugao de conflitos, ao uso de objetos
existentes e a eliminar pré-condi¢des redundantes.

¢ SIPE: criado em 1984 por Wilkins, é um sistema de planejamento
independente do dominio que suporta a geracdo, automatica ou
interativa, de planos hierdrquico parcialmente ordenados. O SIPE
utiliza frames para fazer a especificagdo paricial de objetos e
raciocinar acerca dos recursos.

¢ STRIPS+PLANEX: trata-se de um extensao ao STRIPS permitindo que
o sistema fosse capaz de aprender com o processo de planejamento.
Neste sistema, planos generalizados sdo armazenados numa forma
especifica chamada tabela tridngulo. Um processo de especializacéo
permite o emprego do plano generalizado.

¢+ ART: sistema de planejamento baseado em restri¢des e aplicado para
problemas de planejamento e sequenciagdo em transportes. Nessa
abordagem, o dominio do problema é representado por um conjunto
de varidveis e por um conjunto de condi¢bes que expressam o0s
requisitos para os valores atribuidos a estas varidveis. A solucao
consite de um conjunto de atribui¢des para todas as varidveis do

problema de tal maneira que todas as condi¢bes sejam satisfeitas

25

Implementagio em Visual Prolog de um Roteador de Helicopteros

&

PETRIX: sistema criado em 1988 por Rillo, para utilizagao nos niveis
de controle de células de manufatura flexivel, de estacdes de trabalho
e de controle local. Utiliza Redes de Petri para a especificagdo das
tarefas.

PACEM: criado em 1993 por Paiva, o Planejador de Atividades de
uma Célula de Montagem é um sistema de planejamento de
atividades hierdriquico e independente do dominio, que permite a

elaboragéo de planos néao lineares, parcialmente ordenados

26

Implementaciio em Visual Prolog de um Roleador de Helicdpteros

8 O sistema hibrido IA /Redes de Petri

A anélise da Rede de Petri que representa o dominio do problema
pode sugerir estratégias de busca para dirigir o processo de solugdo do
problema, por exemplo, para definir quais transicdes estio habilitadas
em determinado instante.

A teoria das Redes de Petri é aplicada tradicionalmente ao
problema de controle de sistemas discretos. A Rede de Petri permite a
representagdo formal dos estados e da evolugdo de um sistema de
eventos discretos. Permite explicitar relagdes entre estados, por exemplo:
dependéncia de ordem parcial entre estados, existéncia de eventos
concorrentes ou excludentes, compartilhamento de recursos, efc.

A anélise estrutural de uma Rede de Petri pode prover informacao
importante para uma abordagem ndo-procedimental em sistemas de
eventos discretos. O conhecimento sobre a estrutura do problema pode
subsidiar formas de busca mais eficazes, e a minimizacdo do
“backtracking”.

A Figura 4, a seguir, mostra a representacdo em Redes de Petri
que constitui 0 modelo para o problema do Mundo de Blocos. A partir
da figura, é possivel observar-se que todos os estados podem ser
atingidos a partir do estado em que todos os blocos estdo sobre a mesa.

Este estado é designado “né essencial”.

27

Implementacdo em Visual Prolog de um Roteador de Helicdpleros

v
v

Figura 4 Rede de Petri para 0 Mundo de Blocos

Além disso, pode-se identificar trés componentes conectadas ou
subredes. Estas subredes definem agrupamentos de agbes inter-
relacionadas pela causalidade. Estas subredes estdo interligadas através
do “né essencial”. Desta forma, analisando a estrutura da Rede de Petri,
podemos efetuar uma decomposigéo do problema em subproblemas que
sdo independentes, de uma maneira tal que:

estado onde todos os blocos estio sobre a mesa ¢ um né essencial do
grafo

primeiro bloco movido a partir do nd essencial determina uma
sucessdo de estados dependentes desta acdo que estdo na mesma
componente conectada

existe sempre um plano que corresponde a distincia minima entre

dois estados que pertencem a uma mesma componente conectada

28

Implementagio em Visual Prolog de um Roteador de Helicdpleros

+ plano envolvendo dois estados em duas componentes conectadas
diferentes deve passar necessariamente pelo né6 essencial
O conhecimento obtido a partir de uma anélise da Rede de Petri
que representa o dominio para este problema é muito importante. Como
resultado da andlise da Rede de Petri, pode-se sugerir o seguinte
algoritmo para resolver este problema de planejamento:
Sejam dados EI = estado inicial, M = conjuncéo de metas e NE =
nd essencial:
1. Se M ja é verdadeiro (EI = M) enfao fim
2. Se EI e M estdo na mesma componente conectada entdo existe um
caminho entre EI e M sem passar pelo n6é essencial. Resolva M
usando um mecanismo do tipo meios-fins, obtendo o plano final P
3. Caso contrério, gere uma submeta NE = né essencial obtendo um
sub-plano Parcial-1. A seguir, resolva M a partir do né essencial (NE)
usando um mecanismo do tipo meios-fins obtendo um sub-plano
Parcial-2. O plano final resulta da concatenacdo dos planos parciais P
= Parcial-1 + Parcial-2
O algoritmo usa o conhecimento obtido a partir de uma anilise da
Rede de Petri que representa o conhecimento do dominio e é capaz de
evitar o problema da Anomalia de Sussman. Este algoritmo faz a
decomposicao do problema baseado na analise da estrutura da rede. Este
conhecimento estd baseado na nocdo de transi¢oes independentes para
assegurar a independéncia de cada uma das subredes e na existéncia do
“né essencial” que faz a conexdo enfre todas estas subredes. A
interdependéncia pela causalidade ocorre apenas entre agdes que

pertencem a mesma componente conectada do grafo

29

Implementagcio em Visual Prolog de um Roteador de Helicépteros

9 Implementagao elementar do roteador de helicopteros

O sistema Roteador de Helicopteros objeto deste trabalho foi

originalmente desenvolvido como aplicacdo na Tese de Doutorado de

Liicio Mitio Shimada, apresentada a Escola Politécnica da Universidade

de Sao Paulo em 1997. O Roteador de Helicépteros é um exemplo de

uma aplicacdo da teoria de Inteligéncia Artificial a um problema de

planejamento. A mesma metodologia baseada em JA e Redes de Petri

aplicada ao problema do Roteador pode ser utilizada na solugdo de

problemas de planejamento em automacdo, robética e sistemas

integrados de manufatura.

Interface

requisicao
viagens consulta

==k

{} Planos de Véo
plataformas E

Figura 5 Roteamento de helicépteros na Bacia de Campos

Além de ser um exemplo pratico de aplicacdo de uma

i Tabelas:
frota Helipontos

@ disponivel Helicopteros

B.D.

metodologia teérica, o Roteador é também a solugdo de um problema

30

Implementagdo em Visual Prolog de um Roteador de Helicpleros

real de roteamento de helicépteros na Bacia de Campos (vide Figura 5).
Este problema consiste em elaborar a programacdo de vbos dos
helicopteros que fazem o transporte de passageiros entre a base
localizada em terra e as plataformas de petréleo localizadas no mar.

Para se ter uma idéia da complexidade do problema, estio
envolvidos 50 helipontos, 16 helicépteros de 7 tipos diferentes, 5 horarios
de partida e até 20 mil passageiros transportados por més. O objetivo do
roteador é a partir da demanda de passageiros de ida para as
plataformas e de volta para a base, fornecer as rotas dos helicépteros,
visando ¢ menor tempo de atendimento e o menor custo, considerando
também a disponibilidade dos mesmos e a obtencdo de uma solucido boa
e computacionalmente vidvel.

Sendo assim, sdo entradas do programa:

dia e horério de partida do voo
dados dos helipontos nas plataformas
dados da frota de helicépteros
requisicées de viagens
As saidas que o programa deve fornecer séo:
dados das rotas geradas (tipos dos helicépteros atribuidos, horéario de
partida de cada v6o, sequéncia de helipontos nas rotas, grade de
horéarios para cada heliponto na rota, distincia entre os helipontos,
tempo de viagem em cada trecho da rota, carga dos helicépteros em
cada trecho da rota)
custo total (US$) das rotas geradas
distancia total percorrida
peso transportado (kg)
+ relacao custo/peso {(US$/kg)
De acordo com a metodologia utilizada, deve-se em primeiro

lugar considerar o dominio do problema. A Figura 6 ilustra um modelo

31

Implementagio em Visual Prolog de um Roleador de Helicpleros

da Bacia de Campos, em que os diversos helipontos estdo agrupados em

sub-redes, a partir de sua localiza¢ao geogréfica.

base o
pollo aguas
S progundas
oo
subrede-b
S0km subrede-a
Figura 6 Dominio da aplicagdo

Em seguida, descrevendo-se este dominio da aplicagdo em termos

de Redes de Petri, obtém-se o Application Model. A Figura 7 ilustra o

L6}

NIVEL 2:

0 plat. isolada

O grupo plats.
4 < dist. < 12 km

Application Model para uma sub-rede.

base

Figura 7 Application Model

32

Implementacio em Visual Prolog de um Roteador de Helicopleros

Analisando-se o Application Model, observa-se que este é
bastante semelhante ao obtido para o problema do Mundo de Blocos
(vide Figura 4), sendo a base o "né essencial" que interliga as sub-redes.

O Planning Self-Model pode ser representado pela Rede de Petri
ilustrada na Figura 8.

helicopteros

rokas pow

Figura 8 Componentes do roteador de helicépteros

O médulo Roteador da Rede de Petri da Figura 8 pode ser visto na
Figura 9. Observa-se que a Rede de Petri que constréi os planos
(Planning Self-Model da Figura 9) opera sobre a Rede de Petri do
dominio (Application Model da Figura 7).

Figura 9 Rede de Petri do Roteador

Implementagio em Visual Prolog de um Roteador de Helicopteros

Sendo assim, a Rede de Petri que representa o dominio
(Application Model) é construida (na forma de fatos do Visual Prolog)
cada vez que o rotemento é feito. A construgéo desta Rede depende de
quais sub-redes estdo envolvidas no problema corrente, ou seja, de quais
helipontos contém requisi¢des de viagens. Isto pode ser visto na Figura

10.

plan-sbrede-ak

rotas rdp it

Figura 10 Tratamento das sub-redes

Além disso, a resolucdo do problema é feita para diversos niveis
de abstracdo, como descrito na Figura 11. Para cada nivel de abstracgao,
foram definidos modelos do dominio correspondentes. Nos modelos de
alto nivel, os lugares sdo constituidos por grupos de helipontos com
coordenadas geogréficas de localizagédo proximas.

Os niveis de abstra¢do usados foram trés: Nivel 0, Nivel 1 e Nivel
2. No Nivel 0 ou nivel “ground” os boxes da Rede de Petri sdo
constituidos pelas plataformas tratadas isoladamente (¢). No Nivel 1, os

boxes representam plataformas isoladas (¢) e grupos de plataformas

distantes entre si até 4 km {¢). No Nivel 2, os boxes representam

34

Implementagiio em Visital Prolog de um Roteador de Helicopleros

plataformas isoladas (e), grupos de plataformas distantes entre si até 4

km (#) e grupos entre 4 km e 12 km (®).

NIVEL 2;

e grupo plats.
4 < dist. <12 km

NIVEL 1: !

