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ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of mortality in Brazil, accounting
for nearly 400,000 deaths annually. Despite advancements in healthcare, disparities in prevention
and diagnosis persist, driven by socioeconomic inequalities and the prevalence of modifiable risk
factors. This thesis addresses these challenges by developing accessible and interpretable machine
learning models for predicting CVD risk, tailored for public use in Brazil. Utilizing the PNS 2019
dataset, a comprehensive health survey by the Brazilian Institute of Geography and Statistics, the
study explores logistic regression, K-nearest neighbors, Random Forests and XGBoost models.
These models were rigorously optimized through feature selection, oversampling techniques, and

hyperparameter tuning, prioritizing recall to enhance early detection of high-risk cases.

The research culminated in the deployment of a digital tool, designed to provide individuals
with actionable health insights while adhering to ethical guidelines and prioritizing accessibility.
By balancing accuracy with interpretability, the study ensures that the tool remains practical for
non-specialist users while addressing critical issues like data privacy and healthcare equity. This
work demonstrates the transformative potential of integrating machine learning into public health,
offering a scalable framework that empowers individuals, supports healthcare systems, and
contributes to reducing the burden of CVDs in Brazil. The findings underscore the importance of
combining technical innovation with societal relevance to drive meaningful improvements in

public health outcomes.

Keywords: Data analysis, Preprocessing techniques, Feature Selection, Machine learning model,

Python



RESUMO

As doencas cardiovasculares sdo a principal causa de mortalidade no Brasil, responséaveis
por cerca de 400 mil mortes anuais. Apesar dos avangos na area da saude, ainda existem
disparidades significativas na preveng¢do e¢ no diagndstico, impulsionadas por desigualdades
socioeconOmicas ¢ pela alta prevaléncia de fatores de risco modificaveis. Este trabalho aborda
esses desafios por meio do desenvolvimento de modelos de aprendizado de méaquina acessiveis e
interpretaveis para a predi¢ao de risco de doencgas cardiovasculares, adaptados para uso publico no
Brasil. Utilizando o conjunto de dados da Pesquisa Nacional de Saude (PNS) 2019, uma pesquisa
abrangente realizada pelo Instituto Brasileiro de Geografia e Estatistica (IBGE), foram explorados
os modelos de regressao logistica, K-vizinhos mais proximos (KNN), Random Forests e XGBoost.
Esses modelos foram otimizados rigorosamente por meio de técnicas de sele¢do de variaveis,
oversampling ¢ ajuste de hiperparametros, priorizando o recall para melhorar a detecgdo precoce

de casos de risco.

O estudo culminou no desenvolvimento de uma ferramenta digital projetada para fornecer
informagdes de saude aciondveis aos individuos, respeitando diretrizes éticas e priorizando a
acessibilidade. Ao equilibrar precisdo e interpretabilidade, o trabalho garante que a ferramenta seja
pratica para usudrios nao especializados, a0 mesmo tempo em que aborda questdes criticas, como
privacidade de dados e equidade no acesso a saude. Este trabalho demonstra o potencial
transformador da integragdo de aprendizado de méquina na satde publica, oferecendo um
framework escalavel que empodera individuos, apoia sistemas de saude e contribui para a reducao
do impacto das doengas cardiovasculares no Brasil. Os resultados ressaltam a importancia de
combinar inovagdo técnica com relevancia social para promover melhorias significativas nos

desfechos de satde publica.
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1. INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, with 20 million
deaths annually and 620 million individuals currently living with CVDs (MENSAH, 2023). In
Brazil, this burden is particularly pronounced, as CVDs account for approximately one-third of all
deaths, with nearly 400,000 fatalities annually (MANSUR & FAVARATO, 2021). Despite
advancements in healthcare, the persistence of modifiable risk factors such as hypertension,
diabetes, and obesity continue to challenge public health efforts, highlighting the critical need for
innovative approaches to prevention and diagnosis (PATRIOTA, 2023).

This study focuses on addressing Brazil’s CVD crisis by leveraging advanced machine
learning and statistical learning methods to predict cardiovascular disease risk. Using the
Behavioral Risk Factor Surveillance System 2015 survey dataset, which includes diverse health-
related features, this research aims to identify the most effective predictive model and make it
available to the Brazilian population. The study will systematically test various algorithms —
logistic regression, k-nearest neighbors, and random forests, with variations for each model type
with regards to oversampling and hyperparameter tuning techniques — adhering to established

best practices in data analysis to ensure robust and generalizable results.

Beyond model development, this research seeks to deploy the best-performing model as a
practical tool for public use in Brazil. The tool will prioritize accessibility, interpretability, and
ethical application, ensuring that it empowers individuals to understand their cardiovascular health
risks while adhering to medical guidelines. By following ethical principles and addressing
concerns such as data privacy, health equity, and clinical validity, the tool aims to maximize public
benefit and minimize risks of misuse. This initiative aspires to enhance public awareness, promote

early intervention, and ultimately contribute to reducing the burden of CVD in Brazil.

Through this endeavor, the study not only demonstrates the potential of predictive
modeling in addressing pressing public health challenges but also offers a framework for

developing responsible, impactful digital health solutions tailored to regional contexts.



2. LITERATURE REVIEW

2.1 Cardiovascular Diseases in Brazil

Cardiovascular diseases (CVDs) represent the primary cause of mortality in Brazil,
accounting for approximately one-third of all deaths (CASTRO et al, 2019). This prevalence
reflects a persistent public health challenge despite ongoing interventions. In 2021, the prevalence
of CVDs was estimated at 6.9% across both sexes, with men exhibiting a higher rate of 7.6%
compared to women. In 2022, CVDs were responsible for nearly 400,000 deaths among Brazilians
(MENSAH, 2023), with ischemic heart disease and stroke remaining the leading causes of CVD-
related mortality since the 1960s (KRAUSKOPF, 2019).

The relevance of CVD as a cause of death, when compared to other conditions such as
cancer and external causes, underscores its significant impact on public health in Brazil (Figure
1). Although the age-standardized mortality rate for CVD has decreased by 39.1% — from 345
deaths per 100,000 people in 1997 to 210 per 100,000 in 2017 (MANSUR & FAVARATO, 2021)
— CVDs continue to place a substantial burden on Brazil's health system. Heart failure, in
particular, has become the predominant cause of CVD-related hospitalizations, with over 222,000

admissions reported in 2019 alone (BERWANGER & SANTO, 2022).



Figure 1 underscores CVDs as the leading cause of death in the Brazilian population, with
higher prevalence than Cancer, Diseases of the Respiratory System (RSD), Diseases of the
Digestive System (DSD), Infectious and Parasitic Diseases (IPD), Endocrine, Nutritional and
Metabolic Diseases (ENMD), and Diseases of the Genitourinary System (GUSD).

Figure 1: Relevance of main Death Causes in Brazil
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This decreasing trend in mortality is illustrated in Figure 2, which highlights the shifts in
age-adjusted mortality rates from 1997 to 2017. Two of the most common types of CVDs, Strokes
and Ischemic Heart Diseases (IHD) have shown reduction over time. While improvements are
evident, the high mortality rate linked to CVDs continues to reflect the persistence of risk factors
within the population (MANSUR & FAVARATO, 2021). In fact, in 2019, about 83% of CVD
mortality was attributed to modifiable risk factors (BRANDT, 2022). Key risk factors include
hypertension, diabetes, dyslipidemia, obesity, smoking, physical inactivity, and an unhealthy diet.
Notably, while Brazil has seen reductions in smoking and environmental risks, metabolic risk

factors—such as diabetes and high cholesterol—have increased over time (PATRIOTA, 2023).



Figure 2: Trend in Mortality Rates in Brazil by Cause
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Socioeconomic disparities also significantly influence CVD risk in Brazil. Wealthier,
better-educated Brazilians report higher access to lifestyle recommendations for managing
conditions like high cholesterol and hypertension than those from lower socioeconomic
backgrounds. This disparity manifests in differing rates of hypertension, diabetes, obesity, and
smoking across socioeconomic strata, further compounding the public health challenge

(PATRIOTA, 2023).

The economic impact of CVDs in Brazil is profound. In 2015, the cost burden was
estimated at R$37.1 billion, with 61% attributed to premature mortality and 39% linked to direct
and indirect healthcare costs (ARAUJO & RODRIGUES, 2022). Direct costs encompass expenses
related to hospitalizations, monitoring, and treatment, while indirect costs are largely driven by

productivity losses due to illness-related absenteeism and mortality.



Geographic disparities further exacerbate the CVD burden in Brazil, with states displaying
varied rates of CVD mortality that correlate with socioeconomic development levels (RIBEIRO,
2016). As shown in Figure 3A, CVD mortality rates are particularly high in regions with lower
socioeconomic indicators. Furthermore, the financial strain of CVD-related hospitalizations also
varies across states, as illustrated in Figure 3B. This disparity in burden is partially attributed to
the prevalence of risk factors like tobacco use, poor dietary habits, and elevated LDL cholesterol

in states with lower Sociodemographic Indices (SDI) (BRANDT, 2022).

