

UNIVERSIDADE DE SÃO PAULO
Escola de Engenharia de São Carlos

D e p a r t a m e n t o d e E n g e n h a r i a E l é t r i c a e

C o m p u t a ç ã o

São Carlos - SP

Realidade Aumentada Aplicada em

Decoração de Ambientes
Desenvolvida para o Sistema

Operacional Android

Lucas Carvalho Gomes

[Nome do Aluno]

Realidade Aumentada Aplicada em Decoração de
Ambientes Desenvolvida para o Sistema

Operacional Android

Lucas Carvalho Gomes

Orientador: Prof. Dr. Valdir Grassi Junior

Monografia referente ao projeto de conclusão de curso

do Departamento de Engenharia Elétrica e Computação

da Escola de Engenharia de São Carlos – EESC-USP

para obtenção do título de Engenheiro de Computação.

Área de Concentração: Desenvolvimento Mobile,

Realidade Aumentada

USP – São Carlos

31 de outubro de 2016

i

Agradecimentos

Agradeço primeiramente a Deus, pela saúde concedida e sabedoria para realização

deste trabalho.

À minha família pelo apoio e incentivo aos estudos e que mesmo longe sempre

torceram pelo meu sucesso profissional.

Muito obrigado também à minha noiva e futura esposa que sempre esteve do meu lado

e compartilhou comigo, mesmo distante, de toda minha trajetória.

Agradeço também aos meus amigos e colegas da universidade que sempre estiveram

comigo e juntos pudemos vivenciar os momentos e estudar e partilhar do conhecimento

obtido.

Ao meu orientador pela disposição e paciência para me auxiliar com as dúvidas que

surgiram durante este trabalho, me dando todo suporte necessário.

E a todos os professores que desde o primário até aqui ajudaram em minha formação.

ii

Resumo

A realidade aumentada é um conceito criado em 1981 que trata da sobreposição de

objetos virtuais ao mundo real. Seu uso tem se tornado cada vez mais comum com o advento

da miniaturização dos computadores e o seu consequente maior desempenho. De forma

semelhante, os dispositivos móveis fazem parte atualmente do cotidiano de uma grande

parcela da população, assim, a combinação destas duas tecnologias veio a facilitar a interação

com a realidade aumentada. Este trabalho vem mostrar, então, as etapas de desenvolvimento

de uma aplicação de realidade aumentada para Android e as ferramentas utilizadas no

processo como o Vuforia, ferramenta de detecção de marcadores que dá apoio à realidade

aumentada, e o libGDX que abstrai o OpenGL facilitando o processamento gráfico. Assim

como as dificuldades de se produzir uma aplicação deste tipo que envolvem desde a

descoberta de novas tecnologias até a aparição de requisitos não planejados. Por fim, o

produto obtido por meio da metodologia ágil e da cuidadosa implementação se valendo de

padrões de projetos e ferramentas de alto nível exibe fácil escalabilidade e rápida

implementação se comparado a implementações feitas sem o uso das mesmas.

iii

Sumário

LISTA DE ABREVIATURAS .. V

LISTA DE TABELAS ... VI

LISTA DE FIGURAS ... VII

CAPÍTULO 1: INTRODUÇÃO .. 1

1.1. CONTEXTUALIZAÇÃO E MOTIVAÇÃO ... 1

1.2. OBJETIVOS ... 3

1.3. ORGANIZAÇÃO DO TRABALHO .. 4

CAPÍTULO 2: REVISÃO BIBLIOGRÁFICA .. 5

2.1. CONSIDERAÇÕES INICIAIS .. 5

2.2. FERRAMENTAS DE SUPORTE A RA PARA DISPOSITIVOS MÓVEIS 7

2.2.1. OpenGL .. 7

2.2.2. ARToolkit ... 7

2.2.3. Vuforia ... 8

2.2.4. LibGDX .. 9

2.2. DETECÇÃO DE MARCADORES .. 11

2.4. CARACTERÍSTICAS DO ANDROID ... 14

2.4.1. Arquitetura ... 14

2.4.2. Componentes dos Aplicativos .. 16

2.5. METODOLOGIA ÁGIL ... 19

2.6. PADRÕES DE PROJETO.. 20

iv

2.7. CONSIDERAÇÕES FINAIS .. 24

CAPÍTULO 3: DESENVOLVIMENTO DO TRABALHO 25

3.1. CONSIDERAÇÕES INICIAIS .. 25

3.2. PROJETO .. 25

3.2.1. Escolha das Ferramentas de Suporte a RA ... 25

3.2.2. Planejamento ... 27

3.2.3. Integração das Ferramentas com o Android ... 28

3.2.4. Projeto Inicial .. 30

3.2.5. Organização das Telas ... 32

3.2.6. Seleção de Objetos por Toque ... 33

3.2.7. Arquitetura da Interface com Usuário ... 35

3.3. RESULTADOS OBTIDOS .. 37

3.4. DIFICULDADES E LIMITAÇÕES ... 39

3.5. CONSIDERAÇÕES FINAIS .. 40

CAPÍTULO 4: CONCLUSÃO .. 41

4.1. CONTRIBUIÇÕES .. 41

4.2. RELACIONAMENTO ENTRE O CURSO E O PROJETO ... 41

4.3. TRABALHOS FUTUROS ... 42

REFERÊNCIAS .. 44

v

Lista de Abreviaturas

API Application Program Interface

CAD Computer Aided Design

GPS Global Positioning System

HAL Hardware Abstraction Layer

HMD Head Mounted Display

JSON JavaScript Object Notation

NDK Native Development Kit

RA Realidade Aumentada

RV Realidade Virtual

SDK Software Development Kit

SO Sistema Operacional

UML Unified Modeling Language

vi

Lista de Tabelas

Tabela 1: Pseudo código do ciclo de renderização do aplicativo 31

Tabela 2: Exemplo de listener utilizado para trocar a tela principal para a tela de

seleção .. 37

vii

Lista de Figuras

Figura 1: Protótipo configurável para avaliação física de interfaces. Fonte: [11] 2

Figura 2: Diagrama de Milgram (Adaptado de [20]) .. 6

Figura 3: Ciclo de vida de um programa estruturado pelo libGDX (Retirado de [19]) 10

Figura 4: Funcionamento simplificado da libGDX (Retirado de [19]) 11

Figura 5: Cadeia de realidade aumentada para detecção de marcadores. Fonte: [25] .. 12

Figura 6: Exemplo de marcador da ferramenta de RA ARToolkitPlus 13

Figura 7: Arquitetura do sistema operacional Android (Retirado de [3]) 15

Figura 8: Ciclo de vida de uma atividade (Adaptado de [4]).. 17

Figura 9: Padrão de projeto Singleton (Adaptado de [47]) ... 21

Figura 10: Padrão de projeto Prototype (Adaptado de [47]) .. 21

Figura 11: Padrão de projeto Facade (Adaptado de [47]) ... 22

Figura 12: Padrão de projeto Flyweight (Adaptado de [47]) .. 22

Figura 13: Padrão de projeto Command (Adaptado de [47]) 23

Figura 14: Padrão de projeto Observer (Adaptado de [47]) ... 23

Figura 15: Padrão de projeto Template Method (Adaptado de [47]) 24

Figura 16: Fluxo básico da aplicação ... 26

Figura 17: Diagrama de sequência da integração das ferramentas Vuforia e libGDX . 29

Figura 18: Projeto inicial do gerenciamento de objetos ... 30

Figura 19: Representação do banco de dados da aplicação .. 31

viii

Figura 20: Organização das telas, da esquerda para direita: tela principal, seleção de

categoria, seleção de mobília e tela de ajuste ... 32

Figura 21: Diagrama do fluxo de telas.. 33

Figura 22: Interseção do raio com o paralelepípedo [34]. .. 35

Figura 23: Diagrama de classe da arquitetura de interface com o usuário 36

Figura 24: Da esquerda para direita e de cima para baixo: tela principal ao iniciar

aplicativo, menu de seleção de categoria, menu de seleção de mobília, tela de ajuste, tela

principal contendo a mobília selecionada, galeria de fotos do Android 39

1

CAPÍTULO 1: INTRODUÇÃO

1.1. Contextualização e Motivação

A realidade aumentada (RA) é a sobreposição de um ambiente físico, do mundo

real, com elementos virtuais gerados por computador por meio de estímulos sensoriais

captados pelo mesmo, tais como som, vídeo, tato, força ou dados de GPS (Global

Positioning System). Ela está relacionada com um conceito mais geral chamado realidade

mediada, em que uma visão da realidade é modificada (possivelmente até mesmo

diminuída, em vez de aumentada) por um computador. Assim, possui-se como resultado

uma percepção multissensorial reforçada da realidade [10]. Em contraste, a realidade

virtual (RV) substitui o mundo real com o simulado [28]. O aumento da realidade é

convencionalmente em tempo real e dentro do contexto de seu ambiente, como a

sobreposição de placares esportivos na TV durante um jogo. Com a ajuda de tecnologias

de RA avançadas, por exemplo, a adição de visão computacional e reconhecimento de

objetos, as informações sobre o mundo real em torno do usuário tornam-se interativas e

manipuláveis digitalmente. Além disso, os sistemas de RA são implementados de forma

que o ambiente real e os objetos virtuais permanecem ajustados, mesmo com a

movimentação do usuário no ambiente real [6].

