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RESUMO

Teodosio, D. F. Uma proposta de arquitetura paralela de rede neural
convolucional para detecgao de padroes em sequéncias de DNA. 2024. 54 p.
Monografia (MBA em Inteligéncia Artificial e Big Data) - Instituto de Ciéncias
Matematicas e de Computacao, Universidade de Sao Paulo, Sao Carlos, 2024.

A informacao genética dos seres vivos, responsavel por determinar suas caracteristicas, esta
quimicamente codificada em sequéncias de bases nitrogenadas no nicleo celular, o DNA.
Tal informagao ¢é transcrita em RNA e traduzida em aminoédcidos no citoplasma celular.
Os padroes contidos no DNA ou no RNA, que contém informacao til, seja informacgao
genética ou padroes que servem a propoésitos estruturais no processo de transcricao e
tradugao da informacgao genética, sdo, por vezes, demasiadamente complexos e variam em
forma e tamanho. Sendo assim, métodos de aprendizado profundo podem ser um caminho
eficaz na identificacao e classificacao de padroes em sequécias de DNA. Este trabalho
apresenta uma proposta de identificacdo de padroes em sequéncias de DNA, usando como
base, redes neurais convolucionais em uma arquitetura paralela, de forma a extrair com
base em diferentes representacoes de uma mesma amostra de um conjunto de treino,
caracteristicas que uma vez concatenadas, possam se complementar e melhorar o processo
de classificacao pela camada densa. Os datasets utilizados neste trabalho sdo constituidos
de sequencias formadas pelos caracteres A, C, T, G, representando as quatro bases
nitrogendadas que formam o DNA e para cada sequéncia podem ser atribuidas duas classes,
conter ou nao conter determinado padrao. Como forma de transformar uma sequéncia
de DNA em uma matriz de forma a preservar os padroes posicionais 1iteis no processo
de classificacado das amostras pela rede convolucional, foram extraidas subsequéncias,
para cada sequéncia de DNA sendo que tais subsequéncias foram organizadas em forma
de colunas e depois substituidas por um vetor binario denso, tomando a forma de uma
matriz binaria. As diferentes representacoes de cada matriz numérica, representante de
um elemento transformado do dataset, dizem respeito aos diferentes tamanhos da janela
de convolucao que os diferentes segmentos da arquitetura convolucional paralela proposta
possuem na sua primeira camada convolucional, portanto se trata de uma analise com
base em diferentes tamanhos de janela de convolu¢ao na entrada da rede. Foram feitos
experimentos treinando variagoes da arquitetura proposta, no que diz respeito ao niimero
de segmentos paralelos, e também foram feitos experimentos com segmentos sequénciais
componentes da arquitetura em questao, de forma a extrair para uma dada implementacao,
o valor da média de multiplos experimentos de métricas uiteis para avaliagdo do classificador,
como acuracia, F1-score, precisao e revocacao, além de valores referentes a média de tempo
por época necessarios para treinar cada implementacao e a média da quantidade de RAM

alocada durante o treinamento. Os experimentos foram feitos para dois datasets diferentes



e, para ambos, as arquiteturas paralelas, com diferentes nimeros de segmentos, obtiveram,
na maioria das vezes, um melhor resultado de acuracia, em relagao aos segmentos isolados
que as compunham. Além disso os melhores resultados gerais para cada dataset, foram
obtidos com alguma variacao da arquitetura paralela proposta. Porém a quantidade de
memoria alocada durante o treino e o tempo necessario para o treino da rede, cresceram
linearmente em relacao ao nimero de segmentos paralelos e os experimentos nao mostram

uma correlacao direta entre o niimero de segmentos paralelos e a qualidade do classificador.

Palavras-chave: Aprendizado de méaquina. Redes Neurais Convolucionais. Identificagao

de padroes. Bioinformatica. Genética.



ABSTRACT

Teodosio, D. F. A Parallel Architecture Proposal of Convolutional Neural
Network for Pattern Detection in DNA Sequences. 2024. 54 p. Monograph (MBA
in Artificial Intelligence and Big Data) - Instituto de Ciéncias Mateméticas e de
Computacao, Universidade de Sao Paulo, Sao Carlos, 2024.

The genetic information of living beings, responsible for determining their characteristics,
is chemically encoded in sequences of nitrogenous bases in the cell nucleus, the DNA. This
information is transcribed into RNA and translated into amino acids in the cell cytoplasm.
The patterns contained in DNA or RNA, which contain useful information, whether genetic
information or patterns serving structural purposes in the process of transcription and
translation of genetic information, are sometimes exceedingly complex and vary in shape
and size. Thus, deep learning methods can be an effective way to identify and classify
patterns in DNA sequences. This work presents a proposal for identifying patterns in DNA
sequences using convolutional neural networks in a parallel architecture, to extract, based
on different representations of the same sample from a training set, features that, once
concatenated, can complement each other and improve the classification process by the
dense layer. The datasets used in this work consist of sequences formed by the characters
A, C, T, G, representing the four nitrogenous bases that form DNA, and for each sequence,
two classes can be assigned, having or not having a certain pattern. To transform a DNA
sequence into a matrix to preserve positional patterns useful in the sample classification
process by the convolutional network, subsequences were extracted for each DNA sequence,
organized into columns, and then replaced by a dense binary vector, forming a binary
matrix. The different representations of each numerical matrix, representing a transformed
dataset element, relate to the different convolution window sizes that the different segments
of the proposed parallel convolutional architecture have in their first convolutional layer,
thus it is an analysis based on different convolution window sizes at the network input.
Experiments were conducted training variations of the proposed architecture, regarding
the number of parallel segments, and also experiments with sequential segments of the
architecture in question, to extract for a given implementation, the average value of multiple
experiments of useful metrics for classifier evaluation, such as accuracy, F1-score, precision,
and recall, as well as values related to the average time per epoch needed to train each
implementation and the average amount of RAM allocated during training. Experiments
were conducted for two different datasets, and for both, the parallel architectures with
different numbers of segments often achieved better accuracy results compared to the
isolated segments that composed them. Additionally, the best overall results for each
dataset were obtained with some variation of the proposed parallel architecture. However,

the amount of memory allocated during training and the time required for network training



grew linearly with the number of parallel segments, and the experiments did not show a

direct correlation between the number of parallel segments and the classifier quality.

Keywords: Machine learning. Convolutional Neural Networks. Pattern Recognition.

Bioinformatics. Genetics.
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1 INTRODUCAO

O DNA (Deozyribonucleic Acid), contido no nucleo celular, é responsavel por
codificar as informagoes genéticas dos seres vivos. Tal informagao é armazenada na forma
de grandes sequéncias de nucleotideos A, C, T, G (adenina, citosina, timina, guanina). A
informacao contida no DNA ¢é entao transcrita em cadeias de RNA (Ribonucleic Acid),
que é formado pelas mesmas bases nitrogenadas, porém com a uracila no lugar da timina.
Por fim, a informacao genética é traduzida com a producao de aminoacidos no citoplasma
celular, com base na informacao sequencial contida no RNA transcrito (Alberts, 2017).
Os padroes, que contém informacoes uteis para o processo de transcricdo e tradugao
e que podem estar presentes em grandes sequéncias de DNA e RNA sao, por vezes,
demasiadamente complexos e intrincados para serem identificados por inspecao visual.
Sendo assim, métodos de aprendizado de maquina podem ser um caminho a ser explorado

na identificacao de tais padroes.

Ainda no contexto de aprendizado de maquina, as redes neurais convolucionais, ou
CNN’s (Convolutional Neural Networks), tem se mostrado muito eficientes na identificagao
de caracteristicas de alto nivel (Lecun et al., 1998) e, por esse motivo, muito utilizadas no
processamento digital de imagens para classificacao e reconhecimento de objetos. Porém,
a capacidade das CNN’s de identificar caracteristicas espaciais sutis, pode ser aplicada
em outros contextos como, por exemplo, no processamento de linguagem natural tal qual
em (Kim, 2014). Para tanto, sdo feitas transformagoes nas amostras que farao parte do
treinamento e validacao da rede, criando representacoes destas que permitam utilizar o
potencial da CNN de identificar padroes espaciais de interesse. Retornando as sequéncias
de DNA ou RNA e levando em consideracao a tarefa de classificd-las no que diz respeito
a possuirem ou nao determinados padroes importantes no processo de codificacao de
informacao genética, podemos considerar as grandes sequéncias de nucleotideos tal qual

um texto, sendo possivel assim usar CNN’s para identificagdo de padroes em sequéncias

de DNA e RNA.

