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RESUMO 

O desempenho da perfuração em operações offshore em grandes lâminas 

d’água é essencial para a viabilidade econômica dos projetos de exploração e 

produção de óleo e gás. Esse desempenho depende da condição da coluna de 

perfuração e de seus componentes durante todo o processo, sendo influenciado, em 

particular, pelos movimentos da coluna dentro do poço, que causam vibrações 

responsáveis por perdas de eficiência e desgaste dos equipamentos. Este trabalho 

tem como objetivo construir um simulador numérico 3D para analisar o 

comportamento vibratório de uma coluna de perfuração offshore, a fim de entender as 

dinâmicas envolvidas e auxiliar no prolongamento da vida útil dos equipamentos. Para 

alcançar esse objetivo, implementou-se a modelagem numérica da coluna de 

perfuração utilizando o Método dos Elementos Finitos (MEF) através do ambiente de 

programação MATLAB®. O MEF se destaca por sua precisão e viabilidade 

computacional, permitindo uma análise detalhada dos fenômenos vibratórios e suas 

implicações na integridade estrutural da coluna. O simulador trouxe resultados 

confiáveis que permitiu representar, de forma simplificada, o comportamento estático 

e dinâmico vibratório da coluna de perfuração, quando esta última é induzida por 

forças que ocorrem durante uma perfuração, e através dele pode ser feito uma 

avaliação do comportamento da linha neutra e o peso sobre broca (PSB). 

Palavras-chave: Colunas de Perfuração, Vibrações Mecânicas, Poços de 

Petróleo Offshore, Método dos Elementos Finitos. 



 

 

ABSTRACT 

The drilling performance in offshore operations in deepwater environments is 

essential for the economic viability of oil and gas exploration and production projects. 

This performance depends on the condition of the drill string and its components 

throughout the process, particularly influenced by the movements of the drill string 

within the well, which cause vibrations responsible for efficiency losses and equipment 

wear. This work aims to build a 3D numerical simulator to analyze the vibrational 

behavior of an offshore drill string to understand the dynamics involved and support 

the extension of the equipment's useful life. To achieve this objective, the numerical 

modeling of the drill string was implemented using the Finite Element Method (FEM) 

in the MATLAB® programming environment. FEM stands out for its precision and 

computational feasibility, allowing a detailed analysis of the vibrational phenomena and 

their implications for the structural integrity of the drill string. The simulator provided 

reliable results that contributed to representing, in a simplified way, the static and 

vibratory behavior of the drilling string, when the latter is caused by forces that occur 

during drilling, and through it an evaluation of the neutral behavior of the neutral point 

and the weight on bit (WOB) can be made. 

Keywords: Drill Strings, Mechanical Vibrations, Offshore Oil Wells, Finite 

Element Method. 
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1 INTRODUÇÃO 

Na indústria de óleo e gás, a exploração offshore representa um desafio técnico 

e econômico significativo. A exploração em águas profundas exige tecnologias 

avançadas e uma compreensão precisa dos fenômenos físicos envolvidos. Um dos 

componentes críticos nessas operações é a coluna de perfuração, que é sujeita a 

diversas condições adversas, como altas pressões, forças de torção e, 

particularmente, vibrações. As vibrações da coluna de perfuração podem causar 

falhas mecaniamente e economicamente catastróficas, impactando a eficiência 

operacional e a segurança das operações de perfuração. 

A análise de vibrações é um campo essencial na engenharia, em termos de 

controle de operação, sendo aplicável a uma ampla gama de sistemas mecânicos e 

estruturais. Na exploração offshore, a complexidade dos sistemas e as condições 

extremas do ambiente tornam essa análise ainda mais importante. Métodos 

tradicionais de análise, embora úteis, muitas vezes não conseguem capturar todas as 

nuances do comportamento dinâmico da coluna de perfuração em operação. 

O campo da indústria de óleo e gás tem avançado significativamente devido a 

pesquisas fundamentais voltadas para a dinâmica das colunas de perfuração e a 

mitigação de vibrações. Real (2018) contribuiu com a modelagem matemática e a 

identificação experimental de vibrações torcionais em colunas de perfuração, 

detalhando como oscilações axiais e torcionais afetam a integridade estrutural da 

coluna. O estudo propôs ajustes nos parâmetros operacionais, como rotação da broca 

e peso sobre a broca, para minimizar os efeitos dessas vibrações. 

Khulief et al. (2008) investigaram a interação entre a coluna de perfuração e a 

parede do poço, analisando como o contato físico contribui para vibrações laterais e 

o desgaste da coluna destacando a importância de considerar o atrito e a flexibilidade 

da coluna para evitar falhas estruturais e otimizar o desempenho durante a perfuração. 

Já Cayres et al. ( 2015) realizaram estudos experimentais sobre o fenômeno de stick-

slip, caracterizado por movimentos alternados de travamento e deslizamento da broca 

identificando o atrito seco como o principal fator causador dessas vibrações e sugeriu 

estratégias de controle, como o ajuste da rotação da broca e a aplicação de torque 

controlado, para mitigar o problema e prolongar a vida útil da ferramenta de corte. 
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Dong e Chen (2016) ofereceram uma revisão abrangente das tecnologias de 

avaliação, controle e mitigação de vibrações e choques em colunas de perfuração. O 

estudo enfatizou o uso de sistemas de monitoramento em tempo real, que permitem 

a detecção precoce de vibrações prejudiciais e o ajuste automático das condições 

operacionais, melhorando a segurança e a eficiência das operações de perfuração. 

Já Ghasemloonia et al. (2013) aplicaram o Método dos Elementos Finitos (MEF) para 

modelar e analisar vibrações em colunas de perfuração durante a perfuração rotativa 

assistida por vibração. O estudo validou os modelos desenvolvidos por meio de 

comparação com dados experimentais, oferecendo uma ferramenta robusta para 

prever e mitigar comportamentos vibratórios complexos, contribuindo para o aumento 

da confiabilidade do processo de perfuração. 

Para abordar essas questões, a simulação numérica surge como uma 

ferramenta poderosa. Através da modelagem computacional, é possível prever e 

analisar o comportamento da coluna de perfuração sob diversas condições 

operacionais. Entre os métodos numéricos que podem ser utilizados para estas 

simulações, o Método dos Elementos Finitos (MEF) destaca-se por sua capacidade 

de fornecer soluções detalhadas e precisas para problemas complexos de 

engenharia, este é um dos métodos numéricos empregados para resolver equações 

complexas. 

Originado na área de mecânica estrutural, foi ampliado para outras áreas da 

mecânica dos sólidos e para campos como transferência de calor, dinâmica de fluidos 

e eletromagnetismo. O MEF é amplamente reconhecido como uma ferramenta eficaz 

para resolver equações diferenciais parciais e integrais-diferenciais e, no futuro 

próximo, pode se tornar o método numérico preferido em várias engenharias e 

ciências aplicadas (BATHE, 2007). 

Uma das razões para a popularidade do MEF é que ele resulta em programas 

versáteis, capazes de solucionar diversos problemas práticos com um mínimo de 

treinamento. No entanto, existe o perigo de utilizar esses programas sem uma 

compreensão adequada da teoria por trás deles, o que ressalta a importância de um 

estudo detalhado e profundo da teoria que fundamenta o MEF (RAO, 2017). 
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Neste trabalho de conclusão de curso, foi realizada uma simulação numérica 

para a análise de vibração da coluna de perfuração offshore, utilizando o Método dos 

Elementos Finitos. Foi desenvolvida toda a fundamentação teórica mecânica-

matemática necessária para que sustente um estudo de caso, com dados reais, que 

poderão simular o comportamento dinâmico de uma coluna de perfuração em um poço 

offshore que esteve sujeita a diferentes tipos de forças e condições iniciais. Através 

dessa abordagem, espera-se contribuir para a melhoria da segurança e eficiência nas 

operações de perfuração offshore indústria de óleo e gás. 

1.1 Objetivo 

A pesquisa tem como objetivo criar um simulador numérico baseado no Método 

dos Elementos Finitos (MEF), que descreva os deslocamentos estáticos e dinâmicos 

no domínio da frequência e do tempo, para avaliar uma coluna de perfuração de um 

poço de petróleo offshore, onde permita avaliar o comportamento da linha neutra e do 

peso sobre broca (PSB). 

1.2 Justificativa 

A utilização de modelos computacionais reduz o potencial custo operacional e 

aumenta a segurança, pois permite simular diferentes cenários, seus resultados e 

antecipar possíveis condições críticas no ambiente operacional. O aprimoramento de 

tais tecnologias de simulação mitiga diretamente operações com custo e 

complexidade altos, como é o caso da extração de petróleo em águas profundas. 

Simulações fidedignas de problemas complexos tendem a exaurir rapidamente 

os recursos computacionais, entretanto um ambiente de implementação amigável 

torna a primeira abordagem mais simplificada gerando um acúmulo de conhecimento 

que propicia a posterior escalabilidade computacional buscando melhores 

arquiteturas e condições de execução. 
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1.3 Escopo 

O escopo deste trabalho concentra-se na análise vibratória da coluna de 

perfuração offshore na indústria de óleo e gás, utilizando simulação numérica pelo 

Método dos Elementos Finitos (MEF). O foco é desenvolver um modelo computacional 

que permita investigar o comportamento dinâmico da coluna em condições extremas, 

visando prever deslocamentos e oscilações que possam comprometer a integridade 

da estrutura. Assim, este estudo contribuirá para o aprimoramento das operações de 

perfuração, melhorando a segurança e a eficiência nas atividades de exploração 

offshore. 

1.4 Organização do trabalho 

Primeiramente, são introduzidos os fundamentos teóricos e metodológicos que 

sustentam o uso do MEF para simulação. Em seguida, é descrito o desenvolvimento 

do modelo computacional, incluindo as etapas de formulação de equilíbrio, condições 

de contorno e contagem de graus de liberdade. Posteriormente, a implementação no 

MATLAB® é apresentada com foco nos resultados e análises das frequências naturais 

e das respostas vibratórias. 



14 

 

2 REVISÃO BIBLIOGRÁFICA 

2.1 Coluna de Perfuração 

A coluna de perfuração é formada por uma série de tubos conectados que 

descem pelo poço, desde a plataforma de perfuração até a broca como podemos 

observar na Figura 1. Os principais componentes são projetados para resistir a 

condições extremas de carga e corrosão, pois a coluna suporta não apenas o peso 

do equipamento e da broca, mas também pressões e tensões de rotação que são 

aplicadas durante o processo de perfuração. Em muitos casos, materiais como ligas 

de aço resistentes são usados para garantir que a coluna suporte forças axiais e de 

torção. A integridade da coluna é crucial, pois qualquer falha pode interromper a 

operação e levar a perdas de tempo e custos elevados para resolver problemas 

estruturais no poço. 

Em perfurações offshore, a coluna de perfuração conecta a plataforma à broca 

e precisa lidar com as condições adversas do ambiente marinho. O sistema de 

elevação permite movimentar a coluna verticalmente, aplicando o peso necessário 

para a perfuração e suportando seu peso total. Montado na torre de perfuração, o Top 

Drive, acoplado à catarina, aplica torque diretamente à coluna transmitindo rotação e 

impulsionando a broca. Esses componentes são fabricados em ligas de aço de alta 

resistência para suportar as intensas forças axiais e de torção, prevenindo falhas que 

poderiam interromper a operação e gerar altos custos de manutenção em caso de 

danos estruturais. 
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Figura 1 Esquema Estrutural da Coluna de Perfuração numa Plataforma Offshore. 

 

Fonte: Adaptado de Wang et al. (2018) 

2.1.1 Componentes da Coluna 

A coluna de perfuração é composta por várias seções, cada uma com um 

propósito específico. Conforme Mitchel et al. (2011) os principais componentes 

inclusos no esquema estrutural na Figura 2 incluem: 
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Figura 2 Representação simples da Coluna de Perfuração com seus Componentes. 

 

Fonte: Mitchell et al. (2010) 

• Tubo de Perfuração (Drill Pipe): Este é um dos componentes fundamentais 

da coluna de perfuração e sua função principal é transmitir o torque gerado pelo 

Top Drive (offshore) até os Comandos. Ele consiste em tubos metálicos ocos e 

cilíndricos, geralmente feitos de aço ou ligas de alta resistência, projetados para 

suportar tensões elevadas, torção, compressão e forças de flexão durante a 

operação constituem a maior parte da coluna (<90%). 

• Comando (Drill Collar): Posicionado logo acima da broca, o Comando fornece 

o peso sobre a broca necessário para ter eficiência de perfuração, estabilizando 

a coluna e permitindo maior controle sobre a rotação e o deslocamento da 

broca. 

• Broca (Drill Bit): A ferramenta na extremidade da coluna que realiza a 

perfuração do solo. 



17 

 

• Estabilizadores e Ferramentas de Substituição (Sub-Assemblies): Estes 

são colocados em pontos estratégicos para centralizar a coluna no poço, o que 

ajuda a reduzir o desgaste nos componentes e na parede do poço. Além disso, 

estabilizam a coluna para permitir um controle direcional mais preciso, que é 

vital para poços inclinados ou de perfis complexos. 

• Bottom Hole Assembly (BHA): é o conjunto de componentes que se localiza 

na extremidade inferior da coluna de perfuração e desempenha um papel 

crucial no controle e direcionamento da broca durante a perfuração de poços. 

O BHA é composto por várias ferramentas e acessórios que servem para 

melhorar a eficiência, estabilidade e precisão da perfuração. Suas principais 

funções incluem fornecer peso sobre a broca (Weight on Bit, WOB), manter a 

direção e inclinação da perfuração, e amortecer vibrações para aumentar a vida 

útil dos componentes (CUNHA, SOIZE e SAMPAIO, 2015). 

2.1.2 Vibrações em Colunas de Perfuração 

As vibrações são um dos desafios mais críticos na operação de colunas de 

perfuração. Segundo Azar e Samuel (2007) elas ocorrem devido a várias fontes, como 

a interação com as formações geológicas e o movimento da broca, e podem resultar 

em falhas estruturais, perda de eficiência e aumento dos custos de operação. As 

vibrações podem ser divididas em três tipos principais conforme descritas abaixo e na 

Figura 3: 
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Figura 3 Modos de Vibrações Primárias de uma Coluna de Perfuração. 

 

Fonte: Hakimi e Moradi (2010). 

• Vibrações Axiais: São movimentos ao longo do eixo da coluna e podem 

causar movimentos “para cima e para baixo” que afetam a broca e os 

componentes próximos. 

• Vibrações Laterais: Estas ocorrem perpendicularmente ao eixo da coluna, 

gerando forças que podem levar a danos no equipamento ao colidir com as 

paredes do poço. São uma das causas de desgaste nos tubos e na broca. 

• Vibrações de Torção: Essas vibrações causam variações na rotação, o que 

pode levar ao fenômeno de “stick-slip” (parada brusca seguida por movimento 

súbito), que prejudica o controle e aumenta o risco de falha. 

Essas vibrações têm implicações operacionais e econômicas, pois podem 

reduzir a eficiência da perfuração e encurtar a vida útil dos componentes. Métodos 

como o uso de amortecedores, tensionadores de risers, compensadores de heave, 

ajustes de velocidade de rotação, e estabilizadores são comumente aplicados para 

reduzir esses efeitos e manter a operação dentro de parâmetros seguros e eficientes. 
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2.1.3 Movimento de Heave e Estabilidade 

No ambiente offshore, a perfuração de poços de petróleo e gás enfrenta 

desafios adicionais devido às forças dinâmicas impostas pelo mar. Entre essas forças, 

o movimento de heave é um dos mais impactantes. O heave é o movimento vertical 

de uma plataforma flutuante ou navio induzido pelo movimento das ondas. Esse 

deslocamento afeta diretamente a coluna de perfuração e os equipamentos 

conectados e assim duas tecnologias principais, o Tensionador de Riser (MRT) e os 

Sistemas de Compensação de Heave, desempenham papéis complementares na 

mitigação desses efeitos, garantindo eficiência e segurança nas atividades de 

perfuração. 

• Tensionador de Riser (MRT) 

O tensionador de riser é um sistema essencial em plataformas ou embarcações 

offshore, projetado para manter uma força constante para cima no riser, compensando 

os movimentos verticais da estrutura flutuante. O riser conecta a plataforma ao 

cabeçote no leito marinho, e o tensionador gerencia o movimento relativo entre 

ambos. 

Sem o tensionador, o riser corre riscos significativos: movimentos 

descendentes da plataforma podem causar flambagem, enquanto movimentos 

ascendentes podem esticar e danificar o riser. Os sistemas modernos de MRT utilizam 

mecanismos avançados de tensionamento com cabos, garantindo a estabilidade do 

riser sob condições variáveis do mar (SPARKS, 2007). 

Ao proporcionar tensão constante, esses dispositivos protegem o riser, 

permitindo a transmissão de fluidos e ferramentas entre a superfície e o fundo do mar, 

enquanto resistem às forças dinâmicas do ambiente marinho. 

• Sistemas de Compensação de Heave 

Complementando o MRT, os sistemas de compensação de heave 

contrabalançam o movimento vertical da plataforma causado por ondas e correntes. 

Esses sistemas servem para manter o peso constante na broca (Weight on Bit, WOB), 

garantindo desempenho uniforme e protegendo a coluna de perfuração. 
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Os compensadores de heave minimizam os efeitos do movimento vertical ao 

isolar a carga dos deslocamentos da plataforma. Existem diferentes tipos de sistemas 

(ALBERS, 2010): 

• Compensação Ativa (AHC): Usa controle automatizado e energia para ajustar 

a posição da carga em tempo real. 

• Compensação Passiva (PHC): Emprega molas mecânicas ou pneumáticas 

para absorver movimentos, oferecendo uma solução mais simples. 

• Compensação Balanceada (BHC): Converte forças não lineares de molas 

pneumáticas em forças lineares ajustáveis, garantindo maior estabilidade em 

operações sensíveis. 

Esses sistemas protegem a coluna de perfuração e os equipamentos de 

tensões excessivas, prolongando sua vida útil e reduzindo o tempo de inatividade 

devido a falhas. 

2.1.4 Linha Neutra 

A linha neutra em uma coluna de perfuração representa a localização onde a 

tensão axial se transforma em compressão como podemos ver na Figura 4. Sua 

posição é importante para manter a integridade estrutural e a eficiência operacional 

da coluna de perfuração. Idealmente, a linha neutra está localizada dentro dos drill 

collars, que são projetados especificamente para lidar com cargas de compressão. 

Quando bem posicionada, os drill collars suportam o peso sobre a broca (WOB) e 

garantem que os tubos de perfuração (drill pipes) permaneçam sob tensão, 

minimizando o risco de flambagem e desgaste. Essa configuração permite que a broca 

opere de maneira eficiente, protegendo a integridade do poço e dos componentes da 

coluna de perfuração (MITCHELL et al., 2010). 

No entanto, desvios dessa posição ideal podem causar problemas 

significativos. Se a linha neutra se deslocar muito para baixo dentro dos drill collars, 

aproximando-se da broca, pode haver insuficiência de compressão nos collars, 

reduzindo sua capacidade de transmitir o peso necessário para a broca. Isso resulta 
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em uma operação ineficiente, com menor WOB, o que compromete a taxa de 

penetração (Rate of Penetration, ROP) e a eficácia da perfuração. Em casos 

extremos, se a linha neutra teoricamente se deslocar abaixo da broca, toda a seção 

dos drill collars operará sob tensão em vez de compressão, tornando-os incapazes de 

estabilizar o BHA e incapaz de perfurar (BOURGOYNE et al., 1986). 

Por outro lado, se a linha neutra se deslocar acima dos drill collars e entrar nos 

tubos de perfuração, estes, que não são projetados para lidar com forças 

compressivas, tornam-se vulneráveis à flambagem. Essa condição frequentemente 

resulta em flambagem helicoidal, onde o tubo entra em contato com as paredes do 

poço, causando desgaste excessivo, aumento de torque e arraste, e possível falha 

dos tubos. Nesse caso, os drill collars podem não fornecer peso suficiente sobre a 

broca, levando a uma perfuração ineficiente e a baixas taxas de penetração. Além 

disso, o poço pode sofrer danos devido à interação instável entre o tubo flambado e 

as paredes do poço, aumentando a probabilidade de incidentes de stuck pipe (quando 

os tubos ficam presos no poço) e elevando os custos operacionais (LOOYEH; 

AADNØY, 2011). 

