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ABSTRACT

Southier, L. F. P. A deep learning approach to age newborns’ fingerprints
minutiae maps. 2024. 47 p. Monograph (MBA in Artificial Intelligence and Big

Data) - Instituto de Ciéncias Matematicas e de Computagao, Universidade de Sao Paulo,
Sao Carlos, 2024.

Despite the recognized need for neonatal identification systems, they rely on minutiae maps
that are distorted over time due to finger growth, weight loss, and skin alterations, affecting
recognition rates. The literature has attempted to address the challenge of emulating
changes in the minutiae map by utilizing scaling factors. However, the effectiveness
of these approaches, especially in younger individuals, remains unclear. While scaling
factors have been used to mitigate the aging effect, this method oversimplifies the growth
pattern assumption, neglecting distinctive growth patterns observed in young children.
This study aims to fill this gap by developing and evaluating an artificial intelligence
solution to emulate the changes in a newborn minutiae map over time. The hypothesis
is that a Deep Learning-based growth model could provide a more effective approach
than traditional scaling factors, offering a more accurate and adaptable representation of
newborn development and mitigating the impact of the aging effect on biometric features.
However, without a high-quality longitudinal database, a differentiable loss function based
on the difference between two minutiae maps, and a method for aligning these maps,
implementing such an approach becomes unfeasible. Future research should address these
critical aspects to advance the development of effective biometric solutions for neonatal

identification.

Keywords: biometrics; newborn; minutiae map; deep learning.






RESUMO

Southier, L. F. P. A deep learning approach to age newborns’ fingerprints
minutiae maps. 2024. 47 p. Monografia (MBA em Inteligéncia Artificial e Big

Data) - Instituto de Ciéncias Matematicas e de Computagao, Universidade de Sao Paulo,
Sao Carlos, 2024.

Apesar da necessidade reconhecida de sistemas de identificacdo neonatal, eles dependem de
mapas de mintucias que se distorcem ao longo do tempo devido ao crescimento dos dedos,
perda de peso e alteragoes na pele, afetando as taxas de reconhecimento. A literatura
tentou abordar o desafio de emular as mudancgas no mapa de mintcias utilizando fatores
de escalonamento. No entanto, a eficicia dessas abordagens, especialmente em individuos
mais jovens, permanece incerta. Embora os fatores de escalonamento tenham sido usados
para mitigar o efeito da idade, esse método simplifica excessivamente a suposicao de
padrao de crescimento, negligenciando padroes de crescimento distintos observados em
criancas pequenas. Este estudo visa preencher essa lacuna desenvolvendo e avaliando
uma solucao de inteligéncia artificial para emular as mudangas no mapa de mintucias
de um recém-nascido ao longo do tempo. A hipétese é que um modelo de crescimento
baseado em Deep Learning poderia fornecer uma abordagem mais eficaz do que os fatores
de escalonamento tradicionais, oferecendo uma representacao mais precisa e adaptavel
do desenvolvimento dos recém-nascidos e mitigando o impacto do efeito da idade nas
caracteristicas biométricas. No entanto, sem um banco de dados longitudinal de alta
qualidade, uma funcao de perda diferenciavel baseada na diferenga entre dois mapas de
mintcias e um método para alinhar esses mapas, a implementacao de tal abordagem
torna-se inviavel. Pesquisas futuras devem abordar esses aspectos criticos para avancgar no

desenvolvimento de solugoes biométricas eficazes para identificacdo neonatal.

Palavras-chave: biometria; recém-nascido; mapa de mintcias; aprendizado profundo.
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1 INTRODUCTION

Every year, the global population witnesses the birth of over 134 million children,
resulting in more than 656 million children under the age of five worldwide in 2022 (United
Nations - Department of Economic and Social Affairs, 2023). Despite commendable efforts
and advancements over the past decades, the imperative to enhance child survival persists.
The year 2021 alone witnessed approximately 13,800 deaths per day of children under
the age of five, an alarming statistic underscoring the pressing need for improved child
care and survival strategies (UNICEF United Nations International Children’s Emergency
Fund, 2023b).

The lack of efficient identification, as highlighted by the World Health Organization
(WHO), pose challenges in accurately tracking vaccination schedules (WHO World Health
Organization, 2023a). The consequences are evident in the stagnation of global vaccination
coverage, with 14.3 million children not receiving vaccinations in 2022, compared to 12.9
million in the pre-pandemic era (WHO World Health Organization, 2023b). Furthermore,
1.5 million children succumb to vaccine-preventable diseases each year (UNICEF United
Nations International Children’s Emergency Fund, 2023a). In regions with a high prevalence
of HIV, timely diagnosis and intervention for HIV-exposed infants are crucial, and biometric
solutions can aid in identifying and tracking these infants, ensuring prompt access to
life-saving treatments (Sirirungsi et al., 2016). In nutrition programs, the importance of
neonatal identification is underscored by reports of fraud diverting food meant for needy
children (WFP United Nations World Food Programme, 2023). Biometric data could
offer a solution by facilitating the monitoring of nutrition programs, allowing for early
interventions, and promoting healthy growth by tracking weight gain and vital metrics
in children (Grantham-McGregor et al., 2014). From a child protection standpoint, an
efficient infant identification system would mitigate baby swaps in hospitals, locate missing
or abducted children, and enhance airport security to prevent child trafficking (Sedlak,
2002). Neonatal biometrics also play a crucial role in national identity programs, ensuring
secure and lifelong identities for children.

b

Despite the consensus on the need for neonatal identification systems, neonates
delicate skin and tiny fingers pose challenges for conventional biometric systems designed
for adult use (Jain; Cao; Arora, 2014). Adding to the complexity, in the initial five days
post-birth, individuals undergo a daily body weight loss of 1-2%, accompanied by a
reduction in extracellular water from 40% to 30% (Lindower, 2017; Sharma; Ford; Calvert,
2011). Preterm infants may experience even more pronounced effects (Visscher et al.,
2015), leading to a profound shift in body composition that influences the composition
and thickness of the fingers skin layers (Visscher et al., 2015; Finlayson et al., 2022).
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Additionally, the rapid changes and growth in the children’s fingers in the early stages of
life impose an extra challenge referred to by the literature as the ageing effect (Galbally;
Haraksim; Beslay, 2018a). The ageing effect refers to the fingerprint quality and recognition
performance that varies as the time lapse between the reference fingerprint sample, usually
acquired at early hours of life, and the probe fingerprint sample, collected at older ages,
changes. This effect is primarily related to the concept of fingerprint permanence, which
refers to the ability of fingerprints to remain consistent and recognizable over time (Galbally;
Haraksim; Beslay, 2018b).

