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RESUMO 

PIRES, D. F.  Ambiente de Produção sob tutoria de IA: monitoração, análise e 

aprimoramento de aplicações.   2024.  ?? f.  Trabalho de conclusão de curso (MBA em 

Inteligência Artificial e Big Data) – Instituto de Ciências Matemáticas e de Computação, 

Universidade de São Paulo, São Carlos, 2024. 

 

O desenvolvimento de software tem seu Ciclo de Vida beneficiado pela utilização de 

Inteligência Artificial em todas as suas etapas, inclusive após a publicação e operação em 

ambientes de produção. Porém, nessa última etapa referida, os modos de utilização deixam uma 

lacuna significativa no que tange a análise dos códigos em face dos eventos e ocorrências 

durante a operação desde considerações sobre desempenho, efetividade, correções, evoluções, 

atualizações etc. Embora, em muitos casos, tais análises ocorram de fato, elas seguem de modo 

‘manual’, dependendo de especialistas e, até, empiricamente, implicando em falhas, demoras, 

inconsistências e ineficiência, entre outras consequências indesejáveis e prejuízos. Esta 

pesquisa investiga a aplicação de inteligência artificial (IA) na tutoria de códigos em ambientes 

de produção, com o objetivo de melhorar a eficiência operacional e a qualidade dos códigos de 

aplicações e serviços. O estudo foi conduzido em um banco digital privado, onde modelos e 

agentes de IA especializados foram implementados para monitorar, analisar e recomendar 

evoluções, ajustes, correções e atualizações nas aplicações. A metodologia adotada incluiu a 

coleta de dados de observabilidade e logs do ambiente de produção, que foram utilizados para 

treinar e validar o modelo central de IA. Os resultados demonstraram que a tutoria de IA não 

apenas auxilia diretamente na gestão dos códigos das aplicações, mas também impacta 

positivamente a cultura e os processos de desenvolvimento, especialmente no que tange ao 

futuro e maneiras inovadoras de utilizar a IA. A IA foi capaz de identificar problemas e 

recomendar melhorias de forma proativa, resultando em uma redução significativa no tempo de 

atualização, amadurecimento e evolução dos códigos. Além disso, a análise dos códigos 

gerados pela IA indicou uma melhoria na qualidade, com a maioria dos códigos atendendo aos 

padrões estabelecidos. A integração da IA nos processos de desenvolvimento permitiu que os 

desenvolvedores se concentrassem em tarefas de maior interesse e produtividade, como 

inovação e desenvolvimento de novas funcionalidades. As conclusões sugerem que a 

implementação de IA é uma estratégia eficaz para promover a inovação e a eficiência contínua, 

oferecendo ganhos tangíveis em termos de qualidade do software, estabilidade operacional e 

satisfação das equipes. Este estudo contribui para o entendimento das potencialidades da IA na 

gestão de códigos em ambientes de produção, indicando que, com a implementação adequada, 

a IA pode atuar como um promotor da eficiência operacional e da satisfação de clientes, 

colaboradores e parceiros.  

 

Palavras-chave: tutoria de códigos em produção, eficiência operacional, qualidade de software, 

inovação. 

 



 
 

  



 
 

ABSTRACT 

PIRES, D. F.  Ambiente de Produção sob tutoria de IA: monitoração, análise e 

aprimoramento de aplicações.   2024.  ?? f.  Trabalho de conclusão de curso (MBA em 

Inteligência Artificial e Big Data) – Instituto de Ciências Matemáticas e de Computação, 

Universidade de São Paulo, São Carlos, 2024. 

 

Software development has its Life Cycle benefited using Artificial Intelligence in all its stages, 

including after publication and operation in production environments. However, in this last 

stage, the methods of use leave a significant gap in terms of code analysis considering events 

and occurrences during operation, including considerations about performance, effectiveness, 

corrections, developments, updates etc. Although, in many cases, such analyses do in fact occur, 

they are carried out in a ‘manual’ manner, depending on experts and even empirically, resulting 

in failures, delays, inconsistencies and inefficiency, among other undesirable consequences and 

losses. This research investigates the application of artificial intelligence (AI) in code tutoring 

within production environments, aiming to enhance operational efficiency and the quality of 

application and service codes. The study was conducted at a private digital bank, where 

specialized AI models and agents were implemented to monitor, analyze, and recommend 

evolutions, adjustments, corrections, and updates to the applications. The methodology adopted 

included collecting observability data and logs from the production environment, which were 

used to train and validate the central AI model. The results demonstrated that AI tutoring not 

only directly assists in managing application codes but also positively impacts the culture and 

development processes, especially regarding the future and innovative ways of utilizing AI. The 

AI was able to proactively identify issues and recommend improvements, leading to a 

significant reduction in the time required for code updating, maturation, and evolution. 

Furthermore, the analysis of AI-generated codes indicated an improvement in quality, with most 

codes meeting established standards. The integration of AI into development processes allowed 

developers to focus on more engaging and productive tasks, such as innovation and the 

development of new functionalities. The conclusions suggest that the implementation of AI is 

an effective strategy for promoting innovation and continuous efficiency, offering tangible 

gains in terms of software quality, operational stability, and team satisfaction. This study 

contributes to understanding the potential of AI in code management within production 

environments, indicating that, with proper implementation, AI can act as a promoter of 

operational efficiency and the satisfaction of clients, employees, and partners. 

 

Keywords: production code tutoring, operational efficiency, software quality, innovation. 
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1 INTRODUCÃO. 

O Ciclo de Vida do Desenvolvimento de Software (SDLC, Software Development Life 

Cycle) (SHARMA, 2015) pode se valer amplamente da utilização e evolução aceleradas de 

diversos modelos, ferramentas e Agentes de IA, desde as fases preliminares de desenvolvimento 

às mais avançadas da operação. Registros e informações de buscas (GOOGLE, 2012), artigos 

(ETO, 2024), tutoriais, livros e outras produções respectivas à aplicação de recursos e 

ferramentas de IA abordam a crescente disponibilidade de opções para cada etapa. 

 No entanto, algumas atividades importantes relacionadas aos códigos publicados e 

operacionais em ambiente de produção precisam de maior atenção a respeito. 

 

1.1 Contextualização 

Desde a ideação, concepção e projeto de softwares, seguindo com o auxílio à 

codificação (CODECOMPLETE, 2022) (TABNINE, 2018) (GITHUB, 2022), Integração 

Contínua (CI, Continuous Integration) (MICROSOFT, 2024), revisões de códigos (code 

reviews) (VERICODE, 2022), avançando com as gerações, execuções, análises e automações 

dos diversos tipos de testes e refatorações (REMSOFT, 2023) (VERICODE, 2022) e adiante, 

promovendo entrega, sustentação e Avaliação Contínua (CE, Continuous Evaluation) 

(VERITY, 2023) (GARTNER, 2024) (INFORCHANNEL, 2023).  

Há, especialmente, ferramentas de IA que participam e auxiliam nos processos e práticas 

que promovem as publicações, como CD (Continuous Delivery, Entrega Contínua) e 

Implantação Contínua (CD, Continuous Deployment) (MICROSOFT, 2024), ou nas questões 

de segurança (VERICODE, 2022).  

Após as publicações em produção, as atenções sobre o uso de IA, têm sido, geral e 

amplamente, determinadas prioridades, como as experiências de usuários (XP, user 

eXPerience) (ÅSNE STIGE, 2023, p. 4,5) em suas variadas nuances, monitoração, obtenção de 

informações e métricas, notificações e alertas sobre o ambiente de produção em si e seu 

desempenho.  

Para tanto, são utilizadas plataformas e ferramentas de monitoração, APM (Application 

Performance Management, Gerenciamento de Desempenho de Aplicações) e observabilidade 

(IBM, 2023) (BRQ, 2023) (OPSERVICES, 2024). Dois exemplos entre as opções mais 

conhecidas e usadas, são Dynatrace (Unsupported source type 

(DocumentFromInternetSite) for source DYN17.) e New Relic (NEWRELIC, 2008), com 

suas respectivas implementações de IA, DAVIS AI (DYNATRACE, 2021), e New Relic AI 
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(NRAI) (NEWRELIC, 2020). Porém, de fato, essas tecnologias não têm, entre seus pilares, a 

análise de código em si, nem a indicação de soluções ou aprimoramentos aplicáveis a eles.  

Tais instrumentos monitoram e gerenciam disponibilidades e desempenhos das 

aplicações, dos recursos do ambiente, integrações e eventos com suas características (BRQ, 

2023). Referências aos códigos nas observações e registros visam indicar relações com os 

momentos, interações, implicações e envolvimentos durante suas ocorrências, deixando em 

outras mãos os códigos em si, suas análises e intervenções.  

Não haver análise e tratamento automático e imediato dos códigos fonte nessa etapa do 

SDLC o que, em tese, pode ser suprido com a tutoria de IA, redunda em perdas de oportunidades 

e involuções severas e evitáveis. 

As informações obtidas por APM e Logs, geralmente, são verificadas em relação ao 

código, após ocorrerem incidentes ou problemas. As análises e ajustes para evitar ou solucionar 

as ocorrências a tempo, são comumente tardias, insuficientes, mal-entendidas ou inexistentes. 

Não raro, a situação chega aos times de sustentação ou desenvolvimento depois de analisada 

por outras equipes, a menos, ou até que, em alguma perspectiva, o código se torne ‘suspeito’.  

Depois de idas, vindas, ‘devidas’ pressões, ‘salas de emergência’ com ‘especialistas’ de 

‘mãos cheias’, movidos de suas agendas, sprints, turnos ou descanso, chega-se a um paliativo. 

‘Alguém’ se responsabiliza pela busca da causa raiz. Porém, prazos pressionam ou se esgotam, 

impõem-se limitação ou inadequação de capacidade técnica para os níveis e tipos de análise 

necessários, orçamentos e recursos indisponíveis, outras ‘prioridades’, urgências e novos 

incidentes. Consolidado o paliativo, os códigos seguem, ‘remendados’, em seus repositórios. 

 

1.2 Objetivo e motivação 

A determinação assumida para este empreendimento é estudar a instrumentação de IA 

(Inteligência Artificial, ou AI, Artificial Inteligence) para auxiliar a manter os códigos de 

aplicações de sistemas corporativos, publicadas em ambiente de produção, continuamente 

atualizadas, evoluindo e nas suas melhores condições operacionais, de modo contínuo, 

automático, com a maior brevidade possível ou, pelo menos, viável e compartilhar os resultados 

dessa experimentação.  

A motivação para realizar esta pesquisa é a expectativa de verificar a viabilidade do uso 

de IA como tutor dos códigos em runtime de produção. Espera-se que a IA (i) relacione as 

informações recebidas de produção com os códigos fonte, (ii) analise causas, efeitos, 

influências e interações entre as aplicações, o ambiente e seus recursos, além de comparar os 

códigos fonte com outros sob variações de circunstâncias, efeitos, semelhanças, finalidades, 
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diferenças e funcionalidades, (iii) gere e entregue códigos prontos, parciais ou completos, 

testados e validados, com correções, ajustes e evoluções dos analisados, (iv) notifique os times 

pertinentes e (v) envie alertas e avisos a subscritos.  