Apesar da RA estar mais relacionada a aplicações de representação visual, pode-se

em principio aumentar qualquer interface da realidade, como é o caso do Toozla [36], uma

espécie de guia turístico que se utiliza de GPS para comentar sobre a história do local em

que o usuário se encontra. Alguns tipos de aplicações envolvendo RA são:

 Ramo automotivo e de navegação: é o caso de um pára-brisa desenvolvido pela

General Motors (GENERAL MOTORS, 2011) em parceria com a Carnegie

Mellon University e a University of Southern California, que utiliza a tecnologia

HUD (heads-up display) para mostrar faixas, elementos de sinalização e

animais mesmo em condições desfavoráveis [9];

 Prototipação de produtos: protótipos podem ser utilizados quando se deseja uma

visão estrutural e estética do produto mais rapidamente, podendo-se agregar

funcionalidades ao protótipo por meio de software e avaliá-lo de antemão. Este

2

é o caso do ARMO [15] (Figura 1), que reconhece objetos volumétricos e

renderiza formas tridimensionais previamente desenvolvidas em programas de

desenho auxiliado por computador (CAD);

 Entretenimento: a indústria do entretenimento investe alto em tecnologias

inovadoras de RA e RV para se destacar. Um exemplo disso é o jogo Eye Pet

desenvolvido para a plataforma de videogame Playstation 3 e mais

recentemente o jogo The Playroom da plataforma de videogame Playstation 4

onde personagens virtuais interagem com pessoas e objetos do mundo real [32];

 Treinamento: treinar funcionários previamente utilizando-se RA antes de treiná-

los com objetos reais é mais seguro, como é o caso do treinamento na indústria

petrolífera realizado pelo projeto AMIRE [11];

 Consumidor final: aplicativos que apresentam facilidades para o cotidiano

dominam esse ramo, por exemplo, ao se direcionar a câmera do dispositivo para

determinado local, um programa é capaz de identificar pontos de referência e

apresentar descrições sobre os mesmos (caso do Nokia City Lens) ou, então, ele

detecta palavras em outro idioma e traduz para sua língua natal (World Lens);

Figura 1: Protótipo configurável para avaliação física de interfaces. Fonte: [11]

Assim, percebe-se a grande diversidade de produtos que se utilizam da tecnologia

de RA. No entanto, não se encaixam no termo as aplicações de realidade virtual, edição

fotográfica e de mídia aumentada. A última, apesar de ser bem parecida em termos práticos

com a RA, não é considerada um ramo de RA por alguns autores. O fato de estender uma

mídia e não o mundo a sua volta é o que desclassifica a mídia aumentada do termo. Um

exemplo de mídia aumentada pode ser visto no Guiness Book 2013, que mostra uma

3

animação 3D dos recordes por meio de uma aplicação de celular quando se aponta para

algumas páginas que contém QR code [27].

Uma aplicação interessante no ramo de realidade aumentada para dispositivos

móveis é sobre decoração. Aplicações de decoração e arquitetura que permitem a visão 3D

da mobília sobreposta à maquete do ambiente existem de longa data para computadores

pessoais. Porém, essas aplicações não são tão bem exploradas no ramo de RA. Surge então

uma motivação de complementar esses programas oferecendo uma oportunidade do

usuário visualizar o resultado da decoração em um ambiente real.

Em relação aos aplicativos para dispositivos móveis de decoração que se utilizam

de RA, pode-se dizer que a maioria falha ao não obedecer ao sentido de localidade fixa do

objeto virtual ou de dependerem de hardwares com sensores específicos ou de alto

desempenho. O destaque fica para o IKEA catalogue [37], o mais popular, que mostra os

móveis do catálogo em RA e usa a revista como referência para o objeto virtual ser

posicionado. Assim como para o iStaging [38] que não depende de um referencial pré-

definido, porém sofre um pouco com flutuações ao mostrar o objeto e necessita de alguns

poucos ajustes manuais.

Portanto, tendo em vista a fácil aderência por parte do consumidor a tecnologias de

RA que facilitem o cotidiano, a crescente tendência desta tecnologia no mercado e as

escassas aplicações disponíveis atualmente sobre decoração em AR, aliado ao interessante

ramo de conhecimento dentro da computação gráfica e visão computacional em que o tema

se encontra, surge a motivação deste trabalho.

1.2. Objetivos

O objetivo deste trabalho é desenvolver uma aplicação de realidade aumentada para

dispositivos móveis por meio de metodologias ágeis e utilizando-se de padrões de projeto

para bem estruturá-lo, de forma a se obter resultados visíveis em curtas iterações de projeto

e do mesmo ser facilmente escalável.

Ademais, pretende-se apresentar conceitos de RA e ferramentas utilizadas na

composição de projetos de RA de forma a apresentar as dificuldades e facilidades de cada

uma e discutir sobre quais padrões são mais desejáveis neste tipo de projeto.

4

Por fim, o resultado final está pronto para o mercado, com design padronizado e

desempenho otimizado para ser capaz de executar em uma gama de aparelhos diferentes,

além disso, há interesse de que ele seja modular de forma que seja fácil atualizá-lo após o

lançamento.

1.3. Organização do Trabalho

No capítulo 2 é apresentada uma revisão bibliográfica que servirá como base para o

entendimento dos demais capítulos da monografia, apresentando os conceitos,

metodologias, trabalhos de literatura na área e terminologia básica. A seguir, no capítulo 3

é apresentado o desenvolvimento do projeto, o qual apresenta cada etapa de planejamento

seguindo as metodologias apresentadas no capítulo anterior, assim como os resultados e

dificuldades obtidas. Finalmente, no capítulo 4 são apresentadas conclusões sobre o

trabalho assim como os trabalhos futuros.

5

CAPÍTULO 2: REVISÃO BIBLIOGRÁFICA

2.1. Considerações Iniciais

A realidade aumentada tem suas bases em experimentos com realidade virtual, que

por sua vez é relatada com a origem em experiências cinematográficas multimodais. Nesse

sentido, destaca-se o Sensorama [39], de Morton Heilig, criado em 1956, o qual permitia

um passeio pelas ruas de Manhattan com sensações de som, aromas, vibrações e vento

sincronizados com o vídeo.

Já em 1961, os engenheiros da Philco Comeau, e Bryan, criaram um capacete HMD

(Head Mounted Diaplay) cujos movimentos controlavam uma câmera remota,

implementando-se assim a telepresença por vídeo [40]. Dois anos depois, Sutherland,

apresentou em sua tese de doutorado um sistema que envolvia uma caneta óptica capaz de

interagir com o computador para seleção e desenho de Figuras no monitor, intitulada de

Sketchpad, a Man-Machine Graphical Communication System [29]. Nela ele estabeleceu

termos que depois seriam utilizados em pesquisas de RV como gráficos no monitor,

interação em tempo real e dispositivos especiais.

O mesmo Sutherland definiu, em 1965, conceitos de um display usado para

interagir com objetos em um mundo virtual, envolvendo estímulos visuais, sonoros e táteis,

de forma intuitiva em The Ultimate Display [30]. Finalmente, em 1968, Sutherland

descreveu em seu artigo A Head-Mounted Three Dimensional Display [31] um capacete

(HMD) estereoscópico e rastreável, que continha dois mini-displays CRT e uma interface

de rastreadores mecânicos e ultra-sônicos, o que estabeleceu um marco histórico para

realidade virtual em termos de imersão. Ambos os capacetes da Philco e de Sutherland

estabeleceram as bases para realidade aumentada, que teve seus termos cunhados anos

depois (1990) pelo Prof. Thomas Caudell, em uma visita à Boeing, em referência a um

dispositivo que ajudava funcionários na montagem de equipamentos eletrônicos de

aeronaves.

Apesar do termo ter aparecido apenas em 1990, a primeira aplicação de realidade

aumentada teria sido feita em 1981, o Super Cockpit, utilizado em simuladores da força

6

aérea americana, passou a ter outro propósito como capacete para aumentar a visão do

avião (como indicação de misseis disponíveis) em um projeto de milhões de dólares.

Por fim destacam-se como fatos importantes:

 O Workshop on Augmented Reality and Ubiquitous Computing, em 1993 no

MIT, com a presença de pesquisadores de renome que ajudaram a

popularizar a área.

 A disponibilização do software livre ARToolKit [16] baseado em

rastreamento por vídeo, para desenvolvimento de aplicações em RA, o qual

despertou interesse mundial.

 O I Workshop de Realidade Aumentada (WRA 2004), em Piracicaba, SP,

precursor de workshops de RA e RV em todo Brasil [18].

Atualmente, o estado da arte da realidade aumentada se encontra em aplicações que

envolvem sistemas inteligentes que reagem não deterministicamente (de acordo com a

situação), sistemas que se utilizam de computação ubíqua e dispositivos vestíveis. Assim,

com a evolução da internet e a redução de custo (e aumento do desempenho) dos

computadores, aplicações de RA se tornam mais populares, impulsionadas pelo fácil

acesso de customização (programação) e de sua execução em plataformas de uso comum

como dispositivos móveis [17].

Conclui-se esse resumo histórico da RA, com o diagrama de Milgram [20] (Figura

2), que afirma que a realidade aumentada faz parte da chamada realidade misturada, e se

posiciona em algum ponto da realidade-virtualidade contínua, que conecta um ambiente

totalmente real a um ambiente totalmente virtual.

Figura 2: Diagrama de Milgram (Adaptado de [20])

7

2.2. Ferramentas de Suporte a RA para Dispositivos

Móveis

A seguir são listadas algumas das ferramentas que auxiliam o desenvolvimento de

aplicações de realidade aumentada, das quais, o Vuforia e o libGDX foram utilizados

diretamente neste trabalho.

2.2.1. OpenGL

A Open Graphics Library (OpenGL) [43] é uma interface de programação de

aplicações (API) multi-plataforma e multi-linguagem para renderização de gráficos

vetoriais 2D e 3D. A API é tipicamente usada para interagir com uma unidade de

processamento gráfico (GPU), para obter processamento acelerado por hardware.

As ferramentas que serão apresentadas ARToolkit, Vuforia e libGDX utilizam

OpenGL como base para seu processamento abstraindo o usuário da programação de nível

próximo ao hardware.

