

F
ig

u
ra

 0
5.

 C
ar

ta
 c

ro
n

o
es

tr
at

ig
rá

fi
ca

 d
a

B
ac

ia
 d

o
 A

cr
e

(M
ila

n
i,

20
07

).

F
ig

u
ra

 1
2.

 C
ar

ta
 c

ro
n

o
es

tr
at

ig
rá

fi
ca

 d
a

B
ac

ia
 d

o
 S

o
lim

õ
es

 (
M

ila
n

i,
20

07
)

Figura 17. Cópia de trecho da tabela de controle de poços.

import pandas as pd
from pandas import DataFrame
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import seaborn as sns
import scipy
from scipy import stats
from scipy import stats
import sklearn
from numpy import unique
from numpy import where
from sklearn.datasets import make_classification
from sklearn.mixture import GaussianMixture
#import skbio.stats.composition as comp
import plotly.express as px
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split
from sklearn import svm # SVC para classificação (target discreto) e SVR para
regressão (traget contínuo)
from sklearn.ensemble import RandomForestClassifier #só classificação
from sklearn import metrics
import joblib #para exportar o modelo treinado

#import c as gs

#df_original=pd.read_csv('1-RZ-1-AC_pronto.csv')
#df_original=pd.read_csv('1-BRSA-985-AM_formatado.csv')
#df_original=pd.read_csv('4-BRSA-1252-AM_formatado.csv') # Modelo Amazonas
#df_original=pd.read_csv('2-CDST-1-AC_pronto.csv')
#df_original=pd.read_csv('1-JOB-1A-AM_formatado.csv')
df_original=pd.read_csv('1-BT-1-AM_formatado.csv') # modelo AC

#só o gama
df=pd.DataFrame({'GR':df_original.GR, 'Formacao':df_original.Formacao})#
df.Formacao.loc[df.Formacao!='solimoes']='pre_solimoes'
df=df.dropna()
#df.GR=df.GR/df.GR.mean()

plt.figure('Histogramas')
sns.histplot(df.GR.loc[df.Formacao=='solimoes'],label='Solimoes')
sns.histplot(df.GR.loc[df.Formacao=='not_solimoes'],label='Other')
plt.legend()
plt.savefig('Histograma_Modelo_Acre2.svg')

#df['first_derivative']=df.groupby('Formacao')['GR'].diff().fillna(0)
#df['second_derivative']=df.groupby('Formacao')['first_derivative'].diff().filln
a(0)
#df['third_derivative']=df.groupby('Formacao')['second_derivative'].diff().filln
a(0)
#df.GR=df.GR/df.GR.mean()
#df['mean11']=df.GR.rolling(11).mean()
df['Var_Coef_5']=df.GR.rolling(5,center=True).std()/df.GR.rolling(5,center=True)

.mean()
df['Skew_5']=df.GR.rolling(5,center=True).skew()
df['Kurtosis_5']=df.GR.rolling(5).kurt()

df['Var_Coef_21']=df.GR.rolling(21,center=True).std()/df.GR.rolling(21,center=Tr
ue).mean()
df['Skew_21']=df.GR.rolling(21).skew()
df['Kurtosis_21']=df.GR.rolling(21).kurt()

df['Var_Coef_41']=df.GR.rolling(41,center=True).std()/df.GR.rolling(41,center=Tr
ue).mean()
df['Skew_41']=df.GR.rolling(41,center=True).skew()
df['Kurtosis_41']=df.GR.rolling(41,center=True).kurt()

df['Var_Coef_61']=df.GR.rolling(61,center=True).std()/df.GR.rolling(61,center=Tr
ue).mean()
df['Skew_61']=df.GR.rolling(61,center=True).skew()
df['Kurtosis_61']=df.GR.rolling(61,center=True).kurt()

df['Var_Coef_81']=df.GR.rolling(81,center=True).std()/df.GR.rolling(81,center=Tr
ue).mean()
df['Skew_81']=df.GR.rolling(81,center=True).skew()
df['Kurtosis_81']=df.GR.rolling(81,center=True).kurt()

#df=df.drop(columns=['GR'])

df=df.dropna()

def corrdot(*args, **kwargs):
 corr_r = args[0].corr(args[1], 'pearson')
 corr_text = f"{corr_r:2.2f}".replace("0.", ".")
 ax = plt.gca()
 ax.set_axis_off()
 marker_size = abs(corr_r) * 5000
 ax.scatter([.5], [.5], marker_size, [corr_r], alpha=0.6, cmap="coolwarm",
 vmin=-1, vmax=1, transform=ax.transAxes)
 font_size = abs(corr_r) * 10 + 15
 ax.annotate(corr_text, [.5, .5,], xycoords="axes fraction",
 ha='center', va='center', fontsize=font_size)

def model_analysis(df,target):

 print("Data Types:")
 print(df.dtypes)
 print("Rows and Columns:")
 print(df.shape)
 print("Column Names:")
 print(df.columns)
 print("Null Values:")
 print(df.apply(lambda x: sum(x.isnull()) / len(df)))

 print(df.describe())

