

Diógenes Flamarion Pires

Trabalho de Conclusão de Curso
MBA em Inteligência Artificial e Big Data

Ambiente de Produção sob tutoria de IA:
monitoração, análise e

aprimoramento de aplicações

UNIVERSIDADE DE SÃO PAULO
Instituto de Ciências Matemáticas e de Computação

USP - São Carlos

2024

 Ambiente de Produção sob tutoria de IA:
monitoração, análise e

aprimoramento de aplicações

Diógenes Flamarion Pires

[Nome do Aluno]

Diógenes Flamarion Pires

Ambiente de Produção sob tutoria de IA:

monitoração, análise

e aprimoramento de aplicações

Trabalho de conclusão de curso, apresentado ao
Departamento de Ciências de Computação do
Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo -
ICMC/USP, como parte dos requisitos para
obtenção do título de Especialista em Inteligência
Artificial e Big Data.

Área de concentração: Inteligência Artificial

 Orientador: Prof. Dr. Adenilso da Silva Simao

USP - São Carlos

2024

RESUMO

PIRES, D. F. Ambiente de Produção sob tutoria de IA: monitoração, análise e

aprimoramento de aplicações. 2024. ?? f. Trabalho de conclusão de curso (MBA em

Inteligência Artificial e Big Data) – Instituto de Ciências Matemáticas e de Computação,

Universidade de São Paulo, São Carlos, 2024.

O desenvolvimento de software tem seu Ciclo de Vida beneficiado pela utilização de

Inteligência Artificial em todas as suas etapas, inclusive após a publicação e operação em

ambientes de produção. Porém, nessa última etapa referida, os modos de utilização deixam uma

lacuna significativa no que tange a análise dos códigos em face dos eventos e ocorrências

durante a operação desde considerações sobre desempenho, efetividade, correções, evoluções,

atualizações etc. Embora, em muitos casos, tais análises ocorram de fato, elas seguem de modo

‘manual’, dependendo de especialistas e, até, empiricamente, implicando em falhas, demoras,

inconsistências e ineficiência, entre outras consequências indesejáveis e prejuízos. Esta

pesquisa investiga a aplicação de inteligência artificial (IA) na tutoria de códigos em ambientes

de produção, com o objetivo de melhorar a eficiência operacional e a qualidade dos códigos de

aplicações e serviços. O estudo foi conduzido em um banco digital privado, onde modelos e

agentes de IA especializados foram implementados para monitorar, analisar e recomendar

evoluções, ajustes, correções e atualizações nas aplicações. A metodologia adotada incluiu a

coleta de dados de observabilidade e logs do ambiente de produção, que foram utilizados para

treinar e validar o modelo central de IA. Os resultados demonstraram que a tutoria de IA não

apenas auxilia diretamente na gestão dos códigos das aplicações, mas também impacta

positivamente a cultura e os processos de desenvolvimento, especialmente no que tange ao

futuro e maneiras inovadoras de utilizar a IA. A IA foi capaz de identificar problemas e

recomendar melhorias de forma proativa, resultando em uma redução significativa no tempo de

atualização, amadurecimento e evolução dos códigos. Além disso, a análise dos códigos

gerados pela IA indicou uma melhoria na qualidade, com a maioria dos códigos atendendo aos

padrões estabelecidos. A integração da IA nos processos de desenvolvimento permitiu que os

desenvolvedores se concentrassem em tarefas de maior interesse e produtividade, como

inovação e desenvolvimento de novas funcionalidades. As conclusões sugerem que a

implementação de IA é uma estratégia eficaz para promover a inovação e a eficiência contínua,

oferecendo ganhos tangíveis em termos de qualidade do software, estabilidade operacional e

satisfação das equipes. Este estudo contribui para o entendimento das potencialidades da IA na

gestão de códigos em ambientes de produção, indicando que, com a implementação adequada,

a IA pode atuar como um promotor da eficiência operacional e da satisfação de clientes,

colaboradores e parceiros.

Palavras-chave: tutoria de códigos em produção, eficiência operacional, qualidade de software,

inovação.

ABSTRACT

PIRES, D. F. Ambiente de Produção sob tutoria de IA: monitoração, análise e

aprimoramento de aplicações. 2024. ?? f. Trabalho de conclusão de curso (MBA em

Inteligência Artificial e Big Data) – Instituto de Ciências Matemáticas e de Computação,

Universidade de São Paulo, São Carlos, 2024.

Software development has its Life Cycle benefited using Artificial Intelligence in all its stages,

including after publication and operation in production environments. However, in this last

stage, the methods of use leave a significant gap in terms of code analysis considering events

and occurrences during operation, including considerations about performance, effectiveness,

corrections, developments, updates etc. Although, in many cases, such analyses do in fact occur,

they are carried out in a ‘manual’ manner, depending on experts and even empirically, resulting

in failures, delays, inconsistencies and inefficiency, among other undesirable consequences and

losses. This research investigates the application of artificial intelligence (AI) in code tutoring

within production environments, aiming to enhance operational efficiency and the quality of

application and service codes. The study was conducted at a private digital bank, where

specialized AI models and agents were implemented to monitor, analyze, and recommend

evolutions, adjustments, corrections, and updates to the applications. The methodology adopted

included collecting observability data and logs from the production environment, which were

used to train and validate the central AI model. The results demonstrated that AI tutoring not

only directly assists in managing application codes but also positively impacts the culture and

development processes, especially regarding the future and innovative ways of utilizing AI. The

AI was able to proactively identify issues and recommend improvements, leading to a

significant reduction in the time required for code updating, maturation, and evolution.

Furthermore, the analysis of AI-generated codes indicated an improvement in quality, with most

codes meeting established standards. The integration of AI into development processes allowed

developers to focus on more engaging and productive tasks, such as innovation and the

development of new functionalities. The conclusions suggest that the implementation of AI is

an effective strategy for promoting innovation and continuous efficiency, offering tangible

gains in terms of software quality, operational stability, and team satisfaction. This study

contributes to understanding the potential of AI in code management within production

environments, indicating that, with proper implementation, AI can act as a promoter of

operational efficiency and the satisfaction of clients, employees, and partners.

