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ABSTRACT 
 

Cardiovascular diseases (CVDs) are the leading cause of mortality in Brazil, accounting 

for nearly 400,000 deaths annually. Despite advancements in healthcare, disparities in prevention 

and diagnosis persist, driven by socioeconomic inequalities and the prevalence of modifiable risk 

factors. This thesis addresses these challenges by developing accessible and interpretable machine 

learning models for predicting CVD risk, tailored for public use in Brazil. Utilizing the PNS 2019 

dataset, a comprehensive health survey by the Brazilian Institute of Geography and Statistics, the 

study explores logistic regression, K-nearest neighbors, Random Forests and XGBoost models. 

These models were rigorously optimized through feature selection, oversampling techniques, and 

hyperparameter tuning, prioritizing recall to enhance early detection of high-risk cases. 

 

The research culminated in the deployment of a digital tool, designed to provide individuals 

with actionable health insights while adhering to ethical guidelines and prioritizing accessibility. 

By balancing accuracy with interpretability, the study ensures that the tool remains practical for 

non-specialist users while addressing critical issues like data privacy and healthcare equity. This 

work demonstrates the transformative potential of integrating machine learning into public health, 

offering a scalable framework that empowers individuals, supports healthcare systems, and 

contributes to reducing the burden of CVDs in Brazil. The findings underscore the importance of 

combining technical innovation with societal relevance to drive meaningful improvements in 

public health outcomes. 

 

 

 
Keywords: Data analysis, Preprocessing techniques, Feature Selection, Machine learning model, 

Python 

  



RESUMO 
 

As doenças cardiovasculares são a principal causa de mortalidade no Brasil, responsáveis 

por cerca de 400 mil mortes anuais. Apesar dos avanços na área da saúde, ainda existem 

disparidades significativas na prevenção e no diagnóstico, impulsionadas por desigualdades 

socioeconômicas e pela alta prevalência de fatores de risco modificáveis. Este trabalho aborda 

esses desafios por meio do desenvolvimento de modelos de aprendizado de máquina acessíveis e 

interpretáveis para a predição de risco de doenças cardiovasculares, adaptados para uso público no 

Brasil. Utilizando o conjunto de dados da Pesquisa Nacional de Saúde (PNS) 2019, uma pesquisa 

abrangente realizada pelo Instituto Brasileiro de Geografia e Estatística (IBGE), foram explorados 

os modelos de regressão logística, K-vizinhos mais próximos (KNN), Random Forests e XGBoost. 

Esses modelos foram otimizados rigorosamente por meio de técnicas de seleção de variáveis, 

oversampling e ajuste de hiperparâmetros, priorizando o recall para melhorar a detecção precoce 

de casos de risco. 

 

O estudo culminou no desenvolvimento de uma ferramenta digital projetada para fornecer 

informações de saúde acionáveis aos indivíduos, respeitando diretrizes éticas e priorizando a 

acessibilidade. Ao equilibrar precisão e interpretabilidade, o trabalho garante que a ferramenta seja 

prática para usuários não especializados, ao mesmo tempo em que aborda questões críticas, como 

privacidade de dados e equidade no acesso à saúde. Este trabalho demonstra o potencial 

transformador da integração de aprendizado de máquina na saúde pública, oferecendo um 

framework escalável que empodera indivíduos, apoia sistemas de saúde e contribui para a redução 

do impacto das doenças cardiovasculares no Brasil. Os resultados ressaltam a importância de 

combinar inovação técnica com relevância social para promover melhorias significativas nos 

desfechos de saúde pública. 
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1. INTRODUCTION 
 

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, with 20 million 

deaths annually and 620 million individuals currently living with CVDs (MENSAH, 2023). In 

Brazil, this burden is particularly pronounced, as CVDs account for approximately one-third of all 

deaths, with nearly 400,000 fatalities annually (MANSUR & FAVARATO, 2021). Despite 

advancements in healthcare, the persistence of modifiable risk factors such as hypertension, 

diabetes, and obesity continue to challenge public health efforts, highlighting the critical need for 

innovative approaches to prevention and diagnosis (PATRIOTA, 2023). 

 

This study focuses on addressing Brazil’s CVD crisis by leveraging advanced machine 

learning and statistical learning methods to predict cardiovascular disease risk. Using the 

Behavioral Risk Factor Surveillance System 2015 survey dataset, which includes diverse health-

related features, this research aims to identify the most effective predictive model and make it 

available to the Brazilian population. The study will systematically test various algorithms —

logistic regression, k-nearest neighbors, and random forests, with variations for each model type 

with regards to oversampling and hyperparameter tuning techniques — adhering to established 

best practices in data analysis to ensure robust and generalizable results. 

 

Beyond model development, this research seeks to deploy the best-performing model as a 

practical tool for public use in Brazil. The tool will prioritize accessibility, interpretability, and 

ethical application, ensuring that it empowers individuals to understand their cardiovascular health 

risks while adhering to medical guidelines. By following ethical principles and addressing 

concerns such as data privacy, health equity, and clinical validity, the tool aims to maximize public 

benefit and minimize risks of misuse. This initiative aspires to enhance public awareness, promote 

early intervention, and ultimately contribute to reducing the burden of CVD in Brazil. 

 

Through this endeavor, the study not only demonstrates the potential of predictive 

modeling in addressing pressing public health challenges but also offers a framework for 

developing responsible, impactful digital health solutions tailored to regional contexts. 

  



2. LITERATURE REVIEW 

2.1 Cardiovascular Diseases in Brazil 
 

Cardiovascular diseases (CVDs) represent the primary cause of mortality in Brazil, 

accounting for approximately one-third of all deaths (CASTRO et al, 2019). This prevalence 

reflects a persistent public health challenge despite ongoing interventions. In 2021, the prevalence 

of CVDs was estimated at 6.9% across both sexes, with men exhibiting a higher rate of 7.6% 

compared to women. In 2022, CVDs were responsible for nearly 400,000 deaths among Brazilians 

(MENSAH, 2023), with ischemic heart disease and stroke remaining the leading causes of CVD-

related mortality since the 1960s (KRAUSKOPF, 2019). 

 

The relevance of CVD as a cause of death, when compared to other conditions such as 

cancer and external causes, underscores its significant impact on public health in Brazil (Figure 

1). Although the age-standardized mortality rate for CVD has decreased by 39.1% — from 345 

deaths per 100,000 people in 1997 to 210 per 100,000 in 2017 (MANSUR & FAVARATO, 2021) 

— CVDs continue to place a substantial burden on Brazil's health system. Heart failure, in 

particular, has become the predominant cause of CVD-related hospitalizations, with over 222,000 

admissions reported in 2019 alone (BERWANGER & SANTO, 2022).  

 

  



Figure 1 underscores CVDs as the leading cause of death in the Brazilian population, with 

higher prevalence than Cancer, Diseases of the Respiratory System (RSD), Diseases of the 

Digestive System (DSD), Infectious and Parasitic Diseases (IPD), Endocrine, Nutritional and 

Metabolic Diseases (ENMD), and Diseases of the Genitourinary System (GUSD). 

 

Figure 1: Relevance of main Death Causes in Brazil  

 

Source: The Author, based on data from (MANSUR & FAVARATO, 2021) 

 

This decreasing trend in mortality is illustrated in Figure 2, which highlights the shifts in 

age-adjusted mortality rates from 1997 to 2017. Two of the most common types of CVDs, Strokes 

and Ischemic Heart Diseases (IHD) have shown reduction over time. While improvements are 

evident, the high mortality rate linked to CVDs continues to reflect the persistence of risk factors 

within the population (MANSUR & FAVARATO, 2021). In fact, in 2019, about 83% of CVD 

mortality was attributed to modifiable risk factors (BRANDT, 2022). Key risk factors include 

hypertension, diabetes, dyslipidemia, obesity, smoking, physical inactivity, and an unhealthy diet. 

Notably, while Brazil has seen reductions in smoking and environmental risks, metabolic risk 

factors—such as diabetes and high cholesterol—have increased over time (PATRIOTA, 2023). 



 

Figure 2: Trend in Mortality Rates in Brazil by Cause 

 

 
Source: Extracted from (MANSUR & FAVARATO, 2021) 

 

Socioeconomic disparities also significantly influence CVD risk in Brazil. Wealthier, 

better-educated Brazilians report higher access to lifestyle recommendations for managing 

conditions like high cholesterol and hypertension than those from lower socioeconomic 

backgrounds. This disparity manifests in differing rates of hypertension, diabetes, obesity, and 

smoking across socioeconomic strata, further compounding the public health challenge 

(PATRIOTA, 2023). 

 

The economic impact of CVDs in Brazil is profound. In 2015, the cost burden was 

estimated at R$37.1 billion, with 61% attributed to premature mortality and 39% linked to direct 

and indirect healthcare costs (ARAÚJO & RODRIGUES, 2022). Direct costs encompass expenses 

related to hospitalizations, monitoring, and treatment, while indirect costs are largely driven by 

productivity losses due to illness-related absenteeism and mortality. 

 



Geographic disparities further exacerbate the CVD burden in Brazil, with states displaying 

varied rates of CVD mortality that correlate with socioeconomic development levels (RIBEIRO, 

2016). As shown in Figure 3A, CVD mortality rates are particularly high in regions with lower 

socioeconomic indicators. Furthermore, the financial strain of CVD-related hospitalizations also 

varies across states, as illustrated in Figure 3B. This disparity in burden is partially attributed to 

the prevalence of risk factors like tobacco use, poor dietary habits, and elevated LDL cholesterol 

in states with lower Sociodemographic Indices (SDI) (BRANDT, 2022). 