The biometric systems use a set of key points in the fingerprint, referred to as
minuatiae map, to perform the recognition. To obtain a minutiae map from a fingerprint,
first, the captured fingerprint needs to be segmented. The segmented image differentiates
the raised lines of the finger’s skin, named ridges, from the depressed or low areas between
the ridges, named wvalleys. The minutiae map is defined by the points where ridges or valleys
terminate. Each minutia m; in the minutiae map M = {my, ..., m;} is represented by a
tuple in the form of m; = (z;,v;,6;), being z; and y;, and 6; the cartesian coordinates and
the angle for the i-th minutia, respectively. The changes due to the finger’s growth, body
weight loss, and skin composition alterations cause the minutiae map from a fingerprint
to distort as time passes. These distortions, while minor for short time lapses become
increasingly detrimental to the biometric system’s recognition rate for more extended
time lapses (Jain; Cao; Arora, 2014; Camacho et al., 2017; Jain et al., 2016b; Galbally;
Haraksim; Beslay, 2018b; Engelsma et al., 2021). Figure 1 illustrates the concepts of

segmented fingerprints, ridge, valley, and minutiae maps.

Figure 1 — Comparison of original and segmented fingerprint image and its corresponding
minutiae map.

Original

E f;uj? ¢ O O Minutiae
alley

To overcome this challenge, the biometric systems would benefit from a compu-
tational solution that could emulate the minutiae map from a fingerprint after some
timelapse. Specifically, given a reference minutiae map M, collected at an age y and a
time-lapse At, the solution f would emulate the fingerprint ageing and calculate the aged
minutia map M, at an age 3/, such that ¢ = y + At, and that M, = f(M,).

Recognizing this gap, the literature has presented approaches to emulate the changes
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in the minutia map by applying scaling factors. Some studies apply a fixed scaling factor
(Jain et al., 2016b), which proves suboptimal compared to using a scaling factor based on
age category (Camacho et al., 2017). While two-factor growth models have been suggested
(Haraksim; Galbally; Beslay, 2019; Markert et al., 2019), they have not been evaluated on

younger individuals.

While applying scaling factors has mitigated the ageing effect in the reported
studies, this strategy seems to be an oversimplification because it assumes that fingerprints
have a linear growth that such factors can model. However, as reported in (Schneider,
2010), young children tend to exhibit distinctive growth patterns distorting the minutia
map in other ways. Additionally, these studies only use the minutiae maps as input for
performing the ageing emulation. However, since young children tend to have a low-quality
minutia map (Camacho et al., 2017), the quantity and quality of minutiae are largely
affected, and additional information, such as the ridge and valley configuration that defines

the minutiae relation, would hypothetically benefit the emulation solution.

This study’s primary objective is to create and evaluate an artificial intelligence
solution to emulate the changes a newborn minutiae map can suffer due to natural growth
over time. The investigation aims to assess the feasibility of this approach, evaluating the
model’s efficacy in attenuating distortions arising from ageing and the distinct physical

transformations characteristic of this demographic.

The underlying hypothesis of this work is that employing artificial intelligence can
provide a better approach to emulating the growth and changes in the minutiae map of
newborns over time. It is believed that by developing a deep learning-based growth model
that includes as input the original fingerprint, the segmented fingerprint (valley and ridge
relation), and the minutiae map, it is possible to mitigate the impact of the ageing effect
on biometric features, thereby providing a more accurate and adaptable representation of
newborn development than simply applying scaling factors as reported by the literature.
In general terms, the workflow of the proposed solution is illustrated in Figure 2, in which
M, is the minutia map at age y, At is the time-lapse, and M, is the calculated minutia

map at age y/'.

Figure 2 — Workflow of the proposed solution for emulating minutia map growth.

~N - f
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To achieve the proposed goal, the following is conducted:
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» Prepare and preprocess a database regarding newborn fingerprints containing several
images collected at different times for each fingerprint. This is currently being

conducted in the scope of a research group!.

e Propose and evaluate a deep learning model that has as input the original and
segmented fingerprint images, the minutia map, and the information of age and

timelapse.

Information Processing Research Group - Federal University of Technology - Parand (in
Portuguese: Grupo de Pesquisas em Processamento de Informacao na Universidade Tec-
noldgica Federal do Parand - UTFPR). The research has been approved with a Certificate of
Presentation of Ethical Appreciation 73791023.7.0000.0177 at the Brazil Platform.
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2 THEORETICAL BACKGROUND

This chapter introduces the theoretical background, laying the groundwork for the
subsequent discussions. Section 2.1 explores biometric systems, explains the concepts of
identification and verification, and shows fingerprint aspects, especially minutiae maps, and
how they are used for recognition. Section 2.2 presents the fundamental concepts of neural
networks and deep learning. Lastly, Section 2.3 reviews related studies, offering insights

into existing research and providing a contextual comparison of the study’s contributions.

2.1 Biometric systems

Biometrics refers to the automated recognition of individuals based on unique
biological and behavioral characteristics, as highlighted by Jain, Hong and Pankanti (2000).
Widely acknowledged for its sophistication and reliability, biometric technology finds
extensive application across diverse security domains (Li, 2009). This technology leverages
an array of distinctive physical or behavioral attributes, including but not limited to
fingerprints, facial characteristics, iris patterns, voice-prints, and even gait, to establish

and verify one’s identity, as extensively discussed by (Li, 2009).

Figure 3 provides a comprehensive illustration of a biometric recognition system, de-

lineating the process of capturing, processing, and analyzing biometric data to authenticate

individuals.
Figure 3 — General schema of a biometric recognition system.
- Identification 1:IN
= « Found
—
Storage % Not found
® = .
1
a0 2 Compare
F= > F=>» Create f=======-=--- >
User Capture Extract
template
1
1
1 v Genuine
Enrollment Threshold % Impostor
- - = Recognition

Authentication 1:1
Source: Southier et al. (2023)

The initial stage in a biometric system involves enrollment, where one or multi-
ple biometric samples are gathered, processed, and stored as templates. Typically, this
processing phase entails the extraction of key features. Subsequently, when enrolled users
seek access to secure resources, they once again provide their biometric data to the cap-

ture mechanism, a step referred to as recognition. Following this, the processing system
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undertakes one of two actions: authentication or identification (Jain; Hong; Pankanti,
2000).

Authentication occurs when the system exclusively verifies the live biometric against
stored templates from a specific user, constituting a one-to-one (1:1) match. Conversely, in
identification, also known as verification, the system compares the live biometric against a
database containing stored templates from multiple individuals, conducting a one-to-many
(1:N) search for identification purposes. In both scenarios, if a match is detected, granting
access signifies the individual as genuine. Conversely, if no match is found, the individual
is deemed an impostor. Both matching cases tolerate a certain degree of error, which is
defined by a predetermined threshold (Jain; Ross; Prabhakar, 2004; Phillips et al., 2000).

Biometric systems encompass a plethora of features, as discussed in Jain and
Kumar (2012). For instance, the human eye presents unique resources for developing
recognition technologies, such as the intricate texture of the iris and the distinctive
pattern of fundus blood vessels. Another option for human recognition lies in palmprints,
which reveal the physical traits of the skin when pressed against a surface, including
lines, points, and texture (Jain; Hong; Pankanti, 2000). Additionally, factors like hand
geometry, encompassing finger lengths, widths, and overall hand dimensions, contribute
to recognition. However, hand geometry biometrics might not be ideal for widespread
personal identification due to its lack of distinctiveness on a large scale (Li, 2009). The

details about fingerprints are discussed in Section 2.1.1.