Figure 3: (A) CVD mortality across Brazilian States and (B) CVD-related cost of
hospitalizations per capita
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CVD Risk factors have been widely studied already on a global level. In particular, it is
worth mentioning the INTERHEART study led by (YUSUF, 2004). This case-control analysis
included more than 15 thousand cases over 52 countries, identifying nine modifiable risk factors
that collectively account for over 90% of the global risk for myocardial infarction. These factors
include abnormal lipids, smoking, hypertension, diabetes, abdominal obesity, psychosocial stress,
inadequate consumption of fruits and vegetables, lack of regular physical activity, and excessive
alcohol intake. The study underscores the significance of these risk factors across diverse
populations, highlighting the potential for substantial reductions in cardiovascular disease

incidence through targeted lifestyle and behavioral interventions. Another important observation



of (YUSUF, 2004) is that, despite the burden of CVD being more than 80% concentrated in low-
income and middle-income countries, the studies about CVD risk factors have been mostly
conducted in developed countries. This key observation supports the need of the work being done

under this Thesis.

Finally, Figure 4 shows the relative change in mortality rates due to CVD attributed to
selected Risk Factors for all Brazilian Federated Units, from 1990 to 2019. One can notice that
while the mortality rates have generally improved for most Brazilian Federated Units and most
Risk Factors, the improvements are far from being evenly distributed. Noticeably, the CVD-linked
mortality rates improvements have been significantly greater for the Federated Units with the
highest sociodemographic index (SDI) scores. This distribution emphasizes the need for targeted
interventions to address both risk factors and structural inequalities contributing to CVD
prevalence. In particular, CVD mortality attributed to high Body Mass Index (BMI) has grown for

Brazilian Federated Units with the lowest SDI, including Maranhao, Alagoas, Paraiba and Ceara.



Figure 4: Relationship between sociodemographic index and CVD-related mortality rates
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2.2 Predicting CVD Risk

The integration of predictive modeling in healthcare represents a transformative
advancement in medical practice, leveraging data analytics and machine learning to enhance
patient care and clinical decision-making. At its core, predictive modeling in healthcare involves
the systematic analysis of diverse datasets to identify patterns and forecast future health outcomes
(NWAIMO, 2024). This approach has become increasingly sophisticated with the advent of big

data analytics, electronic health records (EHRs), and advanced computational capabilities.

The current healthcare landscape employs various predictive modeling techniques, ranging
from traditional statistical methods to advanced machine learning algorithms. These include
logistic regression, decision trees, random forests, support vector machines, and neural networks,
each offering distinct advantages in different clinical contexts (ZHANG, 2020). The selection of
appropriate modeling techniques depends on factors such as data characteristics, prediction

objectives, and the specific healthcare domain under consideration.

One of the most promising applications of predictive modeling has emerged in
cardiovascular disease (CVD) prevention and management. Given that CVD remains a leading
cause of mortality worldwide, the development of accurate predictive models has become crucial
for early intervention and risk stratification (DEEPA, 2024). Recent studies have demonstrated
remarkable success in utilizing machine learning algorithms for CVD prediction, with some

models achieving accuracy rates exceeding 80% (SANG, LEE, & LEE, 2019).

The implementation of predictive models in healthcare relies heavily on the quality and
comprehensiveness of available data. Electronic Health Records (EHRs) serve as a primary data
source, providing detailed patient histories, clinical measurements, and treatment outcomes
(NWAIMO, 2024). However, the effective utilization of these data sources presents significant
challenges, including data standardization, integration of disparate systems, and the need to

address missing or incomplete information (ZHANG, 2020).



In the specific context of cardiovascular disease prediction, modern approaches have
evolved to incorporate multiple data types, including clinical measurements, genetic information,
lifestyle factors, and even social determinants of health (DEEPA, 2024). The XGBoost algorithm,
in particular, has shown promising results in CVD prediction, demonstrating superior performance
in handling complex medical data and providing accurate risk assessments (PENG, HOU, &

CHENG, 2023).

Despite these advances, several limitations and challenges persist in healthcare predictive
modeling. Data quality and standardization remain significant concerns, as does the need for model
interpretability in clinical settings1. Healthcare professionals require not only accurate predictions
but also clear explanations of the reasoning behind these predictions to make informed clinical

decisions (BADAWY & RAMADAN, 2023).

In the realm of cardiovascular disease prediction, current research focuses on developing
more sophisticated models that can account for the complex interplay of risk factors while
maintaining clinical interpretability (OGUNPOLA, SAEED, & BASURRA, 2024). These efforts
aim to bridge the gap between statistical accuracy and practical clinical utility, ensuring that

predictive models serve as effective tools in cardiovascular disease prevention and management.

The successful implementation of predictive models in healthcare requires careful
consideration of both technical and practical aspects. While the potential benefits are substantial,
including improved patient outcomes and more efficient resource allocation, the challenges of data
quality, model interpretability, and clinical integration must be systematically addressed (YANG,
2022). This understanding forms the foundation for developing more effective predictive models
for cardiovascular disease, contributing to the broader goal of enhancing preventive care and

reducing the burden of CVD in Brazil.



2.3 Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) is a critical initial phase in predictive modeling,
including applications in cardiovascular disease (CVD) prediction. EDA involves summarizing
and visualizing data to uncover patterns, relationships, and potential anomalies before applying
formal statistical or machine learning methods (JAMES, 2013). EDA helps in understanding the
underlying data distribution, identifying significant variables, and exploring preliminary

associations that may guide feature engineering and model selection in subsequent stages.

A fundamental component of EDA includes visualization techniques, such as histograms,
scatter plots, and box plots, as illustrated by Figure 5. These techniques are instrumental in
examining the distribution and potential outliers in predictor variables. These visual tools allow
for detecting non-linear relationships and assessing the necessity for transformation or
normalization, particularly essential in datasets with diverse variable types as seen in health-related

studies (JAMES, 2013).

Figure 5: Sample scatterplots used during the EDA phase
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2.4 Data Preprocessing

Data preprocessing is a foundational step in the machine learning workflow, directly

impacting the quality and reliability of predictive models. It involves the transformation of raw,

unstructured data into a clean and structured format that ensures consistency, accuracy, and

suitability for analysis. This process addresses the challenges posed by real-world datasets, which

often contain missing values, noise, and inconsistencies that can hinder the performance of

algorithms. By systematically applying data preprocessing techniques, practitioners can ensure

that models are trained on high-quality data, leading to more accurate and reliable predictions

(TENSORFLOW, n.d.).

To illustrate the overall process, Figure 8 shows a typical workflow from raw data to

machine learning. It emphasizes the sequential transformation stages, including data engineering

and feature engineering, which culminate in prepared datasets ready for model training.

Figure 6: Data Preprocessing Workflow
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One key concept to explore on the Data Preprocessing side is Data Cleaning. Data cleaning

is an essential first step in the machine learning pipeline, ensuring that data quality issues such as

missing values, outliers, and inconsistencies are addressed. Missing values can be imputed using



techniques like mean or median replacement for numerical data or the most frequent category for

categorical variables. (GERON, 2017)

Outliers, which can distort predictions, are typically identified using statistical techniques
such as the interquartile range (IQR) or z-scores. For instance, an observation x; can typically be

considered an outlier if |z;| > 3, where z; = % , with u being the mean and ¢ the standard

deviation for the dataset under consideration. Handling outliers involves either removing them or

transforming the data to reduce their impact (GERON, 2017).

Another important step on the Data Preprocessing phase is the Data Transformation. Data
Transformation ensures compatibility between raw data and machine learning algorithms. Scaling
and Normalization are two key techniques used for continuous variables (GERON, 2017). Scaling,
often achieved using min-max normalization, transforms each feature x to a standard range of

[0,1].

X' = (x B xmin)

Xmax — Xmin

Where x,i, and x,,x are the minimum and maximum values of the feature, respectively.

This approach is particularly useful when features have differing units or scales.

Normalization, on the other hand, adjusts features to have a mean of 0 and a standard

deviation of 1, expressed mathematically as:

Where u is the mean and o is the standard deviation of feature x. Since most supervised
learning methods are sensitive to feature magnitudes, both Scaling and Normalization techniques
are often employed on the Data Preprocessing step, facilitating faster convergence during model

training and ensuring that features contribute evenly to the algorithm (GERON, 2017).



2.5 The Curse of Dimensionality

The "curse of dimensionality" refers to the various challenges that arise when working with
high-dimensional data, as is the case in the present work. As the number of features or dimensions
p increases, the volume of the feature space grows exponentially, leading to sparse data coverage
even with a large dataset. This sparsity undermines the reliability of distance-based methods like
k-nearest neighbors, as the distance between any two points becomes nearly uniform, thereby

diminishing the distinctions between data points that are crucial for prediction (JAMES, 2013).

One primary issue in high-dimensional spaces is that the amount of data required to
populate the feature space grows exponentially with the number of dimensions, making it difficult
to estimate parameters accurately. Capturing a fixed proportion of the data requires neighborhoods
that cover increasingly larger regions as dimensionality increases, which makes meaningful
“local” analysis in high dimensions nearly impossible (FRIDMAN, HASTIE, & TIBSHIRANI,
2008). This often leads to overfitting, as models become too sensitive to the noise in the training

data, capturing chance correlations that do not generalize well to new data.