® grupo plats. ;
dist. <4 km

NIVEL O: ;

plataformas ;
isoladas ;

Figura 11 Definigdo de niveis de abstragdo

A Figura 12 mostra a Rede de Petri que inclui o processo de

agrupamento de helipontos e de sintese do modelo do dominio.

hiveis-abstratao

Sintese-RAP RdPs

plamo-alto-nivel

DEEALRA rotas-RdP [0]]

i

Figura 12 Estruturagio do conhecimento do dominio
35

Implementagio em Visual Prolog de um Roteador de Helicépteros

Por fim, apos a obtencdo das rotas a partir do médulo do
Roteador, é realizada uma pés-otimizacao das mesmas (vide moédulo
PCV na Figura 8), com o auxilio do algoritmo das permutacdes para o
PCV (Problema do Caixeiro Viajante), ilustrado na Figura 13.

pesmtaaia tipol permuatatipo’
3

23
T ;o
10 el 1 S
I’..r] "J‘:Q
2 3 sky,g‘jﬁ skﬁ,‘ eh o s
o o e ;s

15 4
o . :
8 K{l O‘// 5 pemmtatpo 2 pernmtatpo 4
= ,.-ﬂ:t‘ - R
T 6 v G /'h m
yotas original 1 2 R 12 Sy
A o
8 ?\Qf 5 5 B‘i\o m,/ 5
7 8 T 6

Figura 13 Pés-otimizacao das rotas

36

Implementacio em Visual Prolog de um Roteador de Helicdpteros

10 A arquitetura do programa em Visual Prolog

Os diagramas a seguir ilustram a arquitetura do programa em
Visual Prolog da implemetagdo elementar "AntigoOK" feita na tese de
doutorado de Licio Mitio Shimada [1] para o problema do planejador

semi-reativo estruturado em Redes de Petri estendidas Ghenesys.

Legenda:
ExSIElo Definigdo
PLN_MNGR Arquiveo
Arquivo Item de menu
fill_Ibox_requisicao (LBOX_STA) Eiigiczggugﬂ;gbal declarado em
L=

Predicado global declarado no

dlg_helicepteros_Create ; i
préprio arquivo

inicia_dizlogo_capacidade Predicado local
L Chamada ativa
------------ » Chamada inativa (sob comentério)
HELICOP Argquive chamador {ativo)
(DETALHAM) Arquivo chamador (inatiwvo)

37

Implementagio em Visual Prolog de um Roteador de Helicopteros

\ WVHTY LI

"‘(

E

:

!

;

EH

i \
]

.

D

:
—_—

i
& s : , !
OdNHOHTAd NOEYVHATH e ANAD NTd |4---{ INTD NTId il onOrosod
&
VIS X091 ¥V OLAIA O
NI XOHT VIS nouv

SYIWNYHOOUd SOA TYH3D YINYHOVYIQ

38

Implementacio em Visual Prolog de um Roleador de Helicopteros

Aﬂhn :.Qﬂdug aiﬁv«u ngo._. _

nﬂhulgﬁdwg aﬂﬁﬂﬂwn #.mﬁl 4

r||||.||.||;l..il|||. s — ———

2.-.“ nana .isiﬂni

“|11!:|-- ——

_ vIs nduv) ma«.swnﬂﬂﬂ 318 ﬂg _

HES
oroisnbsy wompoy
oealsinba W EUuy

orOisitbay Eany

ssonsmbey oanbiy e
supliety oeoisinbay w—
ausydosgayTIRwun)g
sorapdoonayoanb g ey
seleyooyay
osedis oM N HRBYY
opusdyap IEUILN]S

sojuodyay ™ oanbiy 5

sojusdgay]

oanbIy

(rechiounid) 0¥d'd0DIT3H 0AINbIY

39

Implementacdo em Visual Prolog de um Roteador de Helicopteros

Qmﬂ._n@a Yo opuedgay xmioug g0y oo die AU

_ {VOLI1G0 W) waex” epmadiyany cospurga ey ouodysH BuIS

“ (VO LN O B vrox sexay dearoy rwaen oaajdgoier{ seani}

SUASIKT BUBI IENIP oW

_ EONW NTd) owed ezoqepa __L.II ouEld einqe

JopEeRjoy

40

Implementagio em Visual Prolog de um Roteador de Helicépteros

41

EVTLD wpexod sowed sopey waeB g e sty ouR|dIEARlg ¥

SVTAL) s:0pexpa”soporeasow

SEMPEIPUITSOPO L
ﬁquﬁb reaBepa ouany Y ﬁuw....u = S0SNOT 9 oe3RuENg

sosafiessed uinm

SB40PEIIPU[IRISO I -—

GVT1ID Beamedr ouepd vosow __A' 8lusl0YToueld Jeiso |

oue|d IRNSO W 4

iaodsp Sl 3 SN [o puodsiqTRmIS ENS0 “H_

E

(NI X09'D 1oauedsp woay xoq Iy

IRt i bl Moo Sk Dl
_ (SSDMdT) Pawedyp vy g RS

A

[eATIOHSTD 104 9[8) SOMI [[eAu0dSIqEJ01 4B

jpauods|gejo %

(VIS X04'D weommbas xoq | E.

T e T

__”Em X0 a'D soquodipoy xoq) ,.Hm

| @sex)y wadea op oesmbar S{p [4—— sponsinbanTIeE0 W

soxgdooney” oBoferp Blont

SO EDNIBH T IBIIS0 W

ayeax))” sopuedgay Spp 4— souodei TIeE0 |

sjanoy BwaKold 4

seja]

Implementacio em Visual Prolog de um Roteador de Helicdpteros

(V1S™ ndUV) saxardeagoy spepoedea vamsal vaypomt |l epeppede) e nasay -

{v 15 xogm speproedes seare epawel g

4

4

aeary) apepiaedes seare 2[p [g—— opeprondeo svem oBop RIIMA

4 speppedenTseery 4—

(VIS xogm) speproe deo quy epore] T

+

ﬁ

arear) waxe 9 sosnodu x opepraedes S[p {g—|

apeprrde 030y BIaWn

4— speposden qey

__ (v157%0g7) welers opresoy xoq TG

+

(vis xXodD u&aﬂiﬂiuu.aﬂ.ll_JT%ﬁ

@eary uaders
“ep epnaed oureamy Spp

+

weBers om0y
“oBopep ennn

—— webpA pueiop

sSaiaeIEy

42

Implementacio em Visual Prolog de um Roteador de HelicSpleros

Arquivo: ARQU_STA.PRO

1YHELICOP
inicializa todos helipontos
Zerar_memoria I | le_helipontos_de_arquivo | l filtra_helipontos I I caloula_sren_localiz l

| le_todos_heliponto I | filtra_helipontos OK | I obtem_area_plataform |

heliponto_OK

2) HELICOP (Obs.: ainda néio implemeniada nesta versio)

incui_helipento

3) HELICOP

elimina_helipente

2

l existe_heliponto_a_eliminar |

apaga_heliponto

inidaliza_heficopteros

R

[carvega_tabele_capacidade | | le_helicopteros_de_srquivo | | oaloula_menins_tipaH

=Tl N

! le_todos_helicoptctm;l I monta_estrutura_tmp | | ordena capacidade_helicop ” atribui_clausulas_helicop ord |

4) HELICOP

I ordenax_capacidadeﬂheﬁnupj

v

I cap em_ordem descend l

I monta stra_helicoptero J

43

Implementacio em Visual Prolog de um Roteador de Helicdpteros

l calc_medias_cada_tipoH |

v

I uniac_lista_nao_pousa

I I acumula_valores_media

I ingere_lista nac_pousa '

v

| insere_prefixo lista nao_pousa I

5) HELICOP
elimina helicopteros
6) HELICOP
modifica_reserva_capacidade helicopteros
7) HELICOP

ler requisican de arguive

x

I acha_tamanho_lista | I Ieitura_arquivo_requisicoes

.

I totaliza_requisicoca “ ordena_requisicoes_viagem I

acha_micio mesmo_ obtem_horario
nomeproblema diamegviagem viagem
A

I leiturs_novo diames

le todos_registros

®

ordena_clausulas
embarque

ordcna_:lausulas_

desembarque

@)

E2)

44

Implementacdo em Visual Prolog de um Roteador de Helicopleros

B1
monta_stru req_ monta_cstrutura_ rmd idade heli | atribui_clausulas_
embarque tmp_embarque ena‘(oap:c)l L embarque_ord
ver

monta_stm_r:q_ monta_estrutura_ : heli atri;ui‘elausulas_
desembarque tmp_desembarque RO IMPJ desembarque_ord
{ver 4)
tem_slguma_demanda | assertz_requisicaoﬂvingemj
l somatotio_lista I rvedﬂoa_se_exism_helipmmJ
stribmi_olausul
| monta_stra_req viagem | | ordena_capacidade helicop | requisli;io mﬂns_
(ver 4)
8) HELICOP
nova_requisicao_viagem
Ty

| pergunta_plataf nova requisicac | WM sem_requisicac viagem

| obtem_numero_viagens J

9) HELICOP

maodifica_requisicao_viagem

v

| existe_requisicao_a_modificar |

I modifica_numero_viagens |
A

l meonta_estrutura_tmp_requisicao |

Implementacdo em Visual Prolog de um Roteador de Helicpleros

10} HELICOP
elimina_requisicao_viagem
| existe_requisioso_a_eliminar |
I elimina_requisicac viagens J
11) HELICOP

Zerar_ImemnTia

Implementagiio em Visual Prolog de um Roteador de Helicoperos

Arquivo: MODIFICA.PRO

1) HELICOP

trocar_helicoptero_rotL

23 selecionar_rota_modificar "

navo_tipoH_ch_factivel ‘

I lista_helicopTeros_cadash-ados ‘

l atualiza_rota_modifica_tipoH |\‘

v :

Y

calcula_distencia_todos_

num_planss (DETALEAM)

~

determina_helipontox na_ inverte_rota_correnie catenla_custes_por_
rota (FOSOTIMO) (POSOTIMO) passageiro(DETALHAM)
determing_stividades na_ cileoln lotacao_ida

(TELAS)

cada_trecho_sgh_factivel

calenin_duracoes, todos
num_planos (DETALHAM)

selecionar_rota_modificar

(POSOTIMO)
2)
3) HELICOP
_‘s:-/"" eliminar_heliponto_rota
determing_afividudes na_
rota (FOSOTIMO) B
‘ verifica se_rota_vazia | tverd)

determina_helipontos_na_

{ atualiza_rota_elimina hecliponto

e e lema_rom_mﬂmw J
gliminar_planos_alto nivet ’/
[elimha_ metas_lmetas l
caleutn distancks s calcula_custos_por_ acala;ln_dnrmz_ todns
sum_planos fDETALHAM) passageiro(DETALHAM) num_planos (DETALHAM)

4) HELICOP (Obs.: ainda nfo implementada nessa versfio)

incluir_heliponto_rota

47

Implementagio em Vistal Prolog de um Roteador de Helicopteros

Arquivo: PREPRCSS.PRO

1) HELICOP / PLN_MNGR

calcala frota_disponivel
v

2)|| imiciakiza_frota_helicopteros

B T b

inicializa_ﬁota_O73ﬂ inicializa_frota_branco

2)

3) PLN_MNGR

pre_processa_demandas

P s

pre_processa_demandas_comitiva l;e processa_demandas troca_turma

I aloca_seronave_comitiva l

v

/ aloca_sparelho_dedicado_comitiva

‘ lista_duosH_capazes_co |
l lista_dself_capazes co L lista_capazes_voo_lnico_comitiva l i;a_ZVoos_oomitiva
\\E 4) * 1"

‘ consulta tab_capacidade leitura_tab_capacidade

5)
L————| assertz_nova_requisicso_viagem

____64| obtem_proxime num_plano
_____‘qrasserlz_mva_ﬁ'ota_dispaﬁvel

call_gotina_particiona_co

f monta_stru_capacidade_voo_d uploJ

48

Implementagdo em Visual Prolog de um Roteador de Heli copteros

O

pre_processa_demandas_comifiva aloca_aeronave_troca_turmas

/

aloca_aparetho_dedicado_troca_turmas

v

call_rotina_demanda_global_tt |

v v

* Lk rotina_demanda_estrita_tt cria_um_voo_demanda_global_tt
l leitura_requis_cmbarque I rcall_mﬁna_demanda_estim_ttJ leitura_requis desembarque
‘ \
@ particiona_demanda_global_tt eria_um_voo_demanda_estrita tt