2.2.2. ARToolkit

O ARToolkit, de Augmented Reality Toolkit, é uma biblioteca de código aberto

(licença LGPL v3.0) de rastreamento por vídeo, capaz de calcular a posição e orientação

real da câmera relativa a marcadores quadrados físicos (seção 2.3) ou a marcadores de

aspecto natural (imagens planas) em tempo real.

O ARToolkit foi desenvolvido originalmente por Hirokazu Kato do Nara Institute

of Science and Technology em 1999 [16] e foi lançado ao público pela Universidade de

Washington. Ele foi uma das primeiras bibliotecas a ser disponibilizada para dispositivos

móveis, rodando no Symbian em 2005, e em 13 de maio de 2015 foi re-lançada após sua

aquisição pela empresa de RA DAQRI com partes que antes só se encontravam na versão

profissional paga, agora em código aberto.

A biblioteca é otimizada para dispositivos móveis e conta com suporte a OpenGl

ES2.x, integração com GPS e bússola e calibração automática de câmera. Códigos de

8

exemplo, assim como suporte aos sistemas operacionais e detalhes específicos podem ser

encontrados em sua documentação [5].

2.2.3. Vuforia

O Vuforia, assim como o ARToolkit, utiliza-se de visão computacional para

reconhecimento (e ratreamento) de imagens planares e reconhecimento de múltiplos

marcadores, porém diferentemente de seu concorrente, ele também reconhece formas 3D

simples como cubos e cilindros em tempo real, além de incluir em suas funcionalidades a

detecção de oclusão, que reconhece se um marcador está parcialmente omitido e a

habilidade de criar e reconFigurar marcadores programaticamente durante a execução do

programa [24].

Entretanto, apesar de seus grandes avanços, o Vuforia é de licença privada sendo

que para usá-lo é necessário adquirir o produto ou, para usá-lo gratuitamente, mostrar uma

marca d’agua durante a execução do aplicativo.

A biblioteca, desenvolvida originalmente pela Qualcomm, foi comprada em

novembro de 2015 pela PTC Inc. e é considerada a mais avançada na indústria atualmente,

[22] possuindo foco em dispositivos móveis e vestíveis (como óculos digitais), e

suportando um número surpreendente deles. Porém, ao contrário do ARToolkit, não

suporta sistemas operacionais de computadores pessoais como Windows e Linux.

Assim, a Vuforia provê suporte a linguagens C++, Java, Objective-C e .Net por

meio de sua extensão a biblioteca de desenvolvimento de jogos Unity, além de prover

suporte nativo ao Android e iOS. Para o suporte nativo ao Android é necessário baixar o

arquivo jar da biblioteca e vincula-lo com o projeto. Como o Vuforia utiliza código nativo

do Android e OpenGl ES é necessário que se vincule a NDK (Native Development Kit) ao

projeto também, diferentemente de aplicações padrão que só utilizam a SDK (Software

Development Kit) do Android em Java. A arquitetura mais detalhada da integração da

biblioteca com o projeto Android se encontra na seção 3.2.3.

Por estas razões, apesar de o ARToolkit ser de código aberto, foi escolhido o

Vuforia para a implementação do projeto.

9

2.2.4. LibGDX

A libGDX é uma biblioteca open-source de desenvolvimento de games escrita em

Java, com alguns componentes dependentes de desempenho escritos em C/C++. Ela

permite o desenvolvimento de aplicações multi plataforma (Windows, Linux, Mac OS X,

Android, iOS, BlackBerry e navegadores com suporte a WebGL) utilizando o mesmo

código de base. Ela foi criada por Mario Zechner a partir de um projeto pessoal (de 2009)

disponibilizado na internet em licença aberta e se tornou popular pela sua simplicidade

após a inclusão do suporte a física em dispositivos móveis [21].

A meta multi plataforma da biblioteca é atingida por meio de sua arquitetura que

abstrai as diferenças entre aplicações de diferentes plataformas enquanto mantém o mesmo

código base em Java para realizar as mesmas tarefas, como renderizar uma forma

geométrica. Assim, códigos dependentes de plataforma (chamados de backends) ficam em

pastas diferentes, porém códigos referentes a aplicação se encontram na mesma pasta. Um

exemplo, é a declaração da atividade principal do Android (ver seção 2.4.2) que fica em

uma pasta especifica do Android, esta atividade então chamará o construtor do programa

encontrada na pasta comum (multi plataforma) ao inicializar.

Desta maneira, para se utilizar de bibliotecas específicas de uma determinada

plataforma, recomenda-se que se crie uma interface para este módulo utilizando o padrão

de projeto “fachada” (seção 2.6) e implemente-se o código de plataforma especifica para

cada alvo (Android, Windows, etc.).

Para se ter uma visão geral de como a plataforma funciona, ressalta-se dois pontos:

ciclo de vida da aplicação e os módulos disponibilizados [19].

Ciclo de Vida da Aplicação

Assim como no Android (seção 2.4.2) o libGDX provê métodos para se gerenciar

os estados da aplicação (Figura 5) por meio de uma interface chamada de

ApplicationListener. Estes métodos, então, são chamados quando algum evento ocorre.

Uma breve explicação deles se encontra a seguir:

 create(): método chamado quando a aplicação é iniciada

10

 resize(int width, int height): método chamado toda vez que a tela é

redimensionada e a aplicação não está pausada. Ele também é chamado uma

vez após o create().

 render(): método chamado pelo laço principal do “jogo” por meio da

aplicação toda vez que a renderização for ocorrer.

 pause(): no Android esse método é chamado sempre que o botão “Home” é

pressionado ou a aplicação perde o foco. No desktop ele é chamado apenas

antes do método dispose() antes da aplicação ser terminada.

 resume(): este método é chamado apenas no Android quando a aplicação

retorna do estado de pause.

 dispose(): método chamado quando antes da aplicação ser terminada.

Figura 3: Ciclo de vida de um programa estruturado pelo libGDX (Retirado de [19])

Módulos

A libGDX possui diversos módulos que ajudam em cada etapa na construção de

uma arquitetura de game simples.

 Input: provê um modelo unificado de entrada para todas as plataformas,

suportando ações de teclado, mouse, toque e acelerômetro. As entradas são

tratadas por meio de eventos registrados;

11

 Graphics: Abstrai a comunicação com GPU (unidade de processamento

gráfica) e inclui uma implementação do OpenGl ES com métodos para se

obter funcionalidades do mesmo;

 Files: abstrai o acesso a arquivos em todas as plataformas providenciando

métodos convenientes para leitura e escrita independente da mídia;

 Audio: facilita a gravação e reprodução de áudio em todas as plataformas;

 Networking: providencia métodos para executar operações de redes, como

requisições simples ou comunicação entre cliente e servidor;

A Figura 4 mostra os módulos em uma arquitetura de game simples.

Figura 4: Funcionamento simplificado da libGDX (Retirado de [19])

2.2. Detecção de Marcadores

Uma das modalidades de realidade aumentada é o uso de marcadores como

referência aos objetos que serão sobrepostos ao cenário real. Marcadores são

identificadores retangulares geralmente constituídos por uma margem branca, borda preta e

de um identificador qualquer em seu interior, podendo ser um símbolo, letras, ou uma

imagem simples como um código de barras, sendo de fácil identificação em termos

computacionais (Figura 6). O uso de marcadores envolve diversos passos que vão desde a

detecção do marcador até a renderização do objeto. Esses passos formam a cadeia de RA

(Figura 5) [25] [13].

12

Figura 5: Cadeia de realidade aumentada para detecção de marcadores. Fonte: [25]

Tem-se como exemplo alguns passos para detecção de marcadores do ARToolkit:

antes de entrar na cadeia o ARToolkit exige que a câmera seja calibrada para a aquisição

de parâmetros intrínsecos assim como fatores de distorção que formam a matriz de

projeção (equação 1), onde fx e fy são as distancias focais, s é o tamanho efetivo do pixel, u

e v são a deslocamento do ponto principal. A matriz de projeção é utilizada para translação

de coordenadas do mundo para coordenadas da imagem. O marcador preto e branco deve

estar salvo para uso posterior.

(1)

A primeira fase da cadeia, denominada “procurar marcadores” é a binarização da

imagem, que é a transformação da imagem colorida em apenas dois níveis de intensidade:

preto e branco. A vantagem da binarização é que se diminui a quantidade de memória

utilizada para armazenar a imagem e também que se destaca apenas o que é de interesse ao

algoritmo. Nesta fase aplica-se um limiar no valor de intensidade de cada pixel, assim,

pixels com valores acima do limiar serão considerados brancos, e os abaixo, pretos.

A próxima etapa ainda dentro da fase “procurar marcadores” é a detecção de

vértices e arestas para o reconhecimento de retângulos, nesta etapa identifica-se quando a

quantidade de pixels varia bruscamente. É recomendável que se utilize o algoritmo Zero

Crossing de segunda derivada com uma máscara de convolução discreta [12]. Após isto

13

detecta-se quais formas formam um contorno fechado e é realizada uma análise dos

ângulos entre os vértices dos contornos para a classificação poligonal da forma [35].

O próximo passo, denominado “encontrar posição e orientação do marcador 3D”,

existe devido a esses retângulos não necessariamente pertencerem ao plano da imagem e,

então, é preciso transformá-los para que o marcador esteja no plano da tela, logo, aplica-se

correção da distorção perspectiva para ajusta-los [26]. Assim, a equação 1 pode ser

utilizada para transladar e escalar o marcador identificado para o plano da imagem.

 O terceiro passo é denominado “identificar marcadores”. No caso do identificador

do ARToolkitPlus (Figura 6), é feita uma varredura vertical e horizontal para retirar

informações da malha 6x6 representada por 36 bits e utiliza-se a técnica de subsampling

para diminuir os erros associados à homografia causada por erros de cálculo. No

subsampling captura-se o valor de 9 pontos para cada bit sendo que o valor final é obtido

por meio da média.