Após esta (1) INTRODUÇÃO e o (2) REFERENCIAL TEÓRICO sobre (2.1) 

Entradas, (2.2) Processamentos, e (2.3) Saídas, são segue a (3) METODOLOGIA utilizada no 

experimento e a sua (4) PROPOSTA E DESENVOLVIMENTO, finalizando com a (5) 

ANÁLISE DOS RESULTADOS e as (6) CONCLUSÕES com considerações pertinentes.  
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2 REFERENCIAL TEÓRICO 

Algumas referências a respeito da utilização de IA de modo geral são pertinentes e necessárias 

para a realização deste trabalho. Para esse fim, esta sessão aborda, brevemente, algumas, 

divididas em três blocos: Entradas, Processamentos e Saídas. 

 

2.1 Entradas: dados atualizados continuamente 

Entradas referem-se, nesse tópico, às informações obtidas do ambiente de produção, e 

alguns outros insumos que serão indicados adiante, para serem continua e adequadamente 

entregues a um Modelo Generativo de IA (Gen AI) (Unsupported source type 

(DocumentFromInternetSite) for source Zha23.), indicando as condições operacionais das 

aplicações em runtime, (TIAGO CARVALHO, 2023) para análise referencial com os códigos 

fonte relacionados, direta ou indiretamente, às informações obtidas, visando a evolução, 

refinamento e eventuais ajustes ou correções daqueles códigos. 

Como já mencionado, durante o SDLC, estando as aplicações em execução no ambiente 

de produção, APMs e Log são ferramentas que, atualmente, estão, quase sempre, presentes para 

acompanhar e auxiliar na saúde e na estabilidade dos sistemas, assim como em eventuais 

anomalias ou problemas relativos. 

APMs, como Dynatrace (Unsupported source type (DocumentFromInternetSite) for 

source DYN17.) e New Relic (NEWRELIC, 2008), com suas respectivas IA, DAVIS 

(DYNATRACE, 2021),  e New Relic AI (NRAI) (NEWRELIC, 2020), são exemplos que têm 

sido muito bem sucedidos em prover informações e dados sobre os ambientes de produção, 

como monitoramento de infraestrutura, rastreamento de solicitações, métricas, logs, latências, 

ineficiências, gargalos, detecção e diagnósticos de falhas, anomalias, problemas, análise de 

causa raiz, registro de eventos, insights, riscos e ameaças à segurança de recursos e dados, 

impactos para usuários e processos, entre outras.  

Junto às APMs, sistemas especializados nos registros de Log (SHEKAR 

RAMACHANDRAN, 2023) (SONG CHEN, 2022), detalham eventos e atividades que ocorrem 

com as aplicações e serviços, capturando informações sobre operações, erros, transações e 

interações dentro do software ou sistema, fornecendo uma visão granular do que acontece 

durante suas execuções, incluindo informações personalizadas definidas pelos 

desenvolvedores. Um conjunto de aplicações utilizado para registro de Logs é o ELK Stack 

(Elastic – Logstash – Kibana), também conhecido como Elastic Stack (ELK, 2024). 
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Em (BRQ, 2023), a comparação dos conceitos de Monitoramento e Observabilidade é 

concluída resumidamente: 

[...] a observabilidade é um conceito mais amplo e estratégico, que envolve a 

capacidade de entender e compreender o comportamento interno de um sistema ao 

longo do tempo. Já o monitoramento é uma atividade operacional mais específica, que 

busca acompanhar o estado atual do sistema em tempo real e detectar problemas 

imediatos. 

Em seguida, são apresentados “Os pilares da observabilidade”: Coleta de dados; 

Armazenamento e processamento; Visualização; Monitoramento proativo; Rastreamento e 

diagnóstico; e Correlação de dados.  

Tanto os documentos técnicos quanto as apresentações comerciais dos produtos de APM 

e Monitoramento, de modo geral, são concordes com essa abordagem, como se pode constatar 

em (Unsupported source type (DocumentFromInternetSite) for source DYN17.), sobre o 

Dynatrace, e em (NEWRELIC, 2008), sobre New Relic.  

Referencia-se assim a percepção de que, embora as APMs, eventualmente, indiquem 

diretamente, referências aos códigos ou, mais geralmente, ao que podem ‘perceber’ 

externamente a respeito deles, elas, pelo menos ainda, não se ocupam do código em si, de sua 

análise ou de buscar soluções ou alterações pertinentes. Mesmo com os extensos e relevantes 

aprimoramentos e avanços proporcionados por IA (DYNATRACE, 2021) (NEWRELIC, 

2020), não se remetem a essa perspectiva. 

Com efeito similar, resguardadas as particularidades, os sistemas de registro de Log, 

também não se investem em analisar as aplicações em si, mas refinam seu foco em registrar o 

que lhes compete, com o mínimo impacto ou interação possível, como é pontuado em (ELK, 

2024), ainda que se ocupem, ou possam se ocupar, do registro de informações mais internas ao 

código, indicações e tratamentos inseridos pelos desenvolvedores e, a depender das 

implementações, de adicionar referências e eventuais possibilidades para soluções de 

problemas específicos. 

Os dados registrados por APMs e Logs trazem consigo informações relativas às 

execuções das aplicações ou aos seus contextos, incluindo relações e interações com os demais 

elementos do sistema e demais aplicações e serviços. Esses dados, relacionados aos códigos 

fonte das aplicações em execução nos momentos de suas aquisições, possibilitam perspectivas 

singulares para análises e considerações, especialmente se comparadas entre múltiplas 

aplicações, contextos e ocorrências. 

As informações podem ser compartilhadas e obtidas de formas diferentes, de acordo 

com cada plataforma. Por exemplo, no caso do Dynatrace, podem ser utilizadas, inclusive, 

REST API (Application Programming Interface: Interface de Programação de Aplicação) 
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(DYNATRACE, 2024), App Toolkit, que possibilita a criação de componentes especializados 

ou dedicados (DYNATRACE, 2024), ou os serviços da DAVIS AI (DYNATRACE, 2024). 

Esses dados são gerados continuamente durante a operação das aplicações no ambiente 

de produção e não fazem parte do conhecimento original com que os modelos generativos foram 

treinados.  

Os códigos fonte das aplicações, informações das etapas anteriores do SDLC das 

aplicações e das execuções dos pipelines de CI/CD até a publicação das mesmas aplicações 

podem ter sido utilizados para ampliar/refinar o treinamento do modelo generativo. Essas 

‘novas’, oriundas do ambiente e execuções das aplicações em produção, podem ser adicionadas 

às análises feitas pelo modelo generativo por técnicas que ampliam o conhecimento sobre o 

contexto e dados pertinentes a essas ‘novidades’. 

Os meios para obter os dados estão disponíveis, mas LLMs (Large Language Models) 

(Unsupported source type (DocumentFromInternetSite) for source Zha23.), não têm a 

capacidade intrínseca de interagir diretamente com processos ou agentes externos 

(AUFFARTH, 2023, p. 38 - 43), como realizar pesquisas na web, fazer solicitações a APIs 

externas ou processar entradas de voz. Para realizar essas atividades, o modelo depende de 

interfaces ou agentes intermediários que realizem as necessárias transduções de suas entradas e 

saídas. 

Uma forma de prover as transduções adequadamente é o uso de Agentes de IA 

(AUFFARTH, 2023, p. 52, 53) especializados, que possam obter as informações por um dos 

modos disponíveis na plataforma, preparar, formatar e entregar os dados preparados para a 

utilização pelo modelo. 

Agentes, no entanto, não são meros transdutores, nem, apenas, preparadores de recursos 

ou informações adicionais para os modelos generativos. Inclusive, o uso da forma plural na 

referência aos Agentes de IA tem relação imediata com as variedades de tipos, especialidades 

e objetivos daqueles disponíveis, remetendo à viabilidade de trabalho em conjunto, com ou sem 

moderação ou orquestração de múltiplos agentes com ações, interações e objetivos igualmente 

variados, caracterizando um modo de trabalho frequentemente chamado multiagente (NADIRI, 

2023) e que, por princípio, potencializa recursos e resultados (AUFFARTH, 2023, p. 52,61,62). 

Coletados e preparados adequadamente, os dados oriundos das operações no ambiente 

de produção podem ser encaminhados para o Modelo Gen AI. Porém, dois outros fluxos de 

dados podem ser providos para o modelo, a fim de enriquecer as análises e evoluções dos 

códigos fonte de seus runtimes em produção. 
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De fato, podem ser providas informações de, pelo menos, três origens relevantes:  

1. Os dados de observabilidade e Logs dos ambientes de produção, providas através de 

Agentes de IA especializados; 

2. As atualizações dos códigos fonte, a partir de seus repositórios, promovidas pelos 

desenvolvedores das aplicações, tais que, informadas ao composto de IA pelos pipelines 

de publicação dos códigos, durante os processos de CI/CD, promoverão a ingestão dos 

dados através de Agentes de IA especializados; 

3. As alterações de documentações ou versões, adoções e/ou substituições nas pilhas de 

desenvolvimento, referências ou instruções adicionais, inclusive de prompts 

disponibilizados para equipes habilitadas para treinamento do composto de IA 

conforme forem pertinentes, que poderão ter suas entregas ao modelo concretizadas 

através de agentes especializados. 

A essa altura há evidência de que um número elevado de atividades e agentes pode se 

tornar necessário. A rigor, cada Agente de IA é especializado em uma única responsabilidade. 

Portanto, facilmente, o número deles pode aumentar, especialmente se levados em conta 

recursos de monitoração, tratamentos especializados de exceções e erros, comunicações etc. 

Outro conjunto de agentes também será necessário para levar aos repositórios os códigos 

gerados pelo Modelo Gen AI, assim como realizar os alertas e notificações. 

Agentes, assim como Ferramentas e outros Recursos, podem ser individualmente 

desenvolvidos para fins específicos e gerenciados diretamente. Porém, considerando o 

potencial de multiplicação e as eventuais complexidades envolvidas, inclusive no 

gerenciamento e otimização dos trabalhos em conjunto deles todos, torna-se interessante a 

utilização de um facilitador, como um framework ou orquestrador, como o LangChain, 

desenvolvido em Python (AUFFARTH, 2023) (LANGCHAIN, 2022, p. 46 - 59) ou o AutoGen 

(MICROSOFT, 2024) (MICROSOFT, 2024), da Microsoft, também desenvolvido em Python, 

mas disponível, também, para .NET (MICROSOFT, 2024), ambos de código aberto.  

O AutoGen é um framework projetado para definir, configurar e compor uma 

infraestrutura multiagente e oferece uma interface de usuário de baixa codificação chamada 

AutoGen Studio, que facilita a criação dos fluxos de trabalho. 

O LangChain é um framework capaz de construir aplicativos compatíveis com LLMs, 

integrando módulos reutilizáveis que agregam funcionalidades e recursos, inclusive o 
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gerenciamento de Agentes de IA, além de, também, contar com uma extensa e ativa 

comunidade e um grande número e variedade de módulos prontos para uso.  

Um conceito central do LangChain é o de criação e combinações de cadeias, inclusive 

de agentes e da colaboração entre eles com base em diversos paradigmas, como a interação 

entre eles com base em objetivos (AUFFARTH, 2023, p. 52), por exemplo, e mantém o foco 

em ferramentas de programação e plugins. 