®‘/‘ call_rotina2 demanda_global _tt 0 @ é

/ v

I crin_2voos_demanda global tt particiona_demanda_esu'im_ﬂ | monm_stru_capacidade__voo_dup]oJ

H O &

cail_rotina2 demanda_estrita_tt

P \-t

aloca maior_demanda_estrita cria_2voos demanda_estrita tt
ordena_maior_capac_tipoh | assertz_nm_requis_desembarque mem_nova_reqms_embarque

v

Frdenax_ma.ior_capac_tipoh I
h 4
cap_em_ordem_descend J

49

Implementacdo em Visual Prolog de um Roteador de Helicopleros

1

| ordena_capacidade tipoH |
v

ordenax_capacidade tipoH
v

cap_em_ordem_ascend I

-

monta_stru_capacidade_voo_inico_co

4) PREGRUPO
5) PREGRUPO
6) PREGRUPO / PLN_GEN2
7y PREGRUPO
8) PREGRUPO

9) PREGRUPO

Implementagdo em Visual Prolog de um Roteador de Helicdpleros

Arquivo: TELAS.PRO

1) HELICOP

| mostra_plano_corrente

v

Fﬂnﬁrma_nivel _plano I 2) Lmostra_solucao_do _problema | existem _plan;s ,_para_mostrar J

h

3)| mostra_metas_planc_parcial l mostra_todos_num_planos I lTwmaiorio _passageirosJ I mostra_totais_desta_rota

I mostra_rota_plano J

I mostra_todos_passos |

| converte_hora_min_seg |

| insere_zeros_esquerda l

3) (PLN_GENE)

3)
4) HELICOP

mostra_passageiros_rota

|Tnostra _passageiros_cada_rota |

51 calenta_lotacao_ida ITJImstra_"lotacao_todos ,_passos

v

6)| retira_meta_deste_passo

5y MODIFICA / POSOTIMO / FLN_GEN2 / DETALHAM

6) POSOTIMO / PLN_GEN2 / DETALHAM

Implementaciio em Visual Prolog de um Roteador de Helicdpteros

7) HELICOP

mostra_todos_indicadores I

mostra_passageiros_cada_rota | | mostra_tempo cada_rota | mostra_totais_desta rofa l mosira_custos cada rota |

el] _3

calcula_lotacao_ida calcula_lotacao_volta

I eunverte_;ora_min_seg
(verl)

(ver 5)

mostra_custos_desta rota
] | |

calcula_custo_volta J

| calcula tempo_atendimento_volta I [calcula_tm';_)o_aimdimmto_ida | [mosira_tempo desta_rota]

l valcula_tempo_volta_restante I retira_meta_deste_passo | caleula mPO_VOItRJ

{ver 6)
8
9) HELICOP
mostra_duracao_e_custo_viagens
mostl'a_tcmpo:‘cada_rma IITnostra_custcs_cada_rota | I converte_hora_min_seg | Yo requisicaes
(ver7) {ver 7) (ver 1) (PLN_GENE)
| calcula_tiotal_atendim_volta l ’ calcula_ftotal_atendim_ida I
I acumula_tempe_atendim J
10) HELICOP
grava_todos _planos_currentes
| existem_planos _para mostrar | | mostra_passageiros rota l mostra_solucae_do_problema
(ver 4) (ver 2)
Fnom:ra passageiros_cada_rota mostra_duracao_e_custo_viagens
(ver & { ver 9)

Implementagio em Visual Prolog de um Rofeador de Helicopleros

11) (HIERARQLH)

maostra_todas_distanciag

v

mostra_cada distancia

| | confirma,_nivel_distancias J

12) (PLN_GEN2)

grava_este_plano_parcial

v

mostra_solucao_do_problema

(ver 2)

Implementacdo em Visual Prolog de um Roteador de Helicopteros

Arquivo: PLN_MNGR.PRO

1) HELICOP

elaborar_piano

elaborar_plano_hora

v

arqu_helicopteros_foi_lido

—
define_niveis_de_planejamento

Ut G
calenda_frota_dispomivel elaborar_plano_geral
(PREPRCSS) (PREPRCSS)

54

Implementaciio em Visual Prolog de um Roteador de Helicépleros

Arquivo: LBOX_STA.PRO

1) HELICOP
fill_box_helipontos
fill_lbox_cada_heliponto preenche_edit_txt_heliponto
2) HELICOP
fill_janela_tab_capacidade
3) HELICOP

fill_Ibox_helicopteros

v

fill_lbox_tipoH_ou_prefixo

a

fill_tela_helicopteros

/

v

fill_tela tipoH

fill box_tempos_fixos

fill_fbox_nao_pousa

fill Ibox_cada_tipoH

fill_Ibox_tfixos tipoH

;

converte_lista_str

fill_lbox_npousa_tipoH

"

4) HELICOP

filt_janela areas capacidade

:

fill Ibox_cada_area capac

Implementacdo em Visual Prolog de um Roteador de Helicopteros

5) HELICOP

fill box_horario_viagem

L SN

fill lbox cada horario

verifica_requisicoes_lidas

6) HELICOP

atualiza_lbox horario_viagem

7) HELICOP

fill 1box_requisicao

I

fill _tela requisicao

fill_lbox prior_embarque

fill_lbox_prior desembarque

fill 1box cada_requisicac

y

fili_lbox_cada_embarque

fill Jbox cada_desembarque

Implementaciio em Visual Prolog de um Roteador de Helicspteros

Arquivo: LBOX_PLN.PRO

1) HELICOP

|| fill_lbox_frota_disponivel “

preenche_Ibox_frota_disponivel

B . o

fill lbox frota cada_tipoH fill_Ibox_frota_tipoH_branco

Implementacio em Visual Prolog de um Roteador de Helicépteros

Arquivo: POSOTIMO.PRO

1) (PLN_GENZ2)/DETALHAM

executa_otimizacao_rotas

/\'ﬂ 5)

v

otimiza_todos_planoes

rota_invertida_factivel

caleala vetor duracoes_este
___________ pomplano DETALHAM)

4 | inverte rota_corrente

3*' determina_atividades_na_rota

2) determina_helipontos_na_reta

y
| pev_deste_num_plano | caluls_lotacao_ida

{TELAS)

=

’ todas_permutacoes_tipol I

— ¥

permutacao tipol

eacothe menor distancia l calcuia_ntacaq_ida permutacao_factive | calcula_distancia_plano [
= = - {TELAS) L
retira_meta_deste_passo
(TELAS)
2) MODIFICA / DETALHAM
3) MODIFICA / DETALHAM
4) MODIFICA / DETALHAM
5) DETALHAM

rota_invertida_factivel

A

cada_trecho_eh_factivel

(ver 6)

Implementagiio em Visual Prolog de um Roteador de Helicopleros

&) MODIFICA

cada_trecho_eh_factivel

retira,_mets_deste passo
(IELAS)

Implementaciio em Visual Prolog de um Roteador de Helicdpteros

SBJOI SEPO] OWIC)aX aIasul

CEMISW B OJS0D I0UN EMOTED

apaodnay amewmd urxaep

¥ x
orosuey wedsip OJST I0WIVE 9P OeRlISSUT ER
— — ToeRNsSuRY WG0 “msna Walgo
Teamadstp oxejdodiey R i
arzea oweld omswad wioe B Lt _ owxoad srew
ﬁ 3P 280MSURY VLEGL CUWIZIA JOUINE
opeuob e = R -
= - sopeuotogred sooa w18 | | _ e SUpRIIIqEY
OReneI BT i oEsWeT BIedsp THa00WURY SYPA] WSlq0 | OISRy aqLo%s

+

*

P

e

@ OpeuoIaed OJUINPUIT ZB]

A
opuocl ey omaurwd esssaoal

souepl sopoy exzoared

ERRIIGRY swen wsi] ZEj

X

sopodipey sdnadesap

SOLIANLD SOPQ) ZI0NET

STLOWRISTP A0}aA BUTWLIESP

omodrey omeund es wuLmWO0

overd wnw oreydoarjay eoore

N

/

_ dpt xopelaued

soaay doagon ST w104 7'y
|
(SSUITYD owerd ||
GVT1ID ppmd 1| retaed owed e
_ owepd 59 vaeis v el wy e '
- “ sprsmod euoqond sojewr 3sf welgo (WYHTYLIQ sowed umu
. @) Il TSPy suweMp Emaes
GAYHTYLIQ sowepd wm | "~ ; T L =
“sopo} saomp emaes (¥ N I
T R | — —pl (OWLIOSOD serox —
e L A > oeswamueme wm o ANTS NI (1

O¥d'TNID N1d - 0Anbay

60

Implementacdo em Visual Prolog de um Roteador de Helicopteros

wlaw soodiay visy wejqo

sepuewap odnd epasse

(ndAVHIIW
Teowe)Stp sepoj emoed

_(EN3o N1 I
SIPEPLARE Tie]I

s ﬁmg
ossed aj5ap elowl EagIat

ﬂ

oysan ou someBesed einoTRD

—

YPRYITQRY 0RIBEURR

®

61

Implementacio em Visual Prolog de um Roteador de Helicopteros

Arquivo: PLN_GENE.PRO

1) PLN_MNGR

mestra_salucan do
claborar_plano_geral [f---——---- » problema (TELASY

-
~—
—

¢ detatha_plano_todos

| tem_grupos_neste_nivel r niveis (DETALHAM)

l obtem_todos_planos_parciais pre_processa_plano_deste r existem_requisicoes_viagens ‘

existern_recursos suficientes

* nivel (PREGRUPO) j
TSI 1 e 'r
l inicializa_planos_parciais I clabora planos todos niveis [soma_capacidades
+ helicopteros v
2 5) soma
elabora_plano_deste nivel L P requisicoes

S
-

N elabora_lista mostra_todas_distancias
2)¥ elabora_rank_helicopteros 3) ordenada_tipoH I (TELAS)

resilve plano_parcial recalcula_distandias rdp | : define num_voos_
(PLN_GEND (MIERARQU) J|| elabora_stividades rdp et recursos
v
elabora_atividades_cada origem
2) PLN_GEN2
3) PLN_GEN2

4) PLN_GEN2 /DETALHAM

5) TELAS

62

Implementacdo em Visual Prolog de um Roteador de Helicopteros

Arquivo: HHERARQU.PRO

1) PLN_MNGR

J recalcula_distancias_rdp |(V=F 2

define_niveis_de_planejamento / mostra_todas distancios

* l” - ' (Tm

| definc_cste nivel_planjamento <

mostra_helipontos I-DI tista_helipontos_nivel

=

| inicializa_demandas_deste nivel || calenla_distancias rdp ” obtem_limitc max_assentos] :én'uepa_-_demml das_
nvel
I inicializa demandas_cada_origem | calcula_distancias_ l frota_disponivel hora J &
da origem = = | processa_todas_rotas_dista l

:ll::;;mn::;m]tc_ | rcpet:_distncia 4]

2) PLN_GENE / BETALHAM recalcala_distancias_rdp
y

3) PLN_GEN2 calcula_todas_distancias_rdp
y

4 caleula_todas_distancias_da_origem

63

Implementagio em Visual Prolog de um Roteador de Helicopteros

PUEose wepm wa dea

&

yody; epeprondes xeuspo

&

yody epepredeo vuspa

PUasap WepIo mR dea

+

yody epeppedes omul XRULRI0

(SSOUAT) mbrequsop
smbax eaow zprase

&

yodn apeproedes oW wuspo

(850U T d) mhrequi
smbal BN TIAEE

oda8 xed wnu BmaRED

e jean owosmbal ez

A F
(880U dTH D) owe d umu eroy anbrequresap
Tonxaxd weayge “stmbar ezyER oRa” wuewl Enb
ﬁu.ﬁ Hﬁ& dgdﬁlﬂ.ﬁw u.dﬂ.._ﬂﬂ — |dmw
papadsip eoxy Tiow zRIasE _ (sspudaud) moSepa “smbar ezmene s i xedu wnpp
oeasmbar eaw mLIaEE

7 Y

odnE ruonpTRd BUR0] /

1Atk odn oA url THo

[

R [pani oeasnbar RZyENe

odn8 oamm ooa
Tapupreder tuE TUoW

x x/
A |

RARE sodnB purjos (R

‘r/

@:wuﬁmm&
speppoedes qey emy

4

.

sodni8 opeapap oypredy wioe

+

A sodnB ovomsmbaz

Taams sodn B aAaRT0 IR BIOTR

.nf//!