Segundo Mitchell et al. (2010), o comportamento da linha neutra é influenciado 

por vários fatores, incluindo o design da coluna de perfuração, a densidade do fluido 

de perfuração e o WOB aplicado. O planejamento adequado e o monitoramento em 

tempo real são críticos para manter a linha neutra na posição desejada. Ajustar a 

flotação do fluido de perfuração pode ajudar a gerenciar as forças que atuam na 

coluna, enquanto dados em tempo real sobre WOB e torque podem orientar ajustes 

durante as operações. Em condições offshore, com movimentos dinâmicos causados 

pelo heave das ondas e outros fatores, esse controle torna-se ainda mais crítico para 

evitar desgastes e rupturas ao longo da coluna (MOHAMMADZADEH, et al. 2022). 
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Figura 4 Representação da linha neutra na Coluna de Perfuração. 

 

Fonte: Adaptado de Bourgoyne et al. (1986) 

Para dimensionar corretamente a coluna de perfuração e garantir que a linha 

neutra permaneça em uma posição ideal, é fundamental determinar a quantidade 

adequada de drill collars, sendo essa definição essencial para fornecer o WOB 

adequado e manter a estabilidade da coluna. O cálculo do comprimento total da seção 

de comandos pode ser realizado utilizando a seguinte Equação 2.1 (BOURGOYNE et 

al., 1986): 

𝐿𝐷𝐶 =
𝑊𝑂𝐵𝑚𝑎𝑥

𝐹𝑆 ⋅ 𝑤 ⋅ α ⋅ cos(ϕ)
(2.1) 



23 

 

Onde 𝑊𝑂𝐵𝑚𝑎𝑥  é o peso sobre a broca máximo em (𝑁 ), 𝐹𝑆  é o fator de 

segurança, 𝑤 é o peso linear do drill collar (𝑁/𝑚), ϕ é o ângulo do poço em relação à 

vertical (°)  e α é o fator de flutuação, que este último pode ser dado pela Equação 2.2 

a seguir: 

α = 1 −
ρ𝑓

ρ𝑎ç𝑜

(2.2) 

Onde ρ𝑓  e ρ𝑎ç𝑜  são as densidades do fluido de perfuração e do aço 

respectivamente.  

E por fim, para de fato ajustar a localização da linha neutra há a necessidade 

de aplicar uma tensão controlada, através do sistema de elevação (Hoisting System), 

de valor ligeiramente inferior ao peso total da coluna de perfuração 𝐹ℎ para assim 

permitir que ela se localize idealmente no topo da seção dos drill collars. 

2.2 Discretizando a Coluna de Perfuração - Sistema de Molas 

O desafio de representar uma estrutura como uma coluna de perfuração reside 

na formulação das equações de equilíbrio, que emergem das leis de Newton para a 

estática e da lei de Hooke. Quando os deslocamentos de uma estrutura, ou seja, suas 

variações, são representados através dos deslocamentos das extremidades da barra, 

definidas como nós, é essencial assegurar que a lei da estática seja satisfeita para 

todos os graus de liberdade. A quantidade de graus de liberdade (GDL) por nó varia 

conforme a natureza do elemento estrutural no modelo, como vigas ou estruturas 3D. 

A ordem do sistema é determinada pelo produto entre o número de nós e o 

número de graus de liberdade (GDL) por nó. O sistema linear será singular, a menos 

que sejam aplicadas restrições adequadas ao movimento, representadas por um 

conjunto de deslocamentos ou rotações nulos ou conhecidos, conhecidos como 

condições de contorno cinemáticas. 

Ao introduzir alguns conceitos básicos de mecânica, para elementos que se 

comportam como sólidos linearmente elásticos, a lei do equilíbrio elástico para toda a 

estrutura pode ser resumida na relação 𝐹 =  𝐾𝑈. Nessa fórmula, 𝐹 representa o vetor 
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de força, 𝐾 é a matriz de rigidez e 𝑈 é o vetor de deslocamento como podemos ver na 

Figura 5. 

Figura 5 Uma mola com rigidez K e seus deslocamentos e forças. 

 

Fonte: Parreiras (2019) 

Considerando a mola em equilíbrio pela lei de Newton Σ𝐹 =  0  obtemos a 

Equação 2.3: 

𝐹1 + 𝐹𝑟1 = 0, 𝐹2 + 𝐹𝑟2 = 0 (2.3) 

Onde 𝐹1 e 𝐹2  são forças externas enquanto  𝐹𝑟1e 𝐹𝑟2  são as forças internas 

devido à força restauradora da mola. Assumindo que a mola se comporta linearmente, 

ou seja, seguindo a lei de Hooke temos 𝐹𝑟 = −𝑘Δ𝑢, onde o equilíbrio pode ser escrito 

através da Equação 2.4:  

[ 
𝐹1 

𝐹2
] = [ 

𝑘 −𝑘
−𝑘 𝑘

 ] [ 
𝑢1

𝑢2
 ] (2.4) 

A partir do momento em que o comportamento de uma simples mola é 

estabelecido, consequentemente é possível construir sistemas com mais molas 

interligadas. O exemplo mais simples é um sistema composto por duas molas com 

rigidez 𝑘1 e 𝑘2 em série, apresentando três GDL conforme ilustrado na Figura 6. 

Figura 6  Sistema com duas molas com rigidez k1 e 𝑘2 e seus deslocamentos e forças 

 

Fonte: Parreiras (2019) 



25 

 

Usando a terceira lei de Newton, podemos escrever a Equação 2.5 em forma 

de matriz. 

[ 
𝐹1 

𝐹2

𝐹3

 ] = [ 

𝑘1 −𝑘1 0
−𝑘1 𝑘1 + 𝑘2 −𝑘2

0 −𝑘2 𝑘2

 ] [ 

𝑢1

𝑢2

𝑢3

 ] (2.5) 

Notamos que a matriz de rigidez global é uma superposição de duas molas 

elementares matriz de rigidez. Observe que na Equação 2.5 a rigidez associada ao 

grau de liberdade 𝑢2 é a soma de 𝑘1 e 𝑘2 já que para deslocá-la é preciso deformar 

ambas as molas. O sistema na Equação 2.5 pode ser escrito na forma compacta na 

Equação 2.6. 

[𝐹] = [𝐾𝐺][𝑈] (2.6) 

Onde 𝐾𝐺 é a matriz de rigidez global do sistema. 

Para finalizar a análise do exemplo com duas molas, realizamos restrições de 

dois movimentos, um no nó 𝑁1 e outro no nó 𝑁3. Neste caso temos deslocamentos 

nulos nos nós, 𝑢1 = 0 e 𝑢3 = 0 como vemos na Figura 7, consequentemente as forças 

externas 𝐹⃗1 e 𝐹⃗3 não têm influência em encontrar o deslocamento. 

Figura 7 Sistema de molas com duas restrições de movimento 

 

Fonte: Parreiras (2019) 

Montando o subsistema com base na Equação 2.5 com duas restrições, 

obtemos a Equação 2.7: 

[𝐹1] = [𝑘1 + 𝑘2][𝑢2], (2.7) 

E resolvendo o subsistema encontramos os deslocamentos apresentados na 

equação seguinte: 
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[ 

𝑢1

𝑢2

𝑢3

 ] = [ 

    0
𝐹2

 𝑘1 + 𝑘2

    0

 ] , (2.8) 

2.3 Modelagem de Sistemas 2D 

Um elemento de viga 2D possui três GDL por nó, ou seja, deslocamento 

horizontal, vertical deslocamento e rotação. Então cada elemento possui seis GDL 

conforme ilustrado na Figura 8. 

Figura 8 Um elemento com três GDL por nó e as forças exercidas em cada nó 

 

Fonte: Parreiras (2019) 

Podemos considerar uma estrutura plana, então precisamos reescrever a 

equação de equilíbrio (Equação 2.3) para este modelo, incluindo mais dois GDL, 

obtemos a Equação 2.9: 

Σ𝐹𝑥 = 0, Σ𝐹𝑦 = 0, Σ𝑀𝑧 = 0, (2.9) 

Para cada nó, quando Σ𝑀𝑧 é a soma de todos os momentos que produzem 

rotação em um eixo adicional 𝑧 perpendicular ao plano 𝑥𝑦. Se há uma aplicação de 

força em algum nó de algum elemento do sistema podemos decompor esta força em 

outras três, sendo duas axiais e a outra sendo um momento. Os momentos nodais 𝑀1 

e 𝑀2 produzem as rotações nodais 𝜃1 e 𝜃2, de acordo com esses momentos e podem 

ser expressos pelas Equações 2.10 e 2.11 (MCCORMAC, 2012). 

𝑀1 = (
4𝐸𝐼

𝐿
) 𝜃1 + (

2𝐸𝐼

𝐿
)𝜃2 (2.10) 

𝑀2 = (
2𝐸𝐼

𝐿
)𝜃1 + (

4𝐸𝐼

𝐿
) 𝜃2 (2.11) 



27 

 

Onde 𝐼 é o momento de inércia do elemento, 𝐴 é a área da seção e 𝐿 é o 

comprimento do elemento. O módulo de Young 𝐸 é uma propriedade do material que 

mede a dificuldade de se deformar um elemento sólido composto por este material. 

As propriedades como 𝐴 , 𝐼  e 𝐿  podem ser calculadas a partir da forma 

geométrica do elemento. O momento de inércia de uma seção é calculado usando 

uma perpendicular ao eixo 𝑧, onde o eixo de rotação é paralelo ao 𝑧 e passa pelo 

centro da seção. Pode-se definir os deslocamentos horizontal e vertical nas Equações 

2.12, 2.13, 2.14 e 2.15 (MCCORMAC, 2012): 

𝐻1 = (
𝐸𝐴

𝐿
)ℎ1 − (

𝐸𝐴

𝐿
)ℎ2 (2.12) 

𝑉1 = (
12𝐸𝐼

𝐿3
) 𝑣1 + (−

12𝐸𝐼

𝐿3
)𝑣2 (2.13) 

𝐻2 = −(
𝐸𝐴

𝐿
) ℎ1 + (

𝐸𝐴

𝐿
)ℎ2 (2.14) 

𝑉2 = (−
12𝐸𝐼

𝐿3
) 𝑣1 + (

12𝐸𝐼

𝐿3
) 𝑣2 (2.15) 

Finalmente, assim como montamos a equação matricial (Equação 2.5), 

utilizando as Equações 2.10, 2.11, 2.12, 2.13, 2.14 e 2.15 para um elemento isolado, 

obtemos a Equação 2.16 em forma de matriz.  

[
 
 
 
 
 
𝐻1

𝑉1

𝑀1

𝐻2

𝑉2

𝑀2]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0
12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2
0 −

12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2

4𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2

2𝐸𝐼

𝐿

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0 −
12𝐸𝐼

𝐿3
−

6𝐸𝐼

𝐿2
0

12𝐸𝐼

𝐿3
−

6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2

2𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2

4𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
ℎ1

𝑣1

𝜃1

ℎ2

𝑣2

𝜃2]
 
 
 
 
 

, (2.16) 

Onde 𝐸 é o módulo de Young, 𝐴 é a área da seção transversal, 𝐼 é o momento 

de inércia da seção e 𝐿 é o comprimento do elemento. 
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2.3.1 Barras 2D 

O próximo passo para uma a análise 2D usando o método de deslocamento 

seria incrementar uma quantidade maior de elementos ao sistema, desta forma 

transformando todos as coordenadas dos elementos das posições locais para globais 

havendo assim um sistema com mais de um elemento. 

Primeiro, para obter a matriz de rigidez do sistema, precisamos analisar 

localmente cada elemento. Mas a matriz de Equação 2.10 foi feita analisando o 

elemento sobre o eixo 𝑥, assim, precisamos encontrar uma maneira de generalizar a 

equação matricial. Na literatura, esse problema é tratado por meio de uma matriz de 

transformação, que é usada para transformar a matriz de rigidez das coordenadas 

locais do elemento, para o sistema global de coordenadas e assim podemos definir a 

matriz de rotação de Equação 2.17 (MCCORMAC, 2012). 

[𝑅] = [
𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙 0
−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0
0 0 1

] , (2.17) 

Onde 𝜙 é o ângulo entre o cosseno de direção e o eixo 𝑥. A direção do cosseno 

pode ser definida como: 

𝐶 =
𝑉⃗⃗⃗

∥𝑉⃗⃗⃗∥
, 𝑉⃗⃗ = 𝑁⃗⃗⃗𝑖 − 𝑁⃗⃗⃗𝑗 (2.18) 

Onde 𝑉⃗⃗ é o vetor de direção, 𝑁⃗⃗⃗𝑖 e 𝑁⃗⃗⃗𝑗 são as coordenadas dos nós que definem 

um elemento. O 𝑐𝑜𝑠𝜙 e 𝑠𝑖𝑛𝜙 podem ser calculados usando 𝐶 como: 

𝑐𝑜𝑠(𝜙) =
𝐶𝑥

∥𝐶∥
, 𝑠𝑖𝑛(𝜙) =

𝐶𝑦

∥𝐶∥
. (2.19) 

A matriz de transformação é composta por uma combinação linear da matriz da 

Equação 2.17. Podemos definir a matriz de transformação pela Equação 2.20 

(MCCORMAC, 2012). 
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[𝑇] =

[
 
 
 
 
 
𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙 0 0 0 0
−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0 0 0 0
0 0 1 0 0 0
0 0 0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙 0
0 0 0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0
0 0 0 0 0 1]

 
 
 
 
 

, (2.20) 

Usando a matriz de transformação [𝑇] e a matriz de rigidez local 𝐾∗ obtida da 

matriz da Equação 2.16, usaremos a Equação 2.21 para converter as coordenadas 

locais do elemento para coordenadas globais do sistema, 

[𝐹1] = [𝑇]𝑡[𝐾∗][𝑇][𝑈], (2.21) 

onde [𝐹]  são as forças externas em coordenadas globais exercidas nos nós do 

elemento, [𝑈]  são os deslocamentos/rotações causados por [𝐹] . A montagem do 

sistema linear com matrizes de rigidez de todos os elementos obedece o princípio da 

superposição de forças, onde a matriz de rigidez final é a soma de todas matrizes de 

rigidez de cada elemento separado. 

2.4 Análise Dinâmica 

2.4.1 Sistema Dinâmico Básico 

Segundo Clough e Penzien (2015), para qualquer sistema estrutural 

linearmente elástico ou mecânico submetido a uma carga ou excitação dinâmica, as 

suas propriedades físicas fundamentais são: massa, características elásticas (como 

rigidez ou flexibilidade) e mecanismo de dissipação de energia, também conhecido 

como amortecimento. Esses três aspectos – massa, elasticidade e amortecimento – 

são determinantes para descrever o comportamento dinâmico do sistema, pois 

definem como ele responde às forças externas aplicadas e como suas vibrações 

evoluem ao longo do tempo. 

Um esboço de um sistema massa-mola-amortecedor é mostrado na Figura 9: 

Figura 9 Sistema massa-mola-amortecedor com GDL simples: a) componentes básicos b) forças em 
equilíbrio 
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Fonte: Clough e Penzien (2015) 

A massa total 𝑀 deste sistema está concentrada no bloco rígido, que é limitado 

por rolos, permitindo apenas a translação simples. A posição do bloco é 

completamente determinada pela coordenada de deslocamento 𝑢(𝑡). A resistência ao 

deslocamento é fornecida por uma mola sem massa com rigidez 𝐾 , enquanto a 

dissipação de energia é representada por um amortecedor 𝐶. A força externa variável 

no tempo 𝑝(𝑡) é responsável pela resposta dinâmica do sistema. 

A equação de movimento para o sistema ilustrado na Figura 9 é mais facilmente 

derivada ao expressar o equilíbrio de todas as forças atuando sobre a massa, 

utilizando o princípio de d’Alembert. Como mostrado na Figura 9, as forças na direção 

dos graus de liberdade do deslocamento incluem a carga aplicada 𝑝(𝑡) e as três forças 

de resistência resultantes do movimento: a força inercial 𝑓𝐼(𝑡) a força de 

amortecimento 𝑓𝐷(𝑡)  e a força da mola 𝑓𝑆(𝑡) . A equação de movimento é 

simplesmente a expressão de equilíbrio dessas forças, dada pela Equação 2.22. 

𝑓𝐼(𝑡) + 𝑓𝐷(𝑡) + 𝑓𝑆(𝑡) = 𝑝(𝑡) (2.22) 

Cada uma das forças representadas no lado esquerdo desta equação é em 

função do deslocamento 𝑢(𝑡) ou uma de suas derivadas no tempo. O sentido positivo 

dessas forças foi intencionalmente escolhido para corresponder ao sentido de 

deslocamento negativo, uma vez que elas se opõem a uma carga aplicada positiva. 

De acordo com o princípio de d'Alembert, a força inercial é o produto de a 

massa e a aceleração descrito na Equação 2.23. 

𝑓𝐼(𝑡) = 𝑚𝑢̈(𝑡) (2.23) 
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Assumindo um mecanismo de amortecimento viscoso, a força de 

amortecimento é o produto da constante de amortecimento 𝑐 e a velocidade definida 

na Equação 2.24: 

𝑓𝐷(𝑡) = 𝑐𝑢̇(𝑡) (2.24) 

Finalmente, a força elástica é o produto da rigidez da mola e o deslocamento 

definida na Equação 2.25: 

𝑓𝑆(𝑡) = 𝑘𝑢(𝑡) (2.25) 

Quando as Equações 2.23, 2.24 e 2.25 são introduzidas na Equação 2.22, a 

equação de movimento para este sistema de GDL simples pode ser definida na 

Equação 2.26. 

𝑚𝑢̈(𝑡) + 𝑐𝑢̇(𝑡) + 𝑘𝑢(𝑡) = 𝑝(𝑡) (2.26) 

2.4.2 Análise de Vibrações Livres 

De acordo com Rao (2017, p. 469–470) “se perturbarmos qualquer estrutura 

elástica de maneira apropriada inicialmente no tempo 𝑡 = 0 e, em seguida, liberando 

essas restrições, a estrutura pode sofrer uma oscilação harmônica.” Este movimento 

oscilatório é uma propriedade característica da estrutura e depende da distribuição de 

massa e rigidez na estrutura. 

Quando há amortecimento, as amplitudes das oscilações diminuem 

gradualmente. Se o amortecimento for maior que um certo valor crítico, o movimento 

deixará de ser oscilatório. Por outro lado, na ausência de amortecimento, o movimento 

oscilatório persiste indefinidamente, com as amplitudes das oscilações dependendo 

da perturbação ou deslocamento inicial (RAO, 2017). 

Esse movimento oscilatório ocorre em frequências específicas chamadas de 

frequências naturais ou valores característicos, e segue padrões de deformação 

chamados modos de vibração. Analisar essas vibrações livres (denominadas assim 

porque a estrutura vibra sem a influência de forças externas após 𝑡 = 0 é crucial para 
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determinar a resposta dinâmica de uma estrutura elástica. E podemos inferir que a 

força pode ser espressa harmonicamente pela Equação 2.27. 

𝐹(𝑡) = 𝐹0𝑒
𝑖𝑤𝑡 (2.27) 

onde 𝐹0 é a força aplicada ao sistema e 𝑤 é a frequência que o sistema está 

vibrando. 

2.4.3 Domínio da Frequência 

A solução de equações de movimento de conjuntos acoplados, pelo MEF, 

realizada mais facilmente no domínio da frequência; portanto, utilizando as Equações. 

2.26 e 2.27 e realizando a transformadas de Laplace e Fourier podemos obter a 

equação de comportamento dinâmico no domínio da frequência para um GDL definida 

na Equação 2.28 (CLOUGH e PENZIEN, 2015). 

[(𝑘 − 𝑤2𝑚) + 𝑖𝑤𝑐] ∗ 𝑈(𝑤) = 𝐹0 (2.28) 

 Em que a matriz complexa no termo colchete no lado esquerdo da equação é 

a matriz de impedância (ou rigidez dinâmica) para o sistema estrutural completo sendo 

representado onde 𝑘  é a rigidez, 𝑤  é a frequência natural, 𝑚  é a massa, 𝑐  é o 

amortecimento, 𝑈(𝑤)  é o vetor de deslocamento da transformada de Fourier em 

função da frequência do sistema, e 𝐹0 é o carregamento dinâmico harmônico. 

2.4.4 Amortecimento 

O amortecimento proporcional é uma abordagem muito utilizada para modelar 

forças dissipativas em engenharia de estruturas e tem sido usado em vários 

problemas por décadas. 