Authentication aims to ascertain whether a person is who they claim to be. These
systems calculate the biometric score by juxtaposing the stored template with the user’s
input (Li, 2009). This process is called matching. If the biometric score surpasses a
predetermined threshold, the user is deemed accepted. Conversely, if the score falls below
the threshold, the user is rejected. Equation 2.1 demonstrates the decision rule of the

verification process (Jain; Bolle; Pankanti, 2011):

(1.2) € accepted, if s >n (2.1)
’ rejected, if s <n

where [ is the individual’s identity; x is the set of input features; s is the matching score;

and 7 is a threshold value.

In identification, the goal is to verify if a person is known to the system. In this
scenario, the input is compared with the templates of all registered identities. The output
can be the comparison with the highest similarity or a warning that the identity is not
registered in the database. Equation 2.2 demonstrates the decision rule of the identification
process (Jain; Bolle; Pankanti, 2011):
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I,,, if ng =arg max s, and s,, >
= { 0 0 g s 0 7]} (2'2)

Iny, otherwise

where x is the set of input features; I is the set of registered identities; I,,, is the identity
with the highest similarity to the input; I, is an unregistered identity; s is the matching

score; and 7 is a threshold value.

Ideally, a flawless biometric system would accept genuine users and reject impostors
unfailingly. However, real-world scenarios diverge from this ideal. As illustrated in Figure 4,
contingent upon the threshold and the score obtained, certain impostors may be accepted,

while some genuine users might be rejected.

Figure 4 — Distribution scores with a defined threshold

Threshold
resho ] Impostors (] Genuines
Impostors rejected (TRR) Genuines accepted (TA

:» Impostors accepted (FAR) ::: Genuines rejected (FRE

Probability

+ Reiject ; Accept — Score

Source: Southier et al. (2023)

The evaluation of biometric systems involves several key metrics that provide
insights into their performance and effectiveness in identifying genuine users while rejecting
impostors (Jain; Bolle; Pankanti, 2011). These metrics are essential for assessing the
system’s reliability and suitability for specific applications. One fundamental metric is
the False Reject Rate (FRR), which quantifies the percentage of genuine users that are
incorrectly rejected by the system. Its complement, 1-FRR, represents the True Acceptance
Rate (TAR), indicating the percentage of genuine users accepted by the system. On the
other hand, the True Reject Rate (TRR) measures the share of impostors correctly rejected,
while the False Acceptance Rate (FAR) represents the percentage of impostors incorrectly
accepted by the system, with TRR=1-FAR.

These four rates are interconnected and dependent on the chosen threshold for
decision-making (Jain; Bolle; Pankanti, 2011). By adjusting the threshold, it’s possible to
trade off between false acceptance and false rejection rates, influencing the system’s overall
performance. Two commonly used curves to illustrate this behavior are the Detection
Error Trade-off (DET) curve and the Receiver Operating Characteristics (ROC) curve.
These curves provide a graphical representation of the trade-off between false acceptance
and false rejection rates across different threshold values, aiding in the optimization of
system parameters. In an identification scenario, each live biometric sample is compared
against all samples stored in the gallery. The resulting similarity scores are then sorted
and ranked. The True Positive Identification Rate (TPIR) measures the probability of
correctly identifying the individual within the top K ranks of the sorted list. This metric

provides valuable insights into the system’s ability to accurately identify individuals from
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a large pool of candidates. To visualize the identification performance comprehensively,
the Cumulative Match Characteristic (CMC) curve is often utilized. This curve illustrates
the probability of correctly identifying the individual as a function of the number of
samples considered, offering a clear depiction of the system’s identification capabilities
across different rank thresholds.

Figure 5 presents examples of DET, ROC, and CMC curves for two distinct
biometric systems, providing stakeholders with visual representations of their performance
characteristics and aiding in the decision-making process regarding system selection and

configuration.

Figure 5 — Examples of DET (left), ROC (center), and CMC (right) curves

100 g e 100 100
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—— System A === FRR=FAR OTAR at FAR 0.1% A Rank 1
System B o EER O TAR at FAR 1% ORank 10

Source: Southier et al. (2023)

The Detection Error Trade-off (DET) curve and the Receiver Operating Character-
istics (ROC) curve are essential tools for evaluating the performance of biometric systems,
particularly in terms of error rates. The DET curve plots the False Acceptance Rate (FAR)
and False Reject Rate (FRR) on both axes using a logarithmic scale. At a specific point
on the DET curve, known as the Equal Error Rate (EER), the FAR equals the FRR. This
point provides a concise summary of the system’s performance, indicating the threshold

where the rates of false acceptance and false rejection are balanced.

On the other hand, the ROC curve illustrates the True Acceptance Rate (TAR)
against various FARs. Typically, TAR values corresponding to FARs of 0.1% and 1% are
commonly used for comparing different biometric systems. These values offer insights
into the system’s performance under different levels of security requirements and false

acceptance tolerances.

2.1.1 Fingerprints

A more practical approach involves utilizing only fingerprints (or digitprints) for
biometric recognition. For capturing fingerprint templates, scanners, also referred to as
readers or sensors, are employed. Biometric features are captured as images, with each
image termed an impression (Li, 2009). These scanners come in various forms, including

contact or contactless variants, those equipped with multiple cameras, employing diverse



25

illumination schemes, and more. However, one of the most crucial properties of a scanner is
its resolution. This aspect becomes especially pertinent when the collected zone’s size in an
image is reduced, such as in the case of neonatal fingerprints (Engelsma et al., 2019; Jain et
al., 2016a). Resolution denotes the amount of information in pixels that the resulting image
can encapsulate per inch (pixels per inch or ppi). Higher scanner resolutions translate to
greater information extraction but also entail higher costs. Typically, standard fingerprint
scanners used in adults boast a resolution of 500 ppi. Fingerprint features consist of ridges
alternating with wvalleys, running mostly parallel but exhibiting occasional directional
changes and terminations. Figure 6 shows examples of scanning and the corresponding

collected fingerprint.

Figure 6 — Example of fingerprint collection.

Scanning Fingerprint
| . : ~

Upon capturing a fingerprint, the original image undergoes several preprocessing
steps, including scaling and filtering, to derive its segmented representation. This segmented
image enhances the fingerprint features and is normally expressed as a binarized image.
Subsequently, the directional field is computed, depicting how the ridges and valleys
traverse the print. The directional field is not normally used for matching, but it helps
detect the minutiae directions in later steps. Next, the skeletonized version of the segmented

image is calculated. Figure 7 shows an example of a fingerprint undergoing these steps.

