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Resumo

VENEZIANI, M.Explorando geração de conteúdo procedural via aprendizado de má-
quina: geração de estágios com modelo de difusão. 2024. Monografia (Especialização
em Inteligência Artificial) – Escola Politécnica da Universidade de São Paulo. PECE
– Programa de Educação Continuada em Engenharia. Universidade de São Paulo,
São Paulo, 2024.

Neste estudo, investigamos a geração de estágios de Super Mario Bros por meio da Ge-
ração de Conteúdo Procedural (PCG) utilizando Aprendizado de Máquina, com foco
em um modelo de difusão multinomial baseado na arquitetura UNet. Demonstramos
que o modelo pode criar estágios viáveis para serem completados por um agente
artificial, embora enfrente desafios relacionados ao tempo de geração e ao tamanho
dos estágios produzidos. Propomos melhorias para o modelo, especialmente quando
consideramos sua utilização em cocriação com designers. Este estudo oferece uma
introdução ao campo da PCG para jogos, destacando seu potencial em diferentes
títulos que empregam representações categóricas, não se limitando apenas a estágios
de jogo.

Palavras-chave: Geração De Conteúdo. Aprendizado De Máquina. Modelo De
Difusão. Videogames.
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Abstract

VENEZIANI, M.Exploring procedural content generation via machine learning: stage
generation with diffusion model. 2024. Monografia (Especialização em Inteligência
Artificial) – Escola Politécnica da Universidade de São Paulo. PECE – Programa de
Educação Continuada em Engenharia. University of São Paulo, São Paulo, Brazil.
2024.

In this study, we explore the generation of Super Mario Bros stages through Procedu-
ral Content Generation (PCG) using Machine Learning, focusing on a multinomial
diffusion model based on the UNet architecture. We demonstrate that the model can
create stages viable for completion by an artificial agent, albeit facing challenges re-
lated to generation time and the size of produced stages. We propose improvements
to the model, particularly when considering its use in co-creation with designers.
This study provides an introduction to the field of PCG for games, highlighting its
potential across various titles employing categorical representations, not limited
solely to game stages.

Keywords: Content Generation. Machine Learning. Diffusion Model. Games.
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Capítulo 1
Introdução

AGeração de Conteúdo Procedural (PCG, do inglês Procedural Content Generation) envolve
a criação algorítmica de conteúdo para jogos, muitas vezes com pouca ou nenhuma
interação do usuário. Ela engloba aplicações que geram conteúdo de forma autônoma ou
em colaboração com jogadores e/ou desenvolvedores humanos. Dentro desse contexto,
o conteúdo abrange uma ampla gama de elementos de jogo, incluindo estágios, mapas,
regras, texturas, itens, músicas, personagens e muito mais (Shaker, Togelius e Nelson
2016).

Neste trabalho trataremos principalmente de videogames, mas PCG também pode ser
aplicada para outras categorias de jogos (jogos de tabuleiro, quebra-cabeças, cartas, etc.)
como mencionado em Shaker, Togelius e Nelson 2016.

PCG é cada vez mais proeminente tanto no desenvolvimento como nas pesquisas
relacionadas a jogos. É utilizado para aumentar o valor de repetição de videogames,
diminuir esforço e custo de produção, diminuir consumo de espaço de armazenamento,
ou simplesmente como uma forma estética. Pesquisas acadêmicas endereçam estes
desafios, também investigam como PCG pode oferecer novas formas de experiência,
como jogos capazes de se adaptar dinamicamente ao jogador (A. Summerville et al. 2018).

PCG via Machine Learning (PCGML) representa os métodos de PCG que utilizam
modelos treinados com base em conteúdos de jogos existentes para gerar novos conteúdos
diretamente como suas saídas. PCGML compartilha muitas tarefas com outras formas de
PCG, como geração autônoma, cocriação e compressão de dados. No entanto, devido ao
seu treinamento em artefatos existentes, esses modelos podem ser aplicados de forma
mais ampla, incluindo tarefas como correção e análise crítica de novos conteúdos (A.
Summerville et al. 2018).

Um dos aspectos cruciais no desenvolvimento de jogos é a criação de estágios, pois
representam o espaço virtual dentro do qual a maior parte da interação com os jogado-
res acontece. Assim sendo, estágios representam um alvo bem atrativo para PCG (A. J.
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Introdução 2

Summerville et al. 2016). No ramo de pesquisa em PCG, um videogame frequentemente
utilizado como base é Super Mario Bros (SMB), um jogo cultural e historicamente signi-
ficante, cujos estágios são baseados em mecânicas de plataforma e compostos por tiles
(blocos) (Lee e Simo-Serra 2023).