A

}Wﬁnﬁﬁl odnB sosnod wmu

mu%mfouﬂnﬁ 00A mmﬂm_muu BS1]

\

ANEO NId (1

Qud OdNAUD AN :0AINbiy

[2and 23sap owepd essaoer d axd

64

Implementaciio em Visual Prolog de umn Roteador de Helicdpteros

rupo_platafs

4
area mais cistante

area localiza

2)

65

Implementacdo em Visual Prolog de um Roteador de Helicopleros

Arquivo: DETALHAM.PRO

D

detatha_todos_planos_correntes

2) || detatha_plano_todos_niveis

v

[detatha plano deste nivel ’

| define nivel detathe

IF
executa_otimizacao_rofas

(POSOTIMO)

elubora_atividades rdp

(PIN_(EENE) 3 /+ detalha plano_parcial I/v
/ / \ revalewla_distancies rdp
’ elabora_Imetas nivel_detathe]‘/ GIERARGH)

elabora_recursos
| inicializa_plano_detathe nivel_detalhe calcula_distancia_todos_num_planos
(ver 3)
calcula_duracces_todos_nwm_planos calcula_custos_por_passageiro
(ver 4) (ver 6)
detatha rotas
’ plano_parcial \ -
determina_helipontos_na_ determina_atividades na_
rota (POSOTIMO) rots (POSOTIMO)
y
l listas sao iguais | faz_detalhamento_desta_rota rotas_sao_jguais plano_parcial
Ppasso_ ﬂgl'llpﬂd0 v.:alwla lotacae_jda calcula lotacao_trecho I ordena_helicopteros_detalhe ‘
(TELAS)
2) (PLN_GENE)

3) (PLN_GEN2)

66

Implementagiio em Visual Prolog de um Roteador de Helicpteros

4) (PLN_GEN2) calcnla_duracoes_todes_num_planos

h 4

5) (POSOTIMO)

calcula_vetor duracoes_este_numplano

6)

calcula_custos_por_passageire

calcula custos_cada roLaJ

et

calculy lotacao jda [calcula_custos_todos _passosJ
(TELAS)

retira_meta_deste passc
{TELAS)

Implementacio em Visual Prolog de um Roteador de Helicopteros

11 Teste funcional de cada um dos itens do menu

le6

Arquivo | | Helipontos | |
Ler_Arquivo_Helipontos

Mostra janela p/ selegao de
arquivo *.hpt. Selecionado:
helipont.hpt. OK. Mensagem:
"Helicopteros_Inicializacao /
Terminou leitura de helipontos".
OK.

Obs: apertando Cancel na selegéo
de arquivo, ocorre erro: Prolog

ERROR 7002

4e8

Arquivo | | Helipontos | |
Incluir_Novoe_Heliponto

Mensagem: "Ainda ndo
disponivel". OK.

Arquivo | | Helipontos | |

Eliminar_Heliponto

List_box ¢/ todos os helipontos.
Selecionado: bgll. Confirma: sim.
Obs: verificou-se depois que
realmente foi eliminado o

heliponto da lista

Arquivo | | Helicopteros | |
Ler_Arquivo_Helicopteros

Abre janela p/ selegao de
arquivos *.hlp. Selecionado:
helicop.hip. Mensagen:
"Terminou leitura de

helicopteros"

08

Implementacdo em Visual Prolog de um Roteador de Helicdpteros

Eliminar_Helicoptero

29 Arquivo | | Helicopteros | | Pede o tipo de helicoptero a

eliminar (nao ha list_box, é
preciso saber o nome de cor).
Oferecido b_XXX. Colocado
b_212. OK.

Obs: verificou-se depois que ndo
se alterou a tela de helicopteros

disponiveis.

3e7

Arquive | § Requisicoes_Viagens | |

Ler_Arquivo_Requisicoes

Abre janela p/ selecdo de
arquivos *.req. Selecionado:
2005730.req. Mensagem:
"Terminou leitura do problema

2005730". Mesmo titulo.

10

Arquivo | | Requisicoes_Viagens | |

Nova_Requisicao

Botdo Entra Nova Requisicdo

List_box ¢/ helipontos p/ selecao
de plataforma de origem /
destino. Selecionada "ns16". Pede
n° de passageiros ida: 2. Pede
volta: 2. Mensagem:
"Helicopteros_Inicializacdo /
criada requisicao_viagem

(ns16,2,2)"

11

Arguivo | | Requisicoes_Viagens | |
Modifica_Requisicao

Botad Edita Requisicilo

Mostrada lista de helipontos ¢/
requisi¢des (em ordem nao
alfabética). Selecionado *ns16".
Pede n® passageiros ida: 1. Pede
volta: 1. Pede confirmacao.
Mensagem: "modificada

requisicao_viagem (ns16,1,1)"

69

Implementacio em Visual Prolog de um Roteador de Helicopteros

Ordem

30

Item
Arquivo | | Requisicoes_Viagens | |

Elimina_Requisicao

Resultado
list_box de requisicoes.
Selecionada ns16. Confirma.
Obs: foi verificado que a

requisigdo realmente foi

eliminada
34 Sair Sair do programa
9 Roteador | | Elaborar_Plano Mensagens "Pre-processamento
do plano / inicializa frota
Botdo Elabora Plano disponivel 7:30", "Elaborar plano
/ frota disponivel for calculada",
"Elaborar plano / pre-
processamento foi calculado”,
"Elaborar plano / Hierarquia de
Planos". Termina ¢/ PROLOG
ERROR 1010
31 Roteador | | Pede nota a modificar: 1. Nada
Modificar_Plano_Existente | | acontece.
Trocar _Helicopteros
32 Roteador | | Pede nota a modificar: 1. Nada
Modificar_Plano_Existente | | acontece.
Eliminar_Heliponto_Rota
33 Roteador | | Mensagem:

Modificar_Plano_Existente | |
Incluir_Heliponto_Rota

"Helicopteros_Modifica Rota /
incluir heliponto na rota". Nada

acontece.

70

Implementacio em Visual Prolog de um Roteador de Helicdpleros

Ordem

12

Item
Telas | | Problema_Corvente | |

Mostrar_ Helipontos

Resultado
Mostra list_box ¢/ todos os
helipontos e suas coordenadas (no
nivel 0). No nivel 1, em modo de
coordenadas cartesianas, nao
mostra nada. C/ coordenadas

UTM, mostra em ambos.

Telas | | Problema_Corrente | |
Mostrar_ Helicopteros

Mosira todas as caracteristicas dos
helicépteros, tempos de chegada e
saida da base e helipontos onde
néo pousa. E possivel também
mostrar tudo por prefixo,

14

Telas | | Problema_Corrente | |

Mostrar_ Requisicoes

Botad Ver Requisicio

No modo resumo, é possivel ver
todos os helipontos ¢/ suas req.
de ida e volta. Nos modos
embarque e desembarque, é
possivel ver tb a prioridade. E
possivel alterar dia, hora, e até os
textos, mas iss0 ndo causa

nenhum efeito.

15

Telas | | Frota_Disponivel | |
Calc_Frota_Disponivel

Nesse exemplo estava cinza

{indisponivel)

16

Telas | | Frota_Disponivel | |
Mostra_Frota_Disponivel

Mostra frota disponivel apenas p/
o horario das 7:30 (apesar de
haver espago p/ outros). Mostra
apenas o tipo do helicéptero.

71

Implementacio em Visual Prolog de um Rofeador de Helicopteros

Ordem

17

Item
Telas } | Mostrar_Plano | |
Mostrar_Plano_Corrente

Resultado
Pede confirmacao p/ nivel do
planc: 0. Nada acontece.

Botdo Mostra Plano

18 Telas | | Mostrar_Plano | | Mensagem: "Helicéptero -
Mostrar_Indicadores | | Passageiros na rota / néo existe
Num_Passageiros nenhum plano elaborado"

19 Telas | | Mostrar_Plano | | Mensagem: "Helicoptero —
Mostrar_Indicadores | | Duraggio e Custos / disponivel
Duracao_e_Custos apenas plano detalhado". Nada

acontece.

20 Telas | | Mostrar_Plano | | Mensagem: "Helic6ptero —
Mostrar_Indicadores | | Duracéo e Custos / disponivel
Todos_Indicadores apenas plano detalhado". Nada

acontece.

21 Telas | | Mostrar_Plano | | Abre janela de salvamento de
Gravar_Plano_Corrente arquivo, sugerindo 2005730.rot

como nome. OK. Mensagens: "nao
existe plano corrente para nivel
0", "n&o existe nenhum passageiro
na rota", "nédo existe nenhum
plano elaborado", "disponivel
apneas p/ plano detalhado”.
Terminou a gravacdo do arquivo,
22 Parametros | | Horario_Viagem Mostra data e hora (no caso 20/05

7:30)

72

Implementagdo em Visual Prolog de um Roteador de Helicopteros

23

Parametros | | Tab Capacidade

Mostra todos os tipos de
helic6pteros e as respectiva
capacidades p/ cada uma das

regides.

24

Parametros | | Areas_Capacidade

Mostra os helipontos pertencentes

a cada uma das areas.

Parametros } | Reserva_Capacidade

Pede novo niimero p/ Reserva de
Capacidade; 2. Mensagem: "foi
atribuido 2 p/ reserva de

capacidade”.

26

Ajuda | | Contents

Mensagem: "nao foi possivel
localizar o arquivo helicop.hlp.
Vocé deseja localizar? Sim. Nao.".
Colocado Sim. Selecionado
Helicop.hlp. Mensagem: "Arquivo

nao é ajuda ou esta corrompido."

Ajuda | | Local

Nada acontece

28

Ajuda | | About

Mensagem: "No description.
Version 1.0. Copyright (c) My
Company".