A proposta desse trabalho esta centrada em uma abordagem para classificacao
de longas sequéncias de nucleotideos, no que diz respeito a terem ou nao determinado
padrao escolhido, que visa usar como entrada para o treinamento da rede, simultaneamente,

diferentes aspectos de uma mesma amostra do conjunto de treinamento da rede.

Partindo do trabalho desenvolvido em (Giang et al., 2016), que transforma uma
sequéncia extensa de nucleotideos em um conjunto de subsequéncias derivadas, para fins
de criar uma representacao matricial, que preserva a informagcao posicional da sequéncia
de nucleotideos original e que serve como elemento amostral de treino para rede e tendo

como motivagao os resultados consideraveis reportados em (Johnson; Zhang, 2014) e em
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(Kim, 2014), na extracao e utilizacao de diferentes aspectos de uma mesma amostra do
conjunto de treino no processo de treinamento da rede, este trabalho propoe um estudo
focado nos possiveis beneficios de usar uma arquitetura de CNN paralela, que extrai
concomitantemente caracteristicas de alto nivel de diferentes aspectos de uma mesma
amostra do conjunto de treino. A hipétese que motiva tal estudo é que diferentes aspectos
de uma mesma amostra possam se complementar entre si, adicionando informacao 1til no

treinamento da rede.

O estudo que este trabalho propoe tem como objetivo reportar possiveis melhorias
e beneficios na classificacdo de cadeias de nucleotideos, mediante ao fato das mesmas
conterem ou nao um dado padrao, usando a extracdo em paralelo de caracteristicas de
diferentes representacoes de uma mesma amostra, o método sera aplicado para diferentes
bases de dados. Para tal, serd implementada uma CNN com uma arquitetura paralela e
serao feitos experimentos com diferentes niveis de paralelismo. Também sera feita uma
reflexao, no que diz respeito a viabilidade de tal abordagem, mediante ao possivel aumento

de recursos computacionais e tempo de treinamento da rede.
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2 FUNDAMENTACAO TEORICA

2.1 Consideracoes iniciais

No amplo espectro de técnicas do universo do aprendizado de maquina, esse
trabalho vai tratar exclusivamente de redes neurais, mais especificamente de redes neurais
convolucionais. Portanto, vamos explorar os conceitos que dizem respeito a essa arquitetura
de rede neural. Vamos fazer uma breve retrospectiva histérica que nos conduza até o
surgimento de nossa arquitetura de interesse e entao vamos tratar dos fundamentos da

mesma e da aplicacao desta no dominio da bioinformética e da genética.

2.2 Panorama histérico dos modelos conexionistas

Ainda na década de 40 do século passado, McCulloch e Pitts publicaram um estudo
onde propunham um modelo simples de neurénio articificial, baseado, em certos aspectos,
no neurdnio biolégico, que poderiam ser usados em conjunto para resolver problemas de
légica proposicional (McCulloch; Pitts, 1943).

Na década de 50, continuando na linha de reproduzir artificialmente certos aspectos
do aprendizado bioldgico dos seres vivos, Frank Rosemblat propos seu perceptron (Ro-
senblatt, 1958), um tanto quanto diferente do neurénio artificial de McCulloch e Pitts. O
perceptron de Rosemblat podia realizar classificacdo de problemas linearmente separaveis.
A forma como o perceptron de Rosemblat é capaz classificar padroes linearmente separaveis
se da por meio de um algoritmo iterativo de treinamento, baseado na obra de Donald
Hebb, The Organization of Behavior (Hebb, 1949). A obra em questdo sugere que quando
um neurénio biolégico aciona outro neurénio frequentemente, a conexao entre estes se

torna mais forte.

A representacao do conhecimento através da relevancia das conexdes entre os
neurdnios biolégicos norteia a regra de treinamento do perceptron, que consiste em
atualizar iterativamente as conexdes (ou pesos) da rede, em fungao do erro da rede no que

diz respeito ao valor esperado na saida (usando exemplos de treino).

Segue abaixo a representacao de um neurénio biolégico. Tais células possuem
ramificacoes chamadas de dendritos e uma ramificacdo especialmente grande, chamada
axoOnio. Os axOnios possuem nas suas extremidades sinapses, que se ligam as ramificagoes
de outros neuronios. Os neuronios produzem pequenos potenciais elétricos, transmitidos

através das sinapses por meio de neurotransmissores.



24

Figura 1 — Neuronio biologico
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Fonte:(Patterson; Gibson, 2017)

O perceptron de Rosemblat é composto por uma camada de neurénios de entrada,
que representam os valores de entrada da rede, ligadas através de pesos ajustaveis, repre-
sentados por conexoes, a um neuronio de saida que aplica uma transformacao — chamada

de funcao de ativacao — a soma das entradas multiplicadas pelos seus respectivos pesos.

Figura 2 — Perceptron de Rosemblat

Incesting Waights an Artficial , Dutgaing
connections COnNBCHions Fal naten ¢ connecions

Fonte:(Patterson; Gibson, 2017)

Segue abaixo a férmula do ajuste iterativo dos pesos do perceptron em fungao do

erro da rede:
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atualizado antigo

Wi =w; 0y — g (2.1)

Como mostra a féormula 2.1, o ajuste de cada conexao, em cada iteracao, é pro-
porcional a diferenga entre o valor esperado na saida da rede e o valor obtido (y e 7,
respectivamente), além de cada respectiva entrada z; e do pardmetro 7, que controla a
taxa de aprendizado dos parametros da rede. A saida ¢ da rede é o resultado da aplicacao
de uma funcao de ativacdo ao somatoério das entradas da rede multiplicadas pelos seus
respectivos pesos. Uma vez que as conexoes da rede convergem de forma a atribuir o
correto valor na saida para cada uma das entradas, o conhecimento da rede na resolugao do
problema esta representado internamente pelo valor dos parametros ou conexoes da rede.
Tal conceito nao muda, em esséncia, para arquiteturas que foram propostas posteriormente

e que vamos discutir adiante.

2.3 Multilayer perceptron, conceitos e fundamentos

2.3.1 Arquitetura de rede

Como mencionado anteriormente, o perceptron de Rosemblat é capaz de aprender a
classificar padroes linearmente separaveis, contudo, problemas simples como o de aprender
as saidas de uma porta légica XOR, (ezclusive OR), é um problema que estd além do que
o perceptron simples consegue aprender (Géron, 2019). Em seu trabalho de 1969 (Minskys;
Papert, 1969), Minsky e Papert exploraram as limitagoes do perceptron. Tais limitagoes
somadas a falta de recursos computacionais mais robustos, conduziu a um desinteresse

nas redes neurais durante a década de 70 até meados da década de &0.

Porém as limitacdes do perceptron simples de Rosemblat — no que diz respeito a
classificacao de problemas que nao sao linearmente separaveis — podem ser contornadas

empilhando camadas de perceptrons tal qual a figura 3.
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Figura 3 — Arquitetura MultiLayer Perceptron
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Fonte:(Patterson; Gibson, 2017)

A arquitetura de rede mostrada acima é chamada de multilayer perceptron e vamos
nos referir a mesma como MLP (MultiLayer Perceptron). A MLP, é composta por uma
camada de neurdnios de entrada que simplesmente propagam para frente os valores de
entrada da rede, um conjunto de camadas de neurdénios ocultas, onde todos os neurdnios
estao ligados por pesos da rede a todos os neurdnios da camada seguinte e, por fim,
existe uma camada de saida composta por um ou mais neuronios. Tal arquitetura de rede
funciona como um aproximador de func¢odes genérico, podendo ser usado em tarefas de

regressao ou classificacao (Haykin, 2009).