Figura 6: Exemplo de marcador da ferramenta de RA ARToolkitPlus

 No quarto passo, denominado “posicionar e orientar objetos”, utiliza-se pontos de

vértice nas coordenadas do marcador e pontos nas coordenadas da imagem para descobrir,

de maneira interativa, os componentes de rotação e translação mais próximos aos

parâmetros extrínsecos da câmera (equação 2), onde Rij representa os parâmetros de

rotação, Ti representa os parâmetros de translação e XM, YM, ZM representam a posição no

mundo.

14

(2)

Por fim, no passo denominado “renderizar objetos 3D no frame de video”, o

OpenGL utiliza a matriz de transformação estimada (equação 2) para sobrepor os objetos

virtuais ao quadro do vídeo.

2.4. Características do Android

O Android é atualmente o sistema operacional (SO) mais utilizado em dispositivos

móveis, ocupando em média 83,7% dos aparelhos no último ano, seguido do iOs com

14,8% segundo o IDC (International Data Corporation) [14]. Foca-se nesta seção as

peculiaridades do desenvolvimento para Android em relação a um sistema operacional de

computadores pessoais.

2.4.1. Arquitetura

A começar pela arquitetura (Figura 7) [3], percebe-se algumas diferenças em

referência aos SOs comums. Fundamentando-se no Kernel (núcleo) do Linux, o Android se

aproveita de características de segurança chaves e também permite que fabricantes de

dispositivos desenvolvam drivers para um kernel bem conhecido.

Já o HAL, camada de abstração de hardware, provê interfaces padrão aos

dispositivos de hardware (como câmera ou bluetooth) à API (Application Program

Interface) Java de mais alto nível. Por sua vez o Android Runtime (ART) provê a

capacidade de executar múltiplas máquinas virtuais em dispositivos com pouca memória,

sendo que a partir da versão 5.0 Android cada aplicativo possui seu próprio processo e sua

própria instância da máquina virtual. Além disso, ele possui algumas características como

compilação just-in-time (JIT) e ahead-of-time (AOT), garbage collection otimizado e

inclui várias bibliotecas Java 8 bem estabelecidas.

15

Figura 7: Arquitetura do sistema operacional Android (Retirado de [3])

As bibliotecas em C/C++ nativas do Android são utilizadas pelos componentes de

sistema e serviços do Android, sendo que o Java API Framework expõe muitas dessas

bibliotecas por meio de uma interface Java, porém se o aplicativo precisar utilizar código

em C/C++ nativo ele pode se utilizar do NDK do Android.

Por fim, o Java API Framework disponibiliza todas as APIs necessárias para se

desenvolver os aplicativos de Android, o que inclui: um sistema de interface de usuário

rico e extensível, um gerenciador de recursos, um gerenciador de notificações, um

16

gerenciador de ciclo de vida e um provedor de conteúdos que permite que o aplicativo

acesse dados de outros aplicativos, como o aplicativo de contatos, por exemplo.

2.4.2. Componentes dos Aplicativos

É importante salientar que um aplicativo Android difere-se de um programa comum

por uma série de peculiaridades que são embutidas até mesmo aos aplicativos mais

simples.

A começar, o SO atribui um identificador (ID) de usuário a cada aplicativo, então, o

sistema define permissões de acesso para todos os arquivos do mesmo, de forma que

somente o ID de usuário do aplicativo pode acessá-los. Por consequência, o Android

implementa o princípio de privilégio mínimo pois o aplicativo tem acesso apenas aos

componentes necessários para funcionar e não pode acessar componentes do sistema sem

permissão.

A seguir, salienta-se quatro tipos de componentes fundamentais na construção de

aplicativos para Android [4], sendo que cada um desempenha uma função específica, são

eles:

Atividades

As atividades representam uma tela única do aplicativo, sendo que cada “atividade”

é independente entre si, porém funcionam juntas para formar uma experiência coesa. É

importante entender como uma atividade funciona, pois são o ponto de entrada para o

programa e são elas que fornecem a interface com o usuário, assim, na Figura 8 é ilustrado

o ciclo de vida de uma atividade.

Basicamente a atividade possui quatro estados:

 Execução: quando o aplicativo está executando em primeiro plano;

 Pausada: se a atividade perdeu o foco, mas está parcialmente visível. Uma

atividade em pausa está completamente viva, porém o sistema pode matá-la

em caso de pouca memória;

17

 Parada: se a atividade está completamente obscurecida por outra.

Informações como o estado da atividade ainda continuam na memória,

porém o aplicativo irá provavelmente ser retirado de memória caso outro

aplicativo necessite de memória;

Quando a atividade está pausada ou parada, o sistema pode retirar a atividade da

memória pedindo a ela para terminar ou parando seu processo. Assim, quando a atividade

retorna ao primeiro plano é preciso inicia-la completamente novamente e restaurá-la para o

estado anterior.

Figura 8: Ciclo de vida de uma atividade (Adaptado de [4])

18

Desta forma, o Android fornece métodos para tratar o ciclo de vida da aplicação em

qualquer estado, como por exemplo, salvar dados do usuário quando a aplicação é fechada.

Serviços

Os serviços são componentes que atuam em plano de fundo para exercer operações

longas ou para trabalhar com processos remotos, sendo assim, eles não apresentam uma

interface do usuário. Um exemplo de serviço seria tocar músicas em segundo plano

enquanto o usuário está utilizando algum aplicativo diferente.

Provedores de Conteúdo

Provedores de conteúdo são gerenciadores de um conjunto de dados do aplicativo,

como o sistema de arquivos, um banco de dados ou qualquer local de armazenamento

persistente que o aplicativo consegue acessar. Um exemplo é o provedor de conteúdo que

gerencia as informações de contato do usuário, assim, qualquer aplicativo com as

permissões adequadas pode consulta-los.

Ademais, os provedores de conteúdo são utilizados também para ler e gravar dados

privados no aplicativo.

Receptores de transmissão

Os receptores de transmissão são componentes que respondem a eventos do sistema

ou de outro aplicativo. Transmissões do sistema representam a maioria das transmissões e

podem ser uma notificação de que a tela foi desligada ou a bateria está baixa, por exemplo.

Já as transmissões dos aplicativos podem comunicar a outros aplicativos que um download

terminou e dados estão disponíveis para uso, por exemplo.

Receptores de transmissão não possuem nenhuma interface com usuário, porém,

eles podem criar uma notificação na barra de status para alertar o usuário de uma

transmissão.

É interessante notar que as atividades, serviços e receptores de intenção são

ativados por meio de uma mensagem assíncrona, chamada mensagem de intenção, que

pode conter dados a serem transmitidos para o componente ou não. Já o provedor de

19

conteúdo é ativado por meio de uma notificação de um ContentResolver (resolvedor de

conteúdo), o qual manipula todas as transações com o provedor.

Tendo em vista a organização dos componentes, é obrigatório que cada aplicativo

possua um Arquivo de Manifesto, este arquivo é sempre lido antes da inicialização do

aplicativo e contém a declaração de todos os componentes que serão utilizados pelo

mesmo. Além disso, o arquivo de manifesto também identifica as permissões de usuário

que o aplicativo precisa, como acesso à internet; ele declara recursos de hardware e

software exigidos para o funcionamento do aplicativo, como câmera ou tela multi-toque; e

as APIs que são utilizadas pelo aplicativo (além das APIs de Framework do Android),

como a biblioteca do Google Maps.

2.5. Metodologia Ágil

O desenvolvimento ágil é uma maneira diferente de gerenciar times e projetos de TI

(tecnologia da informação). Ele surgiu do “manifesto ágil”, em 2001, após um grupo de

funcionários discutirem sobre o método tradicional em vigor naquela época que estava

falhando frequentemente, assim, eles criaram o manifesto ágil, que descreve quatro valores

relevantes ao desenvolvimento de software, são eles:

 Indivíduos e interações acima de processos e ferramentas;

 Software funcional acima de documentação extensiva;

 Colaboração do cliente acima de negociações de contrato;

 Responder a mudanças acima de seguir planos.

Desta forma, desde 2001, o uso de métodos que suportam esses valores cresceu

rapidamente e se tornou imensamente popular.

Kelly Waters descreve em seu livro All About Agile [33], sobre dez princípios

chave da metodologia ágil, os quais ele acredita que são fundamentalmente diferentes da

abordagem tradicional da metodologia waterfall [40], são eles:

 A participação ativa do usuário é imperativa;

20

 A equipe deve ter poder para tomar decisões;

 Requisitos evoluem, porém, o calendário é fixo;

 Capture requisitos de alto nível, visuais e em interações leves;

 Desenvolva pequenos módulos e incremente;

 Foque na entrega frequente de produtos;

 Complete cada modulo antes de começar o próximo;

 Aplique a regra 80/20 (foque nos 20% que irá dar mais resultados);

 Teste é integrado ao ciclo de vida do projeto, teste cedo e frequentemente;

 Uma abordagem colaborativa das partes interessadas é essencial.

Há várias metodologias que são conhecidas por serem ágeis como a DSDM

(Dynamic Systems Development Method) [44], a mais antiga que surgiu antes mesmo do

termo “ágil” ser inventado; o Scrum [45], que foca em como gerenciar as tarefas dentro de

um time de desenvolvimento; e o XP [46] (Extreme Programming), utilizado neste projeto,

o qual foca no processo de engenharia de software, abordagem do produto e fases de teste

em ciclos pequenos de desenvolvimento.

2.6. Padrões de Projeto

Em engenharia de software, um padrão de projeto é uma solução geral e reutilizável

para um problema comum e recorrente dentro do contexto de projetos. É interessante

salientar que padrão de projeto não é um projeto final que pode ser transformado

diretamente para código fonte ou de máquina, ele é, na verdade, uma descrição ou modelo

de como resolver um problema. Nos padrões de projeto são formalizadas as melhores

práticas que um desenvolvedor pode usar para resolver problemas comuns ao projetar um

aplicativo ou sistema.