 

 

Figure 3: (A) CVD mortality across Brazilian States and (B) CVD-related cost of 
hospitalizations per capita 

 
Source: Extracted from (RIBEIRO, 2016) 

 

 CVD Risk factors have been widely studied already on a global level. In particular, it is 

worth mentioning the INTERHEART study led by (YUSUF, 2004). This case-control analysis 

included more than 15 thousand cases over 52 countries, identifying nine modifiable risk factors 

that collectively account for over 90% of the global risk for myocardial infarction. These factors 

include abnormal lipids, smoking, hypertension, diabetes, abdominal obesity, psychosocial stress, 

inadequate consumption of fruits and vegetables, lack of regular physical activity, and excessive 

alcohol intake. The study underscores the significance of these risk factors across diverse 

populations, highlighting the potential for substantial reductions in cardiovascular disease 

incidence through targeted lifestyle and behavioral interventions. Another important observation 



of (YUSUF, 2004) is that, despite the burden of CVD being more than 80% concentrated in low-

income and middle-income countries, the studies about CVD risk factors have been mostly 

conducted in developed countries. This key observation supports the need of the work being done 

under this Thesis. 

 

 

 

Finally, Figure 4 shows the relative change in mortality rates due to CVD attributed to 

selected Risk Factors for all Brazilian Federated Units, from 1990 to 2019. One can notice that 

while the mortality rates have generally improved for most Brazilian Federated Units and most 

Risk Factors, the improvements are far from being evenly distributed. Noticeably, the CVD-linked 

mortality rates improvements have been significantly greater for the Federated Units with the 

highest sociodemographic index (SDI) scores. This distribution emphasizes the need for targeted 

interventions to address both risk factors and structural inequalities contributing to CVD 

prevalence. In particular, CVD mortality attributed to high Body Mass Index (BMI) has grown for 

Brazilian Federated Units with the lowest SDI, including Maranhão, Alagoas, Paraíba and Ceará. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Figure 4: Relationship between sociodemographic index and CVD-related mortality rates 

 

 
 

 

Source: Extracted from (BRANDT, 2022) 
 
 
  



2.2 Predicting CVD Risk 
 

The integration of predictive modeling in healthcare represents a transformative 

advancement in medical practice, leveraging data analytics and machine learning to enhance 

patient care and clinical decision-making. At its core, predictive modeling in healthcare involves 

the systematic analysis of diverse datasets to identify patterns and forecast future health outcomes 

(NWAIMO, 2024). This approach has become increasingly sophisticated with the advent of big 

data analytics, electronic health records (EHRs), and advanced computational capabilities. 

 

The current healthcare landscape employs various predictive modeling techniques, ranging 

from traditional statistical methods to advanced machine learning algorithms. These include 

logistic regression, decision trees, random forests, support vector machines, and neural networks, 

each offering distinct advantages in different clinical contexts (ZHANG, 2020). The selection of 

appropriate modeling techniques depends on factors such as data characteristics, prediction 

objectives, and the specific healthcare domain under consideration. 

 

One of the most promising applications of predictive modeling has emerged in 

cardiovascular disease (CVD) prevention and management. Given that CVD remains a leading 

cause of mortality worldwide, the development of accurate predictive models has become crucial 

for early intervention and risk stratification (DEEPA, 2024). Recent studies have demonstrated 

remarkable success in utilizing machine learning algorithms for CVD prediction, with some 

models achieving accuracy rates exceeding 80% (SANG, LEE, & LEE, 2019). 

 

The implementation of predictive models in healthcare relies heavily on the quality and 

comprehensiveness of available data. Electronic Health Records (EHRs) serve as a primary data 

source, providing detailed patient histories, clinical measurements, and treatment outcomes 

(NWAIMO, 2024). However, the effective utilization of these data sources presents significant 

challenges, including data standardization, integration of disparate systems, and the need to 

address missing or incomplete information (ZHANG, 2020). 

 



In the specific context of cardiovascular disease prediction, modern approaches have 

evolved to incorporate multiple data types, including clinical measurements, genetic information, 

lifestyle factors, and even social determinants of health (DEEPA, 2024). The XGBoost algorithm, 

in particular, has shown promising results in CVD prediction, demonstrating superior performance 

in handling complex medical data and providing accurate risk assessments (PENG, HOU, & 

CHENG, 2023). 

 

Despite these advances, several limitations and challenges persist in healthcare predictive 

modeling. Data quality and standardization remain significant concerns, as does the need for model 

interpretability in clinical settings1. Healthcare professionals require not only accurate predictions 

but also clear explanations of the reasoning behind these predictions to make informed clinical 

decisions (BADAWY & RAMADAN, 2023). 

 

In the realm of cardiovascular disease prediction, current research focuses on developing 

more sophisticated models that can account for the complex interplay of risk factors while 

maintaining clinical interpretability (OGUNPOLA, SAEED, & BASURRA, 2024). These efforts 

aim to bridge the gap between statistical accuracy and practical clinical utility, ensuring that 

predictive models serve as effective tools in cardiovascular disease prevention and management. 

 

The successful implementation of predictive models in healthcare requires careful 

consideration of both technical and practical aspects. While the potential benefits are substantial, 

including improved patient outcomes and more efficient resource allocation, the challenges of data 

quality, model interpretability, and clinical integration must be systematically addressed (YANG, 

2022). This understanding forms the foundation for developing more effective predictive models 

for cardiovascular disease, contributing to the broader goal of enhancing preventive care and 

reducing the burden of CVD in Brazil. 

 

 

 



2.3 Exploratory Data Analysis (EDA) 
 

Exploratory Data Analysis (EDA) is a critical initial phase in predictive modeling, 

including applications in cardiovascular disease (CVD) prediction. EDA involves summarizing 

and visualizing data to uncover patterns, relationships, and potential anomalies before applying 

formal statistical or machine learning methods (JAMES, 2013). EDA helps in understanding the 

underlying data distribution, identifying significant variables, and exploring preliminary 

associations that may guide feature engineering and model selection in subsequent stages. 

 

A fundamental component of EDA includes visualization techniques, such as histograms, 

scatter plots, and box plots, as illustrated by Figure 5. These techniques are instrumental in 

examining the distribution and potential outliers in predictor variables. These visual tools allow 

for detecting non-linear relationships and assessing the necessity for transformation or 

normalization, particularly essential in datasets with diverse variable types as seen in health-related 

studies (JAMES, 2013). 

 

Figure 5: Sample scatterplots used during the EDA phase 

 
Source: Extracted from (JAMES, 2013) 

 



2.4 Data Preprocessing 
 

Data preprocessing is a foundational step in the machine learning workflow, directly 

impacting the quality and reliability of predictive models. It involves the transformation of raw, 

unstructured data into a clean and structured format that ensures consistency, accuracy, and 

suitability for analysis. This process addresses the challenges posed by real-world datasets, which 

often contain missing values, noise, and inconsistencies that can hinder the performance of 

algorithms. By systematically applying data preprocessing techniques, practitioners can ensure 

that models are trained on high-quality data, leading to more accurate and reliable predictions 

(TENSORFLOW, n.d.). 

 

To illustrate the overall process, Figure 8 shows a typical workflow from raw data to 

machine learning. It emphasizes the sequential transformation stages, including data engineering 

and feature engineering, which culminate in prepared datasets ready for model training. 

 

 

Figure 6: Data Preprocessing Workflow 

 
Source: (TENSORFLOW, n.d.) 

 

One key concept to explore on the Data Preprocessing side is Data Cleaning. Data cleaning 

is an essential first step in the machine learning pipeline, ensuring that data quality issues such as 

missing values, outliers, and inconsistencies are addressed. Missing values can be imputed using 



techniques like mean or median replacement for numerical data or the most frequent category for 

categorical variables. (GÉRON, 2017) 

 

Outliers, which can distort predictions, are typically identified using statistical techniques 

such as the interquartile range (IQR) or z-scores. For instance, an observation 𝑥𝑥𝑖𝑖 can typically be 

considered an outlier if |𝑧𝑧𝑖𝑖| > 3, where 𝑧𝑧𝑖𝑖 = 𝑥𝑥𝑖𝑖− 𝜇𝜇
𝜎𝜎

 , with 𝜇𝜇 being the mean and 𝜎𝜎 the standard 

deviation for the dataset under consideration. Handling outliers involves either removing them or 

transforming the data to reduce their impact (GÉRON, 2017). 

 

Another important step on the Data Preprocessing phase is the Data Transformation. Data 

Transformation ensures compatibility between raw data and machine learning algorithms. Scaling 

and Normalization are two key techniques used for continuous variables (GÉRON, 2017). Scaling, 

often achieved using min-max normalization, transforms each feature 𝑥𝑥 to a standard range of 

[0,1]. 

 

𝑥𝑥′ =   
(𝑥𝑥 − 𝑥𝑥min)
𝑥𝑥max − 𝑥𝑥min

 

 

Where 𝑥𝑥min and 𝑥𝑥max are the minimum and maximum values of the feature, respectively. 

This approach is particularly useful when features have differing units or scales. 

 

Normalization, on the other hand, adjusts features to have a mean of 0 and a standard 

deviation of 1, expressed mathematically as: 

 

𝑧𝑧 =
𝑥𝑥 −  𝜇𝜇
𝜎𝜎

 

 

Where 𝜇𝜇 is the mean and 𝜎𝜎 is the standard deviation of feature 𝑥𝑥. Since most supervised 

learning methods are sensitive to feature magnitudes, both Scaling and Normalization techniques 

are often employed on the Data Preprocessing step, facilitating faster convergence during model 

training and ensuring that features contribute evenly to the algorithm (GÉRON, 2017). 



2.5 The Curse of Dimensionality 
 

The "curse of dimensionality" refers to the various challenges that arise when working with 

high-dimensional data, as is the case in the present work. As the number of features or dimensions 

𝑝𝑝 increases, the volume of the feature space grows exponentially, leading to sparse data coverage 

even with a large dataset. This sparsity undermines the reliability of distance-based methods like 

k-nearest neighbors, as the distance between any two points becomes nearly uniform, thereby 

diminishing the distinctions between data points that are crucial for prediction (JAMES, 2013). 