Existem algumas limitações para este modelo, principalmente uma 

necessidade de uma generalidade e constância, em termos de vibrações naturais, 

quando algumas estruturas complexas possuem diferentes parâmetros de massa, 

rigidez. 
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Na prática, os sistemas reais sempre possuem algum tipo de mecanismo de 

dissipação de energia, ou amortecimento. Para aplicar a análise modal de sistemas 

não amortecidos a sistemas que possuem amortecimento, é comum adotar a hipótese 

de amortecimento proporcional, uma forma específica de amortecimento viscoso. 

Conforme Rao (2017, p.484),  

Geralmente pouco se sabe sobre a avaliação dos coeficientes 

elementos da matriz de amortecimento [𝐶]. No entanto, como o 

efeito do amortecimento é pequeno em comparação com os 

efeitos da inércia e da rigidez, [𝐶]  é representada por 

expressões simplificadas. 

Uma forma convencional de definirmos esta matriz de amortecimento [𝐶] é 

estabelecermos esta matriz em função de uma combinação linear de matrizes de 

massa e rigidez que pode ser definida na Equação 2.29. 

𝐶 = 𝛼𝑀 + 𝛽𝐾 (2.29) 

Onde 𝛼 e 𝛽 são constantes escalares que acompanham a Massa [𝑀] e Rigidez 

[𝐾] do elemento. 

2.4.5 Análise Dinâmica Implícita vs Explícita 

Em análises que envolvem não linearidade e efeitos dinâmicos, é fundamental 

aplicar cargas incrementais, frequentemente chamadas de etapas de deslocamento. 

Em termos simples, essa abordagem implica dividir a evolução do sistema no espaço 

ou no tempo em pequenos intervalos para que possamos resolver o problema 

matematicamente. Nesse contexto, os problemas são geralmente classificados como 

dependentes ou independentes do tempo. Para resolver esses tipos de problemas, 

utilizamos métodos "implícitos" e/ou "explícitos," que oferecem diferentes estratégias 

de cálculo para acompanhar as mudanças em cada etapa de forma precisa 

(BALAKRISHNAN, SHARMA e ALI, 2017). 

O método implícito envolve a inversão da matriz de rigidez e especialmente 

para modelos maiores o número de grau de liberdade será maior e isso requer maior 
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tempo computacional e torna a solução mais cara. No caso de problemas não lineares, 

o equilíbrio das forças internas da estrutura com as cargas aplicadas externamente 

precisa ser satisfeito a cada incremento de carga, o método de Newton Raphson é 

usado para resolver essas equações de elementos finitos não lineares. Para análise 

dinâmica transitória em qualquer momento, a equação 2.26 é resolvida como um 

conjunto de equações de equilíbrio estático que considera forças de inércia e forças 

de amortecimento. O método de integração de tempo de Newmark é usado para 

resolver essas equações em pontos de tempo discretos. 

Diferente do método implícito, o método explícito é condicionalmente estável e 

apenas quando o intervalo de tempo utilizado é menor que o intervalo de tempo crítico 

da estrutura em simulação. Caso contrário, a solução pode se tornar imprecisa. 

O tamanho do passo de tempo crítico não amortecido é geralmente muito 

pequeno e esse critério de estabilidade torna o cálculo explícito computacionalmente 

mais caro e cálculos explícitos são usados para simular um período mais curto de 

eventos de impacto. Os esquemas de integração explícita usam o método da 

diferença central para calcular acelerações e velocidades no passo de tempo atual 𝑡𝑛 

e então deslocamentos desconhecidos no próximo tempo 𝑡𝑛+1 são determinadas, e 

portanto não utilizaremos métodos explícitos mas sim implícitos. 

2.5 Método dos Elementos Finitos 

O Método dos Elementos Finitos (MEF) é um método de solução numérica de 

problemas que são regidos por equações diferenciais. Assim é possível obter 

soluções para uma ampla gama de problemas, que vão desde a distribuição de 

temperatura em um pistão de um motor ou mesmo deslocamentos e tensões em um 

pavimento de laje (KIM e SANKAR, 2008). 

Azevedo (2003) cita que “antes do aparecimento do MEF, a análise dos meios 

contínuos era efetuada por resolução direta dos sistemas de equações de derivadas 

parciais, tendo em consideração as necessárias condições de fronteira”. Para facilitar 

a aplicação desta técnica a problemas não elementares, era comum recorrer a séries 
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de Fourier. Mas devido à sua complexidade, estes procedimentos só eram aplicáveis 

a meios contínuos homogéneos e de geometria simples. 

O desenvolvimento moderno do MEF começou na década de 1940. No campo 

da engenharia estrutural com o trabalho por Hrennikoff (1941) e McHenry (1943), que 

utilizou uma estrutura de elementos de barras e vigas para a solução de tensões 

contínuas em sólidos. Alguns anos depois, Courant (1943) introduziu a interpolação 

por partes para obter soluções numéricas aproximadas. Nos anos 50, Levy (1953) 

desenvolveu o método de força, uma alternativa promissora para o uso na análise 

estática de estruturas. No entanto, o sistema de equações resultante era considerado 

complexo para a solução analítica e, assim, o método só se tornou popular com o 

advento do computador. 

2.6 Modelagem de Sistemas 3D - Elementos de Viga 

O caso tridimensional é uma extensão do caso bidimensional que discutimos 

na Revisão da Literatura, onde é necessário definir mais GDL. Com a adição de mais 

uma dimensão (𝑍) no sistema, temos então mais três GDL por nó. Nos exemplos 

ilustrados nas Figuras 10,11 e 12 temos seis GDL por nó, onde três são 

deslocamentos e três são rotações. 

Figura 10 Um elemento 3D e seus 6 GDL no eixo X. 

 

Fonte: Parreiras (2019) 
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Figura 11 Um elemento 3D e seus 6 GDL no eixo Y. 

 

Fonte: Parreiras (2019) 

 

Figura 12  Um elemento 3D e seus 6 GDL no eixo Z. 

 

Fonte: Parreiras (2019) 

Nós preservamos as equações de equilíbrio (Equação 2.9), porém, 

reescrevemos incluindo mais três GDL por nó na Equação 2.30. 

   Σ𝐹𝑥 = 0, Σ𝐹𝑦 = 0, Σ𝐹𝑧 = 0

Σ𝑀𝑥 = 0, Σ𝑀𝑦 = 0, Σ𝑀𝑧 = 0
(2.30) 

Estendendo as Equações 2.10 e 2.11, utilizando o princíprio de ação e reação 

de Newton e adicionando mais três GDL, um para translação, e dois para rotações, 

de acordo com Kattan (2007) podemos escrever o deslocamento no eixo 𝑍  e os 

momentos, no eixo 𝑌 e no eixo 𝑍 nas Equações 2.31, 2.32, 2.33, 2.34, 2.35 e 2.36. 
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𝑍1 =
12𝐸𝐼𝑧

𝐿3
(𝑧1 − 𝑧2) (2.31) 

𝑍2 =
12𝐸𝐼𝑧

𝐿3
(𝑧2 − 𝑧1) (2.32) 

𝑀1 =
𝐺𝐽

𝐿
(𝛼1 − 𝛼2) (2.33) 

𝑀2 =
𝐺𝐽

𝐿
(𝛼2 − 𝛼1) (2.34) 

𝑀3 = (
4𝐸𝐼𝑦

𝐿2
)𝛽3 + (

2𝐸𝐼𝑦

𝐿
)𝛽4 (2.35) 

𝑀4 = (
2𝐸𝐼𝑦

𝐿2
)𝛽3 + (

4𝐸𝐼𝑦

𝐿
)𝛽4 (2.36) 

Onde 𝐽 =  𝐼𝑦 +  𝐼𝑧 pois cada elemento que compor o sistema é uniforme nos 

eixos 𝑌 e 𝑍 (CALLISTER e RETHWISCH, 2013). 

O módulo de cisalhamento 𝐺 é um material propriedade definida como a razão 

entre a tensão de cisalhamento e a deformação de cisalhamento. Usando as 

equações de equilíbrio (Equações 2.31, 2.32, 2.33, 2.34, 2.35 e 2.36), segundo 

Weaver e Gere (1990), podemos definir a rigidez matriz para um elemento de viga 

com seis GDL por nó na Equação 2.37. 

 (2.37) 
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2.6.1 Matriz de Rotação 3D 

Para generalizar a matriz de rigidez local 𝐾∗, precisamos usar uma matriz de 

transformação, no caso em 3D, é mais complexo visualizar a transformação a partir 

de matrizes de rotação, para um espaço transformação precisamos de três matrizes 

de rotação, uma para cada eixo (PARREIRAS, 2019). 

2.6.1.1 Rotação em Z 

A rotação em torno do eixo 𝑍 é equivalente à rotação descrita na Seção 2.2.1 

para o caso 2D. Usando o cosseno de direção de um elemento em R³ , para girar em 

torno de um eixo, fixamos um, eixo 𝑍, e giramos o cosseno de direção em um plano 

perpendicular. Durante toda a análise, colocamos o elemento no eixo 𝑋, e a função 

das matrizes de rotação é colocar o elemento na posição espacial. 

Transformamos o eixo do elemento original 𝑥, 𝑦, 𝑧 para um eixo de elemento 

alternativo 𝑥′ ,𝑦′, 𝑧′ , onde estes elementos alternativos são os elementos originais 

adicionados de um deslocamento angular θ. Segundo Beaufait (1970), podemos usar 

a matriz de rotação Equação 2.38. 

[𝑅𝑧] = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

] (2.38) 

Onde 𝜃 é o ângulo em torno do eixo 𝑍 e pode ser calculado usando o cosseno 

de direção nas Equações 2.39 e 2.40. 

𝑠𝑖𝑛(𝜃) = 𝐶𝑥𝑧 (2.39) 

𝑐𝑜𝑠(𝜃) = 𝐶𝑦 (2.40) 

Onde 𝐶𝑥𝑧 =  ∥ 𝑝𝑟𝑜𝑗𝑥𝑧𝐶 ∥. 

2.6.1.2 Rotação em Y 

Semelhante à rotação 𝑍 , fixamos o eixo  𝑌  e giramos o elemento na 

perpendicular plano, plano 𝑥𝑧, e neste caso, também convertemos o eixo do elemento 

original 𝑥, 𝑦, 𝑧 em um eixo de elementos alternativos 𝑥’, 𝑦’, 𝑧’. Além disso, de acordo 
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com Beaufait (1970), podemos escrever a rotação em torno do eixo 𝑌 pela matriz de 

Equação 2.41. 

[𝑅𝑦] = [
𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽
0 1 0
−𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽

] (2.41) 

onde 𝛽 é o ângulo em torno do eixo 𝑌 e pode ser calculado usando a direção 

do cosseno nas Equações 2.42 e 2.43. 

𝑠𝑖𝑛(𝛽) =
𝐶𝑥

𝐶𝑥𝑧
(2.42) 

𝑐𝑜𝑠(𝛽) =
𝐶𝑧

𝐶𝑥𝑧
(2.43) 

2.6.1.3 Rotação em X 

Com apenas mais  dois ângulos 𝜃, 𝜙 e um raio (𝜌), podemos utilizar o princípio 

do Sistema de Coordenadas Esféricas para colocar um elemento em qualquer posição 

no espaço tridimensional 𝑅3. Mas é interessante que a rotação em torno do eixo 𝑋 

permite um parâmetro adicional na modelagem estrutural. Isto permite girar a seção 

transversal no eixo do elemento. 

A matriz de rotação no eixo 𝑋 pode ser definida de acordo com Beaufait (1970), 

como a matriz Equação 2.44. O ângulo 𝛼  é calculado a partir da modelagem da 

posição dos elementos do sistema. 

[𝑅𝑥] = [
1 0 0
0 𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
0 −𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

] , (2.44) 

Onde 𝛼 é o ângulo em volta do eixo 𝑋. 

2.6.2 Matriz de Transformação 3D 

Com as matrizes de rotação de cada eixo em R³ definidas, há a necessidade 

de utilizá-las em combinação para construir a matriz de transformação tridimensional. 
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2.6.2.1 Rotação em Z-Y-X 

Como dito anteriormente, combinando as matrizes de rotação 

[𝑅𝑥][𝑅𝑦][𝑅𝑧], fazendo uma multiplicação de matrizes, conforme Beaufait (1970), 

podemos escrever a rotação 𝑍 − 𝑌 − 𝑋 como a matriz de Equação 2.32. 

[𝑅] =

[
 
 
 
 
𝐶𝑥 𝐶𝑦 𝐶𝑧

𝐶𝑥𝐶𝑦𝑐𝑜𝑠𝛼−𝐶𝑧𝑠𝑖𝑛𝛼

𝐶𝑥𝑧
𝐶𝑥𝑧𝑐𝑜𝑠𝛼

𝐶𝑥𝐶𝑦𝑐𝑜𝑠𝛼−𝐶𝑧𝑠𝑖𝑛𝛼

𝐶𝑥𝑧

𝐶𝑥𝐶𝑦𝑐𝑜𝑠𝛼−𝐶𝑧𝑠𝑖𝑛𝛼

𝐶𝑥𝑧
−𝐶𝑥𝑧𝑠𝑖𝑛𝛼

𝐶𝑥𝐶𝑦𝑐𝑜𝑠𝛼−𝐶𝑧𝑠𝑖𝑛𝛼

𝐶𝑥𝑧 ]
 
 
 
 

, (2.45) 

Note que a rotação da matriz 𝑅 é possível apenas quando 𝐶𝑥𝑧 ≠ 0 e 𝐶𝑥 ≠ 0 ou 

𝐶𝑧 ≠ 0 . Por final, de acordo com Beaufait (1970), podemos escrever a matriz de 

transformação 3D na Equação 2.46: 

[𝑇] = [

[𝑅] 0 0 0
0 [𝑅] 0 0

0 0 [𝑅] 0
0 0 0 [𝑅]

] (2.46) 

2.7 Análise de Vibração Livre 

2.7.1 Matrizes de Massa Concentradas e Distribuídas 

Diversos problemas dinâmicos têm sido resolvidos utilizando formas 

simplificadas de matrizes de massa. A matriz de massa mais básica é obtida ao 

posicionar massas pontuais 𝑚𝑖 nos pontos nodais 𝑖  nas direções dos graus de 

liberdade de deslocamento. Essas massas concentradas representam a inércia 

translacional e rotacional do elemento, calculadas assumindo que o material em torno 

desses pontos age como um corpo rígido, enquanto o restante do elemento não se 

move. Isso resulta em uma matriz de massa puramente diagonal, conhecida como 

matriz de massa concentrada. 

Quando pequenos, mas pesados, objetos são colocados nos nós de uma 

estrutura leve, as matrizes de massa concentradas fornecem resultados quase exatos. 

As matrizes de massa consistentes seriam exatas se a forma deformada real sob 
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condições dinâmicas fosse conhecida e usada nas funções de forma de deslocamento 

[𝑁]. Como a forma deformada real não é conhecida, a distribuição de deslocamento 

estático é frequentemente utilizada, resultando em uma distribuição de massa apenas 

aproximada, mas geralmente adequada para a maioria dos propósitos práticos. 

Além disso, as matrizes de massa concentradas, sendo diagonais, requerem 

menos espaço de armazenamento e simplificam bastante os cálculos necessários em 

comparação com as matrizes de massa consistentes. 

Um elemento de viga terá 12 graus de liberdade, 6 deflexões e 6 rotações, 

como mostrado nas Figuras 6,7 e 8. Ao adotar a origem do sistema de coordenadas 

local no nó 1, o eixo 𝑋 ao longo do comprimento do elemento e os eixos 𝑌 e 𝑍 ao longo 

dos principais eixos da seção transversal do elemento a matriz de massa distribuída 

do elemento no sistema 𝑋𝑌𝑍 local pode ser definida na Equação 2.47. 

[𝑀𝑒] =  [ 𝑀1
∗] +  [ 𝑀2

∗] (2.47) 

Onde 𝑀1  definida na Equação 2.48 inclui a massa inercial dos três 

deslocamentos translacionais (𝑈𝑥, 𝑈𝑦 , 𝑈𝑧) e um deslocamento rotacional em torno do 

eixo 𝑋 (𝜃𝑥) e  𝑀2 definida na Equação 2.49 contém a massa inercial com deslocamento 

rotacional em torno do eixo 𝑌 e do eixo 𝑍, ou seja fletores (𝜃𝑦 , 𝜃𝑧) (CAI et al., 2023).  

(2.48) 
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(2.49)  

Para reduzir o esforço computacional, geralmente as matrizes de massa 

distribuídas de elementos desmontados são derivadas de forma adequada em 

sistemas de coordenadas locais e então transformados no sistema global selecionado 

para a estrutura acoplada. Se [𝑚(𝑒)], [𝑞⃗(𝑒)] e [𝑞̇⃗(𝑒)] denotam a matriz de massa, vetor 

de deslocamento nodal e vetor de velocidade nodal no sistema de coordenadas local, 

respectivamente, a energia cinética associada ao movimento do elemento pode ser 

expressa na Equação 2.50 (RAO, 2017). 

𝑇 =
1

2
𝑞̇⃗(𝑒)𝑇[𝑚(𝑒)]𝑞̇⃗(𝑒) (2.50) 

Se os deslocamentos nodais e as velocidades nodais do elemento forem 

denotados como 𝑄⃗⃗(𝑒) e 𝑄̇⃗⃗(𝑒) no sistema global, temos as relações de transformação 

nas respectivas Equações 2.51 e 2.52. 

𝑞⃗(𝑒) = [𝜆]𝑄⃗⃗(𝑒) (2.51) 

𝑞̇⃗(𝑒) = [𝜆]𝑄̇⃗⃗(𝑒) (2.52) 

Substituindo a Equação 2.52 na Equação 2.50 temos uma nova equação 

definida na Equação 2.53. 
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𝑇 =
1

2
𝑄⃗⃗
̇ (𝑒)𝑇[𝜆]𝑇[𝑚(𝑒)][𝜆]𝑄⃗⃗

̇ (𝑒) (2.53) 

De acordo com Rao (2017, p. 459-460). “Ao denotar a matriz de massa do 

elemento no sistema de coordenadas global como [𝑀(𝑒)], a energia cinética associada 

ao movimento do elemento pode ser expressa na Equação 2.54.” 

𝑇 =
1

2
𝑄̇⃗⃗(𝑒)𝑇[𝑀(𝑒)]𝑄̇⃗⃗(𝑒) (2.54) 

Como a energia cinética é uma quantidade escalar, ela deve ser independente 

do sistema de coordenadas. Ao igualar as Equações 2.54 e 2.53, obtemos a matriz 

de massa distribuída do elemento no sistema global definida na Equação 2.55. 

[𝑀(𝑒)] = [𝜆]𝑇[𝑚(𝑒)][𝜆] (2.55) 

Podemos observar que esta relação de transformação é a mesma àquela 

utilizada para matriz de rigidez do elemento, já que se trata de um acoplamento de 

coordenadas locais para globais. 

2.7.2 Análise MEF no Domínio da Frequência 

Segundo Clough e Penzien (2015, p.151-153) para um sistema com múltiplos 

GDL (Através do MEF) utilizaremos as matrizes de massa, amortecimento e rigidez 

para aplicar aos nós do sistema. Utilizaremos a mesma Equação 2.28 que foi 

anteriormente definida, porém agora considerando matrizes, sendo definida na 

Equação 2.56.  

[([𝐾] − 𝑤2[𝑀]) + 𝑖𝑤[𝐶]] ∗ 𝑈(𝑤) = 𝐹0 (2.56) 

onde [𝐾], [𝐶] e [𝑀] representaram as matrizes 12x12 de seis GDL por nó de 

Rigidez, Amortecimento, e Massa respectivamente. 

O cálculo analítico do deslocamento 𝑈(𝑤)  é em função das frequências 

naturais 𝑤𝑛 que são as frequências de vibração intrínsecas de uma estrutura. Elas 

emergem como propriedades inerentes da geometria, material e condições de 

contorno da estrutura, e são independentes das condições iniciais ou das cargas 
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externas aplicadas. Quando uma estrutura é submetida a uma perturbação ou 

excitação, ela começa a vibrar em suas frequências naturais, caracterizando seu 

comportamento dinâmico. 

Especificamente para o problema em que estamos tratando, há 3 tipos de 

modos naturais com frequências associadas (Axial, Cisalhante/Fletora e Rotacional), 

as quais podem ser calculadas pelas Equações 2.57, 2.58, 2.59 e 2.61  (SANTOS, 

2018, p.47-48). 

Frequência Natural Axial em X. 