2.3.2 Funcgoes de ativacao

Em uma rede MLP, a saida de um neurdnio de camada oculta que, eventualmente,
serve de entrada para outro neurénio oculto, é modulada por func¢oes de ativagao que
aplicam uma transformacao em escala a soma dos pesos de entrada do respectivo neurénio
multiplicados pelas suas respectivas entradas. Anteriormente, haviamos comentado sobre
a funcao de ativacao para o perceptron de Rosemblat. Nesse caso a funcao de ativacao é
uma funcao degrau simples, onde a resposta é igual a 1 para uma entrada maior ou igual

a 0 e é 0, caso contrario.

Na figura 4 sao mostradas outras fungdes de ativagdo comumente usadas em redes

neurais.
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Figura 4 — Funcoes de ativacao
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As funcgoes sigmoide e tangente hiperbdlica pertencem ao grupo de fungoes sigmoi-
dais e adicionam, quando usadas, um fator de nao linearidade a rede. A funcao sigmoide
também pode ser usada como fungao de saida para redes de classificacdo. A fungdo Rel.u,
também mostrada na figura 4, mostrou resultados superiores as fungoes sigmoidais em
redes profundas (Géron, 2019), porém, a ReLu tende, eventualmente, a causar a morte de
neurdnios da rede, situagao na qual certos neurdonios passam a ter valor sempre igual a
zero na fase de treinamento. Para sanar ou diminuir a tendéncia que tal problema ocorra,
a funcdo Leaky ReLu tem como saida pequenos valores negativos para entradas menores

que zero.

Vale mencionar ainda a funcao de ativacao softmax, que forca a saida dos neurdnios
da ultima camada da rede — que representam as diferentes classes que podem ser atribuidas
as amostras de entrada — a atribuir valores analogos a uma distribui¢ao de probabilidade,

para as classe possiveis, sendo uma generalizacao da fungao sigmoide para multiplas classes.

2.3.3 Fungoes de perda

O valor que serve como referéncia para o ajuste dos parametros da rede é calculado
levando em consideragao os valores de saida da rede, para tanto é necessario utilizar
uma func¢ado que transforma a saida na rede em uma quantidade representativa do quao
proximo a rede esta da resposta esperada, estas sdo denominadas fungoes de perda. Como
mencionado anteriormente, as redes MLP podem ser usadas como aproximadores genéricos
de funcgoes, para regressao e classificagao, portanto, vamos abordar algumas fungoes de
perda, que se destinam a tais propésitos. Vamos denominar a func¢ao de perda por P(W),
onde W representa os parametros treinaveis da rede, para sinalizar que o erro da rede é

uma funcao dos seus parametros ajustaveis.

2.3.3.1 Funcao de erro médio quadratico e erro médio absoluto

Dado um conjunto de N amostras do conjunto de treino, o erro médio quadratico
para as N amostras pode ser calculado pela férmula 2.2, Y e Y sdo vetores que representam

a saida obtida e a saida esperada para a i-ésima amostra, respectivamente.

POV) = - 3 (F - Yo (2.2)

Em vez de calcular a média da diferenga quadratica para um conjunto de tamanho

N da rede, também é possivel calcular a média do erro absoluto, como na féormula 2.3

POV) = 3 IF V] (2.3)
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Ambas as fungoes de erro mostradas acima sao, normalmente, aplicadas a redes

aproximadoras regressoras.

2.3.3.2 Funcao de entropia cruzada e funcao de perda de articulacao

A funcoes mostradas até agora dizem respeito a redes que se destinam a serem
regressores, para redes onde o objetivo é atribuir uma classe de um conjunto finito de
classes a uma dada amostra de entrada, podemos usar fun¢oes de perda mais adequadas
como a funcao de entropia cruzada representada na férmula 2.4, para N amostras e M
classes. Aqui 4;; e y;; ndo sao vetores, mas sim a saida da rede e o valor correto esperado

para o j-ésimo neurdnio em relagao a #-ésima amostra.

N M
- Z Z Yij log(7ij) (2.4)
i=1 j=1

A funcao de entropia cruzada acima tende a ser aplicada em situacoes onde a
probabilidade de uma dada amostra pertencer a uma dada classe é o fator mais importante
a ser levado em consideragao. Quando temos uma questao relacionada a classificacao
binaria — uma entrada da rede é ou ndo de uma determinada classe — A funcao de perda
de articulagao (hinge function em inglés), pode ser uma melhor opc¢ao e a mesma estéd

representada na férmula 2.5.

1 A

2.3.4 Métricas de avaliacao de classificadores

No que diz respeito a um dado classificador, podendo ser uma rede neural ou
qualquer outro, existem métricas que representam numericamente a eficiéncia do mesmo.
Usar uma medida ou outra depende das circunstancias e do contexto no qual o classificador
vai ser usado (Géron, 2019). Seguem abaixo algumas métricas usadas para avaliar a
performance de um dado classificador,onde VP, FP, VN, FN, significam “verdadeiro

% W

positivo”, “falso positivo”, “verdadeiro negativo”, “falso negativo”, respectivamente:

. VP
Precisao = m (26)
- VP
SenSlbllZdade = m (27)
P+ VN
Acuracia = VDT (2.8)

VP+FN+VN+ FP
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2
F1 — score = — T (2.9)

Precisao Sensibilidade

Caso seja mais importante que o classificador nao gere previsoes de falso positivo, a
métrica de precisao pode ser mais eficaz, caso o classificador seja treinado para identificar
uma taxa alta dos casos de verdadeiro positivo, a medida de sensibilidade (também chamada
de revocagao) é mais apropriada. Caso a precisdo e a sensibilidade sejam importantes, a
medida de acuracia, dada pela férmula 2.8 pode ser uma opc¢ao, porém, para conjuntos
onde existe um desbalanceamento grande do nimero de amostras para as diferentes classes,
a métrica de acurdcia deixa de ser um bom indicador da qualidade do classificador. Como
alternativa, temos a métrica Fl-score, que s6 é alta se a precisao e a sensibilidade forem
altas (Géron, 2019).

2.3.5 Treinamento de redes MLP

No caso do perceptron de Rosemblat, que possui somente uma camada oculta, a
regra de aprendizado iterativa de Hebb é o suficiente para ajustar a tinica camada de
pesos da rede em funcao do erro na saida na rede, porém no caso da arquitetura MLP,
que possui, eventualmente, varias camadas de neurdnios conectadas pelos pesos da rede,
surge a questao de como treinar tal arquitetura de forma que os pesos da rede acabem

convergindo de forma a minimizar o erro na saida da rede.

2.4 Gradiente descendente e algoritmo de backpropagation.

Por um certo tempo a maneira mais eficiente de como treinar uma rede MLP foi
uma questao em aberto entre os pesquisadores. Porém, em 1986 Rummelhart, Willians e
Hinton publicaram um artigo, mostrando um método eficaz de ajustar os pesos das camadas
mais internas da rede (Rumelhart; Hinton; Williams, 1986), baseado em retropropagar a
“culpa” pelo erro na saida da rede para as camadas mais internas de neurénios até chegar

a entrada da rede.

Dada uma funcao f(xy, o, ...,x,), o vetor gradiente corresponde a derivada parcial
da funcao em questao, em relacao a cada um de seus parametros, como mostrado em 2.10,
além disso, o vetor gradiente, para um dado ponto na curva ou superficie n-dimensional
representada pela fungdo em questao, representa a dire¢ao no qual o deslocamento leva
ao maior incremento ou decremento no valor da funcao, dependendo do sentido do

deslocamento.

of of of of
Oxy Oxy’ Oxs’ " Oxy,

Vi = (2.10)

Partindo deste principio o algoritmo de backpropagation calcula, iterativamente,

o gradiente descendente, partindo de um ponto qualquer de uma curva, com o objetivo
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de encontrar, no menor nimero de iteragoes possiveis, o ponto de minimo da func¢ao. O
tamanho do deslocamento em cada etapa define o comportamento da descida até o ponto
de minimo. Caso o deslocamento seja relativamente pequeno em cada iteragao, a descida
tende a ser mais suave, porém com o custo de demorar mais, ao passo que um deslocamento
maior conduz a uma descida possivelmente mais rapida, mas também mais instavel, além
disso, dependendo das caracteristicas da curva ou superficie em questao, o minimo global
— o ponto mais baixo da curva ou da superficie em questao — pode nao ser atingido e o

gradiente descendente pode ficar preso em um minimo local (Patterson; Gibson, 2017).