 

One primary issue in high-dimensional spaces is that the amount of data required to 

populate the feature space grows exponentially with the number of dimensions, making it difficult 

to estimate parameters accurately. Capturing a fixed proportion of the data requires neighborhoods 

that cover increasingly larger regions as dimensionality increases, which makes meaningful 

“local” analysis in high dimensions nearly impossible (FRIDMAN, HASTIE, & TIBSHIRANI, 

2008). This often leads to overfitting, as models become too sensitive to the noise in the training 

data, capturing chance correlations that do not generalize well to new data. 

 

Figure 7 shows how model performance quickly deteriorates in a distance-based model 

setting, for a fixed dataset size and increasing dimension. As predicted by the “Curse of 

Dimensionality”, the average distance to nearest neighbors grows as the feature complexity 

increases, with test error (as measured by the MSE) growing fast when dimension is greater than 

3, likely due to overfitting. 

 

 

 

 

 

 

 

 

 



Figure 7: Charts of Distance and MSE on the Curse of Dimensionality 

 
Source: Extracted from (FRIDMAN, HASTIE, & TIBSHIRANI, 2008) 

 

In practical terms, the curse of dimensionality often manifests as a tradeoff: while adding 

more features could, in theory, improve a model's predictive power, irrelevant or redundant 

features tend to degrade model performance. The inclusion of non-informative features increases 

the likelihood of overfitting without adding predictive value, exacerbating the model's variance 

without significantly reducing bias. Thus, techniques like regularization or feature selection are 

often necessary to manage high-dimensional data effectively. 

 

 

 

  



2.6 Bias-Variance Tradeoff 
 

In predictive modeling, bias refers to the error that results from overly simplistic 

assumptions in the model’s structure. This occurs when a model fails to capture the true complexity 

of the data-generating process, often due to a restrictive framework that doesn’t allow for sufficient 

flexibility in the relationship between input features and the target variable. For example, assuming 

a linear relationship where a non-linear one exists introduces systematic error, leading to 

consistently biased predictions. This simplification, while making the model easier to interpret and 

less prone to overfitting, often limits its accuracy on real-world data (JAMES, 2013). 

 

Variance, on the other hand, reflects a model’s sensitivity to fluctuations in the training 

data. High-variance models adapt closely to the specifics of the training data, capturing noise as if 

it were signal. This sensitivity typically occurs in more flexible models, which may perform well 

on training data but poorly on unseen data due to their tendency to “overfit” to the idiosyncrasies 

of the training set. High variance results in significant differences in model performance across 

different training datasets, undermining generalizability (FRIDMAN, HASTIE, & TIBSHIRANI, 

2008). 

 

The expected error of a model is measured by the Test Median Square Error (Test MSE). 

Test MSE can be decomposed in three fundamental quantities (JAMES, 2013): 

 

𝐸𝐸(𝑦𝑦0 − 𝑓𝑓(𝑥𝑥0))2 = 𝑉𝑉𝑉𝑉𝑉𝑉 �𝑓𝑓(𝑥𝑥0)� + �𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �𝑓𝑓(𝑥𝑥0)��
2

+ 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀) 

 

As a result, one can observe there’s an optimal level of model complexity (measured in 

terms of Flexibility) in order to minimize for test MSE or optimize model performance. In other 

words, a model that’s too complex will start incorporating noise from the training data, ultimately 

predicting patterns that do not match reality. 

 

Figure 6 illustrates the expected behavior for Test MSE, Bias and Variance. One can see 

there’s an optimal level of flexibility (model complexity) that minimizes Test MSE. Since Test 



MSE is our proxy of how the model will perform in real-world scenarios, we thus conclude that 

models of higher complexity are not always preferred. Finding out the optimal level of complexity 

across different model set ups will be critical to the current work. 

 

Figure 8: Squared bias, Variance and Test MSE for three different datasets 

 
Source: Extracted from (JAMES, 2013) 

 

The bias-variance tradeoff is a central paradigm in supervised learning, underscoring the 

balance between underfitting and overfitting. Generally, as model flexibility increases, bias 

decreases but variance rises, and vice versa. The goal is to find a model that reduces both bias and 

variance to the extent possible, minimizing test error by aligning the model’s complexity with the 

inherent patterns in the data while avoiding excessive sensitivity to training-specific noise 

(FRIDMAN, HASTIE, & TIBSHIRANI, 2008). 

 

 

  



2.7 Logistic Regression 
 

Logistic Regression is a foundational algorithm in supervised machine learning, being 

widely employed for classification tasks (problems with discrete output, like binary outputs), not 

being suitable for regression tasks (problems with continuous output).  

 

Logistic Regression models the probability than an input belongs to a specific class, 

making it particularly effective for problems that require probabilistic predictions. Unlike linear 

regression, which predicts continuous values, logistic regression outputs probabilities between 0 

and 1. These probabilities can then be converted into class predictions using a threshold (GÉRON, 

2017). 

 

The algorithm is based on modeling the log-odds (also known as the logit) of the dependent 

variable 𝑦𝑦 as a linear combination of the independent variables 𝑋𝑋. This relationship is expressed 

mathematically as: 

 

log�
𝑃𝑃(𝑦𝑦 = 1)
𝑃𝑃(𝑦𝑦 = 0)� = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛 

 

Where 𝑃𝑃(𝑦𝑦 = 1) represents the probability of the positive class, and 𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑛𝑛 are the 

model coefficients. To ensure the predicted probabilities are confined to the range [0, 1], the log-

odds are passed through the sigmoid function, given by (GÉRON, 2017): 

 

𝑃𝑃(𝑦𝑦 = 1|𝑋𝑋) =
1

1 + 𝑒𝑒−(𝛽𝛽0+𝛽𝛽1𝑋𝑋1+𝛽𝛽2𝑋𝑋2+⋯+𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛) 

 

This transformation enables logistic regression to output probabilities and subsequently 

classify observations based on a chosen threshold. The visual of this important capability of the 

logistic function is shown in Figure 9, where one can see that the logistic function is able to 

compress any outcome 𝑡𝑡 into a distribution [0,1], making it suitable to represent probabilities. 

 



 

Figure 9: The Logistic Function 

 
Source: Extracted from (GÉRON, 2017) 

 

One of the key advantages of logistic regression is the interpretability of its coefficients. 

Each coefficient 𝛽𝛽𝑖𝑖 quantifies the effect of a one-unit increase in the corresponding predictor 𝑋𝑋𝑖𝑖 

on the log-odds of the outcome, assuming all other predictors remain constant. Logistic regression 

is also computationally efficient, making it suitable for handling large datasets and high-

dimensional feature spaces. Additionally, it provides more than just classification; the probability 

estimates allow for nuanced decision-making and insights into prediction confidence. To address 

overfitting, particularly in datasets with many features, regularization techniques such as L1 

(Lasso) and L2 (Ridge) are often incorporated into logistic regression (GÉRON, 2017). 

 

The algorithm is widely used in applications across diverse fields. In healthcare, it is 

employed to predict the likelihood of diseases based on patient features, while in finance, it is used 

to identify fraudulent transactions. In marketing, logistic regression aids in customer churn 

prediction and segmentation. Its flexibility and effectiveness in binary classification problems 

make it a cornerstone of predictive analytics. 

 

Training a logistic regression model involves maximizing the likelihood of the observed 

data, which is achieved through Maximum Likelihood Estimation (MLE). The log-likelihood 

function, which forms the basis of the optimization process, is expressed as (JAMES, 2013): 

 



𝐿𝐿(𝛽𝛽) =  �[𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖=1

+ log�𝑃𝑃(𝑦𝑦𝑖𝑖)� + (1 − 𝑦𝑦𝑖𝑖)log (1 − 𝑃𝑃(𝑦𝑦𝑖𝑖))] 

 

Where 𝑁𝑁 is the number of training examples. Optimization techniques such as Gradient 

Descent are used to iteratively adjust the coefficients 𝛽𝛽 to maximize the log-likelihood function 

and fit the model to the training data. 

 

While logistic regression is a powerful tool, it has some limitations. The model assumes a 

linear relationship between the predictors and the log-odds of the outcome, which may not hold in 

datasets with complex interactions. Additionally, logistic regression is inherently designed for 

binary classification tasks, and extensions such as multinomial logistic regression or one-vs-all 

strategies are required to handle multiclass problems. 

 

 

 

 

 

  



2.8 K-Nearest Neighbors 
 

The second algorithm to be explored in this thesis is the K-Nearest Neighbors (KNN) 

algorithm. The KNN algorithm is another widely used and foundational approach in supervised 

learning, being used for both classification and regression problems. As the problem under 

consideration for this Thesis is a classification problem, the following section will explore how 

KNNs are constructed and used on classification settings. 

 

KNN is a non-parametric algorithm, meaning that it doesn’t make assumptions about the 

underlying data distribution or involve fixed parameters in order to build a model. Instead, its 

foundation lies on the principle that similar observations tend to have similar outcomes, making 

predictions based on the proximity of data points in the feature space (JAMES, 2013). 

