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RESUMO

O desempenho da perfuracdo em operacdes offshore em grandes laminas
d’agua é essencial para a viabilidade econémica dos projetos de exploragdo e
producdo de Oleo e gas. Esse desempenho depende da condicdo da coluna de
perfuracéo e de seus componentes durante todo o processo, sendo influenciado, em
particular, pelos movimentos da coluna dentro do pogo, que causam vibracdes
responsaveis por perdas de eficiéncia e desgaste dos equipamentos. Este trabalho
tem como objetivo construir um simulador numérico 3D para analisar o0
comportamento vibratério de uma coluna de perfuragéo offshore, a fim de entender as
dindmicas envolvidas e auxiliar no prolongamento da vida util dos equipamentos. Para
alcancar esse objetivo, implementou-se a modelagem numérica da coluna de
perfuracéo utilizando o Método dos Elementos Finitos (MEF) através do ambiente de
programacdo MATLAB®. O MEF se destaca por sua precisdo e viabilidade
computacional, permitindo uma anélise detalhada dos fendmenos vibratérios e suas
implicagcdes na integridade estrutural da coluna. O simulador trouxe resultados
confiaveis que permitiu representar, de forma simplificada, 0 comportamento estatico
e dinamico vibratorio da coluna de perfuracdo, quando esta ultima € induzida por
forcas que ocorrem durante uma perfuracdo, e através dele pode ser feito uma

avaliacdo do comportamento da linha neutra e o peso sobre broca (PSB).

Palavras-chave: Colunas de Perfuracdo, Vibracdes Mecanicas, Pocos de

Petréleo Offshore, Método dos Elementos Finitos.



ABSTRACT

The drilling performance in offshore operations in deepwater environments is
essential for the economic viability of oil and gas exploration and production projects.
This performance depends on the condition of the drill string and its components
throughout the process, particularly influenced by the movements of the drill string
within the well, which cause vibrations responsible for efficiency losses and equipment
wear. This work aims to build a 3D numerical simulator to analyze the vibrational
behavior of an offshore drill string to understand the dynamics involved and support
the extension of the equipment's useful life. To achieve this objective, the numerical
modeling of the drill string was implemented using the Finite Element Method (FEM)
in the MATLAB® programming environment. FEM stands out for its precision and
computational feasibility, allowing a detailed analysis of the vibrational phenomena and
their implications for the structural integrity of the drill string. The simulator provided
reliable results that contributed to representing, in a simplified way, the static and
vibratory behavior of the drilling string, when the latter is caused by forces that occur
during drilling, and through it an evaluation of the neutral behavior of the neutral point
and the weight on bit (WOB) can be made.

Keywords: Drill Strings, Mechanical Vibrations, Offshore Oil Wells, Finite
Element Method.
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1 INTRODUCAO

Na industria de Oleo e gas, a exploracao offshore representa um desafio técnico
e econdmico significativo. A exploragdo em aguas profundas exige tecnologias
avancadas e uma compreensao precisa dos fenémenos fisicos envolvidos. Um dos
componentes criticos nessas operacdes é a coluna de perfuracdo, que € sujeita a
diversas condicdes adversas, como altas pressbes, forcas de torcdo e,
particularmente, vibracfes. As vibracdes da coluna de perfuracdo podem causar
falhas mecaniamente e economicamente catastréficas, impactando a eficiéncia

operacional e a seguranca das operac0es de perfuracao.

A andlise de vibracdes € um campo essencial na engenharia, em termos de
controle de operacédo, sendo aplicavel a uma ampla gama de sistemas mecanicos e
estruturais. Na exploracédo offshore, a complexidade dos sistemas e as condi¢cdes
extremas do ambiente tornam essa andlise ainda mais importante. Métodos
tradicionais de andlise, embora Uteis, muitas vezes ndo conseguem capturar todas as

nuances do comportamento dindmico da coluna de perfuragdo em operacao.

O campo da industria de 6leo e gas tem avancado significativamente devido a
pesquisas fundamentais voltadas para a dinamica das colunas de perfuracdo e a
mitigacéo de vibracdes. Real (2018) contribuiu com a modelagem matemética e a
identificacdo experimental de vibragbes torcionais em colunas de perfuragao,
detalhando como oscilagbes axiais e torcionais afetam a integridade estrutural da
coluna. O estudo propds ajustes nos parametros operacionais, como rotacdo da broca

e peso sobre a broca, para minimizar os efeitos dessas vibracoes.

Khulief et al. (2008) investigaram a interacdo entre a coluna de perfuragao e a
parede do poco, analisando como o contato fisico contribui para vibracdes laterais e
0 desgaste da coluna destacando a importancia de considerar o atrito e a flexibilidade
da coluna para evitar falhas estruturais e otimizar o desempenho durante a perfuracao.
J& Cayres et al. (2015) realizaram estudos experimentais sobre o fendmeno de stick-
slip, caracterizado por movimentos alternados de travamento e deslizamento da broca
identificando o atrito seco como o principal fator causador dessas vibracfes e sugeriu
estratégias de controle, como o ajuste da rotacéo da broca e a aplicacdo de torque
controlado, para mitigar o problema e prolongar a vida til da ferramenta de corte.
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Dong e Chen (2016) ofereceram uma revisao abrangente das tecnologias de
avaliacao, controle e mitigacédo de vibracdes e choques em colunas de perfuracéo. O
estudo enfatizou o uso de sistemas de monitoramento em tempo real, que permitem
a deteccdo precoce de vibragdes prejudiciais e 0 ajuste automatico das condi¢des
operacionais, melhorando a seguranca e a eficiéncia das operacdes de perfuracao.
Ja Ghasemloonia et al. (2013) aplicaram o Método dos Elementos Finitos (MEF) para
modelar e analisar vibracdes em colunas de perfuracdo durante a perfuracao rotativa
assistida por vibragcdo. O estudo validou os modelos desenvolvidos por meio de
comparacdo com dados experimentais, oferecendo uma ferramenta robusta para
prever e mitigar comportamentos vibratorios complexos, contribuindo para o aumento

da confiabilidade do processo de perfuracéo.

Para abordar essas questbes, a simulacdo numérica surge como uma
ferramenta poderosa. Através da modelagem computacional, é possivel prever e
analisar o comportamento da coluna de perfuracdo sob diversas condicbes
operacionais. Entre os métodos numéricos que podem ser utilizados para estas
simulacdes, o Método dos Elementos Finitos (MEF) destaca-se por sua capacidade
de fornecer solugbes detalhadas e precisas para problemas complexos de
engenharia, este € um dos métodos numeéricos empregados para resolver equacdes

complexas.

Originado na area de mecanica estrutural, foi ampliado para outras areas da
mecanica dos sélidos e para campos como transferéncia de calor, dinAmica de fluidos
e eletromagnetismo. O MEF é amplamente reconhecido como uma ferramenta eficaz
para resolver equacdes diferenciais parciais e integrais-diferenciais e, no futuro
proximo, pode se tornar o método numérico preferido em varias engenharias e
ciéncias aplicadas (BATHE, 2007).

Uma das razfes para a popularidade do MEF é que ele resulta em programas
versateis, capazes de solucionar diversos problemas praticos com um minimo de
treinamento. No entanto, existe o perigo de utilizar esses programas sem uma
compreensao adequada da teoria por tras deles, o que ressalta a importancia de um

estudo detalhado e profundo da teoria que fundamenta o MEF (RAO, 2017).
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Neste trabalho de concluséo de curso, foi realizada uma simula¢cdo numeérica
para a andlise de vibracdo da coluna de perfuracéo offshore, utilizando o Método dos
Elementos Finitos. Foi desenvolvida toda a fundamentacdo teorica mecanica-
matematica necessaria para que sustente um estudo de caso, com dados reais, que
poder&o simular o comportamento dindmico de uma coluna de perfuragdo em um pogo
offshore que esteve sujeita a diferentes tipos de forcas e condi¢cdes iniciais. Atraves
dessa abordagem, espera-se contribuir para a melhoria da seguranca e eficiéncia nas

operacdes de perfuracao offshore industria de 6leo e gas.

1.1 Objetivo

A pesquisa tem como obijetivo criar um simulador numérico baseado no Método
dos Elementos Finitos (MEF), que descreva os deslocamentos estaticos e dinamicos
no dominio da frequéncia e do tempo, para avaliar uma coluna de perfuracdo de um
poco de petréleo offshore, onde permita avaliar o comportamento da linha neutra e do

peso sobre broca (PSB).

1.2 Justificativa

A utilizacdo de modelos computacionais reduz o potencial custo operacional e
aumenta a seguranca, pois permite simular diferentes cenarios, seus resultados e
antecipar possiveis condi¢gfes criticas no ambiente operacional. O aprimoramento de
tais tecnologias de simulagcdo mitiga diretamente operagdes com custo e

complexidade altos, como € o caso da extracdo de petréleo em aguas profundas.

Simulacgdes fidedignas de problemas complexos tendem a exaurir rapidamente
0S recursos computacionais, entretanto um ambiente de implementacdo amigéavel
torna a primeira abordagem mais simplificada gerando um acumulo de conhecimento
gue propicia a posterior escalabilidade computacional buscando melhores

arquiteturas e condicdes de execucao.
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1.3 Escopo

O escopo deste trabalho concentra-se na anadlise vibratéria da coluna de
perfuracdo offshore na industria de 6leo e gas, utilizando simulagdo numérica pelo
Método dos Elementos Finitos (MEF). O foco € desenvolver um modelo computacional
gue permita investigar o comportamento dinamico da coluna em condi¢des extremas,
visando prever deslocamentos e oscilacdes que possam comprometer a integridade
da estrutura. Assim, este estudo contribuira para o aprimoramento das operacdes de
perfuracdo, melhorando a seguranca e a eficiéncia nas atividades de exploracédo

offshore.

1.4 Organizacéao do trabalho

Primeiramente, séo introduzidos os fundamentos tedricos e metodologicos que
sustentam o uso do MEF para simulacdo. Em seguida, € descrito o desenvolvimento
do modelo computacional, incluindo as etapas de formulagcéo de equilibrio, condicbes
de contorno e contagem de graus de liberdade. Posteriormente, a implementagéo no
MATLAB® é apresentada com foco nos resultados e analises das frequéncias naturais

e das respostas vibratérias.
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2 REVISAO BIBLIOGRAFICA

2.1 Colunade Perfuracéao

A coluna de perfuragcdo é formada por uma série de tubos conectados que
descem pelo poco, desde a plataforma de perfuragdo até a broca como podemos
observar na Figura 1. Os principais componentes sao projetados para resistir a
condicOes extremas de carga e corrosao, pois a coluna suporta ndo apenas 0 peso
do equipamento e da broca, mas também pressdes e tensdes de rotacdo que sado
aplicadas durante o processo de perfuragdo. Em muitos casos, materiais como ligas
de aco resistentes sdo usados para garantir que a coluna suporte forcas axiais e de
torcdo. A integridade da coluna € crucial, pois qualquer falha pode interromper a
operacdo e levar a perdas de tempo e custos elevados para resolver problemas

estruturais no pogo.

Em perfuragbes offshore, a coluna de perfuragdo conecta a plataforma a broca
e precisa lidar com as condicbes adversas do ambiente marinho. O sistema de
elevacdo permite movimentar a coluna verticalmente, aplicando o peso necessario
para a perfuracao e suportando seu peso total. Montado na torre de perfuracéo, o Top
Drive, acoplado a catarina, aplica torque diretamente a coluna transmitindo rotagéo e
impulsionando a broca. Esses componentes sao fabricados em ligas de aco de alta
resisténcia para suportar as intensas forcas axiais e de torcéo, prevenindo falhas que
poderiam interromper a operacdo e gerar altos custos de manutencdo em caso de

danos estruturais.
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Figura 1 Esquema Estrutural da Coluna de Perfuragdo numa Plataforma Offshore.

Top drive

Fonte: Adaptado de Wang et al. (2018)

2.1.1 Componentes da Coluna

A coluna de perfuracdo é composta por varias secfes, cada uma com um
proposito especifico. Conforme Mitchel et al. (2011) os principais componentes

inclusos no esquema estrutural na Figura 2 incluem:
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Figura 2 Representacdo simples da Coluna de Perfuracdo com seus Componentes.

v
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Fonte: Mitchell et al. (2010)

Tubo de Perfuracédo (Drill Pipe): Este é um dos componentes fundamentais
da coluna de perfuracao e sua funcéo principal € transmitir o torque gerado pelo
Top Drive (offshore) até os Comandos. Ele consiste em tubos metélicos ocos e
cilindricos, geralmente feitos de aco ou ligas de alta resisténcia, projetados para
suportar tensdes elevadas, torcdo, compressao e forcas de flexdo durante a

operacao constituem a maior parte da coluna (<90%).

Comando (Drill Collar): Posicionado logo acima da broca, o Comando fornece
0 peso sobre a broca necessario para ter eficiéncia de perfuracao, estabilizando
a coluna e permitindo maior controle sobre a rotacdo e o deslocamento da

broca.

Broca (Drill Bit): A ferramenta na extremidade da coluna que realiza a

perfuracéo do solo.
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Estabilizadores e Ferramentas de Substituicdo (Sub-Assemblies): Estes
sao colocados em pontos estratégicos para centralizar a coluna no poco, o que
ajuda a reduzir o desgaste nos componentes e na parede do poc¢o. Além disso,
estabilizam a coluna para permitir um controle direcional mais preciso, que &

vital para pocos inclinados ou de perfis complexos.

Bottom Hole Assembly (BHA): é o conjunto de componentes que se localiza
na extremidade inferior da coluna de perfuracdo e desempenha um papel
crucial no controle e direcionamento da broca durante a perfuracdo de pocos.
O BHA é composto por varias ferramentas e acessoOrios que servem para
melhorar a eficiéncia, estabilidade e precisdo da perfuracdo. Suas principais
funcdes incluem fornecer peso sobre a broca (Weight on Bit, WOB), manter a
direcéo e inclinacao da perfuracao, e amortecer vibracdes para aumentar a vida
uatil dos componentes (CUNHA, SOIZE e SAMPAIO, 2015).

Vibracdes em Colunas de Perfuracéao

As vibracGes sdo um dos desafios mais criticos na operacao de colunas de

perfuracdo. Segundo Azar e Samuel (2007) elas ocorrem devido a varias fontes, como

a interacdo com as formacdes geoldgicas e o movimento da broca, e podem resultar

em falhas estruturais, perda de eficiéncia e aumento dos custos de operacédo. As

vibrac6es podem ser divididas em trés tipos principais conforme descritas abaixo e na

Figura 3:
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Figura 3 Modos de Vibracdes Primérias de uma Coluna de Perfuragéo.

Bending
Vibrations

Torsional
Vibrations

Axial
Vibrations

Fonte: Hakimi e Moradi (2010).

e Vibracdes Axiais: Sdo movimentos ao longo do eixo da coluna e podem
causar movimentos “para cima e para baixo” que afetam a broca e os

componentes proximos.

e VibracOes Laterais: Estas ocorrem perpendicularmente ao eixo da coluna,
gerando forcas que podem levar a danos no equipamento ao colidir com as

paredes do poc¢o. Sdo uma das causas de desgaste nos tubos e na broca.

e Vibracdes de Torcao: Essas vibragbes causam variagdes na rotacao, o que
pode levar ao fenébmeno de “stick-slip” (parada brusca seguida por movimento

subito), que prejudica o controle e aumenta o risco de falha.

Essas vibracdes tém implicagcbes operacionais e econdmicas, pois podem
reduzir a eficiéncia da perfuracdo e encurtar a vida util dos componentes. Métodos
como o uso de amortecedores, tensionadores de risers, compensadores de heave,
ajustes de velocidade de rotacéo, e estabilizadores sdo comumente aplicados para

reduzir esses efeitos e manter a operacéo dentro de parametros seguros e eficientes.



19

2.1.3 Movimento de Heave e Estabilidade

No ambiente offshore, a perfuracdo de pocos de petréleo e gas enfrenta
desafios adicionais devido as forcas dinamicas impostas pelo mar. Entre essas forcas,
0 movimento de heave é um dos mais impactantes. O heave é o movimento vertical
de uma plataforma flutuante ou navio induzido pelo movimento das ondas. Esse
deslocamento afeta diretamente a coluna de perfuracdo e o0s equipamentos
conectados e assim duas tecnologias principais, o Tensionador de Riser (MRT) e os
Sistemas de Compensacao de Heave, desempenham papéis complementares na
mitigacdo desses efeitos, garantindo eficiéncia e seguranca nas atividades de

perfuracéao.
e« Tensionador de Riser (MRT)

O tensionador de riser € um sistema essencial em plataformas ou embarcacdes
offshore, projetado para manter uma forga constante para cima no riser, compensando
0S movimentos verticais da estrutura flutuante. O riser conecta a plataforma ao
cabecote no leito marinho, e o tensionador gerencia o0 movimento relativo entre

ambos.

Sem o0 tensionador, o0 riser corre riscos significativos: movimentos
descendentes da plataforma podem causar flambagem, enquanto movimentos
ascendentes podem esticar e danificar o riser. Os sistemas modernos de MRT utilizam
mecanismos avancados de tensionamento com cabos, garantindo a estabilidade do

riser sob condi¢cdes variaveis do mar (SPARKS, 2007).

Ao proporcionar tensdo constante, esses dispositivos protegem o riser,
permitindo a transmissao de fluidos e ferramentas entre a superficie e o fundo do mar,

enguanto resistem as forcas dinamicas do ambiente marinho.
e Sistemas de Compensacao de Heave

Complementando o MRT, os sistemas de compensagdo de heave
contrabalancam o movimento vertical da plataforma causado por ondas e correntes.
Esses sistemas servem para manter o peso constante na broca (Weight on Bit, WOB),

garantindo desempenho uniforme e protegendo a coluna de perfuracao.



20

Os compensadores de heave minimizam os efeitos do movimento vertical ao
isolar a carga dos deslocamentos da plataforma. Existem diferentes tipos de sistemas
(ALBERS, 2010):

« Compensacao Ativa (AHC): Usa controle automatizado e energia para ajustar
a posicao da carga em tempo real.

e Compensacado Passiva (PHC): Emprega molas mecéanicas ou pneumaticas

para absorver movimentos, oferecendo uma solucdo mais simples.

e Compensacdo Balanceada (BHC): Converte forcas nao lineares de molas
pneumaticas em forcas lineares ajustaveis, garantindo maior estabilidade em

operacdes sensiveis.

Esses sistemas protegem a coluna de perfuracdo e os equipamentos de
tensbGes excessivas, prolongando sua vida util e reduzindo o tempo de inatividade
devido a falhas.

