UNIVERSIDADE DE SA0 PAULO
EscoLA PoLITECNICA
PROGRAMA DE EDUCACAO CONTINUADA EM ENGENHARIA
ESPECIALIZACAO EM INTELIGENCIA ARTIFICIAL

Matheus Ribeiro de Almeida Veneziani

Explorando geracao de conteddo procedural via aprendizado
de maquina: geracao de estagios com modelo de difusao

Sao Paulo
2024

MATHEUS RIBEIRO DE ALMEIDA VENEZIANI

Explorando geracao de contetdo procedural via aprendizado
de maquina: geragao de estagios com modelo de difusao

— Versao Original —

Monografia apresentada ao Programa de
Educacao Continuada em Engenharia da
Escola Politécnica da Universidade de Sao
Paulo como parte dos requisitos para conclu-
sao do curso de Especializacao em Inteligén-
cia Artificial.

Orientador: Profa. Dra. Larissa Driemeier

Sao Paulo
2024

Autorizo a reproducao e divulgacao total ou parcial deste trabalho, por qualquer meio
convencional ou eletronico, para fins de estudo e pesquisa, desde que citada a fonte.

Catalogagao-na-publicacéo

Veneziani, Matheus Ribeiro de Almeida

Explorando geracao de contetdo procedural via aprendizado de ma-
quina: geracdo de estagios com modelo de difusdao/ M.Veneziani — Sao
Paulo, 2024.

19p.

Monografia (Especializagao em Inteligéncia Artificial) — Escola Po-
litécnica da Universidade de Sao Paulo. PECE - Programa de Educacao
Continuada em Engenharia.

1. Geragao De Contetido 2. Aprendizado De Maquina 3. Modelo
De Difusao 4. Videogames.
I. Universidade de Sao Paulo. Escola Politécnica. PECE — Programa de
Educacao Continuada em Engenharia. 1l.t.

Sumario

Sumario « ii

Resumo - iii

Abstract « iv

Lista de Figuras « v

Lista de Tabelas « vi

1 Introducio « 1

2 Revisao da literatura « 3

3 Materiais e Métodos « 7

3.1 Materiais o 7
3.1.1 Dataset « 7
3.1.2 Tratamento dos dados « 8
3.1.3 Instrumentos » 10

3.2 Métodos s 10
3.2.1 Definicdo do modelo » 10
3.2.2 Treinamento « 12

4 Resultados e Discussao « 13
5 Conclusio « 18

Referéncias « 2o

ii

Resumo

VENEZIANI, M.Explorando geracdo de conteiido procedural via aprendizado de ma-
quina: geragdo de estagios com modelo de difusdo. 2024. Monografia (Especializacio
em Inteligéncia Artificial) — Escola Politécnica da Universidade de Sdo Paulo. PECE
- Programa de Educacdo Continuada em Engenharia. Universidade de Sdo Paulo,
Sao Paulo, 2024.

Neste estudo, investigamos a geracdo de estagios de Super Mario Bros por meio da Ge-
racdo de Contetdo Procedural (PCG) utilizando Aprendizado de Maquina, com foco
em um modelo de difusio multinomial baseado na arquitetura UNet. Demonstramos
que o modelo pode criar estagios viaveis para serem completados por um agente
artificial, embora enfrente desafios relacionados ao tempo de geragio e ao tamanho
dos estagios produzidos. Propomos melhorias para o modelo, especialmente quando
consideramos sua utilizacdo em cocriacdo com designers. Este estudo oferece uma
introdugio ao campo da PCG para jogos, destacando seu potencial em diferentes
titulos que empregam representagdes categoricas, ndo se limitando apenas a estagios
de jogo.

Palavras-chave: Geracdo De Contetddo. Aprendizado De Maquina. Modelo De
Difusdo. Videogames.

iii

Abstract

VENEZIANI, M.Exploring procedural content generation via machine learning: stage
generation with diffusion model. 2024. Monografia (Especializacdo em Inteligéncia
Artificial) — Escola Politécnica da Universidade de S&o Paulo. PECE — Programa de
Educacio Continuada em Engenharia. University of Sdo Paulo, Sdo Paulo, Brazil.
2024.

In this study, we explore the generation of Super Mario Bros stages through Procedu-
ral Content Generation (PCG) using Machine Learning, focusing on a multinomial
diffusion model based on the UNet architecture. We demonstrate that the model can
create stages viable for completion by an artificial agent, albeit facing challenges re-
lated to generation time and the size of produced stages. We propose improvements
to the model, particularly when considering its use in co-creation with designers.
This study provides an introduction to the field of PCG for games, highlighting its
potential across various titles employing categorical representations, not limited
solely to game stages.

Keywords: Content Generation. Machine Learning. Diffusion Model. Games.

iv

Lista de Figuras

2.1
2.2

2.3

3.1

3.2
33
34

4.1
4.2

4.3
4.4
4.5

Diagrama do Sistema ImagetoLevel
Diagrama do Sistema MarioGPT
Exemplo de um processo de difusao aplicado a uma imagem.

Trecho de estagio de Super Mario Bros disponivel no VGLC. Acima temos

o arquivo processado e abaixo o original. L0 L.
Trechos de estagios originais que estdo anotados no VGLC.
Exemplo do funcionamento do Modelo de Difusdo Multinomial.
Diagrama da arquitetura do modelo utilizado neste trabalho.

Valor da funcéao de custo do modelo para cada época de treinamento.
Exemplo do processo de reversao da difusao utilizado para gerar novos
eStAgios. L e
Exemplos de estagios gerados pelomodelo.
Exemplo de estagio impossivel de completar com o agente A*.
Exemplo de estagio possivel de completar com o agente A*.