Keywords: production code tutoring, operational efficiency, software quality, innovation.

SUMÁRIO

1 INTRODUCÃO .. 12

1.1 Contextualização .. 12

1.2 Objetivo e motivação ... 13

2 REFERENCIAL TEÓRICO ... 15

2.1 Entradas: dados atualizados continuamente ... 15

2.2 Processamentos: LLM de IA Generativa contextualizada .. 20

2.3 Saídas: resultados .. 27

3 METODOLOGIA ... 30

3.1 Tipo de pesquisa e momento das definições .. 30

3.2 Localização espacial e temporal do ambiente e dados iniciais .. 30

3.3 Fluxo e cronograma ... 32

3.4 Dados de entrada e Modelo Central ... 33

3.5 Dados de Saída e resultados .. 36

4 PROPOSTA E DESENVOLVIMENTO ... 37

4.1 Etapas 1 a 9 .. 37

4.2 Etapa 10 .. 38

4.3 Etapa 11 .. 39

4.4 Etapa 12 .. 41

4.5 Etapa 13 a 15 .. 41

5 ANÁLISES DE RESULTADOS ... 42

5.1 Eficiência operacional .. 42

5.2 Qualidade do código gerado.. 42

5.3 Impacto nos processos de desenvolvimento .. 42

6 CONCLUSÕES ... 43

 REFERÊNCIAS .. 45

12

1 INTRODUCÃO.

O Ciclo de Vida do Desenvolvimento de Software (SDLC, Software Development Life

Cycle) (SHARMA, 2015) pode se valer amplamente da utilização e evolução aceleradas de

diversos modelos, ferramentas e Agentes de IA, desde as fases preliminares de desenvolvimento

às mais avançadas da operação. Registros e informações de buscas (GOOGLE, 2012), artigos

(ETO, 2024), tutoriais, livros e outras produções respectivas à aplicação de recursos e

ferramentas de IA abordam a crescente disponibilidade de opções para cada etapa.

 No entanto, algumas atividades importantes relacionadas aos códigos publicados e

operacionais em ambiente de produção precisam de maior atenção a respeito.

1.1 Contextualização

Desde a ideação, concepção e projeto de softwares, seguindo com o auxílio à

codificação (CODECOMPLETE, 2022) (TABNINE, 2018) (GITHUB, 2022), Integração

Contínua (CI, Continuous Integration) (MICROSOFT, 2024), revisões de códigos (code

reviews) (VERICODE, 2022), avançando com as gerações, execuções, análises e automações

dos diversos tipos de testes e refatorações (REMSOFT, 2023) (VERICODE, 2022) e adiante,

promovendo entrega, sustentação e Avaliação Contínua (CE, Continuous Evaluation)

(VERITY, 2023) (GARTNER, 2024) (INFORCHANNEL, 2023).

Há, especialmente, ferramentas de IA que participam e auxiliam nos processos e práticas

que promovem as publicações, como CD (Continuous Delivery, Entrega Contínua) e

Implantação Contínua (CD, Continuous Deployment) (MICROSOFT, 2024), ou nas questões

de segurança (VERICODE, 2022).

Após as publicações em produção, as atenções sobre o uso de IA, têm sido, geral e

amplamente, determinadas prioridades, como as experiências de usuários (XP, user

eXPerience) (ÅSNE STIGE, 2023, p. 4,5) em suas variadas nuances, monitoração, obtenção de

informações e métricas, notificações e alertas sobre o ambiente de produção em si e seu

desempenho.

Para tanto, são utilizadas plataformas e ferramentas de monitoração, APM (Application

Performance Management, Gerenciamento de Desempenho de Aplicações) e observabilidade

(IBM, 2023) (BRQ, 2023) (OPSERVICES, 2024). Dois exemplos entre as opções mais

conhecidas e usadas, são Dynatrace (Unsupported source type

(DocumentFromInternetSite) for source DYN17.) e New Relic (NEWRELIC, 2008), com

suas respectivas implementações de IA, DAVIS AI (DYNATRACE, 2021), e New Relic AI

13

(NRAI) (NEWRELIC, 2020). Porém, de fato, essas tecnologias não têm, entre seus pilares, a

análise de código em si, nem a indicação de soluções ou aprimoramentos aplicáveis a eles.

Tais instrumentos monitoram e gerenciam disponibilidades e desempenhos das

aplicações, dos recursos do ambiente, integrações e eventos com suas características (BRQ,

2023). Referências aos códigos nas observações e registros visam indicar relações com os

momentos, interações, implicações e envolvimentos durante suas ocorrências, deixando em

outras mãos os códigos em si, suas análises e intervenções.

Não haver análise e tratamento automático e imediato dos códigos fonte nessa etapa do

SDLC o que, em tese, pode ser suprido com a tutoria de IA, redunda em perdas de oportunidades

e involuções severas e evitáveis.

As informações obtidas por APM e Logs, geralmente, são verificadas em relação ao

código, após ocorrerem incidentes ou problemas. As análises e ajustes para evitar ou solucionar

as ocorrências a tempo, são comumente tardias, insuficientes, mal-entendidas ou inexistentes.

Não raro, a situação chega aos times de sustentação ou desenvolvimento depois de analisada

por outras equipes, a menos, ou até que, em alguma perspectiva, o código se torne ‘suspeito’.

Depois de idas, vindas, ‘devidas’ pressões, ‘salas de emergência’ com ‘especialistas’ de

‘mãos cheias’, movidos de suas agendas, sprints, turnos ou descanso, chega-se a um paliativo.

‘Alguém’ se responsabiliza pela busca da causa raiz. Porém, prazos pressionam ou se esgotam,

impõem-se limitação ou inadequação de capacidade técnica para os níveis e tipos de análise

necessários, orçamentos e recursos indisponíveis, outras ‘prioridades’, urgências e novos

incidentes. Consolidado o paliativo, os códigos seguem, ‘remendados’, em seus repositórios.