O termo “padrões de projeto” originou-se de um conceito arquitetural criado por

Christopher Alexander em seus livros A Pattern Language (1977) [1] e The Timeless Way

21

of Building (1979) [2] em que ele define que um padrão deve possuir idealmente conceitos

de encapsulamento, generalidade e abstração e devem ser extensíveis e flexíveis para

serem combinados. Entretanto, apesar do termo ser definido em meados de 1979, ele se

popularizou com o livro Design Patterns: Elements of Reusable Object-Oriented Software

da “gangue dos quatro” com 23 padrões estabelecidos, organizados em três famílias:

padrões de criação, padrões estruturais e padrões comportamentais [8] [23].

A seguir destaca-se alguns dos padrões que foram utilizados neste projeto.

Singleton

Padrão de projeto de criação que garante a existência de apenas uma instância da

classe, mantendo um ponto global de acesso ao seu objeto. Seu diagrama UML (Unified

Modeling Language) é apresentado na Figura 9.

Figura 9: Padrão de projeto Singleton (Adaptado de [47])

Prototype

Padrão de projeto de criação que permite a criação de novos objetos a partir de um

protótipo que é clonado. Seu diagrama UML se encontra na Figura 10.

Figura 10: Padrão de projeto Prototype (Adaptado de [47])

22

Facade

Padrão de projeto estrutural que esconde as complexidades de um sistema maior e

provê uma interface simplificada ao cliente. Um exemplo em UML encontra-se na Figura

11.

Figura 11: Padrão de projeto Facade (Adaptado de [47])

Flyweight

Padrão de projeto estrutural apropriado para situações em que vários objetos

manipulados em memória possuem informações repetidas, assim, agrega-se a informação

repetida em um objeto adicional que geralmente é implementado como um singleton. Uma

ilustração utilizando flyweight em UML encontra-se na Figura 12.

Figura 12: Padrão de projeto Flyweight (Adaptado de [47])

23

Command

Padrão de projeto comportamental em que um objeto encapsula a informação

necessária para executar uma ação ou acionar um evento. Seu diagrama UML encontra-se

na Figura 13.

Figura 13: Padrão de projeto Command (Adaptado de [47])

Observer

Padrão de projeto comportamental que permite que objetos interessados sejam

avisados de eventos ocorrendo em outro objeto. Seu diagrama UML encontra-se na Figura

14.

Figura 14: Padrão de projeto Observer (Adaptado de [47])

24

Template Method

Padrão de projeto comportamental que define um método concreto (template) que

se utiliza de métodos abstratos em seu algoritmo, assim, as classes que estendem desta

classe abstrata são obrigadas a implementar suas operações abstratas e definir um

comportamento único para o método. Seu diagrama UML encontra-se na Figura 15.

Figura 15: Padrão de projeto Template Method (Adaptado de [47])

2.7. Considerações Finais

Neste capítulo foram apresentados os conceitos utilizados no desenvolvimento da

aplicação deste trabalho, desta forma, conclui-se que para se desenvolver este tipo de

aplicação é necessário ter uma boa base em termos de projeto de software e computação

gráfica, assim como é importante conhecer com certa profundidade as ferramentas

utilizadas para melhor aproveita-las.

Portanto, espera-se que estes conceitos sejam de grande auxílio possibilitando uma

leitura fluida ao próximo capítulo. Assim, no próximo capítulo, é apresentada a forma

como esses conceitos foram aplicados e as dificuldades e facilidades encontradas durante a

implementação deste projeto.

25

CAPÍTULO 3: DESENVOLVIMENTO DO

TRABALHO

3.1. Considerações Iniciais

Na seção 3.2 são mostradas as etapas de planejamento e construção do trabalho e

nas seções 3.4 e 3.5 são apresentados resultados e dificuldades encontradas no decorrer do

desenvolvimento.

3.2. Projeto

Por meio da base desenvolvida sobre a revisão bibliográfica, construiu-se a

aplicação, de forma que nas seções a seguir são encontradas as decisões de projeto, e a

descrição do desenvolvimento das mesmas em ordem cronológica.

O diagrama da figura 16 ilustra o funcionamento do aplicativo de forma

simplificada, indicando onde cada ferramenta atua.

3.2.1. Escolha das Ferramentas de Suporte a RA

 Na época em que este trabalho começou a ser desenvolvido existiam algumas

ferramentas que davam suporte a RA, porém, o ARToolkit e o Vuforia se destacavam em

qualidade e tamanho da comunidade. Assim, ambos foram testados em relação a facilidade

de uso e qualidade da projeção do objeto virtual sobre o marcador.

 Em relação a facilidade de uso, ambos oferecem suporte nativo para Android, e

possuem um modo de operação bem parecido, com ciclos de inicialização e renderização

quase equivalentes. Entretanto, na época, o ARToolkit, ao contrário do Vuforia, não

oferecia suporte a ferramenta mais recente de desenvolvimento de aplicações para Android

(Android Studio), sendo mais complicada a sua integração com um projeto Android. Além

disso, o Vuforia possuía, códigos e documentação mais claros sobre como projetar uma

aplicação básica.

26

Figura 16: Fluxo básico da aplicação

Ademais, nos testes com marcadores, o Vuforia se mostrou mais preciso, sendo que

o objeto se mostrou “fixo” sobre a superfície do marcador mesmo em condições mais

adversas para a detecção do mesmo, como o marcador quase paralelo ao raio de visão da

câmera ou a baixa luminosidade. Nos testes com o ARToolkit, o objeto se mostrava com

pequenas vibrações nessas condições ou desaparecia (caso que acontece quando o

marcador não é detectado).

27

 Assim, apesar da grande vantagem do código aberto do ARToolkit, o Vuforia foi

escolhido, pois o mesmo se alinha melhor com o propósito do projeto que é desenvolver

um produto para o consumidor final além da facilidade de integração do mesmo com o

Android Studio e a documentação mais acessível que motivaram esta escolha.

 A segunda escolha a ser feita foi em relação a ferramenta de suporte gráfico. Como

explanado na seção 2.2, o Vuforia possui suporte nativo ao Android, porém todas as outras

atividades desde a estruturação do objeto até sua renderização na tela são feitas por meio

do OpenGL ES, que apesar de auxiliar quem deseja trabalhar com ajustes gráficos

específicos, atrasaria o projeto de uma aplicação completa, uma vez que deixar-se-ia de

trabalhar em estruturas de projeto, para desenvolver-se vários algoritmos simples e que não

possuem valor (como a leitura de um arquivo de objeto) para suportar uma aplicação

básica.

 A fim de evitar o trabalho maçante ao se utilizar o OpenGL ES, foi escolhida a

ferramenta libGDX para o apoio gráfico, pela sua simplicidade, fácil integração com o

Android Studio e por funcionar como uma biblioteca anexável ao código, ao contrário de

alguns concorrentes do ramo que funcionam de forma totalmente gráfica e fugiriam do

escopo do trabalho.

3.2.2. Planejamento

Para a realização deste trabalho escolheu-se o método de desenvolvimento ágil

Extreme Programming (XP) por ser o mais adequado ao estilo do mesmo. Deste modo,

alguns dos fatores que influenciaram esta escolha são baseados em práticas e princípios de

XP:

 Projeto de apenas um desenvolvedor. Enquanto outros métodos como o Scrum

são ótimos para equipes pequenas, o XP, pelo seu princípio de simplicidade, se

encaixa bem quando há apenas um programador;

 Requisitos que mudam rapidamente. Por ser a primeira aplicação desenvolvida

do tipo pelo aluno e do primeiro contato com algumas ferramentas espera-se

que alguns requisitos mudem. Assim, segue-se a prática da refatoração que diz

28

que ela deve ser feita sempre que possível, buscando principalmente simplificar

o código atual sem perder nenhuma funcionalidade;

 Entregas frequentes. Além de ser um objetivo do projeto, as entregas frequentes

ajudam a validar pequenas partes do software por meio de protótipos e

incrementá-los sempre que há necessidade. Além disso, outro objetivo da

entrega frequente no XP é realizá-la com o menor tamanho possível, contendo

os requisitos de maior valor para o negócio;

Assim, escolheu-se um conjunto básicos de requisitos, considerados de maior valor

para dar início ao desenvolvimento: ao se apontar a câmera para um marcador o Vuforia

deveria reconhecê-lo e obter a matriz de transformação, assim, um móvel pré-selecionado

deveria aparecer sobre o mesmo por meio da renderização feita pela libGDX com ajuda da

matriz obtida. Desta forma, o protótipo inicial assim como os objetivos fundamentais são

descritos na próxima seção. E, no decorrer do texto, são descritas as mudanças e

incrementos feitos a partir de avaliações do produto.

3.2.3. Integração das Ferramentas com o Android

Após a escolha das ferramentas, foi planejado e implementado um protótipo

simples para verificar o funcionamento das duas ferramentas operando em conjunto,

devido ao Vuforia não possuir nenhum plugin específico para libGDX. Desta forma, o

protótipo deveria cumprir dois requisitos simples: ler um arquivo contendo a especificação

do objeto e exibir o objeto em cima do marcador.

Assim, o objetivo do protótipo, além de cumprir os requisitos, seria integrar as duas

ferramentas mantendo seu funcionamento independente e comunicando-se apenas quando

necessário. O seu diagrama de sequência simplificado se encontra na Figura 17.

29

Figura 17: Diagrama de sequência da integração das ferramentas Vuforia e libGDX

Como explicado na seção 2.2 o libGDX separa de maneira lógica o código de

backend de Android do código do programa geral. A classe principal do libGDX onde o

programa é inicializado é chamada de Game, assim neste trabalho obedeceu-se a

nomenclatura estipulada. Desta forma, a aplicação é iniciada por meio do método onCreate

do Android, em seguida são inicializados os módulos do Vuforia responsáveis pela seção

do mesmo e pelo processamento de imagem. Após isto, inicializa-se o game (ou “jogo”,

módulo raiz do libGDX) e espera-se o Vuforia acabar de inicializar antes de seguir com o

ciclo de renderização, enquanto isso, lê-se o objeto a ser exibido de um arquivo.