Lista de Tabelas

3.1 Mapeamento entre tokens e ladrilhos utilizado no VGLC com suas
respectivas contagens no conjuntode dados. L L.
3.2 Estagios e operacdes aplicadas para uniformizar as alturas. A
representacdo numérica do estagio significa o arquivo na posicao
correspondente na lista de arquivos processados de Super Mario Bros 2
(FJapan) ordenados de forma crescente pelonome.
3.3 Mapeamento dos tokens em inteiros. o o oL,

4.1 Proporcéo de resultados de sucesso do agente A* do Mario Al Framework,
rodando em 1000 estagios compostos por 1 janela 14x14 comparados com
os resultados apresentados por Lee e Simo-Serra 2023.
4.2 Proporcéo de estados finais do agente A* do Mario Al Framework, rodando
em 1170 estagios compostos por 12 janelas 14x14.

Vi

CariTULO

Introducao

A Geragao de Contetudo Procedural (PCG, do inglés Procedural Content Generation) envolve
a criacdo algoritmica de conteudo para jogos, muitas vezes com pouca ou nenhuma
interacdo do usuario. Ela engloba aplicacdes que geram conteudo de forma auténoma ou
em colaboragdo com jogadores e/ou desenvolvedores humanos. Dentro desse contexto,
o conteudo abrange uma ampla gama de elementos de jogo, incluindo estagios, mapas,
regras, texturas, itens, musicas, personagens e muito mais (Shaker, Togelius e Nelson
2016).

Neste trabalho trataremos principalmente de videogames, mas PCG também pode ser
aplicada para outras categorias de jogos (jogos de tabuleiro, quebra-cabecas, cartas, etc.)
como mencionado em Shaker, Togelius e Nelson 2016.

PCG é cada vez mais proeminente tanto no desenvolvimento como nas pesquisas
relacionadas a jogos. E utilizado para aumentar o valor de repeticio de videogames,
diminuir esfor¢o e custo de producéo, diminuir consumo de espaco de armazenamento,
ou simplesmente como uma forma estética. Pesquisas académicas enderecam estes
desafios, também investigam como PCG pode oferecer novas formas de experiéncia,
como jogos capazes de se adaptar dinamicamente ao jogador (A. Summerville et al. 2018).

PCG via Machine Learning (PCGML) representa os métodos de PCG que utilizam
modelos treinados com base em conteudos de jogos existentes para gerar novos conteudos
diretamente como suas saidas. PCGML compartilha muitas tarefas com outras formas de
PCG, como geragido auténoma, cocriagdo e compressao de dados. No entanto, devido ao
seu treinamento em artefatos existentes, esses modelos podem ser aplicados de forma
mais ampla, incluindo tarefas como correcao e analise critica de novos contetudos (A.
Summerville et al. 2018).

Um dos aspectos cruciais no desenvolvimento de jogos é a criacdo de estagios, pois
representam o espaco virtual dentro do qual a maior parte da intera¢do com os jogado-

res acontece. Assim sendo, estagios representam um alvo bem atrativo para PCG (A. J.

Introducao 2

Summerville et al. 2016). No ramo de pesquisa em PCG, um videogame frequentemente
utilizado como base é Super Mario Bros (SMB), um jogo cultural e historicamente signi-
ficante, cujos estagios sdo baseados em mecanicas de plataforma e compostos por tiles
(blocos) (Lee e Simo-Serra 2023).

O objetivo deste trabalho é a construcdo de um modelo para PCGML capaz de gerar
novos estagios de SMB, usando como base e inspiracdo modelos apresentados por Lee e

Simo-Serra 2023 e Hoogeboom et al. 2021.

CariTULO 2

Revisao da literatura

PCG é um campo de pesquisa ativo em inteligéncia artificial. Exemplos de tipos de
arquitetura de modelos considerados em pesquisas para geragao de recursos sido Redes
Neurais Convolucionais (CNNs, do inglés Convolutional Neural Networks) (Chen et al.
2020), Redes Adversarias Generativas (GANs, do inglés Generative Adversarial Networks)
(Migdat, Olechno e Podgorski 2021), Autoencoders Variacionais (VAEs, do inglés Varia-
tional Autoencoders) (Sarkar e Cooper 2021), Modelos de Linguagem de Grande Escala
(LLMs, do inglés Large Language Models) (Sudhakaran et al. 2023), modelos de difuséo
(Lee e Simo-Serra 2023) e mais.

Migdal, Olechno e Podgorski 2021 apresentam uma visao geral de métodos utilizados
durante o desenvolvimento de um videogame. Os autores abordam algumas tarefas relaci-
onadas a imagens e apresentam exemplos de modelos adequados para cada uma: geragao
de imagens a partir de um conjunto existente — GAN; super-resolucao ou upscaling —
ESRGAN (do inglés Enhanced Super-Resolution GAN); transferéncia de estilo — GauGAN
(GANSs para geracao de Arte); traducdo de imagens e segmentacdo (tanto supervisionada
como nao supervisionada) — UNet, Tile2Vec.

Neste trabalho daremos um foco maior na tarefa de geracdo de estagios, portanto,
apresentaremos uma revisao de alguns trabalhos relacionados.

Chen et al. 2020 propdem um sistema cocriativo que traduz uma dada imagem de
entrada (como um esboco feito por um designer, por exemplo) num estagio de SMB ou
Lode Runner. A proposta da ferramenta é proporcionar uma interacdo mais intuitiva com
um modelo de PCGML, dispensando a necessidade de conhecimento profundo por parte
do usuario para obter resultados eficazes.

O fluxo de processamento do sistema proposto é composto por duas etapas sequenciais,
uma de geracgio e outra de reparo, como exemplificado na figura 2.1. Na figura, é possivel
observar que em cada etapa ha duas alternativas de processamento. Os autores optaram

por esse formato para uma validacdo mais precisa do fluxo de processamento do sistema,

Revisao da literatura 4

em vez de focar nas técnicas especificas empregadas em cada etapa. A etapa de geragao
¢ a responsavel por gerar uma representagao em ladrilhos' a partir da imagem original,
seja por meio de Traducio de Ladrilhos (ou Tile Translation em inglés) ou por uma CNN.
A saida resultante da geracdo passa pela etapa de reparo, que trata os blocos gerados e
os rearranja de forma que a saida final tenha mais semelhanca ao jogo original. Para
isso o sistema proposto utiliza um Autoencoder ou uma Cadeia de Markov. Os resultados
mostram que a execug¢do do processo de geragdo e reparo tem resultados positivos na

criacdo de estagios baseados em imagens como entrada (Chen et al. 2020).