𝑤𝑛
𝐴𝑥𝑖𝑎𝑙 =

𝜋(2𝑛−1)

2
√

𝐸

𝜌𝐿2
(2.57) 

Frequência Natural Cisalhante/Fletora em Y e Z. 

𝑤𝑦𝑛

𝐶𝑖𝑠/𝐹𝑙𝑒𝑡
= (𝜒𝑛

2)√
𝐸𝐼𝑦

𝜌𝐴𝐿4
(2.58) 

𝑤𝑧𝑛

𝐶𝑖𝑠/𝐹𝑙𝑒𝑡
= (𝜒𝑛

2)√
𝐸𝐼𝑧

𝜌𝐴𝐿4
(2.59) 

Onde 𝜒𝑛 é definido pela Equação 2.60. 

𝜒𝑛 = {
1,875, 𝑛 = 1
4,694, 𝑛 = 2
(𝑛 − 0,5)𝜋, 𝑛 ≥ 3

(2.60) 

Frequência Natural Torsional em X. 

𝑤𝑛
𝑇𝑜𝑟 =

𝜋(2𝑛 − 1)

2
√

𝐺

𝜌𝐿2
(2.61) 

2.7.3 Análise MEF no Domínio do Tempo (Newmark-Beta) 

O método de Newmark-Beta é um dos métodos numéricos mais comuns 

utilizados na análise dinâmica de estruturas e sistemas. Ele é especialmente aplicado 

para resolver problemas de equações diferenciais ordinárias que surgem em análises 
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de resposta dinâmica de estruturas sujeitas a carregamentos dinâmicos. Este método 

para análise dinâmica no domínio do tempo é uma técnica de integração numérica 

que discretiza as equações de movimento de um sistema contínuo em um sistema de 

equações diferenciais discretas. Ele é baseado na expansão da equação do 

movimento em uma série de Taylor em torno de um ponto no tempo. 

O esquema de integração de Newmark-Beta usa as seguintes suposições 

definidas nas Equações 2.62 e 2.63 (BATHE, 2007, p.777-778). 

 𝑡+Δ𝑡𝑈̇ =𝑡 𝑈̇ + [(1 − 𝛿)𝑡𝑈̈ + 𝛿𝑡+Δ𝑡𝑈̈]Δ𝑡 (2.62) 

 𝑡+Δ𝑡𝑈 =𝑡 𝑈+𝑡𝑈̇Δ𝑡 + [(
1

2
− 𝛾)𝑡𝑈̈ + 𝛾𝑡+Δ𝑡𝑈̈]Δ𝑡2 (2.63) 

onde 𝛿  e 𝛾  são parâmetros que podem ser determinados para obter precisão de 

integração e estabilidade. 

Há um caso especial da escolha dos valores destes parâmetros em que 

Newmark originalmente propôs como um esquema incondicionalmente estável, o 

método de aceleração média constante (também chamada regra trapezoidal, TR), 

onde também não há dissipação de energia ao longo do tempo. Este método de 

Newmark para sistemas lineares é incondicionalmente estável se 2𝛾 ≥ 𝛿 ≥
1

2
. 

Ou seja, onde  𝛿 =
1

2
 e 𝛾 =

1

4
; e assim este método utilizado pode ser 

considerado implícito, uma vez que houve uma escolha adequada destes parâmetros. 

A hipótese de aceleração na Figura 13 é integrada em 𝜏: para obtenção do esquema. 

Figura 13 Método de aceleração média constante - TR. 

 

Fonte: Bathe (2007) 
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Além das Equações 2.62 e 2.63, para solução dos deslocamentos, velocidades 

e acelerações no tempo 𝑡 + Δ𝑡, a equação de equilíbrio (Equação 2.26) no tempo 𝑡 +

Δ𝑡 também é usada, definida na Equação 2.64. 

𝑀𝑡+Δ𝑡𝑈̈ + 𝐶𝑡+Δ𝑡𝑈̇ + 𝐾𝑡+Δ𝑡𝑈 =𝑡+Δ𝑡 𝐹 (2.64) 

E portanto pode se seguir o passo a passo do método: 

2.7.3.1 Cálculos Iniciais do Método de Newmark 

1. Formamos a matriz de rigidez 𝐾 , a matriz de massa 𝑀  e a matriz de 

amortecimento 𝐶; 

2. Inicializamos  0𝑈, 0𝑈̇ e  0𝑈̈; 

3. Selecionamos o intervalo de tempo Δ𝑡 e os parâmetros 𝛿 e 𝛾 calculamos as 

constantes de integração; 

4. Definimos as constantes nas Equações 2.65, 2.66, 2.67, 2.68, 2.69, 2.70, 

2.71 e 2.72.  

𝑎0 =
1

𝛾Δ𝑡2
; (2.65) 

𝑎1 =
𝛿

𝛾Δ𝑡
; (2.66) 

𝑎2 =
1

𝛾Δ𝑡
; (2.67) 

𝑎3 =
1

2𝛾
− 1; (2.68) 

𝑎4 =
𝛿

𝛾
− 1; (2.69) 

𝑎5 =
Δ𝑡

2
(
𝛿

𝛾
− 2) ; (2.70) 

𝑎6 = Δ𝑡(1 − 𝛿); (2.71) 

𝑎7 = 𝛿Δ𝑡; (2.72) 
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5. Montamos a matriz de rigidez efetiva 𝐾 pela Equação 2.61.  

𝐾 = 𝐾 + 𝑎0𝑀 + 𝑎1𝐶 (2.73) 

6. É realizada a triangularização na Equação 2.62 descrita na Equação 2.21. 

𝐾:𝐾 = 𝑇𝐾𝑇𝑡 (2.74) 

2.7.3.2 Para cada passo de tempo 𝒕 + 𝜟𝒕: 

1. Calcular os carregamentos efetivos em cada 𝑡 + Δ𝑡 usando a Equação 2.75. 

 𝑡+Δ𝑡𝐹̂ = 𝑀(𝑎0
𝑡𝑈 + 𝑎2

𝑡 𝑈̇ + 𝑎3
𝑡 𝑈̈) + 𝐶(𝑎1

𝑡𝑈 + 𝑎4
𝑡 𝑈̇ + 𝑎5

𝑡 𝑈̈) (2.75) 

2. Encontrar os dislocamentos no tempo 𝑡 + Δ𝑡 pela Equação 2.76. 

𝐾𝑡+Δ𝑡𝑈 =𝑡+Δ𝑡 𝐹̂ (2.76) 

3. Calcular as velocidades e acelerações no tempo 𝑡 + Δ𝑡  respectivamente 

pelas Equações 2.77 e 2.78. 

 𝑡+Δ𝑡𝑈̈ = 𝑎0(
𝑡+Δ𝑡𝑈−𝑡𝑈) − 𝑎2

𝑡 𝑈̇ − 𝑎3
𝑡 𝑈̈ (2.77) 

 𝑡+Δ𝑡𝑈̇ =𝑡 𝑈̇ + 𝑎6
𝑡 𝑈̈ + 𝑎7

𝑡+Δ𝑡𝑈̈ (2.78) 

2.7.4 Amortecimento Viscoso de Rayleigh 

O amortecimento de Rayleigh é considerado uma combinação de dois tipos de 

amortecimento: amortecimento viscoso e amortecimento de Hooke (ou amortecimento 

estrutural). Esses dois tipos de amortecimento são combinados linearmente para 

modelar o comportamento de dissipação de energia em um sistema dinâmico. 

Como vimos na literatura desta pesquisa, a Equação 2.29 representa uma 

combinação linear entre as matrizes de Massa [𝑀] e Rigidez [𝐾] formando a matriz 

de amortecimento [𝐶]. Geralmente é mais conveniente e fisicamente razoável definir 

o amortecimento de um sistema com múltiplos GDL usando a razão de amortecimento 

para cada modo desta forma em vez de avaliar os coeficientes da matriz de 

amortecimento [𝐶] 𝛼 e 𝛽 porque as razões de amortecimento modais 𝜁𝑛 podem ser 
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determinadas experimentalmente ou estimadas com precisão em muitos casos, e 

portanto de acordo com a razão de amortecimento pode ser definido pela Equação 

2.79 (CLOUGH e PENZIEN, 2015). 

𝜁𝑛 =
𝐶𝑛

2𝑤𝑛𝑀𝑛

(2.79) 

Onde 𝐶𝑛 é o amortecimento, 𝑀𝑛 é a massa e e 𝑤𝑛 é a frequência natural ambas 

no modo de vibração 𝑛 . Este amortecimento é denominado de amortecimento 

Rayleigh, em homenagem a Lord Rayleigh, que primeiro sugeriu seu uso. Por analogia 

com o desenvolvimento nas Equações 2.29 e 2.79, é evidente que o amortecimento 

de Rayleigh leva à seguinte relação entre a razão de amortecimento e a frequência 

natural descrita na Equação 2.80. 

𝜁𝑛 =
𝛼

2𝑤𝑛
+

𝛽𝑤𝑛

2
(2.80) 

 As relações entre a razão de amortecimento e a frequência são mostradas 

graficamente na Figura 14. 

Figura 14 Relação entre razão de amortecimento e frequência (para amortecimento de Rayleigh). 

 

Fonte: Kamel (2018). 

Agora é evidente que os dois fatores de amortecimento de Rayleigh, 𝛼 e 𝛽, 

podem ser avaliados pela solução de um par de equações simultâneas se as taxas de 

amortecimento 𝜁𝑚 e 𝜁𝑛 associados à duas frequências específicas (modos) 𝑤𝑚 , 𝑤𝑛 

são conhecidas. 
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Escrevendo a Equação 2.81 para cada um desses dois casos e expressando 

as duas equações em forma de matriz leva ao sistema: 

{
𝜁𝑚

𝜁𝑛
} =

1

2
[
1/𝑤𝑚 𝑤𝑚

1/𝑤𝑛 𝑤𝑛
] {

𝛼
𝛽} (2.81) 

Os fatores resultantes da Equação 2.81 podem ser definidos na Equação 2.82. 

{
𝛼
𝛽} = 2

𝑤𝑚𝑤𝑛

𝑤𝑛
2 − 𝑤𝑚

2
[
𝑤𝑛 −𝑤𝑚

−1/𝑤𝑛 1/𝑤𝑚
] {

𝜁𝑚

𝜁𝑛
} (2.82) 

Quando esses fatores forem avaliados, a matriz de amortecimento proporcional 

que dará os valores necessários da taxa de amortecimento nas frequências 

especificadas é dado pela expressão de amortecimento de Rayleigh (Equação 2.29) 

conforme mostrado na Figura 14. Como raramente estão disponíveis informações 

detalhadas sobre a variação da taxa de amortecimento com a frequência, geralmente 

assume-se que a mesma taxa de amortecimento se aplica para ambas as frequências 

de controle; ou seja, 𝜁𝑚 = 𝜁𝑛 = 𝜁. Neste caso, os fatores de proporcionalidade são 

dados por uma versão simplificada da Equação 2.83. 

{
𝛼
𝛽} =

2𝜁

𝑤𝑚 + 𝑤𝑛
{
𝑤𝑚𝑤𝑛

     1
} (2.83) 

Ao aplicar este procedimento de derivação da matriz de amortecimento 

proporcional na prática, é recomendado que 𝑤𝑚 geralmente seja a primeira frequência 

natural do sistema de múltiplos GDL e que 𝑤𝑛 seja definido entre as frequências mais 

altas dos modos que contribuem significativamente para a resposta dinâmica, que 

neste trabalho consideraremos até a frequência do 3° modo de vibração. 

Os coeficientes, depempenham papéis diferentes no amortecimento e ao 

analisar a Figura 14 novamente, podemos perceber que o coeficiente 𝛼, associado à 

matriz de massa, tem um impacto mais significativo sobre as frequências mais baixas. 

Isso significa que componentes de baixa frequência são amortecidos mais 

rapidamente, enquanto componentes de alta frequência são dissipados de forma mais 

lenta. Por outro lado, o coeficiente 𝛽, ligado à matriz de rigidez, atua de maneira 

oposta: ele proporciona um amortecimento mais eficaz para frequências elevadas, 

enquanto o amortecimento das frequências baixas ocorre de maneira mais gradual. 
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3 MÉTODO 

O desenvolvimento deste trabalho exigiu uma abordagem criteriosa e 

estruturada para garantir resultados precisos e reprodutíveis. A seguir, são detalhadas 

as etapas executadas, desde a formulação matemática até a implementação 

computacional e validação do modelo. 

3.1 Desenvolvimento do Simulador 3D com 6 GDL 

Identificou-se a necessidade de desenvolver um simulador 3D que 

representasse de forma precisa o comportamento estático e dinâmico da coluna de 

perfuração, considerando seus seis graus de liberdade. O simulador foi inteiramente 

implementado no MATLAB®. Algumas funções fornecidas pelo orientador foram 

aproveitadas, mas toda a modelagem 3D, assim como as análises estáticas e 

dinâmicas (no domínio do tempo e da frequência) e a avaliação do comportamento da 

linha neutra, foram desenvolvidas do zero. 

Para isso, foram criadas funções específicas para a leitura das propriedades 

materiais, definição das posições geométricas e organização estrutural dos elementos 

que compõem a coluna. A modelagem incluiu a formulação das matrizes de rigidez e 

massa 12x12, fundamentais para a análise pelo MEF. 

Foram criadas funções específicas para leitura de propriedades materiais, 

definição das posições geométricas e organização estrutural dos elementos que 

compõem a coluna de perfuração. 

3.2 Validação do Simulador com Viga em Balanço (Cantilever Beam) 

Antes de aplicar o modelo a uma coluna de perfuração real, o simulador foi 

validado por meio de uma viga simples e uniforme (cantilever beam) 1D mas com 

movimentação tridimensional em 6 GDL. Para as validações as forças que foram 

exercidas foram aplicadas exclusivamente no último nó livre, e desta forma pode-se 
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trazer validações de deslocamentos estáticos, dinâmicos no domínio da frequência e 

do tempo. 

3.2.1 Análise Estática 

Inicialmente, foram calculadas as matrizes de rigidez 12𝑥12 de cada elemento 

e, posteriormente, globalizadas para representar o comportamento estrutural 

completo. A Equação 2.6 de equilíbrio foi resolvida para obter os deslocamentos, os 

quais foram comparados com soluções analíticas, assegurando a precisão do modelo. 

3.2.1.1 Equações Analíticas de Deslocamento 

As equações analíticas de deslocamento estático consideram os 6 graus de 

liberdade que descrevem os movimentos de uma estrutura: translações em 𝑥, 𝑦 e 𝑧, 

e rotações em torno de 𝑥, 𝑦 e 𝑧. Essas equações relacionam forças, momentos e 

propriedades elásticas para calcular os deslocamentos em cada direção e as rotações 

correspondentes, fornecendo uma representação completa das deformações da 

estrutura. De acordo com Gere e Timoshenko (2004), apresentamos a seguir todas 

as equações analíticas utilizadas para a obtenção dos deslocamentos os quais podem 

ser visualizados na Figura 15. 

Figura 15 Deslocamento dos 6 graus de liberade de um elemento de viga. 

 

Fonte: Nikolić, Ibrahimbegovic e Miščević (2017) 

A equação do deslocamento de uma aplicação de força axial em X pode ser 

dada na Equação 3.1: 

𝑈𝑥 =
𝐹𝑥𝐿

𝐸𝐴
(3.1) 
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Onde 𝐹𝑥 é a força axial aplicada em 𝑥, 𝐿 é o comprimento total da viga, 𝐸 é o 

módulo de Young do material da viga, 𝐴 é a área da seção transversal. 

A equação do deslocamento de uma aplicação de força cisalhante em Y pode 

ser dada na Equação 3.2. 

𝑈𝑦 =
𝐹𝑦𝐿

3

3𝐸𝐼𝑦
(3.2) 

Onde 𝐹𝑦 é a força cisalhante aplicada em 𝑦 e 𝐼𝑦 é o momento de inércia em 𝑦. 

Para o exemplo deste trabalho (viga uniforme) a força cisalhante aplicada no 

eixo 𝑦 gera uma distribuição de tensões internas que causa um momento de torção 

em torno do eixo 𝑧 o qual faz com que a seção transversal da viga tenda a girar nesse 

sentido. Esse comportamento é uma consequência do equilíbrio de momentos e da 

resistência da viga às forças internas e externas aplicadas, e este momento pode ser 

calculado como: 

A rotação em Z devido à aplicação de força cisalhante em 𝑦 pode ser dada na 

Equação 3.3. 

𝜃𝑧 =
𝐹𝑦𝐿

2

2𝐸𝐼𝑦
(3.3) 

O deslocamento de uma aplicação de força cisalhante em 𝑧 e sua rotação em 

𝑦 podem ser definidos pelas Equações 3.4 e 3.5 respectivamente. 

𝑈𝑧 =
𝐹𝑧𝐿

3

3𝐸𝐼𝑧
(3.4) 

𝜃𝑦 =
𝐹𝑧𝐿

2

2𝐸𝐼𝑧
(3.5) 

Onde 𝐹𝑧 é a força cisalhante aplicada em 𝑧 e 𝐼𝑧 é o momento de inércia em 𝑧 

A equação do deslocamento de uma aplicação de momento torsor em 𝑥 pode 

ser definida na Equação 3.6. 
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𝜃𝑥 =
𝑀𝑥𝐿

𝐺𝐽
(3.6) 

Onde 𝑀𝑥  é o momento torcional aplicado na viga em 𝑥 , 𝐺  é o módulo de 

cisalhamento do material e 𝐽 é o momento polar de inércia. 

O deslocamento de uma aplicação de momento fletor em 𝑦 e sua rotação em 𝑧 

podem ser definidos nas Equações 3.7 e 3.8. 

𝑈𝑦 =
𝑀𝑦𝐿2

2𝐸𝐼𝑦
(3.7) 

𝜃𝑧 =
𝑀𝑦𝐿

𝐸𝐼𝑦
(3.8) 

Onde 𝑀𝑦 é o momento fletor aplicado na viga em 𝑦. 

O deslocamento de uma aplicação de momento fletor em 𝑧 e sua rotação em 𝑦 

podem ser definidos nas Equações 3.9 e 3.10. 

𝑈𝑧 =
𝑀𝑧𝐿

2

2𝐸𝐼𝑧
(3.9) 

𝜃𝑦 =
𝑀𝑧𝐿

𝐸𝐼𝑧
(3.10) 

onde 𝑀𝑧 é o momento fletor aplicado na viga em 𝑧. 

3.2.2 Análise Dinâmica no Domínio da Frequência 

Foram computadas e acopladas as matrizes de rigidez [𝐾] e de massa [𝑀] 

12𝑥12. As frequências naturais (wm e wn) foram determinadas pelas Equações 2.57, 

2.58, 2.59 e 2.61 conforme o grau de liberdade afetado pelo carregamento. Com as 

frequências calculadas, precisa-se definir o valor da razão de amortecimento (ζ) e 

utilizaremos um ζ de 0,01, pois segundo Adams e Askenazi (1999) para estruturas de 

metais o valor de 𝜁 é definido como < 0,01 mas considerei como o próprio valor limite, 

e com isso calcularam-se os coeficientes de amortecimento de Rayleigh (α e β) pela 

Equação 2.82, fundamentais para a matriz de Equação 2.29. Com isso, foi possível 
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variar a frequência de 0 até 𝑤𝑛 e para cada frequência utilizou-se a Equação 2.56 para 

calcular os deslocamentos e gerar gráficos de Deslocamento Normalizado por 

Frequência Normalizada, identificando picos de ressonância e avaliando a eficácia do 

amortecimento. 

3.2.3 Análise Dinâmica no Domínio do Tempo 

Após os passos executados no Domínio da Frequência e da definição do 

amortecimento de Rayleigh, o método de Newmark, pelo submétodo da aceleração 

média constante, foi implementado através do algoritmo descrito na seção 2.7.3 

(Análise MEF no Domínio do Tempo (Newmark-Beta)) para simular vibrações 

livres. Uma força inicial foi aplicada no último nó, permitindo que se possa validar a 

atuação dos coeficientes 𝛼 e 𝛽, observando como cada um influencia a atenuação de 

diferentes faixas de frequência, além de comparar o período de excitação com as 

frequências naturais. 

3.3 Estudo de Caso: Coluna de Perfuração Offshore Vertical 

Após a validação, aplicou-se o simulador a um estudo de caso com uma coluna 

de perfuração offshore vertical. Foram utilizados dados reais simplificados de 

propriedades geométricas e materiais para a modelagem. A discretização da coluna 

seguiu o MEF, mantendo-se a abordagem 1D com comportamento tridimensional.  