Após a inicialização dos componentes entra-se no loop de renderização do jogo, o

qual constitui-se do seguinte: o Vuforia processa o quadro capturado, retornando uma

matriz 4x4 do tipo (Rx, Ry, Rz, T) contendo a transformação linear correspondente a

posição do marcador em relação a posição da câmera. Como o Vuforia define o sistema de

coordenadas diferente do libGDX é necessário fazer uma pequena mudança na matriz antes

de encapsulá-la em um objeto próprio do libGDX. Assim, após a obtenção da matriz de

transformação, o objeto é exibido na tela em cima do marcador.

30

3.2.4. Projeto Inicial

Após a verificação do funcionamento das ferramentas em conjunto, elaborou-se

uma arquitetura inicial que serviria de base para o restante da aplicação. A arquitetura

deveria ser simples, porém bem padronizada para facilitar a posterior expansão do

programa. Para tanto, definiu-se uma relação de um marcador para um objeto, desta forma,

ao detectar-se o marcador o objeto equivalente deveria ser exibido sobre ele. A Figura 18

apresenta o diagrama de classes do projeto inicial em relação ao gerenciamento de objetos.

Figura 18: Projeto inicial do gerenciamento de objetos

Nota-se no diagrama que se utilizou do padrão de projetos flywheight mantendo

apenas uma instância para cada tipo de modelo, assim, objetos iguais compartilham do

mesmo modelo, o que gera economia memória e acarreta em um carregamento mais rápido

a segunda vez que um objeto igual é criado, uma vez que seu modelo já estará em memória

e então, só será feita a referência. Além disso, este padrão facilita o gerenciamento de

memória pois a libGDX sendo implementada em C++ em seu núcleo deixa a cargo do

programador a destruição dos modelos para a liberação de memória, assim, guardando

todas as referências dos modelos na fábrica fica simples de gerenciá-los e de destruir todos

ao final do programa.

Nota-se também que o objeto (chamado de furniture ou mobilia) é formado por três

partes: a instância, que contém o identificador do marcador e medidas como translação e

31

rotação do objeto; o modelo, que contém os vértices e as texturas que serão renderizadas; e

as propriedades, que contém o nome da mobília descrição e meta dados como o caminho

do modelo. Para facilitar de adição e remoção de objetos na aplicação as propriedades são

salvas em um arquivo JSON (JavaScript Object Notation) [42] que representa um banco de

dados simples.

O banco de dados é ilustrado na Figura 19, assim, pode-se acrescentar de forma

simples um objeto na aplicação. Por exemplo, para acrescentar uma cama, basta adicionar

uma linha na tabela de mobílias com suas propriedades (categoria, nome, caminho do

modelo, e outros) e adicionar o modelo da cama na pasta especificada, e a cama estará

pronta para ser utilizada na aplicação. A implementação simplista com arquivos JSON se

comporta da mesma maneira, bastando adicionar as propriedades como um objeto JSON

na lista de mobílias.

Figura 19: Representação do banco de dados da aplicação

Assim, o ciclo de renderização da aplicação foi implementado como no pseudo-

código a seguir:

Tabela 1: Pseudo código do ciclo de renderização do aplicativo

lista_de_marcadores = obter_marcadores_visiveis()

Para cada objeto da lista_de_objetos:

 Se o marcador do objeto está em lista_de_marcadores:

 rederize(objeto, marcador)

 lista_de_marcadores.remova(marcador)

 Caso contrário:

 esconda(objeto)

Para cada marcador na lista_de_marcadores:

 novo_objeto = crie_novo_objeto(marcador)

 lista_de_objetos.adicione(novo_objeto)

32

3.2.5. Organização das Telas

 Seguindo os preceitos da metodologia ágil pelo XP, as próximas seções de

desenvolvimento foram baseadas em requisitos de alto nível de interface com usuário.

Desta forma elaborou-se um sistema de telas para ajustar e selecionar uma mobília, o qual

é apresentado na Figura a seguir.

Figura 20: Organização das telas, da esquerda para direita: tela principal, seleção de

categoria, seleção de mobília e tela de ajuste

 Assim, foi elaborado o diagrama representando as ações que mudariam o estado da

aplicação (Figura 21) e a partir desses requisitos foram implementadas as telas e

funcionalidades restantes da aplicação. A começar pela tela de maior valor a de seleção de

categoria e mobília, depois a de ajuste, depois a funcionalidade de botões mais importantes

(como translação e rotação) e por fim funcionalidades menores como o botão de foto.

 É interessante notar que no decorrer do projeto alguns requisitos mudaram para

melhor se adequar a experiência do usuário, como o botão de descarte da tela de seleção de

categoria que antes era um botão de voltar/salvar mas que após testes foi substituído pela

ação de descarte por se encaixar melhor à situação, porém graças a modularização do

código e aos padrões de projeto utilizados mudanças como esta são de fácil ajuste.

 Na Figura 21 é apresentado o diagrama de fluxo de telas. A partir dele previu-se o

uso de alguns métodos (e comportamentos) que foram implementados posteriormente. Na

aplicação sempre que se deixava de operar com a realidade aumentada, nas ações (1) e (6),

33

era enviada a mensagem pauseAR para o Vuforia com intuito de evitar processamento

desnecessário enquanto o usuário navega pelos menus. Da mesma forma, ao se retornar

para as telas principal ou de ajuste, pelas ações (2) ou (5), era enviada a mensagem

resumeAR para o Vuforia. Para se conservar o estado do objeto, um clone do mesmo era

criado (seção 2.6) a partir das ações (9) e (5), desta forma se o usuário desistisse da

mudança, por meio das ações (2) ou (8), o objeto original poderia ser restaurado, porém se

o usuário aprovasse a mudança por meio da ação (7) o clone seria descartado e o objeto

modificado conservado. Nota-se que as mudanças (3) e (4) não fazem nada além de

chamar a tela especificada.

Figura 21: Diagrama do fluxo de telas

3.2.6. Seleção de Objetos por Toque

 Para a melhor experiência do usuário, estipulou-se que a seleção de objetos seria

feita por meio de toque. Apesar da libGDX possuir uma extensão que supre esta

necessidade ela não foi utilizada para não aumentar o tamanho do arquivo do instalador,

assim foi implementado um algoritmo com auxílio de estruturas que a própria ferramenta

já oferecia. Ele é apresentado a seguir:

34

 Calcula-se o raio de seleção, que é um vetor gerado por meio da posição tocada na

tela e da direção em que a câmera aponta;

 Para cada objeto na cena, calcula-se o ponto de interseção entre o objeto e o raio;

 O objeto cujo ponto de interseção é o mais próximo a seu centro é selecionado;

O raio de seleção e o ponto de interseção são calculados por meio da biblioteca,

porém seus funcionamentos são explicados a seguir.

Para cada coordenada de duas dimensões na tela há um número infinito de

coordenadas 3D. Por exemplo, se a câmera está posicionada em (x = 0, y = 0, z = 0) no

centro da tela apontando para -Z, logo, um objeto em (0, 0, -10) será desenhado na mesma

posição (da tela) que um objeto em (0, 0, -20). Assim, a coordenada no centro da tela

representa os pontos (0, 0, -10) e (0, 0, -20) assim como os infinitos pontos que passam na

semirreta formada por estes dois pontos a partir do plano próximo da câmera. Esta

semirreta é chamada de raio de seleção e é representada pelo ponto de origem, localizado

no ponto do plano mais próximo a câmera, e um vetor de direção. Matematicamente o raio

de seleção pode ser representado pela equação 3:

 f(t) = origin + t * direction (3)

Assim, ao se tocar na tela são adquiridas suas coordenadas. Estas são normalizadas

a valores proporcionais a sua posição na tela e multiplicadas pela matriz de projeção

inversa da câmera, sendo que para a origem é utilizado z = 0. Do mesmo modo é feito o

cálculo para o vetor de direção, porém com z =1 e após, é subtraído o resultado obtido pelo

ponto de origem.

Já para o cálculo da interseção entre o objeto e o raio, deve-se antes, ao criar-se um

objeto, aproximar suas dimensões (altura, largura e profundidade) à dimensão da forma

que mais se adequa ao mesmo, logo, neste trabalho supôs-se que a forma mais próxima da

maioria das mobílias seria um paralelepípedo. O cálculo dos limites do objeto é custoso e,

portanto, só é feito na inicialização e guardado para uso posterior.

35

Desta forma o cálculo da intersecção é simplificado, neste caso o paralelepípedo

pode ser visto como um conjunto de 3 pares de planos paralelos, assim, para cada plano é

calculada a interseção com o raio (e descoberto o parâmetro t da equação 3) e para cada par

de plano (x1 e x2, y1 e y2, z1 e z2) são salvos o tmin e o tmax, deste modo se o menor dos tmax

for maior que o maior dos tmin significa que o raio atravessou a caixa [34]. A Figura 22

exemplifica este processo.

Figura 22: Interseção do raio com o paralelepípedo [34].

3.2.7. Arquitetura da Interface com Usuário

Para que sejam exibidas imagens na tela, processadas pelo loop principal da

aplicação, o libGDX requer que sejam registradas telas (por meio da interface Screen) no

objeto principal da aplicação chamado de GameEngine. Para trocar de tela, cria-se então

uma nova tela, registra-a no jogo e destrói-se a tela anterior. A Figura 23 auxilia na

compreensão da arquitetura de interface com o usuário por meio de um diagrama de

classes.

