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RESUMO

PIRES, D. F. Ambiente de Producdo sob tutoria de IA: monitoracdo, anélise e
aprimoramento de aplicagbes. 2024. ?? f. Trabalho de conclusdo de curso (MBA em
Inteligéncia Artificial e Big Data) — Instituto de Ciéncias Matematicas e de Computacéo,
Universidade de S&o Paulo, S&o Carlos, 2024.

O desenvolvimento de software tem seu Ciclo de Vida beneficiado pela utilizacdo de
Inteligéncia Artificial em todas as suas etapas, inclusive apos a publicacdo e operacdo em
ambientes de producao. Porém, nessa ultima etapa referida, os modos de utilizagdo deixam uma
lacuna significativa no que tange a analise dos cddigos em face dos eventos e ocorréncias
durante a operacéo desde consideracdes sobre desempenho, efetividade, corre¢des, evolugdes,
atualizagdes etc. Embora, em muitos casos, tais analises ocorram de fato, elas seguem de modo
‘manual’, dependendo de especialistas e, até, empiricamente, implicando em falhas, demoras,
inconsisténcias e ineficiéncia, entre outras consequéncias indesejaveis e prejuizos. Esta
pesquisa investiga a aplicacao de inteligéncia artificial (1A) na tutoria de codigos em ambientes
de producéo, com o objetivo de melhorar a eficiéncia operacional e a qualidade dos codigos de
aplicages e servicos. O estudo foi conduzido em um banco digital privado, onde modelos e
agentes de 1A especializados foram implementados para monitorar, analisar e recomendar
evolucdes, ajustes, correcOes e atualizagBes nas aplicacGes. A metodologia adotada incluiu a
coleta de dados de observabilidade e logs do ambiente de producéo, que foram utilizados para
treinar e validar o modelo central de IA. Os resultados demonstraram que a tutoria de 1A ndo
apenas auxilia diretamente na gestdo dos codigos das aplicacdes, mas também impacta
positivamente a cultura e os processos de desenvolvimento, especialmente no que tange ao
futuro e maneiras inovadoras de utilizar a IA. A 1A foi capaz de identificar problemas e
recomendar melhorias de forma proativa, resultando em uma reducao significativa no tempo de
atualizagdo, amadurecimento e evolucdo dos codigos. Além disso, a analise dos cddigos
gerados pela 1A indicou uma melhoria na qualidade, com a maioria dos codigos atendendo aos
padrdes estabelecidos. A integracdo da IA nos processos de desenvolvimento permitiu que os
desenvolvedores se concentrassem em tarefas de maior interesse e produtividade, como
inovacdo e desenvolvimento de novas funcionalidades. As conclusdes sugerem que a
implementacdo de IA é uma estratégia eficaz para promover a inovacao e a eficiéncia continua,
oferecendo ganhos tangiveis em termos de qualidade do software, estabilidade operacional e
satisfacdo das equipes. Este estudo contribui para o entendimento das potencialidades da 1A na
gestdo de cddigos em ambientes de producdo, indicando que, com a implementacdo adequada,
a IA pode atuar como um promotor da eficiéncia operacional e da satisfacdo de clientes,
colaboradores e parceiros.

Palavras-chave: tutoria de codigos em producéo, eficiéncia operacional, qualidade de software,
inovacao.






ABSTRACT

PIRES, D. F. Ambiente de Producdo sob tutoria de IA: monitoracdo, anélise e
aprimoramento de aplicagbes. 2024. ?? f. Trabalho de conclusdo de curso (MBA em
Inteligéncia Artificial e Big Data) — Instituto de Ciéncias Matematicas e de Computacéo,
Universidade de S&o Paulo, S&o Carlos, 2024.

Software development has its Life Cycle benefited using Artificial Intelligence in all its stages,
including after publication and operation in production environments. However, in this last
stage, the methods of use leave a significant gap in terms of code analysis considering events
and occurrences during operation, including considerations about performance, effectiveness,
corrections, developments, updates etc. Although, in many cases, such analyses do in fact occur,
they are carried out in a ‘manual” manner, depending on experts and even empirically, resulting
in failures, delays, inconsistencies and inefficiency, among other undesirable consequences and
losses. This research investigates the application of artificial intelligence (Al) in code tutoring
within production environments, aiming to enhance operational efficiency and the quality of
application and service codes. The study was conducted at a private digital bank, where
specialized Al models and agents were implemented to monitor, analyze, and recommend
evolutions, adjustments, corrections, and updates to the applications. The methodology adopted
included collecting observability data and logs from the production environment, which were
used to train and validate the central Al model. The results demonstrated that Al tutoring not
only directly assists in managing application codes but also positively impacts the culture and
development processes, especially regarding the future and innovative ways of utilizing Al. The
Al was able to proactively identify issues and recommend improvements, leading to a
significant reduction in the time required for code updating, maturation, and evolution.
Furthermore, the analysis of Al-generated codes indicated an improvement in quality, with most
codes meeting established standards. The integration of Al into development processes allowed
developers to focus on more engaging and productive tasks, such as innovation and the
development of new functionalities. The conclusions suggest that the implementation of Al is
an effective strategy for promoting innovation and continuous efficiency, offering tangible
gains in terms of software quality, operational stability, and team satisfaction. This study
contributes to understanding the potential of Al in code management within production
environments, indicating that, with proper implementation, Al can act as a promoter of
operational efficiency and the satisfaction of clients, employees, and partners.

Keywords: production code tutoring, operational efficiency, software quality, innovation.
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1 INTRODUCADO.

O Ciclo de Vida do Desenvolvimento de Software (SDLC, Software Development Life
Cycle) (SHARMA, 2015) pode se valer amplamente da utilizacdo e evolugdo aceleradas de
diversos modelos, ferramentas e Agentes de 1A, desde as fases preliminares de desenvolvimento
as mais avancadas da operacdo. Registros e informac6es de buscas (GOOGLE, 2012), artigos
(ETO, 2024), tutoriais, livros e outras producdes respectivas a aplicacdo de recursos e
ferramentas de 1A abordam a crescente disponibilidade de opcdes para cada etapa.

No entanto, algumas atividades importantes relacionadas aos codigos publicados e

operacionais em ambiente de producao precisam de maior atencéo a respeito.

1.1 Contextualizacéo

Desde a ideacdo, concepcdo e projeto de softwares, seguindo com o auxilio a
codificagdo (CODECOMPLETE, 2022) (TABNINE, 2018) (GITHUB, 2022), Integragdo
Continua (CI, Continuous Integration) (MICROSOFT, 2024), revisdes de codigos (code
reviews) (VERICODE, 2022), avancando com as geragdes, execucdes, analises e automacdes
dos diversos tipos de testes e refatoragdes (REMSOFT, 2023) (VERICODE, 2022) e adiante,
promovendo entrega, sustentacdo e Awvaliacdo Continua (CE, Continuous Evaluation)
(VERITY, 2023) (GARTNER, 2024) (INFORCHANNEL, 2023).

H4, especialmente, ferramentas de | A que participam e auxiliam nos processos e praticas
que promovem as publicacdes, como CD (Continuous Delivery, Entrega Continua) e
Implantagdo Continua (CD, Continuous Deployment) (MICROSOFT, 2024), ou nas questdes
de seguranca (VERICODE, 2022).

Apo0s as publicagdes em producdo, as atengbes sobre o uso de IA, tém sido, geral e
amplamente, determinadas prioridades, como as experiéncias de usuarios (XP, user
eXPerience) (ASNE STIGE, 2023, p. 4,5) em suas variadas nuances, monitoracao, obtencao de
informacdes e metricas, notificacBes e alertas sobre o ambiente de producdo em si e seu
desempenho.

Para tanto, séo utilizadas plataformas e ferramentas de monitoracdo, APM (Application
Performance Management, Gerenciamento de Desempenho de Aplicacdes) e observabilidade
(IBM, 2023) (BRQ, 2023) (OPSERVICES, 2024). Dois exemplos entre as opc¢bGes mais
conhecidas e usadas, sdo Dynatrace (Unsupported source type
(DocumentFrominternetSite) for source DYN17.) e New Relic (NEWRELIC, 2008), com
suas respectivas implementacdes de IA, DAVIS Al (DYNATRACE, 2021), e New Relic Al
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(NRAI) (NEWRELIC, 2020). Porém, de fato, essas tecnologias ndo tém, entre seus pilares, a
analise de codigo em si, nem a indicacao de solucdes ou aprimoramentos aplicaveis a eles.

Tais instrumentos monitoram e gerenciam disponibilidades e desempenhos das
aplicacOes, dos recursos do ambiente, integracfes e eventos com suas caracteristicas (BRQ,
2023). Referéncias aos codigos nas observagdes e registros visam indicar relagdes com o0s
momentos, interacdes, implicacdes e envolvimentos durante suas ocorréncias, deixando em
outras maos os cadigos em si, suas analises e intervencoes.

N&o haver analise e tratamento automatico e imediato dos codigos fonte nessa etapa do
SDLC o que, em tese, pode ser suprido com a tutoria de 1A, redunda em perdas de oportunidades
e involucgOes severas e evitaveis.

As informacdes obtidas por APM e Logs, geralmente, sdo verificadas em relagcdo ao
cddigo, apds ocorrerem incidentes ou problemas. As analises e ajustes para evitar ou solucionar
as ocorréncias a tempo, séo comumente tardias, insuficientes, mal-entendidas ou inexistentes.
Na&o raro, a situacdo chega aos times de sustentacdo ou desenvolvimento depois de analisada
por outras equipes, a menos, ou até que, em alguma perspectiva, o codigo se torne ‘suspeito’.