Seguindo a revisão bibliográfica podemos utilizar as Equações 2.1 e 2.2 para 

calcular o comprimento da seção de drill collars, porém para o estudo de caso 

estabeleci o comprimento dos comandos inicialmente, de modo que todos os cálculos 

para posição da linha neutra fossem em função da tração e em função de dois 

critérios: primeiro, para garantir que a linha neutra não ultrapassasse os comandos, e, 

segundo, para evitar que o WOB máximo da broca fosse excedido. Para isso, utilizei 

uma versão modificada da Equação 2.1, calculando a tração com base nos seguintes 

critérios: 
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Posicionamento da Linha Neutra: A tração mínima necessária (valor em 

porcentagem do Peso total da Coluna) para garantir que a linha neutra se mantenha 

abaixo dos comandos é dada pela Equação 3.11. 

𝑇𝑟𝑎çã𝑜(%𝑃𝑒𝑠𝑜) > 1 −
PDC

PT

(3.11) 

Onde PDC é o peso total da seção de Drill Collars e PT é o peso total da coluna. 

Limitação do WOB Máximo: A tração também precisa ser ajustada para que 

o WOB máximo da broca não seja ultrapassado, utilizando a Equação 3.12. 

Traçã𝑜(%𝑃𝑒𝑠𝑜) >
WOBmax

PDC
× LDC (3.12) 

Onde PDC é o peso total da seção de Drill Collars e LDC é comprimento total da 

seção de Drill Collars, e WOBmax é o peso sobre broca máximo. 

A Equação 3.12 foi uma adaptação da Equação 2.1 pois para este trabalho, 

não consideraremos α pois estamos considerando que o fluido de perfuração é ar, 

consideramos um 𝐹𝑆  de 1 pois o simulador não considera esta variável em seus 

cálculos, e um ϕ de 0° uma vez que trataremos de apenas poços verticais. 

Para obter a Força de Compressão pode-se utilizar a Equação 3.13. 

𝐹𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑎𝑜 = 𝑃𝑡𝑜𝑡𝑎𝑙 − 𝐹𝑡𝑟𝑎𝑐𝑎𝑜 (3.13) 

Para calcular a posição da Linha Neutra pode-se utilizar a Equação 3.14. 

PosiçãodaLinhaNeutra(m) =
𝐹𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑎𝑜

PDC
× LDC (3.14) 

3.3.1 Análise Estática 

Antes de executar os passos, como na validação estática, calculo a 

porcentagem de tração. Em seguida, realizo as operações necessárias até obter os 

deslocamentos estáticos de todos os nós. Com esses deslocamentos, utilizo a 
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Equação 3.13 para determinar as forças axiais ao longo da coluna, permitindo assim 

identificar o ponto onde as forças se anulam. 

𝑁(𝑥) = 𝐸𝐴(𝑥)
𝑑𝑢

𝑑𝑥
(3.13) 

Onde 𝐸 é o módulo de elasticidade, 𝐴(𝑥) é a área transversal no ponto 𝑥 e 
𝑑𝑢

𝑑𝑥
 é 

a derivada do deslocamento em relação à posição ao longo da viga. 

3.3.2 Análise Dinâmica no Domínio do Tempo 

Repete-se o processo descrito na validação do código para computação dos 

deslocamentos ao longo do tempo, porém agora consideramos que as forças de peso 

e de tração estão atuando estaticamente (em todos os instantes de tempo) e há a 

adição de um movimento harmônico de heave para simular o efeito que as ondas do 

mar têm em relação à posição da linha neutra, e em cada instante de tempo é 

calculado a posição na coluna em que a linha neutra se encontra. 
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4 RESULTADOS 

As simulações iniciais foram realizadas com elementos de viga simples para 

validar o simulador desenvolvido. Essa etapa verificou se o comportamento estrutural 

esperado, como deslocamentos e forças internas sob diferentes tipos de 

carregamentos, era corretamente reproduzido. Os resultados demonstraram 

consistência com soluções teóricas, comprovando a confiabilidade do simulador. 

Com a validação concluída, o simulador foi aplicado a um estudo de caso 

envolvendo uma coluna de perfuração. A modelagem considerou variações de massa 

e rigidez ao longo da coluna, incluindo drill collars e drill pipes. Foram analisadas as 

respostas estáticas e dinâmicas, destacando-se a posição da linha neutra e o 

comportamento vibratório, proporcionando importantes insights sobre a estabilidade 

estrutural. 

4.1 Validação do Simulador 

Para as validações apresentadas a seguir, considerou-se uma viga maciça 

uniforme e linear ao longo do eixo 𝑥  com uma extremidade engastada, onde o 

deslocamento é igual a zero, como condição de contorno, enquanto a outra 

extremidade permanece livre. A ponta engastada representa a base da coluna de 

perfuração, situada no fundo do poço, enquanto a extremidade livre corresponde ao 

topo da coluna, localizado na plataforma de perfuração, e este referencial pois houve 

mais facilidade de configurar o simulador utilizando-se desta convenção. 
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Figura 16 Diagrama da viga para validação do simulador. 

 

4.1.1 Análise Estática 

Com o simulador construído no ambiente MATLAB®, desenvolveu-se o 

comportamento estático completo, preparando um arquivo de entrada que contém as 

propriedades geométricas e materiais dos nós da viga, e neste arquivo estão 

representados uma sequência de elementos de vigas conectadas, com os nós 

subsequentes partindo da origem 0 metros e seguindo na direção do eixo 𝑥 até 3 

metros, ou seja, formando uma linha linear 1D. 

4.1.1.1 Comparação das Malhas de Leitura com Diferentes Quantidades de 

Elementos 

Nas análises por elementos finitos, a criação de uma malha de leitura permite 

dividir a viga, em diversos elementos discretos. Essa divisão facilita a representação 

dos comportamentos de deslocamento, tensão e deformação ao longo da estrutura. 

Quanto maior o número de elementos, mais detalhada e precisa é a simulação, pois 

permite que o comportamento em cada ponto da viga seja calculado com maior 

exatidão. No entanto, o aumento no número de elementos também eleva o custo 

computacional, exigindo um equilíbrio entre precisão e eficiência. 

Para representar a viga foi considerado o aço estrutural ASTM A36 como 

material de cada elemento (como é apenas uma validação utilizei um aço comum de 

referência), e suas propriedades materiais estão listadas a seguir:  
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• Módulo de Young (𝐸): (210 × 109  Pa) (BAUCCIO, 1993). 

• Módulo de cisalhamento (𝐺): (8 × 1010 Pa) (BAUCCIO, 1993). 

• Área da seção transversal (𝐴): (7,92665 × 10−3 m2), este valor foi considerado 

para que se obtivesse um valor de momento de inércia arredondado, pois então 

temos um raio (𝑟) de 5,023 × 10−2 m. 

Os momentos de inércia podem ser calculados desta forma, sendo uma seção maciça: 

𝐼𝑦𝑧 =
𝜋𝑟4

4
(4.1) 

• Momento de inércia em 𝑦 (𝐼𝑦): (5 × 10−6 m4). 

• Momento de inércia em 𝑧 (𝐼𝑧): (5 × 10−6 m4). 

• Momento polar de inércia ( 𝐽 ): 𝐼𝑦 + 𝐼𝑧 =  (10−5 m4)  (CALLISTER e 

RETHWISCH, 2013). 

• Comprimento da viga (𝐿): 3 m 

Em todas as malhas a seguir, foi aplicada uma força cisalhante na direção 𝑦 

(𝐹𝑦) de 105𝑁 no último nó de cada malha de elementos (topo da coluna), onde o 

deslocamento desta primeira malha com 3 elementos e 4 nós, (elementos de viga de 

1 metro de comprimento) pode ser observado na Figura 17. 

Figura 17 Deslocamento da viga sob efeito de uma força cisalhante de (105𝑁). 
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Foi considerado um valor de Força muito alto para assim haver bastante 

discrepância entre a viga original e a deformada, mesmo que não haja muito sentido 

físico um deslocamento cisalhante tão grande para uma viga pequena isto é algo que 

o simulador não considera, ele irá considerar apenas o valor estático correspondente 

de cada nó, o simulador não leva em conta os limites de falha do material. 

 Como o simulador não inclui esse tipo de limitação de material (ou seja, um 

critério de falha ou de resistência máxima), ele pode calcular deslocamentos maiores 

do que seriam fisicamente possíveis, já que o material pode começar a se deformar 

de forma plástica ou até mesmo quebrar antes de alcançar tais deslocamentos. 

A validação entre os valores de deslocamentos estáticos e numéricos obtidos 

pode ser feita da seguinte forma abaixo. 

Comparação de Deslocamentos em Y 

Valor Analítico: 

𝑈𝑦 =
1

3

𝐹𝑦𝐿
3

𝐸𝐼𝑦
=

1

3
×

105 × 33

210.109 × 5.10−6
= 0,85714 𝑚 

Valor Numérico: 0,857 𝑚 

Com uma malha de 3 elementos e 4 nós, os deslocamentos numéricos da viga 

coincidem precisamente com os resultados analíticos nos pontos onde há um nó. Por 

exemplo, para o último nó, o deslocamento numérico é idêntico ao valor obtido pela 

fórmula analítica. Esse resultado exato é esperado, pois estamos modelando a viga 

com elementos que representam seu comportamento estrutural de forma precisa nos 

nós. No entanto, ao avaliar deslocamentos em pontos intermediários, que não 

coincidem com os nós, observamos uma aproximação do valor analítico, mas não uma 

correspondência exata. Isso ocorre porque, ao utilizar uma malha com apenas 3 

elementos, a discretização é relativamente grosseira, o que limita a precisão entre os 

nós. 

Vale ressaltar que, ao aproximar linearmente entre os nós, é esperado que 

ocorra um erro nas regiões intermediárias, pois a interpolação linear não captura com 

precisão as variações dos deslocamentos entre esses pontos. 
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Exemplo, podemos escolher o ponto 𝑥 =  1,55 𝑚 e extraindo do gráfico temos 

um deslocamento em 𝑌 de aproximadamente 0,3016𝑚 neste ponto escolhido. 

Comparação de Deslocamentos em Y 

Valor analítico para qualquer ponto da viga pode ser calculado da Equação 4.2. 

𝑈𝑦(𝑥) =
1

6

𝐹𝑦𝑥
2

𝐸𝐼𝑦
(3𝐿 − 𝑥) (4.2) 

𝑈𝑦(1,55) =
1

6

105 × 1,552

210.109 × 5.10−6
(3.3 −  1.55) = 0,284105 𝑚 

Valor Numérico do Gráfico: 0,3016 𝑚 

Erro:|
𝑉𝑎𝑙𝑜𝑟𝑎𝑛𝑎𝑙𝑖𝑡𝑖𝑐𝑜−𝑉𝑎𝑙𝑜𝑟𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑜

𝑉𝑎𝑙𝑜𝑟𝑎𝑛𝑎𝑙𝑖𝑡𝑖𝑐𝑜
| × 100 =  9,32% 

Agora podemos utilizar uma malha com mais elementos para fazer 

comparações de precisão. O deslocamento desta malha com 30 elementos e 31 nós, 

(elementos de viga de 0,1 metro de comprimento) pode ser observado na Figura 18. 

Figura 18 Deslocamento da viga sob efeito de uma força cisalhante em Y de (105𝑁). 
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Valor Numérico do Gráfico: 0,28428 𝑚 

Erro:|
𝑉𝑎𝑙𝑜𝑟𝑎𝑛𝑎𝑙𝑖𝑡𝑖𝑐𝑜−𝑉𝑎𝑙𝑜𝑟𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑜

𝑉𝑎𝑙𝑜𝑟𝑎𝑛𝑎𝑙𝑖𝑡𝑖𝑐𝑜
| × 100 =  0,06% 

Ao comparar os deslocamentos numéricos e analíticos em pontos 

intermediários de uma viga (pontos que não coincidem com os nós da malha), 

observamos que a precisão do modelo numérico depende diretamente do número de 

elementos na malha. Com uma malha menos refinada, composta por poucos 

elementos, o deslocamento numérico nesses pontos intermediários tende a se afastar 

do valor analítico, resultando em um erro maior. Isso ocorre porque a malha menornão 

captura com precisão as variações locais do deslocamento ao longo da viga. 

Quando refinamos a malha (aumentando o número de elementos), o modelo 

numérico consegue representar melhor o comportamento real da estrutura. Assim, os 

deslocamentos numéricos calculados em pontos intermediários se aproximam mais 

dos valores analíticos, reduzindo o erro. E, portanto, utilizaremos a malha com 30 

elementos para as análises estáticas por possuir uma precisão suficiente. 

4.1.1.2 Aplicando Força Axial em X 

Para validar o GDL axial em X pode-se fazer uma comparação de valores 

numéricos e analíticos obtidos de deformação do último nó da viga de simulação. 

Figura 19 Deslocamento da viga sob efeito de uma força axial de (−108𝑁). 
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Embora exista o risco de flambagem axial na viga, esse comportamento não é 

capturado pelo simulador, e a validação entre os valores de deslocamentos estáticos 

e numéricos obtidos pode ser feita da seguinte forma abaixo. 

Comparação de Deslocamentos em X 

Valor Analítico:  

𝑈𝑥 =
𝐹𝑥𝐿

𝐸𝐴
=

−108 × 3

210.109 × 7.92665 × 10−3
= −0,18022385 𝑚 

Posição do último nó da viga após deslocamento = 𝐿–𝑈𝑥 = 2,8197761𝑚 

Valor Numérico: 2,81978 𝑚 

Podemos observar que, assim como na análise anterior, ( 𝑈𝑥 ) não houve 

diferença entre os valores mostrando precisão exata o que era esperado. 

4.1.1.3 Aplicando Força Cisalhante em Z 

Para validar o GDL cisalhante em Z pode-se fazer uma comparação de valores 

numéricos e analíticos obtidos de deformação do último nó da viga de simulação. 

Figura 20 Deslocamento da viga sob efeito de uma força cisalhante em Z de (105𝑁). 
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Comparação de Deslocamentos em Z 

Valor Analítico: 

𝑈𝑧 =
1

3

𝐹𝑧𝐿
3

𝐸𝐼𝑧
=

1

3
×

105 × 33

210.109 × 5.10−6
= 0,85714 𝑚 

Valor Numérico: 0,8571 𝑚 

Podemos observar que, assim como na análise anterior, (𝑈𝑧 ) não houve 

diferença entre os valores, mostrando precisão exata o que era esperado. 

Para validar o GDL Rotação em Y relacionado ao GDL cisalhante em Z pode-

se fazer uma comparação de valores numéricos e analíticos obtidos de deformação 

do último nó da viga de simulação. 

Comparação da Rotação em Y 

Valor Analítico: 

θy = −
1

2

𝐹𝑧𝐿
2

𝐸𝐼𝑧
= −

1

2
×

105 × 32

210.109 × 5.10−6
= −0,4286 𝑟𝑎𝑑 

Valor Numérico: −0,429 𝑟𝑎𝑑 

Podemos observar que, assim como na análise anterior, ( θy ) não houve 

diferença entre os valores, mostrando precisão exata, o que era esperado. 

4.1.1.4 Aplicando Momento Torsor em X 

Para validar o GDL torsor em X pode-se fazer uma comparação de valores 

numéricos e analíticos obtidos de deformação do último nó da viga de simulação. 
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Figura 21 Deslocamento da viga sob efeito de um momento torsor em X de (105𝑁). 

 

Comparação de Rotação em X 

Valor Analítico: 

θx =
𝑀𝑥𝐿

𝐺𝐽
=

105 × 3

8 ×  1010 × 10−5
= 0,375 𝑟𝑎𝑑 

Valor Numérico: 0,3750 𝑟𝑎𝑑 

Podemos observar que, assim como na análise anterior, ( θx ) não houve 

diferença entre os valores, mostrando precisão exata, o que era esperado. 

4.1.1.5 Aplicando Momento Fletor em Y 

Para validar o GDL fletor em Y pode-se fazer uma comparação de valores 

numéricos e analíticos dos deslocamentos em Z obtidos de deformação do último nó 

da viga de simulação. 
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Figura 22 Deslocamento da viga sob efeito de momento fletor em Y de (105𝑁). 

 

Comparação de Deslocamentos em Z 

Valor Analítico: 

𝑈𝑧 = −
1

2

𝑀𝑦𝐿2

𝐸𝐼𝑦
= −

1

2
×

105 × 32

210.109 × 5.10−6
= −0,42857𝑚 

Valor Numérico: −0,428571 𝑚 

Comparação da Rotação em Y 

Valor Analítico: 

θy =
𝑀𝑦𝐿

𝐸𝐼𝑦
=

105 × 3

210.109 × 5.10−6
= 0,2857 𝑟𝑎𝑑 

Valor Numérico: 0,2857 𝑟𝑎𝑑 

Nos gráficos de simulação estática, podemos observar que os valores 

numéricos de deslocamento nos nós coincidem exatamente com os valores analíticos. 

Isso é esperado, uma vez que, para este problema específico, estamos utilizando 

elementos de viga, o que naturalmente leva a um ajuste perfeito nos nós. Como 
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mencionado anteriormente, isso ocorre porque os nós representam as extremidades 

dos elementos, onde o modelo é exatamente resolvido pelas equações de equilíbrio. 

Além disso, ao utilizar mais elementos de viga na malha, conseguimos 

aumentar a precisão dos deslocamentos nos pontos intermediários, entre dois nós. 

Com uma malha mais refinada, a aproximação da solução analítica torna-se mais 

precisa, já que o comportamento da viga é representado de forma mais detalhada ao 

longo do seu comprimento. Dessa forma, ao aumentar o número de elementos, 

conseguimos não apenas manter a precisão nos nós, mas também melhorar a 

precisão dos deslocamentos em pontos que não coincidem exatamente com as 

extremidades dos elementos. 

4.1.2 Análise Dinâmica 

Nesta seção, apresentaremos as validações de análises dinâmicas, a viga, foi 

submetida a um estudo minucioso para compreender seu comportamento vibratório e 

dinâmico ao aplicarmos uma força em função de uma certa frequência. Investigamos 

como os diferentes segmentos da viga interagem e respondem às cargas, 

considerando a influência de fatores como frequência natural, modos de vibração e 

amortecimento. 

4.1.2.1 Domínio da Frequência 

Ao mudarmos o domínio das análises, mapeamos as respostas vibratórias da 

viga em função da frequência nos permitindo identificar as frequências naturais da 

estrutura. A análise no domínio da frequência também nos permitiu avaliar a influência 

do amortecimento e a capacidade da viga de absorver energia vibracional ao longo 

do tempo. 

Para as análises a seguir utilizaremos uma malha de 100 elementos e 101 nós 

(com elementos de 0,1 metros) mantendo a mesma discretização porém aumentando 

o tamanho da viga, assim reduzindo a necessidade de utilizarmos frequências muito 

altas, já que a frequência de uma viga é inversamente proporcional ao comprimento 

da mesma. Os elementos de viga possuem as seguintes propriedades: 
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Propriedades do material dos elementos (aço): 

As propriedades e valores que foram utilizados para esta simulação são os 

mesmos da análise estática com a adição de: 

• Massa Específica aço estrutural ASTM A36 (ρ): (7.8 × 103𝑘𝑔/𝑚3) (BAUCCIO, 

1993). 

• Comprimento da viga (𝐿): 10 𝑚. 

Assim como explicado anteriormente a respeito das outras propriedades 

materiais, o aço ASTM A36 não é especificamente utilizado em colunas de perfuração, 

porém como é apenas uma validação do código de viga pouco importa-se grandes 

variações de valores, não há necessidade de exatidão, apenas foi escolhido um aço 

de categoria estrutural comum. 

Nas Figuras 23 e 24 realizamos uma análise dinâmica em função da frequência 

sem amortecimento, analisando em cima do último nó da viga (extremidade livre – 

10𝑚), a frequência será variada até o modo 3 de vibração (𝑛 =  3), ou seja, até 5 

vezes sua frequência natural. Consideraremos até o terceiro modo porque os 

primeiros modos de vibração capturam a maior parte da resposta dinâmica relevante 

da estrutura, que envolve principalmente os deslocamentos e deformações mais 

significativos. Modos de vibração mais altos, embora presentes, tendem a ter 

amplitudes menores e exigiriam uma discretização mais refinada para captar 

adequadamente os efeitos de frequência mais alta e as interações mais sutis, o que 

nem sempre é necessário para um entendimento adequado e prático da estabilidade 

da coluna em operação. 
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Força Axial em 𝑿 (𝑭𝒙) - Deslocamento Normalizado - Força de compressão (−𝟏𝟎𝟖𝑵). 