Figure 7 — Fingerprint preprocessing pipeline

Original

Using the skeletonized image, the extraction of the minutia map occurs, identifying
bifurcations and terminations. The minutiae map is defined by the points where ridges or
valleys terminate. Each minutia m; in the minutiae map M = {my, ..., m;} is represented
by a tuple in the form of m; = (z;,v;,0;), being x; and y;, and 6; the cartesian coordinates

and the angle for the i-th minutia, respectively. Furthermore, minutiae can be classified as
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termination or bifurcation. Pixels with three neighbors are identified as bifurcations, and
pixels with only one neighbor are identified as terminations. Figure 8 shows an example of

a minutiae map highlighting a termination and a bifurcation.

Figure 8 — Example of minutiae map.

Typically, the minutia maps of two fingerprints are compared to calculate the match
score (Jain; Kumar, 2012). First, an alignment geometric transformation is performed
so that the two minutiae maps are in the same coordinate system. Next, the matching
is executed, which forms corresponding pairs of minutiae. Finally, the match score is
generated based on the matched minutiae pairs. The higher the matched pairs, the higher
the match score. Figure 9 shows two examples of matching: (a) shows a genuine user with

a high match score; (b) shows an impostor with a low match score.

Figure 9 — Examples of genuine and impostor matchings.

(a) Genuine — high match score (b) Impostor — low match score

2.2 Neural Networks and Deep Learning

Based on the findings of neuroscience, in particular, the hypothesis that mental
activity consists primarily of electrochemical activity in networks of brain cells called
neurons, some researchers worked to create artificial neural networks (Russell; Norvig, 2010).
Researchers in Artificial Intelligence and statistics became interested in the more abstract
properties of neural networks, such as their ability to perform distributed computation,

tolerate noisy inputs, and learn. Neural networks are composed of neurons connected by
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directed links. One of the simplest neural networks, perceptron, contains a single input layer
and an output node. Its basic architecture is shown in Figure 10. The input layer contains d
nodes that transmit the d features X = [y, ..., x4] with edges of weight W = [wy, . .., w,]
to the output node. A bias input zo = 1 with an associated weight wy may be used.
The output node first computes a weighted sum of its inputs W - X, then it applies an
activation function g to calculate the output § = g(W - X) =g (Zf:o wle)

Figure 10 — Perceptron architecture.

1 o
Q@
W.X o
() (90— §=g(V-X)
Activation
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Inputs Weights

Source: Adapted from Aggarwal et al. (2018)

The training of a perceptron involves adjusting its weights to minimize errors
in its predictions. Gradient descent is a popular optimization algorithm used for this
purpose. Initially, the weights of the perceptron are set randomly or initialized using
certain strategies. Then, for each training example, the perceptron makes a prediction ¢
based on the input features and its current weights. The error E(X) between the predicted
output ¢y and the actual output y is calculated using a loss function. The objective is

minimize the loss function by using its gradient with respect to the weights:

W+ W+aEBE(X)X (2.3)

The learning algorithm repeatedly cycles through all the training examples in

random order and iteratively adjusts the weights until convergence is reached. Each such

cycle is referred to as an epoch. The parameter « is the learning rate of the neural network
(Aggarwal et al., 2018).

Multilayer neural networks contain multiple computational layers; the additional
intermediate layers (between input and output) are called hidden layers because the
computations performed are not visible to the user. The specific architecture of multilayer
neural networks is called feed-forward networks because successive layers feed into one
another in the forward direction from input to output. The default architecture of feed-

forward networks assumes that all nodes in one layer are connected to those of the next



28

layer. Therefore, the neural network’s architecture is almost fully defined once the number
of layers and the number/type of nodes in each layer have been specified (Aggarwal et al.,

2018). Figure 11 shows an example of a feed-forward network.

Input 1

7
=

Figure 11 — Example of feed-forward network architecture
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Learning in neural networks is accomplished through backpropagation. During the
forward phase, with fixed weights, the signal is propagated through the network, layer
by layer, until reaching the output. Changes only occur in the activation potentials and
outputs of the neurons in the network. In the backward phase, an error signal is produced by
comparing the desired output with the obtained output. This error is then retropropagated
through the network, layer by layer. Adjustments are made to the synaptic weights of the
network based on this error signal, allowing the network to learn from its mistakes and

improve its performance over time (Bittencourt, 1998).

Previously, conventional machine-learning methods struggled to handle raw natural
data effectively. Building pattern-recognition systems necessitated meticulous engineering
and substantial domain expertise to construct feature extractors, converting raw data
(e.g., pixel values in images) into suitable internal representations or feature vectors for
subsequent processing by learning subsystems. Representation learning has emerged as a
solution, enabling machines to automatically discern necessary representations from raw
data for detection or classification. Deep Learning techniques represent a sophisticated form
of representation learning, incorporating multiple layers of representation, each obtained
by combining simple yet nonlinear modules. These modules progressively transform input
from raw form to increasingly abstract representations, facilitating the learning of complex
functions (LeCun; Bengio; Hinton, 2015).

A Convolutional Neural Network (CNN) is a type of deep, feedforward network
that proved notably easier to train and exhibited superior generalization compared to
networks with full connectivity between adjacent layers (LeCun; Bengio; Hinton, 2015). Its
architecture, depicted in Figure 12, operates similarly to a conventional feed-forward neural

network, with the key distinction that its layer operations are spatially organized and
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feature sparse, deliberately designed connections between layers. The initial stages consist
of two primary types of layers: convolutional layers and pooling layers. In convolutional
layers, units are arranged in feature maps, where each unit is linked to local patches in
the preceding layer’s feature maps via a set of weights known as a filter bank (LeCun et
al., 1989).

Figure 12 — Example of convolutional neural network architecture
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The process of arranging the units in features maps is achieved by convolution. It
involves applying a filter (also known as a kernel or weight) to the input data through a
sliding window, producing a feature map. Figure 13 shows an example of a input I with

size 7x7, a 3x3 filter K and the corresponding convolution result [ * K.

Figure 13 — Example of 2D convolution operation
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Pooling is a down-sampling technique, typically inserted between convolutional lay-
ers. It involves sliding a small window over each feature map independently, selecting either
the maximum or average value within the window at each position. This process condenses
the learned features effectively, making representations more robust and computationally

efficient.

2.3 Related studies

During the initial stages of life, children experience rapid changes and growth in
their fingers, presenting an additional challenge known in the literature as the ageing effect.
This phenomenon describes variations in fingerprint quality and recognition performance

as the time gap between the reference fingerprint sample, typically obtained in infancy,
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and the probe fingerprint sample collected at later stages, increases(Galbally; Haraksim;
Beslay, 2018a; Galbally; Haraksim; Beslay, 2018b). The literature presents studies related

to measuring the impact of the ageing effect on authentication and identification rates.