O objetivo deste trabalho é a construção de um modelo para PCGML capaz de gerar
novos estágios de SMB, usando como base e inspiração modelos apresentados por Lee e
Simo-Serra 2023 e Hoogeboom et al. 2021.



Capítulo 2
Revisão da literatura

PCG é um campo de pesquisa ativo em inteligência artificial. Exemplos de tipos de
arquitetura de modelos considerados em pesquisas para geração de recursos são Redes
Neurais Convolucionais (CNNs, do inglês Convolutional Neural Networks) (Chen et al.
2020), Redes Adversárias Generativas (GANs, do inglês Generative Adversarial Networks)
(Migdał, Olechno e Podgórski 2021), Autoencoders Variacionais (VAEs, do inglês Varia-
tional Autoencoders) (Sarkar e Cooper 2021), Modelos de Linguagem de Grande Escala
(LLMs, do inglês Large Language Models) (Sudhakaran et al. 2023), modelos de difusão
(Lee e Simo-Serra 2023) e mais.

Migdał, Olechno e Podgórski 2021 apresentam uma visão geral de métodos utilizados
durante o desenvolvimento de um videogame. Os autores abordam algumas tarefas relaci-
onadas a imagens e apresentam exemplos de modelos adequados para cada uma: geração
de imagens a partir de um conjunto existente — GAN; super-resolução ou upscaling —
ESRGAN (do inglês Enhanced Super-Resolution GAN); transferência de estilo — GauGAN
(GANs para geração de Arte); tradução de imagens e segmentação (tanto supervisionada
como não supervisionada) — UNet, Tile2Vec.

Neste trabalho daremos um foco maior na tarefa de geração de estágios, portanto,
apresentaremos uma revisão de alguns trabalhos relacionados.

Chen et al. 2020 propõem um sistema cocriativo que traduz uma dada imagem de
entrada (como um esboço feito por um designer, por exemplo) num estágio de SMB ou
Lode Runner. A proposta da ferramenta é proporcionar uma interação mais intuitiva com
um modelo de PCGML, dispensando a necessidade de conhecimento profundo por parte
do usuário para obter resultados eficazes.

O fluxo de processamento do sistema proposto é composto por duas etapas sequenciais,
uma de geração e outra de reparo, como exemplificado na figura 2.1. Na figura, é possível
observar que em cada etapa há duas alternativas de processamento. Os autores optaram
por esse formato para uma validação mais precisa do fluxo de processamento do sistema,
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Revisão da literatura 4

em vez de focar nas técnicas específicas empregadas em cada etapa. A etapa de geração
é a responsável por gerar uma representação em ladrilhos1 a partir da imagem original,
seja por meio de Tradução de Ladrilhos (ou Tile Translation em inglês) ou por uma CNN.
A saída resultante da geração passa pela etapa de reparo, que trata os blocos gerados e
os rearranja de forma que a saída final tenha mais semelhança ao jogo original. Para
isso o sistema proposto utiliza um Autoencoder ou uma Cadeia de Markov. Os resultados
mostram que a execução do processo de geração e reparo tem resultados positivos na
criação de estágios baseados em imagens como entrada (Chen et al. 2020).

Figura 2.1: Diagrama do Sistema Image to Level

Fonte: extraído de Chen et al. 2020.

Merino et al. 2023 apresentam o Five-Dollar Model, um modelo text-to-image leve
capaz de gerar imagens ou tile maps dada uma codificação de prompt textual. Não foi
construído para SMB, mas testaram o desempenho do modelo na geração de mapas
baseados em ladrilhos.

O modelo desenvolvido pelos autores é uma rede feedforward relativamente simples,
aprimorada com a capacidade de mapear um vetor de embedding de sentença concatenado
com um ruído randômico em uma representação visual categórica baseada em ladrilhos.
Essa transformação é realizada por meio de blocos residuais de camadas convolucionais.
A codificação das sentenças de entrada é feita por um modelo transformer externo pré-
treinado e, por conta da necessidade de aumentação dos dados de entrada (gerar mais
sentenças para descrever as imagens de treinamento), ainda utilizaram o GPT-4 para
aumentar o conjunto de dados de treinamento do modelo (Merino et al. 2023).