Figura 23 Deslocamento Axial Normalizado por Frequência Normalizada – Força no último nó 

 

Figura 24 Ângulo de fase por Frequência Normalizada em 𝑋 – Força no último nó 
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 Frequências calculadas para computação do amortecimento de Rayleigh 

pela Equação 2.57. 

Frequência Natural Axial, modo 1 (𝑛 =  1) 

𝑤𝑚
𝐴𝑥𝑖𝑎𝑙 =

π(2𝑛 − 1)

2
√

𝐸

ρ𝐿2
=

π

2
√

210 × 109

7800 × 102
= 815,046 𝑟𝑎𝑑/𝑠 

Frequência Natural Axial, modo 3 (𝑛 =  3). 

𝑤𝑛
𝐴𝑥𝑖𝑎𝑙 =

π(2𝑛 − 1)

2
√

𝐸

ρ𝐿2
=

π(5)

2
√

210 × 109

7800 × 102
= 4075,231 𝑟𝑎𝑑/𝑠 

O gráfico de Deslocamento Normalizado por Frequência Normalizada acima, 

Figura 22, quando expressos em frequência normalizada, representam como a 

estrutura responde a diferentes frequências em relação a uma frequência de 

referência, neste caso no primeiro modo de vibração (𝑛 = 1). Esse tipo de gráfico 

ajuda a visualizar os picos de resposta em cada modo de vibração e facilita a análise 

de ressonâncias, antirressonâncias e amortecimento em sistemas estruturais ou 

mecânicos. 

Podemos observar que o simulador apresenta bom comportamento em relação 

às frequências, este comportamento é observado na alternância entre picos de 

ressonância e antirressonância, que indicam a resposta do sistema em relação às 

frequências normais específicas. Nas frequências normalizadas ímpares, há 

ocorrência de ressonância, onde o deslocamento teórico tende ao infinito, 

caracterizando uma resposta amplificada ao carregamento. Em contraste, nas 

frequências normalizadas pares, o sistema exibe antirressonância, com o 

deslocamento tendendo a zero, o que reflete um amortecimento natural e estabilidade 

da estrutura nestas frequências. Esse padrão alternado é típico e esperado em 

análises de estruturas de vibração e confirma a precisão das respostas pelas 

frequências analisados no simulador. 

O gráfico de ângulo de fase em função da frequência normalizada, Figura 23, 

representa a diferença de fase entre a entrada (força aplicada) e a resposta 

(deslocamento ou aceleração) em cada frequência de excitação. Conforme a 
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frequência se aproxima de um modo de ressonância e antirressonância da estrutura, 

o ângulo de fase muda rapidamente, geralmente passando de 0º a 180º. Essa 

mudança indica o comportamento dinâmico e a transição de respostas dominadas por 

rigidez para aquelas dominadas pela massa indicando também que o código 

apresenta bom comportamento. 

Para as análises nas Figuras 25 e 26 a seguir consideraremos um 

amortecimento de (ζ =  0,01) segundo Adams e Askenazi (1999) para aço, e para o 

cálculo dos coeficientes da matriz de amortecimento [𝐶] utilizaremos as vibrações até 

o modo 3, ou seja, como foi dito na seção de Amortecimento Viscoso de Rayleigh, 

consideraremos (𝑤𝑚) como a primeira frequência natural do sistema, e (𝑤𝑛) como a 

frequência natural até o modo 3 (𝑛 =  3). Primeiro calcula-se as frequências 𝑤𝑚 e 𝑤𝑛 

pela Equação 2.57.  

Frequência Natural Axial, modo 𝑛 =  3 

𝑤𝑛
𝐴𝑥𝑖𝑎𝑙 = 4075,231 𝑟𝑎𝑑/𝑠 

Frequência Natural Axial, modo 𝑛 =  1 

𝑤𝑚
𝐴𝑥𝑖𝑎𝑙 = 815,0461 𝑟𝑎𝑑/𝑠 

Assim com as frequências calculadas, poderão ser computadas nos 

coeficientes de amortecimento α e β para a matriz de amortecimento e assim aplicá-

lo à analise dinâmica pela Equação 2.83. 

α = 2ζ (
𝑤𝑚 ∗ 𝑤𝑛

𝑤𝑚 + 𝑤𝑛
) = 2 × 0,01 × (

815,0461 ∗ 4075,231

815,0461 + 4075,231
) = 13,58𝑠 

β = 2ζ (
1

𝑤𝑚 + 𝑤𝑛
) = 2 × 0,01 × (

1

815,0461 + 4075,231
) = 4,09 × 10−6𝑠−1 
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Figura 25 Deslocamento Axial Normalizado em 𝑋 por Frequência Natural Normalizada com 
amortecimento – Força no último nó 

 

Figura 26 Gráfico de Ângulo de fase por Frequência Natural em 𝑋 Normalizada com amortecimento – 
Força no último nó 

 

Nos gráficos acima com amortecimento, Figura 25, é observado que, à medida 

que a frequência aumenta, a amplitude da resposta do sistema tende a diminuir 

progressivamente. Esse comportamento ocorre porque o amortecimento introduz uma 
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dissipação de energia no sistema, o que reduz as oscilações com o aumento da 

frequência. Para frequências baixas, próximas dos modos naturais do sistema, a 

amplitude pode ser elevada devido à ressonância. Entretanto, à medida que a 

frequência se afasta desses modos naturais e se torna mais alta, o efeito do 

amortecimento sobre a energia vibracional se intensifica, resultando em uma queda 

significativa na amplitude das oscilações. Essa característica é importante para evitar 

efeitos de ressonância em frequências mais elevadas, contribuindo para a 

estabilidade e controle das vibrações. 

O amortecimento tem uma influência direta sobre o ângulo de fase em função 

da frequência normalizada, Figura 26. À medida que o amortecimento aumenta, a 

transição de fase se torna mais gradual, o que suaviza as mudanças no ângulo de 

fase entre a entrada e a resposta do sistema. Este comportamento de fase reflete a 

dissipação de energia, à medida que o amortecimento reduz o efeito da ressonância 

e proporciona uma resposta mais controlada ao longo das frequências. 

Obter respostas satisfatórias em termos de amortecimento no gráfico de 

Deslocamento Normalizado por Frequência Normalizado e do ângulo de fase indica 

que a implementação do amortecimento no modelo foi bem-sucedida. Isso significa 

que o simulador representa com precisão os efeitos dissipativos, e a capacidade de 

reproduzir as quedas e variações nas amplitudes com aumento de frequência é um 

sinal de que o modelo de amortecimento foi corretamente configurado. 

4.1.2.2 Domínio do Tempo 

Nesta seção, apresentaremos os resultados de análises dinâmicas no domínio 

do tempo realizadas em uma viga de 10 metros, dividida em 100 elementos de 0,1 

metros de comprimento, a mesma malha utilizada para os testes no domínio da 

frequência. A viga, estendendo-se desde 0 metros até 10 metros, foi submetida a um 

uma análise para investigamos como os diferentes segmentos da viga interagem e 

respondem às cargas, considerando a influência de fatores como frequência natural, 

modos de vibração e amortecimento. 

Para as análises a seguir utilizaremos a mesmas propriedades anteriores. Logo 

abaixo realizaremos uma análise dinâmica em função do tempo do último nó da viga 

(ponta final), quando este sofre uma força no primeiro instante de tempo (vibração 
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livre), utilizando o método de Newmark (Aceleração Média Constante) sem 

amortecimento utilizando a matriz de massa distribuída e até o modo 3 de vibração. 

Propriedades da simulação: 

• Tempo inicial (𝑡𝑖): (0𝑠) 

• Tempo final (𝑡𝑓): (0,5𝑠) – A simulação será curta pois, a frequências axiais são 

mais altas quando comparada a outras frequências, e assim o tempo de 0,5 

segundo será suficiente para observar as mesmas. 

• Tamanho do passo de tempo (Δ𝑡): (0,0001𝑠) – Para boa discreitização 

• Tempo de aplicação da Força no último nó (Δ𝑡𝐹): (0,001𝑠) 

• Posição inicial (0𝑈): (0𝑚) – Partindo do repouso 

• Velocidade inicial (0𝑈̇): (0𝑚/𝑠) – Partindo do repouso 

• Parâmetro (δ): (
1

2
) – Parâmetro para estabilidade incondicional (Newmark) 

• Parâmetro (γ): (
1

4
) – Parâmetro para estabilidade incondicional (Newmark) 

 

Força Axial em 𝑿 (𝑭𝒙) - Deslocamento em 𝑿 - Força aplicada de (𝟏𝟎𝟖𝑵) – Figura 27. 

Figura 27 Deslocamento Axial em Função do Tempo – Força no último nó 

 

Agora aplicaremos para o mesmo exemplo um tempo de aplicação de força 

(Δ𝑡𝐹) de (0,002𝑠) como pode-se ver na Figura 28. 
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Figura 28 Deslocamento Axial em X em Função do Tempo – Força no último nó 

 

Quando uma força é aplicada a um sistema, sua resposta não é apenas 

determinada pela magnitude da força, mas também pela frequência e duração da 

aplicação, e ao aplicarmos estas novas condições podemos observar que a amplitude 

do deslocamento axial da viga aumenta significativamente de uma aplitude de em 

média 0,45m para 0,75m, o que faz sentido já que aplicar uma força por mais tempo 

é equivalente a transferir mais energia, uma resposta já esperada. 

O comportamento de batimento observado no gráfico de deslocamento axial do 

último nó da viga em função do tempo, Figura 26, é uma resposta esperada para esse 

tipo de sistema estrutural. Neste caso, a viga está engastada em uma extremidade e 

livre na outra, sem qualquer mecanismo de amortecimento, o que significa que a 

energia da força axial aplicada na ponta livre se propaga como uma onda ao longo da 

viga até a extremidade engastada, onde é refletida. Esse fenômeno de reflexão resulta 

na superposição de ondas transmitidas e refletidas, gerando o comportamento de 

batimento. A ausência de amortecimento ou dissipação de energia permite que o 

batimento persista, pois não há perda de energia no sistema, mantendo o padrão 

oscilatório ao longo do tempo. 

Podemos observar também na Figura 27 de deslocamento em função do 

tempo, é possível observar a presença de múltiplas frequências atuando no sistema. 

As frequências mais baixas (modo 1) são perceptíveis nos picos de maior amplitude 
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e com períodos mais longos, representando os modos de vibração predominantes da 

estrutura. Já as frequências mais altas (modo 3)  aparecem como uma espécie de 

ruído superposto nos primeiros picos, manifestando-se por meio de oscilações de 

menor amplitude e maior frequência. Esse comportamento indica a combinação de 

diferentes modos de vibração, onde as frequências mais baixas dominam a resposta 

global, enquanto as mais altas influenciam os detalhes da resposta dinâmica, 

especialmente no início da vibração. 

Para as análises a seguir consideraremos um amortecimento de (ζ =  0,01) 

segundo Adams e Askenazi (1999) para aço, e para o cálculo dos coeficientes da 

matriz de amortecimento [𝐶] utilizaremos as vibrações até o modo 3, ou seja, como foi 

dito na seção de Amortecimento Viscoso de Rayleigh, consideraremos (𝑤𝑚) como a 

primeira frequência natural do sistema, e (𝑤𝑛) como a frequência natural até o modo 

3 (𝑛 =  3). Primeiro utilizaremos as mesmas frequências 𝑤𝑚 e 𝑤𝑛, e os coeficientes 

𝛼 e 𝛽 calculados anteriormente:  

Frequência Natural Axial, modo 𝑛 =  3 

𝑤𝑛
𝐴𝑥𝑖𝑎𝑙 = 4075,231 𝑟𝑎𝑑/𝑠 

Frequência Natural Axial, modo 𝑛 =  1 

𝑤𝑚
𝐴𝑥𝑖𝑎𝑙 = 815,0461 𝑟𝑎𝑑/𝑠 

Coeficientes do Amortecimento de Rayleigh: 

α = 13,58𝑠 

β = 4,09 × 10−6𝑠−1 

Para a análise do GDL axial de Deslocamento em 𝑋 (𝐹𝑥) com amortecimento 

ultilizou-se as propriedades de simulação com (Δ𝑡 = 0,0001𝑠) , (Δ𝑡𝐹 = 0,001𝑠)  e        

(𝑡𝑓 = 0,5𝑠) e pode ser observado na Figura 29. 
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Figura 29 Deslocamento Axial em Função do Tempo com amortecimento -– Força no último nó 

 

Para validação desta implementação no tempo devemos considerar duas 

coisas, primeiro se a frequência natural calculada tem proximidade com a frequência 

calculada no gráfico. 

Podemos primeiro transformar a frequência natural calculada em período: 

𝑤𝑚
𝐴𝑥𝑖𝑎𝑙 = 815,0461 𝑟𝑎𝑑/𝑠 

Tm =
2𝜋

𝑤𝑚
𝐴𝑥𝑖𝑎𝑙

=
2𝜋

815,0461
= 0,0077𝑠 

Agora através do gráfico, Figura 28, do deslocamento em função do tempo 

podemos contar quantos picos de ondas há em um Δ𝑡 de 0,05 𝑠 e assim encontrar o 

período: 

Tgráfico =
Δ𝑡

𝑁° 𝑝𝑖𝑐𝑜𝑠
=

0,05

6,5
= 0,007692𝑠 

Logo podemos inferir que os períodos são os mesmos e que as frequências 

estão de acordo com as calculadas analiticamente e assim implementadas 

corretamente. 
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Outra inferência que pode ser feita é avaliar o impacto de cada coeficiente de 

amortecimento na resposta. Os coeficientes α  e β  do amortecimento de Rayleigh 

estão relacionados ao controle do amortecimento nas análises dinâmicas de 

estruturas. 

Primeiramente podemos plotar o deslocamento, na Figura 29, com 

amortecimento proporcional apenas a Massa 𝑀, ou seja β =  0𝑠−1, e definirmos um 

valor calculado anterior de α = 13,58𝑠. Para a análise do GDL axial de Deslocamento 

em 𝑋 (𝐹𝑥) com amortecimento ultilizaremos as propriedades de simulação com (Δ𝑡 =

0,0001𝑠), (Δ𝑡𝐹 = 0,001𝑠) e (𝑡𝑓 = 0,1𝑠). 

Figura 30 Deslocamento Axial em Função do Tempo com amortecimento proporcional à massa – 
Força no último nó 

 

Ao analisar a Figura 30, foi possível observar o mesmo comportamento 

previamente descrito na seção 2.7.4, quanto à funcionalidade do coeficiente α. As 

frequências mais baixas apresentam amortecimento mais acentuado (queda de 

amplitude dos picos de período maior), enquanto as frequências mais altas (picos de 

período menor) persistem por mais tempo, manifestando-se como pequenas 

oscilações sobrepostas aos primeiros picos de resposta. Esse comportamento 
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confirma a influência do coeficiente mostrado na Figura 14, associado à matriz de 

massa, que atua de forma mais efetiva na dissipação das componentes de baixa 

frequência, enquanto o amortecimento das componentes de alta frequência ocorre de 

maneira mais gradual.  

Agora podemos plotar, Figura 31, o deslocamento com amortecimento 

proporcional apenas a Rigidez 𝐾, ou seja α =  0s, e definirmos um valor calculado 

anterior de β = 4,09 × 10−6𝑠−1.  Para a análise do GDL axial de Deslocamento em 𝑋 

(𝐹𝑥)  com amortecimento ultilizaremos as propriedades de simulação com (Δ𝑡 =

0,0001𝑠), (Δ𝑡𝐹 = 0,001𝑠) e (𝑡𝑓 = 0.1𝑠). 

Figura 31 Deslocamento Axial em Função do Tempo com amortecimento proporcional à rigidez -– 
Força no último nó 

 

O gráfico obtido na Figura 31 também confirmam o comportamento esperado 

em relação ao coeficiente β mostrado na Figura 14. Observa-se que as frequências 

mais altas (picos de período menor) são amortecidas de forma mais rápida, resultando 

em uma resposta dinâmica mais suave e com menor presença de oscilações de alta 

frequência. Por outro lado, as frequências mais baixas (picos de período maior) 

mantêm-se por mais tempo, com um amortecimento mais gradual. Esse 
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comportamento evidencia a influência do coeficiente β, associado à matriz de rigidez, 

que atua de forma mais eficaz na dissipação das componentes de alta frequência, 

enquanto exerce menor impacto sobre as componentes de baixa frequência. 

Uma das principais vantagens de computar o amortecimento em função das 

matrizes de massa e rigidez é a capacidade de representar um comportamento de 

amortecimento mais realista. Essa abordagem permite dissipar energia de forma 

equilibrada, atuando de maneira eficiente tanto sobre as frequências mais baixas (por 

meio do coeficiente α) quanto sobre as frequências mais altas (por meio do coeficiente 

β). Assim, o sistema consegue simular de forma mais precisa a resposta dinâmica 

real, garantindo que diferentes faixas de frequência sejam amortecidas de acordo com 

suas características. 

4.2 Estudo de Caso – Linha Neutra 

A seguir, faremos um estudo de caso, focando o deslocamento da linha neutra 

quando a coluna é submetida a cargas axiais (peso e tração), para uma simulação 

mais realista da coluna de perfuração, considerando agora uma configuração offshore 

da coluna que terá seu comprimento total na escala de quilômetros (magnitude ideal 

e real), composta de trechos com diferentes pesos e características geométricas para 

os drill pipes e drill collar. A coluna será modelada como um cilindro oco com 

espessura especificada, em vez de uma geometria maciça. 

Para o caso do poço offshore, assumiremos uma lâmina d'água de 260 metros 

e uma profundidade de poço de 1000 metros a partir da linha de lama (mudline). Isso 

resulta em um comprimento total da coluna de aproximadamente 1260 metros (1.26 

km), discretizada em elementos de viga de 3 metros, sendo 420 elementos e 421 nós, 

comum para poços no pós-sal em águas profundas. Se o poço fosse 

significativamente mais profundo, como acima de 5 km, a coluna poderia ser 

associada ao cenário de perfuração em campos do pré-sal. 

Simplificações e Exclusões na Simulação 

Para simplificar o modelo, faremos as seguintes desconsiderações: 
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• Sem interação broca x coluna: Não será considerada a interação entre 

a broca e a coluna de perfuração. 

• Sem interação com a parede do poço: Assumiremos que a coluna não 

está sujeita a forças laterais de contato com a parede do poço. 

• Sem interação com o fluido de perfuração: O efeito do fluido de 

perfuração em contato com a coluna será ignorado. 

• Sem interação com correntes marítimas: Forças geradas por correntes 

oceânicas serão desconsideradas, focando somente nas condições 

estáticas e dinâmicas da estrutura da coluna. 

• Sem consideração de flambagem da viga. 

Durante a análise estática e dinâmica no domínio da frequência existirão 2 

forças agindo na coluna, a força peso (em toda coluna) e a força de tração no topo da 

coluna (último nó), e para a análise dinâmica no domínio do tempo haverá mais uma 

força que será uma força harmônica representando o movimento de heave na 

plataforma (no topo da coluna, último nó). 

Especificações geométricas 

Para este trabalho, adotaremos um referencial que posiciona o primeiro nó da 

viga (ponto 0 metros) como a base da coluna de perfuração, onde ela está fixamente 

engastada, representando a conexão com o fundo do poço. O último nó (ponto de 

1260 metros) será o topo da coluna, onde ela estará livre, representando a 

extremidade superior que se conecta à plataforma de perfuração. Com isso, o 

referencial do eixo ao longo do qual faremos as análises será o eixo 𝑥, ou seja, a 

coluna de perfuração será orientada e discretizada ao longo desse eixo, as forças 

peso e de tração estarão, claro, axialmente neste referencial também. 

O sistema da Coluna de Perfuração pode ser estruturado através da Figura 32. 
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Figura 32 Representação estrutural do estudo de caso da coluna de Perfuração 

 

Fonte: Santos (2018) 

Para implementar o movimento de heave neste modelo, estamos aplicando 

uma força harmônica na coluna de perfuração, em vez de um deslocamento direto. 

Optamos por essa abordagem porque a aplicação de uma força periódica foi mais 

simples de implementar do que um deslocamento harmônico direto. Essa força 

aplicada simula de maneira eficaz o efeito do movimento de heave induzido pelo 

movimento da plataforma offshore devido às ondas. 

Para representar a viga foi considerado o aço utilizado em tubos, como material 

de cada elemento, e suas propriedades materiais estão listadas a seguir. 