Jain et al. (2016b) performed two experiments regarding measuring the ageing
effect. In the first experiment, children from 0 to 5 years old (average age of two years old)
were split into 3 groups: 0 to 6 months, 6 to 12 months, and greater than 12 months old. For
each of these groups, three time lapses were tested between the enrollment fingerprint and
the probe: six months, ten months, and one year. The study found no changes when varying
the timelapse for the older group (greater than 12 months old). However, when the time
lapse increases, the authentication and identification rates decrease for the two younger
groups. In the second experiment, Jain et al. (2016b) increased the scanner resolution, and
while the results were better, the overall behavior from the first experiment was observed
again. Galbally, Haraksim and Beslay (2018b) conducted research with children from
five to twelve years old. The authors increased the time lapse between enrollment and
probe fingerprint from 0 (no time lapse) to seven years. Even though the children in the
study are older than newborns and do not represent the inherent challenges of newborns’
fingerprints, it is still possible to observe that the results reinforce the findings of Jain et
al. (2016b). Finally, Engelsma et al. (2021) studied the biometric response of children from
two to three months old being submitted to time lapses of three, nine, and twelve months.
The findings of previous studies were reinforced on authentication and identification rates.
Table 1 shows the numerical results from the studies, both for authentication (TAR at
FAR 0.1%) and identification (Rank 1).

A current gap in research lies in the absence of techniques capable of accurately
replicating the growth of fingerprints over time to mitigate the ageing effect, illustrated by
the above-mentioned studies. Four studies are known in the literature for trying to narrow
this gap. Jain et al. (2016b) illustrates that fixed scaling factors can be used to adjust the
size of the fingerprint and, as a consequence, the minutiae maps considering children’s age
and the scanner resolution. However, this approach was shown suboptimal by Camacho et

al. (2017) that proposed a varying scaling factor based on the children’s age.

Since the above-mentioned approaches are only rescaling the images (even if using
different scaling factors for each age), they have the flaw of considering that a fingerprint
would grow in all directions at the same rate. Another flaw is that they consider the
center of the fingerprint to be centered in the image. Markert et al. (2019) presents a
statistical model to detect anisotropy in fingerprint growth, that is, detect the difference
in proximal-distal axis (height of the fingerprint) than along the medial-lateral axis (width
of the fingerprint) growth. Furthermore, Haraksim, Galbally and Beslay (2019) proposed a

growth model based on the fingerprint’s center and rotation, which is shown in Figure 14.

The Figure depicts the relative distances Dy and D; of a specific minutiae point
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Table 1 — Ageing impact on authentication and identification scores.

Study Age Time lapse TAR at FAR Rank 1
0.1%
Jain et al 6m 66.7, 92.8, 100
(2016b) " 0-6, 6-12, >12m 10m 77.3, 96.2, 100 -
12m 71.1, 94.9, 100
Jain et al. 4m 100, 100 100, 100
(2016b) 6-12, >12m 6m 98.9,100  99.4, 100
Jain et al 2m 31.9 42.2
(2016b) ' 0-6m 4m 18 33.6
6m 9.8 31.1
Oy 96
ly 95
Galbally, 2y 94
Haraksim 3y 93
and Beslay 512y 4y 90 i
(2018b) 5y 89
6y 86
Ty 80
Engelsma 3m 95 95
et al. 2-3m 9m 90 90
(2021) ly 85 90

Note: m for months and y for years.

Figure 14 — Fingerprint Growth model proposed in Haraksim, Galbally and Beslay (2019)

Pry = (1’073/0)

’\?

Fingerprint sample at age 70

Time:
T0—-T1

Fingerprint sample at age 7T'1

(red) obtained at ages Ty and T}, respectively, in relation to the fingerprint’s center (black).

Dashed circles indicate the potential location range for the centers and minutiae points due

to uncertainties arising from two factors: (1) elastic distortion occurring during fingerprint

acquisition via touch and (2) inaccuracies in minutiae positioning.

The proposed growth model is a mathematical function, denoted as f(P), which
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operates as follows: for a given minutia point Pry = (zo, yo) relative to the fingerprint’s
center and acquire at age 70, the function provides an estimate Pr; of the same point’s
location at a later age (T'1), such that Pry = (z1,y1) = f(Pro). Also, Pr1 = f(Prg) can be
expressed as Pr1 = (2o X g70(T'1), yo X gro(T'1)) where gro(T1) is a function that calculates
the growth coefficient based on any combination of 70 and 7T'1 (within the age limits of 5

and 16 years), enabling the computation of minutiae point displacement at any age.

While employing scaling factors has helped mitigate the effects of ageing in these
related studies, this approach appears to oversimplify the issue by assuming linear fin-
gerprint growth. Moreover, these studies solely rely on minutiae maps as input for aging
emulation, overlooking the fact that young children often have low-quality minutiae maps
(Camacho et al., 2017), which can significantly impact the quantity and quality of minu-
tiae. Including additional information, such as the ridge and valley configuration defining
minutiae relations, could potentially enhance the emulation solution. Considering the
above, the main objective of this study is to develop and evaluate an artificial intelligence
solution capable of emulating the changes undergone by a newborn’s minutiae map due to

natural growth over time.
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3 MATERIALS AND METHODS

This chapter presents the materials and methods utilized to achieve this work
goal. We aimed to perform five experiments and, in each experiment, train and test a
neural network model to emulate a specific growth period. The dataset used across the
experiments are detailed in Section 3.1. Frame 1 shows the input and output used for the

training step in each experiment.

Frame 1 — Experiments details

Experiment Input Output
1 Minutiae map at 7 days
2 Original image at 0 days + Minutiae map at 14 days
3 Segmented image at 0 days + | Minutiae map at 1 month
4 Minutiae map at 0 days Minutiae map at 2 months
5 Minutiae map at 3 months

For each experiment, we have as input the original fingerprint image, its segmented
version, and its minutiae map. The input is the fingerprint collected on the first day of
life. Respectively, in each experiment, we have trained a neural network to emulate the
minutiae map at 7 days, 14 days, 1 month, 2 months, and 3 months of life. To illustrate
how the fingerprints change overtime, Figure 15 shows an example of the same finger being

collected in several points in time.

Figure 15 — The same fingerprint collected in different points in time

(c) 14 days

(d) 1 month (e) 2 months
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In our model, we selected the Adam optimizer due to its adaptive learning rate
and momentum, which make it effective for a wide range of deep-learning tasks. For the
loss function, we chose cosine similarity loss to focus on the angular distance between
predicted and actual values, which is particularly useful when the direction of the target
vector is more important than its magnitude. We monitored the model’s performance using
accuracy, a straightforward metric that provides insight into the correctness of predictions.
We split our dataset into training and testing sets using an 80-20 split to ensure that
our model was evaluated on unseen data, enhancing its generalizability. Additionally, we
used a validation split of 20% of the training data to fine-tune the model and prevent
overfitting during training. We set the batch size to 2, which, although small, allowed for
more frequent updates of model parameters and reduced memory requirements. Finally,
we limited training to 10 epochs, balancing the need for sufficient learning with the risk of

overfitting and excessive training time.

Since our goal in each experiment was to emulate the ageing on neonatal fingerprints
without other factors, we have had to hinder those factors by performing a preprocessing
step referred to as cropping. The details of this step are detailed in Section 3.2. The inputs

and outputs were submitted to the cropping step in all experiments.