2.1.4 Linha Neutra

A linha neutra em uma coluna de perfuracéo representa a localizacdo onde a
tensdo axial se transforma em compressdao como podemos ver na Figura 4. Sua
posicdo € importante para manter a integridade estrutural e a eficiéncia operacional
da coluna de perfuragdo. Idealmente, a linha neutra esta localizada dentro dos drill
collars, que sao projetados especificamente para lidar com cargas de compresséao.
Quando bem posicionada, os drill collars suportam o peso sobre a broca (WOB) e
garantem que os tubos de perfuracdo (drill pipes) permanecam sob tensao,
minimizando o risco de flambagem e desgaste. Essa configurag&o permite que a broca
opere de maneira eficiente, protegendo a integridade do poco e dos componentes da
coluna de perfuracdo (MITCHELL et al., 2010).

No entanto, desvios dessa posicdo ideal podem causar problemas
significativos. Se a linha neutra se deslocar muito para baixo dentro dos drill collars,
aproximando-se da broca, pode haver insuficiéncia de compresséo nos collars,

reduzindo sua capacidade de transmitir o peso necessario para a broca. Isso resulta
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em uma operacao ineficiente, com menor WOB, o que compromete a taxa de
penetracdo (Rate of Penetration, ROP) e a eficacia da perfuracdo. Em casos
extremos, se a linha neutra teoricamente se deslocar abaixo da broca, toda a secao
dos drill collars operara sob tensdo em vez de compressao, tornando-os incapazes de
estabilizar o BHA e incapaz de perfurar (BOURGOYNE et al., 1986).

Por outro lado, se a linha neutra se deslocar acima dos drill collars e entrar nos
tubos de perfuracdo, estes, que ndo sao projetados para lidar com forcas
compressivas, tornam-se vulneraveis a flambagem. Essa condi¢do frequentemente
resulta em flambagem helicoidal, onde o tubo entra em contato com as paredes do
poco, causando desgaste excessivo, aumento de torque e arraste, e possivel falha
dos tubos. Nesse caso, os drill collars podem né&o fornecer peso suficiente sobre a
broca, levando a uma perfuracéo ineficiente e a baixas taxas de penetragdo. Além
disso, o poco pode sofrer danos devido & interag&o instavel entre o tubo flambado e
as paredes do poco, aumentando a probabilidade de incidentes de stuck pipe (quando
0s tubos ficam presos no poco) e elevando os custos operacionais (LOOYEH;
AADN@Y, 2011).

Segundo Mitchell et al. (2010), o comportamento da linha neutra € influenciado
por vérios fatores, incluindo o design da coluna de perfuracéo, a densidade do fluido
de perfuracdo e o WOB aplicado. O planejamento adequado e o monitoramento em
tempo real sdo criticos para manter a linha neutra na posicdo desejada. Ajustar a
flotacdo do fluido de perfuracdo pode ajudar a gerenciar as forcas que atuam na
coluna, enquanto dados em tempo real sobre WOB e torque podem orientar ajustes
durante as operacdes. Em condicfes offshore, com movimentos dinamicos causados
pelo heave das ondas e outros fatores, esse controle torna-se ainda mais critico para
evitar desgastes e rupturas ao longo da coluna (MOHAMMADZADEH, et al. 2022).
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Figura 4 Representacdo da linha neutra na Coluna de Perfuragéo.
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Fonte: Adaptado de Bourgoyne et al. (1986)

Para dimensionar corretamente a coluna de perfuragdo e garantir que a linha
neutra permaneca em uma posicao ideal, € fundamental determinar a quantidade
adequada de drill collars, sendo essa definicdo essencial para fornecer o WOB
adequado e manter a estabilidade da coluna. O calculo do comprimento total da secao

de comandos pode ser realizado utilizando a seguinte Equacgéo 2.1 (BOURGOYNE et
al., 1986):

W OB, 0x
Lpr = 2.1
PETFS - w-a-cos(dp) (21)
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Onde WOB,,,, € 0 peso sobre a broca maximo em (N), FS é o fator de
seguranca, w € o peso linear do drill collar (N/m), ¢ é o &ngulo do po¢o em relacdo a
vertical (°) e a € o fator de flutuacdo, que este ultimo pode ser dado pela Equacéo 2.2

a seguir:

Pr
paco

a=1-—

(2.2)

Onde ps € py, SA0 as densidades do fluido de perfuracdo e do acgo

respectivamente.

E por fim, para de fato ajustar a localizacao da linha neutra ha a necessidade
de aplicar uma tensao controlada, através do sistema de elevacao (Hoisting System),
de valor ligeiramente inferior ao peso total da coluna de perfuragao F; para assim

permitir que ela se localize idealmente no topo da secéo dos drill collars.

2.2 Discretizando a Coluna de Perfuracéao - Sistema de Molas

O desafio de representar uma estrutura como uma coluna de perfuracéo reside
na formulacdo das equacdes de equilibrio, que emergem das leis de Newton para a
estética e da lei de Hooke. Quando os deslocamentos de uma estrutura, ou seja, suas
variagdes, sdo representados através dos deslocamentos das extremidades da barra,
definidas como n@s, é essencial assegurar que a lei da estatica seja satisfeita para
todos os graus de liberdade. A quantidade de graus de liberdade (GDL) por n6 varia

conforme a natureza do elemento estrutural no modelo, como vigas ou estruturas 3D.

A ordem do sistema é determinada pelo produto entre o nimero de nos e o
nuamero de graus de liberdade (GDL) por né. O sistema linear sera singular, a menos
gue sejam aplicadas restricbes adequadas ao movimento, representadas por um
conjunto de deslocamentos ou rotacdes nulos ou conhecidos, conhecidos como

condi¢Bes de contorno cineméticas.

Ao introduzir alguns conceitos basicos de mecanica, para elementos que se
comportam como sélidos linearmente elasticos, a lei do equilibrio elastico para toda a

estrutura pode ser resumida narelacdo F = KU. Nessa formula, F representa o vetor
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de forca, K € a matriz de rigidez e U é o vetor de deslocamento como podemos ver na

Figura 5.

Figura 5 Uma mola com rigidez K e seus deslocamentos e forgas.
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Fonte: Parreiras (2019)

Considerando a mola em equilibrio pela lei de Newton XF = 0 obtemos a

Equacéo 2.3:
F,+F =0F+F, =0 (2.3)

Onde F; e F, sdo forcas externas enquanto F.eF, sdo as forcas internas

devido a forca restauradora da mola. Assumindo que a mola se comporta linearmente,
ou seja, seguindo a lei de Hooke temos E. = —kAu, onde o equilibrio pode ser escrito

atraveés da Equacéo 2.4:
Bl 1k —-kj[w
[Fz]_[_k k ”uz] (2.4)
A partir do momento em que o comportamento de uma simples mola é
estabelecido, consequentemente € possivel construir sistemas com mais molas

interligadas. O exemplo mais simples € um sistema composto por duas molas com

rigidez k, e k, em série, apresentando trés GDL conforme ilustrado na Figura 6.

Figura 6 Sistema com duas molas com rigidez k, e k, e seus deslocamentos e forcas

F2
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F1 — — —»
U4 Uz Uz
K4 k2

Fonte: Parreiras (2019)
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Usando a terceira lei de Newton, podemos escrever a Equacgéo 2.5 em forma

de matriz.
Fl kl _k1 0 ul
FZ = |:_k1 kl + kz _kz ] [uz ] (2.5)
F3 0 —k2 kz Us

Notamos que a matriz de rigidez global é uma superposicdo de duas molas
elementares matriz de rigidez. Observe que na Equacéo 2.5 a rigidez associada ao
grau de liberdade u, € a soma de k; € k, jA que para desloca-la é preciso deformar
ambas as molas. O sistema na Equacéo 2.5 pode ser escrito na forma compacta na

Equacao 2.6.
[F] = [K¢[U] (2.6)
Onde K; é a matriz de rigidez global do sistema.

Para finalizar a analise do exemplo com duas molas, realizamos restricées de
dois movimentos, um no né N; e outro no no6 N;. Neste caso temos deslocamentos

nulos nos nés, u; =0 e u; = 0 como vemos na Figura 7, consequentemente as forcas

externas F; e F; ndo tém influéncia em encontrar o deslocamento.

Figura 7 Sistema de molas com duas restricbes de movimento
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Fonte: Parreiras (2019)

Montando o subsistema com base na Equacédo 2.5 com duas restri¢coes,

obtemos a Equacéo 2.7:
[Fi] = [ky + k][u2], (2.7)

E resolvendo o subsistema encontramos os deslocamentos apresentados na

equacao seguinte:
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U
F,
w, | =2 2,
[ 2] ke + Ky | (28)

2.3 Modelagem de Sistemas 2D

Um elemento de viga 2D possui trés GDL por né, ou seja, deslocamento
horizontal, vertical deslocamento e rotacdo. Entdo cada elemento possui seis GDL

conforme ilustrado na Figura 8.

Figura 8 Um elemento com trés GDL por no e as forgas exercidas em cada né
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Fonte: Parreiras (2019)

Podemos considerar uma estrutura plana, entdo precisamos reescrever a
equacao de equilibrio (Equacdo 2.3) para este modelo, incluindo mais dois GDL,

obtemos a Equacéo 2.9:
LF, =0,%F, = 0,IM, = 0, (2.9)

Para cada nd, quando ZM, € a soma de todos os momentos que produzem
rotacdo em um eixo adicional z perpendicular ao plano xy. Se ha uma aplicacdo de
forca em algum no de algum elemento do sistema podemos decompor esta forca em
outras trés, sendo duas axiais e a outra sendo um momento. Os momentos nodais M,
e M, produzem as rotacdes nodais 6, e 6,, de acordo com esses momentos e podem
ser expressos pelas Equacgdes 2.10 e 2.11 (MCCORMAC, 2012).

4FE] 2E1
M, = (T) 01+ (T) 0, (210)

2E1 4E1

M, = (T) 0, + (T) 0, (2.11)
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Onde I € o momento de inércia do elemento, A é a area da secdo e L € O
comprimento do elemento. O mdédulo de Young E € uma propriedade do material que

mede a dificuldade de se deformar um elemento sélido composto por este material.

As propriedades como A, I e L podem ser calculadas a partir da forma
geométrica do elemento. O momento de inércia de uma secado € calculado usando
uma perpendicular ao eixo z, onde o eixo de rotacdo € paralelo ao z e passa pelo
centro da se¢ao. Pode-se definir os deslocamentos horizontal e vertical nas Equacdes
2.12,2.13,2.14 e 2.15 (MCCORMAC, 2012):

EA EA

Hy = ()b = () e (212)
12E1 12E1

V1 = ( L3 >U1 + (_ L3 )Uz (213)

EA EA

Hy == () b+ () e (214)
12E1 12E1

vo= (- )n+ () v (2.15)

Finalmente, assim como montamos a equacdo matricial (Equacdo 2.5),
utilizando as Equag0bes 2.10, 2.11, 2.12, 2.13, 2.14 e 2.15 para um elemento isolado,

obtemos a Equacao 2.16 em forma de matriz.

rEA 0 0 EA 0 0
L L
12E1 6EI 12EI 6EI

m | T o Y T T |
4 6EI 4EI 6EI  2EI ||v,
mi_|° T T e )16
Hy|™| EA 0 0 EA 0 0 h, |’ (2.16)
2 L V2
M, 12E1 6EI 12E1 6EI (L6,

O T & 7z

0 6EI 2E1 0 6ElI  AEI

L L? L L? L

Onde E € o modulo de Young, A € a area da sec¢édo transversal, I € o momento

de inércia da secéo e L € o comprimento do elemento.
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2.3.1 Barras 2D

O proximo passo para uma a analise 2D usando o método de deslocamento
seria incrementar uma quantidade maior de elementos ao sistema, desta forma
transformando todos as coordenadas dos elementos das posi¢oes locais para globais

havendo assim um sistema com mais de um elemento.

Primeiro, para obter a matriz de rigidez do sistema, precisamos analisar
localmente cada elemento. Mas a matriz de Equacdo 2.10 foi feita analisando o
elemento sobre o0 eixo x, assim, precisamos encontrar uma maneira de generalizar a
equacao matricial. Na literatura, esse problema é tratado por meio de uma matriz de
transformacdo, que é usada para transformar a matriz de rigidez das coordenadas
locais do elemento, para o sistema global de coordenadas e assim podemos definir a
matriz de rotagéo de Equacéo 2.17 (MCCORMAC, 2012).

[R] = |—sing cos¢p 0 (2.17)

0 0 1

cos¢p  sing 0]

Onde ¢ é o angulo entre o cosseno de dire¢éo e o eixo x. A dire¢do do cosseno

pode ser definida como:

|~

C =

=

=V =N, — N, (2.18)

Onde V é o vetor de dirego, N; e N; sdo as coordenadas dos nds que definem

um elemento. O cos¢ e sing podem ser calculados usando C como:

Cx

E sin(@) = 2 (2.19)

nen”

cos(¢) =

A matriz de transformacao € composta por uma combinacao linear da matriz da
Equacdo 2.17. Podemos definir a matriz de transformacdo pela Equacao 2.20
(MCCORMAC, 2012).
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rcosp sing 0 O 0 07
—sing cos¢p 0 O 0 0
0 0 1 0 0 0
T] = 2.2
7] 0 0 0 cos¢p sing O (2.20)
0 0 0 —sing cos¢p O
0 0 0 0 0 1

Usando a matriz de transformacao [T] e a matriz de rigidez local K* obtida da
matriz da Equacédo 2.16, usaremos a Equacédo 2.21 para converter as coordenadas

locais do elemento para coordenadas globais do sistema,
[Fi] = [T [K*][T][U], (2.21)

onde [F] sdo as forcas externas em coordenadas globais exercidas nos nés do
elemento, [U] sdo os deslocamentos/rotacdes causados por [F]. A montagem do
sistema linear com matrizes de rigidez de todos os elementos obedece o principio da
superposicao de forcas, onde a matriz de rigidez final € a soma de todas matrizes de

rigidez de cada elemento separado.

2.4 Analise Dinamica

2.4.1 Sistema Dindmico Basico

Segundo Clough e Penzien (2015), para qualquer sistema estrutural
linearmente elastico ou mecanico submetido a uma carga ou excitagdo dinamica, as
suas propriedades fisicas fundamentais sdo: massa, caracteristicas elasticas (como
rigidez ou flexibilidade) e mecanismo de dissipacédo de energia, também conhecido
como amortecimento. Esses trés aspectos — massa, elasticidade e amortecimento —
sdo determinantes para descrever o comportamento dindmico do sistema, pois
definem como ele responde as for¢cas externas aplicadas e como suas vibracfes

evoluem ao longo do tempo.

Um esboco de um sistema massa-mola-amortecedor € mostrado na Figura 9:

Figura 9 Sistema massa-mola-amortecedor com GDL simples: a) componentes basicos b) forcas em
equilibrio
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Fonte: Clough e Penzien (2015)

A massa total M deste sistema esta concentrada no bloco rigido, que € limitado
por rolos, permitindo apenas a translacdo simples. A posicdo do bloco é
completamente determinada pela coordenada de deslocamento u(t). A resisténcia ao
deslocamento € fornecida por uma mola sem massa com rigidez K, enquanto a
dissipacéo de energia é representada por um amortecedor C. A forca externa variavel

no tempo p(t) é responsavel pela resposta dinamica do sistema.

A equacdo de movimento para o sistema ilustrado na Figura 9 € mais facilmente
derivada ao expressar o equilibrio de todas as forcas atuando sobre a massa,
utilizando o principio de d’Alembert. Como mostrado na Figura 9, as for¢as na direcao
dos graus de liberdade do deslocamento incluem a carga aplicada p(t) e as trés forcas
de resisténcia resultantes do movimento: a forca inercial f,(t) a forca de
amortecimento f,(t) e a forca da mola f;(t). A equagdo de movimento é

simplesmente a expressédo de equilibrio dessas forcas, dada pela Equacéo 2.22.

O+ @)+ (&) =p@) (2.22)

Cada uma das forcas representadas no lado esquerdo desta equacao € em
funcdo do deslocamento u(t) ou uma de suas derivadas no tempo. O sentido positivo
dessas forcas foi intencionalmente escolhido para corresponder ao sentido de

deslocamento negativo, uma vez que elas se opdem a uma carga aplicada positiva.

De acordo com o principio de d'Alembert, a forca inercial é o produto de a

massa e a aceleracdo descrito na Equacgao 2.23.

fi(t) = mii(t) (2.23)
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Assumindo um mecanismo de amortecimento viscoso, a forca de
amortecimento € o produto da constante de amortecimento ¢ e a velocidade definida
na Equagéao 2.24:

fo() = cu(t) (2.24)

Finalmente, a forca elastica é o produto da rigidez da mola e o deslocamento

definida na Equagéao 2.25:
fs(®) = ku(t) (2.25)

Quando as Equagbes 2.23, 2.24 e 2.25 sé&o introduzidas na Equagéo 2.22, a
equacao de movimento para este sistema de GDL simples pode ser definida na

Equacao 2.26.

mii(t) + cu(t) + ku(t) = p(t) (2.26)

2.4.2 Analise de Vibracgdes Livres

De acordo com Rao (2017, p. 469-470) “se perturbarmos qualquer estrutura
elastica de maneira apropriada inicialmente no tempo t = 0 e, em seguida, liberando
essas restricdes, a estrutura pode sofrer uma oscilagdo harmdnica.” Este movimento
oscilatorio € uma propriedade caracteristica da estrutura e depende da distribuicdo de

massa e rigidez na estrutura.

Quando ha amortecimento, as amplitudes das oscilagbes diminuem
gradualmente. Se o amortecimento for maior que um certo valor critico, 0 movimento
deixara de ser oscilatorio. Por outro lado, na auséncia de amortecimento, o0 movimento
oscilatorio persiste indefinidamente, com as amplitudes das oscilacdes dependendo

da perturbacdo ou deslocamento inicial (RAO, 2017).

Esse movimento oscilatério ocorre em frequéncias especificas chamadas de
frequéncias naturais ou valores caracteristicos, e segue padrdoes de deformacao
chamados modos de vibracdo. Analisar essas vibracdes livres (denominadas assim

porque a estrutura vibra sem a influéncia de forcas externas apds t = 0 é crucial para
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determinar a resposta dinAmica de uma estrutura elastica. E podemos inferir que a

forca pode ser espressa harmonicamente pela Equacao 2.27.
F(t) = Fye™t (2.27)

onde F, € a forca aplicada ao sistema e w é a frequéncia que o sistema esta

vibrando.

2.4.3 Dominio da Frequéncia

A solucdo de equacbOes de movimento de conjuntos acoplados, pelo MEF,
realizada mais facilmente no dominio da frequéncia; portanto, utilizando as Equagdes.
2.26 e 2.27 e realizando a transformadas de Laplace e Fourier podemos obter a
equacao de comportamento dinAmico no dominio da frequéncia para um GDL definida
na Equacao 2.28 (CLOUGH e PENZIEN, 2015).