Observacgoes:
+ Apos eliminar um dos helipontos e cancelar uma tentativa de ler

heliponto, o programa cancelou os anteriormente lidos. Foi necessario

ler novamente os arquivos Helipontos, Helicopteros e de requisicao

73

Implementagio em Visual Prolog de wm Roteador de Helicdpteros

12 Upgrade e debugging

A versdo preliminar do software, desenvolvida em Visual Prolog

4.0 foi atualizada para que as modifica¢oes pudessem ser implementadas

no Visual Prolog 5.0. Para converter o projeto Helicop.VPR do Visual

Prolog 4.0 para o 5.0 foi necessério:

+

no prompt do DOS, rodar o programa de conversdo UPGRADE.EXE,
incluido na versao 5.0 do Visual Prolog;

\VIP\ UPGRADE\ UPGRADE -i -d -pC:\ HELICOP

sendo C:\ HELICOP o diretério que contém o projeto Helicop.VPR

F

no ambiente do Visual Prolog 5.0, abrir o projeto Helicop.VPR (menu
Project - Open Project...) e clicar no botdo OK ao surgir a mensagem
de alerta

acionar o menu Options > Project (VPR) - Application Expert
CTRL+A, na tela Target selecionar a opgao Platform em "Windows
32" e clicar no botdo OK

acionar novamente o menu Options = Project (VPR) = Application
Expert CTRL+A, na tela Target selecionar a opgao Platform em
"Windows 16" e clicar no botio OK, para gerar novamente os scripts
de compilac¢éo do projeto

acionar o menu Options <> Project (VPR) > Code Generator, na
op¢do Options for Help Maker, desabilitar a caixa "Generate .HLP
files and HLPTOPICS.CON files", para evitar a mensagem de erro
"Invalid Command Call <HC31.EXE>" ao executar o projeto

Fechar o projeto {menu Project > Close Project)

Abrir novamente o projeto

Td

Implementacio em Visual Prolog de um Roteador de Helicopleros

+ Abrir o arquivo Helicop.PRE (menu File = Open...) e modificé-lo
deletando as linhas 18 a 20, para retirar as declaracdes duplicadas
existentes nestas linhas

+ Rodar o projeto {(menu Project = Run)

Além disso, o programa original continha um "bug" que impedia

a elaboragao das rotas quando as plataformas a serem visitadas distavam

mais de 12 km entre si, ou seja, quando nio havia distingdo entre os trés

niveis hierarquicos definidos (niveis 0, 1 e 2). Desse modo, ¢ "bug"

impedia a determinacdo das rotas quando somente o plano de nivel 0

deveria ser elaborado. Para corrigir este problema, foi preciso:

+ incluir 0 seguinte "catcher” para o predicado
define este nivel planejamento do médulo
HIERARQU.PRO:

define_este nivel planejamento(0):-
findall (Heliponto,todas_requisicoes nivel (NivelAnt,Heliponto),LHelipontos
eliminar elementos repetidos(LHelipontos,LHelipontosSRj,

retractall({distancia(0, , , }),

calcula_distancias rdp(0,LHelipontosSR,LHelipontosSR),

retractall (grupos_deste nivel (0, _}),
assertz{grupos_deste_nivel (0, [])]),
retractall (grupo_demandas (0, , , }),

heliponto (0, subrede A,mcae,Abcissa,Ordenada),
assertz(heliponto(0, subrede AB,mcae,Bbcissa,Ordenada)),

recalcula_distanclas_zdp(0),
1

+ modificar a chamada do predicado
define niveis de planejamento feita pelo predicado

elaborar plano no médulo PLANO.PRO:

define niveis _de_planejamento(-1,NumNiveis),

735

Implementaciio em Visnal Prolog de um Roteador de Helicspteros

+ incluir o seguinte "catcher" = para o predicado

elabora_planos_todos_niveis do médulo PLANO.PRO:

elabora_planos_todos niveis(0}:-
retractall(nivel problema coerrente(_}},
assertz(nivel problema_corrente(0]},
elabora_plano_subrede a,
elabora_plano_ subrede b,

elabora_plano subredes_ab, t.

76

Implementacio em Visual Prolog de um Roteador de Helicdpteros

13 Modificagcdes implementadas

As modificagdes do software original incluem a definicdo de pesos
para as requisicbes de viagens, a redefinicio do agrupamento das

subredes de helipontos e o desenvolvimento da interface gréfica.

13.1 Requisi¢des de viagem por peso transportado

O software foi modificado de forma que as requisicoes de viagem
passaram a especificar o peso a ser transportado na ida e na volta para
cada plataforma, ao invés do namero de passageiros. Isso porque a
limitacao de transporte que deve ser considerada para cada helicoptero
é, na verdade, a capacidade de carga do aparelho. Sendo assim, cada
passageiro passou a ser considerado como uma carga (em kg) com o
valor do peso da pessoa. Uma das vantagens da conversiao é que, desta
forma, o sistema Roteador pode tratar igualmente tanto as
“perturbacSes” ao plano corrente com respeito a passageiros assim como
com respeito as cargas.

Os arquivos *.RDP, que contém as requisi¢des de viagem tiveram

seu formato modificado:

requisicao_viagem(Nivel Heliponto,Ida,Volta)
Nivel = 0 (nivel de abstragio)
Heliponto = nome do heliponto
Ida = peso na viagem de ida (em kg)

Volta = peso na viagem de volta (em kg)

77

Implementacio emn Visual Prolog de um Roteador de Helicdpteros

Segue abaixo a listagem.de um exemplo de arquivo .RDP

modificado (P0612AM.RDP):

requisicao viagem(0,"pchl", 200,100}
requisicao_viagem{0O,"pnal”, 200,300}
requisicac viagem(0,"ppgi",200,100)
reqguisicac_viagem(0,"pvm2",1G0,300)
reguisicao_viagem(0,"ss20",400,300)
requisicaoc_viagem{0,"reel”,300,200)

horario_viagem{"08:00")

Para implementar essa modificagdo, todo o programa teve que ser
revisto e diversas substitui¢cdes foram feitas ao longo do cédigo. Como
um exemplo de predicado modificado, pode-se ver abaixo a nova
listagem do predicado elabora rank helicopteros do médulo
PLANO.PRO, em que passou a ser considerado o custo/(km.kg) de cada

aparelho para elaborar o ranking por custo dos helicépteros.

% 0% o elapora rank de helicopteros disponiveis em termos de US/km/kg

elabora_rank_helicopteros((],LCustos,LCustos):~ !.

elabcra rank helicopteros({TipoH|LTipos],LParcial,LCustcs):~
heliccptero(TipoH,PUtil,Custo HVoo,VelocC: 4 s + +)«
CustoKmKg = Custo_HVoo / {Veloc * PUtil),
assertz(rank_helicoptercs{TipoH, CustoKmKg)),
concatena{LParcial, [CustoKmKgl,LParciall),

elabora_rank_helicopteros{LTipos,LParciall,LCustos}.

13.2 Otimizac3o de subredes

Conforme anteriormente citado, o modelo de dominio utilizado (e
consequentemente o Application Model que dele se originou) contempla
a divisdo dos helipontos em sub-redes (vide Figura 6). A Figura 13

mostra a localizacéo de todos os helipontos implementados no software.
78

Implementacdo em Visnal Prolog de um Roteador de Helicopteros

400000
390000
380000
370000
360000
350000
340000
330000
320000
310000
300000
280000
280000
270000
260000
250000

240000

nsii

& ppmi

2300060

220000

210000

~4 | ~J =~ -~ - -~ -4 -4
B e i o L% o 5] W (5,
=] o] w0 [=] - 8] (5] o oy
o f= [=] o [=] o [=] =] (=]
Q (= b= o p=4 (=] [=] o (=]
(=] o o [=] b= Q (=} o [
o o [=] o [=] o (=4 L= o

Figura 14 Localizagio geografica dos helipontos implementados

79

Implementacio em Visual Prolog de um Roteador de Helicopteros

A linha vermelha no gréfico da Figura 14 indica a divisdo estatica
entre sub-redes A e B, de acordo com a definicio implementada no

programa original:

determinausubrede(StrOrdenada,StrAbcissa,subrede_A):—
StrOrdenada < 343000,

StrAbcissa < 7510000,
i q

determina_subrede(_,_,subrede_B):- I &

A modificacao implementada consiste na inclusdo do predicado
otimiza_ subredes que verifica, dentre os helipontos a serem
visitados, se existe algum cujo heliponto mais préximo esteja em outra
sub-rede, mudando-o de sub-rede em caso afirmativo. Esta otimizacao
dinamiza os limites das sub-redes, e evita que helipontos permanecam
"isolados" em suas sub-redes.

Para implementar essa modificacio, o novo predicado

otimiza_subredes foi incluido ao final do médulo MODIFICA.PRO:

%% ==
e E Er e, = otimiza subredes
%% Para cada helipontc ¢ue possui requisicao de viagem, verifica se heliponte
mais

%% proximo pertence a mesma subrede e, se nfo pertencer, muda o heliponto de

subrede

%% — . S ——

otimiza_ subredes(LHeliponteg):-
retractall (distancia(_, _,_,)},
calcula_todas_distancias_rdp(0,LHelipontos,LHelipontos),
modifica subredes(LHelipontos}),
retractalli{distancia(_, , ,_}).

modifica_subredes([]}:- !.

modifica subredes([Heliponto|LHelipontos]):-
heliponto(O,Subrede,Haliponto,_,)r
findall {Dist,distancia{0,Heliponto, ,Dist),LDist),
insertion_sort (LDist,LDist_Ord),
LDist_Ord=[MenorDist|],

distancia{0,Heliponte,MaisProximo,MenorDist},

80

Implementagcio em Visual Prolog de um Roteador de Helicopteros

heliponto {0, SubredeMP,MaisProximo, , },

not {SubredeMP = Subreds),

retract (heliponto {0, Subrede,Heliponto,Ordenada,Abcissa)),

assertz(heliponto (), SubredeMP,Heliponto,Ordenada,Abcissa)),

medifica subredes(LHelipontos).
modifica_subredes({_|LHelipontes]) :- %% SubredeMP = Subrede

modifica subredes(LHelipontos).

Além disso, foi incluida a chamada do otimiza subredes no

predicado elabora_plano:

%% ; TR
SRR S0 ol o AlEE & 0 oo, APHEICREI R, [4 PLANC GLOBAL
% Elabora ¢ planc de alto nivel, para o problema definido em INICIALI.PRO.

% O nivel abordado é o de mais alto nivel, criado em HIERARQU.PRO.

EL e =3 3 T —

elaborar_planc:-
existem requisicoes_viagens{LHelipontos),
existem_recursos_suficientes(LHelipontos),
nome_problema(NomeProblema},
Msg="Defina o nome para o problema corrente. ",
Title="Helicdpteros -- Elabora Planc™,
NovoNomeProbl=dlg GetStr({Title,Msg,NomeProblemal,
retractall (nome problema(_)},
assertz(nome_problema{NovoNomeProbl)),
ctimiza subredes(LHelipontos),
define_niveis_de_planejamento{—l,NumNiveis),
elabora_plancs_todos_nivels (NumNiveis), !,
detalha_plano todes_niveis, Yy
subrede_corrente(0,8ubrede;,

mostra_subredes_do_problema(0,NomeProblema, [Subredel),

Sdo mostradas a seguir as saidas produzidas pelo software para

um caso exemplo em que as sub-redes sdo modificadas:

subrede a:
HELIPONTO ORDEMADA ABCISSA

mcae 215308.92 7526587.82
asl® 313432 7482033
8301 314151 7481909
flex 314432 7482033
8517 315104 7485798

81

Implementacio em Visual Prolog de um Roleador de Helicopteros

mayo
8321
pcel
83806
5328
5308
step
5818
ssl6

a2sl’

subrede b:

318940
320000
322501
325941
326876
326965
330052
331052
335055
341535

HELIPONTO ORDENADA

ncae
pchl
pch2
=327
pcpl
pnal
pogpl
pep2
pnaz2

&s11
reel
ns09
822
5305
8820
8832
nsll

215308
347501
348744
351147
351155
353254
353938
354003
354565
362828
362828
366700
368000
368094
369094
2469128
369650
381668
390033
391029
391710
392002

Data: 9/12/1999

7477927
7478000
7489220
7487934
7489597
71482255
7487815
74878156
7491324
7493073

ABCISSA

.92 7526587.82
7518651
7515020
7529606
7538501
7518078
7525159
7540795
7516750
7538445
7538445
7547000
7549000
7529746
7529746
7504996
7530700
7539293
7529733
7524978
7526863
7549012

Hora: 16:28:29:70

nivel: 0 probiema: PO812AM horaric: 0B:00 subrede: subrede ab

metas:

32

Implementaciio em Visual Prolog de um Roteador de Helicopteros

heliponto: ss28 ida: 200 volta:100
heliponto: ida: 100 volta:300
heliponto: pch2 ida: 400 yolta: 300
heliponto: ss827 ida: 300 volta: 200
heliponto: ppml ida: 200 volta:100
heliponto: flex ida: 200 velta: 300
helicopterc: b~212 capac.:15883 kg
custe (U$/hr): 374.00 +weloe. {(km/hr):
nivel: 0 rota: 1 tempo de voo: dista (km) :
08:00:00 mcae-flex 00:35:12 108.68
08:35:12 flex-ppmi 00:01:58 €.10
08:37:11 ppul-ss26 00:02:57 9.12
08:40:08 sa28-5a15 00:08:27 26.11
08:48:35 $315-pch2 00:04:20 13.40
08:52:56 pch2-5527 00:04:47 14.78
08:57:43 2327-mcae 00:44:01 135.87
Tempo total de Voo:01:41:44
custo (U$): 634.21
distancia: 314.054

custo total (US$):

distancia total:

peso total: 2700

custo unitario (US/kqg):

subrede a:
HELIPONTC ORDENADA ABCISSA

meae 215308.82 7526587.82
8319 313432 7482033
53501 314151 7481909
flex 314432 7482033
2817 315104 7485798
ppml 318940 7477927
mayo 320000 7478000
8521 322501 7489220
pcel 325541 7487934
8306 326876 7485597
89328 1326965 7482255
ss08 330052 7487815
step 331052 7487815

0.23

634.21
314.