1.2 Objetivo e motivação

A determinação assumida para este empreendimento é estudar a instrumentação de IA

(Inteligência Artificial, ou AI, Artificial Inteligence) para auxiliar a manter os códigos de

aplicações de sistemas corporativos, publicadas em ambiente de produção, continuamente

atualizadas, evoluindo e nas suas melhores condições operacionais, de modo contínuo,

automático, com a maior brevidade possível ou, pelo menos, viável e compartilhar os resultados

dessa experimentação.

A motivação para realizar esta pesquisa é a expectativa de verificar a viabilidade do uso

de IA como tutor dos códigos em runtime de produção. Espera-se que a IA (i) relacione as

informações recebidas de produção com os códigos fonte, (ii) analise causas, efeitos,

influências e interações entre as aplicações, o ambiente e seus recursos, além de comparar os

códigos fonte com outros sob variações de circunstâncias, efeitos, semelhanças, finalidades,

14

diferenças e funcionalidades, (iii) gere e entregue códigos prontos, parciais ou completos,

testados e validados, com correções, ajustes e evoluções dos analisados, (iv) notifique os times

pertinentes e (v) envie alertas e avisos a subscritos.

Após esta (1) INTRODUÇÃO e o (2) REFERENCIAL TEÓRICO sobre (2.1)

Entradas, (2.2) Processamentos, e (2.3) Saídas, são segue a (3) METODOLOGIA utilizada no

experimento e a sua (4) PROPOSTA E DESENVOLVIMENTO, finalizando com a (5)

ANÁLISE DOS RESULTADOS e as (6) CONCLUSÕES com considerações pertinentes.

15

2 REFERENCIAL TEÓRICO

Algumas referências a respeito da utilização de IA de modo geral são pertinentes e necessárias

para a realização deste trabalho. Para esse fim, esta sessão aborda, brevemente, algumas,

divididas em três blocos: Entradas, Processamentos e Saídas.

2.1 Entradas: dados atualizados continuamente

Entradas referem-se, nesse tópico, às informações obtidas do ambiente de produção, e

alguns outros insumos que serão indicados adiante, para serem continua e adequadamente

entregues a um Modelo Generativo de IA (Gen AI) (Unsupported source type

(DocumentFromInternetSite) for source Zha23.), indicando as condições operacionais das

aplicações em runtime, (TIAGO CARVALHO, 2023) para análise referencial com os códigos

fonte relacionados, direta ou indiretamente, às informações obtidas, visando a evolução,

refinamento e eventuais ajustes ou correções daqueles códigos.

Como já mencionado, durante o SDLC, estando as aplicações em execução no ambiente

de produção, APMs e Log são ferramentas que, atualmente, estão, quase sempre, presentes para

acompanhar e auxiliar na saúde e na estabilidade dos sistemas, assim como em eventuais

anomalias ou problemas relativos.

APMs, como Dynatrace (Unsupported source type (DocumentFromInternetSite) for

source DYN17.) e New Relic (NEWRELIC, 2008), com suas respectivas IA, DAVIS

(DYNATRACE, 2021), e New Relic AI (NRAI) (NEWRELIC, 2020), são exemplos que têm

sido muito bem sucedidos em prover informações e dados sobre os ambientes de produção,

como monitoramento de infraestrutura, rastreamento de solicitações, métricas, logs, latências,

ineficiências, gargalos, detecção e diagnósticos de falhas, anomalias, problemas, análise de

causa raiz, registro de eventos, insights, riscos e ameaças à segurança de recursos e dados,

impactos para usuários e processos, entre outras.

Junto às APMs, sistemas especializados nos registros de Log (SHEKAR

RAMACHANDRAN, 2023) (SONG CHEN, 2022), detalham eventos e atividades que ocorrem

com as aplicações e serviços, capturando informações sobre operações, erros, transações e

interações dentro do software ou sistema, fornecendo uma visão granular do que acontece

durante suas execuções, incluindo informações personalizadas definidas pelos

desenvolvedores. Um conjunto de aplicações utilizado para registro de Logs é o ELK Stack

(Elastic – Logstash – Kibana), também conhecido como Elastic Stack (ELK, 2024).

16

Em (BRQ, 2023), a comparação dos conceitos de Monitoramento e Observabilidade é

concluída resumidamente:

[...] a observabilidade é um conceito mais amplo e estratégico, que envolve a

capacidade de entender e compreender o comportamento interno de um sistema ao

longo do tempo. Já o monitoramento é uma atividade operacional mais específica, que

busca acompanhar o estado atual do sistema em tempo real e detectar problemas

imediatos.

Em seguida, são apresentados “Os pilares da observabilidade”: Coleta de dados;

Armazenamento e processamento; Visualização; Monitoramento proativo; Rastreamento e

diagnóstico; e Correlação de dados.

Tanto os documentos técnicos quanto as apresentações comerciais dos produtos de APM

e Monitoramento, de modo geral, são concordes com essa abordagem, como se pode constatar

em (Unsupported source type (DocumentFromInternetSite) for source DYN17.), sobre o

Dynatrace, e em (NEWRELIC, 2008), sobre New Relic.

Referencia-se assim a percepção de que, embora as APMs, eventualmente, indiquem

diretamente, referências aos códigos ou, mais geralmente, ao que podem ‘perceber’

externamente a respeito deles, elas, pelo menos ainda, não se ocupam do código em si, de sua

análise ou de buscar soluções ou alterações pertinentes. Mesmo com os extensos e relevantes

aprimoramentos e avanços proporcionados por IA (DYNATRACE, 2021) (NEWRELIC,

2020), não se remetem a essa perspectiva.

Com efeito similar, resguardadas as particularidades, os sistemas de registro de Log,

também não se investem em analisar as aplicações em si, mas refinam seu foco em registrar o

que lhes compete, com o mínimo impacto ou interação possível, como é pontuado em (ELK,

2024), ainda que se ocupem, ou possam se ocupar, do registro de informações mais internas ao

código, indicações e tratamentos inseridos pelos desenvolvedores e, a depender das

implementações, de adicionar referências e eventuais possibilidades para soluções de

problemas específicos.