Figure 7 shows how model performance quickly deteriorates in a distance-based model
setting, for a fixed dataset size and increasing dimension. As predicted by the “Curse of
Dimensionality”, the average distance to nearest neighbors grows as the feature complexity
increases, with test error (as measured by the MSE) growing fast when dimension is greater than

3, likely due to overfitting.



Figure 7: Charts of Distance and MSE on the Curse of Dimensionality
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In practical terms, the curse of dimensionality often manifests as a tradeoff: while adding
more features could, in theory, improve a model's predictive power, irrelevant or redundant
features tend to degrade model performance. The inclusion of non-informative features increases
the likelihood of overfitting without adding predictive value, exacerbating the model's variance
without significantly reducing bias. Thus, techniques like regularization or feature selection are

often necessary to manage high-dimensional data effectively.



2.6 Bias-Variance Tradeoff

In predictive modeling, bias refers to the error that results from overly simplistic
assumptions in the model’s structure. This occurs when a model fails to capture the true complexity
of the data-generating process, often due to a restrictive framework that doesn’t allow for sufficient
flexibility in the relationship between input features and the target variable. For example, assuming
a linear relationship where a non-linear one exists introduces systematic error, leading to
consistently biased predictions. This simplification, while making the model easier to interpret and

less prone to overfitting, often limits its accuracy on real-world data (JAMES, 2013).

Variance, on the other hand, reflects a model’s sensitivity to fluctuations in the training
data. High-variance models adapt closely to the specifics of the training data, capturing noise as if
it were signal. This sensitivity typically occurs in more flexible models, which may perform well
on training data but poorly on unseen data due to their tendency to “overfit” to the idiosyncrasies
of the training set. High variance results in significant differences in model performance across
different training datasets, undermining generalizability (FRIDMAN, HASTIE, & TIBSHIRANI,
2008).

The expected error of a model is measured by the Test Median Square Error (Test MSE).
Test MSE can be decomposed in three fundamental quantities (JAMES, 2013):

Eyo - f(xo))? = Var (f(x0)) + [Bias (f(x0))| + Var(e)

As a result, one can observe there’s an optimal level of model complexity (measured in
terms of Flexibility) in order to minimize for test MSE or optimize model performance. In other
words, a model that’s too complex will start incorporating noise from the training data, ultimately

predicting patterns that do not match reality.

Figure 6 illustrates the expected behavior for Test MSE, Bias and Variance. One can see

there’s an optimal level of flexibility (model complexity) that minimizes Test MSE. Since Test



MSE is our proxy of how the model will perform in real-world scenarios, we thus conclude that
models of higher complexity are not always preferred. Finding out the optimal level of complexity

across different model set ups will be critical to the current work.

Figure 8: Squared bias, Variance and Test MSE for three different datasets
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The bias-variance tradeoff is a central paradigm in supervised learning, underscoring the
balance between underfitting and overfitting. Generally, as model flexibility increases, bias
decreases but variance rises, and vice versa. The goal is to find a model that reduces both bias and
variance to the extent possible, minimizing test error by aligning the model’s complexity with the
inherent patterns in the data while avoiding excessive sensitivity to training-specific noise

(FRIDMAN, HASTIE, & TIBSHIRANI, 2008).



2.7 Logistic Regression

Logistic Regression is a foundational algorithm in supervised machine learning, being
widely employed for classification tasks (problems with discrete output, like binary outputs), not

being suitable for regression tasks (problems with continuous output).

Logistic Regression models the probability than an input belongs to a specific class,
making it particularly effective for problems that require probabilistic predictions. Unlike linear
regression, which predicts continuous values, logistic regression outputs probabilities between 0
and 1. These probabilities can then be converted into class predictions using a threshold (GERON,
2017).

The algorithm is based on modeling the log-odds (also known as the logit) of the dependent
variable y as a linear combination of the independent variables X. This relationship is expressed
mathematically as:

oo (PO =1
S\PG=0)

> = Bo + B1X1 + B Xy + -+ BnXy

Where P(y = 1) represents the probability of the positive class, and Sy, f1, ..., B are the
model coefficients. To ensure the predicted probabilities are confined to the range [0, 1], the log-

odds are passed through the sigmoid function, given by (GERON, 2017):

1
1 + e~ (BotB1X1+B2Xo++BnXn)

P(y =1|X) =

This transformation enables logistic regression to output probabilities and subsequently
classify observations based on a chosen threshold. The visual of this important capability of the
logistic function is shown in Figure 9, where one can see that the logistic function is able to

compress any outcome t into a distribution [0,1], making it suitable to represent probabilities.



Figure 9: The Logistic Function
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One of the key advantages of logistic regression is the interpretability of its coefficients.
Each coefficient f; quantifies the effect of a one-unit increase in the corresponding predictor X;
on the log-odds of the outcome, assuming all other predictors remain constant. Logistic regression
is also computationally efficient, making it suitable for handling large datasets and high-
dimensional feature spaces. Additionally, it provides more than just classification; the probability
estimates allow for nuanced decision-making and insights into prediction confidence. To address
overfitting, particularly in datasets with many features, regularization techniques such as L1

(Lasso) and L2 (Ridge) are often incorporated into logistic regression (GERON, 2017).

The algorithm is widely used in applications across diverse fields. In healthcare, it is
employed to predict the likelihood of diseases based on patient features, while in finance, it is used
to identify fraudulent transactions. In marketing, logistic regression aids in customer churn
prediction and segmentation. Its flexibility and effectiveness in binary classification problems

make it a cornerstone of predictive analytics.

Training a logistic regression model involves maximizing the likelihood of the observed
data, which is achieved through Maximum Likelihood Estimation (MLE). The log-likelihood

function, which forms the basis of the optimization process, is expressed as (JAMES, 2013):



N
L(B) = D i +10g(PG) + (1 = ydlog (1 = P())]
i=1

Where N is the number of training examples. Optimization techniques such as Gradient
Descent are used to iteratively adjust the coefficients f to maximize the log-likelihood function

and fit the model to the training data.

While logistic regression is a powerful tool, it has some limitations. The model assumes a
linear relationship between the predictors and the log-odds of the outcome, which may not hold in
datasets with complex interactions. Additionally, logistic regression is inherently designed for
binary classification tasks, and extensions such as multinomial logistic regression or one-vs-all

strategies are required to handle multiclass problems.



2.8 K-Nearest Neighbors

The second algorithm to be explored in this thesis is the K-Nearest Neighbors (KNN)
algorithm. The KNN algorithm is another widely used and foundational approach in supervised
learning, being used for both classification and regression problems. As the problem under
consideration for this Thesis is a classification problem, the following section will explore how

KNNs are constructed and used on classification settings.

KNN is a non-parametric algorithm, meaning that it doesn’t make assumptions about the
underlying data distribution or involve fixed parameters in order to build a model. Instead, its
foundation lies on the principle that similar observations tend to have similar outcomes, making

predictions based on the proximity of data points in the feature space (JAMES, 2013).

That said, for a given test observation x, which we aim to classify, the KNN classifier first
identifies the K points in the training data that are closest to x,. On a multidimensional space,
Distance can be defined in different ways, including the Euclidean Distance definition which is
intuitively embedded into the real world, or other definitions such as the Manhattan or Minkowski
distances, which can be preferred depending on the context. In the present work, distances will be
calculated using the Euclidian definition, which for two points x and x' in an n-dimensional space

can be defined as follows:

d(x,x") =

Once the distances between a test observation x, and all training observations are
calculated, the K observations in the training dataset with the closest distance to x, will be
considered the K nearest neighbors, represented by IV,. The KNN classifier then estimates the
conditional probability for a class j as the fraction of points in V; whose response values are equal

to j (JAMES, 2013). Mathematically, probabilities are assigned as follows:



1
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After calculating the probabilities for every class j in the setting above, the KNN classifier
will simply classify x, as the class with the largest probability. By choosing the class with the
highest probability, the KNN classifier minimizes the classification error, consistent with the

Bayesian Decision Rule (SAMMUT, 2010).

It’s important to highlight that the choice of K has a great effect on the result obtained by
the KNN classifier. Figure 10 depicts two distinct scenarios, one for a KNN classifier constructed
with K = 1, and other with K = 100. Both were trained and set to make predictions over the same
training dataset. The decision boundaries for both models are shown by the solid black curves,
with the true nature of the observations being differentiated by color (orange or purple), and the
purple dashed line showing the Bayes decision boundary (an ideal classifier that minimizes test

error but can’t be achievable without the explicit conditional distribution of Y given X).

Figure 10: KNN decision boundaries for low and high K values

KNN: K=1 KNN: K=100

Source: Extracted from (JAMES, 2013)



One can notice that the decision boundary for when K = 1 tends to be overly flexible for
this given problem, with the model adapting to patterns that don’t represent the true behavior of
the data, incorporating noise into the predictions. This results in a model with low bias but very
high variance, that has an extremely low error rate in the training data set (in this case, and error
rate of precisely 0), but not satisfactory error rates in the test data set. Given the Test Error Rate is
the proxy for how well the model will perform in real-world scenarios, K = 1 leads to overfitting

(JAMES, 2013).