Assim, tudo que é mantido no objeto da tela é perdido, sendo que instâncias

importantes como a lista de objetos e o estado da aplicação são mantidos dentro de

GameEngine. Para gerenciar estes objetos, o game possui instâncias estáticas das classes

ScreenManager e InstancesManager, sendo que a primeira é responsável pela troca de

telas e por manter informações como nome da tela anterior, e a segunda é responsável por

gerenciar a lista de objetos e por manter um clone do objeto original ao se entrar na tela de

36

ajuste. O fato de esses objetos serem estáticos, deixa a implementação dos listeners dos

botões mais simples, como será visto adiante.

Figura 23: Diagrama de classe da arquitetura de interface com o usuário

Assim todas as telas da aplicação estendem uma tela abstrata chamada

AbstractScreen, criada para simplificar a troca de telas contendo implementações de

métodos utilizados por todas as classes filhas. A AbstractScreen implementada neste

projeto tem como interface Screen (tela) e estende a classe Stage (palco). Por sua vez o

palco aceita múltiplos Actor (atores) que são os elementos de interface com o usuário. No

caso deste trabalho, os atores são o os botões, listas, rótulos dentro dos menus.

Os atores contém texturas de forma que foram organizados e inspirados pelo padrão

flywheight, e como elementos de interface são sempre iguais, por exemplo, todos os botões

da aplicação possuem fundo branco que fica azul quando pressionado, estas definições

ficam guardadas todas em um único arquivo JSON e são carregadas por um único objeto

da classe Skin, assim há facilidade para se gerenciar a aparência da interface e também para

se trocar de estilos (pois basta carregar outro arquivo de Skin para isso).

37

Os atores, por sua vez, são capazes de receber e processar ações do usuário, por

meio do registro de listeners que são objetos que contém métodos para serem executados

quando determinado evento ocorrer. Desse modo, decidiu-se que todos os listeners seriam

organizados na mesma classe, de forma a ser simples de se registrar e modificar cada

listener.

Na tabela 2 é mostrado o exemplo de um listener. O primeiro é utilizado para se

mudar para da tela principal para a tela de seleção de mobília, primeiro pausa-se o

processamento de imagens do Vuforia e após nota-se a simplicidade para se mudar de tela

por meio do método showScreen.

Tabela 2: Exemplo de listener utilizado para trocar a tela principal para a tela de seleção

public static ClickListener showMenuListener(final Category category) {

 return new ClickListener() {

 public void clicked(InputEvent event, float x, float y) {

 GameEngine.vuforia.pauseAR();

 ScreenManager.getInstance().showScreen(ScreenEnum.FURNITURE_MENU,

category);

 }

 };

}

3.3. Resultados Obtidos

A começar pela organização da interface com o usuário, a aplicação obteve um

resultado positivo pelo menu de seleção se parecer com o de aplicações de venda de

mercadorias as quais os usuários já estão acostumados a lidar. Nota-se que este foi

planejado e retirado de especificações de interface da seção 3.2.5.

Além disso, o planejamento e a refatoração para melhoria de processos alavancou

um ganho de desempenho de algumas operações matriciais no laço principal da aplicação.

Também se destaca que o estudo e o cuidado ao se escolher as ferramentas e tecnologias

utilizadas foram fundamentais para a agilidade do desenvolvimento e ajudaram a promover

uma experiência natural em relação a realidade aumentada.

38

Por fim, o código modular e bem planejado facilitou a construção de novas telas e a

adição de funcionalidades, sendo simples atualizar funcionalidades e refatorar pequenas

porções de código.

Deste modo se comparado a aplicativos do ramo de decoração como o iStaging, a

aplicação desenvolvida possui maior estabilidade do objeto renderizado sobre o ambiente

real, além de não necessitar de ajustes manuais. Em relação ao IKEA Catalogue, o

aplicativo desenvolvido é capaz de mostrar mais de um objeto em cena, necessitando

apenas de mais marcadores impressos, enquanto o IKEA Catalogue necessita de catálogos

para referência.

Na Figura 24 pode-se ver o aplicativo resultante em funcionamento. Seu

funcionamento segue o planejamento de interface com o usuário e o fluxo de telas

explicados no decorrer da seção 3.2. Desta forma, ao se iniciar o aplicativo, se existir

algum marcador enquadrado é exibida a mensagem em cima dele “Click to assign an

object” como ilustra o primeiro quadro da figura.

Por conseguinte, ao usuário selecionar o marcador, é exibido o menu de seleção de

categorias. Ao se selecionar uma categoria é exibido o menu de seleção de mobílias, e ao

se selecionar uma mobília é exibida a tela de ajuste. Na tela de ajuste é possível transladar

e girar a mobília, assim como mudar o eixo em que a mobília está sendo exibida, caso o

marcador esteja posicionado em uma parede.

Caso a mobília não agrade o usuário é possível escolher outra mobília ao se

selecionar o botão “Change”, que irá direcionar o usuário para tela de seleção de mobílias.

Já o botão “Discard” descarta qualquer alteração na tela de ajuste. Ao se clicar no botão

“OK” as mudanças são salvas e o usuário voltará para a tela principal.

A qualquer momento o usuário poderá capturar a tela através do botão “Picture”

que se encontra na tela principal. Assim a imagem capturada pela câmera com a

sobreposição da mobília, porém sem a poluição dos menus do Android, será salva no

dispositivo e poderá ser vista na galeria de imagens do Android.

39

Figura 24: Da esquerda para direita e de cima para baixo: tela principal ao iniciar aplicativo,

menu de seleção de categoria, menu de seleção de mobília, tela de ajuste, tela principal contendo a

mobília selecionada, galeria de fotos do Android

3.4. Dificuldades e Limitações

Uma das maiores dificuldades encontradas foi justamente a pesquisa e aprendizado

sobre ferramentas de suporte a realidade aumentada, assim como a integração delas ao

40

dispositivo móvel, principalmente pela dificuldade de acesso à documentação e pelas

ferramentas muitas vezes estarem desatualizadas com relação a alguma prática nova do

Android. Além disso, há a dificuldade natural de se aprender sobre como se utilizar os

recursos da maneira certa de forma a melhor aproveitá-los e evitar custos de refatoração

futuros.

 Outras dificuldades foram encontradas em momentos em que não se seguia o

planejamento estipulado pela metodologia XP, como a revisão do código ou as entregas

constantes, sendo que essas acarretaram em um custo maior ao se refazer certas partes

quando não seguidas. Entretanto, devido ao XP ser muito focado em construções de

pequenas partes modulares, isto acarreta em muitas mudanças futuras, assim ressalta-se

que mesmo ao se utilizar uma metodologia como essa não se deve descartar uma

elaboração da arquitetura geral.

3.5. Considerações Finais

Conclui-se que o desenvolvimento de aplicações de realidade aumentada para

dispositivos móveis envolve uma gama de conhecimentos desde algoritmos específicos até

metodologias de projetos. Assim, espera-se que o leitor tenha uma noção das dificuldades e

resultados obtidos no desenvolvimento por meio das ferramentas e metodologias

utilizadas.

Portanto, no próximo capítulo são apresentadas conclusões sobre este trabalho a fim

de estabelecer quais objetivos foram cumpridos e o relacionamento deste projeto com a

graduação.

41

CAPÍTULO 4: CONCLUSÃO

4.1. Contribuições

Primeiramente, espera-se que o trabalho contribua para aqueles que gostariam de

ter seu primeiro contato desenvolvendo aplicações de realidade aumentada para

dispositivos móveis. Assim, o trabalho explana sobre as ferramentas disponíveis de apoio a

realidade aumentada, as dificuldades e facilidades sobre as mesmas e a sua integração com

o Android. O trabalho também exibe o estado atual das aplicações de RA, dando uma visão

geral sobre o mercado e as pesquisas nesta área. Enfim, espera-se que o desenvolvimento

ajude aquele que deseja se aventurar em projetos parecidos, exibindo as etapas de

planejamento, exemplificando resultados positivos durante o processo e o que deve ser

evitado.

De forma semelhante, este trabalho ajudou ao aluno a desenvolver e a tomar

conhecimento de um tema antes pouco conhecido por ele, contribuindo com a

oportunidade de desenvolver uma aplicação completa em uma área emergente e que há de

se tornar cada vez mais comum no futuro. Desta forma, o desenvolvimento da aplicação

expande a visão sobre RA assim como permitiu ao aluno praticar fundamentos aprendidos

durante a graduação em diversas áreas de conhecimento que a engenharia de computação

envolve.

 Por fim, espera-se que futuramente a aplicação desenvolvida contribua com um de

seus objetivos de longo prazo que é sua participação no mercado por meio da

popularização da RA de forma a estar disponível gratuitamente a qualquer um que possua

um smartphone, ajudando seus usuários a encontrar diversos tipos de mobílias ou

simplesmente como forma de entretenimento e popularização do 3D [7].

4.2. Relacionamento entre o Curso e o Projeto

Devido a diversidade das áreas envolvidas em um projeto como este, o

conhecimento adquirido por meio de diversas matérias foi de grande importância para o

planejamento e desenvolvimento deste trabalho. Assim, pode-se citar alguns cursos que

42

auxiliaram diretamente no desenvolvimento da aplicação em si, como a disciplina de Visão

Computacional, Computação Gráfica, Engenharia de Software e Sistemas Operacionais.

Da mesma forma algumas disciplinas base ajudaram a formação do conhecimento

como grande parte das disciplinas de introdução, como disciplinas de algoritmos e

estruturas de dados, os cálculos e álgebras e programação orientada a objetos são alguns

exemplos. Disciplinas indiretamente utilizadas, mas que possuem grande importância para

projetos futuros que podem ser citadas são Programação Concorrente e Base de Dados.

Além disso, o curso proporcionou a oportunidade de experiência internacional para

o aluno e de mercado de trabalho por meio de estágios realizados, assim, expandindo a

visão do aluno para além da sala de aula e assim, pode-se colocar em prática também o que

se aprendeu com essas experiências no projeto.