A abordagem apresentada é notável por utilizar modelos pré-treinados para lidar com
o desafio inicial da representação das sentenças, que influenciam a saída do modelo. Além
disso, a técnica de aumento de dados empregada também é interessante. Surpreenden-
temente, o gerador empregado não precisa ser excessivamente complexo para alcançar
resultados tão impressionantes, como destacado por Merino et al. 2023.

1Em computação gráfica e design de jogos, ladrilhos ou “tiles” são pequenas imagens ou blocos gráficos
usados para construir cenários ou ambientes maiores. São tipicamente quadrados e representam elementos
individuais, como pedaços de terreno, paredes, objetos, ou qualquer outro componente do ambiente de um
jogo.
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Sudhakaran et al. 2023 demonstram como LLMs podem ser aplicados para geração de
estágios. Os autores apresentam o MarioGPT, um modelo baseado em uma versão mais
leve do GPT2 chamada DistilGPT2. O modelo foi construído para gerar strings de tokens
que representam os ladrilhos de um estágio de SMB.

Figura 2.2: Diagrama do Sistema MarioGPT

Fonte: extraído de Sudhakaran et al. 2023.

O MarioGPT codifica os prompts de entrada utilizando o BART (Lewis et al. 2019) e
incorpora a média dos estados escondidos nos pesos de Cross Attention das camadas de
atenção do GPT2, conforme a figura 2.2. No total, o modelo conta com 96 milhões de
parâmetros (Sudhakaran et al. 2023).

Os resultados evidenciam a capacidade do modelo em produzir estágios diversos e em
seguir diretrizes fornecidas por um prompt textual. Um dos benefícios destacados pelos
autores é a capacidade de reutilizar uma arquitetura de LLM, o que permite aproveitar os
avanços e melhorias contínuas nesta área (Sudhakaran et al. 2023).

Já Lee e Simo-Serra 2023 propõem uma solução que aplica um modelo de difusão
incondicional para gerar estágios de SMB. O sistema é uma adaptação de um modelo de
difusão incondicional baseado em uma UNet, contando com mecanismos de auto-atenção
e embeddings temporais.

A arquitetura e treinamento do modelo foram adaptados para geração dos estágios de
maneira categórica, diferentemente de Denoising Diffusion Probabilistic Models (DDPMs)
tradicionais que trabalham com imagens e são construídos em torno da representação
contínua dos dados. Dentre os ajustes realizados no procedimento, os autores utilizaram
uma função de custo customizada (Reconstruction Loss) que, por conta da representação
categórica, funciona como se fosse uma função de custo multi-class cross-entropy (Lee e
Simo-Serra 2023).

Além disso, os autores também experimentaram: diferentes esquemas de Beta sche-
duling (especificamente o linear, quadrático e sigmoide) que regulam o nível de ruído
inserido em cada passo do processo de difusão; e também com uma escala de temperatura
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por sprite, pois o parâmetro de temperatura global normalmente utilizado em modelos de
difusão (controla o nível de randomização no processo de geração) poderia levar a uma
sub ou super-representação de certos sprites (Lee e Simo-Serra 2023).

Com base neste breve resumo sobre alguns trabalhos em PCGML, a proposta deste
projeto é realizar a construção de um gerador de estágios de SMB utilizando um DDPM. O
DDPM é uma cadeia de Markov parametrizada, treinada através de inferência variacional,
com o objetivo de produzir exemplos que se assemelhem aos dados de entrada após
um período de tempo finito. As transições desta cadeia são habilmente aprendidas para
reverter um processo de difusão. Trata-se de uma cadeia de Markov que gradualmente
adiciona ruído aos dados de entrada até “desconstruí-los”, uma técnica que permite ao
modelo capturar as nuances e complexidades dos dados originais de forma eficiente (Ho,
Jain e Abbeel 2020). Este processo inverso de difusão é essencial para o DDPM reconstruir
com precisão os padrões presentes nos estágios de SMB, resultando em uma geração
de conteúdo mais autêntica. A figura 2.3 exemplifica este processo, da direita para a
esquerda temos o processo de difusão, que adiciona ruído aos dados a cada passo (tempo),
e no sentido contrário ocorre a reversão da difusão.

Figura 2.3: Exemplo de um processo de difusão aplicado a uma imagem.