Figura 2.1: Diagrama do Sistema Image to Level

Input Images Image-To-Level Output Levels
Generation Step Repair Step
Game Level Tile Markov
Screenshot Translation ~ ‘ Model
Levels
Represented
in ASCII
Characters
:m;mxm:n\s by CNN ‘ ~ Autoencoder
ndy Warhol

Fonte: extraido de Chen et al. 2020.

Merino et al. 2023 apresentam o Five-Dollar Model, um modelo text-to-image leve
capaz de gerar imagens ou tile maps dada uma codificacdo de prompt textual. Nao foi
construido para SMB, mas testaram o desempenho do modelo na geracdo de mapas
baseados em ladrilhos.

O modelo desenvolvido pelos autores é uma rede feedforward relativamente simples,
aprimorada com a capacidade de mapear um vetor de embedding de sentenca concatenado
com um ruido randémico em uma representacgio visual categoérica baseada em ladrilhos.
Essa transformacao é realizada por meio de blocos residuais de camadas convolucionais.
A codificacdo das sentencas de entrada é feita por um modelo transformer externo pré-
treinado e, por conta da necessidade de aumentacdo dos dados de entrada (gerar mais
sentencas para descrever as imagens de treinamento), ainda utilizaram o GPT-4 para
aumentar o conjunto de dados de treinamento do modelo (Merino et al. 2023).

A abordagem apresentada é notavel por utilizar modelos pré-treinados para lidar com
o desafio inicial da representacgao das sentencas, que influenciam a saida do modelo. Além
disso, a técnica de aumento de dados empregada também é interessante. Surpreenden-
temente, o gerador empregado ndo precisa ser excessivamente complexo para alcangar

resultados tdo impressionantes, como destacado por Merino et al. 2023.

'Em computacio grafica e design de jogos, ladrilhos ou “tiles” sdo pequenas imagens ou blocos graficos
usados para construir cenarios ou ambientes maiores. Sdo tipicamente quadrados e representam elementos
individuais, como pedacos de terreno, paredes, objetos, ou qualquer outro componente do ambiente de um

jogo.

Revisao da literatura 5

Sudhakaran et al. 2023 demonstram como LLMs podem ser aplicados para geracéo de
estagios. Os autores apresentam o MarioGPT, um modelo baseado em uma versdo mais
leve do GPT2 chamada DistilGPT2. O modelo foi construido para gerar strings de tokens

que representam os ladrilhos de um estagio de SMB.

Figura 2.2: Diagrama do Sistema MarioGPT

Initial Tokenized Generated level
level
2,14,26,33,13,88, ...

GPT Layers

Cross
attention

MarioGPT

Prompt

3 pipes, 1 enemy, N
some blocks,

low elevation

Prediction
56,13,14,88, ...

Frozen Text
Encoder

Fonte: extraido de Sudhakaran et al. 2023.

O MarioGPT codifica os prompts de entrada utilizando o BART (Lewis et al. 2019) e
incorpora a média dos estados escondidos nos pesos de Cross Attention das camadas de
atencdo do GPT2, conforme a figura 2.2. No total, o modelo conta com 96 milhoes de
parametros (Sudhakaran et al. 2023).

Os resultados evidenciam a capacidade do modelo em produzir estagios diversos e em
seguir diretrizes fornecidas por um prompt textual. Um dos beneficios destacados pelos
autores é a capacidade de reutilizar uma arquitetura de LLM, o que permite aproveitar os
avancos e melhorias continuas nesta area (Sudhakaran et al. 2023).

Ja Lee e Simo-Serra 2023 propdem uma solugdo que aplica um modelo de difuséao
incondicional para gerar estagios de SMB. O sistema é uma adaptacdo de um modelo de
difusdo incondicional baseado em uma UNet, contando com mecanismos de auto-atencdo
e embeddings temporais.

A arquitetura e treinamento do modelo foram adaptados para geracgao dos estagios de
maneira categorica, diferentemente de Denoising Diffusion Probabilistic Models (DDPMs)
tradicionais que trabalham com imagens e sdo construidos em torno da representacao
continua dos dados. Dentre os ajustes realizados no procedimento, os autores utilizaram
uma fungéo de custo customizada (Reconstruction Loss) que, por conta da representacio
categorica, funciona como se fosse uma funcdo de custo multi-class cross-entropy (Lee e
Simo-Serra 2023).

Além disso, os autores também experimentaram: diferentes esquemas de Beta sche-
duling (especificamente o linear, quadratico e sigmoide) que regulam o nivel de ruido

inserido em cada passo do processo de difusao; e também com uma escala de temperatura

Revisao da literatura 6

por sprite, pois o parametro de temperatura global normalmente utilizado em modelos de
difusdo (controla o nivel de randomizacdo no processo de geracdo) poderia levar a uma
sub ou super-representacdo de certos sprites (Lee e Simo-Serra 2023).

Com base neste breve resumo sobre alguns trabalhos em PCGML, a proposta deste
projeto é realizar a construcdo de um gerador de estagios de SMB utilizando um DDPM. O
DDPM é uma cadeia de Markov parametrizada, treinada através de inferéncia variacional,
com o objetivo de produzir exemplos que se assemelhem aos dados de entrada apods
um periodo de tempo finito. As transicoes desta cadeia sao habilmente aprendidas para
reverter um processo de difusdo. Trata-se de uma cadeia de Markov que gradualmente
adiciona ruido aos dados de entrada até “desconstrui-los”, uma técnica que permite ao
modelo capturar as nuances e complexidades dos dados originais de forma eficiente (Ho,
Jain e Abbeel 2020). Este processo inverso de difusdo é essencial para o DDPM reconstruir
com precisdo os padrdes presentes nos estagios de SMB, resultando em uma geracao
de contetido mais auténtica. A figura 2.3 exemplifica este processo, da direita para a
esquerda temos o processo de difusdo, que adiciona ruido aos dados a cada passo (tempo),

e no sentido contrario ocorre a reversao da difusao.