Portanto, apesar de destacar-se algumas disciplinas, poder-se-ia citar vários dos

cursos cumpridos durante a graduação, de forma que cada um contribuiu para alguma área

e expandiu os horizontes do conhecimento, assim, bem servido dentro da ampla área da

engenharia de computação o aluno pode escolher a que mais lhe agrada para desenvolver o

projeto. Desta forma o curso contribui como o facilitador do acesso ao conhecimento

dando base para diversas áreas desconhecidas e liberdade para que se escolha a mais

apropriada ao perfil de cada um.

4.3. Trabalhos Futuros

Dentro do planejamento de trabalhos futuros deseja-se polir e sempre buscar

melhorias para o projeto até ele atingir maturidade suficiente para ser lançado na loja de

aplicativos do Android, mesmo que gratuitamente e como um projeto pessoal. Assim, são

propostas futuras:

 O maior número de mobílias e objetos de decoração, o que deve ser

consolidado a partir de alguma parceria com artistas ou por meio de objetos

que possuem licença gratuita;

 Um sistema web para permitir o envio de objetos para que pessoas possam

ver suas próprias criações em tamanho real por meio do aplicativo. O

sistema também evitaria o sobre carregamento do banco de dados local;

43

 Um sistema de avaliação e busca para a melhor escolha dos objetos;

Percebe-se, portanto, o foco em um sistema web, como um projeto futuro de forma

a complementar o aplicativo principal.

44

REFERÊNCIAS

[1] ALEXANDER, C.; SILVERSTEIN, M.; ISHIKAWA, S. A Pattern Language. Oxford

University Press. 190 p. 1977.

[2] ALEXANDER, C. The Timeless Way of Building. Oxford University Press. 552 p.

1979.

[3] ANDROID DEVELOPERS. Android Platform Architecture. Disponível em: <

https://developer.android.com/guide/platform/index.html >. Aceso em: 30 out. 2016.

[4] ANDROID DEVELOPERS. Fundamentos de aplicativos. Disponível em: <

https://developer.android.com/guide/components/fundamentals.html >. Aceso em: 30 out.

2016.

[5] DAQRI. ARToolKit Documentation. Disponível em: <

http://artoolkit.org/documentation/ >. Maio, 2015. Aceso em: 30 out. 2016.

[6] FAUST, F. G. et al. Aplicações e Tendências da Realidade Aumentada no

Desenvolvimento de Produtos. In: 8º Congresso Brasileiro de Gestão de Desenvolvimento

de Produto, 2011, Porto Alegre.

[7] FERREIRA, R. R. A invasão do mundo 3D, segundo a Microsoft. Future Behind.

Disponível em: < http://futurebehind.com/windows-10-creators-edition-3d/ >. Outubro,

2016. Aceso em: 30 out. 2016.

[8] GAMMA, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software.

Estados Unidos, Addison-Wesley, 1995.

[9] GENERAL MOTORS. Gm Reimages Head-Up Display Technology. Março, 2010.

Disponível em:

http://media.gm.com/content/media/us/en/news/news_detail.brand_gm.html/content/Pages/

news/us/en/2010/Mar/0317_hud. Acesso em: outubro, 2016.

45

[10] GRAHAM, M.; ZOOK, M.; Boulton, A. Augmented reality in urban places: contested

content and the duplicity of code. Transactions of the Institute of British Geographers, v.

38, n. 3, p. 464-479, 2013.

[11] GRIMM P. et al. Authoring Mixed Reality. In: IEEE International Augmented Reality

Toolkit Workshop, n. 1, 2002.

[12] GUIMARAES, G. F. et al. Fpga infrastructure for the development of augmented

reality applications. In: SBCCI ’07: Proceedings of the 20th annual conference on

Integrated circuits and systems design. New York, NY, USA: ACM, 2007, p. 336–341.

[13] HAN, C. Z-x.; Improving Mobile Augmented Reality User Experience on

Smartphones. 2010. 39 f. Tese (Master of Science) - Computer Science and Software

Engineering, University of Canterbury, Christchurch.

[14] IDC RESEARCH, INC. Smartphone OS Market Share, 2016 Q2. Disponível em: <

http://www.idc.com/prodserv/smartphone-os-market-share.jsp >. Agosto, 2016. Aceso em:

30 out. 2016.

[15] JIN, Y-s.; KIM, Y-w; PARK, J. ARMO: Augmented Reality based ReconFigurable

Mock-up. In: IEEE and ACM International Symposium on Mixed and Augmented Reality,

n. 6, 2007.

[16] KATO, H.; BILLINGHURST, M. Marker tracking and hmd calibration for a video-

based augmented reality conferencing system. In: Proceedings of the 2nd IEEE and ACM

International Workshop on Augmented Reality, n. 2, 1999.

[17] KIRNER, C. Evolução da Realidade Virtual no Brasil. In: X Symposium on Virtual

and Augmented Reality. João Pessoa, PB, SBC, p. 1-11, 2008.

[18] KIRNER, C.; KIRNER, T. G. Evolução e Tendências da Realidade Virtual e da

Realidade Aumentada. XIII Symposium on Virtual and Augmented Reality: Livro do Pré-

Simposio. Uberlândia: Sociedade Brasileira de Computação, 2011. p. 10-25.

[19] LIBGDX. LibGDX Documentation. Disponível em: <

https://github.com/libgdx/libgdx/wiki >. Maio, 2016. Aceso em: 30 out. 2016.

46

[20] MILGRAM, P. et al. Augmented reality: a class of displays on the reality-virtuality

continuum. In: Proceedings of Telemanipulator and Telepresence Technologies, p. 282-

292, 1994.

[21] NAIR, S. B.; OEHLKE, A.; Learning LibGDX Game Development. Editora Packt,

ed. 2, 2015.

[22] NEEDHAM, M. PTC Completes Acquisition of Vuforia. Disponível em: <

http://www.ptc.com/news/2015/ptc-completes-acquisition-of-vuforia >. Novembro, 2015.

Acesso em: 30 out. 2016.

[23] NYSTROM, R. Game Programming Patterns. Estados Unidos, Apress, 2011. 300 p.

[24] PTC INC. Vuforia Developer Library. Disponível em: < https://library.vuforia.com/ >.

Acesso em: 30 out. 2016.

[25] REIS, B. F. et al. Detecção de Marcadores para Realidade Aumentada em FPGA.

Grupo de Pesquisa em Realidade Virtual e Multimı́dia Centro de Informática,

Universidade Federal de Pernambuco, 2004.

[26] REIS B. F. et al. Perspective correction implementation for embedded (marker-based)

augmented reality. In: Proceedings of Workshop de Realidade Virtual e Aumentada, 2008.

[27] SINGH, M.; SINGH, P. M. Augmented Reality Interfaces. IEEE Internet Computing,

v. 17, n. 6, p. 66-70, 2013.

[28] STEUER, J. Defining Virtual Reality: Dimensions Determining Telepresence. Journal

of Communication, v. 42, n. 4, p.73-93, 1993.

[29] SUTHERLAND, I. E. Sketchpad: A man-machine graphical communication system.

Computer Laboratory, University of Cambridge. 1963.

[30] SUTHERLAND, I. E. The Ultimate Display. Proceedings of AFIPS Congress. pp.

506–508. 1965.

[31] SUTHERLAND, I. E. (1965). A head-mounted three dimensional display.

Proceedings of IFIP Congress. pp. 9–11. 1968.

47

[32] THE PLAYROOM. The Playroom Sony PS4. Diponivel em: <

https://www.playstation.com/en-us/games/the-playroom-ps4/ >. Acessado em: 30 out.

2016.

[33] WATERS, K. All About Agile. Createspace Independent Publishing Platform, 2012.

382 p.

[34] WILLIAMS, A. et al. An Efficient and Robust Ray-Box Intersection Algorithm. In:

ACM SIGGRAPH 2005 Courses, n. 9, p. 49-54, 2005.

[35] XU, L. et al. Intel open source computer vision library, version 3.1. In: Proc. of the

26th Annual Conference on Local Computer Networks, n. 1, 2003.

[36] TOOZLA. Google Play Store. Disponível em: <

https://play.google.com/store/apps/details?id=com.toozla.app&hl=en >. Acessado em 24

nov. 2016.

[37] IKEA CATALOGUE. Google Play Store. Disponível em: <

https://play.google.com/store/apps/details?id=com.ikea.catalogue.android&hl=en >.

Acessado em 24 nov. 2016.

[38] ISTAGING. Google Play Store. Disponível em: <

https://play.google.com/store/apps/details?id=com.iStaging.furniture&hl=en >. Acessado

em 24 nov. 2016.

[39] PIMENTEL, K.; Teixeira, K. Virtual reality. New York, NY: McGraw-Hill. 1993.

[40] COMEAU, C.; BRYAN, J. Headsight Television System Provides Remote

Surveillance. Electronics, pp.86-90. 1961.

[41] LAPLANTE P. A.; NEILL C. J. The Demise of the Waterfall Model Is Imminent and

Other Urban Myths. Penn State University. v. 1, n. 10. 2004.

[42] JSON. JSON.ORG. Disponível em: < http://www.json.org >. Acessado em 24 nov.

2016.

[43] SEGAL, M.; AKELEY, K. The OpenGL Graphics System: A Specification. The

Khronos Group Inc. 2010.

48

[44] PLONKA, L. et al. UX Design in Agile: A DSDM Case Study. Agile Processes in

Software Engineering and Extreme Programming. Springer International Publishing, p. 1-

15. 2014.

[45] COHN, M. Succeeding with Agile: Software Development Using Scrum. Upper

Saddle River. Ed. Addison-Wesley. 2010.

[46] MCBREEN, P. Questioning Extreme Programming. Boston, ed. Addison-Wesley.

2003.

[47] DESIGN PATTERNS. Sourcemaking. Disponível em: <

https://sourcemaking.com/design_patterns >. Acessado em 24 nov. 2016.