O LangChain tem uma comunidade maior e mais plugins disponíveis, enquanto o 

AutoGen é mais recente e impulsionado pela Microsoft com uma comunidade em formação e 

evolução. 

Essa implementação, baseada na ingestão, tratamento e contextualização de um LLM 

por agentes orquestrados, teoricamente, possibilita que um modelo pré-treinado (Unsupported 

source type (DocumentFromInternetSite) for source Zho23.), com os códigos fonte das 

aplicações em runtime de produção, possa analisá-los em face das informações e referências 

continuamente atualizadas, em tempo muito próximo do tempo real, resultando em elevação 

significativa da possibilidade de serem mantidos atualizados e evoluindo. 
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2.2 Processamentos: LLM de IA Generativa contextualizada 

Modelos de Processamento de Linguagem, como os baseados em PLN (Processamento 

de Linguagem Natural, ou NLP, Natural Language Processor), podem ser desenvolvidos do 

início. No entanto, considerados todos os aspectos, como as especializações, recursos 

tecnológicos e habilidades imprescindíveis para um empreendimento dessa envergadura, 

resultados satisfatórios demandariam custos e prazos elevados.  

Como consequência, provavelmente, ao alcançar maturidade, e apenas para o caso da 

maioria das organizações suficientemente habilitadas, o produto alcançado, provavelmente já 

estará desatualizado em relação à evolução das tecnologias pertinentes e, quase certamente, em 

relação aos pares que optaram por outros modelos de implementação. 

Adicionalmente, o desenvolvimento particular incorre invariavelmente em dados de 

treinamento limitados, salvaguardas e ferramentas restritas e visões ou referências menos 

amplas do que o desejável para garantir o mínimo espectro fundacional indispensável. 

Modelos fundacionais diversos e suficientemente bem estruturados e testados, de modo 

geral, serão opções mais eficazes do que o desenvolvimento desde o início, especialmente se, 

consideradas as características e necessidades do caso de uso, modelos pré-treinados com 

parâmetros e testes/validações suficientemente amplos e qualificados estiverem disponíveis. 

Sobre os LLM de IA Generativa, em (AUFFARTH, 2023, p. 38, 39) são indicadas 

limitações conhecidas que afetam negativamente o processamento, resumidas a seguir em 

tradução livre: 

o Conhecimento desatualizado: Confiam apenas em seus dados de treinamento. Sem 

integração externa, não podem fornecer informações recentes do mundo real; 

o Incapacidade de agir: Não podem realizar ações interativas como pesquisas ou cálculos. 

Isso limita severamente as funcionalidades disponíveis nativamente; 

o Riscos de alucinação: O conhecimento/treinamento insuficiente pode levar à geração de 

conteúdo incorreto ou sem sentido se não for devidamente fundamentado; 

o Vieses e discriminação: Dados de treinamento tendenciosos podem produzir vieses de 

natureza religiosa, ideológica ou política; 

o Falta de transparência: O comportamento de modelos grandes e complexos pode ser 

opaco e de difícil interpretação, causando desalinhamento com os valores humanos; 

o Falta de contexto: Perda de contextos de prompts, conversas anteriores ou detalhes 

mencionados anteriormente, insuficiência de informações adicionais relevantes com o 

prompt fornecido.  
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Ainda sobre as limitações dos modelos Gen AI, de (ARSANJANI, 2023), a adaptação seguinte 

indica causas comuns para ocorrência de Alucinação e ajustes aplicáveis para promover sua 

redução: 

o Prompts vagos ou excessivamente amplos: Prompts sem especificidade podem 

dificultar o entendimento do contexto e gerar respostas irrelevantes ou imprecisas; 

o Conhecimento limitado do domínio: Treinamentos em conjuntos de dados de uso 

geral podem não ter referências suficientes para precisão em domínios específicos; 

o Dados de treinamento insuficientes: Dados de Treinamento carentes de qualidade, 

podem comprometer a compreensão dos padrões e relacionamentos linguísticos; 

o Incerteza na linguagem: Linguagem ambígua pode dificultar interpretação de 

nuances sutis gerando saídas desalinhadas com o significado original. 

Ajustes para reduzir ocorrências de alucinações: 

• Enriquecer o contexto com informações adicionais ou restrições; 

• Treinar com grande volume de dados específicos do domínio para que forneçam melhor 

compreensão dos padrões e relações relevantes para o contexto; 

• Realizar Ajuste Fino (fine-tuning) ou Ajuste Fino Eficiente de Parâmetros (Parameter-

Efficient Fine-Tuning, PEFT) para tarefas ou domínio. O ajuste fino é uma técnica que 

envolve o treinamento de um LLM em um conjunto de dados menor de dados 

especificamente adaptado à tarefa em questão ou ao domínio específico; 

• Utilizar RAG, uma técnica que amplia o prompt com informações adicionais, podendo 

ter origem em bancos vetoriais de texto ou código, ampliando o contexto com dados 

quase em tempo real; 

• Usar Raciocínio e Consulta Iterativa, técnicas que podem ajudar na geração das 

respostas. Por exemplo, pedido fornecimento das evidências para as alegações ou 

geração de explicações alternativas; 

• Aumentar a especificidade e clareza dos prompts; 

• Utilizar exemplos, aprendizagem em contexto; 

• Dividir tarefas complexas em etapas mais simples; 

• Cadeia de pensamento (CoT): Solicitar explicação dos passos que levaram à resposta; 

• Diversificar as fontes de informação utilizadas para fundamentação dos fatos. 
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A escolha do Modelo Generativo para qualquer finalidade e contexto deve considerar 

diversos aspectos. A IBM, na publicação (IBM; ARMAND RUIZ; VIVEK BHARATHI, 

2024), em seu blog institucional, apresenta um artigo informando que “[...] investigamos por 

que as escolhas do modelo básico são importantes e como elas capacitam as empresas a escalar 

a geração de IA com confiança.” 1. A empresa inicia o artigo indicado propondo que a escolha 

de modelos múltiplos de IA Generativa é importante porque “No mundo dinâmico da IA 

Generativa, abordagens únicas são inadequadas. À medida que as empresas se esforçam para 

aproveitar o poder da IA, é necessário ter um espectro de opções de modelos à sua disposição” 

1, seguindo com a indicação de sete razões que tornam necessárias tanto a multiplicidade de 

modelos quanto o exercício da escolha: 

• Estimular a inovação;  

• Personalizar para obter vantagem competitiva;  

• Reduzir do tempo de lançamento no mercado (time to market);  

• Manter flexibilidade diante de mudanças;  

• Otimizar custos em todos os casos de uso;  

• Mitigar Riscos;  

• Conformidade a Regulatórios. 

Na continuidade do artigo, são sugeridas seis etapas para lidar com a escolha de um 

modelo para um caso de uso específico, considerando a opção de utilizar modelos específicos 

para casos de usos diversos: 

1. Identificar claramente o caso de uso: determinar as necessidades e requisitos específicos 

para a aplicação para o negócio envolve a elaboração de prompts detalhados que 

considerem sutilezas inerentes para ajudar a garantir que o modelo esteja alinhado com 

os objetivos; 

2. Listar todas as opções viáveis de modelo: avaliar vários modelos com base no tamanho, 

precisão, latência e riscos associados, incluindo entender os pontos fortes e fracos de 

cada modelo, como as compensações entre precisão, latência e taxa de transferência; 

3. Avaliar os atributos do modelo: relevando a adequação do tamanho do modelo em 

relação às necessidades, considerando como a escala do modelo pode afetar o 

desempenho e os riscos envolvidos. Esta etapa se concentra no dimensionamento 

 
1 As citações referentes ao artigo (IBM; ARMAND RUIZ; VIVEK BHARATHI, 2024) são traduções e 

adaptações livres do autor. 
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correto do modelo para se ajustar ao caso de uso da melhor forma, pois maior não é, 

necessariamente, melhor. Modelos menores podem superar os maiores em domínios e 

casos de uso direcionados; 

4. Opções do modelo de teste: Realize testes para ver se o modelo funciona conforme o 

esperado em condições que imitam cenários do mundo real. Isso envolve o uso de 

benchmarks acadêmicos e conjuntos de dados específicos de domínio para avaliar a 

qualidade da saída e ajustar o modelo, por exemplo, por meio de engenharia de prompt 

ou fine-tuning; 

5. Refinar as seleções com base no custo e nas necessidades de implantação: após o teste, 

considerar fatores como ROI, custo-benefício e os aspectos práticos da implantação do 

modelo nos sistemas e infraestrutura existentes e outros benefícios, como menor 

latência ou maior transparência; 

6. Escolher o modelo que oferecer mais valor: selecionar o modelo que melhor se adapte 

às demandas específicas do caso de uso com o melhor equilíbrio entre desempenho, 

custo e riscos associados. 

Considerações semelhantes e com ênfases diversas podem ser encontradas em diversos 

contextos e com múltiplas abordagens similares ou distintas. De modo geral, as abordagens 

essenciais são encontradas na maioria dos casos e alguns são destacadas considerações 

especialmente relevantes para casos específicos ou culturas específicas. 

Em todo caso, é relevante que a escolha do modelo seja criteriosa e clara em relação à 

sua aplicação, inclusive no quesito estratégico de usar múltiplos modelos, e sua conformidade 

às questões de custos e cultura da organização. 

No bojo dos pontos mais elementares a considerar, dois aspectos proeminentes são (a) 

a finalidade para implementação da solução e (b) as características específicas do modelo.  

Quanto às características específicas (b), a atenção recai sobre as implementações 

inerentes ao modelo, por exemplo, sobre conceitos, arquitetura, operação e controles de 

configuração, inclusive à luz das medidas que precisem ser adotadas para evitar as limitações 

acima e quaisquer outras inerentes ao modelo em consideração.  

Sobre a finalidade para a solução (a), diferentes LLMs Generativos, são utilizados para 

aplicações distintas, como, por exemplo, documentação, tradução, assistência a escrita, 

pesquisa, conversação etc.  

Enquanto este trabalho é escrito, um ponto de grande concorrência entre alguns dos mais 

avançados LLMs é a “troca de códigos” (code-switching), ou “mistura de códigos” (code-

mixing) (HU, ZHANG e AL., 2023) (HIMASHI RATHNAYAKE, 2024), que implicam em 
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formas e habilidades do modelo em alternar, simultaneamente, entradas em uma língua, ou mais 

do que uma, e saídas em outra, ou outras, diferentes, sem perdas significativas de desempenho.  

Cada uma das possíveis aplicações terá suas próprias necessidades e peculiaridades, 

portanto, potencialmente, demandará características e especialidades específicas do modelo 

considerado.  

No caso de tratamento de códigos de computadores, fatores como as linguagens 

suportadas (C, C#, Java, Python, Go, Dart, ...), as tarefas a executar (como geração por instrução 

em linguagem natural, com ou sem código pré-existente, sugestão de continuação de código, 

correção, explicação, ajustes finos, conversões entre linguagens, comparações entre linguagens, 

algoritmos ou implementações, entre linguagens iguais ou diferentes, entre outras), 

assertividade sintática e lógica, complexidades diversas e modos de atualização e aprendizado, 

são exemplos de considerações relevantes e, até, mandatórias na escolha do modelo. 