Figura 2.3: Exemplo de um processo de difusdo aplicado a uma imagem.

Pe(thl\Xt)
R Ol
K. .

~
.
~

q(xe|xi-1)

Fonte: extraido de Ho, Jain e Abbeel 2020.

CariTULO 3

Materiais e Métodos

Neste capitulo vamos apresentar as especificagdes do conjunto de dados, do modelo

gerador e do ambiente utilizado no treinamento.

3.1 Materiais

3.1.1 Dataset

Os estagios usados durante o treinamento provem do Video Game Level Corpus (VGLC)
(A.]J. Summerville et al. 2016), um conjunto de dados disponivel em https://github.
com/TheVGLC/TheVGLC.git, que contém estagios de diversos jogos anotados em ar-
quivos de texto para facilitar pesquisas em PCG. Neste trabalho utilizamos apenas os
arquivos referentes aos estagios processados de “Super Mario Bros” e “Super Mario Bros 2
(Japan)”.

Os mesmos estdo codificados em texto com cada ladrilho do estagio mapeado a um
token correspondente como exemplificado na Figura 3.1. Ao todo temos 37 arquivos
com representacdes de estagios e 13 ladrilhos distintos nesse subconjunto da base de
dados. Na Tabela 3.1 apresentamos o mapeamento entre os ladrilhos e tokens utilizado
na anotacgao dos arquivos. A Figura 3.2 contém as alguns trechos de varios estagios do
dataset para termos uma nogao da variacdo entre eles.

Para reproduzir os estagios em forma grafica e também para verificar se sdo ao menos
jogaveis (se podem ser atravessados de uma ponta a outra por um agente) utilizamos o
Mario Al Framework (Ahmed 2022) apresentado inicialmente por Karakovskiy e Toge-
lius 2012. O uso previsto do framework é exclusivamente para pesquisa e compreende
ferramentas destinadas a testar os estagios gerados na notagao do VGLC, seja por meio
de agentes auténomos ou mesmo pela interacdo direta do usuario. Isso possibilita uma

avaliacdo abrangente e detalhada dos estagios produzidos, permitindo que pesquisadores

https://github.com/TheVGLC/TheVGLC.git
https://github.com/TheVGLC/TheVGLC.git

3.1. Materiais 8

Figura 3.1: Trecho de estagio de Super Mario Bros disponivel no VGLC. Acima temos o arquivo
processado e abaixo o original.

ceeme—es R EE-E-E- - - -XXXX- -XXXX- - - -XXXXX- -XXXX- - -~] EE- - - [JXXXXXXXXX- -~ -~ - -~ Ye=e
XXXXXKXXXXXXXXKXKXKXKXKXKXKXKXKXKXKXKXKKXKKKKXKXKXKXKXKX - - XXKXKXKXKXKXKKKKXKXKXKXKXKXKXKXKXKXKXKXKXKXXXKXX

Fonte: Autoria propria com composicdo de estagio e anotagio extraidos do VGLC (A. J. Summerville et al.

2016).

Tabela 3.1: Mapeamento entre tokens e ladrilhos utilizado no VGLC com suas respectivas contagens
no conjunto de dados.

Token Descricao Ladrilhos Quantidade
X Ladrilhos indestrutiveis no geral ol ¥s 9.542
‘S’ Ladrilhos destrutiveis = 2.339
- Vazio B 91.398

‘2 e‘Q’ Caixas com ou sem itens 339
‘E’ Inimigos no geral | 614
<’ Topo esquerdo dos canos 01 198
>’ Topo direito dos canos B 197
T “Corpo” esquerdo dos canos 477
T “Corpo” direito dos canos 479
o Moedas 0 | 459
‘B’ Topo dos canhdes (=1l 39
‘D’ “Corpo” dos canhdes (| 25

Fonte: Autoria propria com as imagens provindas do Mario AI Framework (Ahmed 2022) e a partir do

conjunto de dados anotado do VGLC (A. J. Summerville et al. 2016).

e desenvolvedores entendam melhor a qualidade e a jogabilidade dos niveis gerados por

seus modelos.

3.1.2 Tratamento dos dados

O processo de tratamento dos dados foi orientado pelas diretrizes estabelecidas por Lee e
Simo-Serra 2023, uma das referéncias fundamentais na concepcio do modelo. Devido a

utilizagdo de estagios de dois titulos distintos, é natural que ocorram disparidades nas

3.1. Materiais 9

Figura 3.2: Trechos de estigios originais que estdo anotados no VGLC.

alelel?)

A

Fonte: Autoria propria com base em trechos de imagens extraidas do VGLC (A. J. Summerville et al. 2016).

anotagdes, especialmente em relacdo a altura deles. Para garantir a consisténcia das
representacdes e montar um conjunto de treinamento coeso, foram realizadas algumas
adaptagOes para uniformizar as caracteristicas dos estagios.

Primeiramente reduzimos os blocos considerados de 13 para 11, isso porque dois
deles aparecem com pouca frequéncia no conjunto de dados, como pode ser visto na
Tabela 3.1. Os tokens substituidos por ‘-’ foram ‘b’ e ‘B’, que representam blocos de torre
e canhdo respectivamente.

O segundo passo foi uniformizar as alturas dos estagios de Super Mario Bros 2 para
ficarem consistentes com os 14 blocos de altura em Super Mario Bros. Para tanto realizamos
operagOes para adicionar ou remover linhas do inicio, ou do final dos estagios que
apresentam alturas diferentes de 14, conforme descrito na Tabela 3.2.

Tabela 3.2: Estigios e operacdes aplicadas para uniformizar as alturas. A representagdo numérica do

estagio significa o arquivo na posi¢éo correspondente na lista de arquivos processados de Super Mario
Bros 2 (Japan) ordenados de forma crescente pelo nome.