Depois de idas, vindas, ‘devidas’ pressdes, ‘salas de emergéncia’ com ‘especialistas’ de
‘maos cheias’, movidos de suas agendas, sprints, turnos ou descanso, chega-se a um paliativo.
‘Alguém’ se responsabiliza pela busca da causa raiz. Porém, prazos pressionam ou se esgotam,
imp&em-se limitacdo ou inadequacdo de capacidade técnica para os niveis e tipos de analise
necessarios, orcamentos e recursos indisponiveis, outras ‘prioridades’, urgéncias e novos

incidentes. Consolidado o paliativo, os codigos seguem, ‘remendados’, em seus repositorios.

1.2 Objetivo e motivacéo

A determinacdo assumida para este empreendimento é estudar a instrumentacao de 1A
(Inteligéncia Artificial, ou Al, Artificial Inteligence) para auxiliar a manter os codigos de
aplicacdes de sistemas corporativos, publicadas em ambiente de producdo, continuamente
atualizadas, evoluindo e nas suas melhores condi¢Ges operacionais, de modo continuo,
automatico, com a maior brevidade possivel ou, pelo menos, viavel e compartilhar os resultados
dessa experimentacgéo.

A motivacdo para realizar esta pesquisa € a expectativa de verificar a viabilidade do uso
de 1A como tutor dos codigos em runtime de producdo. Espera-se que a IA (i) relacione as
informacOes recebidas de producdo com os codigos fonte, (ii) analise causas, efeitos,
influéncias e interacGes entre as aplicacGes, 0 ambiente e seus recursos, além de comparar 0s

codigos fonte com outros sob variagBes de circunstancias, efeitos, semelhancas, finalidades,
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diferencas e funcionalidades, (iii) gere e entregue cddigos prontos, parciais ou completos,
testados e validados, com correcdes, ajustes e evolugdes dos analisados, (iv) notifique os times
pertinentes e (v) envie alertas e avisos a subscritos.

Apbs esta (1) INTRODUCAO e o (2) REFERENCIAL TEORICO sobre (2.1)
Entradas, (2.2) Processamentos, e (2.3) Saidas, sdo segue a (3) METODOLOGIA utilizada no
experimento e a sua (4) PROPOSTA E DESENVOLVIMENTO, finalizando com a (5)
ANALISE DOS RESULTADOS e as (6) CONCLUSOES com consideracdes pertinentes.




15

2 REFERENCIAL TEORICO

Algumas referéncias a respeito da utilizacdo de IA de modo geral sdo pertinentes e necessarias
para a realizagdo deste trabalho. Para esse fim, esta sessdo aborda, brevemente, algumas,

divididas em trés blocos: Entradas, Processamentos e Saidas.

2.1 Entradas: dados atualizados continuamente

Entradas referem-se, nesse topico, as informag6es obtidas do ambiente de produgéo, e
alguns outros insumos que serdo indicados adiante, para serem continua e adequadamente
entregues a um Modelo Generativo de 1A (Gen Al) (Unsupported source type
(DocumentFrominternetSite) for source Zha23.), indicando as condi¢Ges operacionais das
aplicacBes em runtime, (TIAGO CARVALHO, 2023) para analise referencial com os c6digos
fonte relacionados, direta ou indiretamente, as informacdes obtidas, visando a evolucéo,
refinamento e eventuais ajustes ou correc@es daqueles codigos.

Como ja mencionado, durante o SDLC, estando as aplicacBes em execucdo no ambiente
de producdo, APMs e Log sao ferramentas que, atualmente, estdo, quase sempre, presentes para
acompanhar e auxiliar na saude e na estabilidade dos sistemas, assim como em eventuais
anomalias ou problemas relativos.

APMs, como Dynatrace (Unsupported source type (DocumentFrominternetSite) for
source DYN17.) e New Relic (NEWRELIC, 2008), com suas respectivas IA, DAVIS
(DYNATRACE, 2021), e New Relic Al (NRAI) (NEWRELIC, 2020), sdo exemplos que tém
sido muito bem sucedidos em prover informagdes e dados sobre os ambientes de producéo,
como monitoramento de infraestrutura, rastreamento de solicitagcdes, métricas, logs, laténcias,
ineficiéncias, gargalos, deteccdo e diagndsticos de falhas, anomalias, problemas, analise de
causa raiz, registro de eventos, insights, riscos e ameagas a seguranca de recursos e dados,
impactos para usuarios e processos, entre outras.

Junto as APMs, sistemas especializados nos registros de Log (SHEKAR
RAMACHANDRAN, 2023) (SONG CHEN, 2022), detalham eventos e atividades que ocorrem
com as aplicacOes e servicos, capturando informacgdes sobre operacdes, erros, transacoes e
interagOes dentro do software ou sistema, fornecendo uma visdo granular do que acontece
durante suas execucdes, incluindo informacdes personalizadas definidas pelos
desenvolvedores. Um conjunto de aplicacdes utilizado para registro de Logs € o ELK Stack
(Elastic — Logstash — Kibana), também conhecido como Elastic Stack (ELK, 2024).
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Em (BRQ, 2023), a compara¢do dos conceitos de Monitoramento e Observabilidade é
concluida resumidamente:

[...] a observabilidade é um conceito mais amplo e estratégico, que envolve a
capacidade de entender e compreender o comportamento interno de um sistema ao
longo do tempo. Ja 0 monitoramento é uma atividade operacional mais especifica, que
busca acompanhar o estado atual do sistema em tempo real e detectar problemas
imediatos.

Em seguida, sdo apresentados “Os pilares da observabilidade”: Coleta de dados;
Armazenamento e processamento; Visualizacdo; Monitoramento proativo; Rastreamento e
diagndstico; e Correlacdo de dados.

Tanto os documentos técnicos quanto as apresentagdes comerciais dos produtos de APM
e Monitoramento, de modo geral, sdo concordes com essa abordagem, como se pode constatar
em (Unsupported source type (DocumentFromIinternetSite) for source DYN17.), sobre o
Dynatrace, e em (NEWRELIC, 2008), sobre New Relic.

Referencia-se assim a percep¢do de que, embora as APMs, eventualmente, indiquem
diretamente, referéncias aos codigos ou, mais geralmente, ao que podem ‘perceber’
externamente a respeito deles, elas, pelo menos ainda, ndo se ocupam do cédigo em si, de sua
analise ou de buscar solugdes ou alteracdes pertinentes. Mesmo com 0s extensos e relevantes
aprimoramentos e avancos proporcionados por 1A (DYNATRACE, 2021) (NEWRELIC,
2020), ndo se remetem a essa perspectiva.

Com efeito similar, resguardadas as particularidades, os sistemas de registro de Log,
também ndo se investem em analisar as aplicacdes em si, mas refinam seu foco em registrar o
que lhes compete, com o minimo impacto ou interagdo possivel, como € pontuado em (ELK,
2024), ainda que se ocupem, ou possam se ocupar, do registro de informagdes mais internas ao
codigo, indicacGes e tratamentos inseridos pelos desenvolvedores e, a depender das
implementacdes, de adicionar referéncias e eventuais possibilidades para solucdes de
problemas especificos.

Os dados registrados por APMs e Logs trazem consigo informacdes relativas as
execucgOes das aplicacBes ou aos seus contextos, incluindo relacdes e interacdes com 0s demais
elementos do sistema e demais aplicacdes e servicos. Esses dados, relacionados aos codigos
fonte das aplicagGes em execucdo nos momentos de suas aquisi¢des, possibilitam perspectivas
singulares para analises e consideracdes, especialmente se comparadas entre mudltiplas
aplicacdes, contextos e ocorréncias.

As informacdes podem ser compartilhadas e obtidas de formas diferentes, de acordo
com cada plataforma. Por exemplo, no caso do Dynatrace, podem ser utilizadas, inclusive,

REST API (Application Programming Interface: Interface de Programacdo de Aplicacio)
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(DYNATRACE, 2024), App Toolkit, que possibilita a criagdo de componentes especializados
ou dedicados (DYNATRACE, 2024), ou os servi¢cos da DAVIS Al (DYNATRACE, 2024).

Esses dados sdo gerados continuamente durante a operacdo das aplicacGes no ambiente
de producdo e ndo fazem parte do conhecimento original com que os modelos generativos foram
treinados.

Os codigos fonte das aplicacbes, informacbes das etapas anteriores do SDLC das
aplicacdes e das execucOes dos pipelines de CI/CD até a publicacdo das mesmas aplicacdes
podem ter sido utilizados para ampliar/refinar o treinamento do modelo generativo. Essas
‘novas’, oriundas do ambiente ¢ execugdes das aplicagcdes em producéo, podem ser adicionadas
as andlises feitas pelo modelo generativo por técnicas que ampliam o conhecimento sobre o
contexto e dados pertinentes a essas ‘novidades’.

Os meios para obter os dados estdo disponiveis, mas LLMs (Large Language Models)
(Unsupported source type (DocumentFrominternetSite) for source Zha23.), ndo tém a
capacidade intrinseca de interagir diretamente com processos ou agentes externos
(AUFFARTH, 2023, p. 38 - 43), como realizar pesquisas na web, fazer solicitacdes a APIs
externas ou processar entradas de voz. Para realizar essas atividades, 0 modelo depende de
interfaces ou agentes intermediérios que realizem as necessarias transdu¢des de suas entradas e
saidas.

Uma forma de prover as transducbes adequadamente é o uso de Agentes de IA
(AUFFARTH, 2023, p. 52, 53) especializados, que possam obter as informacdes por um dos
modos disponiveis na plataforma, preparar, formatar e entregar os dados preparados para a
utilizagéo pelo modelo.

Agentes, no entanto, ndo sdo meros transdutores, nem, apenas, preparadores de recursos
ou informagdes adicionais para 0os modelos generativos. Inclusive, o uso da forma plural na
referéncia aos Agentes de IA tem relagdo imediata com as variedades de tipos, especialidades
e objetivos daqueles disponiveis, remetendo a viabilidade de trabalho em conjunto, com ou sem
moderacao ou orquestracdo de multiplos agentes com agdes, interacdes e objetivos igualmente
variados, caracterizando um modo de trabalho frequentemente chamado multiagente (NADIRI,
2023) e que, por principio, potencializa recursos e resultados (AUFFARTH, 2023, p. 52,61,62).