Apesar de, conforme a visão do senso comum, estarmos vivendo algo como a “infância 

da IA” (Unsupported source type (DocumentFromInternetSite) for source Kar23.), 

especialmente na geração e tratamento de códigos fonte de computadores, talvez, e até mesmo 

por isso, atualmente haja grande diversidade de modelos propostos para processar esses 

códigos, pelo menos em algumas das versões de determinados Modelos Base.  

Entre os modelos dessa categoria são bem conhecidos GPT, Mistral, Gemma, Orca, Phi, 

StableLM e Vicuna, por exemplo. Cada um com suas particularidades, especialidades e 

limitações. Entre as características distintivas de alguns desses modelos, ser de código aberto e 

dispor de licenciamento gratuito para fins específicos ou amplos são diferenciais de importante 

consideração nas escolhas para implementações.  

A disponibilidade de LLM Gen AI está evoluindo muito rapidamente, tanto no sentido 

de evoluções e versões dos que já são conhecidos e presentes há algum tempo quanto no 

lançamento de novos modelos. Esse comportamento tende a continuar por algum tempo, com, 

até mesmo, a possibilidade de ser incrementado. Entre outras implicações, é notável que as 

análises e conclusões deste, ou qualquer outro trabalho semelhante, precisa ser revisado em 

pouco tempo e as decisões tomadas precisam ser acompanhadas de políticas de atualização ou 

adequação claras e bem estruturadas. Mesmo enquanto essa pesquisa é realizada, novidades e 

perspectivas geram grandes volumes de informação (e desinformação), desafiando o foco. 

Dos LLM de código aberto e licenciamento permissivo, com cláusulas de 

responsabilidade e restrições para evitar abusos, dois deles se destacam por suas próprias razões 

nesse final do primeiro semestre de 2024, o Qwen (Unsupported source type 

(DocumentFromInternetSite) for source Ali24.) e Llama (META, 2024). 
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Os dois modelos se destacam por atingirem desempenho e resultados, em regra, 

superiores aos demais na mesma categoria e muito próximos ou, eventualmente, superiores aos 

de opções pagas ou comercialmente restritivas. Corroborando as considerações sobre a 

evolução rápida dos modelos, note-se que a última versão do Llama foi lançada em 18 de abril 

de 2024 e o Qwen teve sua versão mais recente lançada em 06 de junho de 2024. 

O modelo Qwen, é um modelo base ou de fundação (Foundation Model) desenvolvido 

pelo Alibaba Group.  A versão Qwen2 (ALIBABA GROUP - QWEN TIME, 2024) é uma 

evolução significativa da versão anterior (Qwen1.5), que impressiona por entrar em 

concorrência direta pelo título de SOTA2 (Estado da Arte) com o modelo da Meta/Microsoft e 

os demais concorrentes ao título até então. 

Com versões de tamanhos variados, para atender necessidades e finalidades diversas, a 

família de modelos Qwen, em sua configuração atual, apresenta as variações Qwen2-0.5B (com 

½ bilhão de parâmetros), Qwen2-1.5B (com 1,5 bilhão de parâmetros), Qwen2-7B (com 7 

bilhões de parâmetros), Qwen2-57B-A14B (com 57 bilhões de parâmetros), and Qwen2-72B 

(com 72 bilhões de parâmetros), incluindo algumas variações com designação Instruct, que 

foram refinadas para o tratamento de códigos de computadores, alcançando indicadores de 

desempenho semelhante aos dos mais eficientes modelos atuais. 

A nova versão passou da compreensão de duas línguas (chinês e inglês) à compressão 

de mais 27 línguas e, em suas versões Qwen2-7B-Instruct and Qwen2-72B-Instruct, oferece 

suporte estendido para até 128 mil tokens de comprimento de contexto. 

Outra importante evolução, relativa à arquitetura do modelo nessa nova versão, é a 

implementação da Atenção Agrupada de Consultas (GQA, Group Query Attention) (AINSLIE, 

LEE-THORP, et al., 2023) em todas as suas variações, obtendo, em consequência, o aumento 

das velocidades de inferência e redução do consumo de memória, de modo que se torna mais 

acessível em termos de hardware e interessante para mais aplicações. 

O modelo Llama, também um modelo de fundação, é desenvolvido em conjunto pelas 

empresas Meta e Microsoft. Em sua versão Llama 3 (META, 2023), evolução da versão 2 

lançada em 2023, com variações inicialmente pré-treinadas com diferentes números de 

parâmetros, 7 bilhões (7B), 13 bilhões (13B), 34 bilhões (34B) e 70 bilhões (70B). O modelo 

 
2 Acrônimo para Estado da Arte (SOTA: State-Of-The-Art). No contexto da IA, indica os modelos mais capazes 
para alcançar os resultados de uma tarefa, seja no Aprendizado de Máquina, Redes Neurais Profundas 
Processamento de Linguagem Natural ou de realização de tarefas genéricas. Para mais informações: 
(SRIVASTAVA, 2022). 
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base recebeu ajustes finos (fine tuning) (AUFFARTH, 2023, p. 225-256) para tratamento de 

códigos de computadores e essa especialização foi nomeada Code Llama 3 (META, 2023). 

O Code Llama 3 ainda foi adicionalmente treinado para refinar o tratamento de 

linguagem natural combinada com as tarefas relacionadas a códigos, evoluindo sua precisão e 

qualidade na geração de resultados mais alinhado com o que se espera com base nas instruções 

fornecidas, resultando em uma versão mais robusta e precisa que recebeu a designação 

distintiva de Code Llama 3 - Instruct. 

Os modelos Llama 3 foram, desde o início, criados sob a abordagem de código aberto 

com flexibilidade acentuada com uso do método de transformer autorregressivo (Unsupported 

source type (DocumentFromInternetSite) for source Bap23.) (BASKARAN, 2023) sobre 

uma arquitetura de apenas decodificador (decoder-only) (Unsupported source type 

(DocumentFromInternetSite) for source Zha23.) (META, 2024), pré-treinado em um 

extenso corpus de dados auto supervisionados, usando a Aprendizagem por Reforço com 

Feedback Humano (RLHF) (AUFFARTH, 2023, p. 228, 229) (Unsupported source type 

(DocumentFromInternetSite) for source Zha23.), e a versão Code Llama Instruct pode ser 

baixada, refinada, retreinada, implantada através de diversos recursos e ambientes, além de 

possibilitar, se necessário ou útil, a personalização granular do próprio código fonte (META, 

2023) (META, 2023), possibilitando maior liberdade e demandando controle fino e 

personalizado sobre questões como responsabilidade, aderência à cultura e negócio e 

flexibilidade de adaptação e evolução. 

A proximidade dos indicadores de desempenho entre as versões atuais dos modelos 

Qwen e Llama, especialmente as de tamanho maior, é visível na mais recente avaliação 

apresentada pelo Hugging Face em seu Open LLM Leaderboard (FOURRIER, HABIB, et al., 

2024), indicada na Figura 1. 

Fonte: (FOURRIER, HABIB, et al., 2024) 

A escolha entre Qwen2 e Llama3 precisa considerar detalhes de implementação 

específicos, entre eles o ‘tamanho’ do modelo, sendo referência à quantidade de parâmetros. 

No caso das maiores variações de cada um, Qwen2-72B e Llama3-70B, considerando a 

utilização em tratamentos de código de computadores há um detalhe distintivo que pode pender 

em favor do modelo da Meta. 

Figura 1 - Comparação de desempenho das maiores versões dos modelos Qwen2 e Llama3 
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Ocorre que, embora sejam modelos de código aberto, por decisão estratégica da 

empresa, o Qwen2-72B mantém o uso da licença Qianwen original, enquanto as demais 

variações do modelo adotaram a Licença Apache 2.02. A Qianwen é uma licença mais restritiva 

do que a Apache, exigindo, por exemplo, que o código fonte alterado permaneça publicamente 

disponível ainda que possa utilizar uma licença diferente. Então é importante avaliar os 

impactos dessas restrições ao considerar a opção pelo modelo Qwen2, na versão 72B, inclusive 

nas variações Instruct. 

O modelo selecionado pode gerar os novos códigos com base em seu pré-treinamento, 

em retreinamentos (ajuste fino, fine-tuning), nos dados de entrada providos pelos agentes e nas 

instruções (prompts) adicionadas para orientar os tratamentos que o modelo deve providenciar 

para as informações recebidas. Em seguida será necessário armazenar os resultados. 

 

2.3 Saídas: resultados 

Ao utilizar Modelos ou Agentes Conversacionais em linguagem natural, como um chat, 

por exemplo, é esperado, normalmente, que o resultado, ou saída, do modelo seja parte de um 

diálogo. Portanto, um interlocutor, por princípio, é assumido. Por outro lado, em uma aplicação 

de busca ou pesquisa, essa mesma postura não é igualmente assumida, já que, nesse caso, tanto 

pode estar ocorrendo uma sessão interativa quanto pode se tratar de uma operação em lote ou 

agendada, em consonância com os requisitos e modos de uso da aplicação. 

O caso específico de uso precisa estar claro desde o princípio da preparação de um 

serviço, especialmente no que tange à escolha do modelo, ou modelos quando for o caso. As 

etapas seguintes também manterão em vista os requisitos e parâmetros necessários ao caso de 

uso. Porém é notável que as fases finais e as saídas (resultados) do(s) modelo(s) são, 

normalmente, aspectos mandatórios em todo o ciclo, desde o início. Assim, o fim (resultado), 

pode-se dizer, define o princípio. Afinal, o objetivo é alcançar resultados de qualidade em todos 

os sentidos possíveis. 

Com isso não se considera que qualquer etapa seja menos importante, nem que seja a 

etapa final que deva receber maior atenção. De fato, um conceito amplamente lembrado em 

contextos de tratamento e análise de dados é que “se entra lixo, sai lixo” (muito provavelmente). 

Assim como um processamento inadequado ou com parâmetros insuficientes ou de baixa 

qualidade tende a resultar em saídas indesejáveis. 

Dito isso, de um modelo de IA que analisa códigos, especialmente à luz de eventos e 

relações externas ao próprio código, para gerar códigos que sejam ajustes, correções e 
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evoluções dos analisados, espera-se que o resultado seja código de qualidade minimamente 

superior ao original, ainda que a superioridade possa ser circunstancial ou contextual. 

Chegado a esse ponto, a questão a avaliar é se o código gerado, além de sua qualidade 

nos termos abordados, acrescenta valor suficiente ao substituir o anterior de modo que ‘valham 

a pena’ os esforços e custos dessa alteração no contexto e momento em que se tornam 

disponíveis ou se, eventualmente, a despeito dos avanços inerentes, venha a ser mais oportuno 

aguardar melhores ou maiores evoluções para se decidir pela atualização. 

Para que essas análises sejam efetuadas e as decisões sejam assertivamente tomadas, os 

códigos, com as devidas indicações das alterações e suas pertinências, devem ser 

disponibilizados em repositórios definidos e preparados para esses fins e configurados de 

maneira a possibilitar tanto a sua eventual publicação quanto seu arquivamento, sendo preterido 

por futuras opções mais aderentes às visões e intenções dos responsáveis por tais decisões, 

mesmo que elas sejam, futuramente, automatizadas. 