Os dados registrados por APMs e Logs trazem consigo informações relativas às

execuções das aplicações ou aos seus contextos, incluindo relações e interações com os demais

elementos do sistema e demais aplicações e serviços. Esses dados, relacionados aos códigos

fonte das aplicações em execução nos momentos de suas aquisições, possibilitam perspectivas

singulares para análises e considerações, especialmente se comparadas entre múltiplas

aplicações, contextos e ocorrências.

As informações podem ser compartilhadas e obtidas de formas diferentes, de acordo

com cada plataforma. Por exemplo, no caso do Dynatrace, podem ser utilizadas, inclusive,

REST API (Application Programming Interface: Interface de Programação de Aplicação)

17

(DYNATRACE, 2024), App Toolkit, que possibilita a criação de componentes especializados

ou dedicados (DYNATRACE, 2024), ou os serviços da DAVIS AI (DYNATRACE, 2024).

Esses dados são gerados continuamente durante a operação das aplicações no ambiente

de produção e não fazem parte do conhecimento original com que os modelos generativos foram

treinados.

Os códigos fonte das aplicações, informações das etapas anteriores do SDLC das

aplicações e das execuções dos pipelines de CI/CD até a publicação das mesmas aplicações

podem ter sido utilizados para ampliar/refinar o treinamento do modelo generativo. Essas

‘novas’, oriundas do ambiente e execuções das aplicações em produção, podem ser adicionadas

às análises feitas pelo modelo generativo por técnicas que ampliam o conhecimento sobre o

contexto e dados pertinentes a essas ‘novidades’.

Os meios para obter os dados estão disponíveis, mas LLMs (Large Language Models)

(Unsupported source type (DocumentFromInternetSite) for source Zha23.), não têm a

capacidade intrínseca de interagir diretamente com processos ou agentes externos

(AUFFARTH, 2023, p. 38 - 43), como realizar pesquisas na web, fazer solicitações a APIs

externas ou processar entradas de voz. Para realizar essas atividades, o modelo depende de

interfaces ou agentes intermediários que realizem as necessárias transduções de suas entradas e

saídas.

Uma forma de prover as transduções adequadamente é o uso de Agentes de IA

(AUFFARTH, 2023, p. 52, 53) especializados, que possam obter as informações por um dos

modos disponíveis na plataforma, preparar, formatar e entregar os dados preparados para a

utilização pelo modelo.

Agentes, no entanto, não são meros transdutores, nem, apenas, preparadores de recursos

ou informações adicionais para os modelos generativos. Inclusive, o uso da forma plural na

referência aos Agentes de IA tem relação imediata com as variedades de tipos, especialidades

e objetivos daqueles disponíveis, remetendo à viabilidade de trabalho em conjunto, com ou sem

moderação ou orquestração de múltiplos agentes com ações, interações e objetivos igualmente

variados, caracterizando um modo de trabalho frequentemente chamado multiagente (NADIRI,

2023) e que, por princípio, potencializa recursos e resultados (AUFFARTH, 2023, p. 52,61,62).

Coletados e preparados adequadamente, os dados oriundos das operações no ambiente

de produção podem ser encaminhados para o Modelo Gen AI. Porém, dois outros fluxos de

dados podem ser providos para o modelo, a fim de enriquecer as análises e evoluções dos

códigos fonte de seus runtimes em produção.

18

De fato, podem ser providas informações de, pelo menos, três origens relevantes:

1. Os dados de observabilidade e Logs dos ambientes de produção, providas através de

Agentes de IA especializados;

2. As atualizações dos códigos fonte, a partir de seus repositórios, promovidas pelos

desenvolvedores das aplicações, tais que, informadas ao composto de IA pelos pipelines

de publicação dos códigos, durante os processos de CI/CD, promoverão a ingestão dos

dados através de Agentes de IA especializados;

3. As alterações de documentações ou versões, adoções e/ou substituições nas pilhas de

desenvolvimento, referências ou instruções adicionais, inclusive de prompts

disponibilizados para equipes habilitadas para treinamento do composto de IA

conforme forem pertinentes, que poderão ter suas entregas ao modelo concretizadas

através de agentes especializados.

A essa altura há evidência de que um número elevado de atividades e agentes pode se

tornar necessário. A rigor, cada Agente de IA é especializado em uma única responsabilidade.

Portanto, facilmente, o número deles pode aumentar, especialmente se levados em conta

recursos de monitoração, tratamentos especializados de exceções e erros, comunicações etc.

Outro conjunto de agentes também será necessário para levar aos repositórios os códigos

gerados pelo Modelo Gen AI, assim como realizar os alertas e notificações.

Agentes, assim como Ferramentas e outros Recursos, podem ser individualmente

desenvolvidos para fins específicos e gerenciados diretamente. Porém, considerando o

potencial de multiplicação e as eventuais complexidades envolvidas, inclusive no

gerenciamento e otimização dos trabalhos em conjunto deles todos, torna-se interessante a

utilização de um facilitador, como um framework ou orquestrador, como o LangChain,

desenvolvido em Python (AUFFARTH, 2023) (LANGCHAIN, 2022, p. 46 - 59) ou o AutoGen

(MICROSOFT, 2024) (MICROSOFT, 2024), da Microsoft, também desenvolvido em Python,

mas disponível, também, para .NET (MICROSOFT, 2024), ambos de código aberto.

O AutoGen é um framework projetado para definir, configurar e compor uma

infraestrutura multiagente e oferece uma interface de usuário de baixa codificação chamada

AutoGen Studio, que facilita a criação dos fluxos de trabalho.

O LangChain é um framework capaz de construir aplicativos compatíveis com LLMs,

integrando módulos reutilizáveis que agregam funcionalidades e recursos, inclusive o

19

gerenciamento de Agentes de IA, além de, também, contar com uma extensa e ativa

comunidade e um grande número e variedade de módulos prontos para uso.

Um conceito central do LangChain é o de criação e combinações de cadeias, inclusive

de agentes e da colaboração entre eles com base em diversos paradigmas, como a interação

entre eles com base em objetivos (AUFFARTH, 2023, p. 52), por exemplo, e mantém o foco

em ferramentas de programação e plugins.