Coletados e preparados adequadamente, os dados oriundos das opera¢des no ambiente
de producdo podem ser encaminhados para 0 Modelo Gen Al. Porém, dois outros fluxos de
dados podem ser providos para 0 modelo, a fim de enriquecer as analises e evolucdes dos

codigos fonte de seus runtimes em producao.
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De fato, podem ser providas informacdes de, pelo menos, trés origens relevantes:

1. Os dados de observabilidade e Logs dos ambientes de producdo, providas através de
Agentes de IA especializados;

2. As atualizagbes dos codigos fonte, a partir de seus repositérios, promovidas pelos
desenvolvedores das aplicacdes, tais que, informadas ao composto de 1A pelos pipelines
de publicagdo dos codigos, durante os processos de CI/CD, promoverao a ingestdo dos
dados através de Agentes de IA especializados;

3. As alteracbes de documentacfes ou versdes, adogdes e/ou substituicdes nas pilhas de
desenvolvimento, referéncias ou instrucGes adicionais, inclusive de prompts
disponibilizados para equipes habilitadas para treinamento do composto de IA
conforme forem pertinentes, que poderdo ter suas entregas ao modelo concretizadas

através de agentes especializados.

A essa altura ha evidéncia de que um namero elevado de atividades e agentes pode se
tornar necessario. A rigor, cada Agente de 1A ¢ especializado em uma Unica responsabilidade.
Portanto, facilmente, o nimero deles pode aumentar, especialmente se levados em conta
recursos de monitoracao, tratamentos especializados de excecdes e erros, comunicagoes etc.

Outro conjunto de agentes também sera necessario para levar aos repositérios os codigos
gerados pelo Modelo Gen Al, assim como realizar os alertas e notificagoes.

Agentes, assim como Ferramentas e outros Recursos, podem ser individualmente
desenvolvidos para fins especificos e gerenciados diretamente. Porém, considerando o
potencial de multiplicacdo e as eventuais complexidades envolvidas, inclusive no
gerenciamento e otimizagdo dos trabalhos em conjunto deles todos, torna-se interessante a
utilizacdo de um facilitador, como um framework ou orquestrador, como o LangChain,
desenvolvido em Python (AUFFARTH, 2023) (LANGCHAIN, 2022, p. 46 - 59) ou 0 AutoGen
(MICROSOFT, 2024) (MICROSOFT, 2024), da Microsoft, também desenvolvido em Python,
mas disponivel, também, para .NET (MICROSOFT, 2024), ambos de cédigo aberto.

O AutoGen é um framework projetado para definir, configurar e compor uma
infraestrutura multiagente e oferece uma interface de usuério de baixa codificacdo chamada
AutoGen Studio, que facilita a criagdo dos fluxos de trabalho.

O LangChain é um framework capaz de construir aplicativos compativeis com LLMs,

integrando médulos reutilizaveis que agregam funcionalidades e recursos, inclusive o
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gerenciamento de Agentes de IA, além de, também, contar com uma extensa e ativa
comunidade e um grande numero e variedade de modulos prontos para uso.

Um conceito central do LangChain é o de criacdo e combinacdes de cadeias, inclusive
de agentes e da colaboracéo entre eles com base em diversos paradigmas, como a interacdo
entre eles com base em objetivos (AUFFARTH, 2023, p. 52), por exemplo, e mantém o foco
em ferramentas de programacao e plugins.

O LangChain tem uma comunidade maior e mais plugins disponiveis, enquanto o
AutoGen é mais recente e impulsionado pela Microsoft com uma comunidade em formacéo e
evolugéo.

Essa implementacdo, baseada na ingestdo, tratamento e contextualizacdo de um LLM
por agentes orquestrados, teoricamente, possibilita que um modelo pré-treinado (Unsupported
source type (DocumentFrominternetSite) for source Zho23.), com os cédigos fonte das
aplicacbes em runtime de producdo, possa analisa-los em face das informacdes e referéncias
continuamente atualizadas, em tempo muito préximo do tempo real, resultando em elevacéo

significativa da possibilidade de serem mantidos atualizados e evoluindo.
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2.2 Processamentos: LLM de IA Generativa contextualizada

Modelos de Processamento de Linguagem, como os baseados em PLN (Processamento
de Linguagem Natural, ou NLP, Natural Language Processor), podem ser desenvolvidos do
inicio. No entanto, considerados todos 0s aspectos, como as especializacBes, recursos
tecnoldgicos e habilidades imprescindiveis para um empreendimento dessa envergadura,
resultados satisfatorios demandariam custos e prazos elevados.

Como consequéncia, provavelmente, ao alcancar maturidade, e apenas para o0 caso da
maioria das organizacdes suficientemente habilitadas, o produto alcancado, provavelmente ja
estaré desatualizado em relacdo a evolucdo das tecnologias pertinentes e, quase certamente, em
relacdo aos pares que optaram por outros modelos de implementacéo.

Adicionalmente, o desenvolvimento particular incorre invariavelmente em dados de
treinamento limitados, salvaguardas e ferramentas restritas e visdes ou referéncias menos
amplas do que o desejavel para garantir o minimo espectro fundacional indispensavel.

Modelos fundacionais diversos e suficientemente bem estruturados e testados, de modo
geral, serdo opcdes mais eficazes do que o desenvolvimento desde o inicio, especialmente se,
consideradas as caracteristicas e necessidades do caso de uso, modelos pre-treinados com
parametros e testes/validagdes suficientemente amplos e qualificados estiverem disponiveis.

Sobre os LLM de IA Generativa, em (AUFFARTH, 2023, p. 38, 39) sdo indicadas
limitacBes conhecidas que afetam negativamente o processamento, resumidas a seguir em
traducdo livre:

o Conhecimento desatualizado: Confiam apenas em seus dados de treinamento. Sem
integracdo externa, ndo podem fornecer informacoes recentes do mundo real;

o Incapacidade de agir: Ndo podem realizar acdes interativas como pesquisas ou célculos.
Isso limita severamente as funcionalidades disponiveis nativamente;

o Riscos de alucinagdo: O conhecimento/treinamento insuficiente pode levar a geragdo de
conteldo incorreto ou sem sentido se ndo for devidamente fundamentado;

o Vieses e discriminagdo: Dados de treinamento tendenciosos podem produzir vieses de
natureza religiosa, ideoldgica ou politica;

o Falta de transparéncia: O comportamento de modelos grandes e complexos pode ser
opaco e de dificil interpretacdo, causando desalinhamento com os valores humanos;

o Falta de contexto: Perda de contextos de prompts, conversas anteriores ou detalhes
mencionados anteriormente, insuficiéncia de informacdes adicionais relevantes com o

prompt fornecido.
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Ainda sobre as limitacGes dos modelos Gen Al, de (ARSANJANI, 2023), a adaptacédo seguinte

indica causas comuns para ocorréncia de Alucinacdo e ajustes aplicaveis para promover sua

reducao:

o

Prompts vagos ou excessivamente amplos: Prompts sem especificidade podem

dificultar o entendimento do contexto e gerar respostas irrelevantes ou imprecisas;

Conhecimento limitado do dominio: Treinamentos em conjuntos de dados de uso

geral podem ndo ter referéncias suficientes para precisdo em dominios especificos;

Dados de treinamento insuficientes: Dados de Treinamento carentes de qualidade,

podem comprometer a compreensdo dos padrdes e relacionamentos linguisticos;

Incerteza na linguagem: Linguagem ambigua pode dificultar interpretacdo de

nuances sutis gerando saidas desalinhadas com o significado original.

Ajustes para reduzir ocorréncias de alucinagdes:

Enriguecer o contexto com informacdes adicionais ou restricoes;

Treinar com grande volume de dados especificos do dominio para que fornecam melhor
compreensdo dos padrdes e relagdes relevantes para o contexto;

Realizar Ajuste Fino (fine-tuning) ou Ajuste Fino Eficiente de Parametros (Parameter-
Efficient Fine-Tuning, PEFT) para tarefas ou dominio. O ajuste fino é uma técnica que
envolve o treinamento de um LLM em um conjunto de dados menor de dados
especificamente adaptado a tarefa em questdo ou ao dominio especifico;

Utilizar RAG, uma técnica que amplia 0 prompt com informac@es adicionais, podendo
ter origem em bancos vetoriais de texto ou cddigo, ampliando o contexto com dados
quase em tempo real;

Usar Raciocinio e Consulta Iterativa, técnicas que podem ajudar na gera¢do das
respostas. Por exemplo, pedido fornecimento das evidéncias para as alegagbes ou
geracdo de explicac@es alternativas;

Aumentar a especificidade e clareza dos prompts;

Utilizar exemplos, aprendizagem em contexto;

Dividir tarefas complexas em etapas mais simples;

Cadeia de pensamento (CoT): Solicitar explicacdo dos passos que levaram a resposta;

Diversificar as fontes de informacdo utilizadas para fundamentacdo dos fatos.
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A escolha do Modelo Generativo para qualquer finalidade e contexto deve considerar
diversos aspectos. A IBM, na publicacdo (IBM; ARMAND RUIZ; VIVEK BHARATHI,

2024), em seu blog institucional, apresenta um artigo informando que ““[...] investigamos por

que as escolhas do modelo basico sdo importantes e como elas capacitam as empresas a escalar

a geracéo de 1A com confianga.” 1. A empresa inicia o artigo indicado propondo que a escolha

de modelos multiplos de IA Generativa é importante porque “No mundo dindmico da IA

Generativa, abordagens Unicas sdo inadequadas. A medida que as empresas se esforcam para

aproveitar o poder da IA, é necessario ter um espectro de opc¢des de modelos a sua disposicao”

1 seguindo com a indicacdo de sete razBes que tornam necessarias tanto a multiplicidade de

modelos quanto o exercicio da escolha:

Estimular a inovacéo;

Personalizar para obter vantagem competitiva;

Reduzir do tempo de langcamento no mercado (time to market);
Manter flexibilidade diante de mudancas;

Otimizar custos em todos 0s casos de uso;

Mitigar Riscos;

Conformidade a Regulatérios.