Estagio Operacao
1 Duplicar primeira e tltima linha
7 Remover primeira e ultima linha
15 Duplicar ultima linha
18 Remover ultima linha

3,4,8,9,13, 14, 16, 20, 21 e 22 Remover primeira linha

Fonte: Autoria propria.

Feitos os ajustes necessarios, para gerar o conjunto de treinamento para o modelo
extraimos de cada estagio um conjunto de janelas de dimensdo 14x14 blocos utilizando

uma janela deslizante de 1 bloco, aproveitando para substituir os tokens textuais por

3.2. Métodos 10

numeros que representam as classes de cada bloco seguindo a Tabela 3.3. Ao final do

processamento, o conjunto de dados ¢é categorico e contempla 6.961 janelas 14x14.

Tabela 3.3: Mapeamento dos tokens em inteiros.

Token Valor

X’ 0
‘S 1
2
“ 3
‘0’ 4
‘E’ 5
s 6
o .
k 3
7 9
‘0’ 10

Fonte: Autoria propria.

3.1.3 Instrumentos

Para executar as analises e o treinamento do modelo, utilizamos um computador com as

seguintes especificacoes:

Sistema Operacional: WSL2 Ubuntu (rodando em Windows 11)

Python: 3.10.12

Tensorflow: 2.15

Placa de video: NVIDIA GeForce GTX 1050 Ti

3.2 Meétodos

3.2.1 Definicao do modelo

Inicialmente, tentamos construir um modelo semelhante ao apresentado por Lee e
Simo-Serra 2023, porém os resultados nao foram satisfatérios devido a falta de in-
formacéo para reproduzir o modelo conforme descrito. Diante dessa situacdo, bus-
camos outras referéncias e encontramos o Modelo de Difusdo Multinomial (Hooge-
boom et al. 2021), que se mostrou uma cujo cédigo-fonte esta disponivel em: https:
//github.com/ehoogeboom/multinomial_diffusion.git. Essa mudanga de aborda-
gem foi fundamental para avangarmos em nossa pesquisa e alcangarmos resultados mais

significativos.

https://github.com/ehoogeboom/multinomial_diffusion.git
https://github.com/ehoogeboom/multinomial_diffusion.git

3.2. Métodos 11

Hoogeboom et al. 2021 descrevem o framework do Modelo de Difusdo Multinomial
que funciona como um DDPM convencional, mas com a diferenca que define o processo
de difusdo com base na distribuicao categorica dos dados. Sendo assim, ao invés de
trabalhar com os ruidos diretamente na imagem, a difusdo acontece na distribuicdo das
categorias adicionando um ruido uniforme a cada unidade de tempo.

A Figura 3.3 ilustra esse processo. Inicialmente, temos uma distribuicio inicial P(x).
Em seguida, aplicamos um processo de difusio ¢(x;|z;_1) que adiciona ruido uniforme a
cada passo resultando em p(z5). Por fim, aplicamos o processo reverso p(x;_1|x;), que
remove o ruido, nos levando de volta a distribuicao original. Esse ciclo de difuséo e

reversao é fundamental para o funcionamento do modelo de difusio probabilistica.
Figura 3.3: Exemplo do funcionamento do Modelo de Difusido Multinomial.

Ty ~ Q($2|331 Ty ~ Q(wl\wo

000 -~ adan -5 alle

p(x2) p(wl) P(wo)

Fonte: Extraido de Hoogeboom et al. 2021.

Adaptamos uma parte do codigo-fonte relacionada ao modelo de difusdo para o ambi-
ente do TensorFlow e configuramos a arquitetura do modelo de acordo com o diagrama
mostrado na Figura 3.4. Essa adaptacéo foi essencial para integrar o modelo de difuséo
ao nosso ambiente de desenvolvimento e garantir sua compatibilidade com as demais
ferramentas e bibliotecas utilizadas no projeto. Seguindo os exemplos de Lee e Simo-Serra
2023 e Hoogeboom et al. 2021, utilizamos uma arquitetura similar a UNet para o modelo,
porém sem as camadas de atencdo linear.

Elucidando a arquitetura representada na Figura 3.4, um “Bloco” na arquitetura
é composto por uma camada de convolucdo 2D, seguida por uma camada de Layer
Normalization e, por fim, uma camada de ativacéo utilizando a fun¢io “gelu”. Por sua
vez, um “Bloco Residual” consiste em dois “Blocos”, uma camada densa e uma camada de
ativacdo “gelu”, sendo estes dois ultimos utilizados para processar o Embedding Sinusoidal
que representa o tempo de difusdo. No fluxo de processamento, a entrada inicial é primeiro
submetida a um “Bloco”, e o resultado é entdo adicionado ao tempo de processamento.
Em seguida, o resultado passa pelo segundo “Bloco”. Finalmente, a entrada original é
adicionada ao resultado, preservando assim a conexao residual.

Aplicamos a funcéo de ativacdo “gelu” e o tamanho de kernel 3 nas convolugdes 2D
ao longo da rede, exceto na saida que é o resultado de uma camada de convolucido com 11

filtros, kernel 1 e ativacdo linear. Nas camadas de DownSampling e UpSampling, optamos

3.2. Métodos 12

Figura 3.4: Diagrama da arquitetura do modelo utilizado neste trabalho.

Skip Connections

(e ,
H H
H H
H H
H H
H H
H H
o = = H | - o~ _
3 SMEEIREIRGIRERE S 8. 8 8] i 8| |8 AIREIIREIN - N
- === = EreE 5—)§—)@—)§—)§—){5—)§—)§ S E I I =2
= g g |F| ||| =] |= = = == Z .= gl E| || | =
A A A A A A
i H i H
AR 1 i i ! : i AR
- — & =& P L P P P
— H | H i | i ' H i ' i !
I I P I P o P o P
= = ; ! ; ! | : . ; : . ! !
= =
L l:l Entradas (imagem e tempo) Bloco Residual l:l Bloco
[]| Embedding [| pownsamoiing Convolucao final

l:l Embedding Sinusoidal l:l Upsampling

Fonte: Autoria proépria.

por utilizar MaxPooling e UpSampling com interpolacdo bilinear. No entanto, tivemos
que proceder com cautela devido as dimensdes originais das janelas de entrada. Por
exemplo, durante a transicdo de uma dimensao de 7x7 para 4x4, empregamos uma camada
MaxPooling com tamanho de 4 e um stride de 1. Da mesma forma, durante a transicao
de 4x4 para 7x7, em vez de utilizar uma camada de UpSampling, implementamos uma
convolucdo transposta com 7 filtros e um kernel de tamanho 4 para ajustar as dimensdes

adequadamente. Ao todo modelo contempla 6.844.363 parametros treinaveis.