©54 km
kg

185.2

kma

83

Implementagdo em Visual Prolog de um Roteador de Helicpteros

ss18 335055 7491324
ss16 341535 7493073

subrede b:
HELIPONTO ORDENADA ABCISSA

mcae 215308.92 7526587.82
pchl 347501 7518651
pch2 348744 7515020
ss27 351147 7529606
pcpl 351155 7539501
pnal 353254 7518078
pgpl 353930 7525159
pop? 354003 7540795
pna2 354565 7516750
362828 7538445
362828 7538445
366700 7547000
368000 7549000
ssil 368094 7529746
reel 369094 7529746
ne08 369128 7504896
ss22 369650 7530700
ss305 381668 7539293
ss20 390033 7529733
ss32 391029 7524978
nsil 391710 7526863
ppmr 392002 7548012
5315 811 750:

piid

13.3 Interface grafica

Uma amostra da interface gréfica implementada pode ser vista na

Figura 15.

34

Implementacdo em Visual Prolog de um Roteador de Helicdpteros

F!nlr:adm de Helicopteros usando Redes de Petri

&rquivo Eglir icldipa Plano Allerar Problema Corente Ajuda Window

ChEAE EE BFEE (3

s ROtesaton Semikflealiva de Holcopters

Figura 15 O software Roteador de Helicopteros

35

Implementagdo em Visual Prolog de um Roteador de Helicipteros

14 Apéndice I - Trabalho apresentado no SICUSP 97

NN BN BN BN B B B AN

* 8 0 &8

AN

= = Aplicacio de Redes de Petri a um
Problema de Planejamento

Adriana Jacoto
Programa Especial de Treinamento - Eng. MecatrOnica
Orientador: Prof. Dr. José Reinaldo Silva
EPUSP

Abstract

This paper shows, using the Blocks World model-
problem, how a Petri Net structure analysis provides the
knowledge necessary to guide the plamning process.
Through the results of the Petri Net structure analysis,
we may establish a strategy for the problem solution
process. The Petri Net makes the problem modeling as a
Discrete Event System and is able to capture the
productive system's main features and its dynamic
behavior.

1. Introducio

S

A Rede de Petri promove a modelagem do problema de Planejamento
como um Sistema de Eventos Discretos (SED) e pode capturar a
caracteristica principal de um sistema produtivo que é o seu comportamento
dindmice. Como exemplo de aplicagdo, foi desenvolvida a estrutura da rede
de Petri que representa o dominio do problema do Mundo de Blocos. Este
problema consiste em se elaborar um plano para que um robé empilhe
blocos, visando, a partir de uma dada configuragdo inicial, atingir um estado
final previamente determinado. A partir deste desenvolvimento, pode-se
realizar a simulacdo do sistema, utilizando-se programagdo em PROLOG
aliada ao controle de um robé.

& ® " &5 8 08 0 q

\.
s
wl.

| .
AN

Implementagiio em Visual Prolog de um Roteador de Helicopteros

B B ¥ Bo%sudo Je agdes e de planos é fundamental no desenvolvimento de
sistemas inteligentes que sejam capazes de lidar eficazmente com os
problemas do mundo real. No processo de planejamento, a deciséo do
planejador acerca de qual curso de agdio tomar é escolhida a partir de um
vasto repertorio de possibilidades. Esta decisdo, por sua vez pode influenciar
os estados do mundo de maneiras diversas e complicadas. Tudo isto ¢é
realizado num mundo complexo ¢ dinimico em que o meio-ambiente esta
em mudanga continua.

Para se claborar um sistema de “planning”, é necessario um modelo
de mundo e um modelo de agio para atuar neste modelo de mundo. O
modelo de mundo pode ser aberto ou fechado. O modelo aberto trata do
ambiente desestrururado onde o planejador ndo tem controle sobre todos os
eventos que ocorrem no mundo. Por este motivo, este modelo ¢
computacionalemente complexo. Para se reduzir o problema computacional
associado ao modelo aberto, muitas vezes estabelece-se a hipotese do mundo
fechado. Neste modelo, apenas as clausulas cuja interpretagéio é conhecida
podem ser verdadeiras. Quando ¢ referenciada uma clausula cua
interpretagdo ndo é conhecida, entfio, esta ¢ imediatamente assumida como
sendo falsa. Isto reduz muito o problema computacional, mas, em
contrapartida, limita a aplicabilidade dos sistemas assim desenvolvidos.

A forma de representagio dos eventos e agdes ¢ determinada pelo
modelo de agdio. Este define as formas possiveis para se atuar sobre o
modelo de mundo. O modelo de mundo pode estar num dos seus infinitos
estados. Um estado é uma foto instantinea do mundo em determinado
instante.

Um plano pode ser visto como sendo a especificagio de uma
sequéncia de estados desejada sobre o modelo de mundo para se atingir uma
determinada meta, a partir de um estado inicial conhecido. Através da
andlise das propriedades estruturais da Redes de Petri que representa o
dominio da aplicagdo, podemos aprender estratégias de busca e dirigir o
processo de resolugéo do plano.

. 8 F h NS ED

#
2. O Mundo de Bloco

= T e A e T e | PR SR e Tl

Inicialmente foi proposto o problema de se elaborar um plano para
que um robd empurrasse trés blocos de modo a junta-los. Em 1974, Gerald
Jay Sussman propds uma variante deste problema gue consiste em se
empilhar blocos, que ficou conhecido como o problema do Mundo def
Blocos. Este problema ¢ importante porque, apesar da sua aparesie’l
simplicidade, ele

H W W

87

Implementagiio em Visual Prolog de um Roteador de Helicdpteros

Hpresehtd 1848 48 Shracteristicas que dificultam a automagdo dos problemas
de planejamento!

Os sistemas classicos de planejamento definem o plano como uma
sequéncia de operadores que representa agdes que devem ser efetuadas para
se transformar um determinado estado inicial no estado meta desejado. Em
#mis sistemas a elaboracdo do plano ndo leva em conta o sucesso ou falha na
§xecucéio do plano. Os sistemas mais significativos dentre os sistemas
elassicos de planejamento sio o General Problem Solver (GPS) ¢ o Stanford
§esearch Institute Problem Solver (STRIPS).

A principal contribuigdo do GPS esta na abordagem meios-fins, gue
constitni uma técnica para dirigir o processo de busca de solugGes.
Basicamente, a abordagem meios-fins é uma forma de atingir a meta
estabelecendo submetas, cujo atingimento leva ao atingimento da meta
inicial. No GPS, as sentengas logicas sdo chamadas de objetos, que podem
ser comparados com os estados do mundo.

O STRIPS foi o primeiro sistema de planejamento bem sucedido. Este
sisterna tenta encontrar uma sequéncia de operadores no espago de modelos
do mundo, para transformar um dado modelo do mundo inicial num modelo
em que uma determinada meta possa ser provada como sendo verdadeira. O
STRIPS representa um modelo do mundo com uma colegdo arbitraria de
formulas do calculo de predicados de primeira ordem, empregando um
provador de teoremas, que emprega o método de resolugdo, para responder a
questdes de determinados modelos ¢ usa a andlise meios-fins empregada no
GPS para gui-lo até o modelo do mundo dessjado que satisfaga 4 meta.

88

Implementacio em Visnal Prolog de um Roteador de Helicopteros

& B SAMnAiora"dos sistemas de planejamento utiliza uma representagdo do
tipo STRIPS. Westa representacdo, a descrigdo de uma agéio apresenta: uma
pré-condicdo, uma lista de adicdo e uma lista de eliminacdo. A lista de
adi¢do define clausulas que poderiam néo ser verdadeiras no modelo original
mas que sdo verdadeiras no novo modelo que resulta apds a aplicagdo do
sperador A lista de eliminagdio especifica clausulas do modelo original que
fjdo sdo mais verdadeiras no novo modelo.

. Busca-se atingir o modelo do mundo desejado aplicando-se
ducessivamente um conjunto de operadores STRIPS a partir do modelo do
mundo inicial. Os sistemas aplicam agSes para modificar o estado do mundo
se suas pré-condi¢des forem verdadeiras. O efeito da aplicagdo de uma agéo
&sta expresso nas listas de adigdo e de eliminagdo.

Entretanto, esta forma de representac@io apresenta problemas, sendo a
sua principal deficiéncia o fato de ndio considerar a dependéncia entre metas
concorrentes. Isto porque adotou-se a teoria linear que assume que quaisquer
duas submetas de um problema podem sempre ser obtidas de uma forma
independente. Desta forma, uma conjungdo de metas era dividida em
submetas para as quais se tentava obter uma solugdo isoladamente. E claro
que esta hipotese ndo é verdadeira para a maioria dos problemas de
“planning”. Por este motivo, um sistema que emprega este tipo de
representacdo ndo ¢é capaz de contextualizar corretamente o efeito da
gplicagéo de uma ac¢&o.

Uma consequéncia importante desta deficiéncia é a Anomalia de
Sussman. Na Anomalia de Sussman, o atingimento de algumas metas pode
requerer o estabelecimento de submetas para satisfazer pré-condigbes que
irdo desfazer clausulas do estado meta anteriormente j&4 verdadeiras. Deste
modo, o programa entra num processo de “looping” sem progresso em
dire¢do ao estado meta desejado.

Considerando-se o problema do Mundo de Blocos, suponha-se que
existam trés blocos na mesa, A, B e C, e que se deseja construir uma pilha
onde A esteja sobre B, B sobre C, e este ultimo sobre a mesa. Nenhuma
conjungéo é encontrada para resolver o problema. Entéio, ¢ estabelecida uma
estratégia de resolugfio. A teoria linear que determina as conjungdes sugere
que, primeiramente, mova-se A sobre B, e depois, B sobre C. Se as submetas
sdo independentes, sua ordem ndo importa, entdo a ordem arbiiréria é
adotada. Desta forma, o robd primeiro coloca A sobre B, Em seguida, tenta
colocar B sobre C, mas isto significa que ele necessita mover B. Mas o robé
nio pode mover B com A sobre ele (existe uma restricdio fisica 3 mio do
robd), e assim ele remove A de B e coloca A sobre 2 mesa. A seguir, coloca

A

89

Implementacio em Visual Prolog de um Roteador de Helicopleros

¥ B Sobfe'€ ¥ dBnSidera que a meta foi atingida. Entretanto, A ndo se encontra
sobre B!