For calculating the segmented version of any fingerprint, we used the segmentor
provided by the partner company (InfantID, 2024). To calculate minutiae maps, we
executed the MindTCT software (Ko, 2007). The model used in each experiment had its

architecture detailed in Section 3.3.

3.1 Dataset

The fingerprint collection was conducted in partnership with a research compnay
(InfantID, 2024). The infants had their hands sanitized and had each of their fingers pressed
on a high-resolution scanner by a specialized team. Figure 16 illustrates the collection

process.

The database comprises fingerprints collected from newborns from December 2023
to July 2024. The newborns had their fingerprints collected from all ten fingers on five
sessions: the first day of life, 7 days, 14 days, 1 month, 2 months, and 3 months old.
Thumbs and index fingers from both hands were collected twice at each session. The
dataset is composed of 1,330 images of newborns, 1,330 images of 7 days babies, 1,134
images of 14 days babies, 1,134 images of 1-month-old babies, 966 images of 2-month-old
babies, and 868 images of 3-months-old babies. The fingerprints that had their quality
too low, i.e., no minutiae maps could be extracted in the preprocessing step, were not

considered in the experiment.
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Figure 16 — Newborn submitted to the fingerprint collection process

3.2 Cropping step

The preprocessing stage of cropping, to which all images were subjected, is a crucial
step designed to eliminate external factors unrelated to ageing in the minutiae maps. This
process aims to ensure that the subsequent analysis focuses solely on age-related changes
by addressing and mitigating various discrepancies that might occur between the input
and output images. These discrepancies can include minor rotations and decentralization
of the fingerprints. By standardizing these aspects, the cropping preprocessing ensures
a consistent and accurate basis for analyzing the ageing effects on fingerprint minutiae,
thereby enhancing the reliability and validity of the results. For cropping, we used the
software provided by the partner company (InfantID, 2024).

3.3 CNN architecture

Each convolutional neural network architecture consists of two main parts: the
contracting path (encoder) and the expansive path (decoder), as illustrated in Figure
17. Here is a layer-by-layer description of the net used with input consisting of three
grayscale images of 500x500 pixels (original fingerprint image, its segmented version, and
its minutiae map) and output of a single grayscale image of 500x500 pixels (minutiae

map):

« Block 1:

— Two convolutional layers with 64 filters, each of size 3 x 3, with ReLLU activation

and 'same’ padding.
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— Followed by a max pooling layer with a 2 x 2 pool size to reduce the spatial

dimensions.
Block 2:
— Two convolutional layers with 128 filters, each of size 3 x 3, with ReLLU activation
and 'same’ padding.

— Followed by a max pooling layer with a 2 x 2 pool size to further reduce the

spatial dimensions.
Block 3:
— Two convolutional layers with 256 filters, each of size 3 x 3, with ReLLU activation
and 'same’ padding.
— Followed by a max pooling layer with a 2 x 2 pool size.
Block 4:
— Two convolutional layers with 512 filters, each of size 3 x 3, with ReLLU activation
and 'same’ padding.

— Followed by a max pooling layer with a 2 x 2 pool size.

Block 5:
— Two convolutional layers with 1024 filters, each of size 3 x 3, with ReLU
activation and ’same’ padding.
— This block represents the deepest part of the network, capturing the most
abstract features.
Block 6:
— Upsampling of the feature map from Block 5 using a 2 x 2 upsampling layer to
increase the spatial dimensions.

— Dimensionality adjustment for the output of Block 4 using a convolutional layer
with 512 filters and 2 x 2 kernel size.

— Concatenation of the upsampled output from Block 5 and the adjusted output
from Block 4.

— Two convolutional layers with 512 filters, each of size 3 x 3, with ReLLU activation

and 'same’ padding.

e« Block 7:

— Upsampling of the feature map from Block 6 using a 2 x 2 upsampling layer.
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— Dimensionality adjustment for the output of Block 3 using a convolutional layer
with 256 filters and 2 x 2 kernel size.

— Zero padding to adjust the dimensions of the upsampled output from Block 6.

— Concatenation of the upsampled and padded output from Block 6 and the
adjusted output from Block 3.

— Two convolutional layers with 256 filters, each of size 3 x 3, with ReL'U activation
and 'same’ padding.

+ Block 8:

— Upsampling of the feature map from Block 7 using a 2 x 2 upsampling layer.

— Dimensionality adjustment for the output of Block 2 using a convolutional layer
with 128 filters and 2 x 2 kernel size.

— Concatenation of the upsampled output from Block 7 and the adjusted output
from Block 2.

— Two convolutional layers with 128 filters, each of size 3 x 3, with ReLU activation
and 'same’ padding.

+ Block 9:

— Upsampling of the feature map from Block 8 using a 2 x 2 upsampling layer.

— Dimensionality adjustment for the output of Block 1 using a convolutional layer
with 64 filters and 2 x 2 kernel size.

— Concatenation of the upsampled output from Block 8 and the adjusted output
from Block 1.

— Two convolutional layers with 64 filters, each of size 3 x 3, with ReLU activation

and 'same’ padding.
e Output Layer:

— A final convolutional layer with 1 filter of size 1 x 1 and a sigmoid activation
function, producing the final output of the network, typically a segmentation

map or binary mask.

In total, each model has 32.772.545 trainable parameters. Figure 17 shows struc-
turally the model used. The experiments were performed in a Google Colab! A100 GPU
environment with a system RAM of 83.5 GB, GPU RAM of 40.0GB, and a Disk capacity
of 201.2 GB.

L https://colab.research.google.com/
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Figure 17 — CNN architecture used in the experiments
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4 RESULTS AND DISCUSSION

Firstly, several images were discarded from the experiment due to their low quality,
which prevented the extraction of minutiae maps. These subpar images lacked the necessary
clarity and detail required for accurate minutiae detection, rendering them unsuitable for
further analysis. As a result, they were excluded from the dataset to maintain the integrity
and reliability of the experimental results. The final number of image pairs used in each of

the five experiments is shown in Table 2.

Table 2 — Final number of pairs used in the experiment after filtering out bad quality
fingerprints

Experiment Number of image pairs

1 013
2 435
3 392
4 258
) 149

To illustrate the difference between high and bad-quality fingerprints, Figure 18
shows an example of each. It is possible to observe that the bad-quality segmented
fingerprint has considerably less identifiable minutiae when compared with the high-quality

one.

Figure 18 — Comparison of Images: Bad Quality vs. High Quality

(a) Original (Bad Quality) (b) Cropped (Bad Quality) (c) Segmented (Bad Quality)

(d) Original (High Quality) (e) Cropped (High Quality) (f) Segmented (High Quality)
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By performing the experiments as described in the Chapter 3, the accuracy for
testing and validation shown in Figure 19 was obtained. Despite the accuracy being close
to one across all experiments, these results are not appropriate or meaningful. The models
are generating predominantly white images with a few random black dots representing
minutiae. This superficial pattern is easy for the model to replicate, leading to artificially
high accuracy scores. However, this metric fails to capture the true quality and relevance
of the generated images. The high accuracy does not reflect the model’s ability to produce
realistic or useful representations of fingerprint growth, highlighting that accuracy alone is

not a sufficient measure of success in this context.