Como, eventualmente, algumas recomendações serão publicadas e outras não serão, ao 

persistir as recomendações de códigos nos repositórios, porém questões de versionamento 

devem ser tratadas adequadamente ao serem disponibilizadas, exigindo tratamentos específicos 

e especializados para cada aplicação e para cada caso ou estado anterior ou previsto. 

Em todo caso, para que esses novos códigos se tornem disponíveis nos repositórios em 

que devam ficar, o uso de Agentes de IA especificamente especializados e habilitados para tais 

tarefas possibilita a realização controlada e eficiente desse objetivo, assim como do envio de 

notificações e avisos nos casos em que sejam necessários. 

Ao fazer referência a que os agentes sejam especializados, possivelmente seja claro o 

sentido em que cada agente tenha os conhecimentos necessários para realizar sua tarefa 

específica.  

Quanto à referência a serem habilitados, vale esclarecer que, para executarem suas 

funções, os agentes também precisam ser reconhecidos e ter quaisquer ‘credenciais’ necessárias 

tanto para as autenticações quanto para as autorizações pertinentes às suas execuções e 

integrações internas e/ou externas (chaves, tokens, senhas, IP etc.), consideradas as respectivas 

questões de segurança, compliance, políticas, armazenamento e utilizações, entre outras. 

Sobre essas referências, especializações e habilitações, deve-se ter em mente que se 

aplicam a todos os agentes em seus próprios contextos e funcionalidades, tanto esses que atuem 

com as saídas/resultados, quanto com aqueles anteriormente citados no contexto de entradas e 

quaisquer outros em suas condições particulares. 
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3 METODOLOGIA 

Para a realização do trabalho proposto, algumas das definições metodológicas e conceituais 

adotadas são esclarecidas nesta sessão, para propiciar uma visão suficientemente clara do 

processo e eventuais ajustes necessários. 

 

3.1 Tipo de pesquisa e momento das definições 

Com a percepção da possibilidade de usar a IA como tutor dos códigos das aplicações 

de sistemas corporativos, publicadas em ambiente de produção, continuamente atualizadas, 

evoluindo e nas suas melhores condições operacionais, de modo contínuo, automático e no 

tempo mais breve possível e viável, este trabalho assume as características de uma pesquisa 

experimental. 

As definições seguintes foram pautadas sobre os dados e ambiente acessíveis para 

implementar o ambiente funcional para realizar os experimentos e nas estimativas plausíveis 

para os prazos, disponibilidades e custos considerados exequíveis a partir de junho de 2024, 

momento em que se completa o planejamento das atividades. 

 

3.2 Localização espacial e temporal do ambiente e dados iniciais 

O estudo será realizado sobre o ambiente de produção de um banco digital privado, 

especializado em investimentos, em São Paulo, capital, que passa a ser referido como “Banco”.  

Entre os códigos das aplicações e serviços em operação no ambiente de produção do 

Banco serão selecionados como objeto desse estudo 1.200 aplicações/serviços, entre APIs, 

Background Services/Workers, Hubs de Web Sockets (SignalR), Funções sem Servidor etc., 

incluindo todas as suas dependências, componentes, bibliotecas etc., os quais serão a base 

principal de refinamento (fine-tuning) para o Modelo Central Gen AI do projeto e formarão o 

contexto para as experimentações e suas conclusões.  

Esses códigos estão escritos em diversas linguagens, usando diferentes frameworks, 

componentes e tecnologias variadas são executadas, principalmente, em Clouds (Nuvens), 

majoritariamente na Amazon Cloud, diversas instâncias em Microsoft Azure e GCP (Google 

Cloud Platform) e outras poucas instâncias on-premisse. 

Atualmente, há aplicações/serviços, e bases de dados, considerados legados, que 

mantém arquiteturas, tecnologias, frameworks, componentes e versões, especialmente de 

linguagens de programação mais antigas, tanto em função de fusões e aquisições quanto de 
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desenvolvimentos de integrações. Considera-se que, proporcionalmente, esses casos 

correspondam a 45% da base operacional.  

Conforme registros do Dynatrace, nos últimos 12 meses, esse contexto demanda, 

aproximadamente, as seguintes médias mensais dos principais grupos de processamento: 

Tabela 1 - Quantidades médias de Grupos de Processamento das principais tecnologias relacionadas aos códigos 
selecionados 

Tecnologia Quantidade de Grupos de Processos 

.NET 100.000 

ASP.NET 230 

Kubernetes 76.000 

GO 61.000 

Python 70 

Windows 190 

Linux 13.800 

Nginx 3.600 

Apache Tomcat 1.600 

Apache HTTP Server 100 

IIS 180 

Node.js 3.100 

Java 1.900 

Erlang 70 

RabbitMQ 6.800 

Amazon SQS 700 

Apache Kafka 160 

Redis 140 

MongoDB 600 

Docker 500 

Amazon S3 220 

Amazon API Gateway 120 

Oracle Database 40 

MS SQL Server 20 

PostgreSQL 40 

MySQL 10 

Netty 250 

Jetty 400 

Fonte: Dynatrace – dados coletados pelo autor. 

Os códigos selecionados incluem aplicações/serviços de frontend (tradicionais e micro 

frontends), mobile e backend, incluindo microsserviços, monolitos, funções sem servidor, BFF 

(Backend for Frontend) e outras arquiteturas e estruturas, formando a plataforma do banco que 
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atende clientes, Pessoas Físicas (PF) e Pessoas Jurídicas (PJ), tais como Correntistas, 

Investidores, Corretoras de Investimentos, Assessores Internos e Externos, entre outros.  

A Plataforma do Banco registra variações de alguns milhares a dezenas de milhares de 

acessos únicos diários, que ocorrem em patamares sazonais e pontuais com médias ascendentes, 

especialmente nos últimos dois anos. 

 

3.3 Fluxo e cronograma 

Em uma visão panorâmica, as etapas seguintes resumem a jornada planejada para o 

experimento: 

1. Preparação do ambiente e recursos iniciais; 

2. Disponibilização do Modelo Central pré treinado no Microsoft Azure; 

3. Obtenção dos códigos nos repositórios Azure DevOps originais; 

4. Geração dos forks respectivos também no Azure; 

5. Vetorização (embeddings) dos códigos do forks; 

6. Disponibilização do Banco de Dados Vetorial no Azure; 

7. Armazenamento dos códigos na base vetorial; 

8. Submissão da base vetorial para conhecimento do Modelo Central; 

9. Obtenção dos particionamentos de dados para treino e validação do modelo; 

10. Execução do treino e validação para refinamento do modelo; 

11. Execução dos ciclos de testes e ajustes do modelo refinado; 

12. Disponibilização dos Agentes de Entrada e Saída; 

13. Avaliações e ajustes do processo previsto; 

14. Análise e síntese dos resultados e conclusões; 

15. O Encerramento do estudo. 

As etapas 1 a 11 serão realizadas, principalmente, no ambiente Azure Machine learning 

(AML), com utilização de seus recursos de programação e execução, especialmente os 

notebooks ali disponíveis. Embora seja o conjunto com maior número de etapas, os códigos e 

insumos preparados e experimentados com antecedência deverão propiciar a execução objetiva 

em um menor período nas 9 primeiras etapas e maior na 10ª e 11ª. 

A etapa 12 disponibilizará os agentes no ambiente Azure, orquestrados pelo LangChain, 

com base nos códigos já experimentados com scripts e notebooks nas etapas anteriores, 

automatizando o processo para sua sequência em regime operacional. 

As etapas 13 a 15 concluirão o experimento com as análises pertinentes e conclusões. 

O cronograma previsto deverá seguir o seguinte esquema geral: 
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• Etapas 1 a 9: dias 1 a 3; 

• Etapas 10 e 11: dias 4 a 29; 

• Etapa 12: dias 30 e 31; 

• Etapas 13 a 15: dias 32 a 35. 

 

3.4 Dados de entrada e Modelo Central 

Um fork (réplica integral independente) dos repositórios dos códigos das 1.200 

aplicações/serviços selecionados será disponibilizado em um novo contexto de projeto com 

acesso protegido e limitado à IA, seus agentes e os desenvolvedores e administradores do 

composto de IA, para receber as recomendações e atualizações recomendadas pelo Modelo 

Central, através de seus agentes, em branches cronologicamente identificados e criados a partir 

do branch principal (main) do fork.  

A partir do fork, os códigos e demais informações disponíveis nos repositórios serão 

armazenadas em uma base de dados vetorial para o refinamento inicial e atualizações do 

Modelo Central.  

Para armazenamento dos dados vetoriais, será utilizada uma instância do Banco de 

Dados Vetorial Weaviate (WEAVIATE, 2024) (WEAVIATE, 2024), criado nativamente para 

IA, de código aberto e utilização gratuita para estudos e pesquisa. 

Os scripts necessários para as execuções dessas atividades, credenciais inerentes e 

recursos de apoio foram preparados e testados em contextos e simulações locais durante o 

processo de planejamento, restando editar as referências e endereços que somente estarão 

disponíveis a partir da etapa 1. Essas mesmas preparações foram realizadas a respeito de todas 

as etapas de 1 a 11. 

Após o refinamento do Modelo Central e seus agentes, a ser concluído com os testes da 

etapa 11, alterações que ocorrerem nos repositórios originais serão atualizados no 

conhecimento do Modelo Central, pelos agentes no branch principal (main) do fork, que será o 

único branch considerado atual e válido, para a IA, embora, para fins de aprendizado e 

referência, todos os branches originais, com todos os seus commits registrados, serão incluídos 

no fine-tuning inicial do modelo. 

O conhecimento do Modelo Central a respeito dos códigos será enriquecido e ajustado 

sempre que necessário por prompts de instruções, que esclarecerão os aspectos evolutivo e 

progressivo dos branches, commits, versões e suas cronologias, com especial ênfase nas 
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indicações dos pipelines, builds, rollbacks etc., conforme registrados nas ocorrências dos seus 

eventos. 

Juntamente com os códigos das aplicações e serviços, providos inicialmente na base 

vetorial, os dados históricos de observabilidade e logs, obtidos sobre as execuções das 

aplicações/serviços do contexto e suas relações com seus ambientes de execução e outras 

aplicações no contexto e/ou externas a ele, serão utilizados no processo de fine-tuning inicial 

do Modelo Central para refinar, validar e testar o entendimento do processo de análise a partir 

desses dados. 

Esses dados foram registrados no primeiro semestre de 2024 e serão particionados em: 

- Dados de treinamento: referentes ao primeiro quadrimestre; e 

- Dados de validação: referentes ao terceiro bimestre. 

Após a geração e tratamento inicial dos forks, nas etapas  4 e 5 e a conclusão do 

refinamento propriamente dito, conforme abordado nas etapas 8 a 10, durante as quatro semanas 

seguintes, diariamente, serão obtidos os dados de observabilidade e logs pertinentes, que serão 

usados para realização, no dia seguinte, de testes com o modelo (Dados de teste), com ajustes 

de hiperparâmetros, prompts e demais necessidades percebidas, de modo que, ao final de cada 

semana, 7 dias corridos, sejam realizadas avaliações, revisões e eventuais realinhamentos do 

processo e/ou do modelo. 

O aspecto da cronologia dos registros de observabilidade e logs é especialmente 

significativo, assim como a relação de cada registro/evento com cada aplicação específica e os 

trechos de código especificamente em execução durante as ocorrências.  