3.2.2 Treinamento

As configuracdes para o treinamento foram as seguintes:

« Numero de passos de difusio: 1000

« Numero de épocas: 1000

Otimizador: AdamW com taxa de aprendizado le—3 e weight decay le—4

Funcéo de custo: Negative Log Likelihood em bits por dimensédo conforme definicdo

aplicada em Hoogeboom et al. 2021

Como o0 nosso objetivo é construir um gerador e ndo um classificador, todo o conjunto
de dados foi utilizado no treinamento e ndo houve separacdo de conjuntos de validacdo e

teste. Os lotes de entrada do treinamento tinham 64 exemplos cada e foram embaralhados.

CariTULO 4

Resultados e Discussao

Durante as 1000 épocas de treinamento a progressao da funcéo de custo do modelo foi de
~ 0,73 para ~ 0,13, como pode ser visto na Figura 4.1. Analisando o grafico, também é
possivel perceber que a partir da época 500 (onde o custo era ~ (0,14), o modelo néo teve
um ganho muito significativo entdo poderiamos ter encerrado o processo antecipadamente.
O tempo total do treinamento do modelo foi cerca de 1 dia, com cada época levando

aproximadamente 90 segundos (na maquina com as especifica¢des definidas na Subsec¢io
Figura 4.1: Valor da fungio de custo do modelo para cada época de treinamento.

Valor da fungdo de custo - treinamento

—— Custo - treinamento
0.7

0.6 1

0.5

Custo

0.4

0.3 1

0.2 4

bt |

0.1+

T T T T T
0 200 400 600 800 1000
Epocas

Fonte: Autoria propria.

Com o modelo treinado, passamos para a etapa de geragao de estagios. Basicamente,
um modelo de difusdo baseado no DDPM gera novos dados através da execugao repetida
do modelo (aqui iteramos 1000 vezes), comecando com um ruido uniforme inicial. Por

exemplo, a Figura 4.2 ilustra como a entrada evolui ao longo desse processo de reversao

13

Resultados e Discussiao 14

da difusdo: no inicio, é quase puro ruido; na metade, comeca a mostrar caracteristicas da
imagem final; e nas iteracdes finais, temos uma janela 14x14 que poderia ser parte de um
estagio de SMB.

Figura 4.2: Exemplo do processo de reversio da difusio utilizado para gerar novos estagios.

T=1000 T=1500 T=1

N

Fonte: Autoria proépria.

A Figura 4.3 mostra alguns estagios gerados pelo modelo. E possivel perceber que a
saidas nao sdo perfeitas, com casos em que inimigos sdo gerados no chéo (Figura 4.3(g)),
canos gerados pela metade (Figura 4.3(i)) e moedas inacessiveis (Figura 4.3(b)). Porém,
ao realizar uma analise qualitativa dos resultados, observamos que o modelo conseguiu
capturar alguns padroes dos dados originais e é capaz de gerar novos estagios. No entanto,
algumas caracteristicas evidenciam que o processo de geragio ocorreu sem intervencdo
humana.

Com o objetivo de validar o modelo e comparar com os resultados apresentados
por Lee e Simo-Serra 2023, também utilizamos o Mario AI Framework (Ahmed 2022)
para processar os estagios gerados e avaliar quantos deles sdo de fato “jogaveis” por um
agente A*. Para tanto utilizamos duas abordagens, a primeira considerando somente
janelas individuais (14x14) e a outra considerando 12 janelas concatenadas (14x168) para
executar o agente.

Para a primeira avaliacdo consideramos 1000 estagios criados como os da Figura
4.3 e os resultados estdo na Tabela 4.1. E possivel perceber que, com essa abordagem, a
maioria dos estagios gerados pelo modelo é “jogavel” (cerca de 91%). Comparando com o
que é apresentado por Lee e Simo-Serra 2023, a proporcao de estagios jogaveis obtida
pelo modelo se aproxima das obtidas pelos modelos apresentados. Isso evidencia que até
mesmo um modelo mais simples tem a capacidade de gerar niveis completaveis.

Ja para a segunda avaliacdo realizamos a composi¢do de 1170 estagios maiores, con-
tendo 12 janelas concatenadas. A Tabela 4.2 mostra a proporcao de estados finais do
agente A" rodando nestes exemplos e os resultados evidenciam que a mera concatenagio
de saidas costuma gerar estagios impossiveis de terminar. A Figura 4.4 exemplifica uma

concatenacdo que resultou em um estagio com um buraco muito grande sem plataformas,

Resultados e Discussao

15

Figura 4.3: Exemplos de estigios gerados pelo modelo.

Dnnon

(b)

Ui Di D‘ Di Di Di Ui Di

Do
Do

Dnoon
nnoo

Tabela 4.1: Proporcéo de resultados de sucesso do agente A* do Mario AI Framework, rodando em
1000 estagios compostos por 1 janela 14x14 comparados com os resultados apresentados por Lee e

Simo-Serra 2023.

Fonte: Autoria propria.

Modelo Jogabilidade
Modelo Proposto 0,91
Modelo por Lee e Simo-Serra 2023 0,93

Fonte: Autoria propria com base nos resultados da execucdo do Agente A* do Mario AI Framework (Ahmed

2022) e nos resultados apresentados por Lee e Simo-Serra 2023.

impossivel de atravessar. Isso destaca uma limitacdo do modelo na geragdo de niveis

viaveis e desafiadores.