O ponto principal do algoritmo de backpropagation reside em considerar o erro da
rede como uma func¢ao — funcao de custo, ou fun¢do de perda — a ser minimizada pelo
método do gradiente descendente. Para isso, considera-se que o erro ou fungao de custo
na saida da rede é uma funcao dos pesos da rede. O vetor gradiente mostrado em 2.10,
representa a taxa de variacao da fungdo em relagdo aos seus respectivos parametros, sendo
assim para a fungao de perda P(W), o vetor gradiente usado para diminuir a fung¢ao de

custo é dado por:

oP 0P OP oP
P = 2.11
v Ow; 0wy Ows’ 7 Ow, (2.11)

Para uma rede onde os pesos da rede estao espalhados em multiplas camadas,
o algoritmo de backpropagation calcula as derivadas parciais do vetor gradiente 2.11
iterativamente, percorrendo a rede da saida até a entrada, atualizando os pesos da rede em
cada iteracao. As fungoes de perda mostradas como exemplo, 2.2, 2.3, 2.4, 2.5, levam em
consideracao a média das N amostras de treino, porém, o calculo do erro, também pode
ser feito usando mini-batches ou pequenos subconjuntos do conjunto completo de treino.
O parametro 7, que controla a taxa de aprendizado, mostrado na equagao 2.1, também é

usado no algoritmo de backpropagation, para controlar a taxa de aprendizado.

Quando o algoritmo de backpropagation itera sobre todos os elementos do conjunto
de treino da rede, dizemos que uma época foi completa. O algoritmo de backpropagation
continua o processo de ajuste dos parametros da rede, até que seja alcancado um ntimero
de épocas estabelecido. Um subconjunto de teste, pode ser criado, a partir de elementos
do dataset que nao fardao parte do processo de treino da rede, para o teste da efetividade

do treino da rede ao seu término.

A ideia do treinamento da rede neural, é que a mesma consiga generalizar respostas
adequadas, mesmo para um dado elemento que nao faz parte do seu conjunto de treino.
Para um dado conjunto de treino, a métrica utilizada na medicao da qualidade do treino
tende a crescer e o erro médio da rede tende a diminuir com o passar das épocas de treino,
porém, em dado momento do treino, a rede comeca a perder o poder de generalizagcao

e comeca a se especializar no conjunto de treino utilizado no processo de treinamento.
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Tal fenémeno é conhecido como overfitting (Haykin, 2009). Uma forma de prevenir o
processo de overfitting é criar um subconjunto do dataset, que nao participa do processo de
treinamento, e que, periodicamente, é usado para medir se a rede ainda esta tendo ganho
na métrica usada para medir a qualidade do seu treino ou se um processo de estagnacao
ou retrocesso foi alcancado, sendo que em tal circunstancia, o treinamento da rede é

interrompido.

2.5 Redes neurais convolucionais

2.5.1 Motivagao para as arquiteturas convolucionais

No que diz respeito a arquitetura MLP, apesar do grande poder de generalizacao e
capacidade de aprendizado das mesmas por meio do ajuste de seus parametros treinaveis
internos, a mesma possui limitagdes para certas tarefas, como na classificagdo de imagens,
uma vez que as amostras de treino dentro de uma mesma classe possuam muita variagao
entre si. Além disso, no que diz respeito a imagens, que sao formadas por pixels, a depender
da resolucao das imagens que venham a fazer parte do conjunto de treino, o nimero de
parametros ou conexoes da rede pode ficar muito grande, tornando o treinamento demorado

e exigindo muitos recursos computacionais (Lecun et al., 1998).

Além disso, para a deteccao de caracteristicas sutis em imagens é plausivel que
sejam necessarias redes de grande profundidade com um nimero grande de camadas.
Uma forma de contornar tais problemas é através de um pré-processamento. Através do
conhecimento prévio do dominio no qual a rede neural vai ser usada, é possivel extrair e
criar representacoes para caracteristicas de uma dada imagem e usar tais caracteristicas
extraidas como entrada para o treinamento da rede. Porém, a necessidade do conhecimento
prévio e da necessidade de criar extratores de caracteristicas para diferentes tarefas
referentes a diferentes dominios, abre uma brecha para uma solu¢ao de carater mais
genérico no que diz respeito a classificacao de imagens, uma solucdo que nao precise de
conhecimento prévio para extrair as caracteristicas que sao de interesse para a classificagao
de imagens pertencentes a um dado contexto (Lecun et al., 1998). Nesse ponto entram a

redes convolucionais.

2.5.2 Paralelo biolégico

Assim como no caso das redes MLP, também podemos tracar paralelos em relagao
ao funcionamento do cérebro dos animais no caso das redes convolucionais. O trabalho de
Hubbel e Wiesel de 1962 (HUBEL; WIESEL, 1962) sobre o acionamento de neurdnios nos
cérebros de gatos teve como conclusao que diferentes regioes do cortex visual sdo acionadas
por diferente partes componentes de uma imagem. Certas areas sao ativadas por bordas e

linhas em determinados angulos, outras respondem a luminosidade ou movimento.
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Como vamos elaborar mais a frente as redes neurais convolucionais trazem no seu
cerne a ideia de campos receptivos que respondem significativamente somente a certos

padroes da imagem que serve de entrada para rede.

2.5.3 Arquitetura convolucional basica

Retornando ao que foi mencionado anteriormente em relacao a falta de praticidade
na necessidade de criar solucoes customizadas para extrair caracteristicas de imagens com
o intuito de realizar tarefas de classificacdo para um determinado contexto de imagens,
as redes convolucionais trazem uma proposta parecida, no que diz respeito a extrair

caracteristicas importantes para classificacdo que servem de entrada para uma MLP.

Porém, nas redes convolucionais, o processo de extracao de caracteristicas das
imagens ¢é feito por filtros de convolucao, sendo que nao é necessario muito conhecimento
prévio sobre o dominio ao qual pertencem as imagens, pois os filtros sdo ajustaveis e fazem
parte do conjunto de parametros treinaveis da rede, sendo assim, tais filtros sao inferidos

no processo de treinamento (Lecun et al., 1998).

Figura 5 — Exemplo de arquitetura convolucional
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Fonte:(Maeda-Gutiérrez et al., 2020)

A base da proposta das arquiteturas convolucionais esta nas camadas de convolugao
e na sua capacidade de filtrar padroes da imagem de entrada. A operacao de convolugao
pode ser interpretada como o deslizamento de um ou mais filtros — ou campos receptivos —
ao longo da imagem de entrada, que pode ser representada por uma matriz numérica, no
caso de imagens monocromaéticas, ou, multiplas matrizes representando diferentes canais

no caso de imagens coloridas.
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Figura 6 — Operacao de convolugao
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Fonte:(Patterson; Gibson, 2017)

A convoluc¢ao consiste do produto escalar da regiao englobada, em um dado momento
da filtragem, pelo kernel de convolugao (campo receptivo, ou janela de convolugao). Quando
a operacao de convolugao é feita ao longo de toda a imagem, o resultado é um mapa de
caracteristicas que contém as caracteristicas que foram filtradas, em fun¢do dos parametros

que compoem o kernel de convolugao (Patterson; Gibson, 2017).