O LangChain tem uma comunidade maior e mais plugins disponíveis, enquanto o

AutoGen é mais recente e impulsionado pela Microsoft com uma comunidade em formação e

evolução.

Essa implementação, baseada na ingestão, tratamento e contextualização de um LLM

por agentes orquestrados, teoricamente, possibilita que um modelo pré-treinado (Unsupported

source type (DocumentFromInternetSite) for source Zho23.), com os códigos fonte das

aplicações em runtime de produção, possa analisá-los em face das informações e referências

continuamente atualizadas, em tempo muito próximo do tempo real, resultando em elevação

significativa da possibilidade de serem mantidos atualizados e evoluindo.

20

2.2 Processamentos: LLM de IA Generativa contextualizada

Modelos de Processamento de Linguagem, como os baseados em PLN (Processamento

de Linguagem Natural, ou NLP, Natural Language Processor), podem ser desenvolvidos do

início. No entanto, considerados todos os aspectos, como as especializações, recursos

tecnológicos e habilidades imprescindíveis para um empreendimento dessa envergadura,

resultados satisfatórios demandariam custos e prazos elevados.

Como consequência, provavelmente, ao alcançar maturidade, e apenas para o caso da

maioria das organizações suficientemente habilitadas, o produto alcançado, provavelmente já

estará desatualizado em relação à evolução das tecnologias pertinentes e, quase certamente, em

relação aos pares que optaram por outros modelos de implementação.

Adicionalmente, o desenvolvimento particular incorre invariavelmente em dados de

treinamento limitados, salvaguardas e ferramentas restritas e visões ou referências menos

amplas do que o desejável para garantir o mínimo espectro fundacional indispensável.

Modelos fundacionais diversos e suficientemente bem estruturados e testados, de modo

geral, serão opções mais eficazes do que o desenvolvimento desde o início, especialmente se,

consideradas as características e necessidades do caso de uso, modelos pré-treinados com

parâmetros e testes/validações suficientemente amplos e qualificados estiverem disponíveis.

Sobre os LLM de IA Generativa, em (AUFFARTH, 2023, p. 38, 39) são indicadas

limitações conhecidas que afetam negativamente o processamento, resumidas a seguir em

tradução livre:

o Conhecimento desatualizado: Confiam apenas em seus dados de treinamento. Sem

integração externa, não podem fornecer informações recentes do mundo real;

o Incapacidade de agir: Não podem realizar ações interativas como pesquisas ou cálculos.

Isso limita severamente as funcionalidades disponíveis nativamente;

o Riscos de alucinação: O conhecimento/treinamento insuficiente pode levar à geração de

conteúdo incorreto ou sem sentido se não for devidamente fundamentado;

o Vieses e discriminação: Dados de treinamento tendenciosos podem produzir vieses de

natureza religiosa, ideológica ou política;

o Falta de transparência: O comportamento de modelos grandes e complexos pode ser

opaco e de difícil interpretação, causando desalinhamento com os valores humanos;

o Falta de contexto: Perda de contextos de prompts, conversas anteriores ou detalhes

mencionados anteriormente, insuficiência de informações adicionais relevantes com o

prompt fornecido.

21

Ainda sobre as limitações dos modelos Gen AI, de (ARSANJANI, 2023), a adaptação seguinte

indica causas comuns para ocorrência de Alucinação e ajustes aplicáveis para promover sua

redução:

o Prompts vagos ou excessivamente amplos: Prompts sem especificidade podem

dificultar o entendimento do contexto e gerar respostas irrelevantes ou imprecisas;

o Conhecimento limitado do domínio: Treinamentos em conjuntos de dados de uso

geral podem não ter referências suficientes para precisão em domínios específicos;

o Dados de treinamento insuficientes: Dados de Treinamento carentes de qualidade,

podem comprometer a compreensão dos padrões e relacionamentos linguísticos;

o Incerteza na linguagem: Linguagem ambígua pode dificultar interpretação de

nuances sutis gerando saídas desalinhadas com o significado original.

Ajustes para reduzir ocorrências de alucinações:

• Enriquecer o contexto com informações adicionais ou restrições;

• Treinar com grande volume de dados específicos do domínio para que forneçam melhor

compreensão dos padrões e relações relevantes para o contexto;

• Realizar Ajuste Fino (fine-tuning) ou Ajuste Fino Eficiente de Parâmetros (Parameter-

Efficient Fine-Tuning, PEFT) para tarefas ou domínio. O ajuste fino é uma técnica que

envolve o treinamento de um LLM em um conjunto de dados menor de dados

especificamente adaptado à tarefa em questão ou ao domínio específico;

• Utilizar RAG, uma técnica que amplia o prompt com informações adicionais, podendo

ter origem em bancos vetoriais de texto ou código, ampliando o contexto com dados

quase em tempo real;

• Usar Raciocínio e Consulta Iterativa, técnicas que podem ajudar na geração das

respostas. Por exemplo, pedido fornecimento das evidências para as alegações ou

geração de explicações alternativas;

• Aumentar a especificidade e clareza dos prompts;

• Utilizar exemplos, aprendizagem em contexto;

• Dividir tarefas complexas em etapas mais simples;

• Cadeia de pensamento (CoT): Solicitar explicação dos passos que levaram à resposta;

• Diversificar as fontes de informação utilizadas para fundamentação dos fatos.

22

A escolha do Modelo Generativo para qualquer finalidade e contexto deve considerar

diversos aspectos. A IBM, na publicação (IBM; ARMAND RUIZ; VIVEK BHARATHI,

2024), em seu blog institucional, apresenta um artigo informando que “[...] investigamos por

que as escolhas do modelo básico são importantes e como elas capacitam as empresas a escalar

a geração de IA com confiança.” 1. A empresa inicia o artigo indicado propondo que a escolha

de modelos múltiplos de IA Generativa é importante porque “No mundo dinâmico da IA

Generativa, abordagens únicas são inadequadas. À medida que as empresas se esforçam para

aproveitar o poder da IA, é necessário ter um espectro de opções de modelos à sua disposição”

1, seguindo com a indicação de sete razões que tornam necessárias tanto a multiplicidade de

modelos quanto o exercício da escolha:

• Estimular a inovação;

• Personalizar para obter vantagem competitiva;

• Reduzir do tempo de lançamento no mercado (time to market);

• Manter flexibilidade diante de mudanças;

• Otimizar custos em todos os casos de uso;

• Mitigar Riscos;

• Conformidade a Regulatórios.