On the opposite side, it’s also important to clarify why attributing working with a K that is
too high is also not desirable. By comparing the setting of K = 100 with Bayes decision boundary
(the ideal classifier), it’s noticeable how the model fails to capture some of the nuances present in

the true training data distribution (JAMES, 2013).

Figure 11 shows how Training Errors generally keep going down as K decreases (1/K
increases), but that Test Errors are minimized for an optimal value of K (in this case, around K=10
or 1/K = 0.10). The process of finding the best K for a model is very important and requires a
structured approach to it, being part of the broader theme of Hyperparameter Tuning.

Figure 11: KNN error rates as a function of K
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Source: Extracted from (JAMES, 2013)

2.9 Random Forests

The third and last type of model explored in this Thesis is Random Forests. Random Forests
widely differ from the approaches used by Logistic Regression and KNN models and is arguably

the most complex and robust technique of all three.

The Random Forests technique was first introduced by (BREIMAN, 2001) and is built
upon the concept of Decision Trees. A Decision Tree works by recursively partitioning the feature

space into distinct regions, creating a hierarchical structure of decision rules (JAMES, 2013).

An anecdotic visualization of a Decision Tree is shown in Figure 12, for a problem in which
the goal is understanding whether conditions are suitable for playing golf (target variable) based

on weather conditions (features are Outlook, Humidity, Windy or Temperature).

Figure 12: Decision Tree Example
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Source: Extracted from (SAMMUT, 2010)



The construction of a Decision Tree begins with a top node known as the Root. From the
Root, decision rules are generated based on the features, creating additional internal nodes. This
process continues until terminal nodes, called Leafs, are reached. The Leafs display the predicted
values (in this case, “Yes” or “No” for favorable golfing conditions), with the predicted class

determined the most frequent target value in the corresponding group of the training dataset

(SAMMUT, 2010).

In more complex settings, however, the construction of Decision Trees requires careful
consideration what are the best splits (decision rules) and how deep such tree should be. It is
desirable that the Decision Tree separates the data into homogeneous and relevant groups, optimize

model performance and avoid overfitting.

Formally, the homogeneity of the groups, and thus the quality of a given split, is commonly
calculated by the Gini Impurity or the Cross-Entropy (also known as Information Gain). These
measures assess the “purity” of the resulting groups after a split, guiding the algorithm to select
the most informative feature and threshold at each step (GERON, 2017). The Gini Index (G) and
Cross-Entropy (D) are calculated as follows (JAMES, 2013):

K K
6= (L= Bpi)s D == Fuelog(Bm)
k=1 k=1

Where P, represents the proportion of training observations in the mth region that belong

to the kth class.

After formally defining how splits are optimally made, it’s also important to explore how
the depth of trees should be carefully chosen. To start exploring the optimal depth of trees, it is
helpful to visualize how error rates behave in a real-world scenario, and that is shown in Figure
13. While too small tree sizes (like 1 in this case) might be not enough to create relevant
segmentations to build meaningful predictions, too large tree sizes (like 10 in this given example)

are also not optimal. Increasing depth eventually reduces the number of observations within each



group and creates arbitrary rules that do not capture meaningful behaviors on the ground truth data,

resulting in overfitting.

Figure 13: Distribution of Error Rates by Tree Size
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While Decision Trees are great for their interpretability and simple structure, they often
lack the robustness required to generate reasonable performance in modern problems. Despite
leveraging Decision Trees as their fundamental building blocks, however, Random Forests are
widely recognized as one of the most powerful Machine Learning algorithms available (GERON,

2017).

Random Forests are able to achieve such performance improvement by aggregating the
outcomes of a large number of decision trees, using two key mechanisms: Bagging and Random

Feature Selection (JAMES, 2013).

Bagging (also known as Bootstrap Aggregation) is a procedure for reducing the variance
of a statistical learning model. Bagging begins by taking repeated samples from the original

training data set, which will be used to create many different training data sets from the population



(a technique called Bootstrap). A new model is specifically trained for every set of Bootstrapped
training sets, and the final prediction is done by averaging the resulting predictions (JAMES,
2013).

On top of Bagging, Random Forests make use of Random Feature Selection. Random
Feature Selection consists of forcing each new split to consider only a small subset of m random
predictors out of all p available. Given that the threes are now constructed over different subsets
of features, they are much more decorrelated. Decorrelating the threes is an important step to
ensure Bragging is able to efficiently reduce the resulting variance, and thus critical for model

performance (JAMES, 2013). Figure 14 shows a visualization of the Random Trees classifier.

Figure 14: Visualization of the Random Trees classifier
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2.10 XGBoost

After discussing the fundamentals behind Logistic Regression, K-Nearest Neighbors and
Random Forests, one final model worth exploring is the XGBoost model. The XGBoost (or
eXtreme Gradient Boosting) is a machine learning algorithm that builds on the concept of
ensemble methods, similar to random forests, but with a distinct focus on sequential improvement
(CHEN & GUESTRIN, 2016). While random forests create many independent decision trees in
parallel and aggregate their predictions, XGBoost trains decision trees sequentially, where each
new tree corrects the errors of the previous ones. This iterative process allows the model to focus

on the hardest-to-predict data points, progressively improving its overall performance.

The algorithm is grounded in gradient boosting, where trees are added in a manner that
minimizes a specified loss function, akin to the optimization process in logistic regression. This
ensures that each subsequent tree refines the residuals—essentially, the mistakes—of the
preceding trees (CHEN & GUESTRIN, 2016). What sets XGBoost apart is its efficiency and
scalability, achieved through techniques like handling missing data, built-in regularization to
prevent overfitting, and optimized parallelization. These enhancements make it particularly suited
for structured data and have cemented its reputation as a top choice in machine learning

competitions.



2.11 Model Evaluation Metrics

Evaluating the performance of predictive models is a critical aspect of statistical learning,
as it ensures that models meet the requirements for accuracy, reliability, and relevance to the
problem at hand. Different metrics are used to evaluate models depending on the context,
especially for classification tasks. This chapter discusses some of the most commonly used model
evaluation metrics: Accuracy, Precision, Recall, F1 Score, and the Area Under the Receiver
Operating Characteristic Curve (AUC). All metrics will be defined and their significance

discussed.

Accuracy is one of the simplest and most widely used evaluation metrics. It is defined as
the proportion of correctly predicted instances out of the total number of instances (SAMMUT,

2010). Mathematically, accuracy is expressed as:

TP+TN
TP+TN+ FP+FN

Accuracy =

Where True Positives (TP) represent outcomes in which the data is true and the model
correctly identifies it as true, True Negatives (TN) represent outcomes in which the data is false
and the model correctly identifies it as false, False Positives (FP) represent outcomes in which the
data is false but the model incorrectly identifies it as true, and False Negatives (FN) represent
outcomes in which the data is true but the model incorrectly identifies it as false. Accuracy
provides an overall measure of correctness but may not be suitable for imbalanced datasets, where

a model can achieve high accuracy by simply predicting the majority class.

Precision, also known as positive predictive value, measures the proportion of true positive

predictions among all positive predictions (SAMMUT, 2010). It is calculated as:

TP

p . . —
recision —TP T FP



This metric is especially useful when false positives are costly, as in spam detection or

medical diagnostics. Precision emphasizes the reliability of positive predictions.

Recall, or sensitivity, is the proportion of actual positive instances correctly identified by

the model (SAMMUT, 2010). Its formula is:

TP

Recall = TP-F—FN

Recall is vital in scenarios where false negatives carry severe consequences, such as in
disease screening. It ensures that the model captures as many positives as possible, even if it results

in some false positives.

Optimizing for one metric—such as accuracy, precision, or recall—often comes at the
expense of another, depending on the nature of the problem and the chosen model. For instance,
increasing recall (the ability to identify as many true positives as possible) may lead to a higher
number of false positives, which in turn reduces precision (SAMMUT, 2010). Similarly, focusing
on precision to minimize false positives can result in lower recall, as some true positives may be
missed. This trade-off highlights why no single metric can universally define model performance.
Different applications require optimizing different objectives; for example, a medical diagnostic
model might prioritize recall to avoid missing critical cases, whereas a spam detection system

might focus on precision to reduce false alarms.

One effective way to study these balances and trade-offs is through the confusion matrix,

a table that summarizes the performance of a classification model (SAMMUT, 2010).



Table 1: Confusion Matrix

TP FN

FP TN

Source: Extracted from (SAMMUT, 2010)

By providing a detailed breakdown of prediction outcomes, the confusion matrix allows
practitioners to visualize how the model's decisions impact metrics like accuracy, precision, and
recall. It explicitly shows the trade-offs: reducing false positives (increasing precision) may
increase false negatives (decreasing recall), and vice versa. This clarity makes the confusion matrix
an indispensable tool for understanding and interpreting a model's strengths and weaknesses in the

context of its intended application.

There is one measure that aims to combine the balance between precision and recall, called
F1 score. The F1 score combines precision and recall into a single metric by calculating their
harmonic mean (SAMMUT, 2010):

P xR
P+ R

This score is particularly useful when there is a need to balance precision and recall, such

as in binary classification problems with imbalanced datasets.