[(k —w?m) + iwc] * U(w) = F, (2.28)

Em que a matriz complexa no termo colchete no lado esquerdo da equacao é
a matriz de impedancia (ou rigidez dinamica) para o sistema estrutural completo sendo
representado onde k é a rigidez, w é a frequéncia natural, m é a massa, c € 0
amortecimento, U(w) é o vetor de deslocamento da transformada de Fourier em

funcéo da frequéncia do sistema, e F, € o carregamento dindmico harménico.

2.4.4 Amortecimento

O amortecimento proporcional é uma abordagem muito utilizada para modelar
forcas dissipativas em engenharia de estruturas e tem sido usado em varios

problemas por décadas.

Existem algumas limitacbes para este modelo, principalmente uma
necessidade de uma generalidade e constancia, em termos de vibracdes naturais,
guando algumas estruturas complexas possuem diferentes parametros de massa,

rigidez.
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Na pratica, os sistemas reais sempre possuem algum tipo de mecanismo de
dissipacdo de energia, ou amortecimento. Para aplicar a andlise modal de sistemas
nao amortecidos a sistemas que possuem amortecimento, € comum adotar a hipotese

de amortecimento proporcional, uma forma especifica de amortecimento viscoso.
Conforme Rao (2017, p.484),

Geralmente pouco se sabe sobre a avaliacdo dos coeficientes
elementos da matriz de amortecimento [C]. No entanto, como o
efeito do amortecimento € pequeno em comparagdo com 0S
efeitos da inércia e da rigidez, [C] é representada por

expressoes simplificadas.

Uma forma convencional de definirmos esta matriz de amortecimento [C] é
estabelecermos esta matriz em funcdo de uma combinacao linear de matrizes de

massa e rigidez que pode ser definida na Equacéo 2.29.
C =aM + BK (2.29)

Onde a e p sao constantes escalares que acompanham a Massa [M] e Rigidez

[K] do elemento.

2.4.5 Analise Dindmica Implicita vs Explicita

Em anadlises que envolvem néo linearidade e efeitos dindmicos, é fundamental
aplicar cargas incrementais, frequentemente chamadas de etapas de deslocamento.
Em termos simples, essa abordagem implica dividir a evolucdo do sistema no espaco
ou no tempo em pequenos intervalos para que possamos resolver o problema
matematicamente. Nesse contexto, os problemas séo geralmente classificados como
dependentes ou independentes do tempo. Para resolver esses tipos de problemas,
utilizamos métodos "implicitos" e/ou "explicitos," que oferecem diferentes estratégias
de calculo para acompanhar as mudancas em cada etapa de forma precisa
(BALAKRISHNAN, SHARMA e ALlI, 2017).

O método implicito envolve a inversdo da matriz de rigidez e especialmente

para modelos maiores o numero de grau de liberdade sera maior e iSso requer maior
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tempo computacional e torna a solugado mais cara. No caso de problemas nao lineares,
o equilibrio das forcas internas da estrutura com as cargas aplicadas externamente
precisa ser satisfeito a cada incremento de carga, o método de Newton Raphson é
usado para resolver essas equacdes de elementos finitos ndo lineares. Para andlise
dindmica transitéria em qualquer momento, a equacao 2.26 é resolvida como um
conjunto de equacdes de equilibrio estatico que considera forcas de inércia e forcas
de amortecimento. O método de integracdo de tempo de Newmark é usado para

resolver essas equacgfes em pontos de tempo discretos.

Diferente do método implicito, 0 método explicito € condicionalmente estavel e
apenas quando o intervalo de tempo utilizado € menor que o intervalo de tempo critico

da estrutura em simulacéo. Caso contrario, a solugdo pode se tornar imprecisa.

O tamanho do passo de tempo critico ndo amortecido € geralmente muito
pequeno e esse critério de estabilidade torna o calculo explicito computacionalmente
mais caro e calculos explicitos sdo usados para simular um periodo mais curto de
eventos de impacto. Os esquemas de integracdo explicita usam o método da
diferenca central para calcular aceleracdes e velocidades no passo de tempo atual ¢,
e entdo deslocamentos desconhecidos no préximo tempo t,,; sdo determinadas, e

portanto ndo utilizaremos métodos explicitos mas sim implicitos.

2.5 Método dos Elementos Finitos

O Método dos Elementos Finitos (MEF) € um método de solu¢gdo numérica de
problemas que sdo regidos por equacfes diferenciais. Assim € possivel obter
solugbes para uma ampla gama de problemas, que vao desde a distribuicdo de
temperatura em um pistdo de um motor ou mesmo deslocamentos e tensdes em um
pavimento de laje (KIM e SANKAR, 2008).

Azevedo (2003) cita que “antes do aparecimento do MEF, a andlise dos meios
continuos era efetuada por resolucéo direta dos sistemas de equac¢fes de derivadas
parciais, tendo em consideracao as necessarias condi¢cdes de fronteira”. Para facilitar

a aplicacao desta técnica a problemas néo elementares, era comum recorrer a séries
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de Fourier. Mas devido a sua complexidade, estes procedimentos s6 eram aplicaveis

a meios continuos homogéneos e de geometria simples.

O desenvolvimento moderno do MEF comecou na década de 1940. No campo
da engenharia estrutural com o trabalho por Hrennikoff (1941) e McHenry (1943), que
utilizou uma estrutura de elementos de barras e vigas para a solucdo de tensdes
continuas em soélidos. Alguns anos depois, Courant (1943) introduziu a interpolacdo
por partes para obter solu¢cdes numeéricas aproximadas. Nos anos 50, Levy (1953)
desenvolveu o método de forca, uma alternativa promissora para o uso na andlise
estatica de estruturas. No entanto, o sistema de equacdes resultante era considerado
complexo para a solucdo analitica e, assim, o0 método sé se tornou popular com o

advento do computador.

2.6 Modelagem de Sistemas 3D - Elementos de Viga

O caso tridimensional € uma extensdo do caso bidimensional que discutimos
na Revisdo da Literatura, onde é necessario definir mais GDL. Com a adicdo de mais
uma dimensao (Z) no sistema, temos entdo mais trés GDL por nd. Nos exemplos
ilustrados nas Figuras 10,11 e 12 temos seis GDL por nd, onde trés sao

deslocamentos e trés sao rotacoes.

Figura 10 Um elemento 3D e seus 6 GDL no eixo X.

X1 xl

Fonte: Parreiras (2019)
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Figura 11 Um elemento 3D e seus 6 GDL no eixo Y.

Fonte: Parreiras (2019)

Figura 12 Um elemento 3D e seus 6 GDL no eixo Z.

Fonte: Parreiras (2019)

NO6s preservamos as equacdes de equilibrio (Equacdo 2.9), porém,

reescrevemos incluindo mais trés GDL por né na Equacéo 2.30.

$F, =0, IF, = 0,3F, = 0

M, =0, M, = 0,XM, = 0 (2.30)

Estendendo as Equacgfes 2.10 e 2.11, utilizando o principrio de acdo e reacao
de Newton e adicionando mais trés GDL, um para translacdo, e dois para rotagoes,
de acordo com Kattan (2007) podemos escrever o deslocamento no eixo Z e o0s

momentos, No eixo Y e no eixo Z nas Equacgdes 2.31, 2.32, 2.33, 2.34, 2.35 e 2.36.
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1= % (z1 — z3) (2.31)
) = % (zy — 71) (2.32)
M, = % (al — a2) (2.33)
M, = % (a2 — al) (2.34)
= () + ()8 @239)
M= () + ((T)n @239)

Onde ] = Iy + Iz pois cada elemento que compor o sistema € uniforme nos
eixos Y e Z (CALLISTER e RETHWISCH, 2013).

O moddulo de cisalhamento G € um material propriedade definida como a razéo
entre a tensdo de cisalhamento e a deformacdo de cisalhamento. Usando as
equacbes de equilibrio (Equagbes 2.31, 2.32, 2.33, 2.34, 2.35 e 2.36), segundo
Weaver e Gere (1990), podemos definir a rigidez matriz para um elemento de viga

com seis GDL por né na Equacéao 2.37.

L
0o LE= 0 o = o -2E= o 0 0o SE
0 0 25 0 - o0 o 0o 25 0 -0
0 0 o <L 9 0 0 0 o -¢ o 0
0 o - o0 Ex o 0 0 -~
K] 0o 8= 0 o o ¥ o = o o o
B 0 0 0 o £4 0 0 0 0 0
12E71 6ET 12E1> 6ET-
0o -BEL o 0 0o -%£= o 7y 0 0 0o %=
12ET G6ET 12E1 G6ET
0 0 =5 0 FE 0 0 0 =r 0 ITFE 0
0 0 o - o 0 0 0 o < 0 0
6ET 2ET BET AE]T
¥ -y Y —_—
0 0 = 0 . 0 0 0 = 0 - 0
6ET 2E1, 6ET 4ET
| 0 = 0 0 o = o -5 0 0 o =]

(2.37)
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2.6.1 Matriz de Rotagéo 3D

Para generalizar a matriz de rigidez local K*, precisamos usar uma matriz de
transformacgéo, no caso em 3D, € mais complexo visualizar a transformacao a partir
de matrizes de rotacdo, para um espaco transformacao precisamos de trés matrizes
de rotacdo, uma para cada eixo (PARREIRAS, 2019).

2.6.1.1 RotagcdoemZ

A rotacdo em torno do eixo Z é equivalente a rotacdo descrita na Secéo 2.2.1
para o caso 2D. Usando o cosseno de diregdo de um elemento em R3, para girar em
torno de um eixo, fixamos um, eixo Z, e giramos 0 cosseno de direcdo em um plano
perpendicular. Durante toda a analise, colocamos o elemento no eixo X, e a fungéo

das matrizes de rotac&o € colocar o elemento na posi¢cédo espacial.

Transformamos o eixo do elemento original x,y, z para um eixo de elemento
alternativo x',y’, z', onde estes elementos alternativos sdo os elementos originais
adicionados de um deslocamento angular 8. Segundo Beaufait (1970), podemos usar
a matriz de rotagdo Equacao 2.38.

[R,] = |—sinf cos8® 0 (2.38)

[cos@ sin@ 0]
0 0 1

Onde 0 € o angulo em torno do eixo Z e pode ser calculado usando o cosseno

de direcdo nas Equacdes 2.39 e 2.40.
sin(@) = C,, (2.39)
cos(8) =C, (2.40)
Onde C,, = |l proj,;C Il.
2.6.1.2 RotagcdoemY

Semelhante a rotacdo Z , fixamos o eixo Y e giramos o elemento na
perpendicular plano, plano xz, e neste caso, também convertemos o eixo do elemento

original x,y,z em um eixo de elementos alternativos x’,y’, z’. Além disso, de acordo
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com Beaufait (1970), podemos escrever a rotacdo em torno do eixo Y pela matriz de

Equacéao 2.41.

0 1 0
—sinf 0 cosp

(2.41)

] - [cosﬁ 0 sinﬁ]

onde B € o angulo em torno do eixo Y e pode ser calculado usando a direcéo

do cosseno nas Equacdes 2.42 e 2.43.

sin(B) = % (2.42)
cos(B) = CFZZ (2.43)

2.6.1.3 Rotag¢do em X

Com apenas mais dois angulos 6, ¢ e um raio (p), podemos utilizar o principio
do Sistema de Coordenadas Esféricas para colocar um elemento em qualquer posicao
no espaco tridimensional R3. Mas € interessante que a rotacdo em torno do eixo X
permite um parametro adicional na modelagem estrutural. Isto permite girar a secao

transversal no eixo do elemento.

A matriz de rotacdo no eixo X pode ser definida de acordo com Beaufait (1970),
como a matriz Equacdo 2.44. O angulo a € calculado a partir da modelagem da

posicao dos elementos do sistema.

1 0 0
[R,] =10 cosa sinal, (2.44)
0 —sina cosa

Onde a é o angulo em volta do eixo X.

2.6.2 Matriz de Transformacao 3D

Com as matrizes de rotacdo de cada eixo em R3 definidas, ha a necessidade

de utiliza-las em combinacao para construir a matriz de transformacao tridimensional.
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2.6.2.1 Rotag¢do em Z-Y-X

Como dito anteriormente, combinando as matrizes de rotagao
[Rx][Ry][Rz], fazendo uma multiplicacdo de matrizes, conforme Beaufait (1970),
podemos escrever a rotagédo Z — Y — X como a matriz de Equagao 2.32.

Cy Cy C,
CxCycosa—Czsina

CyzCcO08 . ’ (2.45)

CxCycosa—Czsina

CxCycosa—Czsina

[R] =

sz
CxCycosa—Czsina

—Cy,Sina

CX z Cx z

Note que a rotacdo da matriz R € possivel apenas quando C,, # 0 e C,, # 0 ou
C, # 0. Por final, de acordo com Beaufait (1970), podemos escrever a matriz de

transformacgéao 3D na Equagéao 2.46:

[T] = (2.46)

oS O O

[R]
0
0
0

oS o O
=]
—_—
(e o O
=
—_—
—
=]
—_—

2.7 Analise de Vibracéao Livre

2.7.1 Matrizes de Massa Concentradas e Distribuidas

Diversos problemas dinamicos tém sido resolvidos utilizando formas
simplificadas de matrizes de massa. A matriz de massa mais basica € obtida ao
posicionar massas pontuais m; nos pontos nodais i nas direcdes dos graus de
liberdade de deslocamento. Essas massas concentradas representam a inércia
translacional e rotacional do elemento, calculadas assumindo que o material em torno
desses pontos age como um corpo rigido, enquanto o restante do elemento nao se
move. Isso resulta em uma matriz de massa puramente diagonal, conhecida como

matriz de massa concentrada.

Quando pequenos, mas pesados, objetos sdo colocados nos ndés de uma
estrutura leve, as matrizes de massa concentradas fornecem resultados quase exatos.

As matrizes de massa consistentes seriam exatas se a forma deformada real sob
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condi¢des dindmicas fosse conhecida e usada nas func¢des de forma de deslocamento
[N]. Como a forma deformada real ndo é conhecida, a distribuicdo de deslocamento
estatico é frequentemente utilizada, resultando em uma distribuicdo de massa apenas

aproximada, mas geralmente adequada para a maioria dos propésitos praticos.

Além disso, as matrizes de massa concentradas, sendo diagonais, requerem
menos espaco de armazenamento e simplificam bastante os célculos necesséarios em

comparagao com as matrizes de massa consistentes.

Um elemento de viga terd 12 graus de liberdade, 6 deflexfes e 6 rotacdes,
como mostrado nas Figuras 6,7 e 8. Ao adotar a origem do sistema de coordenadas
local nond 1, o eixo X ao longo do comprimento do elemento e 0s eixos Y e Z ao longo
dos principais eixos da sec¢do transversal do elemento a matriz de massa distribuida

do elemento no sistema XYZ local pode ser definida na Equacéo 2.47.
[M] = [M]+ [M;] (2.47)

Onde M; definida na Equagdo 2.48 inclui a massa inercial dos trés

deslocamentos translacionais (U, Uy, U,) € um deslocamento rotacional em torno do

eixo X (6,) e M, definida na Equacao 2.49 contém a massa inercial com deslocamento

rotacional em torno do eixo Y e do eixo Z, ou seja fletores (6,, 8,) (CAl et al., 2023).

0 ] 0 0 0 + 0 0 0 0 0
0 2E 0 0 0 L0 % 0 0 0

0 0 200 —35L 0 0 0 = 0 4L 0
0 0 0 L 0 00 0 0 G5 0 0

p==
=

[M{] = pAL

=1

(2.48)
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0 0 0 0 0 0 0 0 0 0 0 07
6 L 6 L
o & o 0o o L o -¢& 0o 0 0o &
6 L 6 L
o0 S 0o -L 0o 0o 0 -% o0 —L 0
o0 0 0 0 0 0 0 0 0 0 0
1 2L i L2
00 -5 0 75 0 00 w 0 —3 0
L 212 L 12
- pl,. 0 10 0 0 0 5 0 - 10 0 0 0 —55
o - 0o 0o o Lo & o 0 o -L
6 L G I
o0 % 0o L o 0o o & 0o L
o 0 0 0 0 0 0 0 0 0 0 0
L L* L 97,2
00 -5 0 -5 00 0 v 0 T3 0
L L? L 92
0 <5 0o 0 0 - 0 —5% 0 0 0 L

- " (249)

Para reduzir o esforco computacional, geralmente as matrizes de massa
distribuidas de elementos desmontados sdo derivadas de forma adequada em

sistemas de coordenadas locais e entéo transformados no sistema global selecionado

para a estrutura acoplada. Se [m@], [§®] e [§‘®] denotam a matriz de massa, vetor
de deslocamento nodal e vetor de velocidade nodal no sistema de coordenadas local,
respectivamente, a energia cinética associada ao movimento do elemento pode ser
expressa na Equacéo 2.50 (RAO, 2017).

T = 2T [m®]§@ (2.50)

Se o0s deslocamentos nodais e as velocidades nodais do elemento forem

denotados como (@ e 3 no sistema global, temos as relacdes de transformacéo

nas respectivas Equacdes 2.51 e 2.52.
G =[21¢®@ (2.51)

§© = [117© (2.52)

Substituindo a Equacgéo 2.52 na Equacao 2.50 temos uma nova equacao
definida na Equacéo 2.53.
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T = 2 GO @) 216 (253)

De acordo com Rao (2017, p. 459-460). “Ao denotar a matriz de massa do
elemento no sistema de coordenadas global como [M(®©)], a energia cinética associada

ao movimento do elemento pode ser expressa na Equagéo 2.54.”
T = ;6@”[1\4(6)]5(6) (2.54)

Como a energia cinética € uma quantidade escalar, ela deve ser independente
do sistema de coordenadas. Ao igualar as Equacdes 2.54 e 2.53, obtemos a matriz
de massa distribuida do elemento no sistema global definida na Equacéo 2.55.

[M©] = [2]" [m®][2] (2.55)

Podemos observar que esta relacado de transformacdo € a mesma aquela
utilizada para matriz de rigidez do elemento, ja que se trata de um acoplamento de

coordenadas locais para globais.
2.7.2 Analise MEF no Dominio da Frequéncia

Segundo Clough e Penzien (2015, p.151-153) para um sistema com multiplos
GDL (Através do MEF) utilizaremos as matrizes de massa, amortecimento e rigidez
para aplicar aos nos do sistema. Utilizaremos a mesma Equacdo 2.28 que foi
anteriormente definida, porém agora considerando matrizes, sendo definida na

Equacao 2.56.
[([K] = w2[M]) + iw[C]] * Uw) = F, (2.56)

onde [K], [C] e [M] representaram as matrizes 12x12 de seis GDL por n6 de

Rigidez, Amortecimento, e Massa respectivamente.