Na continuidade do artigo, sdo sugeridas seis etapas para lidar com a escolha de um

modelo para um caso de uso especifico, considerando a opg¢éo de utilizar modelos especificos

para casos de usos diversos:

1. ldentificar claramente 0 caso de uso: determinar as necessidades e requisitos especificos

para a aplicacdo para o negécio envolve a elaboracdo de prompts detalhados que

considerem sutilezas inerentes para ajudar a garantir que o modelo esteja alinhado com

0s objetivos;

2. Listar todas as opcoes viaveis de modelo: avaliar varios modelos com base no tamanho,

precisdo, laténcia e riscos associados, incluindo entender os pontos fortes e fracos de

cada modelo, como as compensacdes entre precisao, laténcia e taxa de transferéncia;

3. Avaliar os atributos do modelo: relevando a adequacdo do tamanho do modelo em

relacdo as necessidades, considerando como a escala do modelo pode afetar o

desempenho e os riscos envolvidos. Esta etapa se concentra no dimensionamento

! As citagdes referentes ao artigo (IBM; ARMAND RUIZ; VIVEK BHARATHI, 2024) séo tradugdes e
adaptacOes livres do autor.
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correto do modelo para se ajustar ao caso de uso da melhor forma, pois maior néo &,
necessariamente, melhor. Modelos menores podem superar 0os maiores em dominios e
casos de uso direcionados;

4. Opcodes do modelo de teste: Realize testes para ver se 0 modelo funciona conforme o

esperado em condi¢bes que imitam cenérios do mundo real. 1sso envolve o uso de
benchmarks académicos e conjuntos de dados especificos de dominio para avaliar a
qualidade da saida e ajustar o modelo, por exemplo, por meio de engenharia de prompt
ou fine-tuning;

5. Refinar as selecGes com base no custo e nas necessidades de implantacdo: apés o teste,

considerar fatores como ROI, custo-beneficio e os aspectos praticos da implantacéo do
modelo nos sistemas e infraestrutura existentes e outros beneficios, como menor
laténcia ou maior transparéncia;

6. Escolher 0 modelo que oferecer mais valor: selecionar o modelo que melhor se adapte

as demandas especificas do caso de uso com o melhor equilibrio entre desempenho,

custo e riscos associados.

Consideragdes semelhantes e com énfases diversas podem ser encontradas em diversos
contextos e com multiplas abordagens similares ou distintas. De modo geral, as abordagens
essenciais sdo encontradas na maioria dos casos e alguns sdo destacadas consideracdes
especialmente relevantes para casos especificos ou culturas especificas.

Em todo caso, é relevante que a escolha do modelo seja criteriosa e clara em relacéo a
sua aplicacdo, inclusive no quesito estratégico de usar maltiplos modelos, e sua conformidade
as questdes de custos e cultura da organizag&o.

No bojo dos pontos mais elementares a considerar, dois aspectos proeminentes sdo (a)
a finalidade para implementacao da solucdo e (b) as caracteristicas especificas do modelo.

Quanto as caracteristicas especificas (b), a atencdo recai sobre as implementacGes
inerentes ao modelo, por exemplo, sobre conceitos, arquitetura, operagdo e controles de
configuracdo, inclusive a luz das medidas que precisem ser adotadas para evitar as limitagdes
acima e quaisquer outras inerentes ao modelo em consideracéo.

Sobre a finalidade para a solucéo (a), diferentes LLMs Generativos, sdo utilizados para
aplicacdes distintas, como, por exemplo, documentagdo, traducdo, assisténcia a escrita,
pesquisa, conversagéo etc.

Enquanto este trabalho € escrito, um ponto de grande concorréncia entre alguns dos mais
avancados LLMs ¢ a “troca de codigos” (code-switching), ou “mistura de codigos™ (code-
mixing) (HU, ZHANG e AL., 2023) (HIMASHI RATHNAY AKE, 2024), que implicam em
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formas e habilidades do modelo em alternar, simultaneamente, entradas em uma lingua, ou mais
do que uma, e saidas em outra, ou outras, diferentes, sem perdas significativas de desempenho.

Cada uma das possiveis aplicacdes terd suas proprias necessidades e peculiaridades,
portanto, potencialmente, demandara caracteristicas e especialidades especificas do modelo
considerado.

No caso de tratamento de codigos de computadores, fatores como as linguagens
suportadas (C, C#, Java, Python, Go, Dart, ...), as tarefas a executar (como geracédo por instrucédo
em linguagem natural, com ou sem cddigo pré-existente, sugestdo de continuacdo de cddigo,
correcéo, explicacdo, ajustes finos, conversdes entre linguagens, comparacdes entre linguagens,
algoritmos ou implementacGes, entre linguagens iguais ou diferentes, entre outras),
assertividade sintatica e l6gica, complexidades diversas e modos de atualizacéo e aprendizado,
sdo exemplos de consideracGes relevantes e, até, mandatorias na escolha do modelo.

Apesar de, conforme a visdo do senso comum, estarmos vivendo algo como a “infancia
da TA” (Unsupported source type (DocumentFromlinternetSite) for source Kar23.),
especialmente na geracgéo e tratamento de codigos fonte de computadores, talvez, e até mesmo
por isso, atualmente haja grande diversidade de modelos propostos para processar esses
cbdigos, pelo menos em algumas das versdes de determinados Modelos Base.

Entre os modelos dessa categoria sdo bem conhecidos GPT, Mistral, Gemma, Orca, Phi,
StableLM e Vicuna, por exemplo. Cada um com suas particularidades, especialidades e
limitacdes. Entre as caracteristicas distintivas de alguns desses modelos, ser de codigo aberto e
dispor de licenciamento gratuito para fins especificos ou amplos sdo diferenciais de importante
consideracdo nas escolhas para implementaces.

A disponibilidade de LLM Gen Al esta evoluindo muito rapidamente, tanto no sentido
de evolucdes e versbes dos que ja sdo conhecidos e presentes hd algum tempo quanto no
langcamento de novos modelos. Esse comportamento tende a continuar por algum tempo, com,
até mesmo, a possibilidade de ser incrementado. Entre outras implicacdes, é notavel que as
analises e conclusbes deste, ou qualquer outro trabalho semelhante, precisa ser revisado em
pouco tempo e as decisGes tomadas precisam ser acompanhadas de politicas de atualizacdo ou
adequacao claras e bem estruturadas. Mesmo enquanto essa pesquisa € realizada, novidades e
perspectivas geram grandes volumes de informacéo (e desinformacéo), desafiando o foco.

Dos LLM de codigo aberto e licenciamento permissivo, com clausulas de
responsabilidade e restricGes para evitar abusos, dois deles se destacam por suas proprias razées
nesse final do primeiro semestre de 2024, o Qwen (Unsupported source type
(DocumentFrominternetSite) for source Ali24.) e LIlama (META, 2024).
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Os dois modelos se destacam por atingirem desempenho e resultados, em regra,
superiores aos demais na mesma categoria e muito proximos ou, eventualmente, superiores aos
de opcdes pagas ou comercialmente restritivas. Corroborando as consideracdes sobre a
evolucdo rapida dos modelos, note-se que a Ultima versdo do Llama foi lancada em 18 de abril
de 2024 e o Qwen teve sua versdo mais recente langada em 06 de junho de 2024.

O modelo Qwen, é um modelo base ou de fundagdo (Foundation Model) desenvolvido
pelo Alibaba Group. A versdo Qwen2 (ALIBABA GROUP - QWEN TIME, 2024) é uma
evolucdo significativa da versdo anterior (Qwenl.5), que impressiona por entrar em
concorréncia direta pelo titulo de SOTA? (Estado da Arte) com o0 modelo da Meta/Microsoft e
os demais concorrentes ao titulo até entdo.

Com versdes de tamanhos variados, para atender necessidades e finalidades diversas, a
familia de modelos Qwen, em sua configuracao atual, apresenta as variacdes Qwen2-0.5B (com
Y bilhdo de parametros), Qwen2-1.5B (com 1,5 bilhdo de pardmetros), Qwen2-7B (com 7
bilhdes de parametros), Qwen2-57B-A14B (com 57 bilhdes de parametros), and Qwen2-72B
(com 72 bilhdes de parametros), incluindo algumas variacdes com designacédo Instruct, que
foram refinadas para o tratamento de codigos de computadores, alcancando indicadores de
desempenho semelhante aos dos mais eficientes modelos atuais.

A nova versao passou da compreensdo de duas linguas (chinés e inglés) a compressao
de mais 27 linguas e, em suas versdes Qwen2-7B-Instruct and Qwen2-72B-Instruct, oferece
suporte estendido para até 128 mil tokens de comprimento de contexto.

Outra importante evolucao, relativa a arquitetura do modelo nessa nova verséo, € a
implementacdo da Atencdo Agrupada de Consultas (GQA, Group Query Attention) (AINSLIE,
LEE-THORP, et al., 2023) em todas as suas variacdes, obtendo, em consequéncia, 0 aumento
das velocidades de inferéncia e reducdo do consumo de memdria, de modo que se torna mais
acessivel em termos de hardware e interessante para mais aplicagdes.