Finally, the last model evaluation metric important to define is the Area Under the Receiver
Operating Characteristic Curve (AUC-ROC or AUC). The ROC (Receiver Operating
Characteristic) curve is a graphical representation of a classifier's performance across various
threshold settings, plotting the True Positive Rate (sensitivity) against the False Positive Rate (1-
specificity). It is particularly useful for evaluating the balance between false positives and false
negatives, helping to select the optimal threshold for classification tasks. The Area Under the

Curve (AUC-ROC) quantifies the overall ability of the classifier to distinguish between classes; a



larger AUC indicates a better classifier, as it demonstrates higher sensitivity with lower false
positive rates. An AUC-ROC of 1 represents a perfect classifier, while an AUC-ROC of 0.5
indicates random guessing. If the AUC-ROC is below 0.5, it often suggests a problem with the
model, such as inverted predictions or data issues. A Sample of an ROC curve is shown in Figure

9.

Figure 15: Sample of ROC Curve
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Since the AUC-ROC is simply defined as the area under the ROC curve, it is calculated as
the integral of the True Positive Rate (TPR) with respect to the False Positive Rate (FPR).
Mathematically, it is expressed as (POLO & MIOT, 2020):

1
AUC = ] TPR(x)d(FPR(x))
0



2.12 Cross-Validation

Beyond selecting the appropriate Model Evaluation Metrics and keeping in mind their
meaning and limitations, modern problem settings often require more robust approaches than
measuring performance over a single training and testing split of the data. With that in mind, Cross-
Validation techniques are widely employed in Machine Learning problems to ensure models are

not overfitting, but rather learning the important behaviors of the underlying data (JAMES, 2013).

Cross-Validation involves partitioning the dataset into multiple subsets (or “folds”), with
the model being trained on a combination of these folds and validated on the remaining fold. The
validation fold is then cycled through all subsets, with the model being re-trained and re-evaluated
for each configuration (JAMES, 2013). The most common approach to Cross-Validation is the K-
Fold Cross Validation, in which the data is divided into K equally sized folds. For better
understanding of the K-Fold Cross Validation technique, a particular setting for when K=10 is
shown in Figure 16. This figure shows how individual error values E; are calculated for each of
thei = 1,2, ..., 10 iterations, with the resulting error metric E being later calculated as the simple

average across all individual error values.

Figure 16: Diagram of K-Fold Cross-Validation for K=10
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One important decision during the K-Fold Cross Validation technique is the decision for
K. In practical applications, computational efficiency considerations should be considered, with
high values of K potentially making the Cross-Validation step unfeasible if the model being
explored is computationally intensive to train (JAMES, 2013). Additionally, Bias-Variance Trade-
Off considerations also come into play, with higher K values resulting in lower bias by using more
training data per fold but increasing variance due to smaller test sets. All factors considered, and

empirical results suggest that K=5 or K=10 generally yield optimal results (JAMES, 2013).

2.13 Medical and Ethical considerations for self-service tools

The integration of digital health technologies in cardiovascular risk assessment requires
careful consideration of both medical validity and ethical implications. Research has demonstrated
that self-service cardiovascular risk assessment tools can provide results comparable to standard
clinical methods when properly implemented (BARROSO, 2018). Studies have shown high
clinical performance in ruling out intermediate or high cardiovascular risk, with particularly strong
negative predictive values, indicating these tools can effectively identify individuals who don't

require immediate clinical intervention (BARROSO, 2018).

A fundamental ethical consideration is the role of these tools as complementary resources
rather than replacements for clinical judgment. Digital health tools should be positioned to
empower individuals while maintaining the essential doctor-patient relationship (CAIANI, 2020).
This complementary approach is particularly valuable for reaching individuals with multiple
elevated CVD risk factors who might benefit from early intervention, while interventions are still

viable (NEUFINGERL, 2014).

Data quality and accuracy represent critical medical considerations. Research has shown
that missing or inaccurate information in self-assessment tools can lead to significant variations in
risk calculations, with studies indicating risk overestimation by 2.1-4.5 years in heart age

calculations when physiological risk factors are unknown (NEUFINGERL, 2014). This



underscores the importance of educating users about the tools' limitations and the necessity of

professional medical validation (SHORE, 2020).

The ethical implementation of these tools must address several key domains, including
access and usability considerations, privacy impacts, comprehensive risk-benefit assessment, and
transparent data management practices (SHORE, 2020). To ensure ethical deployment, developers
should invest time in building trust and communication channels with communities, partner with
community health workers to bridge understanding gaps, and maintain transparent communication
about data usage and sharing (SHORE, 2020). A visualization of the core ethical principles for
digital health practices is shown in Figure 16, providing a general overview of the important

aspects to be taken into consideration while developing and deploying new tools.

Figure 17: Factors influencing ethical practices in digital health
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Healthcare providers must ensure that any recommended digital health tool is safe,

effective, and regulated to mitigate potential risks. The integration of these tools should follow



established clinical frameworks and maintain continuous feedback incorporation to ensure
alignment with users' needs and lifestyles (SHORE, 2020). This includes regular validation and
updates to ensure alignment with current clinical guidelines and best practices (NEUFINGERL,
2014).

A critical ethical consideration is the potential impact on healthcare disparities. While
digital health technologies can extend clinical opportunities to historically excluded communities,
they may also exacerbate existing disparities (SHORE, 2020). Users need sufficient digital skills
and health literacy to properly utilize these tools and understand their limitations (CAIANI, 2020).
To address this, community health workers can serve as bridges for helping individuals understand

how technologies are used, how data are managed, and who has access (SHORE, 2020).

The development and implementation of self-service CVD risk assessment tools must be
guided by established clinical frameworks while protecting participants through human-centered
design principles (SHORE, 2020). These tools should incorporate validated risk calculation
methodologies, such as the Framingham Risk Score or ASCVD risk calculator, to maintain clinical
validity (NEUFINGERL, 2014). Regular validation and updates ensure alignment with current
clinical guidelines and best practices, while clear communication about limitations and the
complementary nature of these tools helps maintain appropriate expectations and usage (CAIANI,

2020).



3. METHODOLOGY

Building on the rigorous exploration of key concepts in the Literature Review — spanning
the nature of CVD-linked mortality rates in Brazil, the theoretical foundation of supervised
learning models, and the ethical and medical considerations for developing digital health tools —
the Methodology section will outline the methodology designed to address the problem. It is worth
reminding that our ultimate goal is building a highly accessible and interpretable machine learning
model and make such model available to public benefit through an intuitive interface. To achieve
this goal, we must work on top of a high-quality dataset, as well as experiment with a wide range

of statistical learning techniques until satisfactory model performance can be achieved.

The Methodology section begins by outlining the Research Workflow adopted in this
thesis, framing each step from data collection to model deployment in a structured manner. It then
describes the Implementation Environment, highlighting the key computational tools used to build
and test the models. This is followed by the Data Overview section, covering the dataset decision,
its key characteristics, and the methods used to handle the data. Next, the Model Bulilding section
dives into how the models were constructed, with a focus on their coding implementation. Finally,

a subsection on Deployment explores the final step of releasing the tool for public use.



3.1 Research Workflow

The research workflow for this study was designed to ensure a systematic and rigorous
approach, progressing logically from data acquisition until to model deployment. Structured as an
interconnected pipeline, each stage builds upon the outcomes of the previous one, with the
overarching goal of developing a predictive model for cardiovascular disease prediction that is

both accessible and reliable.

This workflow draws inspiration from the Explore-Refine-Produce (ERP) framework
proposed by (STOUDT, VASQUEZ, & MARTINEZ, 2021), which emphasizes a systematic
progression from raw data exploration to actionable research products. While adhering to the ERP
principles, specific adaptations were introduced by the Author to ensure compatibility with the
unique challenges of CVD prediction, ensuring relevance and applicability. Figure 18 illustrates

the composable and structured nature of this process.



Figure 18 Research Workflow Chart
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The starting point of this workflow was the acquisition of the PNS 2019 dataset, a reliable
and comprehensive source of health-related survey data collected by the Brazilian Institute of
Geography and Statistics (IBGE). The PNS 2019 dataset will be later explored in detail under the
“Data Overview” section. The collected dataset served as the foundation for the entire research,
providing a rich collection of variables relevant to the prediction of CVD. The data collection

phase was followed by an exploratory data analysis (EDA), which involved a thorough



examination of the dataset to understand variable distributions, identify missing or anomalous
values, and uncover potential relationships among features. This step was critical for gaining initial

insights into the data and informed subsequent preprocessing decisions.

The next phase, data preparation, was a cornerstone of the workflow. This stage addressed
several preprocessing tasks, including cleaning, scaling, and handling class imbalance to ensure
the dataset was suitable for machine learning models. Splitting the data into training, validation,
and testing subsets was an integral part of this phase, allowing for robust model evaluation while
minimizing the risk of overfitting. Feature selection techniques were employed to identify the most

relevant variables, enhancing the efficiency and interpretability of the predictive models.

Model training marked the transition from data preparation to computational modeling.
Three machine learning algorithms—Ilogistic regression, K-nearest neighbors (KNN), and random
forest—were selected based on their suitability for binary classification tasks and their balance
between interpretability and predictive power. The training process involved iterative
hyperparameter tuning to optimize model performance, with each iteration evaluated based on
predefined metrics such as recall, precision, and the area under the ROC curve (AUC-ROC). Recall
was prioritized due to its significance in identifying potential CVD cases, aligning with the

overarching goal of early intervention.