O célculo analitico do deslocamento U(w) é em fungcdo das frequéncias
naturais w,, que sao as frequéncias de vibracao intrinsecas de uma estrutura. Elas
emergem como propriedades inerentes da geometria, material e condigbes de

contorno da estrutura, e sdo independentes das condi¢cdes iniciais ou das cargas
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externas aplicadas. Quando uma estrutura € submetida a uma perturbagdo ou
excitacdo, ela comeca a vibrar em suas frequéncias naturais, caracterizando seu

comportamento dinamico.

Especificamente para o problema em que estamos tratando, ha 3 tipos de
modos naturais com frequéncias associadas (Axial, Cisalhante/Fletora e Rotacional),
as quais podem ser calculadas pelas Equacdes 2.57, 2.58, 2.59 e 2.61 (SANTOS,
2018, p.47-48).

Frequéncia Natural Axial em X.

i 2n-1 E
wiivial = EED) /E (2.57)

Frequéncia Natural Cisalhante/Fletoraem Y e Z.

1 El

wy, = ) [ (2.58)
: El

Cis/Flet __ z

Wz, = () AL (2.59)

Onde y,, é definido pela Equacéao 2.60.

4,694,n = 2 (2.60)

1,875,n=1
An = {
(n—0,5)m,n>3

Frequéncia Natural Torsional em X.

m(2n—-1) | G
Wl === /p - (2.61)

2.7.3 Analise MEF no Dominio do Tempo (Newmark-Beta)

O método de Newmark-Beta € um dos métodos numéricos mais comuns
utilizados na analise dinamica de estruturas e sistemas. Ele é especialmente aplicado

para resolver problemas de equacdes diferenciais ordinarias que surgem em analises
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de resposta dindmica de estruturas sujeitas a carregamentos dinamicos. Este método
para andlise dindmica no dominio do tempo é uma técnica de integracdo numérica
gue discretiza as equacdes de movimento de um sistema continuo em um sistema de
equacdes diferenciais discretas. Ele € baseado na expansdo da equacdo do

movimento em uma série de Taylor em torno de um ponto no tempo.

O esquema de integracdo de Newmark-Beta usa as seguintes suposicOes
definidas nas Equacdes 2.62 e 2.63 (BATHE, 2007, p.777-778).

LRALTT =t [ + [(1 — 6)tU + 64t AL (2.62)
tRALY =t UHEUAL + [ — ) U + y AT AL? (2.63)

onde 6§ e y sdo parametros que podem ser determinados para obter precisdo de

integracéo e estabilidade.

Ha um caso especial da escolha dos valores destes parametros em que
Newmark originalmente prop6s como um esquema incondicionalmente estavel, o
método de aceleracdo média constante (também chamada regra trapezoidal, TR),

onde também ndo h& dissipacdo de energia ao longo do tempo. Este método de

. . , . .. L, 1
Newmark para sistemas lineares é incondicionalmente estavel se 2y > § > >

Ou seja, onde 6=% e V:i; e assim este método utilizado pode ser

considerado implicito, uma vez que houve uma escolha adequada destes parametros.

A hipétese de aceleracdo na Figura 13 é integrada em t: para obtengdo do esquema.

Figura 13 Método de aceleracdo média constante - TR.

=300 +"0)

&

aY

Fonte: Bathe (2007)
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Além das Equagbes 2.62 e 2.63, para solucao dos deslocamentos, velocidades
e aceleracdes no tempo t + At, a equacao de equilibrio (Equacédo 2.26) no tempo t +

At também é usada, definida na Equacao 2.64.
Mt+Atl'] + Ct+AtU + Kt+AtU —t+AL F (264)
E portanto pode se seguir 0 passo a passo do método:
2.7.3.1 Cdlculos Iniciais do Método de Newmark

1. Formamos a matriz de rigidez K, a matriz de massa M e a matriz de

amortecimento C;
2. Inicializamos °U,°U e °U:;

3. Selecionamos o intervalo de tempo At e 0s parametros § e y calculamos as

constantes de integragao;

4. Definimos as constantes nas Equagles 2.65, 2.66, 2.67, 2.68, 2.69, 2.70,
2.71e 2.72.

1
= ; 2.65
é
a, = m, (2.66)
1
=— 2.67
a VAt ( )
1
a;=5-—1; (2.68)
10)
a,=——1; (2.69)
14
At (6
ag = 7(; - 2) ; (270)
a; = At(1 — §); (2.71)

a, = 8At; (2.72)
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5. Montamos a matriz de rigidez efetiva K pela Equacao 2.61.
K=K+ ayM+a,C (2.73)

6. E realizada a triangularizacdo na Equacéo 2.62 descrita na Equac&o 2.21.

=

K:K = TKT! (2.74)
2.7.3.2 Para cada passo de tempo t + At:
1. Calcular os carregamentos efetivos em cada t + At usando a Equacéo 2.75.
HALE = M(afU + abU + aiU) + C(alU + abU + atl) (2.75)
2. Encontrar os dislocamentos no tempo t + At pela Equagéo 2.76.
Rt+Atyy —t+At f (2.76)

3. Calcular as velocidades e aceleragbes no tempo t + At respectivamente
pelas Equagdes 2.77 e 2.78.

LHAL] = qo (PPAtU—~tU) — abU — akU (2.77)

tHAt =t J 4+ alU + abtAtU (2.78)

2.7.4 Amortecimento Viscoso de Rayleigh

O amortecimento de Rayleigh € considerado uma combinac¢do de dois tipos de
amortecimento: amortecimento viscoso e amortecimento de Hooke (ou amortecimento
estrutural). Esses dois tipos de amortecimento sdo combinados linearmente para

modelar o comportamento de dissipacéo de energia em um sistema dinamico.

Como vimos na literatura desta pesquisa, a Equacdo 2.29 representa uma
combinacao linear entre as matrizes de Massa [M] e Rigidez [K] formando a matriz
de amortecimento [C]. Geralmente é mais conveniente e fisicamente razoavel definir
0 amortecimento de um sistema com multiplos GDL usando a razao de amortecimento
para cada modo desta forma em vez de avaliar os coeficientes da matriz de

amortecimento [C] @ e B porque as razdes de amortecimento modais {, podem ser
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determinadas experimentalmente ou estimadas com precisdo em muitos casos, e
portanto de acordo com a razdo de amortecimento pode ser definido pela Equacéo
2.79 (CLOUGH e PENZIEN, 2015).

Cn

=— 2.79
2w, M, ( )

n

Onde C,, € o amortecimento, M,, € a massa e e w,, € afrequéncia natural ambas

no modo de vibracdo n. Este amortecimento é denominado de amortecimento

Rayleigh, em homenagem a Lord Rayleigh, que primeiro sugeriu seu uso. Por analogia

com o desenvolvimento nas Equacdes 2.29 e 2.79, é evidente que 0 amortecimento

de Rayleigh leva a seguinte relacédo entre a razdo de amortecimento e a frequéncia
natural descrita na Equacéo 2.80.

a  Pwy

= 2w T 2

(2.80)

Cn

As relagbes entre a razdo de amortecimento e a frequéncia sdo mostradas

graficamente na Figura 14.

Figura 14 Relacao entre razdo de amortecimento e frequéncia (para amortecimento de Rayleigh).
¢
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Fonte: Kamel (2018).

Agora é evidente que os dois fatores de amortecimento de Rayleigh, a e £,
podem ser avaliados pela solucdo de um par de equacfes simultadneas se as taxas de
amortecimento ¢, e ¢, associados a duas frequéncias especificas (modos) w,, , wy,

sdo conhecidas.
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Escrevendo a Equacéo 2.81 para cada um desses dois casos e expressando

as duas equacdes em forma de matriz leva ao sistema:

{gf} :% mf Kﬂ {Z} (2.81)

Os fatores resultantes da Equacéo 2.81 podem ser definidos na Equacao 2.82.

a WinWy W, —W,
(o) =207 i, 1 2] (282)

Quando esses fatores forem avaliados, a matriz de amortecimento proporcional
gue dard os valores necessarios da taxa de amortecimento nas frequéncias
especificadas € dado pela expressdo de amortecimento de Rayleigh (Equacgéo 2.29)
conforme mostrado na Figura 14. Como raramente estdo disponiveis informacfes
detalhadas sobre a variacéo da taxa de amortecimento com a frequéncia, geralmente
assume-se que a mesma taxa de amortecimento se aplica para ambas as frequéncias
de controle; ou seja, {,, = {, = {. Neste caso, os fatores de proporcionalidade sdo

dados por uma versao simplificada da Equacao 2.83.

a 2( WnWn

Ao aplicar este procedimento de derivacdo da matriz de amortecimento
proporcional na prética, € recomendado que w,, geralmente seja a primeira frequéncia
natural do sistema de multiplos GDL e que w,, seja definido entre as frequéncias mais
altas dos modos que contribuem significativamente para a resposta dinamica, que

neste trabalho consideraremos até a frequéncia do 3° modo de vibracgéo.

Os coeficientes, depempenham papéis diferentes no amortecimento e ao
analisar a Figura 14 novamente, podemos perceber que o coeficiente a, associado a
matriz de massa, tem um impacto mais significativo sobre as frequéncias mais baixas.
Isso significa que componentes de baixa frequéncia sdo amortecidos mais
rapidamente, enquanto componentes de alta frequéncia sao dissipados de forma mais
lenta. Por outro lado, o coeficiente B, ligado a matriz de rigidez, atua de maneira
oposta: ele proporciona um amortecimento mais eficaz para frequéncias elevadas,

enguanto o amortecimento das frequéncias baixas ocorre de maneira mais gradual.
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3 METODO

O desenvolvimento deste trabalho exigiu uma abordagem criteriosa e
estruturada para garantir resultados precisos e reprodutiveis. A seguir, sdo detalhadas
as etapas executadas, desde a formulacdo matematica até a implementacéo

computacional e validagéo do modelo.

3.1 Desenvolvimento do Simulador 3D com 6 GDL

Identificou-se a necessidade de desenvolver um simulador 3D que
representasse de forma precisa o0 comportamento estatico e dindmico da coluna de
perfuracéo, considerando seus seis graus de liberdade. O simulador foi inteiramente
implementado no MATLAB®. Algumas funcbes fornecidas pelo orientador foram
aproveitadas, mas toda a modelagem 3D, assim como as andlises estéticas e
dindmicas (no dominio do tempo e da frequéncia) e a avaliagdo do comportamento da

linha neutra, foram desenvolvidas do zero.

Para isso, foram criadas funcfes especificas para a leitura das propriedades
materiais, definicdo das posi¢cdes geomeétricas e organizacao estrutural dos elementos
gue compdem a coluna. A modelagem incluiu a formulacédo das matrizes de rigidez e

massa 12x12, fundamentais para a analise pelo MEF.

Foram criadas funcbes especificas para leitura de propriedades materiais,
definicdo das posicdes geométricas e organizacdo estrutural dos elementos que

compdem a coluna de perfuracao.

3.2 Validacao do Simulador com Viga em Balanc¢o (Cantilever Beam)

Antes de aplicar o modelo a uma coluna de perfuracéo real, o simulador foi
validado por meio de uma viga simples e uniforme (cantilever beam) 1D mas com
movimentacao tridimensional em 6 GDL. Para as validagbes as forcas que foram

exercidas foram aplicadas exclusivamente no ultimo no livre, e desta forma pode-se
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trazer validacdes de deslocamentos estaticos, dindmicos no dominio da frequéncia e

do tempo.

3.2.1 Analise Estatica

Inicialmente, foram calculadas as matrizes de rigidez 12x12 de cada elemento
e, posteriormente, globalizadas para representar o comportamento estrutural
completo. A Equacao 2.6 de equilibrio foi resolvida para obter os deslocamentos, 0s
guais foram comparados com solu¢des analiticas, assegurando a precisao do modelo.

3.2.1.1 Equacgdes Analiticas de Deslocamento

As equacdes analiticas de deslocamento estatico consideram os 6 graus de
liberdade que descrevem os movimentos de uma estrutura: translacbes em x, y e z,
e rotacdes em torno de x, y e z. Essas equacOes relacionam forcas, momentos e
propriedades elasticas para calcular os deslocamentos em cada direcao e as rotacoes
correspondentes, fornecendo uma representacdo completa das deformacdes da
estrutura. De acordo com Gere e Timoshenko (2004), apresentamos a seguir todas
as equacOes analiticas utilizadas para a obtencéo dos deslocamentos os quais podem

ser visualizados na Figura 15.

Figura 15 Deslocamento dos 6 graus de liberade de um elemento de viga.

y

A

¥ e,
Uz,

Fonte: Nikoli¢, Ibrahimbegovic e Mid€evi¢ (2017)

A equacédo do deslocamento de uma aplicacédo de for¢ca axial em X pode ser
dada na Equacéo 3.1:

U, = = (3.1)
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Onde F, é a forca axial aplicada em x, L € o comprimento total da viga, E € o

maédulo de Young do material da viga, A € a area da secao transversal.

A equacdao do deslocamento de uma aplicacéo de forca cisalhante em Y pode

ser dada na Equacéo 3.2.

y B
Y~ 3EL,

(3.2)

Onde F, ¢ a forca cisalhante aplicada em y e I,, € o momento de inércia em y.

Para o exemplo deste trabalho (viga uniforme) a forca cisalhante aplicada no
eixo y gera uma distribuicdo de tensdes internas que causa um momento de tor¢ao
em torno do eixo z o qual faz com que a secéo transversal da viga tenda a girar nesse
sentido. Esse comportamento € uma consequéncia do equilibrio de momentos e da
resisténcia da viga as forcas internas e externas aplicadas, e este momento pode ser

calculado como:

A rotagdo em Z devido a aplicacdo de forca cisalhante em y pode ser dada na

Equacao 3.3.

o _ B
Z
2EI,

(3.3)

O deslocamento de uma aplicacdo de forca cisalhante em z e sua rotacdo em

y podem ser definidos pelas Equacdes 3.4 e 3.5 respectivamente.

FL?

Uz =357 (3.4)
F,1?

% =31, (3:5)

Onde E, é a forca cisalhante aplicada em z e I, € 0 momento de inércia em z

A equacao do deslocamento de uma aplicacdo de momento torsor em x pode

ser definida na Equagéao 3.6.
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0, = (3.6)

Onde M, é o momento torcional aplicado na viga em x, G € 0 modulo de

cisalhamento do material e /] € o momento polar de inércia.

O deslocamento de uma aplicacdo de momento fletor em y e sua rotacdo em z

podem ser definidos nas Equacbes 3.7 e 3.8.

U My L7 (3.7)
Y 2EL, '
9 MyL (3.8)
7 El, '

Onde M,, € o momento fletor aplicado na viga em y.

O deslocamento de uma aplicacdo de momento fletor em z e sua rotacdo em y
podem ser definidos nas Equacgdes 3.9 e 3.10.

M, L2
T (3.9)
M,L
- 1
0 = F1 (3.10)

onde M, é o momento fletor aplicado na viga em z.

3.2.2 Analise Dinamica no Dominio da Frequéncia

Foram computadas e acopladas as matrizes de rigidez [K] e de massa [M]
12x12. As frequéncias naturais (w,, € w,) foram determinadas pelas Equacgdes 2.57,
2.58, 2.59 e 2.61 conforme o grau de liberdade afetado pelo carregamento. Com as
frequéncias calculadas, precisa-se definir o valor da razdo de amortecimento (() e
utilizaremos um ¢ de 0,01, pois segundo Adams e Askenazi (1999) para estruturas de
metais o valor de ¢ € definido como < 0,01 mas considerei como o proprio valor limite,
e com isso calcularam-se os coeficientes de amortecimento de Rayleigh (a e B) pela

Equacédo 2.82, fundamentais para a matriz de Equacéo 2.29. Com isso, foi possivel
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variar a frequéncia de 0 até w,, e para cada frequéncia utilizou-se a Equacéao 2.56 para
calcular os deslocamentos e gerar graficos de Deslocamento Normalizado por
Frequéncia Normalizada, identificando picos de ressonancia e avaliando a eficacia do

amortecimento.

3.2.3 Analise Dinamica no Dominio do Tempo

ApOs os passos executados no Dominio da Frequéncia e da definicdo do
amortecimento de Rayleigh, o método de Newmark, pelo submétodo da aceleracdo
média constante, foi implementado através do algoritmo descrito na secdo 2.7.3
(Analise MEF no Dominio do Tempo (Newmark-Beta)) para simular vibracfes
livres. Uma forca inicial foi aplicada no ultimo no, permitindo que se possa validar a
atuacao dos coeficientes a e 8, observando como cada um influencia a atenuacéo de
diferentes faixas de frequéncia, além de comparar o periodo de excitacdo com as

frequéncias naturais.

3.3 Estudo de Caso: Coluna de Perfuragéo Offshore Vertical

Apos a validacéo, aplicou-se o simulador a um estudo de caso com uma coluna
de perfuracdo offshore vertical. Foram utilizados dados reais simplificados de
propriedades geométricas e materiais para a modelagem. A discretizacdo da coluna
seguiu o MEF, mantendo-se a abordagem 1D com comportamento tridimensional.

Seguindo a revisdo bibliografica podemos utilizar as Equacfes 2.1 e 2.2 para
calcular o comprimento da secédo de drill collars, porém para o estudo de caso
estabeleci o comprimento dos comandos inicialmente, de modo que todos os célculos
para posicdo da linha neutra fossem em funcdo da tragdo e em fungéo de dois
critérios: primeiro, para garantir que a linha neutra ndo ultrapassasse os comandos, e,
segundo, para evitar que 0 WOB maximo da broca fosse excedido. Para isso, utilizei
uma versao modificada da Equacéo 2.1, calculando a tragdo com base nos seguintes

critérios:
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Posicionamento da Linha Neutra: A tragdo minima necessaria (valor em
porcentagem do Peso total da Coluna) para garantir que a linha neutra se mantenha

abaixo dos comandos € dada pela Equacao 3.11.

P,
Tragido(%Peso) > 1 — % (3.11D)
T

Onde Py € 0 peso total da secéo de Drill Collars e Py é 0 peso total da coluna.

Limitacdo do WOB Maximo: A tracdo também precisa ser ajustada para que
o WOB méaximo da broca nédo seja ultrapassado, utilizando a Equacéo 3.12.

WOB
—— % Lpc (3.12)

Tracido(%Peso) >
Ppc

Onde Py € 0 peso total da secéo de Drill Collars e Lpc € comprimento total da

secao de Drill Collars, e WOB,,.x € 0 peso sobre broca maximo.

A Equacéao 3.12 foi uma adaptacdo da Equacédo 2.1 pois para este trabalho,
ndo consideraremos a pois estamos considerando que o fluido de perfuragéo é ar,
consideramos um FS de 1 pois o simulador ndo considera esta varidvel em seus

célculos, e um ¢ de 0° uma vez que trataremos de apenas poc¢os verticais.

Para obter a Forca de Compressao pode-se utilizar a Equacéo 3.13.