O modelo Llama, também um modelo de fundacdo, é desenvolvido em conjunto pelas
empresas Meta e Microsoft. Em sua versdo Llama 3 (META, 2023), evolugdo da versdo 2
lancada em 2023, com varia¢BGes inicialmente pré-treinadas com diferentes nimeros de
parametros, 7 bilhdes (7B), 13 bilhdes (13B), 34 bilhdes (34B) e 70 bilhdes (70B). O modelo

2 Acrdnimo para Estado da Arte (SOTA: State-Of-The-Art). No contexto da IA, indica os modelos mais capazes
para alcancar os resultados de uma tarefa, seja no Aprendizado de Maquina, Redes Neurais Profundas
Processamento de Linguagem Natural ou de realizacdo de tarefas genéricas. Para mais informacdes:
(SRIVASTAVA, 2022).
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base recebeu ajustes finos (fine tuning) (AUFFARTH, 2023, p. 225-256) para tratamento de
codigos de computadores e essa especializacao foi nomeada Code Llama 3 (META, 2023).

O Code Llama 3 ainda foi adicionalmente treinado para refinar o tratamento de
linguagem natural combinada com as tarefas relacionadas a codigos, evoluindo sua precisao e
qualidade na geracéo de resultados mais alinhado com o que se espera com base nas instrucoes
fornecidas, resultando em uma versdo mais robusta e precisa que recebeu a designacéo
distintiva de Code Llama 3 - Instruct.

Os modelos Llama 3 foram, desde o inicio, criados sob a abordagem de cédigo aberto
com flexibilidade acentuada com uso do método de transformer autorregressivo (Unsupported
source type (DocumentFrominternetSite) for source Bap23.) (BASKARAN, 2023) sobre
uma arquitetura de apenas decodificador (decoder-only) (Unsupported source type
(DocumentFromlinternetSite) for source Zha23.) (META, 2024), pré-treinado em um
extenso corpus de dados auto supervisionados, usando a Aprendizagem por Refor¢co com
Feedback Humano (RLHF) (AUFFARTH, 2023, p. 228, 229) (Unsupported source type
(DocumentFrominternetSite) for source Zha23.), e a versdo Code Llama Instruct pode ser
baixada, refinada, retreinada, implantada através de diversos recursos e ambientes, alem de
possibilitar, se necessario ou Util, a personalizacdo granular do proprio codigo fonte (META,
2023) (META, 2023), possibilitando maior liberdade e demandando controle fino e
personalizado sobre questdes como responsabilidade, aderéncia a cultura e negocio e
flexibilidade de adaptacéo e evolucao.

A proximidade dos indicadores de desempenho entre as versodes atuais dos modelos
Qwen e Llama, especialmente as de tamanho maior, € visivel na mais recente avaliacéo
apresentada pelo Hugging Face em seu Open LLM Leaderboard (FOURRIER, HABIB, et al.,

Figura 1 - Comparagdo de desempenho das maiores versées dos modelos Qwen2 e Llama3

T & Model 4 Average @ 4 IFEval a4 BBH 4 MATH Lvl § A GPQA & MUSR &  MMLU-FRO
* OmensOwen?-T2R-Instruct =, 43.82 79.89 57.48 35.12 16.33 17.17 48.92

meta:Llama/Meta:klana:3:700:Instouct 5, 36.67 80.99 58.1% 23.34 4.92 18.92 46.74

2024), indicada na Figura 1.
Fonte: (FOURRIER, HABIB, et al., 2024)

A escolha entre Qwen2 e Llama3 precisa considerar detalhes de implementacdo
especificos, entre eles o ‘tamanho’ do modelo, sendo referéncia a quantidade de parametros.
No caso das maiores variagdes de cada um, Qwen2-72B e Llama3-70B, considerando a
utilizacdo em tratamentos de cddigo de computadores ha um detalhe distintivo que pode pender

em favor do modelo da Meta.
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Ocorre que, embora sejam modelos de cddigo aberto, por decisdo estratégica da
empresa, 0 Qwen2-72B mantém o uso da licenca Qianwen original, enquanto as demais
variacdes do modelo adotaram a Licenca Apache 2.02. A Qianwen € uma licenca mais restritiva
do que a Apache, exigindo, por exemplo, que o cédigo fonte alterado permanega publicamente
disponivel ainda que possa utilizar uma licenca diferente. Entdo é importante avaliar 0s
impactos dessas restricdes ao considerar a opcao pelo modelo Qwen2, na versdo 72B, inclusive
nas variagoes Instruct.

O modelo selecionado pode gerar os novos cédigos com base em seu pré-treinamento,
em retreinamentos (ajuste fino, fine-tuning), nos dados de entrada providos pelos agentes e nas
instrucdes (prompts) adicionadas para orientar os tratamentos que o modelo deve providenciar

para as informac0es recebidas. Em seguida serd necessario armazenar os resultados.

2.3 Saidas: resultados

Ao utilizar Modelos ou Agentes Conversacionais em linguagem natural, como um chat,
por exemplo, é esperado, normalmente, que o resultado, ou saida, do modelo seja parte de um
dialogo. Portanto, um interlocutor, por principio, é assumido. Por outro lado, em uma aplicacdo
de busca ou pesquisa, essa mesma postura ndo é igualmente assumida, ja que, nesse caso, tanto
pode estar ocorrendo uma sesséo interativa quanto pode se tratar de uma operagéo em lote ou
agendada, em consonancia com os requisitos e modos de uso da aplicacéo.

O caso especifico de uso precisa estar claro desde o principio da preparacdo de um
servico, especialmente no que tange a escolha do modelo, ou modelos quando for o caso. As
etapas seguintes também manterdo em vista 0s requisitos e parametros necessarios ao caso de
uso. Porém é notavel que as fases finais e as saidas (resultados) do(s) modelo(s) sdo,
normalmente, aspectos mandatorios em todo o ciclo, desde o inicio. Assim, o fim (resultado),
pode-se dizer, define o principio. Afinal, o objetivo é alcancar resultados de qualidade em todos
0s sentidos possiveis.

Com isso ndo se considera que qualquer etapa seja menos importante, nem que seja a
etapa final que deva receber maior atencdo. De fato, um conceito amplamente lembrado em
contextos de tratamento e analise de dados € que “se entra lixo, sai lixo” (muito provavelmente).
Assim como um processamento inadequado ou com parédmetros insuficientes ou de baixa
qualidade tende a resultar em saidas indesejaveis.

Dito isso, de um modelo de IA que analisa cddigos, especialmente a luz de eventos e

relacbes externas ao proprio codigo, para gerar codigos que sejam ajustes, correcdes e
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evolucBes dos analisados, espera-se que o resultado seja codigo de qualidade minimamente
superior ao original, ainda que a superioridade possa ser circunstancial ou contextual.

Chegado a esse ponto, a questdo a avaliar é se o codigo gerado, além de sua qualidade
nos termos abordados, acrescenta valor suficiente ao substituir o anterior de modo que ‘valham
a pena’ 0s esforgos e custos dessa alteracdo no contexto e momento em que se tornam
disponiveis ou se, eventualmente, a despeito dos avancos inerentes, venha a ser mais oportuno
aguardar melhores ou maiores evolucdes para se decidir pela atualizacéo.

Para que essas andlises sejam efetuadas e as decisfes sejam assertivamente tomadas, 0s
coédigos, com as devidas indicacbes das alteragbes e suas pertinéncias, devem ser
disponibilizados em repositorios definidos e preparados para esses fins e configurados de
maneira a possibilitar tanto a sua eventual publicacdo quanto seu arquivamento, sendo preterido
por futuras op¢des mais aderentes as visdes e intencdes dos responsaveis por tais decisoes,
mesmo que elas sejam, futuramente, automatizadas.

Como, eventualmente, algumas recomendac0des serdo publicadas e outras néo serdo, ao
persistir as recomendacfes de codigos nos repositérios, porem questdes de versionamento
devem ser tratadas adequadamente ao serem disponibilizadas, exigindo tratamentos especificos
e especializados para cada aplicacéo e para cada caso ou estado anterior ou previsto.

Em todo caso, para que esses novos codigos se tornem disponiveis nos repositérios em
que devam ficar, o uso de Agentes de 1A especificamente especializados e habilitados para tais
tarefas possibilita a realizagdo controlada e eficiente desse objetivo, assim como do envio de
notificacfes e avisos nos casos em que sejam Necessarios.

Ao fazer referéncia a que o0s agentes sejam especializados, possivelmente seja claro o
sentido em que cada agente tenha os conhecimentos necessarios para realizar sua tarefa
especifica.

Quanto a referéncia a serem habilitados, vale esclarecer que, para executarem suas
funcgdes, os agentes também precisam ser reconhecidos e ter quaisquer ‘credenciais’ necessarias
tanto para as autenticacdes quanto para as autorizagGes pertinentes as suas execucdes e
integracdes internas e/ou externas (chaves, tokens, senhas, IP etc.), consideradas as respectivas
questdes de seguranca, compliance, politicas, armazenamento e utiliza¢des, entre outras.

Sobre essas referéncias, especializacfes e habilitacOes, deve-se ter em mente que se
aplicam a todos 0s agentes em seus proprios contextos e funcionalidades, tanto esses que atuem
com as saidas/resultados, quanto com aqueles anteriormente citados no contexto de entradas e

quaisquer outros em suas condicdes particulares.
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3 METODOLOGIA

Para a realizacdo do trabalho proposto, algumas das definicbes metodoldgicas e conceituais
adotadas s@o esclarecidas nesta sessdo, para propiciar uma visao suficientemente clara do

processo e eventuais ajustes necessarios.

3.1 Tipo de pesquisa e momento das defini¢des

Com a percepcao da possibilidade de usar a IA como tutor dos codigos das aplicacdes
de sistemas corporativos, publicadas em ambiente de producdo, continuamente atualizadas,
evoluindo e nas suas melhores condigdes operacionais, de modo continuo, automatico e no
tempo mais breve possivel e viavel, este trabalho assume as caracteristicas de uma pesquisa
experimental.