Model evaluation played a critical role in validating the performance of the trained models.
This phase was conducted iteratively, with feedback loops that informed refinements to the model
tuning process. Each model's strengths and limitations were analyzed, ensuring that the final model
achieved a balance between accuracy and recall. This iterative approach underscored the
importance of continuous improvement in machine learning workflows, particularly for

applications with significant public health implications.

The final stage of the workflow focused on model deployment, a crucial step in translating
the research outcomes into practical applications. The deployment process involved integrating
the predictive model into a web application using Anvil, a platform that simplified the transition

from development to a user-friendly interface. This deployment ensured that the model could be



accessed by the general Brazilian population, reflecting the study's commitment to societal impact
and accessibility. Validation steps were also incorporated into this phase to ensure adherence to

ethical and medical guidelines, further solidifying the credibility and reliability of the final product.

Overall, this workflow provided a clear and structured pathway for achieving the research
objectives. Its systematic design ensured that each stage was rigorously executed, with feedback
loops promoting continuous improvement and adaptability. By following this comprehensive
workflow, the research not only delivered a predictive model tailored to the dataset but also

demonstrated a commitment to methodological rigor and practical applicability.



3.2 Implementation Environment

The implementation of this research relied on a robust computational stack, carefully
selected to ensure efficiency, reproducibility, and accessibility throughout the data preprocessing,
modeling, and deployment phases. Each tool used in this stack was chosen for its specific
capabilities, open-source nature, and the community-driven innovation that accompanies such
technologies. These tools facilitated the seamless handling of the dataset and the development of
predictive models, while also enabling the deployment of the final model to make it accessible to
the general Brazilian population. Each tool will be described in detailed, with a summary of all

tools being shown in Table 2.

Python was the primary programming language used for all tasks in this research, from
data preprocessing to model deployment. Its extensive ecosystem of libraries and widespread
adoption in the machine learning community made it the ideal choice for this project. Developed
by Guido van Rossum, Python has become one of the most versatile and accessible programming
languages, with a strong emphasis on simplicity and readability. Its open-source nature has
fostered a vibrant global community, ensuring continuous improvements and extensive

documentation, which were instrumental in achieving the research objectives.

For data manipulation and preprocessing, Pandas and NumPy provided the foundational
tools necessary to prepare the dataset for analysis. Pandas, created by Wes McKinney, offered
robust support for handling structured data, including the ability to clean, transform, and analyze
large datasets efficiently. NumPy, developed under the leadership of Travis Oliphant, facilitated
high-performance numerical computations, particularly in handling multidimensional arrays and
matrix operations. Together, these libraries formed a highly efficient and flexible framework for
processing the PNS 2019 dataset, which was critical to ensuring data quality and consistency

before modeling.

The machine learning models were implemented using scikit-learn, a widely respected
open-source library developed by David Cournapeau and contributors from the French Institute

for Research in Computer Science and Automation (INRIA). Scikit-learn was selected for its user-



friendly API, extensive suite of algorithms, and strong integration with Python’s data manipulation
libraries. This tool enabled the development of logistic regression, K-nearest neighbors, and
random forest models while simplifying the tasks of training, hyperparameter tuning, and
performance evaluation. The open-source nature of scikit-learn ensured reliability and

transparency, as its algorithms are rigorously validated by the scientific community.

Data visualization, an integral part of both exploratory data analysis and result presentation,
was performed using Matplotlib and Seaborn. Matplotlib, initially developed by John D. Hunter,
provided low-level control for creating customized visualizations, while Seaborn, built on top of
Matplotlib by Michael Waskom, offered high-level abstractions for statistical data visualization.
These tools allowed the generation of clear and informative visual representations of the dataset

and model performance, aiding in deriving insights and effectively communicating findings.

To support the computational demands of training machine learning models on a large
dataset, Google Colab was used as the coding environment. This cloud-based Jupyter Notebook
service, developed by Google Research, provided free access to pre-configured libraries and
hardware accelerators, including GPUs, which significantly enhanced the efficiency of
computational tasks. Google Colab's integration with Python and its collaborative features also
ensured a streamlined workflow and reproducibility, both of which are essential in academic

research.

To make the deployment of the predictive model accessible to the general Brazilian
population, Anvil was utilized (BRITNELL, n.d.). Anvil is a platform designed to simplify the
process of deploying Python-based applications to the web. By integrating seamlessly with models
built on Google Colab, Anvil allowed the creation of a user-friendly web interface for the
predictive model, ensuring that it could be easily accessed and used by non-technical individuals.
This deployment step reflects the research's commitment to translating technical outcomes into
real-world impact, particularly for public health use cases in Brazil. A visualization of how Anvil

works jointly with Colab is shown in Figure 18.



Figure 19: Avil Web-based Interface making it easy to interact with models hosted on Colab

Iris Classifier

Sepal length: 3 Petal length: 2

Sepal width: 3 Petal width: 3

CATEGORISE
)

The species is Versicolor

Source: Extracted from (BRITNELL, n.d.)

By relying on an open-source, community-driven computational stack, this research not
only ensured methodological rigor but also aligned with the principles of accessibility and
transparency that are fundamental to academic inquiry. These tools collectively provided a
powerful foundation for addressing the complexities of cardiovascular disease prediction, while
the deployment via Anvil exemplified the broader goal of making research findings accessible and

actionable for the general population.



Table 2: Summary of the Implementation Environment

Tool Developer Purpose Rationale Relevance to Research
Primary programming Open-source, versatile, widely ?rowde.d the f?undgtlon .for
. language for data integrating various libraries
Python Guido van Rossum . . adopted, and supported by a L
preprocessing, modeling, and . and ensured simplicity and
large community. P
deployment. reproducibility.
. . . Enabled efficient cleani
Data manipulation and Robust handling of structured fablede l clent cleaniig,
. R transformation, and
Pandas Wes McKinney preprocessing of the BRFSS  |data, open-source, and .
. preparation of data for
2015 dataset. extensively documented. .
modeling.
High-performance operations |Simplified handling of
N Travis Oliphant and Numerical computation and  |on multidimensional arrays, |numerical data during
wmey contributors array manipulation. essential for data preprocessing and feature
transformations. engineering.
Development and training of |Comprehensive machine Simplified model
kit] David Coumapeau and INRIA |machine leaming models leaming library with user- implementation,
scikit-learn contributors (logistic regression, KNN, friendly API and validated hyperparameter tuning, and
random forest). algorithms. performance evaluation.

Data visualization for

Provides granular control over

Enabled clear graphical
representation of feature

Matplotlib John D. Hunter exploratory analysis and custom visualizations, open- .
P P v y . P distributions and model
results presentation. source, and widely used.
performance.
Built on Matplotlib, simplifies .
. .. AP > SUmp Enhanced the clarity and
. High-level statistical data the creation of complex . .o
Seaborn Michael Waskom IR . . . interpretability of exploratory
visualization. visualizations with concise P
and statistical insights.
syntax.
. Free access to pre-configured |Facilitated seamless execution
Cloud-based coding - P g . . .
. libraries and hardware of computationally intensive
environment for development . .
Google Colab |Google Research .. . accelerators like GPUs, tasks, promoting
and training of machine . . o
. ensuring computational reproducibility and
leamning models. . .
efficiency. collaboration.
Simplifies integration of Enabled accessible
Deployment platform to make P hP based gTd Is with deol ¢ of th dicti
. .. . on-based models wi eployment of the predictive
Anvil Anvil Works the predictive model available o ploym P

as a web application.

user-friendly web interfaces
for non-technical users.

model to the general Brazilian
population.

Source: The Author.




3.3 Data Analysis

The selection of a high-quality dataset tailored to the desired objectives is a foundational
step in predictive modeling and data analysis. The quality, relevance, and structure of the dataset
directly influence the accuracy, generalizability, and utility of the models developed. In the context
of predicting cardiovascular disease (CVD), a dataset that captures a diverse range of health-
related variables across a representative population is essential for ensuring robust and actionable

insights.

The dataset used for this Thesis is the 2019 National Health Survey (PNS), or “Pesquisa
Nacional de Saude”. The PNS is a nationally representative survey conducted in Brazil that
collects detailed information on health conditions, lifestyle factors, and healthcare utilization,
being conducted by Brazil’s Health Ministry and the Brazilian Institute of Geography and Statistics
(IBGE) (MS, 2021). This dataset is particularly well-suited for the analysis of cardiovascular
disease risk due to its comprehensive coverage of factors known to influence CVD, such as

demographic attributes, behavioral patterns, pre-existing conditions, and access to healthcare.

In particular, the key characteristics of the PNS 2019 that make it a compelling candidate
to our modelling purposes are its extensive scope, rich feature set, national representation and
validated data collection. In Total, the PNS 2019 contains survey data on almost 300,000
individual observations with more than 1,000 features. These characteristics will be further

explored on the Exploratory Data Analysis section.

Additionally, for a tool like the one being proposed under the current Thesis, transparency
and reproducibility are essential. The PNS 2019 dataset is not only available to public use and can
be accessed directly from the official website dedicated to the National Health Survey (PNS,
2021), but its methodology and data dictionary are also made available by the PNS initiative and
easy to interpret. Such transparency will be crucial given the complexity of the dataset, helping us

investigate features and fine tune the models throughout the process.