 

That said, for a given test observation 𝑥𝑥0 which we aim to classify, the KNN classifier first 

identifies the 𝐾𝐾 points in the training data that are closest to 𝑥𝑥0. On a multidimensional space, 

Distance can be defined in different ways, including the Euclidean Distance definition which is 

intuitively embedded into the real world, or other definitions such as the Manhattan or Minkowski 

distances, which can be preferred depending on the context. In the present work, distances will be 

calculated using the Euclidian definition, which for two points 𝑥𝑥 and 𝑥𝑥′ in an 𝑛𝑛-dimensional space 

can be defined as follows: 

 

𝑑𝑑(𝑥𝑥, 𝑥𝑥′) = ��(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′)2
𝑛𝑛

𝑖𝑖=1

 

 

Once the distances between a test observation 𝑥𝑥0 and all training observations are 

calculated, the 𝐾𝐾 observations in the training dataset with the closest distance to 𝑥𝑥0 will be 

considered the 𝐾𝐾 nearest neighbors, represented by 𝒩𝒩0. The KNN classifier then estimates the 

conditional probability for a class 𝑗𝑗 as the fraction of points in 𝒩𝒩0 whose response values are equal 

to 𝑗𝑗 (JAMES, 2013). Mathematically, probabilities are assigned as follows: 

 



Pr(𝑌𝑌 = 𝑗𝑗|𝑋𝑋 = 𝑥𝑥0) =
1
𝐾𝐾

 � 𝐼𝐼(𝑦𝑦𝑖𝑖 = 𝑗𝑗)
𝑖𝑖∈𝒩𝒩0

 

 

After calculating the probabilities for every class 𝑗𝑗 in the setting above, the KNN classifier 

will simply classify 𝑥𝑥0 as the class with the largest probability. By choosing the class with the 

highest probability, the KNN classifier minimizes the classification error, consistent with the 

Bayesian Decision Rule (SAMMUT, 2010). 

 

It’s important to highlight that the choice of K has a great effect on the result obtained by 

the KNN classifier. Figure 10 depicts two distinct scenarios, one for a KNN classifier constructed 

with 𝐾𝐾 = 1, and other with 𝐾𝐾 = 100. Both were trained and set to make predictions over the same 

training dataset. The decision boundaries for both models are shown by the solid black curves, 

with the true nature of the observations being differentiated by color (orange or purple), and the 

purple dashed line showing the Bayes decision boundary (an ideal classifier that minimizes test 

error but can’t be achievable without the explicit conditional distribution of Y given X). 

 

Figure 10: KNN decision boundaries for low and high K values 

 
Source: Extracted from (JAMES, 2013) 

 



One can notice that the decision boundary for when 𝐾𝐾 = 1 tends to be overly flexible for 

this given problem, with the model adapting to patterns that don’t represent the true behavior of 

the data, incorporating noise into the predictions. This results in a model with low bias but very 

high variance, that has an extremely low error rate in the training data set (in this case, and error 

rate of precisely 0), but not satisfactory error rates in the test data set. Given the Test Error Rate is 

the proxy for how well the model will perform in real-world scenarios, 𝐾𝐾 = 1 leads to overfitting 

(JAMES, 2013). 

 

On the opposite side, it’s also important to clarify why attributing working with a 𝐾𝐾 that is 

too high is also not desirable. By comparing the setting of 𝐾𝐾 = 100 with Bayes decision boundary 

(the ideal classifier), it’s noticeable how the model fails to capture some of the nuances present in 

the true training data distribution (JAMES, 2013). 

 

Figure 11 shows how Training Errors generally keep going down as K decreases (1/K 

increases), but that Test Errors are minimized for an optimal value of K (in this case, around K=10 

or 1/K = 0.10). The process of finding the best K for a model is very important and requires a 

structured approach to it, being part of the broader theme of Hyperparameter Tuning. 

 

Figure 11: KNN error rates as a function of K 

 



Source: Extracted from (JAMES, 2013) 

 

2.9 Random Forests 
 

The third and last type of model explored in this Thesis is Random Forests. Random Forests 

widely differ from the approaches used by Logistic Regression and KNN models and is arguably 

the most complex and robust technique of all three. 

 

The Random Forests technique was first introduced by (BREIMAN, 2001) and is built 

upon the concept of Decision Trees. A Decision Tree works by recursively partitioning the feature 

space into distinct regions, creating a hierarchical structure of decision rules (JAMES, 2013).  

 

An anecdotic visualization of a Decision Tree is shown in Figure 12, for a problem in which 

the goal is understanding whether conditions are suitable for playing golf (target variable) based 

on weather conditions (features are Outlook, Humidity, Windy or Temperature). 

 

Figure 12: Decision Tree Example 

 
Source: Extracted from (SAMMUT, 2010) 

 



The construction of a Decision Tree begins with a top node known as the Root. From the 

Root, decision rules are generated based on the features, creating additional internal nodes. This 

process continues until terminal nodes, called Leafs, are reached. The Leafs display the predicted 

values (in this case, “Yes” or “No” for favorable golfing conditions), with the predicted class 

determined the most frequent target value in the corresponding group of the training dataset 

(SAMMUT, 2010). 

 

In more complex settings, however, the construction of Decision Trees requires careful 

consideration what are the best splits (decision rules) and how deep such tree should be. It is 

desirable that the Decision Tree separates the data into homogeneous and relevant groups, optimize 

model performance and avoid overfitting. 

 

Formally, the homogeneity of the groups, and thus the quality of a given split, is commonly 

calculated by the Gini Impurity or the Cross-Entropy (also known as Information Gain). These 

measures assess the “purity” of the resulting groups after a split, guiding the algorithm to select 

the most informative feature and threshold at each step (GÉRON, 2017). The Gini Index (𝐺𝐺) and 

Cross-Entropy (𝐷𝐷) are calculated as follows (JAMES, 2013): 

 

𝐺𝐺 = �𝑝̂𝑝𝑚𝑚𝑚𝑚(1 − 𝑝̂𝑝𝑚𝑚𝑚𝑚)
𝐾𝐾

𝑘𝑘=1

;   𝐷𝐷 = −�𝑝̂𝑝𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙(𝑝̂𝑝𝑚𝑚𝑚𝑚)
𝐾𝐾

𝑘𝑘=1

 

  

Where 𝑝̂𝑝𝑚𝑚𝑚𝑚 represents the proportion of training observations in the 𝑚𝑚th region that belong 

to the 𝑘𝑘th class. 

 

After formally defining how splits are optimally made, it’s also important to explore how 

the depth of trees should be carefully chosen. To start exploring the optimal depth of trees, it is 

helpful to visualize how error rates behave in a real-world scenario, and that is shown in Figure 

13. While too small tree sizes (like 1 in this case) might be not enough to create relevant 

segmentations to build meaningful predictions, too large tree sizes (like 10 in this given example) 

are also not optimal. Increasing depth eventually reduces the number of observations within each 



group and creates arbitrary rules that do not capture meaningful behaviors on the ground truth data, 

resulting in overfitting. 

 

Figure 13: Distribution of Error Rates by Tree Size 

 
Source: Extracted from (JAMES, 2013) 

 

While Decision Trees are great for their interpretability and simple structure, they often 

lack the robustness required to generate reasonable performance in modern problems. Despite 

leveraging Decision Trees as their fundamental building blocks, however, Random Forests are 

widely recognized as one of the most powerful Machine Learning algorithms available (GÉRON, 

2017). 

 

Random Forests are able to achieve such performance improvement by aggregating the 

outcomes of a large number of decision trees, using two key mechanisms: Bagging and Random 

Feature Selection (JAMES, 2013). 

 

Bagging (also known as Bootstrap Aggregation) is a procedure for reducing the variance 

of a statistical learning model. Bagging begins by taking repeated samples from the original 

training data set, which will be used to create many different training data sets from the population 



(a technique called Bootstrap). A new model is specifically trained for every set of Bootstrapped 

training sets, and the final prediction is done by averaging the resulting predictions (JAMES, 

2013). 

On top of Bagging, Random Forests make use of Random Feature Selection. Random 

Feature Selection consists of forcing each new split to consider only a small subset of 𝑚𝑚 random 

predictors out of all 𝑝𝑝 available. Given that the threes are now constructed over different subsets 

of features, they are much more decorrelated. Decorrelating the threes is an important step to 

ensure Bragging is able to efficiently reduce the resulting variance, and thus critical for model 

performance (JAMES, 2013). Figure 14 shows a visualization of the Random Trees classifier. 

 

Figure 14: Visualization of the Random Trees classifier 

 
Source: Extracted from (KOLAMBAGE & HEWAPATHIRANA, 2020) 

 

 

 

 



2.10 XGBoost 
 

After discussing the fundamentals behind Logistic Regression, K-Nearest Neighbors and 

Random Forests, one final model worth exploring is the XGBoost model. The XGBoost (or 

eXtreme Gradient Boosting) is a machine learning algorithm that builds on the concept of 

ensemble methods, similar to random forests, but with a distinct focus on sequential improvement 

(CHEN & GUESTRIN, 2016). While random forests create many independent decision trees in 

parallel and aggregate their predictions, XGBoost trains decision trees sequentially, where each 

new tree corrects the errors of the previous ones. This iterative process allows the model to focus 

on the hardest-to-predict data points, progressively improving its overall performance. 

 

The algorithm is grounded in gradient boosting, where trees are added in a manner that 

minimizes a specified loss function, akin to the optimization process in logistic regression. This 

ensures that each subsequent tree refines the residuals—essentially, the mistakes—of the 

preceding trees (CHEN & GUESTRIN, 2016). What sets XGBoost apart is its efficiency and 

scalability, achieved through techniques like handling missing data, built-in regularization to 

prevent overfitting, and optimized parallelization. These enhancements make it particularly suited 

for structured data and have cemented its reputation as a top choice in machine learning 

competitions. 

 

 

 

 

 

 

 

 

 

  



2.11 Model Evaluation Metrics 
 

Evaluating the performance of predictive models is a critical aspect of statistical learning, 

as it ensures that models meet the requirements for accuracy, reliability, and relevance to the 

problem at hand. Different metrics are used to evaluate models depending on the context, 

especially for classification tasks. This chapter discusses some of the most commonly used model 

evaluation metrics: Accuracy, Precision, Recall, F1 Score, and the Area Under the Receiver 

Operating Characteristic Curve (AUC). All metrics will be defined and their significance 

discussed. 