Além da operacgao de convolugao, a operacao de pooling — que normalmente esta
situada entre duas camadas de convolugdo — também esta presente em boa parte das
arquiteturas convolucionais. A operagao de pooling consiste em diminuir a resolucdo, ou a
quantidade de informacgao de um dado mapa de carateristicas. Tal processo, assim como a
operacgao de convolucao, também pode ser interpretado como uma janela que desliza ao
longo da imagem ou mapa de caracteristicas derivado e dependendo do tipo de pooling,
mapeia um conjunto de elementos do mapa de caracteristicas para um tnico elemento, que
pode ser calculado pela média dos elementos englobados pela janela de pooling, ou alguma

outra operacao, como o valor maximo dentro da janela de pooling (Patterson; Gibson,

2017).

As operacoes de convolugao e pooling em conjunto, sanam, até certo ponto, os
problemas de usar imagens como entrada de uma rede MLP. Por exemplo, a quantidade
de pardmetros treinaveis nas redes convolucionais, mesmo com uma grande quantidade
filtros, tende a ser bem menor do que a quantidade de conexdes, caso uma MLP simples

fosse usada no processo de classificacao.

Outro ponto a ser notado é que, uma vez que os parametros de um dado kernel
de convolugao tenham convergido, pds treinamento, para identificar determinado padrao,

tal padrao pode ser identificado em qualquer local da imagem, uma vez que o kernel
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se desloca por toda a representacao matricial da imagem. Como consequéncia disso, as
redes convolucionais possuem certa resiliéncia a translacoes e imagens que nao estao
centralizadas. Uma parte dessa robustez também se deve as camadas de pooling, que, ao
diminuirem a resolucao dos mapas de caracteristica, diminuem a sensibilidade da rede a
pequenas rotagoes na imagem (Lecun et al., 1998). As caracteristicas, filtradas ao longo
das camadas de convolucao e pooling, sao transformadas em um vetor, que serve de entrada

para uma rede MLP, responsavel pela classificacdo das caracteristicas extraidas.

2.6 Aprendizado profundo aplicado a problemas de sequenciamento genético

A informagao genética dos seres vivos, que esta codificada quimicamente em forma
de sequéncias de bases nitrogenadas que formam o DNA, contido no interior das células dos
organismos multicelulares e unicelulares, normalmente, se apresenta em padroes complexos.
Os processos de replicagao da informacao genética durante a reprodugao celular e os
processos que transcrevem DNA em RNA e que traduzem RNA nas proteinas necessarias
nos processos biologicos dependem destas sequéncias. Tais sequéncias podem ser informagcao
com DNA codificante, indicadores que sinalizam o inicio de sequéncias codificadoras no
DNA, longas sequéncias, que nao necessariamente contém informacao 1til para codificar

aminodacidos, mas que possuem funcao estrutural nos processos celulares.

Tais padroes, por vezes possuem uma variedade significativa de tamanho e forma
(Alberts, 2017). Com a ascensao dos métodos de aprendizado profundo, tarefas relacionadas
a classificar trechos de DNA e RNA que contenham determinados padroes, podem ser

feitas por meio de treinamento de modelos de aprendizado profundo.

2.6.1 Trabalhos relacionados a classificacdo de padroes em sequéncias de DNA e RNA
usando redes convolucionais

Uma grande multiplicidade de trabalhos tem demonstrado a eficicia de abordagens
de aprendizado profundo na classificacao ou identificacao de cadeias de DNA ou RNA
que contenham alguma caracteristica de interesse. Usando técnicas baseadas em modelos
conexionistas ou nao, tais trabalhos mostram que é possivel alcancar uma taxa de acuracia
na classificacao de tais sequéncias que eventualmente ultrapassa métodos mais antigos e
tradicionais de identificagao de padrdes, mesmo que estes sejam o estado da arte do que se

propoem a fazer.

No trabalho (Cruz et al., 2020) os autores usam uma arquitetura de rede convoluci-
onal para classificacao de sequéncias de elementos transponiveis contidos em sequéncias de
DNA. Elementos transponiveis sdo sequéncias de nucleotideos que se repetem ao longo da
cadeia de DNA, nao tendo muitas vezes qualquer funcao, mas podendo também modificar
trechos de DNA codificante (Alberts, 2017). Para realizar tal classificacdo, cada uma das

bases nitrogenadas contida nas sequéncias de treinamento foram transformadas em vetores
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esparsos e cada sequéncia foi representada por uma matriz para servir de entrada para a

arquitetura de rede construida.

Em (Zeng et al., 2016) também é usada uma arquitetura de rede convolucional,
porém neste caso, a tarefa de classificacdo estd relacionada a identificacao de sequéncias
que possuem diferentes fatores de transcrigao. Fatores de transcricdo sao sequéncias que
sinalizam o inicio de um trecho codificante de DNA, porém, tais sinalizadores se apresentam
em uma variedade muito grande de possiveis padroes, no que diz respeito ao tamanho da
cadeia e ordem das bases nitrogenadas (Alberts, 2017). Mesmo com a complexidade da
tarefa, os autores relataram resultados satisfatorios ao explorar diferentes arquiteturas de

rede.

O método proposto em (Giang et al., 2016), faz uso de uma arquitetura convoluci-
onal, mas tem como diferencial a forma como representa as sequéncias de nucleotideos
do conjunto de dados. Neste trabalho, as sequéncias sao trabalhadas como se fossem um
texto e subsequéncias sao criadas a partir das sequéncias originais, criando um vocabulario
que é mapeado para vetores esparsos, a partir dos quais, representagoes matriciais para
as sequéncias sao criadas. A abordagem em questao é aplicada para diferentes bases de
dados, destinadas ao treinamento de diferentes tarefas de classificagdo. Os autores, em
seus resultados, afirmam ter alcancado o estado de arte no que diz respeito a alguns dos

conjuntos de dados usados para validacgao.
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3 METODOLOGIA

3.1 Consideracoes iniciais

Nesta secao sera detalhada a metodologia que serd aplicada aos experimentos,
feitos a fim de gerar indicadores que permitam analisar os possiveis beneficios de utilizar
o modelo de rede convolucional paralelo mencionado anteriormente neste trabalho, no
que diz respeito a possiveis melhorias na performance de classificacdo da rede e também
levando em conta os possiveis gastos de recursos computacionais oriundos da arquitetura
proposta. Porém, primeiro vamos explicar os detalhes de implementacao da arquitetura de

rede.

3.2 Implementacao da arquitetura de rede proposta

Como mencionado anteriormente na introducao, este trabalho propoe a implemen-
tagdo de uma arquitetura paralela de CNN (Convolutional Neural Network), que para uma
dada amostra de treino, extraia caracteristicas de diferentes representagoes da mesma,
concomitantemente, com a pretensao de que isso possa adicionar informagao ttil na etapa

de classificacao das caracteristicas filtradas pela rede.

A arquitetura proposta pode ser representada de forma genérica pela figura 7. Para
cada segmento paralelo da rede, o niimero de camadas convolucionais, pooling, quantidade
dos mapas de caracteristicas criados em cada camada é a mesma, mudando somente
as dimensoes do kernel de convolugao das primeiras camadas convolucionais de cada
segmento paralelo — ou seja o tamanho do kernel de convolug¢ao da primeira camada
convolucional de cada segmento paralelo. A razao para isso é que na metodologia abordada
para os experimentos, foram feitos testes usando diferentes implementagoes, com diferentes
quantidades de segmentos paralelos e, para a analise na diferenca de assertividade das
implementacoes, optamos por restringir a analise dos diferentes resultados a mudanca de
apenas um fator, o tamanho da janela de convolucao das primeiras camadas convolucionais.
Do contrario, o niimero de hiperparametros diferentes que poderiam ser combinados geraria
uma quantidade demasiadamente grande de cenarios, tornando a analise dos resultados

muito complexa.

Na arquitetura de rede proposta na figura 7, o nimero de mapas de caracteristicas
aumenta a medida que a rede vai ficando mais profunda. A razao disso é que as camadas
convolucionais superficiais ficaram encarregadas de filtrar caracteristicas de nivel mais
baixo dos padroes apresentados como entrada, porém essas caracteristicas de baixo nivel
podem ser combinadas numa variedade grande de maneiras para criar representacoes de

caracteristicas de nivel mais alto (Géron, 2019). Isso explica o niimero crescente de filtros
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ao longo das camadas de convolucao. No final, as caracteristicas extraidas sdo concatenadas

e sao classificadas por uma MLP.