3.3.1 Exploratory Data Analysis

The Exploratory Data Analysis (EDA) is a critical step in understanding the nature and
structure of a dataset, enabling the identification of patterns, relationships, and irregularities that
influence subsequent modeling steps. EDA will provide a comprehensive overview of the PNS
2019 dataset, guiding decisions on cleaning, transformation, and feature selection while ensuring
the data is optimized for predictive analysis. This phase focuses on examining the distributions of
variables, detecting outliers, and identifying missing values or inconsistencies that require

preprocessing.

The first thing to take note is the format in which data is initially structured, and whether
it will require any transformation before further visualization. We can do this by loading the dataset
into the Google Colab environment and creating a Pandas dataframe object to store the data in a
structured and flexible object. Through Pandas native “info()” function, we observe the dataset is
composed of 1,078 float64 columns and 9 int64 columns (1,087 available features in total), for a
total of 293,725 unique observations. Even though a dataset of this complexity might look
overwhelming at first, the robust and flexible implementation environment will allow for careful

investigation of the meaning behind the data.

We proceed by noticing that PNS 2019 survey responses are structured in sections, named
as Modules. Each Module is defined by a common response topic, ranging from standard
identification and control data (such as the Brazilian Federated Unit in which the data was
collected) to lifestyles or chronic diseases data. Conveniently, the features in the dataset also come
identified by their module, which will help us bridge our domain knowledge of the problem built
during the Literature Review section to narrowing our focus to the categories most likely to matter
for our problem. Table 3 summarizes how features are distributed across categories, and it’s worth

noticing how not all categories contribute evenly.



Table 3: Features categorized by Module

Module |Description Feature Count

1 Identification and Control 12
A Household information 43
B Home visits by the Family Health Team and Endemic Agents 4
C General characteristics of residents 20
D Educational characteristics of individuals aged 5 years or older 18
E Work of household residents 59
F Household income 7
G Individuals with disabilities 50
I Health insurance coverage 14
J Utilization of health services 65
K Health of individuals aged 60 or older (...) 37
L Children under 2 years 39
M Work characteristics and social support 27
N Perception of health status 16
(0] Accidents 24

P Lifestyles 146

Q Chronic diseases 236
R Women's health 45
S Prenatal care 73
U Oral health 19
Z Paternity and partner prenatal care 17
v Violence 45
T Communicable diseases 11
Y Sexual activity 8
H Medical care 30
Y Anthropometry 7
Others 15

Total 1087

On top of that, careful inspection of the data dictionary for all features has shown many are
framed as Yes/No questions, where 1 stands for Yes and 2 stands for No. By running code to
aggregate feature count into similar types, it was possible to count that 493 features in total carry
binary meaning (despite still being stored as float64 values), while the remaining features were
either of small range categorical meaning or true continuous variables. Table 4 shows the summary
of feature types, including examples. Given that features vary through significantly different

ranges of values, rescaling will be needed to ensure distance-sensitive methods like KNN work

properly.

Source: The author




Table 4: Feature Types

Feature Example
Category Count Code Description Scale
Binary 493 100102 Do you have health insurance? Yes/No
In general, how would you rate your |From 1=Very Good to
Small Range 433 NO001 health? 5=Very Bad
Medium or Wide Range 161 P00104 What is your weight? From 1 to 599 in kg

Source: The Author

After building the initial understanding of how features are categorized within the dataset,
it was possible to identify the candidates for the Target Variable within the dataset. For good
modelling outcomes, it is crucial to select a meaningful Target Variable that is truly informative
and in line with the model objectives. In our case, the features mostly tied to our problem are
‘Q06306’ and “‘Q068”, both within the ‘Q’ (Chronic Diseases) category. The interpretation for each

feature is shown in Figure 20, followed by their respective frequency in the dataset in Figure 21.

Figure 20: Meaning of main CVD-related features

Feature |Meaning Values

Has a doctor ever diagnosed you with a Heart Disease? (Heart

Q06306 Attack, Angina, Cardiac Insufficiency, Arritmia, or Other)

1=Yes, 2=No, null

Has a doctor ever diagnosed you with Cerebrovascular Accident
(CVA) or Stroke?

Source: The author, (MS, 2021)

Q068 1=Yes, 2=No, null




Figure 21: Distribution of responses for CVD-related features
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The visualization provided by Figure 21 highlights a significant class imbalance for the
features we are interested, which is expected given CVDs only affect a minority of the general
population (CASTRO et al, 2019). In our case, only about 7.4% of the non-null responses consist
of Yes. This characteristic, however, creates the need for techniques that improve model
performance under scenarios of severe class imbalance, which will be explored and implemented

later.

Beyond the imbalance issue, Figure 21 also shows a significant presence of missing values.
In this specific case, with precisely 202,808 observations containing null responses (69% of the
total). This will be crucial to take note, as model performance might be sensitive to the presence
of null values, with models like the Logistic Regression or K-Nearest Neighbors not able to
natively handle null values. To further investigate the issue of Missingness (percentage of missing

values within a feature), Figure 22 plots the count of features within a given Missingness range.



One can notice how while none of the features carry absolute Missingness (null values only), 766

features in total carry more than 75% of missing values.

Figure 22: Missingness on the PNS2019 Dataset
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Another useful investigation exercised conducted on the dataset was studying how the
Body Max Index (BMI) generally impacts the occurrence of CVDs. As pointed by (BRANDT,
2022) and explored during the Literature Review section, an abnormally high BMI should be tied
with higher frequency of CVDs. Figure 23 shows how BMI affects CVD Occurrence rates within
the PNS2019 dataset, pointing out to an increasing trend that validates our industry-specific

knowledge.



Figure 23: BMI Distribution relative to CVD Occurrence
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Similarly to BMI, Age is also one of the core Risk Factors linked to CVD Occurrence. To
proceed investigating with the effect of Age within the PNS2019 dataset, Figure 24 was
constructed. One can notice, again, that the analytical conclusions go in line with the knowledge

built during Literature Review.



Frequency

Figure 24: Age Distribution relative to CVD Occurrence
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3.3.2 Feature Pre-Processing and Selection

After diligently studying the PNS2019 Dataset and the most relevant features, the next
stage on our pipeline is to conduct Feature Pre-Processing and Selection. This phase consists of
exploring and implementing different feature decisions in order to achieve superior model
performance. During this stage, 5 key techniques were applied: (1) min-max scaling, (ii) category-
based feature filtering, (iii) missingness threshold-based filtering, (iv) feature engineering, and (v)

exclusion of leakage-prone features.

As identified during the EDA stage, features of the PNS2019 dataset have widely different
scales, which would compromise performance for methods sensitive to features’ absolute values
(distance-based methods), like K-Nearest Neighbors. To fix for this issue, simple min-max scaling,

as defined in the Literature Review section, was implemented.

The second technique that has proven valuable in the current context after careful
experimentation was the category-based feature filtering. Essentially, this step leverages the CVD-
specific knowledge built during the Literature Review section, alongside the complex nature of
the dataset, and narrows down the features available for training to those that are truly relevant to
our problem. After experimenting with a wide range of choices, only the features belonging to 8
key modules have proven to be valuable for predictive purposes, on top of identification features.
Those modules were: C (General Characteristics), I (Health Insurance Coverage), J (Utilization of
Health Services), P (Lifestyles), Q (Chronic Diseases), U (Oral Health), H (Medical Care) and N
(Perception of Health Status). Please refer to Table 3 for the full feature categorization table. This

step has reduced the number of available features for training from 1087 to 619.

As previously identified during the EDA stage, missingness is extremely relevant on the
PNS2019 dataset. To address and create reliability against this issue, several iterations of feature
selection based on “missingness threshold” were conducted. The rationale for step is essentially
experimenting to which degrees features with too many missing values are actually adding value
in model training, instead of simply generating noise. The observed behavior here is that different

types of models are able to deal with “missingness” complexity differently, making this tuning



parameter critical and specific to which model. While Logistic Regression models saw fast
performance deterioration for thresholds above 60%, Random Forest models saw optimal
performance for an 80% threshold. The intuition behind this is simply that Random Forests are
better at handling more features and features with more missing values, while Logistic Regression

models perform better when working at slightly lower feature counts.

In terms of feature engineering, there were experimentations around aggregating common
features and whether this would improve model performance. Interestingly, the IPS2019 dataset
does not natively hold any feature dedicated to BMI measuring, but it does collect data for both
weight and height of respondents. That said, we experimented with an extra engineered feature to
account specifically for BMI, in case this would perform better than features accounting for weight
and height in a siloed manner. Our results indicated the additional BMI feature actually improved

model performance, and it was added in the features used for model training by the ‘P101’ code.

Still within feature engineering, another important decision was made. While both
individual Heart Disease Occurrence (Q06306) and Stroke Occurrence (Q068) could be useful as
our Target Variable for modeling purposes, we used feature engineering to create a new feature,
jointly accounting for the risk of CVDs as per a broader definition. This ensures broader
applicability of the model, with the new synthetic feature (Q99) incorporating information from
both of the previous features, while leveraging the knowledge built during Literature Review that
the two disease categories are generally prone to similar risk factors (BRANDT, 2022). For
clarification purposes of how Heart Disease Occurrence (Q06306) and Stroke Occurrence (Q068)

are intertwined, Figure 25 plots the overlap between both features.