Na continuidade do artigo, são sugeridas seis etapas para lidar com a escolha de um

modelo para um caso de uso específico, considerando a opção de utilizar modelos específicos

para casos de usos diversos:

1. Identificar claramente o caso de uso: determinar as necessidades e requisitos específicos

para a aplicação para o negócio envolve a elaboração de prompts detalhados que

considerem sutilezas inerentes para ajudar a garantir que o modelo esteja alinhado com

os objetivos;

2. Listar todas as opções viáveis de modelo: avaliar vários modelos com base no tamanho,

precisão, latência e riscos associados, incluindo entender os pontos fortes e fracos de

cada modelo, como as compensações entre precisão, latência e taxa de transferência;

3. Avaliar os atributos do modelo: relevando a adequação do tamanho do modelo em

relação às necessidades, considerando como a escala do modelo pode afetar o

desempenho e os riscos envolvidos. Esta etapa se concentra no dimensionamento

1 As citações referentes ao artigo (IBM; ARMAND RUIZ; VIVEK BHARATHI, 2024) são traduções e

adaptações livres do autor.

23

correto do modelo para se ajustar ao caso de uso da melhor forma, pois maior não é,

necessariamente, melhor. Modelos menores podem superar os maiores em domínios e

casos de uso direcionados;

4. Opções do modelo de teste: Realize testes para ver se o modelo funciona conforme o

esperado em condições que imitam cenários do mundo real. Isso envolve o uso de

benchmarks acadêmicos e conjuntos de dados específicos de domínio para avaliar a

qualidade da saída e ajustar o modelo, por exemplo, por meio de engenharia de prompt

ou fine-tuning;

5. Refinar as seleções com base no custo e nas necessidades de implantação: após o teste,

considerar fatores como ROI, custo-benefício e os aspectos práticos da implantação do

modelo nos sistemas e infraestrutura existentes e outros benefícios, como menor

latência ou maior transparência;

6. Escolher o modelo que oferecer mais valor: selecionar o modelo que melhor se adapte

às demandas específicas do caso de uso com o melhor equilíbrio entre desempenho,

custo e riscos associados.

Considerações semelhantes e com ênfases diversas podem ser encontradas em diversos

contextos e com múltiplas abordagens similares ou distintas. De modo geral, as abordagens

essenciais são encontradas na maioria dos casos e alguns são destacadas considerações

especialmente relevantes para casos específicos ou culturas específicas.

Em todo caso, é relevante que a escolha do modelo seja criteriosa e clara em relação à

sua aplicação, inclusive no quesito estratégico de usar múltiplos modelos, e sua conformidade

às questões de custos e cultura da organização.

No bojo dos pontos mais elementares a considerar, dois aspectos proeminentes são (a)

a finalidade para implementação da solução e (b) as características específicas do modelo.

Quanto às características específicas (b), a atenção recai sobre as implementações

inerentes ao modelo, por exemplo, sobre conceitos, arquitetura, operação e controles de

configuração, inclusive à luz das medidas que precisem ser adotadas para evitar as limitações

acima e quaisquer outras inerentes ao modelo em consideração.

Sobre a finalidade para a solução (a), diferentes LLMs Generativos, são utilizados para

aplicações distintas, como, por exemplo, documentação, tradução, assistência a escrita,

pesquisa, conversação etc.

Enquanto este trabalho é escrito, um ponto de grande concorrência entre alguns dos mais

avançados LLMs é a “troca de códigos” (code-switching), ou “mistura de códigos” (code-

mixing) (HU, ZHANG e AL., 2023) (HIMASHI RATHNAYAKE, 2024), que implicam em

24

formas e habilidades do modelo em alternar, simultaneamente, entradas em uma língua, ou mais

do que uma, e saídas em outra, ou outras, diferentes, sem perdas significativas de desempenho.

Cada uma das possíveis aplicações terá suas próprias necessidades e peculiaridades,

portanto, potencialmente, demandará características e especialidades específicas do modelo

considerado.

No caso de tratamento de códigos de computadores, fatores como as linguagens

suportadas (C, C#, Java, Python, Go, Dart, ...), as tarefas a executar (como geração por instrução

em linguagem natural, com ou sem código pré-existente, sugestão de continuação de código,

correção, explicação, ajustes finos, conversões entre linguagens, comparações entre linguagens,

algoritmos ou implementações, entre linguagens iguais ou diferentes, entre outras),

assertividade sintática e lógica, complexidades diversas e modos de atualização e aprendizado,

são exemplos de considerações relevantes e, até, mandatórias na escolha do modelo.

Apesar de, conforme a visão do senso comum, estarmos vivendo algo como a “infância

da IA” (Unsupported source type (DocumentFromInternetSite) for source Kar23.),

especialmente na geração e tratamento de códigos fonte de computadores, talvez, e até mesmo

por isso, atualmente haja grande diversidade de modelos propostos para processar esses

códigos, pelo menos em algumas das versões de determinados Modelos Base.

Entre os modelos dessa categoria são bem conhecidos GPT, Mistral, Gemma, Orca, Phi,

StableLM e Vicuna, por exemplo. Cada um com suas particularidades, especialidades e

limitações. Entre as características distintivas de alguns desses modelos, ser de código aberto e

dispor de licenciamento gratuito para fins específicos ou amplos são diferenciais de importante

consideração nas escolhas para implementações.