Fonte: extraído de Ho, Jain e Abbeel 2020.



Capítulo 3
Materiais e Métodos

Neste capítulo vamos apresentar as especificações do conjunto de dados, do modelo
gerador e do ambiente utilizado no treinamento.

3.1 Materiais

3.1.1 Dataset

Os estágios usados durante o treinamento provem do Video Game Level Corpus (VGLC)
(A. J. Summerville et al. 2016), um conjunto de dados disponível em https://github.
com/TheVGLC/TheVGLC.git, que contém estágios de diversos jogos anotados em ar-
quivos de texto para facilitar pesquisas em PCG. Neste trabalho utilizamos apenas os
arquivos referentes aos estágios processados de “Super Mario Bros” e “Super Mario Bros 2
(Japan)”.

Os mesmos estão codificados em texto com cada ladrilho do estágio mapeado a um
token correspondente como exemplificado na Figura 3.1. Ao todo temos 37 arquivos
com representações de estágios e 13 ladrilhos distintos nesse subconjunto da base de
dados. Na Tabela 3.1 apresentamos o mapeamento entre os ladrilhos e tokens utilizado
na anotação dos arquivos. A Figura 3.2 contém as alguns trechos de vários estágios do
dataset para termos uma noção da variação entre eles.

Para reproduzir os estágios em forma gráfica e também para verificar se são ao menos
jogáveis (se podem ser atravessados de uma ponta a outra por um agente) utilizamos o
Mario AI Framework (Ahmed 2022) apresentado inicialmente por Karakovskiy e Toge-
lius 2012. O uso previsto do framework é exclusivamente para pesquisa e compreende
ferramentas destinadas a testar os estágios gerados na notação do VGLC, seja por meio
de agentes autônomos ou mesmo pela interação direta do usuário. Isso possibilita uma
avaliação abrangente e detalhada dos estágios produzidos, permitindo que pesquisadores
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Figura 3.1: Trecho de estágio de Super Mario Bros disponível no VGLC. Acima temos o arquivo
processado e abaixo o original.

Fonte: Autoria própria com composição de estágio e anotação extraídos do VGLC (A. J. Summerville et al.
2016).

Tabela 3.1: Mapeamento entre tokens e ladrilhos utilizado no VGLC com suas respectivas contagens
no conjunto de dados.

Token Descrição Ladrilhos Quantidade
‘X’ Ladrilhos indestrutíveis no geral 9.542
‘S’ Ladrilhos destrutíveis 2.339
‘-’ Vazio 91.398

‘?’ e ‘Q’ Caixas com ou sem itens 339
‘E’ Inimigos no geral 614
‘<’ Topo esquerdo dos canos 198
‘>’ Topo direito dos canos 197
‘[’ “Corpo” esquerdo dos canos 477
‘]’ “Corpo” direito dos canos 479
‘o’ Moedas 459
‘B’ Topo dos canhões 39
‘b’ “Corpo” dos canhões 25

Fonte: Autoria própria com as imagens provindas do Mario AI Framework (Ahmed 2022) e a partir do
conjunto de dados anotado do VGLC (A. J. Summerville et al. 2016).

e desenvolvedores entendam melhor a qualidade e a jogabilidade dos níveis gerados por
seus modelos.

3.1.2 Tratamento dos dados

O processo de tratamento dos dados foi orientado pelas diretrizes estabelecidas por Lee e
Simo-Serra 2023, uma das referências fundamentais na concepção do modelo. Devido à
utilização de estágios de dois títulos distintos, é natural que ocorram disparidades nas
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Figura 3.2: Trechos de estágios originais que estão anotados no VGLC.

Fonte: Autoria própria com base em trechos de imagens extraídas do VGLC (A. J. Summerville et al. 2016).

anotações, especialmente em relação à altura deles. Para garantir a consistência das
representações e montar um conjunto de treinamento coeso, foram realizadas algumas
adaptações para uniformizar as características dos estágios.

Primeiramente reduzimos os blocos considerados de 13 para 11, isso porque dois
deles aparecem com pouca frequência no conjunto de dados, como pode ser visto na
Tabela 3.1. Os tokens substituídos por ‘-’ foram ‘b’ e ‘B’, que representam blocos de torre
e canhão respectivamente.