As defini¢bGes seguintes foram pautadas sobre os dados e ambiente acessiveis para
implementar o ambiente funcional para realizar os experimentos e nas estimativas plausiveis
para os prazos, disponibilidades e custos considerados exequiveis a partir de junho de 2024,

momento em que se completa o planejamento das atividades.

3.2 Localizacéo espacial e temporal do ambiente e dados iniciais

O estudo sera realizado sobre o ambiente de producdo de um banco digital privado,
especializado em investimentos, em S&o Paulo, capital, que passa a ser referido como “Banco”.

Entre os codigos das aplicagdes e servicos em opera¢do no ambiente de producdo do
Banco serdo selecionados como objeto desse estudo 1.200 aplicagBes/servigos, entre APIs,
Background Services/Workers, Hubs de Web Sockets (SignalR), Fungdes sem Servidor etc.,
incluindo todas as suas dependéncias, componentes, bibliotecas etc., os quais serdo a base
principal de refinamento (fine-tuning) para o Modelo Central Gen Al do projeto e formardo o
contexto para as experimentacdes e suas conclusoes.

Esses cddigos estdo escritos em diversas linguagens, usando diferentes frameworks,
componentes e tecnologias variadas sdo executadas, principalmente, em Clouds (Nuvens),
majoritariamente na Amazon Cloud, diversas instancias em Microsoft Azure e GCP (Google
Cloud Platform) e outras poucas instancias on-premisse.

Atualmente, ha aplicacdes/servicos, e bases de dados, considerados legados, que
mantém arquiteturas, tecnologias, frameworks, componentes e versdes, especialmente de

linguagens de programacdo mais antigas, tanto em funcdo de fusGes e aquisi¢cOes quanto de



desenvolvimentos de integracoes.

Considera-se que,

correspondam a 45% da base operacional.

proporcionalmente,
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€SSes Casos

Conforme registros do Dynatrace, nos ultimos 12 meses, esse contexto demanda,

aproximadamente, as seguintes médias mensais dos principais grupos de processamento:

Tabela 1 - Quantidades médias de Grupos de Processamento das principais tecnologias relacionadas aos cddigos

selecionados

Tecnologia Quantidade de Grupos de Processos
NET 100.000
ASP.NET 230
Kubernetes 76.000
GO 61.000
Python 70
Windows 190
Linux 13.800
Nginx 3.600
Apache Tomcat 1.600
Apache HTTP Server 100
IS 180
Node.js 3.100
Java 1.900
Erlang 70
RabbitMQ 6.800
Amazon SQS 700
Apache Kafka 160
Redis 140
MongoDB 600
Docker 500
Amazon S3 220
Amazon APl Gateway 120
Oracle Database 40
MS SQL Server 20
PostgreSQL 40
MySQL 10
Netty 250
Jetty 400

Fonte: Dynatrace — dados coletados pelo autor.

Os codigos selecionados incluem aplicacGes/servigos de frontend (tradicionais e micro

frontends), mobile e backend, incluindo microsservigos, monolitos, fungdes sem servidor, BFF

(Backend for Frontend) e outras arquiteturas e estruturas, formando a plataforma do banco que



32

atende clientes, Pessoas Fisicas (PF) e Pessoas Juridicas (PJ), tais como Correntistas,
Investidores, Corretoras de Investimentos, Assessores Internos e Externos, entre outros.

A Plataforma do Banco registra variacdes de alguns milhares a dezenas de milhares de
acessos Unicos diarios, que ocorrem em patamares sazonais e pontuais com médias ascendentes,

especialmente nos ultimos dois anos.

3.3 Fluxo e cronograma
Em uma visdo panoramica, as etapas seguintes resumem a jornada planejada para o
experimento:
Preparacdo do ambiente e recursos iniciais;
Disponibilizagdo do Modelo Central pré treinado no Microsoft Azure;
Obtencéo dos codigos nos repositérios Azure DevOps originais;
Geragdo dos forks respectivos também no Azure;
Vetorizacdo (embeddings) dos codigos do forks;
Disponibilizacdo do Banco de Dados Vetorial no Azure;
Armazenamento dos cddigos na base vetorial;

Submisséo da base vetorial para conhecimento do Modelo Central;

© 0o N o ok~ w0 DdRE

Obtencdo dos particionamentos de dados para treino e validacdo do modelo;

(BN
o

. Execucdo do treino e validacdo para refinamento do modelo;

(=Y
[E=Y

. Execucdo dos ciclos de testes e ajustes do modelo refinado;

=
N

. Disponibilizacdo dos Agentes de Entrada e Saida;

[EY
w

. AvaliacGes e ajustes do processo previsto;

H
S

. Analise e sintese dos resultados e conclusoes;

15. O Encerramento do estudo.

As etapas 1 a 11 serdo realizadas, principalmente, no ambiente Azure Machine learning
(AML), com utilizacdo de seus recursos de programacdo e execucdo, especialmente o0s
notebooks ali disponiveis. Embora seja 0 conjunto com maior nimero de etapas, os codigos e
insumos preparados e experimentados com antecedéncia deverdo propiciar a execucao objetiva
em um menor periodo nas 9 primeiras etapas e maior na 102 e 112,

A etapa 12 disponibilizara os agentes no ambiente Azure, orquestrados pelo LangChain,
com base nos cédigos ja experimentados com scripts e notebooks nas etapas anteriores,
automatizando o processo para sua sequéncia em regime operacional.

As etapas 13 a 15 concluirdo o experimento com as analises pertinentes e conclusdes.

O cronograma previsto devera seguir 0 seguinte esquema geral:
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e FEtapasla9:diasla3;

o FEtapas 10 e 11: dias 4 a 29;
o Etapa 12: dias 30 e 31;

e Etapas 13 a 15: dias 32 a 35.

3.4 Dados de entrada e Modelo Central

Um fork (réplica integral independente) dos repositorios dos cddigos das 1.200
aplicacOes/servigos selecionados serd disponibilizado em um novo contexto de projeto com
acesso protegido e limitado a IA, seus agentes e os desenvolvedores e administradores do
composto de IA, para receber as recomendacdes e atualizacbes recomendadas pelo Modelo
Central, através de seus agentes, em branches cronologicamente identificados e criados a partir
do branch principal (main) do fork.

A partir do fork, os cddigos e demais informacdes disponiveis nos repositérios serdo
armazenadas em uma base de dados vetorial para o refinamento inicial e atualizagdes do
Modelo Central.

Para armazenamento dos dados vetoriais, sera utilizada uma instancia do Banco de
Dados Vetorial Weaviate (WEAVIATE, 2024) (WEAVIATE, 2024), criado nativamente para
IA, de codigo aberto e utilizacdo gratuita para estudos e pesquisa.

Os scripts necessarios para as execucdes dessas atividades, credenciais inerentes e
recursos de apoio foram preparados e testados em contextos e simulagdes locais durante o
processo de planejamento, restando editar as referéncias e endere¢os que somente estaréo
disponiveis a partir da etapa 1. Essas mesmas prepara¢Ges foram realizadas a respeito de todas
asetapasde 1a 11.

Apos o refinamento do Modelo Central e seus agentes, a ser concluido com os testes da
etapa 11, alteracdes que ocorrerem nos repositdrios originais serdo atualizados no
conhecimento do Modelo Central, pelos agentes no branch principal (main) do fork, que sera o
Unico branch considerado atual e valido, para a IA, embora, para fins de aprendizado e
referéncia, todos os branches originais, com todos 0s seus commits registrados, serdo incluidos
no fine-tuning inicial do modelo.

O conhecimento do Modelo Central a respeito dos cédigos sera enriquecido e ajustado
sempre que necessario por prompts de instrucdes, que esclarecerdo os aspectos evolutivo e

progressivo dos branches, commits, versdes e suas cronologias, com especial énfase nas
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indicacGes dos pipelines, builds, rollbacks etc., conforme registrados nas ocorréncias dos seus
eventos.

Juntamente com os codigos das aplicacdes e servicos, providos inicialmente na base
vetorial, os dados histéricos de observabilidade e logs, obtidos sobre as execucdes das
aplicacoes/servicos do contexto e suas relagdes com seus ambientes de execugdo e outras
aplicacdes no contexto e/ou externas a ele, serdo utilizados no processo de fine-tuning inicial
do Modelo Central para refinar, validar e testar o entendimento do processo de analise a partir
desses dados.

Esses dados foram registrados no primeiro semestre de 2024 e serdo particionados em:

- Dados de treinamento: referentes ao primeiro quadrimestre; e

- Dados de validacéo: referentes ao terceiro bimestre.

Apo6s a geracdo e tratamento inicial dos forks, nas etapas 4 e 5 e a conclusdo do
refinamento propriamente dito, conforme abordado nas etapas 8 a 10, durante as quatro semanas
seguintes, diariamente, seréo obtidos os dados de observabilidade e logs pertinentes, que serdo
usados para realizacdo, no dia seguinte, de testes com o modelo (Dados de teste), com ajustes
de hiperparametros, prompts e demais necessidades percebidas, de modo que, ao final de cada
semana, 7 dias corridos, sejam realizadas avaliagOes, revisdes e eventuais realinhamentos do
processo e/ou do modelo.

O aspecto da cronologia dos registros de observabilidade e logs é especialmente
significativo, assim como a relagdo de cada registro/evento com cada aplicacdo especifica e 0s
trechos de cadigo especificamente em execucdo durante as ocorréncias.