A disponibilidade de LLM Gen AI está evoluindo muito rapidamente, tanto no sentido

de evoluções e versões dos que já são conhecidos e presentes há algum tempo quanto no

lançamento de novos modelos. Esse comportamento tende a continuar por algum tempo, com,

até mesmo, a possibilidade de ser incrementado. Entre outras implicações, é notável que as

análises e conclusões deste, ou qualquer outro trabalho semelhante, precisa ser revisado em

pouco tempo e as decisões tomadas precisam ser acompanhadas de políticas de atualização ou

adequação claras e bem estruturadas. Mesmo enquanto essa pesquisa é realizada, novidades e

perspectivas geram grandes volumes de informação (e desinformação), desafiando o foco.

Dos LLM de código aberto e licenciamento permissivo, com cláusulas de

responsabilidade e restrições para evitar abusos, dois deles se destacam por suas próprias razões

nesse final do primeiro semestre de 2024, o Qwen (Unsupported source type

(DocumentFromInternetSite) for source Ali24.) e Llama (META, 2024).

25

Os dois modelos se destacam por atingirem desempenho e resultados, em regra,

superiores aos demais na mesma categoria e muito próximos ou, eventualmente, superiores aos

de opções pagas ou comercialmente restritivas. Corroborando as considerações sobre a

evolução rápida dos modelos, note-se que a última versão do Llama foi lançada em 18 de abril

de 2024 e o Qwen teve sua versão mais recente lançada em 06 de junho de 2024.

O modelo Qwen, é um modelo base ou de fundação (Foundation Model) desenvolvido

pelo Alibaba Group. A versão Qwen2 (ALIBABA GROUP - QWEN TIME, 2024) é uma

evolução significativa da versão anterior (Qwen1.5), que impressiona por entrar em

concorrência direta pelo título de SOTA2 (Estado da Arte) com o modelo da Meta/Microsoft e

os demais concorrentes ao título até então.

Com versões de tamanhos variados, para atender necessidades e finalidades diversas, a

família de modelos Qwen, em sua configuração atual, apresenta as variações Qwen2-0.5B (com

½ bilhão de parâmetros), Qwen2-1.5B (com 1,5 bilhão de parâmetros), Qwen2-7B (com 7

bilhões de parâmetros), Qwen2-57B-A14B (com 57 bilhões de parâmetros), and Qwen2-72B

(com 72 bilhões de parâmetros), incluindo algumas variações com designação Instruct, que

foram refinadas para o tratamento de códigos de computadores, alcançando indicadores de

desempenho semelhante aos dos mais eficientes modelos atuais.

A nova versão passou da compreensão de duas línguas (chinês e inglês) à compressão

de mais 27 línguas e, em suas versões Qwen2-7B-Instruct and Qwen2-72B-Instruct, oferece

suporte estendido para até 128 mil tokens de comprimento de contexto.

Outra importante evolução, relativa à arquitetura do modelo nessa nova versão, é a

implementação da Atenção Agrupada de Consultas (GQA, Group Query Attention) (AINSLIE,

LEE-THORP, et al., 2023) em todas as suas variações, obtendo, em consequência, o aumento

das velocidades de inferência e redução do consumo de memória, de modo que se torna mais

acessível em termos de hardware e interessante para mais aplicações.

O modelo Llama, também um modelo de fundação, é desenvolvido em conjunto pelas

empresas Meta e Microsoft. Em sua versão Llama 3 (META, 2023), evolução da versão 2

lançada em 2023, com variações inicialmente pré-treinadas com diferentes números de

parâmetros, 7 bilhões (7B), 13 bilhões (13B), 34 bilhões (34B) e 70 bilhões (70B). O modelo

2 Acrônimo para Estado da Arte (SOTA: State-Of-The-Art). No contexto da IA, indica os modelos mais capazes
para alcançar os resultados de uma tarefa, seja no Aprendizado de Máquina, Redes Neurais Profundas
Processamento de Linguagem Natural ou de realização de tarefas genéricas. Para mais informações:
(SRIVASTAVA, 2022).

26

base recebeu ajustes finos (fine tuning) (AUFFARTH, 2023, p. 225-256) para tratamento de

códigos de computadores e essa especialização foi nomeada Code Llama 3 (META, 2023).

O Code Llama 3 ainda foi adicionalmente treinado para refinar o tratamento de

linguagem natural combinada com as tarefas relacionadas a códigos, evoluindo sua precisão e

qualidade na geração de resultados mais alinhado com o que se espera com base nas instruções

fornecidas, resultando em uma versão mais robusta e precisa que recebeu a designação

distintiva de Code Llama 3 - Instruct.

Os modelos Llama 3 foram, desde o início, criados sob a abordagem de código aberto

com flexibilidade acentuada com uso do método de transformer autorregressivo (Unsupported

source type (DocumentFromInternetSite) for source Bap23.) (BASKARAN, 2023) sobre

uma arquitetura de apenas decodificador (decoder-only) (Unsupported source type

(DocumentFromInternetSite) for source Zha23.) (META, 2024), pré-treinado em um

extenso corpus de dados auto supervisionados, usando a Aprendizagem por Reforço com

Feedback Humano (RLHF) (AUFFARTH, 2023, p. 228, 229) (Unsupported source type

(DocumentFromInternetSite) for source Zha23.), e a versão Code Llama Instruct pode ser

baixada, refinada, retreinada, implantada através de diversos recursos e ambientes, além de

possibilitar, se necessário ou útil, a personalização granular do próprio código fonte (META,

2023) (META, 2023), possibilitando maior liberdade e demandando controle fino e

personalizado sobre questões como responsabilidade, aderência à cultura e negócio e

flexibilidade de adaptação e evolução.

A proximidade dos indicadores de desempenho entre as versões atuais dos modelos

Qwen e Llama, especialmente as de tamanho maior, é visível na mais recente avaliação

apresentada pelo Hugging Face em seu Open LLM Leaderboard (FOURRIER, HABIB, et al.,

2024), indicada na Figura 1.

Fonte: (FOURRIER, HABIB, et al., 2024)

A escolha entre Qwen2 e Llama3 precisa considerar detalhes de implementação

específicos, entre eles o ‘tamanho’ do modelo, sendo referência à quantidade de parâmetros.