Propriedades para todos os elementos 

• Módulo de Young (𝐸): (210 × 109  Pa) (BAUCCIO, 1993). 

• Módulo de cisalhamento (𝐺): (8 × 1010 Pa) (BAUCCIO, 1993). 
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Propriedades para Drill Pipes (BOURGOYNE et al. ,1986). 

• Diâmetro externo (𝐷𝐸) de 5 polegadas = 0,127 𝑚 

• Diâmetro interno (𝐷𝐼) de 4,276 polegadas = 0,1086104 𝑚 

As propriedades dos diâmetros citadas acima foram escolhidas pois levou-se 

em consideração que estes diâmetros são os mais utilizados em perfurações 

(considerando uma média). 

• Área da seção transversal (𝐴): Pode ser calculada como 𝐴 =
𝜋

4
(DE2 − DI2)  =  

(3,402958 × 10−3 m2) 

• Comprimento de cada drill pipe (𝐿𝑡): 9 𝑚 

• Volume de cada tubo (𝑉): 𝐿𝑡 × 𝐴 =  0,030626622 𝑚3   

• Massa Específica aço (ρ): (7,8 × 103𝑘𝑔/𝑚3) 

• Massa de cada tubo (𝑚): 238,887652 𝑘𝑔  

Os momentos de inércia podem ser calculados desta forma, sendo uma seção oca: 

𝐼𝑦𝑧 =
𝜋

64
(DE4 − DI4) (4.12) 

• Momento de inércia em 𝑦 (𝐼𝑦): (5,93927 × 10−6 m4). 

• Momento de inércia em 𝑧 (𝐼𝑧): (5,93927 × 10−6 m4). 

• Momento polar de inércia (𝐽): 𝐼𝑦 + 𝐼𝑧 = (1,18785 × 10−5 m4) (CALLISTER e 

RETHWISCH, 2013). 

 

Propriedades para Drill collars (MITCHELL et al., 2010). 

• Diâmetro externo (𝐷𝐸) de 8 polegadas = 0,2032 𝑚 

• Diâmetro interno (𝐷𝐼) de 3 polegadas = 0,0762 𝑚 

Mesmo argumento dos Drill Pipes, as propriedades dos diâmetros citadas 

acima foram escolhidas pois levou-se em consideração que estes diâmetros são os 

mais utilizados em perfurações (considerando uma média). 

• Área da seção transversal (𝐴): Pode ser calculada como 𝐴 =
𝜋

4
(DE2 − DI2)  =  

(2,78689 × 10−2 m2) 

• Comprimento de cada drill collar (𝐿𝑡): 9 𝑚 



84 

 

• Volume de cada tubo (𝑉): 𝐿𝑡 × 𝐴 =  0,2508201 𝑚3   

• Massa Específica aço (ρ): (7,8 × 103𝑘𝑔/𝑚3) 

• Massa de cada tubo (𝑚): 1956,39678 𝑘𝑔  

 

Os momentos de inércia podem ser calculados da mesma forma anterior, sendo uma 

seção oca: 

• Momento de inércia em 𝑦 (𝐼𝑦): (8,20333 × 10−5 m4). 

• Momento de inércia em 𝑧 (𝐼𝑧): (8,20333 × 10−5 m4). 

• Momento polar de inércia (𝐽): 𝐼𝑦 + 𝐼𝑧 = (1,6406665 × 10−4 m4) (CALLISTER e 

RETHWISCH, 2013). 

4.2.1 Análise Estática 

Para a análise estática da coluna de perfuração, consideramos duas forças 

principais: o peso total da coluna e uma força de tração. O peso será determinado 

somando-se a massa de toda a coluna e multiplicando esse valor pela aceleração da 

gravidade, resultando na força de compressão total. Esse peso total será então 

distribuído uniformemente ao longo da coluna. Para isso, dividimos o peso total pelo 

número de elementos da malha e aplicamos a força compressiva resultante em cada 

nó, exceto no primeiro nó, que representa o fundo do poço e é mantido fixo. 

Para simular a tração, aplicaremos uma força adicional no último nó (topo da 

coluna), direcionada no sentido oposto ao peso. Essa força será uma porcentagem 

significativa do peso total, de forma a contrabalançar parte da compressão e permitir 

o controle da posição da linha neutra ao longo da coluna. Com esse ajuste, podemos 

posicionar a linha neutra de acordo com os requisitos operacionais, evitando que fique 

excessivamente comprimida ou tensionada, facilitando a análise das condições de 

equilíbrio estático. 

O peso total da coluna pode ser calculado a seguir, onde 𝑛 é o número da 

quantidade de cada tubo que pode ser calculado, onde (ℎ) é a porcentagem da seção 

do tubo em relação ao comprimento da coluna, (𝑗) é o número de elementos de viga 

da coluna e (𝑖) é o comprimento de cada elemento: 
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𝑛𝐷𝑟𝑖𝑙𝑙𝑃𝑖𝑝𝑒 =
𝑗. ℎ

𝑖
=

420.0,9

3
= 126 (4.13) 

𝑛𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑙𝑙𝑎𝑟 =
𝑗. ℎ

𝑖
=

420.0,1

3
= 14 

E 𝑔 é a gravidade = 9,81 𝑚/𝑠2: 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝐷𝑟𝑖𝑙𝑙𝑃𝑖𝑝𝑒 + 𝑃𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑙𝑙𝑎𝑟 (4.14) 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑛𝐷𝑟𝑖𝑙𝑙𝑃𝑖𝑝𝑒. 𝑚𝐷𝑟𝑖𝑙𝑙𝑃𝑖𝑝𝑒. 𝑔 + 𝑛𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑙𝑙𝑎𝑟. 𝑚𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑙𝑙𝑎𝑟. 𝑔  

𝑃𝑡𝑜𝑡𝑎𝑙 = 126. (238,887652).9,81 + 14. (1956,39678).9,81  

𝑃𝑡𝑜𝑡𝑎𝑙 = 295279,4711 + 268691,5337  

𝑃𝑡𝑜𝑡𝑎𝑙 = 563971,0048 𝑁  

Agora com os pesos calculados de cada seção de tubos e o peso total, 

podemos saber quanto de peso iremos inserir nos nós para distribuir o peso em toda 

a coluna, podemos obter isto ao dividirmos o peso pela quantidade de elementos de 

cada seção de tubo (𝑖). 

𝑃𝐷𝑟𝑖𝑙𝑙𝑃𝑖𝑝𝑒𝑐𝑎𝑑𝑎𝑛ó =
𝑃𝐷𝑟𝑖𝑙𝑙𝑃𝑖𝑝𝑒

𝑗. ℎ
=

295279,4711

378
= 781,1626𝑁/𝑚 (4.15) 

𝑃𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑙𝑙𝑎𝑟_𝑐𝑎𝑑𝑎_𝑛ó =
𝑃𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑙𝑙𝑎𝑟

𝑗. ℎ
=

268691,5337

42
= 6397,417469𝑁/𝑚 

Uma vez que distribuímos adequadamente os pesos nos nós ao longo da 

coluna, aplicamos uma força de tração no último nó (localizado no topo da coluna) 

com a mesma magnitude do peso total da estrutura. Essa força de tração é aplicada 

em sentido oposto ao da força peso, permitindo analisar o comportamento da linha 

neutra. Para isso, utilizamos os deslocamentos calculados e aplicamos a Equação 

3.13 o que nos permitiu estimar as forças internas ao longo de toda a extensão da 

coluna, representada na Figura 33.  
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Figura 33 Representação da linha Neutra quando aplicado uma força de tração igual força peso 

 

Ao plotarmos o somatório das forças ao longo do comprimento da coluna 

(considerando as forças de tração e compressão), observamos que a linha neutra se 

encontra exatamente na base da coluna, em 𝑥 = 0. Esse resultado confirma que, ao 

aplicar uma força de tração equivalente ao peso da coluna, não ocorre compressão 

ao longo da estrutura. Dessa forma, o sistema permanece em equilíbrio e a ausência 

de compressão valida a exatidão dos cálculos e da distribuição de forças realizada. 

Além de extrairmos o valor do gráfico, podemos calcular o ponto exato da 

coluna onde separa as duas porções de tubos como: 

𝑃𝑜𝑠𝑖𝑐𝑎𝑜𝐷𝑟𝑖𝑙𝑙𝑃𝑖𝑝𝑒 = 𝐿𝑐𝑜𝑙𝑢𝑛𝑎 × 0,1 = 1260.0,1 = 126𝑚 

Assim constatamos que de 0 até 126m estão localizados os Drill Collars, e de 

126 até 1260m estão localizados os Drill Pipes, e se observarmos há uma variação 

na inclinação que é quando transitamos entre os limites de Drill Collar para Drill Pipe, 

isto é esperado uma vez que os tubos possuem inércias diferentes, e quando se passa 

a uma seção de tubo com menos inércia há menos compressão.  
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Se quisermos representar a linha neutra no seu devido lugar, isto é, na parte 

superior da seção dos Drill Collars temos que aplicar uma força de tração com uma 

porcentagem abaixo de 100% da força peso, uma vez que se aplicarmos uma força 

de tração um pouco menor que a força. 

Assim conforme citado na seção de Método, para saber a quantidade de Tração 

ideal que deve ser aplicada no topo da coluna podemos aplicar alguns critérios para 

que quando aplicado o valor ideal o posicionamento da linha neutra esteja dentro da 

seção dos Drill Collars pela Equação 3.11 e que a compressão aplicada não 

ultrapasse o WOBmax pela Equação 3.12. 

Posicionamento da Linha Neutra 

𝑇𝑟𝑎çã𝑜 (%𝑃𝑒𝑠𝑜) > 1 −
268691,5337

563971,0048
> 52,4%  

Assim para a Linha Neutra estar localizada nos Drill Collars há a necessidade 

de uma aplicação da força de tração acima de 52,5% do Peso total da coluna. 

Limitação do WOB Máximo 

Assim como dito anteriormente, para este estudo de caso não será considerada 

a interação da coluna de perfuração com a broca, porém precisamos considerar uma 

broca e termos um WOBmax próximo do real de uma perfuração. Para este trabalho 

podemos considerara broca HS series premium PDC bit que possui um WOBmax de 

180kN, sendo assim possuindo um novo valor para tração. 

Traçã𝑜 (%𝑃𝑒𝑠𝑜) >
180000 N

268691,5337 𝑁
× 126m > 67,2%  

E, portanto, basta selecionarmos uma porcentagem acima de 67,2% do Peso 

da Coluna para ser o valor de Tração, que assim respeitará os dois critérios. 

Quando aplicamos 70% da força peso 𝐹𝑇 = 563971,0048 × 0,70 =

394.779,70𝑁  em força de tração conseguimos posicionar a linha neutra dentro da 

seção dos comandos e conseguimos respeitar o WOBmax, porém podemos ter mais 

certeza se de fato obtivermos os valores de compressão e a posição da linha neutra 

e confirmarmos que os critérios estão respeitados como podemos ver na Figura 34. 
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Figura 34 Representação da linha Neutra quando aplicado uma força de tração 62% da força peso 

 

Para obter a quantidade de Compressão que temos basta subtrairmos a Força 

de Tração do Peso total da Coluna utilizando a Equação 3.13. 

 Fcompressao = Ptotal − Ftracao = 563.971,0048𝑁 − 394.779,70𝑁 

Fcompressao  =  169.191,3 N  <  WOBmax   

Para obter a posição da Linha Neutra basta utilizar a Equação 3.14.  

𝑃𝑜𝑠𝑖çã𝑜𝑑𝑎𝐿𝑖𝑛ℎ𝑎𝑁𝑒𝑢𝑡𝑟𝑎(𝑚)  =  
169191,3 N

268691,5337 𝑁 
× 126m = 

𝑃𝑜𝑠𝑖çã𝑜𝑑𝑎𝐿𝑖𝑛ℎ𝑎𝑁𝑒𝑢𝑡𝑟𝑎(𝑚)  = 79,34 𝑚 <  126𝑚 

Assim, tendo a confirmação de que os critérios estão sendo respeitados após 

escolhermos 70% do Peso como Força de Tação os critérios podem ser visualizados 

na Figura 34. 
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Na análise estática, o gráfico de distribuição de forças ao longo do comprimento 

da coluna permite identificar a posição da linha neutra e avaliar a compressão aplicada 

sobre os drill collars. Com base nesses resultados, verifica-se se os critérios 

operacionais estão sendo respeitados: a linha neutra deve permanecer abaixo dos 

drill collars e a força de compressão deve ser inferior ao WOB máximo permitido. Esse 

equilíbrio garante que os drill collars operem corretamente sob compressão, 

transmitindo o peso adequado à broca e evitando sobrecargas que poderiam 

comprometer a integridade da coluna. 

Entretanto, alterações nos diâmetros interno e externo dos drill collars poderiam 

impactar significativamente esse comportamento. Um aumento no diâmetro externo 

eleva a rigidez da seção, tornando-a menos suscetível à flambagem, mas também 

aumenta o peso, o que pode deslocar a linha neutra ainda mais para baixo. Isso 

poderia resultar em excesso de compressão, aumentando o risco de ultrapassar o 

WOB máximo e comprometendo a estabilidade da perfuração. Por outro lado, uma 

redução no diâmetro externo diminuiria a rigidez e o peso dos drill collars, elevando a 

posição da linha neutra. Esse deslocamento poderia fazer com que parte dos drill 

collars passasse a operar sob tração, reduzindo a eficiência na transmissão de peso 

para a broca e aumentando o risco de instabilidades estruturais, como a flambagem. 

Mudanças no diâmetro interno também influenciam a resistência e o peso da 

coluna. Um aumento do diâmetro interno diminui a espessura da parede, reduzindo o 

peso e a capacidade de suportar compressão, o que pode levar a uma posição 

inadequada da linha neutra e maior vulnerabilidade à flambagem. Já uma redução do 

diâmetro interno aumenta o peso e a rigidez, podendo gerar compressão excessiva e 

riscos de sobrecarga. 

Portanto, qualquer alteração nos diâmetros dos drill collars exige uma nova 

análise das forças atuantes na coluna para garantir que a linha neutra permaneça 

adequadamente posicionada e que a compressão não ultrapasse os limites 

operacionais, preservando a eficiência e a segurança da perfuração. 
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4.2.2 Análise Dinâmica – Domínio do Tempo 

Nesta seção, apresentaremos o comportamento da linha neutra da coluna sob 

influência da força peso e força de tração, variando no domínio do tempo. Esses 

carregamentos simulam condições reais de operação e permitem analisar como a 

coluna responde a variações de carga ao longo do tempo. Isso nos ajudará a 

compreender melhor os efeitos dinâmicos sobre a estabilidade e integridade da 

coluna, ao avaliar a posição da linha neutra. 

No domínio do tempo, será realizada a implementação de uma força harmônica 

aplicada ao último nó da coluna de perfuração, localizado no topo. Esta força é 

projetada para simular o movimento de heave típico em operações offshore, que 

resulta do deslocamento vertical da plataforma devido às ondas do mar. A análise 

busca investigar como esse carregamento dinâmico afeta a posição da linha neutra 

ao longo da coluna. 

A força harmônica, o heave, será representada matematicamente por F(𝑡) =

Festatico  +  𝐹0𝑠𝑒𝑛(ω𝑡) , onde 𝐹𝑒𝑠𝑡𝑎𝑡𝑖𝑐𝑜  é a amplitude da força de Tração, 𝐹0  é a 

amplitude da força de heave e ω é a frequência angular do movimento. Ao aplicar esta 

força na extremidade livre da coluna, propagam-se ondas ao longo da estrutura, que 

interagem com as condições de contorno (engastamento na base do poço) e podem 

gerar reflexões, criando padrões complexos de vibração. Esta força agirá em todos os 

instantes de tempo juntamente com a força peso, porém variará harmonicamente. 

Para as análises a seguir utilizaremos a mesmas propriedades anteriores. Logo 

abaixo realizaremos uma análise dinâmica em função do tempo do último nó da viga 

(ponta final), quando este sofre uma força no primeiro instante de tempo (vibração 

livre), utilizando o método de Newmark (Aceleração Média Constante) sem 

amortecimento utilizando a matriz de massa distribuída e até o modo 3 de vibração. 

Propriedades da simulação: 

• Tempo inicial (𝑡𝑖): (0𝑠) 
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• Tempo final (𝑡𝑓): (22𝑠) – A simulação será longa, pois a coluna de perfuração 

é extensa e suas frequências naturais diminuíram, assim requerindo um tempo 

de simulação maior. 

• Tamanho do passo de tempo (Δ𝑡): (0,01𝑠)  – Para boa discreitização será 

suficiente. 

• Posição inicial (0𝑈): (0𝑚) – Partindo do repouso 

• Velocidade inicial (0𝑈̇): (0𝑚/𝑠) – Partindo do repouso 

• Parâmetro (δ): (
1

2
) – Parâmetro para estabilidade incondicional 

• Parâmetro (γ): (
1

4
) – Parâmetro para estabilidade incondicional 

• A força harmônica (𝐹(𝑡)) aplicada no último nó da coluna (topo) foi definida 

como  𝐹(𝑡) = 𝐹0 + 0,1%. 𝐹0 sin(3𝑡), onde (𝐹0) representa 70% do peso total da 

coluna e pode ser observado na Figura 35. Essa escolha foi feita para garantir 

que a linha neutra permaneça dentro da seção dos Drill Collars, assegurando 

que a compressão seja mantida conforme os resultados estáticos indicaram ser 

o ideal. A força (𝐹0) equivale a (394779,7 kN), mas a variação harmônica foi 

restrita a apenas 0,1% dessa força, ou seja, cerca de (34,97 N), para simular 

de forma fiel as oscilações suaves induzidas pelo movimento de heave. 

Figura 35 Força Hamônico de Tração + Heave pelo tempo 
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Figura 36 Posição da linha Neutra em função do Tempo 

 

Na Figura 36, observa-se inicialmente um comportamento transitório com 

oscilações intensas da posição da linha neutra, resultado direto da ausência de uma 

condição de equilíbrio inicial no modelo. Esse comportamento é esperado, pois o 

sistema foi iniciado sem considerar a deformação estática prévia, o que provoca um 

tranco inicial que gera reflexões de ondas ao longo da coluna. Esse transiente 

numérico leva a grandes oscilações nos primeiros segundos da simulação. 

Quando a linha neutra assume valores negativos (𝒛 < 0), isso indica que a 

coluna está inteiramente tracionada. Esse comportamento ocorre devido ao engaste 

na base (em 𝑧 = 0), que impede o desprendimento da coluna. Em um cenário real, 

isso corresponderia a uma falha operacional, como a perda de contato da broca com 

o fundo do poço, o que comprometeria a perfuração. 

Por outro lado, quando a linha neutra ultrapassa o comprimento da coluna, isso 

representa uma condição onde a coluna está completamente comprimida. Essa 

condição pode causar problemas significativos na operação. Caso a linha neutra se 

desloque muito para baixo, aproximando-se da broca, os drill collars podem não ter 

compressão suficiente para transmitir o peso necessário, comprometendo o peso 

sobre a broca (WOB). Isso reduz a taxa de penetração (ROP) e a eficiência da 
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perfuração. Em situações extremas, se a linha neutra teoricamente se posicionar 

abaixo da broca, toda a seção dos drill collars estará sob tensão, perdendo sua 

capacidade de estabilizar o conjunto de fundo (BHA) e de permitir a perfuração. 

Além disso, se a linha neutra se deslocar acima do limite entre os drill collars e 

os drill pipes, os tubos de perfuração, que não são projetados para suportar forças 

compressivas, tornam-se vulneráveis à flambagem. Esse cenário pode levar à 

flambagem helicoidal, causando contato com as paredes do poço, o que resulta em 

desgaste excessivo, aumento do torque e arraste, falhas nos tubos e até danos no 

poço. Essas condições aumentam os riscos de stuck pipe, elevam os custos 

operacionais e comprometem a eficiência da operação. 

Adicionalmente, caso a posição da linha neutra fique muito próxima do limite 

entre os drill pipes e os drill collars, movimentos oscilatórios como o heave podem 

deslocar a linha neutra acima dos drill collars, agravando os riscos para os drill pipes. 

O uso de um compensador de heave torna-se essencial nesse contexto, pois ajuda a 

preservar um WOB e um ROP mais constantes, reduzindo a influência das oscilações. 

Dessa forma, é possível aumentar a eficiência da operação, otimizar o tempo 

necessário para a perfuração e minimizar os custos associados.Para evitar essas 

oscilações não realistas, o ideal seria iniciar a simulação considerando a deformação 

estática de equilíbrio. Assim, a resposta dinâmica da coluna seria mais coerente com 

o comportamento físico real, eliminando o tranco inicial e suavizando o 

comportamento transitório. 