Portanto, as informações entregues ao Modelo Central para análise serão estruturadas 

com base nesses aspectos, de modo a terem as relações devidamente vinculadas com as 

execuções do código e encadeados logicamente para preservação da integridade relacional, 

inclusive, de causa e efeito, considerando cada aplicação/serviço individualmente e suas 

interações com o ambiente (contêiners, clusters, memória, processador, rede etc.) e com outras 

aplicações/serviços, seja como consumidores, seja como servidores, seja como pares e/ou 

dependências 

A cronologia, como aspecto relevante das informações de observabilidade e logs, 

implica, especialmente, no particionamento dos dados para refinamento do Modelo Central, 

indicando como critério mais apropriado uma divisão temporal do que uma aleatória, de modo 

que os conjuntos de Treino, Validação e Testes sejam escolhidos, respectivamente, com base 

na sua ordem e momento de geração e referenciados adequadamente a cada aplicação/serviço. 
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O modelo Llama3.1-70B-Instruct, versão mais recente do modelo Llama a essa altura 

do trabalho, foi escolhido como Modelo Central, para ser executado no ambiente Microsoft 

Azure por sua proximidade com a infraestrutura em uso no Banco, especialmente o Azure 

DevOps. 

Os dados relativos às operações das aplicações em ambiente de produção, e sobre o 

ambiente de produção em si, serão coletados e disponibilizados para a IA com proteção por 

anonimização e ofuscação, no que tange a informações sensíveis ou internas. É relevante 

pontuar que os dados e informações, em nenhum momento, serão usados ou apresentados em 

qualquer ambiente externo aos do Banco. 

Os dados de treino, validação e testes serão buscados no Dynatrace e no Kibana pelos 

códigos dos notebooks, e, posteriormente, pelos agentes orquestrados por LangChain, com base 

nos namespaces das aplicações/serviços e pelas designações a eles atribuídas em seus pipelines 

de publicação, trazendo, também os registros/eventos relacionados às suas execuções e às 

chamadas recebidas ou efetuadas, de e para os outras aplicações/serviços com que se 

relacionem, conforme sejam registradas no código e nas informações de observabilidade e logs 

do Dynatrace e do Kibana. 

Sendo conhecidas e reconhecidas pelos códigos dos agentes, essas referências poderão 

ser vinculadas trechos específicos dos registros das execuções dos códigos vetorizados como 

conhecimentos a partir dos repositórios dos seus forks e, a partir daí, relacionados para análises 

que evidenciem os ajustes, correções, evoluções e aperfeiçoamentos. 
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3.5 Dados de Saída e resultados 

O Modelo Central, com base na análise dos códigos reconhecidos e aprendidos a partir 

da base vetorial a que foram adicionados advindos dos forks dos repositórios originais, e, 

posteriormente, de suas atualizações, em comparação com as informações de observabilidade 

e logs, recebidas do ambiente de produção pelo Dynatrace e Kibana, deverá gerar códigos 

completos, que serão adicionadas aos mesmos repositórios respectivos, através dos agentes 

especializados para esse fim,  na forma de novos branches criados a partir dos branches main 

de cada repositório dos códigos selecionados e, a partir desses novos branches, os agentes 

deverão, também, gerar os respectivos pull-requests (PR) para sua promoção à branch main 

pertinente.  

Depois de gerar recomendações/código para um repositório, o Modelo Central deverá 

voltar a gerar novas recomendações para o mesmo repositório apenas se houver diferenças 

substanciais não indicadas anteriormente ou se for instruída a ignorar as recomendações 

anteriores. 

Os agentes deverão, também, enviar notificações e alertas aos responsáveis pelos 

repositórios em que ocorrerem alterações. 

Os testes buscarão nos códigos gerados por faltas de pertinência e/ou valor nas 

recomendações e códigos gerados, assim como inconsistências, incompletudes, alucinações, 

imprecisões, omissões e/ou erros efetivos de lógica, sintaxe ou padrões reconhecíveis, além 

daqueles perceptíveis através da execução de testes unitários, de integração e/ou de regressão 

ou estresse, conforme existam previamente, sejam evoluídos e/ou adicionados/criados como 

parte dos processos criativos da própria IA. 

Com base nos resultados analisados nos testes será tomada a decisão de indeferir a 

recomendação, ajustar os códigos ou aprovar os PR gerados pelos agentes do Modelo Central, 

após a geração dos branches respectivos, serão tomadas, de modo análogo ao que será feito, 

posterior e eventualmente, no caso de se prosseguir com a utilização do composto de IA. 

Adicionalmente, quando novas versões das linguagens, frameworks, componentes e 

demais tecnologias forem publicadas, o modelo deverá ser atualizado com o conhecimento 

dessas novidades, através de agentes especializados para essas tarefas, assim como deverá 

ocorrer, também, para os casos de adoções de novas tecnologias nas alterações dos códigos 

adidos ao contexto de conhecimento da IA. 
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4 PROPOSTA E DESENVOLVIMENTO 

Nesta sessão é apresentado um resumo da execução de cada etapa do trabalho com 
comentários pertinentes para o entendimento da experiência. 
 
4.1 Etapas 1 a 9 

Nas etapas iniciais foi liberado o acesso ao ambiente AML, tendo os scripts e códigos 

disponíveis para a preparação do ambiente, os procedimentos partiram do aprovisionamento 

de: 

• Duas máquinas virtuais (VM: Virtual Machine): 

o 1 VM Standard_NC6: 

▪ 6 vCPUs (Virtual Central Process Unity); 

▪ 56 GB RAM (Giga Bytes de Random Access Memory); 

▪ 1 GPU NVIDIA Tesla K80 (GPU: Graphic Process Unity); 

▪ Para utilização nos refinamentos do Modelo Central; 

o 1 VM Standard_D4_v3: 

▪ 4 vCPUs; 

▪ 16 GB RAM; 

▪ Para utilização em processamentos e tarefas gerais; 

• Uma unidade SSD (Solid Disk State) de 1 TB (Tera Bytes), para armazenamento de 

arquivos, recursos e transferências de dados. 

 Um espaço de trabalho (workspace) foi criado no AML para execução dos 

procedimentos necessários e o modelo Llama-3.1-70B-Instruct foi registrado no workspace. 

Um novo Projeto foi criado no Azure DevOps e os forks dos repositórios originais 

selecionados foram adicionados a esse novo Projeto, usando uma lista dos repositórios 

selecionados e a um script Python executando subprocessos com comandos do Azure CLI. Esta 

atividade demandou quase 10 horas. 

O Banco de Dados Vetorial Weaviate foi instalado no Azure Kubernetes Service (AKS), 

a partir do GitHub (https://weaviate.github.io/helm-charts/), usando o Helm Charts.  

A classe ‘CodeDoc’ foi criada para estruturar os códigos e informações adicionais 

vetorizadas no Weaviate. 

Foi iniciado o script Python escrito para (a) vetorizar os códigos e adicionar os 

embeddings à base Weaviate e (b) carregá-los no workspace AML para utilização pelo Modelo 

Central. São previstas 42 horas para a sua conclusão, executando assíncrona e paralelamente as 

duas atividades (a e b) com (b) sendo iniciada 6 horas após (a). 

https://weaviate.github.io/helm-charts/
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A monitoração dos processos de vetorização e disponibilização dos embeddings 

receberam o foco até serem concluídos com sucesso, sendo seguidos pelo início do treinamento 

do Modelo Central com os embeddings dos códigos paralelamente com o começo da obtenção 

das informações de observabilidade e logs para a segunda etapa do refinamento do modelo, 

com o treinamento e validação usando essas informações. 

Com a conclusão dessas duas últimas atividades iniciadas, encerraram-se as etapas de 1 

a 9 e foi iniciada a segunda parte do refinamento do Modelo Central, com previsão de 

encerramento em 24 horas. 

 

4.2 Etapa 10 

Concluída pouco depois do previsto, a validação com o particionamento do terceiro 

bimestre de dados de observabilidade e logs, encerrando a etapa 10 da jornada desse estudo. 

Observados os resultados dessa etapa, foram registrados os seguintes parâmetros: 

 

Desempenho Acurácia Geral: 82% 

Precisão: 80% 

Recall: 83% 

F1-Score: 81,5% 

Correlação de Dados O modelo registrou correlação forte entre os logs de erros seções 

de código, identificando corretamente padrões de falhas em 83% 

dos casos analisados. 

Consistência A validação mostrou que o modelo mantém consistência na 

análise de dados, mesmo quando exposto a variações nos padrões 

de logs. 

Robustez Até onde foi possível perceber, pequenas variações nos dados de 

entrada não afetaram significativamente o desempenho do Modelo 

Central, indicando uma robustez adequada para operações em 

ambientes de produção. 

 

Com base nos resultados observados, o modelo aparenta estar em condições para iniciar 

a fase de testes diários com dados coletados do ambiente de produção.   
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4.3 Etapa 11 

No início da Etapa 11 foi executado o script que obtém as informações relativas ao dia 

anterior e os disponibiliza para o Modelo Central realizar as análises. 

Os testes são analisados por amostragem, aleatoriamente em termos individuais. 

Durante essa etapa de teste, o Modelo Central deverá gerar recomendações a cada 5 dias para 

as aplicações/serviços em que os critérios previamente estabelecidos sejam atendidos, gerando 

os códigos que serão adicionados aos repositórios pertinentes como novos branches com os PR 

respectivos, ambos providenciados, posteriormente, por agentes especializados e, nesta etapa, 

por scripts e notebooks com execução agendada. 

Durante os testes e, especialmente, após cada geração de códigos, ajustes e correções 

poderão ser efetuados visando o aperfeiçoamento do Modelo Central, dos agentes e do 

processo. 

Nos dias de teste sem pontos notáveis apenas uma nota “os testes foram bem-sucedidos” 

será registrada, deixando espaço para anotações mais significativas sempre que útil ou 

necessário. Nos dias em que houver geração de códigos haverá maiores informações. 

Nesse primeiro dia nenhum destaque pareceu necessário, então, os testes foram bem-

sucedidos. 

Analisando os dados dos primeiros 6 dias os testes foram bem-sucedidos. 

Na análise dos dados do sétimo dia foram verificados tempos aumentados nas 

obtenções das informações dos dados de observabilidade e logs. Uma análise mais detalhada 

deu a perceber que um aumento significativo do tempo das respostas às APIs do Dynatrace e 

do Kibana e as ocorrências de diversos eventos e ações de resiliência causados por timeouts 

frequentes, mas não foram encontradas evidências que indicassem problemas com relação ao 

processo de coletas de informação ou análises. 

A análise dos dados do oitavo dia foi a primeira em que ocorreu a geração de códigos. 

Das 1.200 aplicações/serviços em observação, 63 novos branches foram gerados com as 

seguintes considerações: 

• No caso de 3 desses novos branches, havia falhas graves, como trechos faltantes, erros 

de má formação de textos e dois deles não puderam ser compilados. 

• Em 14 branches as alterações foram apresentadas exclusivamente críticas sobre práticas 

pouco recomendáveis (code smell), de modo geral, relevantes, mas que, aparentemente, 

não significavam problemas sérios. 
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• Em 22 dos 63 novos branches indicavam alterações relevantes, porém em aplicações 

legadas, que apresentavam elevada complexidade para alterações e já tinham previsão 

de substituição em médio prazo. 