Este fenomeno acontece porque no modelo de agdo do STRIPS, o
efeito da aplicagdo de cada agdo ndo estd bem contextualizado. Agdes
distintas no seu efeito sdo erroneamente avaliadas como equivalentes. Todos
os operadores apresentam igual oportunidade de serem escolhidos na hora de
se decidir qual operador sera aplicado em seguida. A abordagem meios-fins,
criada no GPS, é o Gnico critério empregado para se discriminar 0s
operadores. Se o operador for considerado relevante para o atingimento do
estado meta e se todas as suas pré-condigbes forem verdadeiras, entdo, o
operador € aplicado logo em seguida.

= ® 5 2 9 8 P & K P

3. Redes de Petri

e e e T S e e N TR

A andlise da Rede de Petri que representa o dominio do problema
pode sugerir estratégias de busca para dirigir o processo de solugdo do
problema, por exemplo, para definir quais transi¢des estdo habilitadas em
determinado instante.

A teoria das Redes de Petri é aplicada tradicionalmente ao problema
de controle de sistemas discretos. A Rede de Petri permite a representaciio
formal dos estados e da evolugiio de um sistema de eventos discretos.
Permite explicitar relagdes entre estados, por exemplo: dependéncia de
ordem parcial entre estados, existéncia de eventos concorrentes ou
excludentes, compartithamento de recursos, etc.

A andlise estrutural de uma Rede de Petri pode prover informagdo
importante para uma abordagem ndo-procedimental em sistemas de eventos
discretos. O conhecimento sobre a estrutura do problema pode subsidiar
formas de busca mais eficazes, e a minimizag3o do “backtracking”.

A figura a seguir mostra a representagio ¢m Redes de Petri que
constitui 0 modelo para o probiema do Mundo de Blocos. A partir da figura,
é possivel observar-se que todos os estados podem ser atingidos a partir do
estado em que todos os blocos estdo sobre a mesa, Este estado ¢ designado
“no essencial”.

Além disso, pode-se identificar trés componentes conectadas ou
subredes. Estas subredes definem agrupamentos de agdes inter-relactonadas
pela causalidade. Estas subredes estiio interligadas através do “né gssencial”.
Desta forma, analisando a estrutura da Rede de Petri, podemos efetuar uma
decomposi¢o do problema em subproblemas que sdo independentes, ded
uma sy

L BE 2% BN 3R BE

90

Implementacdo em Visual Prolog de um Roteador de Helicopleros

> 8 B B BB E B

L DL B B B

NO ESSENCIAL

1

[4]
2 _[8]

3]
« Al

10

|| e

112

13

% % 5 & R % 8 8 5 ¥ 58N

b

91

Implementagdo em Visual Prolog de um Roteador de Helicopteros

B Fhahcirataliqte ™
¢ 0 estado onde todos os blocos estio sobre a mesa é um noé essencial do
grafo
e o primeiro bloco movido a partir do n6 essencial determina uma sucesséo
de estados dependentes desta agdo que estio na mesma componente
conectada
e existe sempre um plano que corresponde a distincia minima entre dois
estados que pertencem a uma mesma componente conectada
e o plano envolvendo dois estados em duas componentes conectadas
diferentes deve passar necessariamente pelo n6 essencial
O conhecimento obtido a partir de uma analise da Rede de Petri que
representa o dominio para este problema é muito importante. Como
resultado da analise da Rede de Petri, pode-se sugerir o seguinte algoritmo
para resolver este problema de planejamento:
Sejam dados EI = estado inicial, M = conjuncdo de metas ¢ NE = nd
essencial:
1) Se M ja é verdadeiro (EI = M) entéo fim
2)Se EI e M estio na mesma componente conectada entdo existe um
caminho entre EJ ¢ M sem passar pelo n6 essencial. Resolva M usando um
mecanismo do tipo meios-fing, obtendo o plano final P
3) Caso contrario, gere uma submeta NE = n6 essencial obtendo um sub-
plano Parciai-1. A seguir, resolva M a partir do no6 essencial (VE) usando
um mecanismo do tipo meios-fins obtendo um sub-plano Parcial-2. O
plano final resulta da concatenagdo dos planos parciais P = Parcial-1 +
Parcial-2
O algoritmo usa o conhecimento obtido a partir de uma andlise da
Rede de Petri que representa o conhecimento do dominio e é capaz de evitar *
o problema da Anomalia de Sussman. Este algoritmo faz a decomposigio do
problema baseado na analise da estrutura da rede. Este conhecimento estd
baseado na nog¢do de transigdes independenies para assegurar a
independéncia de cada uma das subredes ¢ na existéncia do “né essencial”
que faz a conexdio entre todas estas subredes. A interdependéncia pela
causalidade ocorre apenas entre a¢des que pertencem a mesma componente
conectada do grafo

J

w
4. Conclusio

4 % & & ¥ B &

. 3 % 5 . |
Posteriormente, 0 mesmo método podera ser aplicado a automacmi;

de

92

Implementaciio em Visual Prolog de um Roleador de Helicopteros

® F P OF P S ¥ & F LR BESES AN

WUra AU ¥e®manufatura. Baseado no fato de que o processo de
autornatizacao é crescente, conclui-se que, torna-se cada vez mais
importante obter metodologias para desenvolvimento destes sistemas de
planejamento que assegurem a elaboragio de planos com garantia da
qualidade.

A aplicacdo da programagdo em PROLOG a esta area da inteligéncia
artificial tem se revelado pratica ¢ eficiente, e tem sido utilizada no processo
de implementagdo pratica dos conceitos de planning entdo descritos. Com
esse proposito, tém sido utilizados também dois robés MOVEMASTEREX
Mitsubishi, pertencentes ao LSI (Laboratorio de Sistemas Integraveis) na
Escola Politécnica da USP.

5. Bibliografia

SHIMADA, L.M. Estruturagic do Problema de Planejamento em uma Abordagem
Baseada em IA @ no Formalisme de Redes de Petri. Sic Paulo, 1997.

SUSSMAN, G.J. The Virtuous Nature of Bugs. MIT AI Lab, 1874.

Implementagiio em Visual Prolog de um Roteador de Helicopteros

15 Apéndice I - Trabalho apresentado no SICUSP 98

Implementacio em Visual
PROLOG de um Roteador de

: Helicopteros

i André de Bessa Santos

. Adriana Jacoto

: Programa Especial de Treinamento - Eng. Mecatronica
» Orientador: Prof. Dr. José Reinaldo Silva

EPUSP

w
1. Introducéo

O roteador de helicopteros é constituido de um sistema para elaborar a
programacdo de vdos de helicopteros entre uma base localizada em terra €
plataformas de petréleo localizadas no mar. Este tipo de transporte consiste
em levar passageiros a partir do aeroporto no litoral, denominado de base,
até os heliportos localizados nas plataformas no mar e recolher passageiros a
partir destes e leva-los até a base. O objetivo € atender 3 demanda de
passageiros no menor tempo de atendimento e com o menor custo,
considerando a d1$pon1b1hdade de helicOpteros.

O sistema roteador é uma aplicagdio de uma metodologia envolvendo a
analise de uma estrutura em Redes de Petri e Inteligéneia Artificial na
solugiio de um problema de “planning”. Nesta abordagem, a partir da analise
da estrutura da Rede de Petri do modelo do dominio, pode-se obter critérios
de escolha da proxima agfo a ser efetuada no plano que esta sendo elaborado «
e, deste modo, dirigir o processo de busca da soluggio. Desta forma, tem-se *
um sistema planejador que elabora solugdes com mais qualidade. Al
arquitetura do sistema é de um planejador semi-reativo, ou se€ja, © sistema »
sempre tem um plano completo corrente e, além disso, no caso de |
cancelamento de uma tarefa anteriormente prevista, esta € snnplesmente :
retirada do plano corrente, sem que seja retomado o processo de “planning”.

Implementagiio em Visual Prolog de um Roteador de Helicopteros

& % % 2 6 & s " PSSR SRS

= '(ﬁrﬂ)&lﬂ de desenvolvimento do software do roteador esta previsto
para Comtirtuar durante o proximo ano. Ja foi concluida a primeira etapa, que
consiste no estudo do problema, das técnicas utilizadas para a modelagem e
do método de solucdo. Paralelamente a este estudo também foi realizado um
treinamento no ambiente de programagdo Visual PROLOG, no qual o
software fo1 programado.

ﬂ

2. O Roteador de Helicégteros

O sistema Roteador de Helicopteros objeto deste trabalho foi
originalmente desenvolvido como aplicacdo na Tese de Doutorado de Licio
Mitio Shimada, apresentada a Escola Politécnica da Universidade de Sdo
Paulo em 1997. A anilise deste sistema tem como objetivo o futuro
aperfeigoamento do software através da complementagio de rotinas visando
obter melhorias funcionais de ordem pratica, no que tange ao funcionamento
do programa e & manipulagdo dos dados, e estética, a partir do
desenvolvimento de uma interface grafica mais completa e amigével.

" Interface

Tabelas:
frota Helipontos
disponivel Helicdpteros

~ requisicao
viagens consulta

.l-
l::> Roteador C}

@ Planos de Voo B.D.
plataformas E Y

O Roteador de Helicopteros consiste em um sistema para elaborar a

@ 5" &2

LI S 30 B B B U B AN

programacdo de vdos de helicopteros entre uma base localizada em terra ‘

(“on-shore”) e plataformas de petréleo localizadas no mar (“off-shore™).

95

Implementagio em Visual Prolog de um Roteador de Helicopteros

e 5 PO NS Y

" 8w

W B B§MiBo™e transporte consiste em levar passageiros a partir do
aeroporto 1o litoral, denominado de base, até os helipontos localizadas nas
plataformas no mar e recolher passageiros a partir destes e leva-los até a
base.

Este sistema ¢ utilizado na rotina do dia-a-dia pelo programador de
vdos. Para cada borario de partida do vbo a partir da base, existe uma
demanda de passageiros de ida para as plataformas e de volta para a base. O
objetivo ¢ atender a demanda no menor tempo de atendimento e com o
menor custo, considerando a disponibilidade de helicopteros. Para se ter uma
idéia da sua complexidade, este problema envolve 50 helipontos, 16
helicépteros que podem ser de sete tipos diferentes, cinco horarios de partida
dos voos e até 20 mil passageiros transportados no més.

Uma abordagem que associa uma analise da estrutura em Rede de
Petri e IA pode methorar o desempenho na solugio do problema geral de
“planning”. Nesta abordagem, o primeiro passo no desenvolvimento de um
sistema de “planning” baseado em IA consiste na sintese de um modelo que
representa o dominio do problema baseado em Rede de Petri. A partir da
analise da estrutura da RAP deste modelo do dominio, podemos obter
critérios de escolha da proxima agio a ser efetuada no plano que esta sendo
elaborado e, deste modo, dirigir o processo de busca da solugo. Desta
forma, tem-se um sistema planejador que elabora solugbes com mais
qualidade, evitando a Anomalia de Sussmann.

o TO
base : >;<:7L
| [i
Q—ﬂ 1 plat isolada

grupa plats,
4 < dist. <12 km

O modelo conceitual do problema foi elaborado usando-se diversos niveis de
abstracio. Para cada nivel de abstraglo, foram definidos modelos do
dominio correspondentes. Nos modelos de alto nivel, os lugares sdo
constituidos por grupos de helipontos com coordenadas geograficas de
localizagdo proximas. O emprego destes niveis de abstragéo foi muito util

LA O 3 BN BE BB BN J

porque podemos rotear passaggiros paraida ou de volta de um grupos de 4

96

Implementagio em Visual Prolog de um Roteador de Helicopteros

W N W BO¥ #v8sMe abstracio usados foram trés: Nivel 0, Nivel 1 e Nivel 2.
WG Nivel B Bu nivel “ground” os boxes da RdP sdo constituidos pelas
plataformas tratadas isoladamente (s). No Nivel 1, os boxes representam
plataformas isoladas (e) ¢ grupos de plataformas distantes entre si até 4 km
(»). No Nivel 2, os boxes representam plataformas isoladas (e), grupos de
plataformas distantes entre si até 4 km (+) e grupos entre 4 kme 12 km (o).