Por fim conforme o tempo avança, o sistema entra em regime estacionário, e a 

linha neutra estabiliza-se harmonicamente ao redor de sua posição inicial de 79 

metros. Este valor foi previamente calculado na análise estática e validado como a 

posição inicial da linha neutra, onde as forças de tração e compressão se equilibram. 

Durante o regime estacionário, a linha neutra oscila de forma suave e periódica, 

acompanhando o comportamento da força harmônica aplicada. Isso demonstra que, 

após o término do período transitório, o sistema reflete o comportamento esperado 

para uma força de entrada senoidal. 

Esse resultado reforça a fidelidade da simulação em capturar fenômenos 

dinâmicos importantes na análise de colunas de perfuração.  
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5 CONCLUSÃO 

Este trabalho apresentou o desenvolvimento e implementação de um simulador 

numérico para a análise estática e dinâmica de colunas de perfuração offshore em 

condições realistas, mas de forma simplificada. O simulador foi projetado para operar 

em seis graus de liberdade (6GDL) em 3D, permitindo análises tanto no domínio da 

frequência quanto no tempo. Os resultados demonstraram consistência e 

confiabilidade ao longo das validações realizadas, comprovando a eficácia do modelo. 

Um dos principais objetivos alcançados foi a análise detalhada da posição da 

linha neutra (ponto de tensão zero) em diferentes cenários de carregamento, 

considerando forças axiais, cisalhantes e momentos fletores e torsores. Essa análise 

foi essencial para verificar critérios operacionais importantes, como manter a linha 

neutra abaixo dos drill collars e garantir que a compressão não ultrapassasse o limite 

do WOB máximo. 

Além disso, o simulador permitiu observar o impacto de movimentos 

harmônicos de heave e demonstrou como variações nos diâmetros dos drill collars 

podem influenciar o comportamento estrutural da coluna. A implementação de 

amortecimento pelo método de Rayleigh contribuiu para uma representação mais 

realista, controlando adequadamente as frequências mais baixas e mais altas. 

Esses resultados reforçam a importância de um ajuste preciso da tração 

aplicada e do uso de sistemas como o compensador de heave para manter o WOB e 

o ROP estáveis, melhorando a eficiência operacional e reduzindo custos. 

5.1 Contribuições do trabalho 

 A principal contribuição deste trabalho foi o desenvolvimento de um simulador 

numérico versátil, capaz de realizar análises estáticas e dinâmicas (nos domínios da 

frequência e do tempo) de colunas de perfuração offshore, com modelagem 

tridimensional e seis graus de liberdade (6GDL). 

O simulador representou com precisão os comportamentos vibratórios e as 

distribuições de tensão ao longo da coluna de perfuração, permitindo a avaliação de 
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critérios fundamentais para a operação segura e eficiente, como o posicionamento da 

linha neutra abaixo dos drill collars e a manutenção da força de compressão abaixo 

do limite do WOB máximo. 

Outro destaque foi a capacidade de identificar riscos estruturais, como 

flambagem dos drill pipes e falhas operacionais decorrentes de deslocamentos 

excessivos da linha neutra. A análise também demonstrou a relevância de considerar 

variações nos diâmetros interno e externo dos drill collars, que podem afetar a 

distribuição de forças e o comportamento dinâmico da coluna. 

A implementação do amortecimento de Rayleigh, com ajuste dos coeficientes 

α  e β , possibilitou uma modelagem mais realista da dissipação de energia, 

equilibrando o amortecimento de frequências baixas e altas. 

Por fim, o simulador se mostrou uma ferramenta eficaz para otimizar as 

operações de perfuração, permitindo ajustes precisos na tração aplicada e 

contribuindo para a aplicação de sistemas como o compensador de heave. Isso 

resultou em uma operação mais segura e eficiente, com WOB e ROP mais constantes 

e redução dos custos operacionais. 

5.2 Trabalhos futuros 

Para futuras aplicações e melhorias, recomenda-se ampliar o simulador para 

considerar outros graus de liberdade, especialmente em condições onde há maior 

complexidade nas interações físicas. Outras melhorias incluem considerar a interação 

entre a coluna e a parede do poço, a interação entre a coluna e a broca, além do efeito 

do fluido de perfuração, que pode influenciar significativamente o comportamento 

dinâmico. Por fim, aplicar o modelo em poços direcionais ou com maiores 

comprimentos também poderá trazer insights adicionais sobre o desempenho e a 

estabilidade das colunas de perfuração em configurações de poço mais complexas. 
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Resumo 

O desempenho da perfuração em operações offshore em grandes lâminas d’água é essencial para a 

viabilidade econômica dos projetos de exploração e produção de óleo e gás. Esse desempenho depende 

da condição da coluna de perfuração e de seus componentes durante todo o processo, sendo influenciado, 

em particular, pelos movimentos da coluna dentro do poço, que causam vibrações responsáveis por perdas 

de eficiência e desgaste dos equipamentos. Este trabalho tem como objetivo construir um simulador 

numérico 3D para analisar o comportamento vibratório de uma coluna de perfuração offshore, a fim de 

entender as dinâmicas envolvidas e auxiliar no prolongamento da vida útil dos equipamentos. Para 

alcançar esse objetivo, implementou-se a modelagem numérica da coluna de perfuração utilizando o 

Método dos Elementos Finitos (MEF) através do ambiente de programação MATLAB®. O MEF se 

destaca por sua precisão e viabilidade computacional, permitindo uma análise detalhada dos fenômenos 

vibratórios e suas implicações na integridade estrutural da coluna. O simulador trouxe resultados 

confiáveis que permitiu representar, de forma simplificada, o comportamento estático e dinâmico 

vibratório da coluna de perfuração, quando esta última é induzida por forças que ocorrem durante uma 

perfuração, e através dele pode ser feito uma avaliação do comportamento da linha neutra e o peso sobre 

broca (PSB). 

Palavras-chave: Colunas de Perfuração, Vibrações Mecânicas, Poços de Petróleo Offshore, Método dos 

Elementos Finitos. 

Abstract 

The drilling performance in offshore operations in deepwater environments is essential for the 

economic viability of oil and gas exploration and production projects. This performance depends on the 

condition of the drill string and its components throughout the process, particularly influenced by the 

movements of the drill string within the well, which cause vibrations responsible for efficiency losses and 

equipment wear. This work aims to build a 3D numerical simulator to analyze the vibrational behavior of 

an offshore drill string to understand the dynamics involved and support the extension of the equipment's 

useful life. To achieve this objective, the numerical modeling of the drill string was implemented using 

the Finite Element Method (FEM) in the MATLAB® programming environment. FEM stands out for its 

precision and computational feasibility, allowing a detailed analysis of the vibrational phenomena and 

their implications for the structural integrity of the drill string. The simulator provided reliable results that 

contributed to representing, in a simplified way, the static and vibratory behavior of the drilling string, 

when the latter is caused by forces that occur during drilling, and through it an evaluation of the neutral 

behavior of the neutral point and the weight on bit (WOB) can be made. 
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1. Introdução 

A exploração offshore na indústria de óleo e gás apresenta desafios técnicos e econômicos 

significativos, especialmente devido às condições adversas enfrentadas pela coluna de perfuração, como 

altas pressões, forças de torção e vibrações. Essas vibrações podem causar falhas mecânicas e impactar a 

eficiência e segurança das operações. A análise de vibrações é fundamental para controlar essas operações, 

mas métodos tradicionais nem sempre capturam o comportamento dinâmico completo da coluna. Diversos 

estudos contribuíram para o avanço nesse campo. Real (2018) analisou vibrações torcionais e propôs 

ajustes operacionais para mitigá-las. Khulief et al. (2008) investigaram o impacto do contato entre a coluna 

e a parede do poço nas vibrações laterais. Cayres et al. (2015) estudaram o fenômeno de stick-slip, 

sugerindo controle de torque e rotação para reduzir vibrações. Dong e Chen (2016) destacaram a 

importância de sistemas de monitoramento em tempo real, e Ghasemloonia et al. (2013) aplicaram o 

Método dos Elementos Finitos (MEF) para modelar vibrações, validando os resultados com dados 

experimentais. A simulação numérica, especialmente com o uso do MEF, se destaca como uma ferramenta 

poderosa para prever e analisar o comportamento da coluna de perfuração sob diversas condições. O MEF 

oferece soluções detalhadas para problemas complexos de engenharia, sendo amplamente utilizado em 

mecânica estrutural e outras áreas. No entanto, seu uso exige compreensão teórica adequada para garantir 

resultados confiáveis (BATHE, 2014; RAO, 2018). 

2. Metodologia 

A metodologia deste trabalho consistiu no desenvolvimento e implementação de um simulador 

numérico para a análise estática e dinâmica de colunas de perfuração, operando em seis graus de liberdade 

(GDL) em 3D. O simulador foi criado no MATLAB®, sendo implementadas funções para leitura de 

propriedades materiais, definição geométrica e estruturação da coluna, além da formulação das matrizes 

de rigidez e massa essenciais para a análise pelo Método dos Elementos Finitos (MEF). 

A validação inicial foi realizada utilizando uma viga em balanço (cantilever beam) para testar 

deslocamentos estáticos e dinâmicos. No domínio da frequência, as matrizes de rigidez e massa foram 

acopladas para calcular as frequências naturais e avaliar a eficácia do amortecimento de Rayleigh. Já no 

domínio do tempo, o método de Newmark foi implementado para simular vibrações livres, observando os 

efeitos dos coeficientes de amortecimento. 

Após a validação, o simulador foi aplicado a um estudo de caso de uma coluna de perfuração offshore 

vertical, utilizando dados simplificados. O modelo de tração foi ajustado para garantir que a linha neutra 

permanecesse abaixo dos comandos, respeitando também o limite do WOB máximo da broca. Para isso, 

foram utilizadas equações específicas para o cálculo da tração, força de compressão e posicionamento da 

linha neutra. As equações adotadas garantiram a conformidade com os critérios operacionais da coluna de 

perfuração. 

3. Resultados 

Inicialmente, o simulador foi validado com simulações de vigas, verificando a precisão dos resultados 

de deslocamentos e forças internas. Com a validação confirmada, o simulador foi aplicado a um estudo 

de caso de uma coluna de perfuração, analisando sua resposta estática e dinâmica, incluindo a variação da 

linha neutra e o comportamento vibratório. 

3.1. Validação do Simulador 

3.1.1. Validação Estática 
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O simulador foi desenvolvido no MATLAB® para analisar o comportamento estático de uma viga. A 

viga foi modelada de forma linear 1D, com os nós distribuídos ao longo do eixo x, desde a origem até 3 

metros. Para validar o GDL axial em X pode-se fazer uma comparação de valores numéricos e analíticos 

obtidos de uma compressão de (−𝟏𝟎𝟖𝑵) em X do último nó da viga abaixo com as seguintes propriedades: 

• Módulo de Young (𝐸): (210 × 109 Pa) (BAUCCIO, 1993). 

• Módulo de cisalhamento (𝐺): (8 × 1010 Pa) (BAUCCIO, 1993). 

• Área da seção transversal (𝐴): (7,92665 × 10−3 m2), este valor foi considerado para que se obtivesse um valor de 

momento de inércia arredondado, pois então temos um raio (𝑟) de 5,023 × 10−2 m. 

• Momento de inércia em 𝑦 (𝐼𝑦): (5 × 10−6 m4). 

• Momento de inércia em 𝑧 (𝐼𝑧): (5 × 10−6 m4). 

• Momento polar de inércia (𝐽): 𝐼𝑦 +  𝐼𝑧 = (10−5 m4) (CALLISTER e RETHWISCH, 2007). 

 

Figura 1 -  Deslocamento da viga sob efeito de uma força axial de (−𝟏𝟎𝟖𝑵). 

Comparação de Deslocamentos em X 

Valor Analítico:  

Ux =
FxL

EA
=

−108 × 3

210.109 × 7.92665 × 10−3
= −0,18022385 m 

Posição do último nó da viga após deslocamento =  L– 𝑈𝑥 = 2,8197761𝑚 

Valor Numérico: 2,81978 𝑚 

Podemos observar na Figura 1 que, assim como na análise anterior, (Ux) não houve diferença entre os 

valores mostrando precisão exata o que era esperado, assim estaticamente ele está validado assim como 

os outros GDL. 

3.1.2. Validação Dinâmica - Frequência 

A análise no domínio da frequência foi realizada para mapear as respostas vibratórias da viga, 

permitindo a identificação das frequências naturais e a avaliação do amortecimento. Para as análises 

subsequentes, utilizou-se uma malha de 100 elementos e 101 nós, com elementos de 0,1 metros, 

aumentando o comprimento da viga. Essa abordagem reduziu a necessidade de frequências muito altas, já 
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que a frequência de vibração é inversamente proporcional ao comprimento da viga. Os elementos da viga 

possuem as mesmas propriedades da validação estática com a adição de: 

• Massa Específica aço estrutural ASTM A36 (ρ): (7.8 × 103𝑘𝑔/𝑚3) (BAUCCIO, 1993). 

Força Axial em 𝑿 (𝑭𝒙) - Deslocamento Normalizado - Força de compressão (−𝟏𝟎𝟖𝑵) aplicada no último nó da viga 

 

Figura 2 -  Deslocamento Axial Normalizado por Frequência Normalizada – Força no último nó. 

O gráfico de Deslocamento Normalizado por Frequência Normalizada (Figura 2) mostra como a 

estrutura responde a diferentes frequências em relação à frequência de referência (primeiro modo de 

vibração). Esse gráfico permite identificar picos de resposta, ressonâncias, antirressonâncias e 

amortecimento. O simulador demonstrou bom comportamento, com alternância entre picos de 

ressonância e antirressonância, indicando uma resposta adequada do sistema às frequências normais 

específicas. deslocamentos e forças internas. 

3.1.3. Validação Dinâmica - Tempo 

Nesta seção, os resultados das análises dinâmicas no domínio do tempo pelo método de Newmark  

conisdera uma viga de 10 metros, dividida em 100 elementos de 0,1 metros. A análise investigou como 

os segmentos da viga interagem e respondem às cargas, considerando a influência da frequência natural, 

modos de vibração e amortecimento. Foi aplicado uma Força Axial em X (𝟏𝟎𝟖𝑵). 

 
Figura 3 -  Deslocamento Axial em Função do Tempo com amortecimento -– Força no último nó. 



Tadeu Daltiere de Oliveira-Simulação numérica para análise de vibração da coluna de perfuração offshore na indústria de óleo e gás (2024)
  5 

Para validação desta implementação no tempo devemos considerar duas coisas, primeiro se a frequência natural 

calculada tem proximidade com a frequência calculada no gráfico. 

Podemos primeiro transformar a frequência natural calculada em período: 

𝑤𝑚
𝐴𝑥𝑖𝑎𝑙 = 815,0461 𝑟𝑎𝑑/𝑠 

Tm =
2𝜋

𝑤𝑚
𝐴𝑥𝑖𝑎𝑙

=
2𝜋

815,0461
= 0,0077𝑠 

Agora através do gráfico, Figura 28, do deslocamento em função do tempo podemos contar quantos picos de 

ondas há em um Δ𝑡 de 0,05 𝑠 e assim encontrar o período: 

Tgráfico =
Δ𝑡

𝑁° 𝑝𝑖𝑐𝑜𝑠
=

0,05

6,5
= 0,007692𝑠 

Logo podemos inferir que os períodos são os mesmos e que as frequências estão de acordo com as calculadas 

analiticamente e assim implementadas corretamente. 

3.2. Estudo de Caso - Linha Neutra 

No estudo de caso, analisaremos o deslocamento da linha neutra sob cargas axiais (peso e tração) em 

uma coluna de perfuração offshore com 1260 metros, composta de 90% de Drill Pipes e 10% de Drill 

Collars. Modelada como um cilindro oco, a coluna será discretizada em 420 elementos e 421 nós, 

representando condições comuns em poços pós-sal. O modelo desconsidera interações entre a broca e a 

coluna, parede do poço e fluido de perfuração, efeitos de correntes marítimas e flambagem da coluna. 

Detalhe que 0 m representa a base, e 1260 m representa o topo da coluna. 

3.2.1. Análise Estática 

Para a análise estática da coluna de perfuração, o peso total da coluna é calculado somando a massa e 

multiplicando pela gravidade, sendo distribuído uniformemente ao longo da coluna. A força compressiva 

resultante é aplicada em cada nó da malha, exceto no primeiro nó (base da coluna) pois representa o fundo 

do poço engastado. Para simular a tração, aplicamos uma força no último nó (topo da coluna), de 

magnitude proporcional ao peso total, controlando a posição da linha neutra e evitando compressões ou 

tensões excessivas, facilitando a análise do equilíbrio estático. Para haver a perfuração precisamos que 

exista a força de compressão e que a linha neutra fique na seção dos Drill Collars, cujos estão posicionados 

até 126 metros da base da coluna, para isso podemos ajustar quanto de tração aplicamos, na Figura 1 

podemos observar a que a linha neutra está numa posição ideal (< 126m) quando regulamos a força de 

tração para 70% do peso, e a compressão é menor que a WOBmax permitida (linha azul). 
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Figura 4 “Representação da linha neutra quando aplicado uma força de tração 70% da força peso”. 

3.2.2. Análise Dinâmica – Domínio do Tempo 

Para a análise dinâmica, analisaremos o comportamento da linha neutra sob influência da força peso e 

tração, considerando o domínio do tempo com amortecimento. Foi realizada a implementação de uma 

força harmônica aplicada ao último nó da coluna de perfuração, localizado no topo. Esta força é projetada 

para simular o movimento de heave típico em operações offshore, que resulta do deslocamento vertical 

da plataforma devido às ondas do mar. A análise busca investigar como esse carregamento dinâmico afeta 

a posição da linha neutra ao longo da coluna. 

Para a simulação, visualizada na Figura 3, utilizamos os parâmetros (𝛿 = 1/2 e 𝛾 = 1/4) para a simulação 

se tornar incondicionalmente estável, com tempo de simulação de 22 segundos. Em todos os instantes de 

tempo foram aplicadas a força peso, a força de tração (70% da força peso a fim de manter a linha neutra 

na seção de Drill Collars), e uma força de apenas 0,1% (da força de tração) simulando o movimento de 

Heave numa frequência de 3 rad/s (abaixo da frequência limite calculada anteriormente) 

 

Figura 5 - “Posição da linha Neutra em função do Tempo”. 

A  Figura 5 mostra o comportamento transitório da linha neutra, com oscilações iniciais devido à falta 

de equilíbrio no modelo. Esse comportamento é esperado, pois o sistema foi iniciado sem considerar a 

deformação estática prévia. Quando a linha neutra é negativa (z<0), indica que a coluna está tracionada, 

o que pode representar uma falha operacional, como a perda de contato da broca com o fundo do poço. 

Se a linha neutra ultrapassar o comprimento da coluna, isso representa uma coluna comprimida, o que 

pode comprometer a perfuração, reduzindo o WOB e o ROP. Se a linha neutra se posicionar abaixo da 

broca, pode afetar os drill collars, prejudicando a estabilidade e a perfuração. 

Caso a linha neutra se desloque acima do limite entre drill collars e drill pipes, pode ocorrer flambagem, 

resultando em desgaste, aumento do torque e falhas nos tubos. Um compensador de heave pode ajudar a 

manter WOB e ROP constantes, melhorando a eficiência da operação. 
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Iniciar a simulação com a deformação estática de equilíbrio evitaria oscilações não realistas. Após o 

período transitório, o sistema entra em regime estacionário, e a linha neutra se estabiliza em sua posição 

inicial de 79 metros, com oscilações suaves em resposta à força harmônica aplicada. 

4. Conclusão 

Este trabalho apresentou o desenvolvimento e implementação de um simulador numérico para a análise 

estática e dinâmica de colunas de perfuração em condições realistas. O simulador foi projetado para operar 

em seis graus de liberdade em 3D, permitindo análises tanto no domínio da frequência quanto no tempo, 

e apresentou resultados confiáveis ao longo das validações realizadas. Um dos principais objetivos 

alcançados foi a possibilidade de observar o comportamento da linha neutra (ponto de tensão zero) em 

diferentes cenários de carregamento, o que oferece uma representação mais realista do comportamento 

vibratório da coluna de perfuração. Esse enfoque permite prever de maneira mais precisa como a coluna 

reage a condições operacionais diversas, contribuindo para a segurança e eficiência das operações 

offshore. 
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