O segundo passo foi uniformizar as alturas dos estágios de Super Mario Bros 2 para
ficarem consistentes com os 14 blocos de altura em SuperMario Bros. Para tanto realizamos
operações para adicionar ou remover linhas do início, ou do final dos estágios que
apresentam alturas diferentes de 14, conforme descrito na Tabela 3.2.

Tabela 3.2: Estágios e operações aplicadas para uniformizar as alturas. A representação numérica do
estágio significa o arquivo na posição correspondente na lista de arquivos processados de Super Mario
Bros 2 (Japan) ordenados de forma crescente pelo nome.

Estágio Operação
1 Duplicar primeira e última linha
7 Remover primeira e última linha
15 Duplicar ultima linha
18 Remover ultima linha

3, 4, 8, 9, 13, 14, 16, 20, 21 e 22 Remover primeira linha
Fonte: Autoria própria.

Feitos os ajustes necessários, para gerar o conjunto de treinamento para o modelo
extraímos de cada estágio um conjunto de janelas de dimensão 14x14 blocos utilizando
uma janela deslizante de 1 bloco, aproveitando para substituir os tokens textuais por
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números que representam as classes de cada bloco seguindo a Tabela 3.3. Ao final do
processamento, o conjunto de dados é categórico e contempla 6.961 janelas 14x14.

Tabela 3.3: Mapeamento dos tokens em inteiros.

Token Valor
‘X’ 0
‘S’ 1
‘-’ 2
‘?’ 3
‘Q’ 4
‘E’ 5
‘<’ 6
‘>’ 7
‘[’ 8
‘]’ 9
‘o’ 10

Fonte: Autoria própria.

3.1.3 Instrumentos

Para executar as análises e o treinamento do modelo, utilizamos um computador com as
seguintes especificações:

• Sistema Operacional: WSL2 Ubuntu (rodando em Windows 11)

• Python: 3.10.12

• Tensorflow: 2.15

• Placa de vídeo: NVIDIA GeForce GTX 1050 Ti

3.2 Métodos

3.2.1 Definição do modelo

Inicialmente, tentamos construir um modelo semelhante ao apresentado por Lee e
Simo-Serra 2023, porém os resultados não foram satisfatórios devido à falta de in-
formação para reproduzir o modelo conforme descrito. Diante dessa situação, bus-
camos outras referências e encontramos o Modelo de Difusão Multinomial (Hooge-
boom et al. 2021), que se mostrou uma cujo código-fonte está disponível em: https:
//github.com/ehoogeboom/multinomial_diffusion.git. Essa mudança de aborda-
gem foi fundamental para avançarmos em nossa pesquisa e alcançarmos resultados mais
significativos.

https://github.com/ehoogeboom/multinomial_diffusion.git
https://github.com/ehoogeboom/multinomial_diffusion.git
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Hoogeboom et al. 2021 descrevem o framework do Modelo de Difusão Multinomial
que funciona como um DDPM convencional, mas com a diferença que define o processo
de difusão com base na distribuição categorica dos dados. Sendo assim, ao invés de
trabalhar com os ruídos diretamente na imagem, a difusão acontece na distribuição das
categorias adicionando um ruído uniforme a cada unidade de tempo.

A Figura 3.3 ilustra esse processo. Inicialmente, temos uma distribuição inicial P (x0).
Em seguida, aplicamos um processo de difusão q(xt|xt−1) que adiciona ruído uniforme a
cada passo resultando em p(x2). Por fim, aplicamos o processo reverso p(xt−1|xt), que
remove o ruído, nos levando de volta à distribuição original. Esse ciclo de difusão e
reversão é fundamental para o funcionamento do modelo de difusão probabilística.

Figura 3.3: Exemplo do funcionamento do Modelo de Difusão Multinomial.

Fonte: Extraído de Hoogeboom et al. 2021.

Adaptamos uma parte do código-fonte relacionada ao modelo de difusão para o ambi-
ente do TensorFlow e configuramos a arquitetura do modelo de acordo com o diagrama
mostrado na Figura 3.4. Essa adaptação foi essencial para integrar o modelo de difusão
ao nosso ambiente de desenvolvimento e garantir sua compatibilidade com as demais
ferramentas e bibliotecas utilizadas no projeto. Seguindo os exemplos de Lee e Simo-Serra
2023 e Hoogeboom et al. 2021, utilizamos uma arquitetura similar a UNet para o modelo,
porém sem as camadas de atenção linear.