— —_—

: T T
NINED 20]
R

» grupo plats. ; \ |
4 < dist. <12 km y /
: e _i/

s 8 £ 2" B eS8 " e H S S E

[]
GEt <apm | e A —
N ; ;/af e\/ J AT _'.\
4 [[]
plataformas { [® : [(e®) ©® [®
isoladas NG / \ * %
o < _,—/‘ _— ——

A figura a seguir mostra a representagéio usando Rede de Petri do
processo de agrupamento de helipontos e de sintese do modelo do dominio. .
A sintese do modelo do dominio envolve ainda o calcule das distancias que *
correspondem & cada transigdo. Estas distancias permitem a0 Roteador fazer |
o calculo do tempo de vbo estimado e, em consequéncia, o custo estimado »
da inser¢do do heliponto correspondente na rota,

&
»
-
-
»
»
L
*
L]

97

Implementacio em Visual Prolog de um Roteador de Helicpteros

EEEE

niveis-abstracao

Sptese-RAP RdP:

-

R rotas-RaF Erm

A figura a seguir ilustra uma representagéo do Roteador, usando uma
Rede de Petri. O plano é elaborado incrementalmente pelo Construtor de
Planos ou Roteador. O Construtor de Planos é um Ambiente de Rede de
Petri que opera sobre a rede que representa o conhecimento do dominio - o
“application model”.

rotas-rdp

98

Implementagdo em Visual Prolog de um Roteador de Helicdpteros

HM

= 3. O Software

O software Roteador de Helicopteros foi desenvolvido em Visual
: PROLOG verséo 4.0, Uma ilustragdo do programa em execugéo ¢ mostrada
» na figura a seguir.

PR £ocko Auda Window =181 xi
{riciaiza I-E]

*® @ % & & 5 kP " S

0
i Elabora_Plano ¥ Broanessom ar ove T W s e RSN LTS R TR U
v E Elibe_Flano_Comrente » Mostrar_Plano_Conente ¢ E
: Problema_Comente Ld sostiar_Irdicadore: Mum_Passageios
Modifica Plans_Coterts - Gravar_Plano_Comente Duwracag_e_Custos

sar T

Os dados de entrada sdo referentes aos helipontos, helicopteros e as
requisigdes de viagens. As informages dos helipontos e helicopteros sdo
fixas e sdo automaticamente lidas no inicio da execucfio do programa. °
Alternativamente, estes dados podem ser carregados a partir dos menus
Helicoptero | Inicializa | Helipontos | Inicializa_todos e Helicoptero |
Inicializa | Helicopteros | Inicializa_todos. Alguns exemplos de dados
relativos a helipontos e helicopteros sfo mostrados a seguir.

subrede a:
HELIPONTO ORDENADA ABCLSSA

mcae 215308.92 7526587.82
ss19 313432 7482033
ss01 314151 7481908

L 2
-
L
»
L]
t
»
»

99

Implementaciio em Visual Prolog de um Roteador de Helicopteros

HEERNNREBrede a:
HELIPONTO ORDENADA ABCISSA

mcae 215308.92 7526587.82
ssl9 313432 7482033
ss01 314151 7481909

Os dados das requisi¢des de viagens (demanda) sdo lidos a partir de
arquivos escolhidos pelo usuério através do menu Helicoptero | Inicializa |
Requisicio Viagens | ler caso arquivo. Estes dados podem ser
modificados através da atualizagdo destes arquivos.

O plano de roteamento pode entdo ser elaborado a partir do menu
Helicptero | Elabora_Plano | Elaborar_Plano, como mostrado a seguir:

=] B3

e Helicopteros usando Redes de Petn [Planejador]

& & & b % 8 2 % & PFPESDP O S

O _

bl Flabiva_Flano

. E EXibir_Plano_Corrente

¥ | Problema_Conente » f‘ .
Hediicar_Plano_Consnle #

Saw ra: 4:13:50:94

nivel: 0 problema; PB612AM horario: 08:00 subrede: subrede

metas:

heliponto: ss20 ida: 4 volta:3

heliponto: reel ida: 3 volta:2

heliponte: pchl ida: 2 volta:l _ i
helipento: pnal ida: 2 volta:3 o i

Um exemplo de um plano obtido a pattir do software € listado a
seguir. O plano e seus detalhes e pardmetros podem ser visualizados a partir

do menu Helicoptero | Exibir_Plano_Corrente. ¢
»

Data: 5/11/1998 Hora: 4:13:50:94 »

»

nivel: 0 problema: P0612AM horaric: 08:00 subrede: *
subrede b :
metas: y |
heliponto: s8s20 ida:; 4 volta:3 9'??,»
heliponto: reel ida: 3 volta:2“

100

Implementagio em Visual Prolog de um Roteador de Helicdpleros

B EE hSliponte: pchl ida: 2 volta:1
heliponto: pnal ida: 2 volta:3
heliponto: ppgl ida: 2 volta:l
heliponto: pvm2 ida: 1 volta:3

. helicoptero: b-212 capac.:11

» custo (U$/hr): 374.00 weloc. (km/hr): 185.2

b nivel: 0 rota: 1 tempo de voo! dista{km):

: 08:00:00 mcae-pchl 00:42:54 132.43

i 08:42:54 pchl-pnal 00:01:52 5.78

. 08:44:46 pnal-mcae 00:44:46 138.21

Tempo total de Voo:01:29:33

@ custo (U$): 558.21

distancia: 276.419 km

E

L helicoptero: b-212 capac.:1ll

custe (US/hr): 374.00 wveloe. (km/hr): 185.2
nivel: 0 rota: 2 tempo de voo: dista (km) :
08:00:00 meae-ppgl 00:47:56 147.99
08:47:56 ppgl-pvm2 00:03:02 5.39
08:50:59 pvm2-s5820 00:09:24 29.03
09:00:23 ss820-reel 00:06:47 20.94
09:07:10 reel-mcae 00:49:49 153.82

Tempo total de Voo:01:57:00
custo (US$): 729,38
distancia: 361.169 km

custo total (US$): 1287.57
distancia total: 637.588 km
n.passag.: 27

custo unitario (U$/passag.): 47.69

Também é possivel trocar um helicéptero, eliminar ou incluir um
heliponto, depois de ja elaborado o plano, sem que seja necessério refazé-lo .
completamente, através dos comandos do menu Helicoptero |
Modificar_Plano_Corrente.

»
E]
»
%
-
»
[]
»

101

Implementacdo em Visual Prolog de um Roteador de Helicdpleros

+ Maodificacdes

LB BN BN BN BN BN O

A continuagdo deste trabalho prevé a implementagdo das seguintes
modificagdes no software:

1) Desenvolvimento de uma interface grafica mais amigavel, utilizando os
recursos disponiveis da programagdo em Visual PROLOG

2) Implementagéo de tépicos de ajuda para o software (menu Ajuda)

3) Roteamento dos helicopteros considerando a variagdio da capacidade dos
mesmos em fungdio da distincia a ser percorrida e do nimero de pousos €
decolagens a ser realizado (devido as diferengas de consumo de
combustivel)

4) Leitura dos dados de demanda de passageiros diretamente de um banco
de dados em rede, e armazenamento dos planos elaborados na forma de
relatorio

5) Elaboragdo de um plano para um dia inteiro considerando-se todos os
horérios programados ¢ a frota disponivel em cada horario

6) Modificagio do procedimento de alocagdo dos helicopteros visando
otimizagdo:; implementagdo de alocagdo conforme a demanda, em lugar
da pré-alocagdo por regido feita pelo algoritmo atual

102

[}
[
a
L]
¥
&

Implementagio em Visual Prolog de um Roteador de Helicopteros

16 Bibliografia

[2]

[31]

[4]

[5]

SHIMADA, L.M. Estruturag¢dc do Problema de Planejamento
em uma Abordagem Baseada em IA e no Formalismo de

Redes de Petri. S3o Paulo, 1997.

FIKES, R.E; NILSSON, N. STRIPS: A new approach to the
application of theorem proving to problem solving.
1971. In: ALLEN, J.; HENDLER, J.; TATE, A., coord.
Readings in planning. San Mateo, California. Morgan

Kaufmann, 1990. Cap.2, p.88-97.

SUSSMAN, G.J. The virtuous nature of bugs. MIT AI Lab,
1974. In: ALLEN, J.; HENDLER, J.; TATE, A., coord.
Readings in planning. San Mateo, California. Morgan

Kaufmann, 1990. Cap.3, p.111-117.

JACOTO, A. Programag¢gio em PROLOG aplicada a casos de
planning em robdtica. Sdo Paulo, USP, 1996. In:
Simpésio de Iniciagdo Cientifica da Universidade de
Sdo Paulo, 4 S&o Carlos 1996. Simpésio de Iniciagdo
Cientifica da Universidade de S3o Paulo, 4. [Resumos].

S3o Paulo, USP, 1996, Vol.2, p.336.

JACOTO, A. Aplicacio de Redes de Petri a um problema
de planejamento. S&c Paulo, USP, 1997. In: Simpdsio de
Iniciacdo Cientifica da Universidade de S&o Paulo, 5
1997 S&o Paulo. Simpdésio de Iniciagdo Cientifica da
Universidade de S83c Pauleo, 5. Resumos. Sdo Paulo, USP,

1997. Vol.2, p.280.

103

Implementacilo em Visual Prolog de um Roteador de Helicopleros

[6]

[7]

(8]

(2]

[10]

[11]

[12]

[13]

SANTOS, A.B.; JACOTO, A. Implementagdio em Visual
Prolog de um roteador de helicépteros. S&o Paule, USE,
1998. 1In: Simpésio de 1Iniciagdo Cientifica da
Universidade de S3ao Paulo, 6 1998 Sdo Carlos. Simpbdsio
de IniciagSio Cientifica da Universidade de S&o Paulo,
6. 6.8ICUSP : resumos. Sdoc Paulo, USP, 1998. Vol.Z,
p.359,

SANTOS, A.B.; JACOTO, A. Implementagio em Visual
Prolog de um roteador de helicopteros. Sé&o Paulo, USP,
1999. In: Simpésio de Iniciacdo Cientifica da
Universidade de Sao Paulo, 7 1999 Sdc Paulo. Simpdsio
de Iniciagdo Cientifica da Universidade de S&o Paulo,

7. 7.8ICUSP : resumos. Sdo Paulo, USP, 1999,

PETERSON, J.L. Petri Net Theory and the Modeling of
Systems. Englewood Cliffs, Prentice-Hall, i981.

NILSSON, N.J. Principles of Artificial Intelligence.
S.L., Morgan Kaufmann Publishers, 1993.

CHAKRABARTY, S., WCOLTER, J.A. Structure=-oriented
Approach to Assembly Sequence Planning. IEEE, 1997.

CLOCKSIN, W.F.; MELLISH, C.S. Programming in Prolog.
Berlim, Springer-Verlag, 1984.

ARITY CORPORATION. The Arity/PROLOG Language Reference
Manual. Massachusetts, 1988,

PROLOG DEVELOPMENT CENTER A/S. Visual PROLOG Version
4.0 - Language Tutorial. Denmark, 1996.

104

Implementagio em Visual Prolog de um Roteador de Helicdpteros

[14] PROLOG DEVELOPMENT CENTER A/S. Visual PROLOG Version
5.0 - Language Tutorial. Denmark, 1997.

105