Fcompressao = Peotal — Frracao (3-13)

Para calcular a posi¢cao da Linha Neutra pode-se utilizar a Equacgao 3.14.

Fcompressao

PosicdodaLinhaNeutra(m) = X Lpc (3.14)

Pnc
3.3.1 Analise Estatica

Antes de executar 0s passos, como na Vvalidacdo estética, calculo a
porcentagem de tracdo. Em seguida, realizo as operagfes necessarias até obter os

deslocamentos estaticos de todos os nds. Com esses deslocamentos, utilizo a
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Equacéo 3.13 para determinar as forcas axiais ao longo da coluna, permitindo assim

identificar o ponto onde as forcas se anulam.
d
N(x) = EA(x) — (3.13)
dx

p: p: .. P p du .
Onde E € o médulo de elasticidade, A(x) € a area transversal no ponto x e ﬁ e

a derivada do deslocamento em relagdo a posi¢éo ao longo da viga.
3.3.2 Analise Dinamica no Dominio do Tempo

Repete-se 0 processo descrito na validacdo do codigo para computacdo dos
deslocamentos ao longo do tempo, porém agora consideramos que as forcas de peso
e de tracdo estdo atuando estaticamente (em todos os instantes de tempo) e ha a
adicdo de um movimento harménico de heave para simular o efeito que as ondas do
mar tém em relacdo a posicdo da linha neutra, e em cada instante de tempo é

calculado a posicao na coluna em que a linha neutra se encontra.
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4 RESULTADOS

As simulacdes iniciais foram realizadas com elementos de viga simples para
validar o simulador desenvolvido. Essa etapa verificou se 0 comportamento estrutural
esperado, como deslocamentos e forcas internas sob diferentes tipos de
carregamentos, era corretamente reproduzido. Os resultados demonstraram

consisténcia com solugdes teoricas, comprovando a confiabilidade do simulador.

Com a validacao concluida, o simulador foi aplicado a um estudo de caso
envolvendo uma coluna de perfuracdo. A modelagem considerou variagdes de massa
e rigidez ao longo da coluna, incluindo drill collars e drill pipes. Foram analisadas as
respostas estéticas e dinamicas, destacando-se a posicdo da linha neutra e o
comportamento vibratério, proporcionando importantes insights sobre a estabilidade

estrutural.

4.1 Validacdo do Simulador

Para as validacdes apresentadas a seguir, considerou-se uma viga macica
uniforme e linear ao longo do eixo x com uma extremidade engastada, onde o
deslocamento € igual a zero, como condicdo de contorno, enguanto a outra
extremidade permanece livre. A ponta engastada representa a base da coluna de
perfuracdo, situada no fundo do poc¢o, enquanto a extremidade livre corresponde ao
topo da coluna, localizado na plataforma de perfuracéo, e este referencial pois houve
mais facilidade de configurar o simulador utilizando-se desta convencgéo.



58

Figura 16 Diagrama da viga para validagcdo do simulador.

Extremidade Fixa Extremidade Livre
=20

4.1.1 Andlise Estatica

Com o simulador construido no ambiente MATLAB®, desenvolveu-se o
comportamento estético completo, preparando um arquivo de entrada que contém as
propriedades geométricas e materiais dos noés da viga, e neste arquivo estao
representados uma sequéncia de elementos de vigas conectadas, com 0s noés
subsequentes partindo da origem 0 metros e seguindo na direcdo do eixo x até 3

metros, ou seja, formando uma linha linear 1D.

4.1.1.1 Comparagdo das Malhas de Leitura com Diferentes Quantidades de

Elementos

Nas analises por elementos finitos, a criacdo de uma malha de leitura permite
dividir a viga, em diversos elementos discretos. Essa diviséo facilita a representacao
dos comportamentos de deslocamento, tensdo e deformacéo ao longo da estrutura.
Quanto maior o numero de elementos, mais detalhada e precisa é a simulacao, pois
permite que o comportamento em cada ponto da viga seja calculado com maior
exatiddo. No entanto, o aumento no niumero de elementos também eleva o custo

computacional, exigindo um equilibrio entre precisédo e eficiéncia.

Para representar a viga foi considerado o ac¢o estrutural ASTM A36 como
material de cada elemento (como é apenas uma validacdo utilizei um aco comum de

referéncia), e suas propriedades materiais estéo listadas a seguir:
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Modulo de Young (E): (210 x 10° Pa) (BAUCCIO, 1993).

Modulo de cisalhamento (G): (8 x 101° Pa) (BAUCCIO, 1993).

Area da secao transversal (4): (7,92665 x 1073 m?), este valor foi considerado
para que se obtivesse um valor de momento de inércia arredondado, pois entéo

temos um raio (r) de 5,023 X 1072 m.

Os momentos de inércia podem ser calculados desta forma, sendo uma se¢ao macica:

S (4.1)

Momento de inércia em y (I,,): (5 X 107®m*).

Momento de inércia em z (I,): (5 x 107 m%).

Momento polar de inércia (] ) I,+ I,= (10°>m*) (CALLISTER e
RETHWISCH, 2013).

Comprimento da viga (L): 3 m

Em todas as malhas a seguir, foi aplicada uma forca cisalhante na direcao y

(F,) de 10°N no Ultimo né de cada malha de elementos (topo da coluna), onde o

deslocamento desta primeira malha com 3 elementos e 4 nds, (elementos de viga de

1 metro de comprimento) pode ser observado na Figura 17.

Deslocamento em Y (m)

Figura 17 Deslocamento da viga sob efeito de uma forga cisalhante de (10°N).
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Foi considerado um valor de Forca muito alto para assim haver bastante
discrepancia entre a viga original e a deformada, mesmo que ndo haja muito sentido
fisico um deslocamento cisalhante tdo grande para uma viga pequena isto é algo que
o simulador ndo considera, ele ir4 considerar apenas o valor estético correspondente

de cada no6, o simulador nao leva em conta os limites de falha do material.

Como o simulador néo inclui esse tipo de limitacdo de material (ou seja, um
critério de falha ou de resisténcia maxima), ele pode calcular deslocamentos maiores
do que seriam fisicamente possiveis, jA& que o material pode comecar a se deformar
de forma pléstica ou até mesmo quebrar antes de alcancar tais deslocamentos.

A validacao entre os valores de deslocamentos estaticos e numéricos obtidos

pode ser feita da seguinte forma abaixo.
Comparacéo de Deslocamentos em Y
Valor Analitico:

10° x 33
210.10% x 5.10-6

1F,L?
Y 3 EL

1
=3 X =0,85714m

Valor Numérico: 0,857 m

Com uma malha de 3 elementos e 4 nés, os deslocamentos numéricos da viga
coincidem precisamente com os resultados analiticos nos pontos onde ha um né. Por
exemplo, para o ultimo no, o deslocamento numérico € idéntico ao valor obtido pela
férmula analitica. Esse resultado exato € esperado, pois estamos modelando a viga
com elementos que representam seu comportamento estrutural de forma precisa nos
nés. No entanto, ao avaliar deslocamentos em pontos intermediarios, que néao
coincidem com os nés, observamos uma aproximacao do valor analitico, mas ndo uma
correspondéncia exata. Isso ocorre porque, ao utilizar uma malha com apenas 3
elementos, a discretizacdo é relativamente grosseira, o que limita a precisdo entre 0s

7

nos.

Vale ressaltar que, ao aproximar linearmente entre os nos, é esperado que
ocorra um erro nas regides intermediarias, pois a interpolacéo linear ndo captura com

precisao as variacdes dos deslocamentos entre esses pontos.
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Exemplo, podemos escolher o ponto x = 1,55 m e extraindo do gréafico temos

um deslocamento em Y de aproximadamente 0,3016m neste ponto escolhido.

Comparacéo de Deslocamentos em Y

Valor analitico para qualquer ponto da viga pode ser calculado da Equacéo 4.2.

U, = 25 51— 42)
y X) = 6 Ely X .
105 x 1,552

1
Uy (1,55) == ~(3.3 — 1.55) = 0,284105m

210.10° x 5.10-
Valor Numérico do Grafico: 0,3016 m

Valorgnalitico—Valorp,umerico

Erro:

X 100 = 9,32%

Valorgnalitico

Agora podemos utilizar uma malha com mais elementos para fazer

comparacgdes de precisdo. O deslocamento desta malha com 30 elementos e 31 nos,

(elementos de viga de 0,1 metro de comprimento) pode ser observado na Figura 18.
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Figura 18 Deslocamento da viga sob efeito de uma forga cisalhante em Y de (105N).

= original
deformada

0 025 05 075 1 125 15 175 2 225 25 275 3
Comprimento da Viga em X (m)



62

Valor Numérico do Grafico: 0,28428 m

Valorgnalitico—Valorpyumerico

Erro: x 100 = 0,06%

Valorgnalitico

Ao comparar o0s deslocamentos numéricos e analiticos em pontos
intermediarios de uma viga (pontos que ndo coincidem com os nds da malha),
observamos que a precisao do modelo numérico depende diretamente do niumero de
elementos na malha. Com uma malha menos refinada, composta por poucos
elementos, o deslocamento numeérico nesses pontos intermediarios tende a se afastar
do valor analitico, resultando em um erro maior. Isso ocorre porque a malha menornao

captura com precisao as variagdes locais do deslocamento ao longo da viga.

Quando refinamos a malha (aumentando o nimero de elementos), o modelo
numérico consegue representar melhor o comportamento real da estrutura. Assim, 0s
deslocamentos numéricos calculados em pontos intermediarios se aproximam mais
dos valores analiticos, reduzindo o erro. E, portanto, utilizaremos a malha com 30

elementos para as analises estaticas por possuir uma precisao suficiente.
4.1.1.2 Aplicando Forg¢a Axial em X

Para validar o GDL axial em X pode-se fazer uma comparacdo de valores

numeéricos e analiticos obtidos de deformacao do ultimo n6 da viga de simulacao.

Figura 19 Deslocamento da viga sob efeito de uma forca axial de (—108N).
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Embora exista o risco de flambagem axial na viga, esse comportamento nao é

capturado pelo simulador, e a validacéo entre os valores de deslocamentos estaticos

e numericos obtidos pode ser feita da seguinte forma abaixo.

Comparacéo de Deslocamentos em X

Valor Analitico:

&L _ —10°x 3 — —0,18022385
TEA 21010°x7.92665x 103 m

Uy
Posicdo do ultimo né da viga apos deslocamento = L- U, = 2,8197761m

Valor Numérico: 2,81978 m

Podemos observar que, assim como na analise anterior, (U,) ndo houve

diferenca entre os valores mostrando precisdo exata o que era esperado.

4.1.1.3 Aplicando Forg¢a Cisalhante em Z

Para validar o GDL cisalhante em Z pode-se fazer uma comparacéao de valores

numeéricos e analiticos obtidos de deformacao do ultimo né da viga de simulacao.

Deslocamento em Z (m)
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Figura 20 Deslocamento da viga sob efeito de uma forca cisalhante em Z de (105N).
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Comparacgéo de Deslocamentos em Z
Valor Analitico:

1R 1 105 x 33

=X
210.10° x 5.10~°

U, =-—-2" = = 0,85714
z=3FL, "3 m

Valor Numérico: 0,8571m

Podemos observar que, assim como na analise anterior, (U,) ndo houve

diferenca entre os valores, mostrando precisdo exata o que era esperado.

Para validar o GDL Rotagdo em Y relacionado ao GDL cisalhante em Z pode-
se fazer uma comparacdo de valores numéricos e analiticos obtidos de deformacéo

do ultimo né da viga de simulacédo.
Comparacédo da Rotacdo em Y
Valor Analitico:

_1RL2 1 105 x 32

B, = ——f = —=x — —0,4286 rad
YT T2EL T 27210.10° x 5.10- ra

Valor Numérico: —0,429 rad

Podemos observar que, assim como na analise anterior, (6,) ndo houve

diferenca entre os valores, mostrando precisao exata, o que era esperado.
4.1.1.4 Aplicando Momento Torsor em X

Para validar o GDL torsor em X pode-se fazer uma comparacéo de valores

numéricos e analiticos obtidos de deformacao do ultimo né da viga de simulagéo.
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Figura 21 Deslocamento da viga sob efeito de um momento torsor em X de (10°N).
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Comparacédo de Rotacdo em X

Valor Analitico:

ML 10° x 3
6]  8x 1019x10

04 == 0,375 rad

Valor Numérico: 0,3750 rad

Podemos observar que, assim como na analise anterior, (64) ndo houve

diferenca entre os valores, mostrando precisao exata, o que era esperado.

4.1.1.5 Aplicando Momento Fletor em Y

Para validar o GDL fletor em Y pode-se fazer uma comparagao de valores
numeéricos e analiticos dos deslocamentos em Z obtidos de deformacgéo do ultimo né

da viga de simulacao.
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Figura 22 Deslocamento da viga sob efeito de momento fletor em Y de (10°N).
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U 1M, L? 1 105 x 32 042857
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Valor Numérico: —0,428571 m
Comparacédo da Rotacdo em Y
Valor Analitico:

o, = b _ 10° %3 = 0,2857 rad

v = EI, ~ 21010°x 5106 <000 TE

Valor Numérico: 0,2857 rad

Nos gréficos de simulagdo estatica, podemos observar que os valores
numéricos de deslocamento nos nés coincidem exatamente com os valores analiticos.
Isso € esperado, uma vez que, para este problema especifico, estamos utilizando

elementos de viga, 0 que naturalmente leva a um ajuste perfeito nos nés. Como
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mencionado anteriormente, iSso ocorre porgue 0s nés representam as extremidades

dos elementos, onde o modelo € exatamente resolvido pelas equacdes de equilibrio.

Além disso, ao utilizar mais elementos de viga na malha, conseguimos
aumentar a precisdo dos deslocamentos nos pontos intermediarios, entre dois nés.
Com uma malha mais refinada, a aproximacdo da solucdo analitica torna-se mais
precisa, ja que o comportamento da viga é representado de forma mais detalhada ao
longo do seu comprimento. Dessa forma, ao aumentar o numero de elementos,
conseguimos nao apenas manter a precisdo nos nds, mas também melhorar a
precisdo dos deslocamentos em pontos que nao coincidem exatamente com as

extremidades dos elementos.

4.1.2 Andélise Dinamica

Nesta secdo, apresentaremos as validacdes de andlises dindmicas, a viga, foi
submetida a um estudo minucioso para compreender seu comportamento vibratorio e
dindmico ao aplicarmos uma forga em funcdo de uma certa frequéncia. Investigamos
como os diferentes segmentos da viga interagem e respondem as cargas,
considerando a influéncia de fatores como frequéncia natural, modos de vibracéo e

amortecimento.
4.1.2.1 Dominio da Frequéncia

Ao mudarmos o dominio das analises, mapeamos as respostas vibratorias da
viga em funcdo da frequéncia nos permitindo identificar as frequéncias naturais da
estrutura. A analise no dominio da frequéncia também nos permitiu avaliar a influéncia
do amortecimento e a capacidade da viga de absorver energia vibracional ao longo

do tempo.

Para as andlises a seguir utilizaremos uma malha de 100 elementos e 101 nos
(com elementos de 0,1 metros) mantendo a mesma discretizagdo porém aumentando
o tamanho da viga, assim reduzindo a necessidade de utilizarmos frequéncias muito
altas, ja que a frequéncia de uma viga € inversamente proporcional ao comprimento

da mesma. Os elementos de viga possuem as seguintes propriedades:
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Propriedades do material dos elementos (aco):

As propriedades e valores que foram utilizados para esta simulacdo sao os

mesmos da analise estatica com a adicao de:

e Massa Especifica aco estrutural ASTM A36 (p): (7.8 x 103kg/m?) (BAUCCIO,

1993).

e Comprimento da viga (L): 10 m.

Assim como explicado anteriormente a respeito das outras propriedades
materiais, 0 aco ASTM A36 néo é especificamente utilizado em colunas de perfuragéo,
porém como € apenas uma validacdo do cédigo de viga pouco importa-se grandes
variacdes de valores, ndo h4 necessidade de exatiddo, apenas foi escolhido um aco

de categoria estrutural comum.

Nas Figuras 23 e 24 realizamos uma analise dinamica em funcéo da frequéncia
sem amortecimento, analisando em cima do Ultimo n6 da viga (extremidade livre —
10m), a frequéncia sera variada até o modo 3 de vibracdo (n = 3), ou seja, até 5
vezes sua frequéncia natural. Consideraremos até o terceiro modo porque oS
primeiros modos de vibracdo capturam a maior parte da resposta dinamica relevante
da estrutura, que envolve principalmente os deslocamentos e deformagbes mais
significativos. Modos de vibracdo mais altos, embora presentes, tendem a ter
amplitudes menores e exigiriam uma discretizacdo mais refinada para captar
adequadamente os efeitos de frequéncia mais alta e as interagcdes mais sutis, 0 que
nem sempre € necessario para um entendimento adequado e prético da estabilidade

da coluna em operagéao.



69

Forga Axial em X (F,) - Deslocamento Normalizado - Forca de compressdo (—108N).

Figura 23 Deslocamento Axial Normalizado por Frequéncia Normalizada — For¢a no ultimo né

- -
o o
[s=] [a%]

Deslocamento Normalizado
o
R

180

—_
L]
o o

—_
N
o

(o]
o

Angulo de fase (graus)
o o
o o

N A
o o

o

Grafico de Deslocamento por Frequéncia (Normalizados)

0.5 1 1.5 2 25 3 3.5
Frequencia Normalizada

B

4.5

Fungao de Resposta em Frequencia (angulo de fase (graus))
T T T T T T T T

Figura 24 Angulo de fase por Frequéncia Normalizada em X — Forga no Gltimo né

o

0.5 1 1.5 2 25 3 35 4 45
Frequencia Normalizada



70

Frequéncias calculadas para computagdo do amortecimento de Rayleigh

pela Equacéo 2.57.

Frequéncia Natural Axial, modo 1 (n = 1)

210 x 10°
5> = 815,046 rad/s

m2n—-1) | E
N 7800 x 10

m 2 ol2

Axial _

N3

Frequéncia Natural Axial, modo 3 (n = 3).

210 x 10°

m@n-1) | B _ ) = 4075231 rad
- - 7800 x 102 231 rad/s

n 2 oLz~ 2

Axial _

O grafico de Deslocamento Normalizado por Frequéncia Normalizada acima,
Figura 22, quando expressos em frequéncia normalizada, representam como a
estrutura responde a diferentes frequéncias em relagdo a uma frequéncia de
referéncia, neste caso no primeiro modo de vibracdo (n = 1). Esse tipo de grafico
ajuda a visualizar os picos de resposta em cada modo de vibracéo e facilita a analise
de ressonancias, antirressonancias e amortecimento em sistemas estruturais ou

mecanicos.