 

Accuracy is one of the simplest and most widely used evaluation metrics. It is defined as 

the proportion of correctly predicted instances out of the total number of instances (SAMMUT, 

2010). Mathematically, accuracy is expressed as: 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 

 

Where True Positives (TP) represent outcomes in which the data is true and the model 

correctly identifies it as true, True Negatives (TN) represent outcomes in which the data is false 

and the model correctly identifies it as false, False Positives (FP) represent outcomes in which the 

data is false but the model incorrectly identifies it as true, and False Negatives (FN) represent 

outcomes in which the data is true but the model incorrectly identifies it as false. Accuracy 

provides an overall measure of correctness but may not be suitable for imbalanced datasets, where 

a model can achieve high accuracy by simply predicting the majority class. 

 

Precision, also known as positive predictive value, measures the proportion of true positive 

predictions among all positive predictions (SAMMUT, 2010). It is calculated as: 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 



This metric is especially useful when false positives are costly, as in spam detection or 

medical diagnostics. Precision emphasizes the reliability of positive predictions. 

 

Recall, or sensitivity, is the proportion of actual positive instances correctly identified by 

the model (SAMMUT, 2010). Its formula is: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 

Recall is vital in scenarios where false negatives carry severe consequences, such as in 

disease screening. It ensures that the model captures as many positives as possible, even if it results 

in some false positives. 

 

Optimizing for one metric—such as accuracy, precision, or recall—often comes at the 

expense of another, depending on the nature of the problem and the chosen model. For instance, 

increasing recall (the ability to identify as many true positives as possible) may lead to a higher 

number of false positives, which in turn reduces precision (SAMMUT, 2010). Similarly, focusing 

on precision to minimize false positives can result in lower recall, as some true positives may be 

missed. This trade-off highlights why no single metric can universally define model performance. 

Different applications require optimizing different objectives; for example, a medical diagnostic 

model might prioritize recall to avoid missing critical cases, whereas a spam detection system 

might focus on precision to reduce false alarms. 

 

One effective way to study these balances and trade-offs is through the confusion matrix, 

a table that summarizes the performance of a classification model (SAMMUT, 2010). 

 

 



Table 1: Confusion Matrix 

 
Source: Extracted from (SAMMUT, 2010) 

 

By providing a detailed breakdown of prediction outcomes, the confusion matrix allows 

practitioners to visualize how the model's decisions impact metrics like accuracy, precision, and 

recall. It explicitly shows the trade-offs: reducing false positives (increasing precision) may 

increase false negatives (decreasing recall), and vice versa. This clarity makes the confusion matrix 

an indispensable tool for understanding and interpreting a model's strengths and weaknesses in the 

context of its intended application. 

 

There is one measure that aims to combine the balance between precision and recall, called 

F1 score. The F1 score combines precision and recall into a single metric by calculating their 

harmonic mean (SAMMUT, 2010): 

𝐹𝐹1 = 2 ∗  
𝑃𝑃 ∗ 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

 

 

This score is particularly useful when there is a need to balance precision and recall, such 

as in binary classification problems with imbalanced datasets. 

 

Finally, the last model evaluation metric important to define is the Area Under the Receiver 

Operating Characteristic Curve (AUC-ROC or AUC). The ROC (Receiver Operating 

Characteristic) curve is a graphical representation of a classifier's performance across various 

threshold settings, plotting the True Positive Rate (sensitivity) against the False Positive Rate (1-

specificity). It is particularly useful for evaluating the balance between false positives and false 

negatives, helping to select the optimal threshold for classification tasks. The Area Under the 

Curve (AUC-ROC) quantifies the overall ability of the classifier to distinguish between classes; a 



larger AUC indicates a better classifier, as it demonstrates higher sensitivity with lower false 

positive rates. An AUC-ROC of 1 represents a perfect classifier, while an AUC-ROC of 0.5 

indicates random guessing. If the AUC-ROC is below 0.5, it often suggests a problem with the 

model, such as inverted predictions or data issues. A Sample of an ROC curve is shown in Figure 

9. 

 

Figure 15: Sample of ROC Curve 

 
Source: Extracted from (JAMES, 2013) 

 

Since the AUC-ROC is simply defined as the area under the ROC curve, it is calculated as 

the integral of the True Positive Rate (TPR) with respect to the False Positive Rate (FPR). 

Mathematically, it is expressed as (POLO & MIOT, 2020): 

 

𝐴𝐴𝐴𝐴𝐴𝐴 = � 𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥)𝑑𝑑(𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥))
1

0
 

 



2.12 Cross-Validation 
 

Beyond selecting the appropriate Model Evaluation Metrics and keeping in mind their 

meaning and limitations, modern problem settings often require more robust approaches than 

measuring performance over a single training and testing split of the data. With that in mind, Cross-

Validation techniques are widely employed in Machine Learning problems to ensure models are 

not overfitting, but rather learning the important behaviors of the underlying data (JAMES, 2013). 

 

Cross-Validation involves partitioning the dataset into multiple subsets (or “folds”), with 

the model being trained on a combination of these folds and validated on the remaining fold. The 

validation fold is then cycled through all subsets, with the model being re-trained and re-evaluated 

for each configuration (JAMES, 2013). The most common approach to Cross-Validation is the K-

Fold Cross Validation, in which the data is divided into K equally sized folds. For better 

understanding of the K-Fold Cross Validation technique, a particular setting for when K=10 is 

shown in Figure 16. This figure shows how individual error values 𝐸𝐸𝑖𝑖 are calculated for each of 

the 𝑖𝑖 = 1, 2, … , 10 iterations, with the resulting error metric 𝐸𝐸 being later calculated as the simple 

average across all individual error values. 

 

Figure 16: Diagram of K-Fold Cross-Validation for K=10 

 
Source: Extracted from (ROSAEN, 2016) 



 

One important decision during the K-Fold Cross Validation technique is the decision for 

K. In practical applications, computational efficiency considerations should be considered, with 

high values of K potentially making the Cross-Validation step unfeasible if the model being 

explored is computationally intensive to train (JAMES, 2013). Additionally, Bias-Variance Trade-

Off considerations also come into play, with higher K values resulting in lower bias by using more 

training data per fold but increasing variance due to smaller test sets. All factors considered, and 

empirical results suggest that K=5 or K=10 generally yield optimal results (JAMES, 2013). 

 

2.13 Medical and Ethical considerations for self-service tools 
 

The integration of digital health technologies in cardiovascular risk assessment requires 

careful consideration of both medical validity and ethical implications. Research has demonstrated 

that self-service cardiovascular risk assessment tools can provide results comparable to standard 

clinical methods when properly implemented (BARROSO, 2018). Studies have shown high 

clinical performance in ruling out intermediate or high cardiovascular risk, with particularly strong 

negative predictive values, indicating these tools can effectively identify individuals who don't 

require immediate clinical intervention (BARROSO, 2018). 

 

A fundamental ethical consideration is the role of these tools as complementary resources 

rather than replacements for clinical judgment. Digital health tools should be positioned to 

empower individuals while maintaining the essential doctor-patient relationship (CAIANI, 2020). 

This complementary approach is particularly valuable for reaching individuals with multiple 

elevated CVD risk factors who might benefit from early intervention, while interventions are still 

viable (NEUFINGERL, 2014). 

 

Data quality and accuracy represent critical medical considerations. Research has shown 

that missing or inaccurate information in self-assessment tools can lead to significant variations in 

risk calculations, with studies indicating risk overestimation by 2.1-4.5 years in heart age 

calculations when physiological risk factors are unknown (NEUFINGERL, 2014). This 



underscores the importance of educating users about the tools' limitations and the necessity of 

professional medical validation (SHORE, 2020). 

 

The ethical implementation of these tools must address several key domains, including 

access and usability considerations, privacy impacts, comprehensive risk-benefit assessment, and 

transparent data management practices (SHORE, 2020). To ensure ethical deployment, developers 

should invest time in building trust and communication channels with communities, partner with 

community health workers to bridge understanding gaps, and maintain transparent communication 

about data usage and sharing (SHORE, 2020). A visualization of the core ethical principles for 

digital health practices is shown in Figure 16, providing a general overview of the important 

aspects to be taken into consideration while developing and deploying new tools. 

 

Figure 17: Factors influencing ethical practices in digital health 

 
Source: Extracted from (SHORE, 2020) 

 

Healthcare providers must ensure that any recommended digital health tool is safe, 

effective, and regulated to mitigate potential risks. The integration of these tools should follow 



established clinical frameworks and maintain continuous feedback incorporation to ensure 

alignment with users' needs and lifestyles (SHORE, 2020). This includes regular validation and 

updates to ensure alignment with current clinical guidelines and best practices (NEUFINGERL, 

2014). 

 

A critical ethical consideration is the potential impact on healthcare disparities. While 

digital health technologies can extend clinical opportunities to historically excluded communities, 

they may also exacerbate existing disparities (SHORE, 2020). Users need sufficient digital skills 

and health literacy to properly utilize these tools and understand their limitations (CAIANI, 2020). 

To address this, community health workers can serve as bridges for helping individuals understand 

how technologies are used, how data are managed, and who has access (SHORE, 2020). 

 

The development and implementation of self-service CVD risk assessment tools must be 

guided by established clinical frameworks while protecting participants through human-centered 

design principles (SHORE, 2020). These tools should incorporate validated risk calculation 

methodologies, such as the Framingham Risk Score or ASCVD risk calculator, to maintain clinical 

validity (NEUFINGERL, 2014). Regular validation and updates ensure alignment with current 

clinical guidelines and best practices, while clear communication about limitations and the 

complementary nature of these tools helps maintain appropriate expectations and usage (CAIANI, 

2020). 

  



3. METHODOLOGY 
 

Building on the rigorous exploration of key concepts in the Literature Review – spanning 

the nature of CVD-linked mortality rates in Brazil, the theoretical foundation of supervised 

learning models, and the ethical and medical considerations for developing digital health tools – 

the Methodology section will outline the methodology designed to address the problem. It is worth 

reminding that our ultimate goal is building a highly accessible and interpretable machine learning 

model and make such model available to public benefit through an intuitive interface. To achieve 

this goal, we must work on top of a high-quality dataset, as well as experiment with a wide range 

of statistical learning techniques until satisfactory model performance can be achieved. 