Na nossa abordagem, para cada segmento paralelo, foram utilizadas 3 camadas de
filtros, com um numero de filtros de 15, 35 e 60, respectivamente. Apés as duas primeiras
camadas de filtros, foram utilizadas camadas de pooling do tipo average pooling, que diminui
a resolucao dos mapas de caracteristica oriundos da filtragem, mapeando um conjunto
de elementos englobados pela janela de pooling para um tnico valor, calculando a média
dos mesmos. A camada de pooling usada depois da ultima camada de filtragem é do tipo
global average pooling, que mapeia todos os elementos de um mapa de caracteristicas para
um unico elemento, calculando a média dos mesmos. Como consequéncia, cada segmento
paralelo produz um vetor de 60x1 elementos, que sdao concatenados em um unico vetor,

que serve de entrada para a camada densa de classificacao, que corresponde a MLP.

Optou-se por nao usar um nimero grande de neuronios na MLP, sendo este restrito
a 3 camadas ocultas e 1 camada de saida, com 100, 32, 10 e 1 neuronios, respectivamente.
A funcao de ativagao escolhida para os neurdnios ocultos, foi a Leaky ReLu. A funcao de

perda utilizada durante o treinamento, foi a funcao de entropia cruzada.

No que diz respeito aos datasets que foram utilizados nos experimentos, abordaremos
isso melhor mais a frente, porém em todos os casos, a nossa classificagdo ¢ binaria. Sendo
assim, a ultima camada da MLP poderia ter sido uma softmax, com dois neurdnios.
Outra possibilidade é a de usar um Unico neurénio na saida com uma func¢ao de ativacao
sigmoidal contida no intervalo [0, 1] e definindo um limiar de 0,5 para classificagdo. Na

nossa abordagem, optamos pela segunda opcao.

Toda implementagao da rede foi feita usando a API de alto nivel Keras da biblioteca
TensorFlow (Géron, 2019).
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Figura 7 — Arquitetura da rede paralela

15 filtros + 35 filtros + 60 filtros + global 60 x 1 mapas de
average pooling average pooling average pooling caracteristicas

‘OYOO1OANOO
| ONIT00d ‘
[ovon10ANoo
‘9NHOOd|
[ovonwoANoo
|DNHOOd|

o oaocoo
S ooaaa
ERNCHNNN
Soaoaa
~ocoooa

| 0Y5NT0ANOD |
| ONI100d |

onbn10AN03|
| ONIToOd I

IovénWOAuoal
|9Nn00d|

0 0 0 1 1]

011 .11

001:00
T

0
0 —
1
0
1

CGTATGATAGT...GATTACA —T(s)—>
—

CLASSIFICAGAO

o ool oaloal
= 2ol oaloa

o ools o
~ oo

)ANOD

VSN3a VAviNvo

-+ oooao
s sooa0
ov)

o oacoa
o aaocoa
cooaos L.,

l E)NI100d|

Q
o
z
<
[
[t
c
o
B
o

OYSNT10ANOD
ONI100d
OY5NTOANOD
ONIT00d

Fonte: Autor

Tal qual mostrado na figura 7, acima, os elementos dos datasets a serem usados,
sao compostos por cadeias de caracteres (A, C, G, T), representando uma sequéncia de
DNA. Porém, é necessario criar a partir dos elementos disponiveis nos datasets, uma
representacao matricial que preserve os padroes espaciais e posicionais dos elementos em
questao. A transformagao T'(s) — onde s é uma sequéncia de DNA qualquer do dataset,

sera explicada na se¢ao seguinte.

3.2.1 Método de geragao de representacao matricial para as sequéncias de nucleotideos

A transformagao T'(s) — onde s é uma sequéncia qualquer de nucleotideos — aplicada
para toda sequéncia s, pertencente a um dataset de treino, é a mesma desenvolvida em
(Giang et al., 2016). A ideia consiste em extrair subsequéncias da sequéncia original
deslizando uma janela ao longo desta. O tamanho do deslocamento e da janela podem
variar, mas para este trabalho, os valores escolhidos para o tamanho da janela e do
deslocamento sao 3 e 1, respectivamente. As subsequéncias sao organizadas, conforme a
figura 8, em duas colunas e, ao longo de varias linhas, na ordem em que sao extraidas da
sequéncia original. Porém, para toda linha a partir da segunda, a subsequéncia da primeira

coluna é a subsequéncia da segunda coluna da linha anterior.



40

Figura 8 — Criando representacao matricial
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Fonte: Autor

Uma vez que organizamos as subsequéncias em colunas, estas foram substituidas por
uma representacao vetorial e assim teremos criado uma representacao matricial que servira
de entrada para nossa rede, com uma regra de formacao que preserva as caracteristicas

espaciais do elemento original do dataset.

Em (Giang et al., 2016), para cada possivel sequéncia de 3 nucleotideos, foi associado
um vetor esparso de dimensoes 64 x 1. Para um alfabeto de 4 letras e uma subsequéncia
de 3 nucleotideos, existem 43 ou 64 possibilidades, uma para cada posicao do vetor esparso

que substitui cada subsequéncia.

Porém, com o intuito de usar uma representacao densa em vez de vetores esparsos,
neste trabalho, foi criado um dicionario, associando cada uma das possiveis 64 subsequéncias
a uma representacao bindria, de 8 bits, correspondente a sua respectiva posicdo em uma
organizacao por ordem alfabética. Por exemplo, para a subsequéncia AAA esta associada
a primeira posicao entao sua representacao vetorial seria 00000001. Para AAB, na posi¢ao
dois, seria 00000010. Para AAC, na posicao trés seria 00000011 e assim por diante, conforme
figura 8.

Em geral, os trabalhos que usam redes convolucionais na identificacao de padroes
em sequéncias de DNA e RNA usam vetores esparsos, como em (Cruz et al., 2020) e (Zeng
et al., 2016). Porém, estamos partindo do pressuposto da capacidade, por parte das redes
convolucionais, de identificar padroes espaciais mesmo usando essa representacao diferente,
pois o fato de que cada subsequéncia estd associada unicamente a um vetor ndo muda e o

padrao posicional é preservado.

3.2.2 Extragao paralela de caracteristicas

No método de criagao da representacao matricial da rede, abordado na secao
anterior, as sequéncias de nucleotideos, que fazem parte dos conjuntos de dados de treino
da rede, sao subdivididas como um texto que é separado em suas respectivas palavras. No

caso, para cada segmento paralelo da rede, as dimensoes do filtro de convolugao aplicadas
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a representacao matricial de entrada da rede sao diferentes, divergindo em relacao as
dimensoes do kernel de convolucao. As caracteristicas extraidas por cada segmento paralelo
se dariam, portanto, com base em diferentes niveis de granularidade no que diz respeito
a sequéncia original. Retomando o paralelo entre a sequéncia de DNA e um texto, seria
como extrair informacao sobre silabas, palavras ou frases que compdem um texto, de forma

paralela.

Por fim, essas diferentes caracteristicas, extraidas a partir de diferentes niveis de
granularidade, foram concatenadas e classificadas por uma MLP. Partimos da hipotese,
embasada pelos resultados de trabalhos mencionados anteriormente, que tal abordagem
de extracao paralela de caracteristicas pode adicionar informacao 1util no processo de

classificacao e melhorar a assertividade da rede.

3.3 Planejamento dos experimentos

Voltando a arquitetura proposta na figura 7, no que diz respeito ao nivel de
paralelismo maximo que queremos testar, optamos por fazer experimentos na rede com
até 4 segmentos em paralelo. Como também ja mencionado, cada segmento paralelo se
diferencia pelo tamanho da janela de convolucao da primeira camada de convolugao. O
tamanho das janelas de convolucao escolhidas para cada segmento sao 1x16, 3x16, 6x16,
9x16.