Figure 19 — Accuracy of testing and validation
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Using convolutional neural networks (CNNs) with images to emulate the growth
of newborn fingerprints may not be the most effective approach due to the inherent loss
of information during the conversion process. When converting minutiae maps (xyt) into
images and then back from images to minutiae maps, vital data can be lost, leading to
reduced accuracy and representation power. While the image dataset provides a broad
and powerful representation, this may not translate effectively back into the xyt format,
potentially hindering the model’s ability to capture the intricate details necessary for

accurate fingerprint analysis.

In this experiment, the choice of loss function is critical, as it must satisfy Tensor-
Flow’s requirements for differentiability to enable effective training. Ideally, a loss function
tailored to matching techniques, such as Bozorth3 or similar methods, would be employed
to better align with the nature of fingerprint matching. These techniques are specifically

designed to compare and score the similarity between fingerprint minutiae sets, making
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them more suitable for this task. However, integrating such matching-based loss functions
while ensuring they remain differentiable presents a significant challenge that needs to be
addressed for improved performance. To illustrate this, Figure 20 shows three examples of
predicted and expected minutiae maps. When comparing examples 1, 2 and 3 individually
by using the cosine similarity between pixels, since the predicted and expected images in
each example have most pixels white, the similarity is around 99%. That could explain

why all models have reached around 99% accuracy but the results are not meaningful.

Figure 20 — Comparison of Images: predicted and expected minutiae maps

L. o ’ -
. . . . _—
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(a) Expected output 1 (b) Expected output 2 (c) Expected output 3
(d) Predicted output 1 (e) Predicted output 2 (f) Predicted output 3

Furthermore, the preprocessing techniques employed, such as cropping and rotating
fingerprints, may not adequately isolate the aging behavior of the fingerprints. To ensure
that the same region of the finger is consistently presented in pairs X and Y, an alignment
technique would be more appropriate. This would help control for variations that are
unrelated to aging and focus the model’s learning on the actual growth and changes in
the fingerprints over time. Without precise alignment, the model may be inadvertently

learning from irrelevant differences, thus diluting the effectiveness of the experiment.

The quantity of samples used for training and testing in this experiment is another
critical factor. While obtaining fingerprint data from newborns is understandably challeng-

ing, increasing the sample size could significantly enhance the experiment’s outcomes. A
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larger dataset would provide more varied examples, potentially leading to more robust and
generalized model performance. The limited sample size, as shown in Table 2, currently
restricts the model’s ability to learn diverse patterns of fingerprint growth, which may

result in overfitting or an inability to generalize to new data.

The quality of the collected fingerprints also plays a pivotal role in the success
of this experiment. Despite having a large number of fingerprints initially, a substantial
portion was discarded during preprocessing due to quality issues. This not only reduced
the available data but also potentially excluded important variations that could have
contributed to the model’s learning. Ensuring higher quality in the collected fingerprints,
possibly through improved scanning techniques or stricter quality controls, would lead to
a more reliable dataset and better experimental results. The impact of quality can be seen

on Figure 18.

In summary, while the experiment aims to emulate the growth of newborn finger-

prints using CNNs; all these critical challenges must be addressed.
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5 CONCLUSION

Each year, millions of children are born worldwide, leading to a significant number
of young children in need of improved survival strategies. Despite substantial progress in
recent decades, enhancing child survival remains a critical challenge. Effective interventions
like vaccinations, proper nutrition, and protection programs are crucial for preserving
young lives. However, their success depends heavily on robust identification systems. The
lack of efficient monitoring and identification systems impacts vaccination coverage and
contributes to preventable deaths. Biometric systems for neonatal identification could
address fraud in nutrition programs, child protection, and national identity management.
Conventional biometric methods struggle with the unique characteristics of neonatal skin
and fingers. Rapid growth and changes in body composition affect fingerprint quality
and stability, making recognition difficult. This study proposes developing an artificial
intelligence model to simulate changes in newborn fingerprints over time, aiming to provide
a more accurate representation of child development by addressing the limitations of

previous methods that relied on scaling factors.

In conclusion, the experiment highlights several challenges in using CNNs to
emulate the growth of newborn fingerprints, particularly the loss of information during
the conversion between minutiae maps and images. This loss undermines the effectiveness
of the image-based approach, suggesting that direct use of xyt data might yield more
accurate results. Additionally, the choice of loss function is critical, requiring a balance
between alignment with fingerprint matching techniques and TensorFlow’s differentiability
constraints. The current preprocessing methods, which include cropping and rotating, may
not effectively isolate fingerprint aging behavior, necessitating more precise alignment
techniques. The experiment’s outcomes are also impacted by the limited sample size and
the quality of collected fingerprints, both of which restrict the model’s ability to generalize
and learn diverse growth patterns. Future work should focus on increasing the dataset
size, enhancing fingerprint quality, and exploring alternative methods that utilize xyt data

directly to improve the accuracy and reliability of fingerprint growth emulation.






45

REFERENCES

AGGARWAL, C. C. et al. Neural networks and deep learning. [S.l.: s.n.]: Springer,
2018. v. 10.

BITTENCOURT, G. Inteligéncia artificial: ferramentas e teorias. [S.l.: s.n.], 1998.

CAMACHO, V. et al. Recognizing infants and toddlers over an on-production fingerprint
database. In: 2017 International Conference of the Biometrics Special Interest
Group (BIOSIG). Darmstadt, Germany: IEEE, 2017. p. 1-5.

ENGELSMA, J. J. et al. Infant-id: Fingerprints for global good. IEEE Transactions on
Pattern Analysis and Machine Intelligence, IEEE, v. 44, n. 7, p. 3543-3559, 2021.

ENGELSMA, J. J. et al. Infant-prints: Fingerprints for reducing infant mortality. CoRR,
abs/1904.01091, p. 67-74, 2019.

FINLAYSON, L. et al. Depth penetration of light into skin as a function of wavelength
from 200 to 1000 nm. Photochemistry and Photobiology, Wiley Online Library,
v. 98, n. 4, p. 974-981, 2022.

GALBALLY, J.; HARAKSIM, R.; BESLAY, L. Fingerprint quality: A lifetime story.
In: 2018 International Conference of the Biometrics Special Interest Group
(BIOSIG). Darmstadt, Germany: IEEE, 2018. p. 1-5.

GALBALLY, J.; HARAKSIM, R.; BESLAY, L. A study of age and ageing in fingerprint
biometrics. IEEE Transactions on Information Forensics and Security, IEEE,
v. 14, n. 5, p. 1351-1365, 2018.

GRANTHAM-MCGREGOR, S. et al. Effects of integrated child development and
nutrition interventions on child development and nutritional status (vol 1308, pg 11, 2014).
ANNALS REPORTS, BLACKWELL SCIENCE PUBL OSNEY MEAD, OXFORD
OX2 0EL, ENGLAND, v. 1309, p. 63-63, 2014.