 sns.set(style='white', font_scale=0.9)
 g = sns.PairGrid(df, aspect=.3, diag_sharey=False)
 g.fig.set_size_inches(13,9)
 g.map_lower(sns.regplot, lowess=True, ci=False, line_kws={'color':
'black'},scatter_kws={'s':7,'alpha':0.7})
 g.map_diag(sns.histplot, kde_kws={'color': 'black'})
 g.map_upper(corrdot)
 plt.tight_layout()
 plt.savefig('Corrdot_Acre2.png')

 print('AQUI',df[target].dtype)
 if df[target].dtype=='object' or df[target].dtype=='category':

 p=sns.pairplot(df,
hue=target,corner=True,kind='reg',plot_kws={'line_kws':{'lw':2},'scatter_kws':
{'alpha': 0.5, 's': 7}})
 p.fig.set_size_inches(13,9)
 plt.tight_layout()
 plt.savefig('Scatter_pairs.png')

 else:

 correlations = df.corrwith(df[target]).iloc[:-1].to_frame()
 correlations['abs'] = correlations[0].abs()
 sorted_correlations = correlations.sort_values('abs',
ascending=False)[0]
 fig, ax = plt.subplots(figsize=(10,20))
 sns.heatmap(sorted_correlations.to_frame(), cmap='coolwarm',
annot=True, vmin=-1, vmax=1, ax=ax);
 plt.savefig('Corr_target_Acre2.png')

model_analysis(df,target='Formacao')

#Montando o modelo
#df.target=df.Sinuosity_categories
df.target=df.Formacao
#print(df.target)
print('Target',df.Formacao.unique()) #
#df.data=df.drop(columns=['Sinuosity_categories']) #NChannel_categories
dfData=df.drop(columns=['Formacao']) # tirando a coluna de variáveis categóricas
#print(df.data)
pd.set_option("display.max_rows", None, "display.max_columns", None)
print('ESTE',dfData.columns)

 # Normalizar
 # para escolher qual método
https://stackoverflow.com/questions/30918781/right-function-for-normalizing-inpu

t-of-sklearn-svm

#sklearn.preprocessing.scale(X) # standard scaler - assume distribuições normais
e normaliza com média 0 e std 1

#sklearn.preprocessing.normalize(X, axis=0) # normalizer - mantém os ângulos no
espaço multidimensional mas não as magnitudes dentro de cada variável

#sklearn.preprocessing.MinMaxScaler().fit_transform(X) - transforma cada
variável em valores entre 0 e 1, sensível a outliers.

min_max_scaler = sklearn.preprocessing.MinMaxScaler()

def scaleColumns(dfDat, cols_to_scale):

 n_test = dfDat[cols_to_scale]
 # print('Cols',n_test)

 cols_to_norm = cols_to_scale
 x = n_test.values
 min_max_scaler = sklearn.preprocessing.MinMaxScaler()
 x_scaled = min_max_scaler.fit_transform(x)
 n_test = pd.DataFrame(x_scaled, columns=cols_to_norm)

 # l_test = dfDat.drop(cols_to_norm, axis=1)
 # df_out = pd.concat([n_test, l_test], axis=1)

 df_out=n_test
 return(df_out)

dfData=scaleColumns(dfData,dfData.columns)
#print(df.data)

 #criar dataset train e target

X_train, X_test, y_train, y_test = train_test_split(dfData, df.target,
test_size=0.3,random_state=130) # 70% training and 30% test

#print(X_train)
#print(y_train)

#Create a Gaussian Classifier
clf=RandomForestClassifier(n_estimators=100)

#Train the model using the training sets y_pred=clf.predict(X_test)
clf.fit(X_train,y_train)

y_pred=clf.predict(X_test)
#print(y_pred)

print("\nRandom Forest")

df_confusion = pd.crosstab(y_test, y_pred)
print(df_confusion)
df_confusion.to_csv('confusion_janelas_moveis_AC2.csv')

print('\n')

Model Accuracy: how often is the classifier correct?
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

df_metrics =
pd.DataFrame({'Formacao':np.unique(y_pred),"Recall":metrics.recall_score(y_test,
y_pred,average=None),"Precision":metrics.precision_score(y_test,
y_pred,average=None),"F1":metrics.f1_score(y_test,
y_pred,average=None),"Accuracy":metrics.accuracy_score(y_test, y_pred)})
print(df_metrics)
df_metrics.to_csv('metrics_janelas_moveis_AC2.csv')

print('\nFeature importance')

feature_imp =
pd.Series(clf.feature_importances_,index=dfData.columns).sort_values(ascending=F
alse)
print('\n',feature_imp)

importances = clf.feature_importances_
indices = np.argsort(importances)
features = X_train.columns
plt.figure('Importances',figsize=(12,6))
plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], color='b', align='center')
plt.yticks(range(len(indices)), [features[i] for i in indices])
plt.xlabel('Relative Importance')
plt.savefig('importances_janelas_moveis_AC2.svg')

#exportando o modelo terinado
joblib.dump(clf, 'AC_model.pkl')