Elucidando a arquitetura representada na Figura 3.4, um “Bloco” na arquitetura
é composto por uma camada de convolução 2D, seguida por uma camada de Layer
Normalization e, por fim, uma camada de ativação utilizando a função “gelu”. Por sua
vez, um “Bloco Residual” consiste em dois “Blocos”, uma camada densa e uma camada de
ativação “gelu”, sendo estes dois últimos utilizados para processar o Embedding Sinusoidal
que representa o tempo de difusão. No fluxo de processamento, a entrada inicial é primeiro
submetida a um “Bloco”, e o resultado é então adicionado ao tempo de processamento.
Em seguida, o resultado passa pelo segundo “Bloco”. Finalmente, a entrada original é
adicionada ao resultado, preservando assim a conexão residual.

Aplicamos a função de ativação “gelu” e o tamanho de kernel 3 nas convoluções 2D
ao longo da rede, exceto na saída que é o resultado de uma camada de convolução com 11

filtros, kernel 1 e ativação linear. Nas camadas de DownSampling e UpSampling, optamos
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Figura 3.4: Diagrama da arquitetura do modelo utilizado neste trabalho.

Fonte: Autoria própria.

por utilizar MaxPooling e UpSampling com interpolação bilinear. No entanto, tivemos
que proceder com cautela devido às dimensões originais das janelas de entrada. Por
exemplo, durante a transição de uma dimensão de 7x7 para 4x4, empregamos uma camada
MaxPooling com tamanho de 4 e um stride de 1. Da mesma forma, durante a transição
de 4x4 para 7x7, em vez de utilizar uma camada de UpSampling, implementamos uma
convolução transposta com 7 filtros e um kernel de tamanho 4 para ajustar as dimensões
adequadamente. Ao todo modelo contempla 6.844.363 parâmetros treináveis.

3.2.2 Treinamento

As configurações para o treinamento foram as seguintes:

• Número de passos de difusão: 1000

• Número de épocas: 1000

• Otimizador: AdamW com taxa de aprendizado 1e−3 e weight decay 1e−4

• Função de custo: Negative Log Likelihood em bits por dimensão conforme definição
aplicada em Hoogeboom et al. 2021

Como o nosso objetivo é construir um gerador e não um classificador, todo o conjunto
de dados foi utilizado no treinamento e não houve separação de conjuntos de validação e
teste. Os lotes de entrada do treinamento tinham 64 exemplos cada e foram embaralhados.



Capítulo 4
Resultados e Discussão

Durante as 1000 épocas de treinamento a progressão da função de custo do modelo foi de
∼ 0,73 para ∼ 0,13, como pode ser visto na Figura 4.1. Analisando o gráfico, também é
possível perceber que a partir da época 500 (onde o custo era ∼ 0,14), o modelo não teve
um ganhomuito significativo então poderíamos ter encerrado o processo antecipadamente.
O tempo total do treinamento do modelo foi cerca de 1 dia, com cada época levando
aproximadamente 90 segundos (na máquina com as especificações definidas na Subseção
3.1.3).

Figura 4.1: Valor da função de custo do modelo para cada época de treinamento.

Fonte: Autoria própria.

Com o modelo treinado, passamos para a etapa de geração de estágios. Basicamente,
um modelo de difusão baseado no DDPM gera novos dados através da execução repetida
do modelo (aqui iteramos 1000 vezes), começando com um ruído uniforme inicial. Por
exemplo, a Figura 4.2 ilustra como a entrada evolui ao longo desse processo de reversão

13
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da difusão: no início, é quase puro ruído; na metade, começa a mostrar características da
imagem final; e nas iterações finais, temos uma janela 14x14 que poderia ser parte de um
estágio de SMB.

Figura 4.2: Exemplo do processo de reversão da difusão utilizado para gerar novos estágios.

Fonte: Autoria própria.

A Figura 4.3 mostra alguns estágios gerados pelo modelo. É possível perceber que a
saídas não são perfeitas, com casos em que inimigos são gerados no chão (Figura 4.3(g)),
canos gerados pela metade (Figura 4.3(i)) e moedas inacessíveis (Figura 4.3(b)). Porém,
ao realizar uma análise qualitativa dos resultados, observamos que o modelo conseguiu
capturar alguns padrões dos dados originais e é capaz de gerar novos estágios. No entanto,
algumas características evidenciam que o processo de geração ocorreu sem intervenção
humana.