Podemos observar que o simulador apresenta bom comportamento em relagéo
as frequéncias, este comportamento € observado na alternancia entre picos de
ressonancia e antirressonancia, que indicam a resposta do sistema em relacéo as
frequéncias normais especificas. Nas frequéncias normalizadas impares, ha
ocorréncia de ressonancia, onde o deslocamento teorico tende ao infinito,
caracterizando uma resposta amplificada ao carregamento. Em contraste, nas
frequéncias normalizadas pares, o0 sistema exibe antirressonancia, com o
deslocamento tendendo a zero, o que reflete um amortecimento natural e estabilidade
da estrutura nestas frequéncias. Esse padrédo alternado é tipico e esperado em
andlises de estruturas de vibracdo e confirma a precisdo das respostas pelas

frequéncias analisados no simulador.

O gréfico de angulo de fase em funcao da frequéncia normalizada, Figura 23,
representa a diferenca de fase entre a entrada (forca aplicada) e a resposta

(deslocamento ou aceleracédo) em cada frequéncia de excitacdo. Conforme a
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frequéncia se aproxima de um modo de ressonancia e antirressonancia da estrutura,
0 angulo de fase muda rapidamente, geralmente passando de 0° a 180°. Essa
mudanca indica o comportamento dindmico e a transi¢ao de respostas dominadas por
rigidez para aquelas dominadas pela massa indicando também que o codigo

apresenta bom comportamento.

Para as analises nas Figuras 25 e 26 a seguir consideraremos um
amortecimento de (¢ = 0,01) segundo Adams e Askenazi (1999) para aco, e para o
célculo dos coeficientes da matriz de amortecimento [C] utilizaremos as vibracdes até
o0 modo 3, ou seja, como foi dito na secdo de Amortecimento Viscoso de Rayleigh,
consideraremos (w;,,,) como a primeira frequéncia natural do sistema, e (w,) como a
frequéncia natural até o modo 3 (n = 3). Primeiro calcula-se as frequéncias w,, e w,

pela Equacéo 2.57.
Frequéncia Natural Axial, modon = 3
wixial = 4075,231 rad /s
Frequéncia Natural Axial, modon = 1
waxial — 815,0461 rad /s

Assim com as frequéncias calculadas, poderdo ser computadas nos
coeficientes de amortecimento o e § para a matriz de amortecimento e assim aplica-

lo & analise dinamica pela Equacéo 2.83.

815,0461 * 4075,231
815,0461 + 4075,231

0(=2Z(M)=2x0,01x< )=13,585

1 1
_ _ _ —6.-1
B= 2Z( ) 2x0,01x (815,0461 n 4075,231) 4,09 x107%s
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Figura 25 Deslocamento Axial Normalizado em X por Frequéncia Natural Normalizada com
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Figura 26 Grafico de Angulo de fase por Frequéncia Natural em X Normalizada com amortecimento —
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Nos graficos acima com amortecimento, Figura 25, € observado que, a medida

gue a frequéncia aumenta, a amplitude da resposta do sistema tende a diminuir

progressivamente. Esse comportamento ocorre porque o amortecimento introduz uma
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dissipacédo de energia no sistema, o que reduz as oscilagbes com o aumento da
frequéncia. Para frequéncias baixas, proximas dos modos naturais do sistema, a
amplitude pode ser elevada devido a ressonancia. Entretanto, a medida que a
frequéncia se afasta desses modos naturais e se torna mais alta, o efeito do
amortecimento sobre a energia vibracional se intensifica, resultando em uma queda
significativa na amplitude das oscilacfes. Essa caracteristica € importante para evitar
efeitos de ressonancia em frequéncias mais elevadas, contribuindo para a

estabilidade e controle das vibragdes.

O amortecimento tem uma influéncia direta sobre o angulo de fase em funcéo
da frequéncia normalizada, Figura 26. A medida que o amortecimento aumenta, a
transicdo de fase se torna mais gradual, o que suaviza as mudancas no angulo de
fase entre a entrada e a resposta do sistema. Este comportamento de fase reflete a
dissipacéo de energia, a medida que o amortecimento reduz o efeito da ressonancia

e proporciona uma resposta mais controlada ao longo das frequéncias.

Obter respostas satisfatorias em termos de amortecimento no grafico de
Deslocamento Normalizado por Frequéncia Normalizado e do angulo de fase indica
gue a implementacdo do amortecimento no modelo foi bem-sucedida. Isso significa
que o simulador representa com precisdo os efeitos dissipativos, e a capacidade de
reproduzir as quedas e variacdes nas amplitudes com aumento de frequéncia € um

sinal de que o modelo de amortecimento foi corretamente configurado.
4.1.2.2 Dominio do Tempo

Nesta secao, apresentaremos os resultados de andlises dinamicas no dominio
do tempo realizadas em uma viga de 10 metros, dividida em 100 elementos de 0,1
metros de comprimento, a mesma malha utilizada para os testes no dominio da
frequéncia. A viga, estendendo-se desde O metros até 10 metros, foi submetida a um
uma analise para investigamos como os diferentes segmentos da viga interagem e
respondem as cargas, considerando a influéncia de fatores como frequéncia natural,

modos de vibragcdo e amortecimento.

Para as analises a seguir utilizaremos a mesmas propriedades anteriores. Logo
abaixo realizaremos uma analise dindmica em fung¢édo do tempo do ultimo n6 da viga

(ponta final), quando este sofre uma forca no primeiro instante de tempo (vibracéo
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livre), utilizando o método de Newmark (Aceleracdo Média Constante) sem

amortecimento utilizando a matriz de massa distribuida e até o modo 3 de vibracéo.
Propriedades da simulacéo:

e Tempo inicial (¢t;): (0s)

e Tempo final (t;): (0,5s) — A simulagdo sera curta pois, a frequéncias axiais s&o
mais altas quando comparada a outras frequéncias, e assim o tempo de 0,5
segundo sera suficiente para observar as mesmas.

e Tamanho do passo de tempo (At): (0,0001s) — Para boa discreitizacao

e Tempo de aplicagédo da Forca no ultimo né (Atg): (0,001s)

e Posicdo inicial (°U): (0m) — Partindo do repouso

e Velocidade inicial (°0): (0m/s) — Partindo do repouso

e Parametro (8): (%) — Parametro para estabilidade incondicional (Newmark)

e Parametro (y): (i) — Parametro para estabilidade incondicional (Newmark)

Forga Axial em X (F,) - Deslocamento em X - Forca aplicada de (108N) — Figura 27.

Figura 27 Deslocamento Axial em Funcdo do Tempo — Forca no ultimo né
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Agora aplicaremos para o mesmo exemplo um tempo de aplicacédo de forca

(Atg) de (0,002s) como pode-se ver na Figura 28.
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Figura 28 Deslocamento Axial em X em Func¢do do Tempo — Forca no ultimo né
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Quando uma forca € aplicada a um sistema, sua resposta ndao é apenas
determinada pela magnitude da for¢ca, mas também pela frequéncia e duracdo da
aplicacao, e ao aplicarmos estas novas condigdes podemos observar que a amplitude
do deslocamento axial da viga aumenta significativamente de uma aplitude de em
média 0,45m para 0,75m, o que faz sentido ja que aplicar uma forca por mais tempo

é equivalente a transferir mais energia, uma resposta ja esperada.

O comportamento de batimento observado no grafico de deslocamento axial do
ultimo n6 da viga em funcao do tempo, Figura 26, € uma resposta esperada para esse
tipo de sistema estrutural. Neste caso, a viga esta engastada em uma extremidade e
livre na outra, sem qualquer mecanismo de amortecimento, 0 que significa que a
energia da forga axial aplicada na ponta livre se propaga como uma onda ao longo da
viga até a extremidade engastada, onde é refletida. Esse fenbmeno de reflexdo resulta
na superposicdo de ondas transmitidas e refletidas, gerando o comportamento de
batimento. A auséncia de amortecimento ou dissipacdo de energia permite que o
batimento persista, pois ndo h4 perda de energia no sistema, mantendo o padrédo

oscilatorio ao longo do tempo.

Podemos observar também na Figura 27 de deslocamento em fun¢do do
tempo, é possivel observar a presenca de multiplas frequéncias atuando no sistema.

As frequéncias mais baixas (modo 1) s@o perceptiveis nos picos de maior amplitude
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e com periodos mais longos, representando os modos de vibra¢cdo predominantes da
estrutura. Ja as frequéncias mais altas (modo 3) aparecem como uma espécie de
ruido superposto nos primeiros picos, manifestando-se por meio de oscila¢des de
menor amplitude e maior frequéncia. Esse comportamento indica a combinagéo de
diferentes modos de vibrag&o, onde as frequéncias mais baixas dominam a resposta
global, enquanto as mais altas influenciam os detalhes da resposta dinamica,

especialmente no inicio da vibracéo.

Para as andlises a seguir consideraremos um amortecimento de (( = 0,01)
segundo Adams e Askenazi (1999) para aco, e para o calculo dos coeficientes da
matriz de amortecimento [C] utilizaremos as vibra¢fes até o modo 3, ou seja, como foi
dito na secdo de Amortecimento Viscoso de Rayleigh, consideraremos (w,,) como a
primeira frequéncia natural do sistema, e (w,) como a frequéncia natural até o modo
3 (n = 3). Primeiro utilizaremos as mesmas frequéncias w,, e w,,, € 0s coeficientes

a e B calculados anteriormente:

Frequéncia Natural Axial, modon = 3

wixial = 4075,231 rad /s
Frequéncia Natural Axial, modon = 1

waxial — 815,0461 rad /s
Coeficientes do Amortecimento de Rayleigh:

o =13,58s
B =4,09x 107°s71

Para a andlise do GDL axial de Deslocamento em X (F,) com amortecimento
ultilizou-se as propriedades de simulacdo com (A; = 0,0001s), (At =0,001s) e

(tr = 0,5s) e pode ser observado na Figura 29.
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Figura 29 Deslocamento Axial em Funcdo do Tempo com amortecimento -— Forca no altimo n6
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Para validacdo desta implementacdo no tempo devemos considerar duas
coisas, primeiro se a frequéncia natural calculada tem proximidade com a frequéncia

calculada no grafico.
Podemos primeiro transformar a frequéncia natural calculada em periodo:
waxial — 815,0461 rad /s

2T 2T

T = - =
m ™ \pAxial T 8150461

= 0,0077s

Agora através do grafico, Figura 28, do deslocamento em funcdo do tempo
podemos contar quantos picos de ondas ha em um A; de 0,05 s e assim encontrar o

periodo:

oA 005
grafico ™ noyicos 6,5

= 0,007692s

Logo podemos inferir que os periodos sdo os mesmos e que as frequéncias
estdo de acordo com as calculadas analiticamente e assim implementadas

corretamente.
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Outra inferéncia que pode ser feita é avaliar o impacto de cada coeficiente de
amortecimento na resposta. Os coeficientes a e 3 do amortecimento de Rayleigh
estdo relacionados ao controle do amortecimento nas andlises dindmicas de

estruturas.

Primeiramente podemos plotar o deslocamento, na Figura 29, com
amortecimento proporcional apenas a Massa M, ou seja p = 0s~1, e definirmos um
valor calculado anterior de a = 13,58s. Para a analise do GDL axial de Deslocamento
em X (F,) com amortecimento ultilizaremos as propriedades de simulacdo com (A, =
0,0001s), (Atg = 0,001s) e (tr = 0,1s).

Figura 30 Deslocamento Axial em Funcdo do Tempo com amortecimento proporcional a massa —
Forca no ultimo né
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Ao analisar a Figura 30, foi possivel observar o0 mesmo comportamento
previamente descrito na secdo 2.7.4, quanto a funcionalidade do coeficiente a. As
frequéncias mais baixas apresentam amortecimento mais acentuado (queda de
amplitude dos picos de periodo maior), enquanto as frequéncias mais altas (picos de
periodo menor) persistem por mais tempo, manifestando-se como pequenas

oscilacfes sobrepostas aos primeiros picos de resposta. Esse comportamento
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confirma a influéncia do coeficiente mostrado na Figura 14, associado a matriz de
massa, que atua de forma mais efetiva na dissipacdo das componentes de baixa

frequéncia, enquanto o amortecimento das componentes de alta frequéncia ocorre de
maneira mais gradual.

Agora podemos plotar, Figura 31, o deslocamento com amortecimento
proporcional apenas a Rigidez K, ou seja a = 0s, e definirmos um valor calculado
anterior de B = 4,09 x 107°s~1. Para a analise do GDL axial de Deslocamento em X
(F,) com amortecimento ultilizaremos as propriedades de simulacdo com (A; =
0,0001s), (Atz = 0,001s) e (t; = 0.1s).

Figura 31 Deslocamento Axial em Funcdo do Tempo com amortecimento proporcional a rigidez -—
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O gréfico obtido na Figura 31 também confirmam o comportamento esperado
em relacdo ao coeficiente 8 mostrado na Figura 14. Observa-se que as frequéncias
mais altas (picos de periodo menor) sdo amortecidas de forma mais rapida, resultando
em uma resposta dindmica mais suave e com menor presenca de oscilacdes de alta
frequéncia. Por outro lado, as frequéncias mais baixas (picos de periodo maior)

mantém-se por mais tempo, com um amortecimento mais gradual. Esse
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comportamento evidencia a influéncia do coeficiente 8, associado a matriz de rigidez,
gue atua de forma mais eficaz na dissipacdo das componentes de alta frequéncia,

enguanto exerce menor impacto sobre as componentes de baixa frequéncia.

Uma das principais vantagens de computar o amortecimento em fungéo das
matrizes de massa e rigidez é a capacidade de representar um comportamento de
amortecimento mais realista. Essa abordagem permite dissipar energia de forma
equilibrada, atuando de maneira eficiente tanto sobre as frequéncias mais baixas (por
meio do coeficiente a) quanto sobre as frequéncias mais altas (por meio do coeficiente
B). Assim, o sistema consegue simular de forma mais precisa a resposta dinamica
real, garantindo que diferentes faixas de frequéncia sejam amortecidas de acordo com

suas caracteristicas.

4.2 Estudo de Caso — Linha Neutra

A seguir, faremos um estudo de caso, focando o deslocamento da linha neutra
guando a coluna é submetida a cargas axiais (peso e tracdo), para uma simulacéo
mais realista da coluna de perfuracdo, considerando agora uma configuragao offshore
da coluna que terd seu comprimento total na escala de quildmetros (magnitude ideal
e real), composta de trechos com diferentes pesos e caracteristicas geométricas para
os drill pipes e drill collar. A coluna sera modelada como um cilindro oco com

espessura especificada, em vez de uma geometria macica.

Para o caso do poco offshore, assumiremos uma lamina d'agua de 260 metros
e uma profundidade de poc¢o de 1000 metros a partir da linha de lama (mudline). Isso
resulta em um comprimento total da coluna de aproximadamente 1260 metros (1.26
km), discretizada em elementos de viga de 3 metros, sendo 420 elementos e 421 nos,
comum para pocos no pos-sal em aguas profundas. Se o poco fosse
significativamente mais profundo, como acima de 5 km, a coluna poderia ser

associada ao cenario de perfuracdo em campos do pré-sal.
Simplificacdes e Exclusfes na Simulacao

Para simplificar o modelo, faremos as seguintes desconsideracgoes:
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e Sem interagdo broca x coluna: Nao sera considerada a interagdo entre
a broca e a coluna de perfuragao.

e Sem interagcdo com a parede do pog¢o: Assumiremos que a coluna néo
estd sujeita a forcas laterais de contato com a parede do poco.

e Sem interacdo com o fluido de perfuracdo: O efeito do fluido de
perfuracdo em contato com a coluna sera ignorado.

e Sem interacdo com correntes maritimas: Forcas geradas por correntes
oceanicas serdo desconsideradas, focando somente nas condicOes
estaticas e dindmicas da estrutura da coluna.

e Sem consideragao de flambagem da viga.

Durante a andlise estatica e dinAmica no dominio da frequéncia existirdo 2
forcas agindo na coluna, a forga peso (em toda coluna) e a for¢a de tragcéo no topo da
coluna (altimo no), e para a analise dinamica no dominio do tempo havera mais uma
forca que sera uma forca harmonica representando o movimento de heave na

plataforma (no topo da coluna, Gltimo no).
Especificagbes geométricas

Para este trabalho, adotaremos um referencial que posiciona o primeiro n6 da
viga (ponto 0 metros) como a base da coluna de perfuracéo, onde ela esta fixamente
engastada, representando a conexdo com o fundo do poc¢o. O ultimo né (ponto de
1260 metros) serd o topo da coluna, onde ela estara livre, representando a
extremidade superior que se conecta a plataforma de perfuracdo. Com isso, o
referencial do eixo ao longo do qual faremos as analises sera o eixo x, ou seja, a
coluna de perfuracdo seré orientada e discretizada ao longo desse eixo, as forcas

peso e de tracdo estardo, claro, axialmente neste referencial também.

O sistema da Coluna de Perfuracdo pode ser estruturado através da Figura 32.
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Figura 32 Representacao estrutural do estudo de caso da coluna de Perfuracao
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Para implementar o movimento de heave neste modelo, estamos aplicando
uma for¢ca harmonica na coluna de perfuracdo, em vez de um deslocamento direto.
Optamos por essa abordagem porque a aplicacdo de uma forca periédica foi mais
simples de implementar do que um deslocamento harmonico direto. Essa forca
aplicada simula de maneira eficaz o efeito do movimento de heave induzido pelo

movimento da plataforma offshore devido as ondas.

Para representar a viga foi considerado o aco utilizado em tubos, como material

de cada elemento, e suas propriedades materiais estao listadas a seguir.

Propriedades para todos os elementos

e Modulo de Young (E): (210 x 10° Pa) (BAUCCIO, 1993).
e Modulo de cisalhamento (G): (8 x 101° Pa) (BAUCCIO, 1993).
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Propriedades para Drill Pipes (BOURGOYNE et al. ,1986).
Diametro externo (DE) de 5 polegadas = 0,127 m

Diametro interno (DI) de 4,276 polegadas = 0,1086104 m

As propriedades dos diametros citadas acima foram escolhidas pois levou-se

em consideracdo que estes diametros sdo os mais utilizados em perfuracbes

(considerando uma média).

Area da secéo transversal (A): Pode ser calculada como A = %(DE2 —DI?) =
(3,402958 x 1073 m?)

Comprimento de cada drill pipe (L;): 9m

Volume de cada tubo (V): L, x A = 0,030626622 m?3

Massa Especifica aco (p): (7,8 x 103kg/m3)

Massa de cada tubo (m): 238,887652 kg

Os momentos de inércia podem ser calculados desta forma, sendo uma secao oca:

T
Iy = o5 (DE* — DI%) (4.12)

Momento de inércia em y (I,,): (593927 X 10~° m*).

Momento de inércia em z (I,): (5,93927 x 10~ m*).

Momento polar de inércia (J): I, + I, = (1,18785 X 107> m*) (CALLISTER e
RETHWISCH, 2013).