• Outros 15 branches identificaram questões de componentes com vulnerabilidades 

documentadas, de fato, precisam de atenção em curto prazo, embora representassem 

riscos menores para impactos eventuais. 

• Nas 9 restantes foram identificadas questões pertinentes a respeito de melhorias de 

desempenho ou estabilidade, destacando-se como as contribuições mais importantes 

entre os 63 casos. 

Para aprimorar as análises do Modelo Central um arquivo com esclarecimentos e 

orientações relativos aos pontos levantados foi elaborado e disponibilizado para o Modelo 

através da base vetorial, a fim de servir de referência para alinhar os comportamentos menos 

desejados e algumas indicações foram adicionadas aos prompts de instrução. 

Com os dados do nono ao décimo segundo dias os testes foram bem-sucedidos, embora 

possa ser pontuado que o nono dia se tratou de um feriado estadual em São Paulo, mas não se 

registrou qualquer variação respectiva. 

No dia décimo terceiro dia ocorreu a segunda geração de códigos. Nessa ocasião 3 

novos branches foram adicionados aos repositórios pertinentes. Todos os casos foram 

significativos, sendo que em um deles se observou elevação irregular e de retenção de sockets 

sem utilização por implementação inadequada no uso de clientes do protocolo HTTP. 

Em retorno para o Modelo Central, a questão foi marcada como de alta criticidade para 

manter sob atenção outros casos semelhantes. 

Com os dados do décimo quarto ao décimo sétimo dia os testes foram bem-sucedidos, 

porém com percepção de lentidão muito acima do normal nas execuções dos procedimentos. 

Com os dados do décimo oitavo dia, quando deveria ter ocorrido a terceira geração de 

códigos no período, não foi gerada qualquer recomendação/branch. Após verificações e 

análises dos registros de execução, constatou-se que alguns ajustes nos prompts de instruções, 

aparentemente, criaram situações inadequadas para as análises, portanto demandaram ajustes 

que foram implementados. 

As análises dos dados do décimo nono ao vigésimo segundo dia fluíram de modo que 

os testes foram bem-sucedidos. 

Com os dados do vigésimo terceiro dia, ocasião da quarta geração de códigos prevista, 

11 branches foram geradas com sucesso e, embora, pequenas e objetivas, as mudanças indicadas 

foram todas significativas e um aspecto que chamou a atenção é que, dos 11 casos, 9 foram 
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relacionados a serviços e os problemas assinalados eram relacionados a baixa eficiência causada 

pelo tratamento de encadeamentos de chamadas síncronas e assíncronas. Diante do desempenho 

verificado, nenhuma alteração pareceu necessária a essa altura. 

Com os dados do período do vigésimo quarto ao vigésimo sétimo dia os testes foram 

bem-sucedidos. 

Os dados do vigésimo oitavo dia foram os últimos da etapa de testes previstos para 

gerar códigos. Na ocasião, apenas 2 branches foram gerados e, embora as indicações fossem 

relevantes, não representaram questões a ter em alta consideração por tratarem de questões 

relativas a formatos de escrita de código que entraram em desuso nas versões mais recentes e 

as aplicações em foco se encaixam entre os legados previstos para atualizações. 

O vigésimo nono dia foi dedicado para revisões dos resultados dos testes anteriores e 

preparações para as próximas etapas. 

 

4.4 Etapa 12 

Os scripts e notebooks em utilização nas etapas anteriores cumpriam as funções que, 

efetivamente, devem ser devem ser executadas por agentes especializados sob orquestração 

do LangChain, conforme definições para o estudo em sua completude. Sendo assim, os dois 

dias seguintes (trigésimo e trigésimo primeiro) foram dedicados a converter aqueles 

instrumentos provisórios, que propiciavam tanto acompanhamento granular das execuções 

quanto evoluções pontuais e controladas dos códigos, mas que, em sua forma prevista 

ganham em desempenho, autonomia e com as características da orquestração mais 

elaborada. 

O processo em si foi simples e rápido pela aderência dos padrões utilizados na 

codificação e pela simplicidade oferecida pelo orquestrador. Realizadas as conversões e 

publicadas as novas ferramentas, nos dias seguintes (etapas 13 e 14) tanto os novos agentes 

quanto o Modelo Central estiveram sob acompanhamento e avaliações visando a conclusão 

apropriada do experimento. 

 

4.5 Etapa 13 a 15 

Nos quatro dias das Etapas 13 a 15 poucos ajustes foram realizados quanto a 

orquestração dos novos agentes. No demais, transcorreram sem novidades.  
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5 ANÁLISES DE RESULTADOS 

Revendo e analisando os resultados obtidos a partir da implementação da inteligência 

artificial no ambiente de produção de um banco digital privado, vale estruturar a análise em 

torno de três eixos principais: eficiência operacional, qualidade do código gerado e impacto nos 

processos de desenvolvimento. Cada um desses aspectos é crucial para entender o valor 

agregado pela IA ao contexto. 

 

5.1 Eficiência operacional 

A implementação de agentes de IA especializados resultou em melhorias significativas 

na eficiência operacional, uma vez que tem capacidade para reduzir, significativamente, o 

tempo de resposta às necessidades de ajustes, correções, evoluções, atualizações e adequações 

dos códigos em operação no ambiente de produção, o que pode ser atribuído à capacidade da 

IA de monitorar continuamente o ambiente e identificar essas necessidades, recomendando as 

alterações em formato de código pronto ou muito próximo disso.  

 

5.2 Qualidade do código gerado 

De modo geral, embora ainda seja necessário manter bastante atenção aos códigos 

gerados pela IA, as peças fornecidas, minimamente, aceleram e facilitam a localização e a 

implementação de soluções, além de apontarem os problemas em si ou sua iminência e 

eventuais consequências. 

Os desenvolvedores são beneficiados porque a IA não apenas produziu códigos 

funcionais, mas também ajudou a identificar e corrigir vulnerabilidades e ineficiências que 

poderiam ter passado despercebidas em outras formas de revisões. 

 

5.3 Impacto nos processos de desenvolvimento 

A análise indica que a IA proporciona suporte aos desenvolvedores, automatizando 

tarefas repetitivas e permitindo que o foco fosse direcionado a atividades mais estratégicas.  

Os desenvolvedores podem, assim, dedicar mais atenção à inovação e ao 

desenvolvimento de novas funcionalidades, em lugar de se concentrarem em tarefas de 

manutenção e buscas de problemas nem sempre evidentes ou fáceis de localizar.  
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6 CONCLUSÕES 

As conclusões deste estudo indicam o impacto positivo da IA na gestão de códigos em 

ambiente de produção, evidenciando melhorias significativas em eficiência operacional e na 

qualidade do software. 

A capacidade da IA de detectar e corrigir problemas de forma autônoma resulta em uma 

operação mais estável e confiável. A análise sugere que a integração contínua de IA em 

processos operacionais pode se traduzir em economias significativas, elevação de eficiência e 

melhor alocação de recursos, implicando em melhoria da eficiência operacional. 

Sobre a qualidade do código e segurança, a capacidade da IA de identificar 

vulnerabilidades e sugerir melhorias é extremamente vantajosa em um contexto em que a 

segurança e a conformidade são prioridades. Recomenda-se o aprimoramento do uso da IA e a 

conformidade com padrões que facilitem e expandam a sua participação no SDLC, 

especialmente nos ambientes de produção. 

Consideradas as experiências vivenciadas durante a execução deste trabalho, para 

maximizar os benefícios alcançáveis com a tutoria da IA sobre os códigos em operação no 

ambiente de produção, é recomendável investir em treinamento para as equipes, propiciando 

aos desenvolvedores melhores possibilidades de capacitação para trabalhar em conjunto com 

tecnologias de IA. Além disso, a criação de uma cultura de inovação e experimentação pode 

facilitar a adoção de novas ferramentas e processos, promovendo um ciclo de melhoria 

contínua. 

Por fim, este estudo demonstrou que a IA pode ser proficiente em evoluir a eficiência, 

a qualidade e a satisfação das equipes internas, clientes e parceiros. As observações sugerem 

que, com a implementação adequada, a IA pode facilitar o futuro do desenvolvimento e a 

manutenção das aplicações/serviços em ambientes produtivos. 

 

 

  



44 
 

  



45 
 

REFERÊNCIAS 

AINSLIE, Joshua et al. GQA: Training Generalized Multi-Query Transformer Models from 
Multi-Head Checkpoints. Google Research, 23 dez. 2023. 
 
 
ALIBABA GROUP - QWEN TEAM. Welcome to Qwen! Read The Docs, fev. 2024. Disponível 
em: https://qwen.readthedocs.io/en/latest/. Acesso em: 29 nov. 2024. 
 
 
ALIBABA GROUP - QWEN TIME. Hello Qwen2. GitHug - Qwen2, 2024. Disponível em: 
https://qwenlm.github.io/blog/qwen2/. Acesso em: 29 nov. 2024. 
 
 
ARSANJANI, Ali. Navigating the Challenges of Hallucinations in LLM Applications: Strategies 
and Techniques for Enhanced Accuracy. Medium, 2023. Disponível em: https://dr-
arsanjani.medium.com/navigating-the-challenges-of-hallucinations-in-llm-applications-
strategies-and-techniques-for-ab2b5ddc4a63. Acesso em: 22 jun. 2024. 
 
 
ÅSNE STIGE, Yuzhen Z. P. M. E. D. Z. Artificial intelligence (AI) for user experience (UX) 
design: a systematic literature review and future research agenda. Information Technology 
& People, Sheffield, 29 ago. 2023. 
 
 
AUFFARTH, Ben. Generative AI with LangChain: Build large language model (LLM) apps with 
Python, ChatGPT and other LLMs. Birmingham: Packt Publishing, 2023. 
 
 
AXELTON, Karen. STATE OF ARTIFICIAL: With AI In Its Infancy, B2B Orgs Begin To Prioritize 
Early Adoption. Demand Gen Report (DGR), abr. 2023. Disponível em: 
https://www.demandgenreport.com/resources/state-of-artificial-intelligence-with-ai-in-its-
infancy-b2b-orgs-begin-to-prioritize-early-adoption/7834/. Acesso em: 22 jun. 2024. 
 
 
BASKARAN, Saravanan H. A Comparison of Transformer and Autoregressive LLM Designs. 
International Journal of Research Publication and Reviews, Vol 4, no 11, nov. 2023. 19-26. 
 
 

BRQ. Observabilidade: o que é, desafios e ferramentas, dez. 2023. Disponível em: 
https://blog.brq.com/observabilidade. Acesso em: 29 nov. 2024. 

 
 
CODECOMPLETE. AI-Powered DevTools for Enterprise, fev. 2022. Disponível em: 
https://codecomplete.ai. Acesso em: 29 nov. 2024. 
 



46 
 

DYNATRACE. The world needs software to work perfectly, ago. 2017. Disponível em: 
https://www.dynatrace.com/company. Acesso em: 29 nov. 2024. 
 
 
DYNATRACE. Meet Davis, our powerful AI-engine, ago. 2021. Disponível em: 
https://www.dynatrace.com/platform/artificial-intelligence. Acesso em: 29 nov. 2024. 
DYNATRACE. API versions. Developer Dynatrace, 2024. Disponível em: 
https://developer.dynatrace.com/platform-services/general/versioning/. Acesso em: 29 nov. 
2024. 
 