O agente conseguiu resolver somente 20% dos estagios criados deta maneira, um dos

exemplos destes esta na Figura 4.5. Esse fendmeno acontece por conta das caracteristicas

do modelo, atualmente ndo ha como garantir que as janelas de estagios geradas tenham

continuidade entre si. Possivelmente, uma abordagem que explorasse mais detalhada-

Resultados e Discussao 16

mente o espaco latente, utilizando vetores de ruido que estejam “proximos” entre si
como entrada, poderia reduzir esse problema. No entanto, essa abordagem implicaria
em sacrificar parte da diversidade proporcionada pelo uso de vetores aleatérios como

entrada.

Tabela 4.2: Proporcéo de estados finais do agente A™ do Mario Al Framework, rodando em 1170
estagios compostos por 12 janelas 14x14.

Estado final Quantidade Proporcao

Venceu 236 ~ 0,20
Perdeu 849 ~ 0,72
Timeout 85 ~ 0,08

Fonte: Autoria propria com base nos resultados da execucio do Agente A* do Mario AI Framework (Ahmed

2022).

Quando comparamos estes resultados com modelos baseados em LLMs como o Mari-
oGPT que consegue, até certo ponto, gerar estagios compridos seguindo indicacdes do
usuario (Sudhakaran et al. 2023), fica clara uma deficiéncia do modelo proposto na tarefa
de geracao de estagios longos.

Entretanto, é crucial considerar tanto o tamanho quanto o funcionamento de ambos
os modelos, visto que o MarioGPT possui 96 milhdes de parametros em comparacao
com os ~ 7 milhdes do modelo proposto, além de operarem de maneiras completamente
distintas. Outra alternariva seria expandir o escopo do modelo de difusdo ao ampliar a
janela de entrada para incluir um nimero maior de colunas e gerar estagios inteiros de

uma vez ao invés de janelas menores.

Figura 4.4: Exemplo de estagio impossivel de completar com o agente A*.

Fonte: Autoria proépria.

Figura 4.5: Exemplo de estagio possivel de completar com o agente A*.

" P i o 3

elodt]
L] L] o o o
EE il

Fonte: Autoria propria.

Em termos do potencial uso do modelo, devido ao tempo necessario para a geragao dos
estagios, ndo seria ideal utiliza-lo durante o jogo. Por exemplo, o tempo de processamento
para gerar 1000 janelas 14x14 foi de 23 minutos e 42 segundos, enquanto para 1000
estagios com 12 janelas o processo levou aproximadamente 6 horas e 10 minutos. Existe

ainda a possibilidade de estagios impossiveis serem criados, frustrando os jogadores.

Resultados e Discussao 17

Para criar estagios mais longos e coerentes a abordagem ideal seria uma de cocriagao
entre o modelo e um designer, similar ao conceito apresentado no “Image to Level” por
Chen et al. 2020. Dessa forma, seria possivel compor janelas geradas de modo que o
estagio fosse mais refinado e viavel para concluséo, além de resolver inconsisténcias na

geragdo, como objetos criados de forma incompleta ou mal posicionados no chéo.

CariTULO 5

Conclusao

PCG (do inglés, Procedural Content Generation) refere-se a algoritmos que podem criar
conteudo de jogo por conta propria, ou junto com jogadores e/ou designers humanos.
Neste trabalho exploramos uma parte do universo PCGML (do inglés, PCG via Machine
Learning) para tarefa de geracdo de estagios em jogos e as diversas técnicas utilizadas em
sua execucdo. Dentro deste escopo, baseando-se em um estudo da literatura, apresentamos
um modelo de difusdo’ gerador de estagios de “Super Mario Bros” (SMB) capaz de criar
niveis previamente inexistentes. Este modelo é uma ferramenta eficaz de cocriacéo
no desenvolvimento de jogos, dadas suas limitacdes em termos de tempo de geragdo e
qualidade na criacdo de estagios mais longos. Em termos de escopo deste tipo de modelo,
esta arquitetura é capaz de lidar com outros jogos que possuem recursos representados
de forma categdrica, ndo so6 estagios mas também mapas como exemplo.

Para treinar o modelo proposto, utilizamos parte do dataset disponivel no Video
Game Level Corpus (VGLC, por A. J. Summerville et al. 2016). O subconjunto utilizado
contém arquivos de texto com anotagdes representando os ladrilhos (ou tiles, em inglés)
de cada estagio dos jogos “Super Mario Bros” e “Super Mario Bros 2 (Japan)”, para montar o
conjunto de treinamento utilizamos janelas categéricas (14x14) extraidas destas anotacdes.
Jana construcdo do modelo, nos baseamos na proposta do Modelo de Difusao Multinomial
apresentado por Hoogeboom et al. 2021 e utilizamos uma arquitetura similar a UNet. Por
conta destas escolhas o modelo proposto possui as limitacdes mencionadas anteriormente.

Analisando os estagios gerados mostramos que o modelo aprendeu alguns padroes
dos dados originais e é capaz de criar novos niveis, mas com algumas caracteristicas que
evidenciam que o processo de geragdo ocorreu sem interven¢ao humana. Ja na avaliacéo
de jogabilidade dos estagios resultantes, vemos que o modelo é capaz de gerar janelas
14x14 completaveis em cerca de 91% das vezes. Porém quando realizamos o processo de

concatenacdo para obter niveis mais longos (sem interven¢io externa) a porcentagem de

'O codigo-fonte utilizado para o modelo estara disponivel neste link.

18

https://colab.research.google.com/drive/1anh4OfT_M1lojWEgDioPDQQFxpuoSTaw?usp=sharing

Conclusao 19

estagios completaveis cai significativaemente, chegando a aproximadamente 20% para
concatenacdes de 12 janelas. Observamos outra caracteristica importante do modelo que
que é o tempo de geracgdo, que torna o modelo mais adequado a cenarios de cocriacdo do
que geracdo em tempo de jogo.