Com o objetivo de validar o modelo e comparar com os resultados apresentados
por Lee e Simo-Serra 2023, também utilizamos o Mario AI Framework (Ahmed 2022)
para processar os estágios gerados e avaliar quantos deles são de fato “jogáveis” por um
agente A*. Para tanto utilizamos duas abordagens, a primeira considerando somente
janelas individuais (14x14) e a outra considerando 12 janelas concatenadas (14x168) para
executar o agente.

Para a primeira avaliação consideramos 1000 estágios criados como os da Figura
4.3 e os resultados estão na Tabela 4.1. É possível perceber que, com essa abordagem, a
maioria dos estágios gerados pelo modelo é “jogável” (cerca de 91%). Comparando com o
que é apresentado por Lee e Simo-Serra 2023, a proporção de estágios jogáveis obtida
pelo modelo se aproxima das obtidas pelos modelos apresentados. Isso evidencia que até
mesmo um modelo mais simples tem a capacidade de gerar níveis completáveis.

Já para a segunda avaliação realizamos a composição de 1170 estágios maiores, con-
tendo 12 janelas concatenadas. A Tabela 4.2 mostra a proporção de estados finais do
agente A* rodando nestes exemplos e os resultados evidenciam que a mera concatenação
de saídas costuma gerar estágios impossíveis de terminar. A Figura 4.4 exemplifica uma
concatenação que resultou em um estágio com um buraco muito grande sem plataformas,
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Figura 4.3: Exemplos de estágios gerados pelo modelo.

Fonte: Autoria própria.

Tabela 4.1: Proporcão de resultados de sucesso do agente A* do Mario AI Framework, rodando em
1000 estágios compostos por 1 janela 14x14 comparados com os resultados apresentados por Lee e
Simo-Serra 2023.

Modelo Jogabilidade
Modelo Proposto 0,91
Modelo por Lee e Simo-Serra 2023 0,93

Fonte: Autoria própria com base nos resultados da execução do Agente A* do Mario AI Framework (Ahmed
2022) e nos resultados apresentados por Lee e Simo-Serra 2023.

impossível de atravessar. Isso destaca uma limitação do modelo na geração de níveis
viáveis e desafiadores.

O agente conseguiu resolver somente 20% dos estágios criados deta maneira, um dos
exemplos destes está na Figura 4.5. Esse fenômeno acontece por conta das características
do modelo, atualmente não há como garantir que as janelas de estágios geradas tenham
continuidade entre si. Possivelmente, uma abordagem que explorasse mais detalhada-
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mente o espaço latente, utilizando vetores de ruído que estejam “próximos” entre si
como entrada, poderia reduzir esse problema. No entanto, essa abordagem implicaria
em sacrificar parte da diversidade proporcionada pelo uso de vetores aleatórios como
entrada.

Tabela 4.2: Proporcão de estados finais do agente A* do Mario AI Framework, rodando em 1170
estágios compostos por 12 janelas 14x14.

Estado final Quantidade Proporção
Venceu 236 ∼ 0,20
Perdeu 849 ∼ 0,72
Timeout 85 ∼ 0,08

Fonte: Autoria própria com base nos resultados da execução do Agente A* do Mario AI Framework (Ahmed
2022).

Quando comparamos estes resultados com modelos baseados em LLMs como o Mari-
oGPT que consegue, até certo ponto, gerar estágios compridos seguindo indicações do
usuário (Sudhakaran et al. 2023), fica clara uma deficiência do modelo proposto na tarefa
de geração de estágios longos.

Entretanto, é crucial considerar tanto o tamanho quanto o funcionamento de ambos
os modelos, visto que o MarioGPT possui 96 milhões de parâmetros em comparação
com os ∼ 7 milhões do modelo proposto, além de operarem de maneiras completamente
distintas. Outra alternariva seria expandir o escopo do modelo de difusão ao ampliar a
janela de entrada para incluir um número maior de colunas e gerar estágios inteiros de
uma vez ao invés de janelas menores.

Figura 4.4: Exemplo de estágio impossível de completar com o agente A*.

Fonte: Autoria própria.

Figura 4.5: Exemplo de estágio possível de completar com o agente A*.

Fonte: Autoria própria.