Propriedades para Drill collars (MITCHELL et al., 2010).

Diametro externo (DE) de 8 polegadas = 0,2032 m
Diametro interno (DI) de 3 polegadas = 0,0762 m

Mesmo argumento dos Drill Pipes, as propriedades dos diametros citadas

acima foram escolhidas pois levou-se em consideracdo que estes diametros sdo os

mais utilizados em perfuracdes (considerando uma média).

Area da secéo transversal (4): Pode ser calculada como A = %(DE2 —DI?) =
(2,78689 x 1072 m?)

Comprimento de cada drill collar (L;): 9m
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e Volume de cada tubo (V): L, Xx A = 0,2508201 m3
e Massa Especifica aco (p): (7,8 x 103kg/m3)
e Massa de cada tubo (m): 1956,39678 kg

Os momentos de inércia podem ser calculados da mesma forma anterior, sendo uma

secao oca:

e Momento de inércia em y (I,): (8,20333 x 107> m*).

e Momento de inércia em z (I,): (8,20333 X 107> m*).

» Momento polar de inércia (J): I, + I, = (1,6406665 x 10~*m*) (CALLISTER e
RETHWISCH, 2013).

421 Anélise Estéatica

Para a analise estética da coluna de perfuracéo, consideramos duas forcas
principais: o peso total da coluna e uma forca de tracdo. O peso sera determinado
somando-se a massa de toda a coluna e multiplicando esse valor pela aceleracao da
gravidade, resultando na forca de compresséo total. Esse peso total serd entédo
distribuido uniformemente ao longo da coluna. Para isso, dividimos o peso total pelo
namero de elementos da malha e aplicamos a forca compressiva resultante em cada

nd, exceto no primeiro nd, que representa o fundo do pogo e é mantido fixo.

Para simular a tracéo, aplicaremos uma for¢a adicional no dltimo n6 (topo da
coluna), direcionada no sentido oposto ao peso. Essa forca sera uma porcentagem
significativa do peso total, de forma a contrabalancar parte da compressao e permitir
o controle da posicéo da linha neutra ao longo da coluna. Com esse ajuste, podemos
posicionar a linha neutra de acordo com os requisitos operacionais, evitando que fique
excessivamente comprimida ou tensionada, facilitando a analise das condicdes de

equilibrio estético.

O peso total da coluna pode ser calculado a seguir, onde n é o nimero da
guantidade de cada tubo que pode ser calculado, onde (h) € a porcentagem da secéo
do tubo em relagdo ao comprimento da coluna, (j) € o nimero de elementos de viga

da coluna e (i) € o comprimento de cada elemento:
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j.h  420.0,9

Mpriupipe =5 = T3 = 126 (4.13)
j.h 420.0,1
Npritcotlar = =T 3 = 14
E g € a gravidade = 9,81 m/s?:
Piotar = Ppriuripe + Ppriticotiar (4.14)

Ptotal = nDrillPipe-mDrillPipe- g + Npriucouar- Mpriticoular- g

Piotar = 126.(238,887652).9,81 + 14.(1956,39678).9,81
Piotar = 295279,4711 + 268691,5337
Piotar = 563971,0048 N

Agora com o0s pesos calculados de cada secdo de tubos e o0 peso total,
podemos saber quanto de peso iremos inserir nos nos para distribuir o peso em toda
a coluna, podemos obter isto ao dividirmos o peso pela quantidade de elementos de
cada secdao de tubo (i).

Ppriupipe  295279,4711

Py iupi 5 = = = 781,1626N 4.15
DrillPipe.adan6 i h 378 /m ( )

Ppriticoul 268691,5337
PDrillCollar_cada_n() = ”j ho = = 40 = 6397,417469N /m

Uma vez que distribuimos adequadamente os pesos nos nds ao longo da
coluna, aplicamos uma forca de tracdo no ultimo no6 (localizado no topo da coluna)
com a mesma magnitude do peso total da estrutura. Essa forca de tracédo € aplicada
em sentido oposto ao da forgca peso, permitindo analisar o comportamento da linha
neutra. Para isso, utilizamos os deslocamentos calculados e aplicamos a Equagéao
3.13 o0 que nos permitiu estimar as forcas internas ao longo de toda a extensao da

coluna, representada na Figura 33.
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Figura 33 Representacao da linha Neutra quando aplicado uma forca de tracéo igual forca peso
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Ao plotarmos o somatério das forcas ao longo do comprimento da coluna
(considerando as forcas de tracdo e compressao), observamos que a linha neutra se
encontra exatamente na base da coluna, em x = 0. Esse resultado confirma que, ao
aplicar uma forca de tracao equivalente ao peso da coluna, ndo ocorre compressao
ao longo da estrutura. Dessa forma, o sistema permanece em equilibrio e a auséncia

de compresséo valida a exatiddo dos célculos e da distribuicdo de forcas realizada.

Além de extrairmos o valor do gréafico, podemos calcular o ponto exato da
coluna onde separa as duas por¢oes de tubos como:

Posicaopripipe = Leouna X 0,1 = 1260.0,1 = 126m

Assim constatamos que de 0 até 126m estdo localizados os Drill Collars, e de
126 até 1260m estéo localizados os Drill Pipes, e se observarmos ha uma variacdo
na inclinacdo que é quando transitamos entre os limites de Drill Collar para Drill Pipe,
isto € esperado uma vez que os tubos possuem inércias diferentes, e quando se passa

a uma secéo de tubo com menos inércia ha menos compresséo.



87

Se quisermos representar a linha neutra no seu devido lugar, isto é, na parte
superior da secao dos Drill Collars temos que aplicar uma forca de tracdo com uma
porcentagem abaixo de 100% da for¢a peso, uma vez que se aplicarmos uma forca

de tragdo um pouco menor que a forga.

Assim conforme citado na se¢éo de Método, para saber a quantidade de Tracéo
ideal que deve ser aplicada no topo da coluna podemos aplicar alguns critérios para
gue quando aplicado o valor ideal o posicionamento da linha neutra esteja dentro da
secao dos Drill Collars pela Equacdo 3.11 e que a compressdo aplicada néo

ultrapasse o WOB,,., pela Equacéo 3.12.
Posicionamento da Linha Neutra

Tragdo (%Peso) > 1 2686915337 > 52,4%
ragao LAreso 563971,0048 ~ 7
Assim para a Linha Neutra estar localizada nos Drill Collars ha a necessidade

de uma aplicacéo da forca de tracdo acima de 52,5% do Peso total da coluna.
Limitagdo do WOB Méaximo

Assim como dito anteriormente, para este estudo de caso ndo sera considerada
a interacao da coluna de perfuracdo com a broca, porém precisamos considerar uma
broca e termos um WOB,,,, proximo do real de uma perfuracdo. Para este trabalho
podemos considerara broca HS series premium PDC bit que possui um WOB,,,, de
180kN, sendo assim possuindo um novo valor para tragao.
180000 N

3 V) 0,
Tracdo (%Peso) > 2686915337 N X 126m > 67,2%

E, portanto, basta selecionarmos uma porcentagem acima de 67,2% do Peso
da Coluna para ser o valor de Trac&o, que assim respeitard os dois critérios.

Quando aplicamos 70% da forca peso Fr=563971,0048 % 0,70 =
394.779,70N em forgca de tragdo conseguimos posicionar a linha neutra dentro da
secao dos comandos e conseguimos respeitar 0 WOB,,,,., porém podemos ter mais
certeza se de fato obtivermos os valores de compresséo e a posi¢ao da linha neutra

e confirmarmos que os critérios estédo respeitados como podemos ver na Figura 34.
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Figura 34 Representacao da linha Neutra quando aplicado uma forca de tracéo 62% da forca peso
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Para obter a quantidade de Compressao que temos basta subtrairmos a Forca

de Tracao do Peso total da Coluna utilizando a Equacgéao 3.13.

Feompressao = Protal — Firacao = 563.971,0048N — 394.779,70N
Feompressao = 169.191,3N < WOB.,

Para obter a posi¢ao da Linha Neutra basta utilizar a Equacéo 3.14.

PosigidodalinhaNeutra(m) = 16919131 X 126m =
osicdodalinhaNeutra(m) = Seaesamm m=

PosicdodalLinhaNeutra(m) = 79,34m < 126m

Assim, tendo a confirmacéo de que os critérios estdo sendo respeitados apos
escolhermos 70% do Peso como Forca de Tacgao os critérios podem ser visualizados

na Figura 34.



89

Na analise estatica, o grafico de distribuicdo de for¢as ao longo do comprimento
da coluna permite identificar a posi¢cao da linha neutra e avaliar a compressao aplicada
sobre os drill collars. Com base nesses resultados, verifica-se se 0s critérios
operacionais estdo sendo respeitados: a linha neutra deve permanecer abaixo dos
drill collars e a forga de compresséo deve ser inferior ao WOB maximo permitido. Esse
equilibrio garante que os drill collars operem corretamente sob compresséao,
transmitindo o peso adequado a broca e evitando sobrecargas que poderiam

comprometer a integridade da coluna.

Entretanto, alteragGes nos diametros interno e externo dos drill collars poderiam
impactar significativamente esse comportamento. Um aumento no didmetro externo
eleva a rigidez da secéo, tornando-a menos suscetivel a flambagem, mas também
aumenta o peso, 0 que pode deslocar a linha neutra ainda mais para baixo. Isso
poderia resultar em excesso de compressédo, aumentando o risco de ultrapassar o
WOB méaximo e comprometendo a estabilidade da perfuracdo. Por outro lado, uma
reducdo no didametro externo diminuiria a rigidez e o peso dos drill collars, elevando a
posicdo da linha neutra. Esse deslocamento poderia fazer com que parte dos drill
collars passasse a operar sob tracédo, reduzindo a eficiéncia na transmissédo de peso

para a broca e aumentando o risco de instabilidades estruturais, como a flambagem.

Mudancas no diametro interno também influenciam a resisténcia e o peso da
coluna. Um aumento do diametro interno diminui a espessura da parede, reduzindo o
peso e a capacidade de suportar compressdo, 0 que pode levar a uma posi¢ao
inadequada da linha neutra e maior vulnerabilidade a flambagem. J& uma reducéo do
didametro interno aumenta o peso e a rigidez, podendo gerar compressao excessiva e

riscos de sobrecarga.

Portanto, qualquer alteracdo nos diametros dos drill collars exige uma nova
andlise das forcas atuantes na coluna para garantir que a linha neutra permaneca
adequadamente posicionada e que a compressao hao ultrapasse os limites

operacionais, preservando a eficiéncia e a seguranca da perfuracao.
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4.2.2 Anédlise Dindmica — Dominio do Tempo

Nesta secao, apresentaremos o comportamento da linha neutra da coluna sob
influéncia da forca peso e forca de tracdo, variando no dominio do tempo. Esses
carregamentos simulam condi¢des reais de operagdo e permitem analisar como a
coluna responde a variacbes de carga ao longo do tempo. Isso nos ajudarad a
compreender melhor os efeitos dinAmicos sobre a estabilidade e integridade da

coluna, ao avaliar a posicao da linha neutra.

No dominio do tempo, seré realizada a implementacao de uma forca harmonica
aplicada ao ultimo n6 da coluna de perfuracéo, localizado no topo. Esta forca é
projetada para simular o movimento de heave tipico em operacfes offshore, que
resulta do deslocamento vertical da plataforma devido as ondas do mar. A analise
busca investigar como esse carregamento dinamico afeta a posicao da linha neutra

ao longo da coluna.

A forca harmonica, o heave, sera representada matematicamente por F(t) =
Festatico + Fosen(wt) , onde F.gurico € @ amplitude da forca de Tracdo, F, é a
amplitude da forca de heave e w é a frequéncia angular do movimento. Ao aplicar esta
forca na extremidade livre da coluna, propagam-se ondas ao longo da estrutura, que
interagem com as condi¢des de contorno (engastamento na base do pogo) e podem
gerar reflexdes, criando padrdes complexos de vibracdo. Esta forca agird em todos os

instantes de tempo juntamente com a for¢a peso, porém variara harmonicamente.

Para as analises a seguir utilizaremos a mesmas propriedades anteriores. Logo
abaixo realizaremos uma analise dinamica em fun¢éo do tempo do ultimo n6 da viga
(ponta final), quando este sofre uma forga no primeiro instante de tempo (vibragéao
livre), utilizando o método de Newmark (Aceleracdo Média Constante) sem

amortecimento utilizando a matriz de massa distribuida e até o modo 3 de vibracéao.
Propriedades da simulacéo:

e Tempo inicial (¢t;): (0s)
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e Tempo final (tf): (22s) — A simulacédo seréa longa, pois a coluna de perfuracdo

€ extensa e suas frequéncias naturais diminuiram, assim requerindo um tempo
de simulacao maior.

Tamanho do passo de tempo (At): (0,01s) — Para boa discreitizacdo sera
suficiente.

Posicéao inicial (°U): (0m) — Partindo do repouso

Velocidade inicial (°U): (0m/s) — Partindo do repouso

Parametro (6): (%) — Parametro para estabilidade incondicional

Parametro (y): (i) — Pardmetro para estabilidade incondicional

A for¢a harmodnica (F(t)) aplicada no ultimo n6 da coluna (topo) foi definida
como F(t) = F, + 0,1%. F, sin(3t), onde (F,) representa 70% do peso total da
coluna e pode ser observado na Figura 35. Essa escolha foi feita para garantir
que a linha neutra permaneca dentro da secdo dos Drill Collars, assegurando
gue a compressao seja mantida conforme os resultados estéaticos indicaram ser
o ideal. A forca (F,) equivale a (394779,7 kN), mas a variagdo harmonica foi
restrita a apenas 0,1% dessa forga, ou seja, cerca de (34,97 N), para simular
de forma fiel as oscilagdes suaves induzidas pelo movimento de heave.
Figura 35 Forca Hamoénico de Tracéo + Heave pelo tempo
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Figura 36 Posi¢éo da linha Neutra em fung&o do Tempo
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Na Figura 36, observa-se inicialmente um comportamento transitério com
oscilacfes intensas da posicéo da linha neutra, resultado direto da auséncia de uma
condicdo de equilibrio inicial no modelo. Esse comportamento € esperado, pois o
sistema foi iniciado sem considerar a deformacéo estatica prévia, o que provoca um
tranco inicial que gera reflexdes de ondas ao longo da coluna. Esse transiente

numeérico leva a grandes oscilacées nos primeiros segundos da simulacao.

Quando a linha neutra assume valores negativos (z < 0), isso indica que a
coluna esta inteiramente tracionada. Esse comportamento ocorre devido ao engaste
na base (em z = 0), que impede o desprendimento da coluna. Em um cenério real,
iIsso corresponderia a uma falha operacional, como a perda de contato da broca com

o fundo do poc¢o, o que comprometeria a perfuracéo.

Por outro lado, quando a linha neutra ultrapassa o comprimento da coluna, isso
representa uma condicdo onde a coluna esta completamente comprimida. Essa
condigao pode causar problemas significativos na operacdo. Caso a linha neutra se
desloque muito para baixo, aproximando-se da broca, os drill collars podem néo ter
compressao suficiente para transmitir 0 peso necessario, comprometendo o peso

sobre a broca (WOB). Isso reduz a taxa de penetracdo (ROP) e a eficiéncia da
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perfuracdo. Em situagdes extremas, se a linha neutra teoricamente se posicionar
abaixo da broca, toda a secdo dos drill collars estara sob tensdo, perdendo sua

capacidade de estabilizar o conjunto de fundo (BHA) e de permitir a perfuracéo.

Além disso, se a linha neutra se deslocar acima do limite entre os drill collars e
os drill pipes, os tubos de perfuracdo, que ndo séo projetados para suportar forcas
compressivas, tornam-se vulneraveis a flambagem. Esse cenério pode levar a
flambagem helicoidal, causando contato com as paredes do poco, 0 que resulta em
desgaste excessivo, aumento do torque e arraste, falhas nos tubos e até danos no
poco. Essas condicbes aumentam os riscos de stuck pipe, elevam os custos

operacionais e comprometem a eficiéncia da operacéo.

Adicionalmente, caso a posicdo da linha neutra fique muito proxima do limite
entre os drill pipes e os drill collars, movimentos oscilatérios como o heave podem
deslocar a linha neutra acima dos drill collars, agravando os riscos para os drill pipes.
O uso de um compensador de heave torna-se essencial nesse contexto, pois ajuda a
preservar um WOB e um ROP mais constantes, reduzindo a influéncia das oscilacoes.
Dessa forma, € possivel aumentar a eficiéncia da operacdo, otimizar o tempo
necessario para a perfuracdo e minimizar os custos associados.Para evitar essas
oscilagcbes nao realistas, o ideal seria iniciar a simulagéo considerando a deformagao
estética de equilibrio. Assim, a resposta din@mica da coluna seria mais coerente com
0 comportamento fisico real, eliminando o tranco inicial e suavizando o

comportamento transitério.

Por fim conforme o tempo avanca, o sistema entra em regime estacionario, e a
linha neutra estabiliza-se harmonicamente ao redor de sua posicéo inicial de 79
metros. Este valor foi previamente calculado na analise estatica e validado como a
posicao inicial da linha neutra, onde as for¢as de tracdo e compresséao se equilibram.
Durante o regime estacionario, a linha neutra oscila de forma suave e periddica,
acompanhando o comportamento da for¢ca harménica aplicada. Isso demonstra que,
apos o término do periodo transitério, o sistema reflete o comportamento esperado

para uma forca de entrada senoidal.

Esse resultado reforca a fidelidade da simulacdo em capturar fendmenos

dindmicos importantes na andlise de colunas de perfuracao.
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5 CONCLUSAO

Este trabalho apresentou o desenvolvimento e implementacédo de um simulador
numérico para a analise estatica e dinamica de colunas de perfuracdo offshore em
condicdes realistas, mas de forma simplificada. O simulador foi projetado para operar
em seis graus de liberdade (6GDL) em 3D, permitindo andlises tanto no dominio da
frequéncia quanto no tempo. Os resultados demonstraram consisténcia e

confiabilidade ao longo das validacdes realizadas, comprovando a eficacia do modelo.

Um dos principais objetivos alcancados foi a analise detalhada da posicédo da
linha neutra (ponto de tens&o zero) em diferentes cenarios de carregamento,
considerando forgas axiais, cisalhantes e momentos fletores e torsores. Essa analise
foi essencial para verificar critérios operacionais importantes, como manter a linha
neutra abaixo dos drill collars e garantir que a compresséo nao ultrapassasse o limite

do WOB maximo.

Além disso, o simulador permitiu observar o impacto de movimentos
harmonicos de heave e demonstrou como variagdes nos didametros dos drill collars
podem influenciar o comportamento estrutural da coluna. A implementacdo de
amortecimento pelo método de Rayleigh contribuiu para uma representacdo mais

realista, controlando adequadamente as frequéncias mais baixas e mais altas.