 

The Methodology section begins by outlining the Research Workflow adopted in this 

thesis, framing each step from data collection to model deployment in a structured manner. It then 

describes the Implementation Environment, highlighting the key computational tools used to build 

and test the models. This is followed by the Data Overview section, covering the dataset decision, 

its key characteristics, and the methods used to handle the data. Next, the Model Bulilding section 

dives into how the models were constructed, with a focus on their coding implementation. Finally, 

a subsection on Deployment explores the final step of releasing the tool for public use. 

 

  



3.1 Research Workflow 
 

The research workflow for this study was designed to ensure a systematic and rigorous 

approach, progressing logically from data acquisition until to model deployment. Structured as an 

interconnected pipeline, each stage builds upon the outcomes of the previous one, with the 

overarching goal of developing a predictive model for cardiovascular disease prediction that is 

both accessible and reliable. 

 

This workflow draws inspiration from the Explore-Refine-Produce (ERP) framework 

proposed by (STOUDT, VÁSQUEZ, & MARTINEZ, 2021), which emphasizes a systematic 

progression from raw data exploration to actionable research products. While adhering to the ERP 

principles, specific adaptations were introduced by the Author to ensure compatibility with the 

unique challenges of CVD prediction, ensuring relevance and applicability. Figure 18 illustrates 

the composable and structured nature of this process. 



Figure 18 Research Workflow Chart 

 
Source: The author 

 

The starting point of this workflow was the acquisition of the PNS 2019 dataset, a reliable 

and comprehensive source of health-related survey data collected by the Brazilian Institute of 

Geography and Statistics (IBGE). The PNS 2019 dataset will be later explored in detail under the 

“Data Overview” section. The collected dataset served as the foundation for the entire research, 

providing a rich collection of variables relevant to the prediction of CVD. The data collection 

phase was followed by an exploratory data analysis (EDA), which involved a thorough 



examination of the dataset to understand variable distributions, identify missing or anomalous 

values, and uncover potential relationships among features. This step was critical for gaining initial 

insights into the data and informed subsequent preprocessing decisions. 

 

The next phase, data preparation, was a cornerstone of the workflow. This stage addressed 

several preprocessing tasks, including cleaning, scaling, and handling class imbalance to ensure 

the dataset was suitable for machine learning models. Splitting the data into training, validation, 

and testing subsets was an integral part of this phase, allowing for robust model evaluation while 

minimizing the risk of overfitting. Feature selection techniques were employed to identify the most 

relevant variables, enhancing the efficiency and interpretability of the predictive models. 

 

Model training marked the transition from data preparation to computational modeling. 

Three machine learning algorithms—logistic regression, K-nearest neighbors (KNN), and random 

forest—were selected based on their suitability for binary classification tasks and their balance 

between interpretability and predictive power. The training process involved iterative 

hyperparameter tuning to optimize model performance, with each iteration evaluated based on 

predefined metrics such as recall, precision, and the area under the ROC curve (AUC-ROC). Recall 

was prioritized due to its significance in identifying potential CVD cases, aligning with the 

overarching goal of early intervention. 

 

Model evaluation played a critical role in validating the performance of the trained models. 

This phase was conducted iteratively, with feedback loops that informed refinements to the model 

tuning process. Each model's strengths and limitations were analyzed, ensuring that the final model 

achieved a balance between accuracy and recall. This iterative approach underscored the 

importance of continuous improvement in machine learning workflows, particularly for 

applications with significant public health implications. 

 

The final stage of the workflow focused on model deployment, a crucial step in translating 

the research outcomes into practical applications. The deployment process involved integrating 

the predictive model into a web application using Anvil, a platform that simplified the transition 

from development to a user-friendly interface. This deployment ensured that the model could be 



accessed by the general Brazilian population, reflecting the study's commitment to societal impact 

and accessibility. Validation steps were also incorporated into this phase to ensure adherence to 

ethical and medical guidelines, further solidifying the credibility and reliability of the final product. 

 

Overall, this workflow provided a clear and structured pathway for achieving the research 

objectives. Its systematic design ensured that each stage was rigorously executed, with feedback 

loops promoting continuous improvement and adaptability. By following this comprehensive 

workflow, the research not only delivered a predictive model tailored to the dataset but also 

demonstrated a commitment to methodological rigor and practical applicability. 

 

  



3.2 Implementation Environment 
 

The implementation of this research relied on a robust computational stack, carefully 

selected to ensure efficiency, reproducibility, and accessibility throughout the data preprocessing, 

modeling, and deployment phases. Each tool used in this stack was chosen for its specific 

capabilities, open-source nature, and the community-driven innovation that accompanies such 

technologies. These tools facilitated the seamless handling of the dataset and the development of 

predictive models, while also enabling the deployment of the final model to make it accessible to 

the general Brazilian population. Each tool will be described in detailed, with a summary of all 

tools being shown in Table 2. 

 

Python was the primary programming language used for all tasks in this research, from 

data preprocessing to model deployment. Its extensive ecosystem of libraries and widespread 

adoption in the machine learning community made it the ideal choice for this project. Developed 

by Guido van Rossum, Python has become one of the most versatile and accessible programming 

languages, with a strong emphasis on simplicity and readability. Its open-source nature has 

fostered a vibrant global community, ensuring continuous improvements and extensive 

documentation, which were instrumental in achieving the research objectives. 

 

For data manipulation and preprocessing, Pandas and NumPy provided the foundational 

tools necessary to prepare the dataset for analysis. Pandas, created by Wes McKinney, offered 

robust support for handling structured data, including the ability to clean, transform, and analyze 

large datasets efficiently. NumPy, developed under the leadership of Travis Oliphant, facilitated 

high-performance numerical computations, particularly in handling multidimensional arrays and 

matrix operations. Together, these libraries formed a highly efficient and flexible framework for 

processing the PNS 2019 dataset, which was critical to ensuring data quality and consistency 

before modeling. 

 

The machine learning models were implemented using scikit-learn, a widely respected 

open-source library developed by David Cournapeau and contributors from the French Institute 

for Research in Computer Science and Automation (INRIA). Scikit-learn was selected for its user-



friendly API, extensive suite of algorithms, and strong integration with Python’s data manipulation 

libraries. This tool enabled the development of logistic regression, K-nearest neighbors, and 

random forest models while simplifying the tasks of training, hyperparameter tuning, and 

performance evaluation. The open-source nature of scikit-learn ensured reliability and 

transparency, as its algorithms are rigorously validated by the scientific community. 

 

Data visualization, an integral part of both exploratory data analysis and result presentation, 

was performed using Matplotlib and Seaborn. Matplotlib, initially developed by John D. Hunter, 

provided low-level control for creating customized visualizations, while Seaborn, built on top of 

Matplotlib by Michael Waskom, offered high-level abstractions for statistical data visualization. 

These tools allowed the generation of clear and informative visual representations of the dataset 

and model performance, aiding in deriving insights and effectively communicating findings.  

 

To support the computational demands of training machine learning models on a large 

dataset, Google Colab was used as the coding environment. This cloud-based Jupyter Notebook 

service, developed by Google Research, provided free access to pre-configured libraries and 

hardware accelerators, including GPUs, which significantly enhanced the efficiency of 

computational tasks. Google Colab's integration with Python and its collaborative features also 

ensured a streamlined workflow and reproducibility, both of which are essential in academic 

research. 

 

To make the deployment of the predictive model accessible to the general Brazilian 

population, Anvil was utilized (BRITNELL, n.d.). Anvil is a platform designed to simplify the 

process of deploying Python-based applications to the web. By integrating seamlessly with models 

built on Google Colab, Anvil allowed the creation of a user-friendly web interface for the 

predictive model, ensuring that it could be easily accessed and used by non-technical individuals. 

This deployment step reflects the research's commitment to translating technical outcomes into 

real-world impact, particularly for public health use cases in Brazil. A visualization of how Anvil 

works jointly with Colab is shown in Figure 18. 

 



Figure 19: Avil Web-based Interface making it easy to interact with models hosted on Colab 

 
Source: Extracted from (BRITNELL, n.d.) 

 

By relying on an open-source, community-driven computational stack, this research not 

only ensured methodological rigor but also aligned with the principles of accessibility and 

transparency that are fundamental to academic inquiry. These tools collectively provided a 

powerful foundation for addressing the complexities of cardiovascular disease prediction, while 

the deployment via Anvil exemplified the broader goal of making research findings accessible and 

actionable for the general population. 

 



Table 2: Summary of the Implementation Environment 

 
Source: The Author. 

 

 

 

 

 

 

  



3.3 Data Analysis 
 

The selection of a high-quality dataset tailored to the desired objectives is a foundational 

step in predictive modeling and data analysis. The quality, relevance, and structure of the dataset 

directly influence the accuracy, generalizability, and utility of the models developed. In the context 

of predicting cardiovascular disease (CVD), a dataset that captures a diverse range of health-

related variables across a representative population is essential for ensuring robust and actionable 

insights. 

 

The dataset used for this Thesis is the 2019 National Health Survey (PNS), or “Pesquisa 

Nacional de Saúde”. The PNS is a nationally representative survey conducted in Brazil that 

collects detailed information on health conditions, lifestyle factors, and healthcare utilization, 

being conducted by Brazil’s Health Ministry and the Brazilian Institute of Geography and Statistics 

(IBGE) (MS, 2021). This dataset is particularly well-suited for the analysis of cardiovascular 

disease risk due to its comprehensive coverage of factors known to influence CVD, such as 

demographic attributes, behavioral patterns, pre-existing conditions, and access to healthcare. 

 

In particular, the key characteristics of the PNS 2019 that make it a compelling candidate 

to our modelling purposes are its extensive scope, rich feature set, national representation and 

validated data collection. In Total, the PNS 2019 contains survey data on almost 300,000 

individual observations with more than 1,000 features. These characteristics will be further 

explored on the Exploratory Data Analysis section. 