Figure 25: Intersection of Heart Disease and Stroke Occurrence.
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Source: The author.

Removing leakage-prone features was a crucial task during the Feature Pre-Processing and
Selection stage. Through meticulous inspection of the entire PNS2019 dataset and systematic
evaluation of model performance across various scenarios, 20 leakage-prone features were
identified. These features contained information closely tied to the target variable, which, if
included in the training dataset, could lead models to exploit shortcuts, resulting in artificially high
performance (CHOLLET, 2017). For example, such features included 'Q064' (indicating the age
at first diagnosis of heart disease) and 'Q06310' (specific to arrhythmia rather than heart disease in

general).

One additional process conducted during pre-processing stage was feature imputation for
the models that can’t natively handle empty values (Logistic Regression, KNNs and Random
Forests). To solve for empty values, imputation was our only viable choice, given the relevance of

missingness in the PNS2019 dataset (detailed during EDA stage), removing features with empty



values has proven to be an unfeasible approach, leaving too little features and implying non-
satisfactory model performance. Nonetheless, different approaches to imputation were
experimented with, including mean/median/mode imputation and random imputation. Across our
experiments, random imputation has proven to be the most performant method. While random
imputation being the most effective method might look surprising at first, this result simply tells
our already built intuition about empty values in the PNS2019 — that they are simply missing at
random. In this context, empty values don’t carry any particular meaning — these are data points

that were simply not collected, and with no deeper cause.



3.3.3 Model Training and Hyperparameter Tuning

After preparing the final features, we moved on to Model Training and Hyperparameter
Tuning. This phase involves building models and systematically adjusting their parameters to
achieve the best performance. The goal is to create a model that generalizes well to unseen data
while addressing the specific challenges of the dataset, such as imbalanced classes or missing

values.

The first model built was XGBoost, selected for its unique capability to handle missing
values natively, as it learns the optimal way to split data even when values are absent. This feature
simplifies preprocessing, eliminating the need for explicit imputation. XGBoost is also recognized
for its state-of-the-art performance, making it a reliable benchmark for comparing other models.

Its ability to efficiently handle large datasets and complex patterns further justified its use.

XGBoost was trained using GridSearchCV, which automates hyperparameter tuning with
five-fold cross-validation to ensure consistent results across data splits. We optimized the model
using the logloss metric, prioritizing recall to capture as many positive cases as possible, which is
critical in imbalanced datasets. Additionally, we experimented with the scale pos weight
parameter to adjust for class imbalance, finding that a value of 200 significantly improved the

detection of minority class instances, providing a strong foundation for further modeling efforts.

The next step was training our Logistic Regression model, using the native classifier from
the sklearn library and carefully tuning the parameters. After iterating over several parameters in
terms of regularization strength (C), solvers and class weights, the best performing model was
achieved with C=10, ‘Ibfgs’ solver type and balanced class weight to account for class imbalance.

GridSearchCV was used for cross-validation.

For our Random Forests model, we used Scikit-Learn's RandomForestClassifier from the
ensemble module, optimizing its hyperparameters with GridSearchCV to improve recall. The
hyperparameter grid included the number of estimators (n_estimators), maximum tree depth

(max_depth), and class weight to address class imbalance. A five-fold cross-validation was



applied. The best parameters identified were n_estimators=100, max depth=10, and
class weight='balanced'. While higher maximum depths were experimented with, they were likely
causing the model to overfit, making it interesting to see the bias-variance tradeoffs to occur in

real tests.

Finally, the K-Nearest Neighbors model was built. For this last step, we again used Scikit-
Learn, this time the KneighborsClassifier. Parameters tuning was done with GridSearchCV,
choosing recall as the optimization metric. The hyperparameter grid included the number of
neighbors (n_neighbors), the weighting scheme (weights), and the distance metric (metric). Cross-
validation with 5 folds and parallel processing ensured an efficient and reliable search. The best
parameters identified were n_neighbors=3, weights='distance', and metric="euclidean'. In this case,
the distance-weighted voting scheme is essential to handle class imbalance, and n_neighbors=5

demonstrated to be a good choice when considering bias-variance tradeoffs.



4. RESULTS

This section presents the performance evaluation of the machine learning models,
highlighting their predictive accuracy, ability to handle class imbalance, and overall suitability for
the research objectives. Metrics such as accuracy, precision, recall, Fl-score, and AUC were
analyzed, alongside visual comparisons of ROC curves, to comprehensively assess the strengths

and limitations of each model.

The performance metrics for all optimized models are summarized in Table 5. The Random
Forest model achieved the highest AUC (0.8670), underscoring its superior ability to balance true
positive and false positive rates. Additionally, it demonstrated robust recall (0.7203) and precision
(0.8024), suggesting it effectively captures positive cases while maintaining reliable predictive
accuracy. XGBoost closely followed with an AUC of 0.8365, showing strong performance overall
but slightly lagging behind Random Forest in terms of recall and precision. Logistic Regression,
with an AUC of 0.7557, presented competitive results, particularly given its simplicity and ease of
interpretability. In contrast, the KNN model exhibited significant limitations, with the lowest AUC
(0.5813) and recall (0.2261), likely reflecting its sensitivity to class imbalance and distance-based

predictions in this context.

These results highlight Random Forest as the most reliable model, offering a well-rounded
performance across all key metrics. XGBoost served as a valuable benchmark, validating the
dataset's predictive potential, while Logistic Regression provided a simpler yet effective
alternative. KNN, while intuitive and straightforward, struggled to match the performance of

ensemble-based methods, particularly in identifying minority class cases.



Table 5: Summary of Model Evaluation Metrics (Optimized)

Model Types AUC  Accuracy Recall Precision F-1

RandomForests 0.8670 0.8024 0.7203 0.2102 0.3254
XGBoost 0.8365 0.7279 0.7590 0.1639 0.2696
LogReg 0.7557 0.6763 0.7225 0.1354 0.2280
KNN 0.5813 0.8391 0.2261 0.1201 0.1569

Source: The Author

The discriminative power of each model is further illustrated in Figure 26, which compares
the Receiver Operating Characteristic (ROC) curves for all classifiers (their optimized versions
post hyperparameter tuning). The Random Forest and XGBoost models stand out with curves
closest to the top-left corner, reflecting their ability to maintain a high true positive rate (recall)
while minimizing false positives. Random Forest achieved the steepest ascent, corroborating its
leading AUC score and demonstrating its capacity to handle imbalanced data effectively. XGBoost
exhibited a similar trajectory, albeit with a slightly reduced steepness, aligning with its marginally

lower recall and precision values.

Logistic Regression maintained a solid curve, indicative of its competitive AUC and
balanced performance across metrics. Conversely, KNN's ROC curve remained shallow, reflecting
its difficulties in distinguishing between positive and negative cases. This underperformance can
be attributed to its reliance on local neighbor relationships, which may falter in datasets with

imbalanced classes or complex decision boundaries.
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Figure 26: Comparison of ROC Curve for all Models (Optimized)
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3. CONCLUSION

This thesis demonstrates the potential of leveraging machine learning to address Brazil's
significant public health challenge posed by cardiovascular diseases (CVDs). By developing
predictive models tailored to the Brazilian population, the study emphasizes the importance of
accessible and interpretable tools for early risk detection and intervention. Utilizing the PNS 2019
dataset, the research explored multiple machine learning algorithms, including logistic regression,
K-nearest neighbors, and random forests. These models were rigorously evaluated to ensure high
recall, reflecting the prioritization of early detection in healthcare. Through feature engineering
and selection, key predictors of CVD risk were identified, bridging statistical modeling with
actionable health insights. Additionally, the study addressed class imbalance and optimized

performance metrics to ensure the models' reliability and validity.

Beyond the modeling, the deployment of a predictive tool on a web-based platform ensures
accessibility for the general population while adhering to ethical guidelines. This tool aligns with
Brazil’s public health goals by promoting health equity and informed decision-making. The results
underscore the transformative potential of machine learning in public health, offering a framework
that balances technical innovation with practical usability while addressing critical issues like data
privacy and healthcare disparities. The study not only provides a foundation for CVD risk
prediction in Brazil but also serves as a blueprint for leveraging machine learning in other public

health challenges.

Despite its contributions, the study is not without limitations. The reliance on self-reported
survey data introduces potential biases, and integrating clinical and genetic data could enhance
accuracy in future research. Similarly, while the selected models balance interpretability and
performance, advanced algorithms such as neural networks may improve predictive capabilities
while maintaining usability. Expanding the tool’s reach and integrating user feedback mechanisms

can further refine its impact, ensuring it meets the needs of diverse populations across Brazil.



In conclusion, this research illustrates a scalable approach to leveraging machine learning
for CVD risk prediction, setting a precedent for similar applications in public health. By combining
methodological rigor with societal relevance, the study contributes to reducing CVD mortality in

Brazil and lays the groundwork for technology-driven solutions to pressing health challenges.
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