Acreditamos que os resultados foram satisfatorios, mesmo que o modelo seja mais
simples que os demais encontrados na literatura. Isso porque nao possui diversos ele-
mentos encontrados nestes outros como: camadas de atencio, escala de temperatura
baseada na probabilidade de cada ladrilho e mais. Porém o modelo ndo é muito efetivo na
construcio de estagios maiores sem intervengao externa. Para melhorar isso, poderiamos
ampliar a janela de entrada e saida do modelo, para considerar estagios maiores e nao
somente janelas 14x14. Essa solucdo nio resolve o problema de concatenacdo de varias
saidas do modelo, para tanto devemos trocar o tipo de modelo utilizado ou alterar a
arquitetura para gerar um modelo de difusdo condicional e talvez assim gerar janelas que
podem ser concatendas sem muitos problemas.

Como proximos passos poderiamos pensar em expandir o uso deste modelo para
outros jogos ou estudar as possibilidades de alterar o mesmo para que seja mais efetivo
na geracao de estagios de SMB. Seja pela a inclusdo de mecanismos como camadas de
atencdo e escalas de temperatura no treinamento ou pela alteragdo na arquitetura de

modo a torna-lo condicional ou ampliando as janelas de entrada e saida.

Referéncias

Ahmed, Khalifa (2022). Mario-AI-Framework. https ://github. com/amidos2006/

Mario-AI-Framework.

Chen, Eugene et al. (out. de 2020). “Image-to-Level: Generation and Repair”. Em: Pro-
ceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital En-
tertainment 16.1, pp. 189—195. DoI: 10 . 1609 /aiide . v16i1l . 7429. URL: https :
//ojs.aaai.org/index.php/AIIDE/article/view/7429.

Ho, Jonathan, Ajay Jain e Pieter Abbeel (2020). “Denoising Diffusion Probabilistic Mo-
dels”. Em: Advances in Neural Information Processing Systems. Ed. por H. Larochelle

et al. Vol. 33. Curran Associates, Inc., pp. 6840-6851. URL: https://proceedings.

neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179cadb-

Paper.pdf.

Hoogeboom, Emiel et al. (2021). Argmax Flows and Multinomial Diffusion: Learning Cate-

gorical Distributions. arXiv: 2102.05379 [stat.ML].

Karakovskiy, Sergey e Julian Togelius (2012). “The Mario Al Benchmark and Competitions”.
Em: IEEE Transactions on Computational Intelligence and Al in Games 4.1, pp. 55—-67.
por: 10.1109/TCIAIG.2012.2188528.

Lee, Hyeon Joon e Edgar Simo-Serra (2023). “Using Unconditional Diffusion Models in
Level Generation for Super Mario Bros”. Em: 2023 18th International Conference on

Machine Vision and Applications (MVA), pp. 1-5. bo1: 10.23919/MVA57639.2023.
10215856.

Lewis, Mike et al. (2019). BART: Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension. arXiv: 1910.13461 [cs.CL].

20

https://github.com/amidos2006/Mario-AI-Framework
https://github.com/amidos2006/Mario-AI-Framework
https://doi.org/10.1609/aiide.v16i1.7429
https://ojs.aaai.org/index.php/AIIDE/article/view/7429
https://ojs.aaai.org/index.php/AIIDE/article/view/7429
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://arxiv.org/abs/2102.05379
https://doi.org/10.1109/TCIAIG.2012.2188528
https://doi.org/10.23919/MVA57639.2023.10215856
https://doi.org/10.23919/MVA57639.2023.10215856
https://arxiv.org/abs/1910.13461

Merino, Timothy et al. (out. de 2023). “The Five-Dollar Model: Generating Game Maps
and Sprites from Sentence Embeddings”. Em: Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment 19.1, pp. 107-115. DOI:
10.1609/aiide . v19il.27506. URL: https://ojs . aaai.org/index . php/
ATIDE/article/view/27506.

Migdal, Piotr, Bartlomiej Olechno e Btazej Podgorski (2021). Level generation and style
enhancement — deep learning for game development overview. arXiv: 2107 . 07397
[cs.CV].

Sarkar, Anurag e Seth Cooper (2021). Generating and Blending Game Levels via Quality-
Diversity in the Latent Space of a Variational Autoencoder. arXiv: 2102.12463 [cs.LG].

Shaker, Noor, Julian Togelius e Mark Nelson (jan. de 2016). Procedural Content Generation
in Games. 1SBN: 978-3-319-42714-0. DOI: 10.1007/978-3-319-42716-4.

Sudhakaran, Shyam et al. (2023). MarioGPT: Open-Ended TextzLevel Generation through
Large Language Models. arXiv: 2302.05981 [cs.AI].

Summerville, Adam et al. (2018). “Procedural Content Generation via Machine Learning
(PCGML)”. Em: IEEE Transactions on Games 10.3, pp. 257—270. DoIL: 10.1109/TG.
2018.2846639.

Summerville, Adam James et al. (2016). The VGLC: The Video Game Level Corpus. arXiv:
1606.07487 [cs.HC].

21

https://doi.org/10.1609/aiide.v19i1.27506
https://ojs.aaai.org/index.php/AIIDE/article/view/27506
https://ojs.aaai.org/index.php/AIIDE/article/view/27506
https://arxiv.org/abs/2107.07397
https://arxiv.org/abs/2107.07397
https://arxiv.org/abs/2102.12463
https://doi.org/10.1007/978-3-319-42716-4
https://arxiv.org/abs/2302.05981
https://doi.org/10.1109/TG.2018.2846639
https://doi.org/10.1109/TG.2018.2846639
https://arxiv.org/abs/1606.07487

	Sumário
	Resumo
	Abstract
	Lista de Figuras
	Lista de Tabelas
	Introdução
	Revisão da literatura
	Materiais e Métodos
	Materiais
	Dataset
	Tratamento dos dados
	Instrumentos

	Métodos
	Definição do modelo
	Treinamento

	Resultados e Discussão
	Conclusão
	Referências