3.3.1 Etapa de testes com implementagoes nao paralelas

Inicialmente, o treino e coleta de métricas ocorreu em implementacoes nao paralelas.
As métricas relativas a assertividade — como acurécia, precisao, sensibilidade, F1-score —
foram extraidas mediante os resultados de treino com os diferentes tamanhos da janela de
convoluc¢ao mencionados anteriormente. Além disso também foram extraidas as métricas

referentes a performance computacional (métricas de tempo e de memoria utilizada).

3.3.2 Etapa de testes com implementagoes paralelas

Em um segundo momento foram feitos experimentos utilizando implementacoes
paralelas com o intuito de extrair as mesmas métricas mencionadas anteriormente. A

dindmica de testes seguiu a seguinte ordem:

1. Testes com dois segmentos em paralelo com dimensoes da janela de convolucao da

primeira camada de 1x16 e 3x16.

2. Testes com trés segmentos em paralelo com dimensoes da janela de convolugao da

primeira camada de 1x16, 3x16, 6x16.

3. Testes com quatro segmentos em paralelo com dimensdes da janela de convolugao da

primeira camada de 1x16, 3x16, 6x16, 9x16.
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3.3.3 Meétodos de extracao de métricas

O modo e extracdo das métricas quantitativas, mencionadas anteriormente, se deu

da seguinte forma:

Tanto para os testes com implementagdes nao paralelas, quanto para os testes com
implementagoes paralelas, cada implementacao foi treinada para dois datasets diferentes
e para todas elas foram usados os mesmos hiperparametros, no que diz respeito a taxa
de aprendizado e as dimensoes da MLP de classificacdo. Foram usados mini-batches de
tamanho 32, durante o processo de treinamento e o nimero de épocas foi variavel. No caso,
o nimero de épocas de treino usadas foi a quantidade necessaria para que a rede pudesse
atingir o seu melhor resultado, ou seja, até que a rede mostrasse sinais de overfitting em

relacdo a validagao que foi feita ao longo do processo de treino.

Para garantir que as métricas de avaliacao da rede representassem de forma fidedigna
a qualidade do classificador, para cada implementacao, foram criados conjuntos de treino,
teste e validacao de forma aleatdria, para cada dataset, na proporcao de 70%, 15%, 15%,
respectivamente. Tal processo foi repetido 20 vezes para cada implementagao e as métricas

extraidas foram obtidas através da média dos resultados obtidos.

No que diz respeito as métricas de performance computacional, a quantidade de
memoéria utilizada para cada treino de cada implementacao foi obtido através da biblioteca
Psutil (Rodola, 2021), que permite aferir a quantidade meméria alocada para um dado
método. Os valores em questao também foram ponderados, calculando a média em relacao
ao numero de execugoes. O tempo médio de execuc¢do para as épocas do treino das

implementagoes também foi calculado e armazenado para analise de resultados.

3.3.4 Consideragoes acerca dos resultados produzidos pela metodologia de teste proposta

As informagoes a respeito da qualidade como classificador das implementacoes
paralelas e nao paralelas, assim como as informacoes de performance computacional,
tem como finalidade, uma vez que comparadas, tirar conclusdes sobre dois aspectos.
Primeiramente, a averiguacao sobre a existéncia de indicios que a abordagem paralela
proposta obtém resultados de classificagao melhor que os segmentos que a compoem de
forma separada, sendo assim a hipdtese de que as caracteristicas extraidas paralelamente
melhorariam a classificacao da rede seria corroborada. O segundo aspecto que é possivel de
ser avaliado com base nos dados obtidos dos testes, diz respeito a ponderagao de até que
ponto vale a pena adicionar segmentos paralelos na rede em relacao a possivel melhoria na
rede como classificador, em relacao a quantidade adicional de recursos computacionais de

memoria e do tempo necessario para treinar a rede.
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3.4 Datasets usados nos experimentos

O DNA celular, encontra-se compactado na cromatina, esta, por sua vez é composta
por DNA enovelado em agrupamentos de proteinas, tais agrupamentos sao chamados de
nucleossomos (Alberts, 2017). A figura 9 mostra a cromatina em seu estado compactado e
em um estado artificialmente descompactado, onde é possivel observar os nédulos referentes
aos nucleossomos ligados por cadeias de DNA nao enovelado, assim como na figura 10,
onde é feita uma representacao visual da maneira como parte da fita de DNA é compactada
em volta dos nucleossomos e uma parte esta solta e liga um nucleossomo ao outro. O
nucleo proteico que serve como base do nucleossomo ¢ formado por proteinas histonas de
quatro tipos, h3, h4, h2a e h2b.

Figura 9 — Cromatina compactada e descompactada

Fonte: (Alberts, 2017)
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Figura 10 — DNA envolto em nucleossomos

Fonte: (Alberts, 2017)

Os datasets utilizados nos experimentos sao um subconnjunto dos datasets usados
em (Giang et al., 2016), tais datasets sao originados do estudo feito em (Pokholok et
al., 2005) que diz respeito a mapear trechos de DNA envolto em nucleossomos, usando
diferentes tipos de histonas que compoem o nucleo do nucleossomo como referéncia para o

mapeamento.

Os datasets em questao sao o H3 e H4ac, cada um composto por 14965 e 34096
amostras, respectivamente. As amostras de cada um destes é formada por uma sequéncia
de 500 caracteres que representam os nucleotideos de um dado trecho de DNA de levedura
e duas classes podem ser associadas as mesmas, em caso positivo (representado por 1) a
sequéncia possui regioes envoltas em nucleos de proteinas dos nuclessomos, caso negativo

(representado por 0), ndo.
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4 AVALIACAO EXPERIMENTAL

4.1 Nomenclatura dos experimentos

Como mencionado, anteriormente, na explanacao acerca da metodologia a ser
utilizada, para cada um dos dois datasets escolhidos para serem explorados, foram realizados
um total de 7 experimentos para extrair as métricas desejadas. Destes 7 experimentos,
4 sao com arquiteturas nao paralelas (ou sequenciais), com os diferentes tamanhos da
janela de convolugao da primeira camada convolucional — como também ja mencionado
anteriormente — e mais 3 experimentos com 2, 3 e 4 segmentos paralelos, combinando
os segmentos sequenciais com diferentes tamanhos da janela de convolugao da primeira

camada convolucional.

Para podermos diferenciar cada experimento ao nos referirmos aos mesmos na
analise dos resultados obtidos, vamos designar os experimentos com arquiteturas nao
paralelas ou sequenciais pela letra “S” acompanhada de um subscrito, indicando o tamanho
da janela de convolug¢do em questao. Para as implementacoes paralelas identificaremos
cada experimento pela letra “P” acompanhada por uma sequéncia de niimeros subscritos
indicando o tamanho da janela de convolucao da primeira camada dos segmentos que

compoem a mesma. Segue abaixo a listagem com os rétulos aplicados aos experimentos:

o S;: Experimentos feitos com arquitetura sequencial com janela de convolucao na

primeira camada de 1x16;

« S3: Experimentos feitos com arquitetura sequencial com janela de convolugao na

primeira camada de 3x16;

e Sg: Experimentos feitos com arquitetura sequencial com janela de convolugao na

primeira camada de 6x16;

* Sy: Experimentos feitos com arquitetura sequencial com janela de convolugao na

primeira camada de 9x16;

« P, 3 Experimentos feitos com arquitetura paralela com janelas de convolucao na

primeira camada de 1x16 e 3x16;

e P, 3 6: Experimentos feitos com arquitetura paralela com janelas de convolucao na

primeira camada de 1x16, 3x16 e 6x16;

o P, 3 ¢ o Experimentos feitos com arquitetura paralela com janelas de convolugao

na primeira camada de 1x16, 3x16, 6x16 e 9x16.
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4.2 Resultados obtidos em relacao a qualidade do classificador

A métrica escolhida para avaliar o desempenho dos diferentes classificadores oriun-
dos das diferentes arquiteturas testadas — correspondente a cada experimento — foi a
acuracia. Apesar de tal métrica poder levar a resultados enganosos para conjuntos de
dados com classes desbalanceadas, foram tomados o cuidados para que cada classe repre-
sentasse aproximadamente 50% do conjunto de treino, mantendo o balanceamento. Na

figura 11 e na tabela 1 e 2 os resultados obtidos sao sumarizados.