HARAKSIM, R.; GALBALLY, J.; BESLAY, L. Fingerprint growth model for mitigating
the ageing effect on children’s fingerprints matching. Pattern Recognition, Elsevier,
v. 88, p. 614-628, 2019.

INFANTID. 2024. Https://natosafe.com.br/, Access: 22.04.2024.

JAIN, A.; BOLLE, R.; PANKANTI, S. Introduction to biometrics. [S.l.: s.n.]:
Springer, 2011.

JAIN, A.; HONG, L.; PANKANTI, S. Biometric identification. Communications of the
ACM, ACM New York, NY, USA, v. 43, n. 2, p. 90-98, 2000.

JAIN, A. K. et al. Giving infants an identity: Fingerprint sensing and recognition. In:
Proceedings of the Eighth International Conference on Information and
Communication Technologies and Development. New York, NY, United States:
Association for Computing Machinery, 2016. p. 1-4.



46

JAIN, A. K. et al. Fingerprint recognition of young children. IEEE Transactions on
Information Forensics and Security, [IEEE, v. 12, n. 7, p. 1501-1514, 2016.

JAIN, A. K.; CAO, K.; ARORA, S. S. Recognizing infants and toddlers using fingerprints:
Increasing the vaccination coverage. In: IEEE international joint conference on
biometrics. Clearwater, FL, USA: IEEE, 2014. p. 1-8.

JAIN, A. K.; KUMAR, A. Biometric recognition: an overview. Berlin, Germany:
Springer, 2012. 49-79 p.

JAIN, A. K.; ROSS, A.; PRABHAKAR, S. An introduction to biometric recognition.
IEEE Transactions on circuits and systems for video technology, IEEE, v. 14,
n. 1, p. 4-20, 2004.

KO, K. User’s Guide to NIST Biometric Image Software (NBIS). [S.l.: s.n.]: NIST
Interagency /Internal Report (NISTIR), National Institute of Standards and Technology,
Gaithersburg, MD, 2007.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. nature, Nature Publishing
Group UK London, v. 521, n. 7553, p. 436444, 2015.

LECUN, Y. et al. Handwritten digit recognition with a back-propagation network.
Advances in neural information processing systems, v. 2, 1989.

LI, S. Z. Encyclopedia of Biometrics: I-Z. Berlin, Germany: Springer Science &
Business Media, 2009. v. 1.

LINDOWER, J. B. Water balance in the fetus and neonate. In: Seminars in Fetal and
Neonatal Medicine. Amsterdam, Netherlands: Elsevier, 2017. v. 22, p. 71-75.

MARKERT, K. et al. Detecting anisotropy in fingerprint growth. Journal of the Royal
Statistical Society Series C: Applied Statistics, Oxford University Press, v. 68, n. 4,
p. 1007-1027, 2019.

PHILLIPS, P. J. et al. An introduction evaluating biometric systems. Computer, IEEE,
v. 33, n. 2, p. 56-63, 2000.

RUSSELL, S. J.; NORVIG, P. Artificial intelligence a modern approach. [S.l.: s.n.|:
London, 2010.

SCHNEIDER, J. Quantifying the dermatoglyphic growth patterns in children through
adolescence. National Institute of Justice December, v. 1, p. 1, 2010.

SEDLAK, A. National estimates of missing children: An overview. [S.l.: s.n.]: US
Department of Justice, Office of Justice Programs, Office of Juvenile ..., 2002.

SHARMA, A.; FORD, S.; CALVERT, J. Adaptation for life: a review of neonatal
physiology. Anaesthesia & Intensive Care Medicine, Elsevier, v. 12, p. 85-90, 2011.

SIRIRUNGSI, W. et al. Early infant hiv diagnosis (eid) and entry to hiv care cascade:
seven-year experience in thailand. The lancet. HIV, Europe PMC Funders, v. 3, n. 6,
p- €259, 2016.

SOUTHIER, L. F. P. et al. Systematic Literature Review on Neonatal Fingerprint
Recognition. 2023. Preprint.



47

UNICEF United Nations International Children’s Emergency Fund. Ending preventable
child deaths: how britain can lead the way. 2023. Available at: https://www.unicef.
org.uk/wp-content/uploads/2020,/01/Unicef-UK-Ending-Preventable-Child-Deaths
Report-2020.pdf.

UNICEF United Nations International Children’s Emergency Fund. Under-
five mortality. 2023. Available at: https://data.unicef.org/topic/child-survival /
under-five-mortality /.

United Nations - Department of Economic and Social Affairs. World Population
Prospects 2022. 2023. Available at: https://population.un.org/wpp/.

VISSCHER, M. O. et al. Newborn infant skin: physiology, development, and care. Clinics
in dermatology, Elsevier, v. 33, n. 3, p. 271-280, 2015.

WEFP United Nations World Food Programme. WFP demands ac-

tion after uncovering misuse of food relief intended for hun-

gry people in Yemen. 2023. Available at: https://www.wfp.org/news/
wfp-demands-action-after-uncovering-misuse-food-relief-intended-hungry-people-yemen.

WHO World Health Organization. Immunization Agenda 2030: A Global Strategy
To Leave No One Behind. 2023. Available at: https://www.who.int/publications/m/
item /immunization-agenda-2030-a-global-strategy-to-leave-no-one-behind.

WHO World Health Organization. Immunization coverage. 2023. Available at:
https://www.who.int /news-room /fact-sheets/detail /immunization-coverage.


https://www.unicef.org.uk/wp-content/uploads/2020/01/Unicef-UK-Ending-Preventable-Child-Deaths_Report-2020.pdf
https://www.unicef.org.uk/wp-content/uploads/2020/01/Unicef-UK-Ending-Preventable-Child-Deaths_Report-2020.pdf
https://www.unicef.org.uk/wp-content/uploads/2020/01/Unicef-UK-Ending-Preventable-Child-Deaths_Report-2020.pdf
https://data.unicef.org/topic/child-survival/under-five-mortality/
https://data.unicef.org/topic/child-survival/under-five-mortality/
https://population.un.org/wpp/
https://www.wfp.org/news/wfp-demands-action-after-uncovering-misuse-food-relief-intended-hungry-people-yemen
https://www.wfp.org/news/wfp-demands-action-after-uncovering-misuse-food-relief-intended-hungry-people-yemen
https://www.who.int/publications/m/item/immunization-agenda-2030-a-global-strategy-to-leave-no-one-behind
https://www.who.int/publications/m/item/immunization-agenda-2030-a-global-strategy-to-leave-no-one-behind
https://www.who.int/news-room/fact-sheets/detail/immunization-coverage

	Folha de rosto com carimbo
	Title page additional
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	Contents
	Introduction
	Theoretical background
	Biometric systems
	Fingerprints

	Neural Networks and Deep Learning
	Related studies

	Materials and Methods
	Dataset
	Cropping step
	CNN architecture

	Results and Discussion
	Conclusion
	References