Portanto, as informagOes entregues ao Modelo Central para analise serdo estruturadas
com base nesses aspectos, de modo a terem as relagcdes devidamente vinculadas com as
execucOes do codigo e encadeados logicamente para preservacdo da integridade relacional,
inclusive, de causa e efeito, considerando cada aplicagdo/servico individualmente e suas
interacdes com o ambiente (contéiners, clusters, memoria, processador, rede etc.) e com outras
aplicacdes/servicos, seja como consumidores, seja como servidores, seja como pares e/ou
dependéncias

A cronologia, como aspecto relevante das informacGes de observabilidade e logs,
implica, especialmente, no particionamento dos dados para refinamento do Modelo Central,
indicando como critério mais apropriado uma divisao temporal do que uma aleatdria, de modo
gue os conjuntos de Treino, Validagéo e Testes sejam escolhidos, respectivamente, com base

na sua ordem e momento de geracao e referenciados adequadamente a cada aplicacao/servico.
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O modelo Llama3.1-70B-Instruct, versdo mais recente do modelo Llama a essa altura
do trabalho, foi escolhido como Modelo Central, para ser executado no ambiente Microsoft
Azure por sua proximidade com a infraestrutura em uso no Banco, especialmente o Azure
DevOps.

Os dados relativos as operacdes das aplicacbes em ambiente de producéo, e sobre o
ambiente de producdo em si, serdo coletados e disponibilizados para a 1A com protecdo por
anonimizacdo e ofuscacdo, no que tange a informacdes sensiveis ou internas. E relevante
pontuar que os dados e informagdes, em nenhum momento, serdo usados ou apresentados em
gualgquer ambiente externo aos do Banco.

Os dados de treino, validacdo e testes serdo buscados no Dynatrace e no Kibana pelos
codigos dos notebooks, e, posteriormente, pelos agentes orquestrados por LangChain, com base
nos namespaces das aplicacdes/servicos e pelas designacdes a eles atribuidas em seus pipelines
de publicacdo, trazendo, também os registros/eventos relacionados as suas execucdes e as
chamadas recebidas ou efetuadas, de e para os outras aplicagdes/servicos com que se
relacionem, conforme sejam registradas no cédigo e nas informacdes de observabilidade e logs
do Dynatrace e do Kibana.

Sendo conhecidas e reconhecidas pelos codigos dos agentes, essas referéncias poderdo
ser vinculadas trechos especificos dos registros das execugdes dos codigos vetorizados como
conhecimentos a partir dos repositorios dos seus forks e, a partir dai, relacionados para analises

que evidenciem os ajustes, correcdes, evolugdes e aperfeicoamentos.
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3.5 Dados de Saida e resultados

O Modelo Central, com base na analise dos cddigos reconhecidos e aprendidos a partir
da base vetorial a que foram adicionados advindos dos forks dos repositorios originais, e,
posteriormente, de suas atualiza¢Ges, em comparacdo com as informacdes de observabilidade
e logs, recebidas do ambiente de producdo pelo Dynatrace e Kibana, devera gerar codigos
completos, que serdo adicionadas aos mesmos repositorios respectivos, através dos agentes
especializados para esse fim, na forma de novos branches criados a partir dos branches main
de cada repositorio dos cédigos selecionados e, a partir desses novos branches, os agentes
deverdo, tambeém, gerar os respectivos pull-requests (PR) para sua promocdo a branch main
pertinente.

Depois de gerar recomendacdes/codigo para um repositorio, o0 Modelo Central devera
voltar a gerar novas recomendagdes para 0 mesmo repositério apenas se houver diferencas
substanciais ndo indicadas anteriormente ou se for instruida a ignorar as recomendacdes
anteriores.

Os agentes deverdo, também, enviar notificacdes e alertas aos responsaveis pelos
repositorios em que ocorrerem alteracoes.

Os testes buscardo nos codigos gerados por faltas de pertinéncia e/ou valor nas
recomendacOes e codigos gerados, assim como inconsisténcias, incompletudes, alucinacdes,
imprecisdes, omissdes e/ou erros efetivos de logica, sintaxe ou padrbes reconheciveis, além
daqueles perceptiveis através da execucdo de testes unitarios, de integracdo e/ou de regressao
ou estresse, conforme existam previamente, sejam evoluidos e/ou adicionados/criados como
parte dos processos criativos da propria IA.

Com base nos resultados analisados nos testes serd tomada a decisdo de indeferir a
recomendacéo, ajustar os codigos ou aprovar os PR gerados pelos agentes do Modelo Central,
apos a geracdo dos branches respectivos, serdo tomadas, de modo analogo ao que sera feito,
posterior e eventualmente, no caso de se prosseguir com a utilizacdo do composto de IA.

Adicionalmente, quando novas versdes das linguagens, frameworks, componentes e
demais tecnologias forem publicadas, o modelo devera ser atualizado com o conhecimento
dessas novidades, atraves de agentes especializados para essas tarefas, assim como devera
ocorrer, também, para 0s casos de adoc¢des de novas tecnologias nas alteragdes dos codigos

adidos ao contexto de conhecimento da IA.
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4 PROPOSTA E DESENVOLVIMENTO

Nesta sessdo é apresentado um resumo da execuc¢do de cada etapa do trabalho com
comentarios pertinentes para o entendimento da experiéncia.

4.1Etapasla?9

Nas etapas iniciais foi liberado o acesso ao ambiente AML, tendo os scripts e codigos
disponiveis para a preparagdo do ambiente, os procedimentos partiram do aprovisionamento
de:

e Duas maquinas virtuais (VM: Virtual Machine):
o 1VM Standard_NCB6:
= 6 VvCPUs (Virtual Central Process Unity);
» 56 GB RAM (Giga Bytes de Random Access Memory);
= 1 GPU NVIDIA Tesla K80 (GPU: Graphic Process Unity);
= Para utilizacio nos refinamentos do Modelo Central;
o 1VM Standard_D4 v3:
= 4vCPUs;
» 16 GB RAM;
» Para utilizagdo em processamentos e tarefas gerais;
e Uma unidade SSD (Solid Disk State) de 1 TB (Tera Bytes), para armazenamento de

arquivos, recursos e transferéncias de dados.

Um espaco de trabalho (workspace) foi criado no AML para execucdo dos
procedimentos necessarios e 0 modelo Llama-3.1-70B-Instruct foi registrado no workspace.

Um novo Projeto foi criado no Azure DevOps e os forks dos repositérios originais
selecionados foram adicionados a esse novo Projeto, usando uma lista dos repositérios
selecionados e a um script Python executando subprocessos com comandos do Azure CLI. Esta
atividade demandou quase 10 horas.

O Banco de Dados Vetorial Weaviate foi instalado no Azure Kubernetes Service (AKS),
a partir do GitHub (https://weaviate.github.io/helm-charts/), usando o Helm Charts.

A classe ‘CodeDoc’ foi criada para estruturar os codigos e informacdes adicionais
vetorizadas no Weaviate.

Foi iniciado o script Python escrito para (a) vetorizar os cddigos e adicionar 0s
embeddings a base Weaviate e (b) carrega-los no workspace AML para utilizagdo pelo Modelo
Central. Sdo previstas 42 horas para a sua conclusdo, executando assincrona e paralelamente as

duas atividades (a e b) com (b) sendo iniciada 6 horas apdés (a).


https://weaviate.github.io/helm-charts/
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A monitoracdo dos processos de vetorizacdo e disponibilizacdo dos embeddings
receberam o foco até serem concluidos com sucesso, sendo seguidos pelo inicio do treinamento
do Modelo Central com os embeddings dos cdodigos paralelamente com o comeco da obtengédo
das informacdes de observabilidade e logs para a segunda etapa do refinamento do modelo,
com o treinamento e validacdo usando essas informacdes.

Com a concluséo dessas duas Ultimas atividades iniciadas, encerraram-se as etapas de 1
a 9 e foi iniciada a segunda parte do refinamento do Modelo Central, com previsdo de

encerramento em 24 horas.

4.2 Etapa 10
Concluida pouco depois do previsto, a validacdo com o particionamento do terceiro
bimestre de dados de observabilidade e logs, encerrando a etapa 10 da jornada desse estudo.

Observados os resultados dessa etapa, foram registrados os seguintes parametros:

Desempenho Acuracia Geral: 82%
Preciséo: 80%
Recall: 83%
F1-Score: 81,5%

Correlagdo de Dados | O modelo registrou correlagédo forte entre os logs de erros segdes
de caodigo, identificando corretamente padrdes de falhas em 83%

dos casos analisados.

Consisténcia A validagdo mostrou que o modelo mantém consisténcia na
analise de dados, mesmo quando exposto a variagcdes nos padrdes

de logs.

Robustez Até onde foi possivel perceber, pequenas variacdes nos dados de
entrada ndo afetaram significativamente o desempenho do Modelo
Central, indicando uma robustez adequada para operagdes em

ambientes de producéo.

Com base nos resultados observados, o modelo aparenta estar em condigGes para iniciar

a fase de testes diarios com dados coletados do ambiente de produgéo.
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4.3 Etapa 11

No inicio da Etapa 11 foi executado o script que obtém as informacdes relativas ao dia
anterior e os disponibiliza para o Modelo Central realizar as analises.

Os testes sdo analisados por amostragem, aleatoriamente em termos individuais.
Durante essa etapa de teste, 0 Modelo Central devera gerar recomendacdes a cada 5 dias para
as aplicacdes/servicos em que 0s critérios previamente estabelecidos sejam atendidos, gerando
0s codigos que serdo adicionados aos repositorios pertinentes como novos branches com os PR
respectivos, ambos providenciados, posteriormente, por agentes especializados e, nesta etapa,
por scripts e notebooks com execugédo agendada.

Durante os testes e, especialmente, ap0s cada geracdo de cddigos, ajustes e correcdes
poderdo ser efetuados visando o aperfeicoamento do Modelo Central, dos agentes e do
processo.

Nos dias de teste sem pontos notaveis apenas uma nota “0s testes foram bem-sucedidos”
sera registrada, deixando espaco para anotacGes mais significativas sempre que util ou
necessario. Nos dias em que houver geracéo de codigos havera maiores informacdes.

Nesse primeiro dia nenhum destaque pareceu necessario, entdo, os testes foram bem-
sucedidos.