Figura 11 — Acuracia média dos experimentos
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4.2.1 Resultados obtidos em relacao a trabalhos anteriores com os mesmos datasets

Em relacao ao trabalho que também usa os datasets que foram explorados aqui, no
caso (Giang et al., 2016), os melhores resultados de acurédcia obtidos para os datasets H3 e
H4ac, foram 87,33% e 68,57%, respectivamente, e os mesmos ficaram abaixo dos resultados
obtidos no trabalho em questao para os mesmos datasets, que foram 88,99% e 77,40%,
respectivamente. Tal diferenca pode ter se dado pela profundidade da arquitetura usada
em tal trabalho — podendo uma arquitetura mais profunda e com mais filtros ser capaz de

obter melhores resultados. Outros possiveis motivos sao a escolha dos componentes da
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Tabela 1 — Peformance dos classificadores no dataset H3

Experimento Acurdcia (%) Fl-score Precisdao Sensibilidade

S: 86,630 0,871 0,361 0,881
S, 86,734 0,871 0,874 0,868
Se 87,243 0,875 0,867 0,884
So 86,424 0,866 0,366 0,866
P, 3 86,986 0,873 0,867 0,879
P13 ¢ 86,967 0,875 0,862 0,888
P13 6 0 87,328 0,877 0,873 0,882

Fonte: Autor

Tabela 2 — Peformance dos classificadores no dataset H4ac

Experimento Acuracia (%) Fl-score Precisao Sensibilidade

Si 66,648 0,668 0,667 0,672
S; 67,435 0,675 0,668 0,683
Se 68,215 0,681 0,685 0,679
So 67,673 0,667 0,683 0,653
P 3 67,734 0,676 0,684 0,670
P13 ¢ 68,572 0,686 0,688 0,684
Pi 56 9 68,357 0,678 0,687 0,669

Fonte: Autor

rede como fungoes de ativacao, tamanho de batch e outros hiperparametros que possam

afetar o desempenho da rede.

Porém, os resultados obtidos sdo coerentes com os resultados obtidos em (Giang et
al., 2016) no que diz respeito a disparidade dos resultados em relagao aos dois datasets. O
dataset H4ac, obteve como melhor média de acuracia um valor consideravelmente abaixo
do que foi obtido para o dataset H3, indicando, talvez padroes mais complexos no que diz

respeito a classificacao para este dataset.

4.2.2 Comparagao dos resultados obtidos pelas arquiteturas paralelas em relagao as
arquiteturas sequenciais

Tomando como base os resultados representados graficamente pela figura 11, pode-
mos notar que as arquiteturas paralelas em geral obtém resultados melhores do que os
segmentos isolados que as compoem, com excecao do experimento Py 3 ¢, que ficou abaixo

do experimento Sg, no dataset H3. Apesar da excecao mencionada, os resultados obtidos
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mostraram uma tendéncia das arquiteturas paralelas de obterem melhores resultados na
classificagdo. Além disso, para os dois datasets, os melhores resultados de média de acuracia
obtidos na classificacao, sao de arquiteturas paralelas, Py 3 ¢ ¢ para o dataset H3 e Py 3 ¢

para o dataset H4ac.

Contudo, tais resultados trazem também indicios que a performance obtida nao esta
unicamente associada ao nimero de segmentos paralelos das arquiteturas paralelas testadas.
No dataset H3, a arquitetura do experimento P, 3 obteve um resultado ligeiramente melhor
que o experimento com a arquitetura Py 3 ¢. No dataset H4ac, o melhor resultado obtido
¢ o da arquitetura referente ao experimento P 3 ¢, que por sua vez nao ¢ o experimento

com o maior numero de segmentos paralelos, para este dataset.

4.2.3 Resultados referentes a recursos computacionais e tempo de treinamento

As figuras 12 e 13 resumem os resultados da média de quantidade de memoria

alocada e média de tempo de execucao por época para os datasets H3 e H4ac.

As médias de tempo de execucgdo por época foram obtidas pelo relatorio gerado
pelo Keras durante o treinamento da rede e os resultados em questao sdo a média calculada
para cada experimento. Para as implementagoes com arquitetura sequencial, nao foi feita
diferenciacao referente as diferentes implementacoes e a média foi calculada levando em
consideracao os resultados das diferentes implementagaoes sequénciais, tanto para o calculo

de média de memoria alocada e tempo por época.

Para os dois datasets, se tragarmos uma curva e considerando a quantidade de
memoéria alocada e tempo por época de treinamento como uma fun¢ao do nimero segmentos
paralelos, para cada experimento, observamos uma dinamica similar nos dois datasets.
O crescimento da quantidade de memoéria alocada e da quantidade de tempo por época
parecem crescer de forma aproximadamente linear, a medida que aumentamos o ntimero
de segmentos paralelos. No caso do dataset Hdac, a quantidade de memoria sao maiores

devido ao tamanho do dataset que é maior.
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Na tabela 3, temos a listagem dos valores de médias de memoria em megabytes
e da média de tempo por época de treinamento em segundos e na figura 12 temos a

representacao visual de tais valores para o dataset H3.

Tabela 3 — Desempenho em funcao do ntimero de segmentos para o dataset H3

Numero de segmentos paralelos Meméria alocada (MB) Tempo médio por época (s)

1 4853 23,7
2 509,4 35,0
3 511,7 50,5
4 520,6 63,6

Fonte: Autor

Figura 12 — Médias de memoria alocada em funcao do ntimero de segmentos paralelos
para o dataset H3
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Abaixo, na tabela 4, e na figura 13, temos os valores de memoria e tempo médio

por época de treinamento para o dataset H4ac.
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Tabela 4 — Desempenho em funcao do ntimero de segmentos para o dataset H4ac

Numero de segmentos paralelos Memoéria alocada (MB) Tempo médio por época (s)

1 928,0 43,3
2 940,7 75,3
3 953,5 89,8
4 966,0 116,4

Fonte: Autor

Figura 13 — Médias de memoéria alocada em fun¢do do niimero de segmentos paralelos
para o dataset H4ac
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5 CONCLUSOES

No que diz respeito a investigagao feita neste trabalho, em relacao as possiveis
melhorias na identificacdo de padroes em sequéncias de DNA — usando a arquitetura
paralela proposta, com diferentes niveis de paralelismo — os experimentos feitos, para os
dois datasets escolhidos, deram indicios de que as implementagoes paralelas obtiveram
resultados de generalizagao melhores em relagao as implementagoes sequénciais, se levarmos
em consideracao o nimero de experimentos com arquiteturas paralelas que obtiveram
resultados de acuracia maior que os segmentos separados que as compoem, para os dois
datasets. Os melhores resultados de acuracia obtidos, de forma geral, também sao oriundos

de implementacoes paralelas, nos dois datasets.

No que diz respeito ao uso de recursos computacionais, os resultados medidos,
indicaram, para ambos os datasets, uma tendéncia de crescimento proxima do linear tanto
para alocacao de memoria durante a fase de treino quanto na quantidade de tempo média
por época de treinamento. Apesar de os experimentos terem mostrado sinais de que a
arquitetura paralela proposta se mostrou melhor que as arquiteturas sequénciais — na mairia
das vezes —, nao foi possivel estabelecer uma correlagao direta, entre a acuracia obtida
pelas arquiteturas paralelas e o nimero de segmentos paralelos utilizados. Sendo assim, os
experimentos nao dao indicios sélidos de que vale a pena adicionar cada vez mais segmentos
paralelos para obtencao de resultados melhores de generalizacao. A quantidade 6tima de
segmentos paralelos s6 foi identificada, para cada dataset, com base em experimentacao e
para o caso do dataset H4ac, por exemplo, usar 4 segmentos em vez de 3, s6 aumentaria a

quantidade de memoria usada no processo de treino e o tempo de treinamento do modelo.
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