 
DYNATRACE. Davis AI service. Davis AI service, 2024. Disponível em: 
https://developer.dynatrace.com/platform-services/services/davis-analyzers/. Acesso em: 
29 nov. 2024. 
 
 
DYNATRACE. Dynatrace App-Toolkit. Dynatrace App-Toolkit, 2024. Disponível em: 
https://developer.dynatrace.com/reference/app-toolkit/. Acesso em: 29 nov. 2024. 
ELK. Elastic Stack. Elastic Stack, 2024. Disponível em: https://www.elastic.co/pt/elastic-
stack. Acesso em: 29 nov. 2024. 
 
 
ERBEL, J., G. J. Scientific workflow execution in the cloud using a dynamic runtime model. 
University of Goettingen - Softw Syst Model, 23, Goettingen, Germany, 2024. 163–193. 
ETO. Emerging Technology Observatory. Center for Security and Emerging Technology - 
Georgetown University, jan. 2024. Disponível em: 
https://sciencemap.eto.tech/?ai_pred=10%2C100&all_subjects=Artificial+intelligence&x_gr
owth_pred=True&mode=summary&cols=cluster_id%2Cclass_arts%2Ccset_extracted_phrase
%2CNP%2Cgrowth_3yr_p_rank%2Cai_pred. Acesso em: 29 nov. 2024. 
 
 
FOURRIER, Clémentine et al. Open LLM Leaderboard V2. Hugging Face, 2024. Disponível em: 
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard. Acesso em: 22 
jun. 2024. 
 
 
GARTNER. Automated Software Testing Adoption and Trends, fev. 2024. Disponível em: 
https://www.gartner.com/peer-community/oneminuteinsights/automated-software-
testing-adoption-trends-7d6. Acesso em: 29 nov. 2024. 
 
 
GITHUB. Início Rápido para o GitHub Copilot, jun. 2022. Disponível em: 
https://docs.github.com/pt/copilot/quickstart. Acesso em: 29 nov. 2024. 
 
 



47 
 

GOOGLE. Artificial Inteligence - Interest over time, set. 2012. Disponível em: 
https://trends.google.com/trends/explore?cat=12&date=2022-01-01%202024-06-
22&geo=BR&q=%2Fm%2F0mkz&hl=en. Acesso em: 29 nov. 2024. 
 
 
HIMASHI RATHNAYAKE, Janani S. R. R. S. R. AdapterFusion-based multi-task learning for 
code-mixed and code-switched text classification. Engineering Applications of Artificial 
Intelligence, Volume 127, Part A, jan. 2024. 
 
 
HU, Ke; ZHANG, Yu; AL., Du N. E. Massively Multilingual Shallow Fusion with Large 
Language Models. CASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech 
and Signal Processing. Rhodes Island, Greece: IEEE. 2023. p. 1 - 5. 
IBM. O que é observabilidade e por que é importante?, set. 2023. Disponível em: 
https://www.ibm.com/br-pt/resources/automate/observability-basics. Acesso em: 29 nov. 
2024. 
 
 
IBM; ARMAND RUIZ; VIVEK BHARATHI. Scaling generative AI with flexible model choices. 
IBM.COM, maio 2024. Disponível em: https://www.ibm.com/blog/scaling-generative-ai-
with-flexible-model-choices/. Acesso em: 29 nov. 2024. 
 
 
INFORCHANNEL. Empresas usam IA para garantir qualidade no desenvolvimento de 
softwares, dez. 2023. Disponível em: https://inforchannel.com.br/2023/12/07/empresas-
usam-ia-para-garantir-qualidade-no-desenvolvimento-de-softwares. Acesso em: 29 nov. 
2024. 
 
 
KONSTANTINOS FILIPPOU, George E. T. G. A. G. A. P. Structure Learning and Hyperparameter 
Optimization Using an Automated Machine Learning (AutoML) Pipeline. International 
Hellenic University, 09 abr. 2023. 
 
 
LANGCHAIN. LangChain. LangChain, 2022. Disponível em: 
https://python.langchain.com/v0.2/docs/introduction/. Acesso em: 29 nov. 2024. 
 
 
MAHMUD MH, Nayan M. A. D. K. M. Software Risk Prediction: Systematic Literature Review 
on Machine Learning Techniques. Applied Sciences, 2022. 
 
 
META. Introducing Code Llama, a state-of-the-art large language model for coding, ago. 
2023. Disponível em: https://ai.meta.com/blog/code-llama-large-language-model-coding. 
Acesso em: 29 nov. 2024. 
 
 



48 
 

META. Introducing Llama, jul. 2023. Disponível em: https://ai.meta.com/llama. Acesso em: 
29 nov. 2024. 
 
 
META. Introducing Meta Llama 3: The most capable openly available LLM to date. Meta - 
Llama3, abr. 2024. Disponível em: https://ai.meta.com/blog/meta-llama-3/. Acesso em: 29 
nov. 2024. 
 
 
MICROSOFT. AutoGen. Microsoft - Github, 2024. Disponível em: 
https://microsoft.github.io/autogen/. Acesso em: 29 nov. 2024. 
 
 
MICROSOFT. Get start with AutoGen for dotnet. Microsoft - Github, 2024. Disponível em: 
https://microsoft.github.io/autogen-for-net/. Acesso em: 29 nov. 2024. 
 
 
MICROSOFT. Microsoft - Autogen. Github - AutoGen, 2024. Disponível em: 
https://github.com/microsoft/autogen?formCode=MG0AV3. Acesso em: 29 nov. 2024. 
 
 
MICROSOFT. what Is Continuous Delivery (CD)? Learn Microsoft, 2024. Disponível em: 
https://learn.microsoft.com/pt-br/devops/deliver/what-is-continuous-delivery. Acesso em: 
29 nov. 2024. 
 
 
MICROSOFT. what is continuous integration (CI)? Lear Microsoft, mar. 2024. Disponível em: 
https://learn.microsoft.com/pt-br/devops/develop/what-is-continuous-integration. Acesso 
em: 29 nov. 2024. 
 
 
NADIRI, Yashar T. A. A. Multi-Agent Collaboration: Harnessing the Power of Intelligent LLM 
Agents, 05 jun. 2023. 
 
 
NEWRELIC. All-in-one observability, maio 2008. Disponível em: https://newrelic.com. Acesso 
em: 29 nov. 2024. 
 
 
NEWRELIC. Meet New Relic AI, your observability assistant, out. 2020. Disponível em: 
https://docs.newrelic.com/docs/new-relic-solutions/new-relic-one/core-concepts/new-relic-
ai. Acesso em: 29 nov. 2024. 
 
 
OPSERVICES. A IA aplicada a observabilidade e monitoramento de TI, abr. 2024. Disponível 
em: https://www.opservices.com.br/a-ia-aplicada-a-observabilidade-e-monitoramento-de-
ti. Acesso em: 29 nov. 2024. 



49 
 

 
 
REBECKA C. ÅNGSTRÖM, Michael B. L. D. M. M. M. W. W. Getting AI Implementation Right: 
InsIghts from a global survey. California Management Review 66 (1), California, 30 ago. 
2023. 5 - 22. 
 
 
REMSOFT. Inteligência Artificial: O Futuro Dos Testes De Software, ago. 2023. Disponível em: 
https://remsoft.com.br/blog/tecnologias/ia-o-futuro-dos-testes-de-softwares. Acesso em: 
29 nov. 2024. 
 
 
ROZIÈRE, Baptiste; GEHRING, Jonas; GLOECKLE, Fabian E. A. Code Llama: Open Foundation 
Models for Code. Meta - Code Llama, ago. 2023. Disponível em: 
https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/. 
Acesso em: 22 jun. 2024. 
 
 
SHARMA, Shreta A. P. S. K. Integrating AI Techniques In SDLC: Design Phase Perspective. 
Kochi: Association for Computing Machinery, 2015. p. 383–387. 
 
 
SHEKAR RAMACHANDRAN, Rupali A. P. M. H. B. G. L. A. K. Automated Log Classification 
Using Deep Learning. Procedia Computer Science, 31 jan. 2023. 
 
 
SONG CHEN, Hai L. BERT-Log: Anomaly Detection for System Logs Based on Pre-trained 
Language Model. Qingdao University of Technology - Applied Artificial Intelligence, 36, 17 
nov. 2022. 
 
 
SRIVASTAVA, Niharika. What is SOTA in Artificial Intelligence? E2E Networks, 2022. 
Disponível em: https://www.e2enetworks.com/blog/what-is-sota-in-artificial-intelligence. 
Acesso em: 22 jun. 2024. 
 
 
TABNINE. The AI coding assistant that you control, nov. 2018. Disponível em: 
https://www.tabnine.com. Acesso em: 29 nov. 2024. 
 
 
TIAGO CARVALHO, João B. P. P. J. M. P. C. A DSL-based runtime adaptivity framework for 
Java, Porto, Portugal, 23 ago. 2023. 
 
 
VERICODE. Desenvolvimento ágil, seguro e eficiente, maio 2022. Disponível em: 
https://vericode.com.br/servicos/devsecops. Acesso em: 29 nov. 2024. 
 



50 
 

 
VERICODE. Os testes automatizados são um imperativo dos negócios digitais, maio 2022. 
Disponível em: https://vericode.com.br/servicos/testes-automatizados. Acesso em: 29 nov. 
2024. 
 
 
VERICODE. Seu código fonte está sendo revisado automaticamente?, maio 2022. Disponível 
em: https://vericode.com.br/servicos/analise-de-codigo-fonte. Acesso em: 29 nov. 2024. 
 
 
VERITY. Como a IA pode ajudar um QA (Quality Assurance)?, jun. 2023. Disponível em: 
https://www.verity.com.br/post/como-a-ia-pode-ajudar-um-qa-quality-assurance. Acesso 
em: 29 nov. 2024. 
 
 
WEAVIATE. The AI-Native, Open Source Vector Database. Weaviate Platform, 2024. 
Disponível em: https://weaviate.io/platform. Acesso em: 29 nov. 2024. 
 
 
WEAVIATE. Weaviate. GitHub, 2024. Disponível em: https://github.com/weaviate/weaviate. 
Acesso em: 29 nov. 2024. 
 
 
XI, Zhiheng; CHEN, Wenxiang; GUO, Xin E. A. The Rise and Potential of Large Language Model 
Based Agents: A Survey, 14 set. 2023. 
 
 
ZAHRAA SADDI KADHIM, Khalil I. G. H. S. A. Artificial Neural Network Hyperparameters 
Optimization: A Survey. International Journal of Online and Biomedical Engineering, 06 dez. 
2022. 
 
 
ZHAO, Wayne X.; ZHOU, Kun; AL., Li J. E. A Survey of Large Language Models. Arxiv, 24 nov. 
2023. Disponível em: https://arxiv.org/abs/2303.18223. Acesso em: 22 jun. 2024. 
 
 
ZHOU, Ce; QIAN, Li; AL., Li C. E. A Comprehensive Survey on Pretrained Foundation Models: 
A History from BERT to ChatGPT. Arxiv, fev. 2023. Disponível em: 
https://arxiv.org/abs/2302.09419. Acesso em: 22 jun. 2024. 
 