Em termos do potencial uso do modelo, devido ao tempo necessário para a geração dos
estágios, não seria ideal utilizá-lo durante o jogo. Por exemplo, o tempo de processamento
para gerar 1000 janelas 14x14 foi de 23 minutos e 42 segundos, enquanto para 1000

estágios com 12 janelas o processo levou aproximadamente 6 horas e 10 minutos. Existe
ainda a possibilidade de estágios impossíveis serem criados, frustrando os jogadores.
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Para criar estágios mais longos e coerentes a abordagem ideal seria uma de cocriação
entre o modelo e um designer, similar ao conceito apresentado no “Image to Level” por
Chen et al. 2020. Dessa forma, seria possível compor janelas geradas de modo que o
estágio fosse mais refinado e viável para conclusão, além de resolver inconsistências na
geração, como objetos criados de forma incompleta ou mal posicionados no chão.



Capítulo 5
Conclusão

PCG (do inglês, Procedural Content Generation) refere-se a algoritmos que podem criar
conteúdo de jogo por conta própria, ou junto com jogadores e/ou designers humanos.
Neste trabalho exploramos uma parte do universo PCGML (do inglês, PCG via Machine
Learning) para tarefa de geração de estágios em jogos e as diversas técnicas utilizadas em
sua execução. Dentro deste escopo, baseando-se em um estudo da literatura, apresentamos
um modelo de difusão1 gerador de estágios de “Super Mario Bros” (SMB) capaz de criar
níveis previamente inexistentes. Este modelo é uma ferramenta eficaz de cocriação
no desenvolvimento de jogos, dadas suas limitações em termos de tempo de geração e
qualidade na criação de estágios mais longos. Em termos de escopo deste tipo de modelo,
esta arquitetura é capaz de lidar com outros jogos que possúem recursos representados
de forma categórica, não só estágios mas também mapas como exemplo.

Para treinar o modelo proposto, utilizamos parte do dataset disponível no Video
Game Level Corpus (VGLC, por A. J. Summerville et al. 2016). O subconjunto utilizado
contém arquivos de texto com anotações representando os ladrilhos (ou tiles, em inglês)
de cada estágio dos jogos “Super Mario Bros” e “Super Mario Bros 2 (Japan)”, para montar o
conjunto de treinamento utilizamos janelas categóricas (14x14) extraídas destas anotações.
Já na construção do modelo, nos baseamos na proposta do Modelo de Difusão Multinomial
apresentado por Hoogeboom et al. 2021 e utilizamos uma arquitetura similar a UNet. Por
conta destas escolhas o modelo proposto possui as limitações mencionadas anteriormente.

Analisando os estágios gerados mostramos que o modelo aprendeu alguns padrões
dos dados originais e é capaz de criar novos níveis, mas com algumas características que
evidenciam que o processo de geração ocorreu sem intervenção humana. Já na avaliação
de jogabilidade dos estágios resultantes, vemos que o modelo é capaz de gerar janelas
14x14 completáveis em cerca de 91% das vezes. Porém quando realizamos o processo de
concatenação para obter níveis mais longos (sem intervenção externa) a porcentagem de

1O código-fonte utilizado para o modelo estará disponível neste link.
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estágios completáveis cai significativaemente, chegando a aproximadamente 20% para
concatenações de 12 janelas. Observamos outra característica importante do modelo que
que é o tempo de geração, que torna o modelo mais adequado a cenários de cocriação do
que geração em tempo de jogo.

Acreditamos que os resultados foram satisfatórios, mesmo que o modelo seja mais
simples que os demais encontrados na literatura. Isso porque não possui diversos ele-
mentos encontrados nestes outros como: camadas de atenção, escala de temperatura
baseada na probabilidade de cada ladrilho e mais. Porém o modelo não é muito efetivo na
construção de estágios maiores sem intervenção externa. Para melhorar isso, poderíamos
ampliar a janela de entrada e saída do modelo, para considerar estágios maiores e não
somente janelas 14x14. Essa solução não resolve o problema de concatenação de várias
saídas do modelo, para tanto devemos trocar o tipo de modelo utilizado ou alterar a
arquitetura para gerar um modelo de difusão condicional e talvez assim gerar janelas que
podem ser concatendas sem muitos problemas.

Como próximos passos poderíamos pensar em expandir o uso deste modelo para
outros jogos ou estudar as possibilidades de alterar o mesmo para que seja mais efetivo
na geração de estágios de SMB. Seja pela a inclusão de mecanismos como camadas de
atenção e escalas de temperatura no treinamento ou pela alteração na arquitetura de
modo a torná-lo condicional ou ampliando as janelas de entrada e saída.
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