Esses resultados reforcam a importancia de um ajuste preciso da tracéo
aplicada e do uso de sistemas como o0 compensador de heave para manter o WOB e

0 ROP estaveis, melhorando a eficiéncia operacional e reduzindo custos.

5.1 Contribuic6es do trabalho

A principal contribuicdo deste trabalho foi o desenvolvimento de um simulador
numeérico versatil, capaz de realizar analises estaticas e dinamicas (nos dominios da
frequéncia e do tempo) de colunas de perfuragédo offshore, com modelagem

tridimensional e seis graus de liberdade (6GDL).

O simulador representou com precisdo 0s comportamentos vibratorios e as

distribuicdes de tensdo ao longo da coluna de perfuracdo, permitindo a avaliacédo de
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critérios fundamentais para a operacao segura e eficiente, como o posicionamento da
linha neutra abaixo dos drill collars e a manutencao da forca de compressao abaixo

do limite do WOB maximo.

Outro destaque foi a capacidade de identificar riscos estruturais, como
flambagem dos drill pipes e falhas operacionais decorrentes de deslocamentos
excessivos da linha neutra. A analise também demonstrou a relevancia de considerar
variagcbes nos diametros interno e externo dos drill collars, que podem afetar a

distribuicdo de forgas e o comportamento dinamico da coluna.

A implementacdo do amortecimento de Rayleigh, com ajuste dos coeficientes
a e [, possibilitou uma modelagem mais realista da dissipacdo de energia,

equilibrando o amortecimento de frequéncias baixas e altas.

Por fim, o simulador se mostrou uma ferramenta eficaz para otimizar as
operacdoes de perfuracdo, permitindo ajustes precisos na tracdo aplicada e
contribuindo para a aplicacdo de sistemas como o compensador de heave. Isso
resultou em uma operagcao mais segura e eficiente, com WOB e ROP mais constantes

e reducédo dos custos operacionais.

5.2 Trabalhos futuros

Para futuras aplicagdes e melhorias, recomenda-se ampliar o simulador para
considerar outros graus de liberdade, especialmente em condigbes onde h& maior
complexidade nas interagdes fisicas. Outras melhorias incluem considerar a interacao
entre a coluna e a parede do poco, a interacéo entre a coluna e a broca, além do efeito
do fluido de perfuracéo, que pode influenciar significativamente o comportamento
dindmico. Por fim, aplicar o modelo em pocgos direcionais ou com maiores
comprimentos também podera trazer insights adicionais sobre o desempenho e a

estabilidade das colunas de perfuracdo em configuracées de poco mais complexas.
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Resumo

O desempenho da perfuracdo em operagdes offshore em grandes laminas d’agua ¢ essencial para a
viabilidade econémica dos projetos de exploracdo e producdo de 6leo e gas. Esse desempenho depende
da condicdo da coluna de perfuracdo e de seus componentes durante todo o processo, sendo influenciado,
em particular, pelos movimentos da coluna dentro do poco, que causam vibracGes responsaveis por perdas
de eficiéncia e desgaste dos equipamentos. Este trabalho tem como objetivo construir um simulador
numérico 3D para analisar o comportamento vibratério de uma coluna de perfuracdo offshore, a fim de
entender as dinamicas envolvidas e auxiliar no prolongamento da vida atil dos equipamentos. Para
alcangar esse objetivo, implementou-se a modelagem numérica da coluna de perfuragéo utilizando o
Método dos Elementos Finitos (MEF) através do ambiente de programacdo MATLAB®. O MEF se
destaca por sua precisdo e viabilidade computacional, permitindo uma analise detalhada dos fendmenos
vibratorios e suas implicacBes na integridade estrutural da coluna. O simulador trouxe resultados
confidveis que permitiu representar, de forma simplificada, o comportamento estatico e dindmico
vibratorio da coluna de perfuracéo, quando esta ultima é induzida por forgas que ocorrem durante uma
perfuracdo, e através dele pode ser feito uma avaliagdo do comportamento da linha neutra e o peso sobre
broca (PSB).

Palavras-chave: Colunas de Perfuragéo, Vibragcdes Mecéanicas, Pocos de Petrdleo Offshore, Método dos
Elementos Finitos.

Abstract

The drilling performance in offshore operations in deepwater environments is essential for the
economic viability of oil and gas exploration and production projects. This performance depends on the
condition of the drill string and its components throughout the process, particularly influenced by the
movements of the drill string within the well, which cause vibrations responsible for efficiency losses and
equipment wear. This work aims to build a 3D numerical simulator to analyze the vibrational behavior of
an offshore drill string to understand the dynamics involved and support the extension of the equipment's
useful life. To achieve this objective, the numerical modeling of the drill string was implemented using
the Finite Element Method (FEM) in the MATLAB® programming environment. FEM stands out for its
precision and computational feasibility, allowing a detailed analysis of the vibrational phenomena and
their implications for the structural integrity of the drill string. The simulator provided reliable results that
contributed to representing, in a simplified way, the static and vibratory behavior of the drilling string,
when the latter is caused by forces that occur during drilling, and through it an evaluation of the neutral
behavior of the neutral point and the weight on bit (WOB) can be made.
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1. Introducéo

A exploragdo offshore na industria de Oleo e gas apresenta desafios técnicos e econdmicos
significativos, especialmente devido as condic¢Ges adversas enfrentadas pela coluna de perfuracdo, como
altas pressoes, forcas de torcao e vibracOes. Essas vibragdes podem causar falhas mecénicas e impactar a
eficiéncia e seguranca das operacOes. A analise de vibragdes é fundamental para controlar essas operacdes,
mas métodos tradicionais nem sempre capturam o comportamento dindmico completo da coluna. Diversos
estudos contribuiram para o avango nesse campo. Real (2018) analisou vibragdes torcionais e propds
ajustes operacionais para mitiga-las. Khulief et al. (2008) investigaram o impacto do contato entre a coluna
e a parede do poco nas vibracOes laterais. Cayres et al. (2015) estudaram o fendmeno de stick-slip,
sugerindo controle de torque e rotacdo para reduzir vibracbes. Dong e Chen (2016) destacaram a
importancia de sistemas de monitoramento em tempo real, e Ghasemloonia et al. (2013) aplicaram o
Método dos Elementos Finitos (MEF) para modelar vibracdes, validando os resultados com dados
experimentais. A simulagdo numérica, especialmente com o uso do MEF, se destaca como uma ferramenta
poderosa para prever e analisar o comportamento da coluna de perfuracéo sob diversas condi¢bes. O MEF
oferece solucdes detalhadas para problemas complexos de engenharia, sendo amplamente utilizado em
mecanica estrutural e outras areas. No entanto, seu uso exige compreenséo tedrica adequada para garantir
resultados confiaveis (BATHE, 2014; RAO, 2018).

2. Metodologia

A metodologia deste trabalho consistiu no desenvolvimento e implementagdo de um simulador
numérico para a analise estatica e dindmica de colunas de perfuracao, operando em seis graus de liberdade
(GDL) em 3D. O simulador foi criado no MATLAB®, sendo implementadas fungdes para leitura de
propriedades materiais, definicdo geométrica e estruturacdo da coluna, além da formulacdo das matrizes
de rigidez e massa essenciais para a analise pelo Método dos Elementos Finitos (MEF).

A validacédo inicial foi realizada utilizando uma viga em balango (cantilever beam) para testar
deslocamentos estaticos e dindmicos. No dominio da frequéncia, as matrizes de rigidez e massa foram
acopladas para calcular as frequéncias naturais e avaliar a eficacia do amortecimento de Rayleigh. Ja no
dominio do tempo, o método de Newmark foi implementado para simular vibrac@es livres, observando os
efeitos dos coeficientes de amortecimento.

Apos a validacdo, o simulador foi aplicado a um estudo de caso de uma coluna de perfuracéo offshore
vertical, utilizando dados simplificados. O modelo de tracdo foi ajustado para garantir que a linha neutra
permanecesse abaixo dos comandos, respeitando também o limite do WOB méaximo da broca. Para isso,
foram utilizadas equagdes especificas para o calculo da tracdo, forga de compressao e posicionamento da
linha neutra. As equacges adotadas garantiram a conformidade com os critérios operacionais da coluna de
perfuragdo.

3. Resultados

Inicialmente, o simulador foi validado com simulagdes de vigas, verificando a precisao dos resultados
de deslocamentos e forcas internas. Com a validacdo confirmada, o simulador foi aplicado a um estudo
de caso de uma coluna de perfuracao, analisando sua resposta estatica e dindmica, incluindo a variacdo da
linha neutra e 0 comportamento vibratorio.

3.1. Validacéo do Simulador
3.1.1.Validacéo Estatica
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O simulador foi desenvolvido no MATLAB® para analisar o comportamento estatico de uma viga. A
viga foi modelada de forma linear 1D, com os nos distribuidos ao longo do eixo X, desde a origem até 3
metros. Para validar o GDL axial em X pode-se fazer uma comparacao de valores numeéricos e analiticos
obtidos de uma compresséo de (-108x) em X do ultimo n6 da viga abaixo com as seguintes propriedades:

e Modulo de Young (E): (210 x 10° Pa) (BAUCCIO, 1993).

e Modulo de cisalhamento (G): (8 x 101 Pa) (BAUCCIO, 1993).

e Area da secfo transversal (4): (7,92665 x 1073 m?), este valor foi considerado para que se obtivesse um valor de
momento de inércia arredondado, pois entdo temos um raio (r) de 5,023 x 1072 m.

e Momento de inérciaem y (I,): (5 x 1076 m*).

e Momento de inérciaem z (I,): (5 X 10~ m*).

e Momento polar de inércia (J): I, + I, = (107> m*) (CALLISTER e RETHWISCH, 2007).

01~
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Figura 1 - Deslocamento da viga sob efeito de uma forga axial de (—108N).

Comparacao de Deslocamentos em X
Valor Analitico:

U, = b 1073 = —0,18022385
*TEA T 210.10° x 7.92665 x 102 " m
Posicdo do altimo né da viga apds deslocamento = L-U, = 2,8197761m

Valor Numérico: 2,81978 m

Podemos observar na Figura 1 que, assim como na analise anterior, (Uy) ndo houve diferenga entre os

valores mostrando precisdo exata 0 que era esperado, assim estaticamente ele esta validado assim como
os outros GDL.

3.1.2.Validacdo Dinamica - Frequéncia

A anélise no dominio da frequéncia foi realizada para mapear as respostas vibratérias da viga,
permitindo a identificacdo das frequéncias naturais e a avaliacdo do amortecimento. Para as analises
subsequentes, utilizou-se uma malha de 100 elementos e 101 nés, com elementos de 0,1 metros,
aumentando o comprimento da viga. Essa abordagem reduziu a necessidade de frequéncias muito altas, ja
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que a frequéncia de vibracdo é inversamente proporcional ao comprimento da viga. Os elementos da viga

possuem as mesmas propriedades da validacao estatica com a adicdo de:

e  Massa Especifica aco estrutural ASTM A36 (p): (7.8 x 103kg/m?) (BAUCCIO, 1993).

Forca Axial em X (F,) - Deslocamento Normalizado - Forca de compressdo (—108N) aplicada no ultimo né da viga

Grafico de Deslocamento por Frequéncia (Normalizados)
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Figura 2 - Deslocamento Axial Normalizado por Frequéncia Normalizada — Forga no Gltimo né.

O grafico de Deslocamento Normalizado por Frequéncia Normalizada (Figura 2) mostra como a
estrutura responde a diferentes frequéncias em relacéo a frequéncia de referéncia (primeiro modo de
vibragéo). Esse grafico permite identificar picos de resposta, ressonancias, antirressonancias e
amortecimento. O simulador demonstrou bom comportamento, com alternancia entre picos de
ressonancia e antirressonancia, indicando uma resposta adequada do sistema as frequéncias normais

especificas. deslocamentos e forcas internas.

3.1.3.Validacdo Dinamica - Tempo

Nesta secdo, os resultados das analises dinamicas no dominio do tempo pelo método de Newmark
conisdera uma viga de 10 metros, dividida em 100 elementos de 0,1 metros. A analise investigou como
0s segmentos da viga interagem e respondem as cargas, considerando a influéncia da frequéncia natural,

modos de vibracdo e amortecimento. Foi aplicado uma Forga Axial em X (108N).

a1 ‘

Daslocamanto Axial am X {m)

04 I | I I
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Figura 3
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Para validacdo desta implementagdo no tempo devemos considerar duas coisas, primeiro se a frequéncia natural
calculada tem proximidade com a frequéncia calculada no gréfico.
Podemos primeiro transformar a frequéncia natural calculada em periodo:
wiaxial = 815,0461 rad/s
2 21
Tm = wixial — 8150461

Agora através do grafico, Figura 28, do deslocamento em fungéo do tempo podemos contar quantos picos de
ondas ha em um A; de 0,05 s e assim encontrar o periodo:

T A; 0,05
gréfico ™ pro picos 6,5
Logo podemos inferir que os periodos sdo 0s mesmos e que as frequéncias estdo de acordo com as calculadas
analiticamente e assim implementadas corretamente.

3.2. Estudo de Caso - Linha Neutra

= 0,0077s

= 0,007692s

No estudo de caso, analisaremos o deslocamento da linha neutra sob cargas axiais (peso e tragédo) em
uma coluna de perfuracdo offshore com 1260 metros, composta de 90% de Drill Pipes e 10% de Drill
Collars. Modelada como um cilindro oco, a coluna ser& discretizada em 420 elementos e 421 nds,
representando condigfes comuns em poc¢os pds-sal. O modelo desconsidera interacfes entre a broca e a
coluna, parede do poco e fluido de perfuracdo, efeitos de correntes maritimas e flambagem da coluna.
Detalhe que O m representa a base, e 1260 m representa o topo da coluna.

3.2.1. Anélise Estatica

Para a andlise estatica da coluna de perfuracédo, o peso total da coluna é calculado somando a massa e
multiplicando pela gravidade, sendo distribuido uniformemente ao longo da coluna. A forca compressiva
resultante € aplicada em cada n6 da malha, exceto no primeiro no (base da coluna) pois representa o fundo
do poco engastado. Para simular a tracdo, aplicamos uma forgca no Gltimo n6 (topo da coluna), de
magnitude proporcional ao peso total, controlando a posic¢éo da linha neutra e evitando compressdes ou
tensbes excessivas, facilitando a analise do equilibrio estético. Para haver a perfuracdo precisamos que
exista a forca de compresséo e que a linha neutra fique na se¢éo dos Drill Collars, cujos estdo posicionados
até 126 metros da base da coluna, para isso podemos ajustar quanto de tracdo aplicamos, na Figura 1
podemos observar a que a linha neutra esta numa posicéo ideal (< 126m) quando regulamos a forga de
tracdo para 70% do peso, e a compressdo é menor que a WOBmax permitida (linha azul).

«10% Grafico da Forga Normal pelo Comprimento da Coluna de Perfuragao Tracao = 70%Peso
4 F v T T

Forga Normal (N)

0 200 400 600 800 1000 1200
Comprimento da Coluna de Perfuragao (metros)
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Figura 4 “Representagao da linha neutra quando aplicado uma forga de tragao 70% da forga peso”.

3.2.2. Analise Dinamica — Dominio do Tempo

Para a anélise dindmica, analisaremos o comportamento da linha neutra sob influéncia da forca peso e
tracdo, considerando o dominio do tempo com amortecimento. Foi realizada a implementacdo de uma
forca harménica aplicada ao Gltimo né da coluna de perfuracéo, localizado no topo. Esta forca € projetada
para simular o movimento de heave tipico em operac@es offshore, que resulta do deslocamento vertical
da plataforma devido as ondas do mar. A analise busca investigar como esse carregamento dindmico afeta
a posicao da linha neutra ao longo da coluna.

Para a simulacéo, visualizada na Figura 3, utilizamos os parametros (6 = 1/2 e y = 1/4) para a simulacéo
se tornar incondicionalmente estavel, com tempo de simulacédo de 22 segundos. Em todos os instantes de
tempo foram aplicadas a forga peso, a forca de tracdo (70% da forca peso a fim de manter a linha neutra
na secdo de Drill Collars), e uma forca de apenas 0,1% (da forca de tracdo) simulando o movimento de
Heave numa frequéncia de 3 rad/s (abaixo da frequéncia limite calculada anteriormente)

Posigédo da Linha Neutra no Comprimento da Coluna ao longo do tempo
r T T T T T T

1000 [ '

900 - ‘
800 ‘ |
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500 |- |

‘ |
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|

300 ‘

200

Deslocamento da Linha Neutra ao Longo da Coluna (m)

100 ‘

oLl
bl L L 1 Ll - 11l I I 1 1 I
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Figura 5 - “Posicao da linha Neutra em funcéo do Tempo”.

A Figura 5 mostra o comportamento transitorio da linha neutra, com oscilagdes iniciais devido a falta
de equilibrio no modelo. Esse comportamento é esperado, pois o sistema foi iniciado sem considerar a
deformacéo estatica prévia. Quando a linha neutra é negativa (z<0), indica que a coluna esta tracionada,
0 que pode representar uma falha operacional, como a perda de contato da broca com o fundo do pocgo.

Se a linha neutra ultrapassar o comprimento da coluna, isso representa uma coluna comprimida, o que
pode comprometer a perfuracdo, reduzindo o WOB e o ROP. Se a linha neutra se posicionar abaixo da
broca, pode afetar os drill collars, prejudicando a estabilidade e a perfuracéo.

Caso a linha neutra se desloque acima do limite entre drill collars e drill pipes, pode ocorrer flambagem,
resultando em desgaste, aumento do torque e falhas nos tubos. Um compensador de heave pode ajudar a
manter WOB e ROP constantes, melhorando a eficiéncia da operagéo.
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Iniciar a simulacdo com a deformacao estatica de equilibrio evitaria oscilacdes ndo realistas. Apos o
periodo transitorio, o sistema entra em regime estacionario, e a linha neutra se estabiliza em sua posi¢do
inicial de 79 metros, com oscilacdes suaves em resposta a forca harménica aplicada.

4. Conclusao

Este trabalho apresentou o desenvolvimento e implementagdo de um simulador numérico para a analise
estatica e dindmica de colunas de perfuracdo em condicdes realistas. O simulador foi projetado para operar
em seis graus de liberdade em 3D, permitindo analises tanto no dominio da frequéncia quanto no tempo,
e apresentou resultados confiaveis ao longo das validacGes realizadas. Um dos principais objetivos
alcancados foi a possibilidade de observar o comportamento da linha neutra (ponto de tensdo zero) em
diferentes cenarios de carregamento, o que oferece uma representacdo mais realista do comportamento
vibratorio da coluna de perfuracéo. Esse enfoque permite prever de maneira mais precisa como a coluna
reage a condicdes operacionais diversas, contribuindo para a seguranca e eficiéncia das operacfes
offshore.
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