 

Additionally, for a tool like the one being proposed under the current Thesis, transparency 

and reproducibility are essential. The PNS 2019 dataset is not only available to public use and can 

be accessed directly from the official website dedicated to the National Health Survey (PNS, 

2021), but its methodology and data dictionary are also made available by the PNS initiative and 

easy to interpret. Such transparency will be crucial given the complexity of the dataset, helping us 

investigate features and fine tune the models throughout the process. 

 

 



 

3.3.1 Exploratory Data Analysis 
 

The Exploratory Data Analysis (EDA) is a critical step in understanding the nature and 

structure of a dataset, enabling the identification of patterns, relationships, and irregularities that 

influence subsequent modeling steps. EDA will provide a comprehensive overview of the PNS 

2019 dataset, guiding decisions on cleaning, transformation, and feature selection while ensuring 

the data is optimized for predictive analysis. This phase focuses on examining the distributions of 

variables, detecting outliers, and identifying missing values or inconsistencies that require 

preprocessing.  

 

The first thing to take note is the format in which data is initially structured, and whether 

it will require any transformation before further visualization. We can do this by loading the dataset 

into the Google Colab environment and creating a Pandas dataframe object to store the data in a 

structured and flexible object. Through Pandas native “info()” function, we observe the dataset is 

composed of 1,078 float64 columns and 9 int64 columns (1,087 available features in total), for a 

total of 293,725 unique observations. Even though a dataset of this complexity might look 

overwhelming at first, the robust and flexible implementation environment will allow for careful 

investigation of the meaning behind the data. 

 

We proceed by noticing that PNS 2019 survey responses are structured in sections, named 

as Modules. Each Module is defined by a common response topic, ranging from standard 

identification and control data (such as the Brazilian Federated Unit in which the data was 

collected) to lifestyles or chronic diseases data. Conveniently, the features in the dataset also come 

identified by their module, which will help us bridge our domain knowledge of the problem built 

during the Literature Review section to narrowing our focus to the categories most likely to matter 

for our problem. Table 3 summarizes how features are distributed across categories, and it’s worth 

noticing how not all categories contribute evenly. 

 

 



 

Table 3: Features categorized by Module 

 
Source: The author 

 
On top of that, careful inspection of the data dictionary for all features has shown many are 

framed as Yes/No questions, where 1 stands for Yes and 2 stands for No. By running code to 

aggregate feature count into similar types, it was possible to count that 493 features in total carry 

binary meaning (despite still being stored as float64 values), while the remaining features were 

either of small range categorical meaning or true continuous variables. Table 4 shows the summary 

of feature types, including examples. Given that features vary through significantly different 

ranges of values, rescaling will be needed to ensure distance-sensitive methods like KNN work 

properly. 

Module Description Feature Count
1 Identification and Control 12
A Household information 43
B Home visits by the Family Health Team and Endemic Agents 4
C General characteristics of residents 20
D Educational characteristics of individuals aged 5 years or older 18
E Work of household residents 59
F Household income 7
G Individuals with disabilities 50
I Health insurance coverage 14
J Utilization of health services 65
K Health of individuals aged 60 or older (…) 37
L Children under 2 years 39
M Work characteristics and social support 27
N Perception of health status 16
O Accidents 24
P Lifestyles 146
Q Chronic diseases 236
R Women's health 45
S Prenatal care 73
U Oral health 19
Z Paternity and partner prenatal care 17
V Violence 45
T Communicable diseases 11
Y Sexual activity 8
H Medical care 30
W Anthropometry 7

Others 15
Total 1087



 

Table 4: Feature Types 

 
Source: The Author 

 
After building the initial understanding of how features are categorized within the dataset, 

it was possible to identify the candidates for the Target Variable within the dataset. For good 

modelling outcomes, it is crucial to select a meaningful Target Variable that is truly informative 

and in line with the model objectives. In our case, the features mostly tied to our problem are 

‘Q06306’ and ‘Q068’, both within the ‘Q’ (Chronic Diseases) category. The interpretation for each 

feature is shown in Figure 20, followed by their respective frequency in the dataset in Figure 21. 

 

Figure 20: Meaning of main CVD-related features 

 
Source: The author, (MS, 2021) 

 

Feature Example
Category Count Code Description Scale

Binary 493 I00102 Do you have health insurance? Yes/No

Small Range 433 N001 In general, how would you rate your 
health?

From 1=Very Good to 
5=Very Bad

Medium or Wide Range 161 P00104 What is your weight? From 1 to 599 in kg

Feature Meaning Values

Q06306 Has a doctor ever diagnosed you with a Heart Disease? (Heart 
Attack, Angina, Cardiac Insufficiency, Arritmia, or Other) 1=Yes, 2=No, null

Q068 Has a doctor ever diagnosed you with Cerebrovascular Accident 
(CVA) or Stroke? 1=Yes, 2=No, null



Figure 21: Distribution of responses for CVD-related features 

 
Source: The author 

 

 The visualization provided by Figure 21 highlights a significant class imbalance for the 

features we are interested, which is expected given CVDs only affect a minority of the general 

population (CASTRO et al, 2019). In our case, only about 7.4% of the non-null responses consist 

of Yes. This characteristic, however, creates the need for techniques that improve model 

performance under scenarios of severe class imbalance, which will be explored and implemented 

later. 

 

 Beyond the imbalance issue, Figure 21 also shows a significant presence of missing values. 

In this specific case, with precisely 202,808 observations containing null responses (69% of the 

total). This will be crucial to take note, as model performance might be sensitive to the presence 

of null values, with models like the Logistic Regression or K-Nearest Neighbors not able to 

natively handle null values. To further investigate the issue of Missingness (percentage of missing 

values within a feature), Figure 22 plots the count of features within a given Missingness range. 



One can notice how while none of the features carry absolute Missingness (null values only), 766 

features in total carry more than 75% of missing values. 

 

Figure 22: Missingness on the PNS2019 Dataset 

 
Source: The Author 

 

Another useful investigation exercised conducted on the dataset was studying how the 

Body Max Index (BMI) generally impacts the occurrence of CVDs. As pointed by (BRANDT, 

2022) and explored during the Literature Review section, an abnormally high BMI should be tied 

with higher frequency of CVDs. Figure 23 shows how BMI affects CVD Occurrence rates within 

the PNS2019 dataset, pointing out to an increasing trend that validates our industry-specific 

knowledge. 

 



Figure 23: BMI Distribution relative to CVD Occurrence 

 
Source: The author 

 

 Similarly to BMI, Age is also one of the core Risk Factors linked to CVD Occurrence. To 

proceed investigating with the effect of Age within the PNS2019 dataset, Figure 24 was 

constructed. One can notice, again, that the analytical conclusions go in line with the knowledge 

built during Literature Review. 



Figure 24: Age Distribution relative to CVD Occurrence 

 
Source: The author 

 
 
 
 
  



3.3.2 Feature Pre-Processing and Selection 
 

After diligently studying the PNS2019 Dataset and the most relevant features, the next 

stage on our pipeline is to conduct Feature Pre-Processing and Selection. This phase consists of 

exploring and implementing different feature decisions in order to achieve superior model 

performance. During this stage, 5 key techniques were applied: (i) min-max scaling, (ii) category-

based feature filtering, (iii) missingness threshold-based filtering, (iv) feature engineering, and (v) 

exclusion of leakage-prone features. 

 

As identified during the EDA stage, features of the PNS2019 dataset have widely different 

scales, which would compromise performance for methods sensitive to features’ absolute values 

(distance-based methods), like K-Nearest Neighbors. To fix for this issue, simple min-max scaling, 

as defined in the Literature Review section, was implemented. 

 

The second technique that has proven valuable in the current context after careful 

experimentation was the category-based feature filtering. Essentially, this step leverages the CVD-

specific knowledge built during the Literature Review section, alongside the complex nature of 

the dataset, and narrows down the features available for training to those that are truly relevant to 

our problem. After experimenting with a wide range of choices, only the features belonging to 8 

key modules have proven to be valuable for predictive purposes, on top of identification features. 

Those modules were: C (General Characteristics), I (Health Insurance Coverage), J (Utilization of 

Health Services), P (Lifestyles), Q (Chronic Diseases), U (Oral Health), H (Medical Care) and N 

(Perception of Health Status). Please refer to Table 3 for the full feature categorization table. This 

step has reduced the number of available features for training from 1087 to 619. 

 

As previously identified during the EDA stage, missingness is extremely relevant on the 

PNS2019 dataset. To address and create reliability against this issue, several iterations of feature 

selection based on “missingness threshold” were conducted. The rationale for step is essentially 

experimenting to which degrees features with too many missing values are actually adding value 

in model training, instead of simply generating noise. The observed behavior here is that different 

types of models are able to deal with “missingness” complexity differently, making this tuning 



parameter critical and specific to which model. While Logistic Regression models saw fast 

performance deterioration for thresholds above 60%, Random Forest models saw optimal 

performance for an 80% threshold. The intuition behind this is simply that Random Forests are 

better at handling more features and features with more missing values, while Logistic Regression 

models perform better when working at slightly lower feature counts. 

 

In terms of feature engineering, there were experimentations around aggregating common 

features and whether this would improve model performance. Interestingly, the IPS2019 dataset 

does not natively hold any feature dedicated to BMI measuring, but it does collect data for both 

weight and height of respondents. That said, we experimented with an extra engineered feature to 

account specifically for BMI, in case this would perform better than features accounting for weight 

and height in a siloed manner. Our results indicated the additional BMI feature actually improved 

model performance, and it was added in the features used for model training by the ‘P101’ code.  