Analisando os dados dos primeiros 6 dias os testes foram bem-sucedidos.

Na analise dos dados do sétimo_dia foram verificados tempos aumentados nas
obtengdes das informacg6es dos dados de observabilidade e logs. Uma analise mais detalhada
deu a perceber que um aumento significativo do tempo das respostas as APIs do Dynatrace e
do Kibana e as ocorréncias de diversos eventos e acOes de resiliéncia causados por timeouts
frequentes, mas ndo foram encontradas evidéncias que indicassem problemas com relacdo ao
processo de coletas de informacéo ou andlises.

A andlise dos dados do oitavo dia foi a primeira em que ocorreu a geracao de c6digos.
Das 1.200 aplicagOes/servicos em observacdo, 63 novos branches foram gerados com as
seguintes consideracdes:

e No caso de 3 desses novos branches, havia falhas graves, como trechos faltantes, erros
de ma formacdo de textos e dois deles ndo puderam ser compilados.

o Em 14 branches as alteracdes foram apresentadas exclusivamente criticas sobre praticas
pouco recomendaveis (code smell), de modo geral, relevantes, mas que, aparentemente,

ndo significavam problemas sérios.
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e Em 22 dos 63 novos branches indicavam alteracfes relevantes, porém em aplicacbes
legadas, que apresentavam elevada complexidade para alteragdes e ja tinham previsao
de substituicdo em médio prazo.

e Qutros 15 branches identificaram questdes de componentes com vulnerabilidades
documentadas, de fato, precisam de atencdo em curto prazo, embora representassem
riscos menores para impactos eventuais.

e Nas 9 restantes foram identificadas questfes pertinentes a respeito de melhorias de
desempenho ou estabilidade, destacando-se como as contribuicdes mais importantes

entre 0s 63 casos.

Para aprimorar as analises do Modelo Central um arquivo com esclarecimentos e
orientagdes relativos aos pontos levantados foi elaborado e disponibilizado para o Modelo
através da base vetorial, a fim de servir de referéncia para alinhar os comportamentos menos
desejados e algumas indica¢c6es foram adicionadas aos prompts de instrucéo.

Com os dados do nono ao décimo seqgundo dias os testes foram bem-sucedidos, embora

possa ser pontuado que o nono dia se tratou de um feriado estadual em S&o Paulo, mas ndo se
registrou qualquer variacdo respectiva.

No dia décimo terceiro dia ocorreu a segunda geracdo de codigos. Nessa ocasido 3

novos branches foram adicionados aos repositorios pertinentes. Todos os casos foram
significativos, sendo que em um deles se observou elevacdo irregular e de retencéo de sockets
sem utilizacdo por implementacédo inadequada no uso de clientes do protocolo HTTP.

Em retorno para o0 Modelo Central, a questdo foi marcada como de alta criticidade para
manter sob atencdo outros casos semelhantes.

Com os dados do décimo guarto ao décimo sétimo dia os testes foram bem-sucedidos,

porém com percepcao de lentiddo muito acima do normal nas execugdes dos procedimentos.

Com os dados do décimo oitavo dia, quando deveria ter ocorrido a terceira geragdo de

codigos no periodo, ndo foi gerada qualquer recomendacdo/branch. Apos verificacGes e
analises dos registros de execucdo, constatou-se que alguns ajustes nos prompts de instrucdes,
aparentemente, criaram situacGes inadequadas para as analises, portanto demandaram ajustes
que foram implementados.

As analises dos dados do décimo nono ao vigésimo segundo dia fluiram de modo que

os testes foram bem-sucedidos.

Com os dados do vigésimo terceiro dia, ocasido da quarta geracao de cédigos prevista,

11 branches foram geradas com sucesso e, embora, pequenas e objetivas, as mudancas indicadas

foram todas significativas e um aspecto que chamou a atencdo é que, dos 11 casos, 9 foram
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relacionados a servigos e 0s problemas assinalados eram relacionados a baixa eficiéncia causada
pelo tratamento de encadeamentos de chamadas sincronas e assincronas. Diante do desempenho
verificado, nenhuma alteracéo pareceu necessaria a essa altura.

Com os dados do periodo do vigésimo guarto ao vigésimo sétimo dia os testes foram

bem-sucedidos.

Os dados do vigésimo oitavo dia foram os ultimos da etapa de testes previstos para

gerar codigos. Na ocasido, apenas 2 branches foram gerados e, embora as indica¢fes fossem
relevantes, ndo representaram questfes a ter em alta consideracdo por tratarem de questdes
relativas a formatos de escrita de cddigo que entraram em desuso nas versGes mais recentes e
as aplicacdes em foco se encaixam entre os legados previstos para atualizacdes.

O vigésimo nono dia foi dedicado para revisdes dos resultados dos testes anteriores e

preparagBes para as proximas etapas.

4.4 Etapa 12

Os scripts e notebooks em utilizacdo nas etapas anteriores cumpriam as fungdes que,
efetivamente, devem ser devem ser executadas por agentes especializados sob orquestracao
do LangChain, conforme definicdes para o estudo em sua completude. Sendo assim, os dois
dias seguintes (trigésimo e trigésimo primeiro) foram dedicados a converter aqueles
instrumentos provisérios, que propiciavam tanto acompanhamento granular das execugdes
guanto evolugdes pontuais e controladas dos cddigos, mas que, em sua forma prevista
ganham em desempenho, autonomia e com as caracteristicas da orquestracdo mais
elaborada.

O processo em si foi simples e rdpido pela aderéncia dos padrdes utilizados na
codificacdo e pela simplicidade oferecida pelo orquestrador. Realizadas as conversdes e
publicadas as novas ferramentas, nos dias seguintes (etapas 13 e 14) tanto os novos agentes
guanto o Modelo Central estiveram sob acompanhamento e avaliacGes visando a conclusdo

apropriada do experimento.

4.5 Etapa 13 a 15
Nos quatro dias das Etapas 13 a 15 poucos ajustes foram realizados quanto a

orquestracdo dos novos agentes. No demais, transcorreram sem novidades.
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5 ANALISES DE RESULTADOS

Revendo e analisando os resultados obtidos a partir da implementacéo da inteligéncia
artificial no ambiente de producdo de um banco digital privado, vale estruturar a analise em
torno de trés eixos principais: eficiéncia operacional, qualidade do codigo gerado e impacto nos
processos de desenvolvimento. Cada um desses aspectos é crucial para entender o valor

agregado pela 1A ao contexto.

5.1 Eficiéncia operacional

A implementacédo de agentes de IA especializados resultou em melhorias significativas
na eficiéncia operacional, uma vez que tem capacidade para reduzir, significativamente, o
tempo de resposta as necessidades de ajustes, corre¢des, evolugdes, atualizagdes e adequacgdes
dos codigos em operacdo no ambiente de producédo, o que pode ser atribuido a capacidade da
IA de monitorar continuamente o ambiente e identificar essas necessidades, recomendando as

alteracGes em formato de c6digo pronto ou muito proximo disso.

5.2 Qualidade do cédigo gerado

De modo geral, embora ainda seja necessario manter bastante atencdo aos codigos
gerados pela 1A, as pecas fornecidas, minimamente, aceleram e facilitam a localizacéo e a
implementacdo de solugdes, além de apontarem os problemas em si ou sua iminéncia e
eventuais consequéncias.

Os desenvolvedores sdo beneficiados porque a IA ndo apenas produziu cddigos
funcionais, mas também ajudou a identificar e corrigir vulnerabilidades e ineficiéncias que

poderiam ter passado despercebidas em outras formas de revisdes.

5.3 Impacto nos processos de desenvolvimento

A andlise indica que a IA proporciona suporte aos desenvolvedores, automatizando
tarefas repetitivas e permitindo que o foco fosse direcionado a atividades mais estratégicas.

Os desenvolvedores podem, assim, dedicar mais atencdo a inovacdo e ao
desenvolvimento de novas funcionalidades, em lugar de se concentrarem em tarefas de

manutencdo e buscas de problemas nem sempre evidentes ou faceis de localizar.
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6 CONCLUSOES

As conclusdes deste estudo indicam o impacto positivo da IA na gestdo de codigos em
ambiente de producéo, evidenciando melhorias significativas em eficiéncia operacional e na
qualidade do software.

A capacidade da IA de detectar e corrigir problemas de forma autdnoma resulta em uma
operacdo mais estavel e confiavel. A anélise sugere que a integracdo continua de IA em
processos operacionais pode se traduzir em economias significativas, elevagéo de eficiéncia e
melhor alocacéo de recursos, implicando em melhoria da eficiéncia operacional.

Sobre a qualidade do cddigo e seguranca, a capacidade da IA de identificar
vulnerabilidades e sugerir melhorias € extremamente vantajosa em um contexto em que a
seguranca e a conformidade s&o prioridades. Recomenda-se 0 aprimoramento do uso da lA e a
conformidade com padrbes que facilitem e expandam a sua participagdo no SDLC,
especialmente nos ambientes de producéo.

Consideradas as experiéncias vivenciadas durante a execucdo deste trabalho, para
maximizar os beneficios alcancaveis com a tutoria da 1A sobre os codigos em operagdo no
ambiente de producdo, é recomendavel investir em treinamento para as equipes, propiciando
aos desenvolvedores melhores possibilidades de capacitacdo para trabalhar em conjunto com
tecnologias de IA. Além disso, a criacdo de uma cultura de inovagdo e experimentacdo pode
facilitar a adocdo de novas ferramentas e processos, promovendo um ciclo de melhoria
continua.

Por fim, este estudo demonstrou que a IA pode ser proficiente em evoluir a eficiéncia,
a qualidade e a satisfacdo das equipes internas, clientes e parceiros. As observagdes sugerem
que, com a implementacdo adequada, a IA pode facilitar o futuro do desenvolvimento e a

manutencéo das aplicagbes/servicos em ambientes produtivos.
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