 

Still within feature engineering, another important decision was made. While both 

individual Heart Disease Occurrence (Q06306) and Stroke Occurrence (Q068) could be useful as 

our Target Variable for modeling purposes, we used feature engineering to create a new feature, 

jointly accounting for the risk of CVDs as per a broader definition. This ensures broader 

applicability of the model, with the new synthetic feature (Q99) incorporating information from 

both of the previous features, while leveraging the knowledge built during Literature Review that 

the two disease categories are generally prone to similar risk factors (BRANDT, 2022). For 

clarification purposes of how Heart Disease Occurrence (Q06306) and Stroke Occurrence (Q068) 

are intertwined, Figure 25 plots the overlap between both features. 

 

 



Figure 25: Intersection of Heart Disease and Stroke Occurrence. 

 
Source: The author. 

 

Removing leakage-prone features was a crucial task during the Feature Pre-Processing and 

Selection stage. Through meticulous inspection of the entire PNS2019 dataset and systematic 

evaluation of model performance across various scenarios, 20 leakage-prone features were 

identified. These features contained information closely tied to the target variable, which, if 

included in the training dataset, could lead models to exploit shortcuts, resulting in artificially high 

performance (CHOLLET, 2017). For example, such features included 'Q064' (indicating the age 

at first diagnosis of heart disease) and 'Q06310' (specific to arrhythmia rather than heart disease in 

general). 

 

One additional process conducted during pre-processing stage was feature imputation for 

the models that can’t natively handle empty values (Logistic Regression, KNNs and Random 

Forests). To solve for empty values, imputation was our only viable choice, given the relevance of 

missingness in the PNS2019 dataset (detailed during EDA stage), removing features with empty 



values has proven to be an unfeasible approach, leaving too little features and implying non-

satisfactory model performance. Nonetheless, different approaches to imputation were 

experimented with, including mean/median/mode imputation and random imputation. Across our 

experiments, random imputation has proven to be the most performant method. While random 

imputation being the most effective method might look surprising at first, this result simply tells 

our already built intuition about empty values in the PNS2019 – that they are simply missing at 

random. In this context, empty values don’t carry any particular meaning – these are data points 

that were simply not collected, and with no deeper cause. 

 

  



3.3.3 Model Training and Hyperparameter Tuning 
 

After preparing the final features, we moved on to Model Training and Hyperparameter 

Tuning. This phase involves building models and systematically adjusting their parameters to 

achieve the best performance. The goal is to create a model that generalizes well to unseen data 

while addressing the specific challenges of the dataset, such as imbalanced classes or missing 

values. 

 

The first model built was XGBoost, selected for its unique capability to handle missing 

values natively, as it learns the optimal way to split data even when values are absent. This feature 

simplifies preprocessing, eliminating the need for explicit imputation. XGBoost is also recognized 

for its state-of-the-art performance, making it a reliable benchmark for comparing other models. 

Its ability to efficiently handle large datasets and complex patterns further justified its use. 

 

XGBoost was trained using GridSearchCV, which automates hyperparameter tuning with 

five-fold cross-validation to ensure consistent results across data splits. We optimized the model 

using the logloss metric, prioritizing recall to capture as many positive cases as possible, which is 

critical in imbalanced datasets. Additionally, we experimented with the scale_pos_weight 

parameter to adjust for class imbalance, finding that a value of 200 significantly improved the 

detection of minority class instances, providing a strong foundation for further modeling efforts. 

 

The next step was training our Logistic Regression model, using the native classifier from 

the sklearn library and carefully tuning the parameters. After iterating over several parameters in 

terms of regularization strength (C), solvers and class weights, the best performing model was 

achieved with C=10, ‘lbfgs’ solver type and balanced class weight to account for class imbalance. 

GridSearchCV was used for cross-validation. 

 

For our Random Forests model, we used Scikit-Learn's RandomForestClassifier from the 

ensemble module, optimizing its hyperparameters with GridSearchCV to improve recall. The 

hyperparameter grid included the number of estimators (n_estimators), maximum tree depth 

(max_depth), and class_weight to address class imbalance. A five-fold cross-validation was 



applied. The best parameters identified were n_estimators=100, max_depth=10, and 

class_weight='balanced'. While higher maximum depths were experimented with, they were likely 

causing the model to overfit, making it interesting to see the bias-variance tradeoffs to occur in 

real tests. 

 

Finally, the K-Nearest Neighbors model was built. For this last step, we again used Scikit-

Learn, this time the KneighborsClassifier. Parameters tuning was done with GridSearchCV, 

choosing recall as the optimization metric. The hyperparameter grid included the number of 

neighbors (n_neighbors), the weighting scheme (weights), and the distance metric (metric). Cross-

validation with 5 folds and parallel processing ensured an efficient and reliable search. The best 

parameters identified were n_neighbors=3, weights='distance', and metric='euclidean'. In this case, 

the distance-weighted voting scheme is essential to handle class imbalance, and n_neighbors=5 

demonstrated to be a good choice when considering bias-variance tradeoffs. 

 

 

 

 

  



4. RESULTS 
 

This section presents the performance evaluation of the machine learning models, 

highlighting their predictive accuracy, ability to handle class imbalance, and overall suitability for 

the research objectives. Metrics such as accuracy, precision, recall, F1-score, and AUC were 

analyzed, alongside visual comparisons of ROC curves, to comprehensively assess the strengths 

and limitations of each model. 

 

The performance metrics for all optimized models are summarized in Table 5. The Random 

Forest model achieved the highest AUC (0.8670), underscoring its superior ability to balance true 

positive and false positive rates. Additionally, it demonstrated robust recall (0.7203) and precision  

(0.8024), suggesting it effectively captures positive cases while maintaining reliable predictive 

accuracy. XGBoost closely followed with an AUC of 0.8365, showing strong performance overall 

but slightly lagging behind Random Forest in terms of recall and precision. Logistic Regression, 

with an AUC of 0.7557, presented competitive results, particularly given its simplicity and ease of 

interpretability. In contrast, the KNN model exhibited significant limitations, with the lowest AUC 

(0.5813) and recall (0.2261), likely reflecting its sensitivity to class imbalance and distance-based 

predictions in this context. 

 

These results highlight Random Forest as the most reliable model, offering a well-rounded 

performance across all key metrics. XGBoost served as a valuable benchmark, validating the 

dataset's predictive potential, while Logistic Regression provided a simpler yet effective 

alternative. KNN, while intuitive and straightforward, struggled to match the performance of 

ensemble-based methods, particularly in identifying minority class cases. 

 

 

 



Table 5: Summary of Model Evaluation Metrics (Optimized) 

 
Source: The Author 

 

The discriminative power of each model is further illustrated in Figure 26, which compares 

the Receiver Operating Characteristic (ROC) curves for all classifiers (their optimized versions 

post hyperparameter tuning). The Random Forest and XGBoost models stand out with curves 

closest to the top-left corner, reflecting their ability to maintain a high true positive rate (recall) 

while minimizing false positives. Random Forest achieved the steepest ascent, corroborating its 

leading AUC score and demonstrating its capacity to handle imbalanced data effectively. XGBoost 

exhibited a similar trajectory, albeit with a slightly reduced steepness, aligning with its marginally 

lower recall and precision values. 

 

Logistic Regression maintained a solid curve, indicative of its competitive AUC and 

balanced performance across metrics. Conversely, KNN's ROC curve remained shallow, reflecting 

its difficulties in distinguishing between positive and negative cases. This underperformance can 

be attributed to its reliance on local neighbor relationships, which may falter in datasets with 

imbalanced classes or complex decision boundaries. 

 

 

 

Model Types AUC Accuracy Recall Precision F-1
RandomForests 0.8670 0.8024 0.7203 0.2102 0.3254
XGBoost 0.8365 0.7279 0.7590 0.1639 0.2696
LogReg 0.7557 0.6763 0.7225 0.1354 0.2280
KNN 0.5813 0.8391 0.2261 0.1201 0.1569



Figure 26: Comparison of ROC Curve for all Models (Optimized) 

 
Source: The Author 

 

 
 
 

  



5. CONCLUSION 
 

This thesis demonstrates the potential of leveraging machine learning to address Brazil's 

significant public health challenge posed by cardiovascular diseases (CVDs). By developing 

predictive models tailored to the Brazilian population, the study emphasizes the importance of 

accessible and interpretable tools for early risk detection and intervention. Utilizing the PNS 2019 

dataset, the research explored multiple machine learning algorithms, including logistic regression, 

K-nearest neighbors, and random forests. These models were rigorously evaluated to ensure high 

recall, reflecting the prioritization of early detection in healthcare. Through feature engineering 

and selection, key predictors of CVD risk were identified, bridging statistical modeling with 

actionable health insights. Additionally, the study addressed class imbalance and optimized 

performance metrics to ensure the models' reliability and validity. 

 

Beyond the modeling, the deployment of a predictive tool on a web-based platform ensures 

accessibility for the general population while adhering to ethical guidelines. This tool aligns with 

Brazil’s public health goals by promoting health equity and informed decision-making. The results 

underscore the transformative potential of machine learning in public health, offering a framework 

that balances technical innovation with practical usability while addressing critical issues like data 

privacy and healthcare disparities. The study not only provides a foundation for CVD risk 

prediction in Brazil but also serves as a blueprint for leveraging machine learning in other public 

health challenges. 

 

Despite its contributions, the study is not without limitations. The reliance on self-reported 

survey data introduces potential biases, and integrating clinical and genetic data could enhance 

accuracy in future research. Similarly, while the selected models balance interpretability and 

performance, advanced algorithms such as neural networks may improve predictive capabilities 

while maintaining usability. Expanding the tool’s reach and integrating user feedback mechanisms 

can further refine its impact, ensuring it meets the needs of diverse populations across Brazil. 

 

 



In conclusion, this research illustrates a scalable approach to leveraging machine learning 

for CVD risk prediction, setting a precedent for similar applications in public health. By combining 

methodological rigor with societal relevance, the study contributes to reducing CVD mortality in 

Brazil and lays the groundwork for technology-driven solutions to pressing health challenges. 
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