No caso das maiores variações de cada um, Qwen2-72B e Llama3-70B, considerando a

utilização em tratamentos de código de computadores há um detalhe distintivo que pode pender

em favor do modelo da Meta.

Figura 1 - Comparação de desempenho das maiores versões dos modelos Qwen2 e Llama3

27

Ocorre que, embora sejam modelos de código aberto, por decisão estratégica da

empresa, o Qwen2-72B mantém o uso da licença Qianwen original, enquanto as demais

variações do modelo adotaram a Licença Apache 2.02. A Qianwen é uma licença mais restritiva

do que a Apache, exigindo, por exemplo, que o código fonte alterado permaneça publicamente

disponível ainda que possa utilizar uma licença diferente. Então é importante avaliar os

impactos dessas restrições ao considerar a opção pelo modelo Qwen2, na versão 72B, inclusive

nas variações Instruct.

O modelo selecionado pode gerar os novos códigos com base em seu pré-treinamento,

em retreinamentos (ajuste fino, fine-tuning), nos dados de entrada providos pelos agentes e nas

instruções (prompts) adicionadas para orientar os tratamentos que o modelo deve providenciar

para as informações recebidas. Em seguida será necessário armazenar os resultados.

2.3 Saídas: resultados

Ao utilizar Modelos ou Agentes Conversacionais em linguagem natural, como um chat,

por exemplo, é esperado, normalmente, que o resultado, ou saída, do modelo seja parte de um

diálogo. Portanto, um interlocutor, por princípio, é assumido. Por outro lado, em uma aplicação

de busca ou pesquisa, essa mesma postura não é igualmente assumida, já que, nesse caso, tanto

pode estar ocorrendo uma sessão interativa quanto pode se tratar de uma operação em lote ou

agendada, em consonância com os requisitos e modos de uso da aplicação.

O caso específico de uso precisa estar claro desde o princípio da preparação de um

serviço, especialmente no que tange à escolha do modelo, ou modelos quando for o caso. As

etapas seguintes também manterão em vista os requisitos e parâmetros necessários ao caso de

uso. Porém é notável que as fases finais e as saídas (resultados) do(s) modelo(s) são,

normalmente, aspectos mandatórios em todo o ciclo, desde o início. Assim, o fim (resultado),

pode-se dizer, define o princípio. Afinal, o objetivo é alcançar resultados de qualidade em todos

os sentidos possíveis.

Com isso não se considera que qualquer etapa seja menos importante, nem que seja a

etapa final que deva receber maior atenção. De fato, um conceito amplamente lembrado em

contextos de tratamento e análise de dados é que “se entra lixo, sai lixo” (muito provavelmente).

Assim como um processamento inadequado ou com parâmetros insuficientes ou de baixa

qualidade tende a resultar em saídas indesejáveis.

Dito isso, de um modelo de IA que analisa códigos, especialmente à luz de eventos e

relações externas ao próprio código, para gerar códigos que sejam ajustes, correções e

28

evoluções dos analisados, espera-se que o resultado seja código de qualidade minimamente

superior ao original, ainda que a superioridade possa ser circunstancial ou contextual.

Chegado a esse ponto, a questão a avaliar é se o código gerado, além de sua qualidade

nos termos abordados, acrescenta valor suficiente ao substituir o anterior de modo que ‘valham

a pena’ os esforços e custos dessa alteração no contexto e momento em que se tornam

disponíveis ou se, eventualmente, a despeito dos avanços inerentes, venha a ser mais oportuno

aguardar melhores ou maiores evoluções para se decidir pela atualização.

Para que essas análises sejam efetuadas e as decisões sejam assertivamente tomadas, os

códigos, com as devidas indicações das alterações e suas pertinências, devem ser

disponibilizados em repositórios definidos e preparados para esses fins e configurados de

maneira a possibilitar tanto a sua eventual publicação quanto seu arquivamento, sendo preterido

por futuras opções mais aderentes às visões e intenções dos responsáveis por tais decisões,

mesmo que elas sejam, futuramente, automatizadas.

Como, eventualmente, algumas recomendações serão publicadas e outras não serão, ao

persistir as recomendações de códigos nos repositórios, porém questões de versionamento

devem ser tratadas adequadamente ao serem disponibilizadas, exigindo tratamentos específicos

e especializados para cada aplicação e para cada caso ou estado anterior ou previsto.

Em todo caso, para que esses novos códigos se tornem disponíveis nos repositórios em

que devam ficar, o uso de Agentes de IA especificamente especializados e habilitados para tais

tarefas possibilita a realização controlada e eficiente desse objetivo, assim como do envio de

notificações e avisos nos casos em que sejam necessários.

Ao fazer referência a que os agentes sejam especializados, possivelmente seja claro o

sentido em que cada agente tenha os conhecimentos necessários para realizar sua tarefa

específica.

Quanto à referência a serem habilitados, vale esclarecer que, para executarem suas

funções, os agentes também precisam ser reconhecidos e ter quaisquer ‘credenciais’ necessárias

tanto para as autenticações quanto para as autorizações pertinentes às suas execuções e

integrações internas e/ou externas (chaves, tokens, senhas, IP etc.), consideradas as respectivas

questões de segurança, compliance, políticas, armazenamento e utilizações, entre outras.

Sobre essas referências, especializações e habilitações, deve-se ter em mente que se

aplicam a todos os agentes em seus próprios contextos e funcionalidades, tanto esses que atuem

com as saídas/resultados, quanto com aqueles anteriormente citados no contexto de entradas e

quaisquer outros em suas condições particulares.

29

30

3 METODOLOGIA

Para a realização do trabalho proposto, algumas das definições metodológicas e conceituais

adotadas são esclarecidas nesta sessão, para propiciar uma visão suficientemente clara do

processo e eventuais ajustes necessários.

3.1 Tipo de pesquisa e momento das definições

Com a percepção da possibilidade de usar a IA como tutor dos códigos das aplicações

de sistemas corporativos, publicadas em ambiente de produção, continuamente atualizadas,

evoluindo e nas suas melhores condições operacionais, de modo contínuo, automático e no

tempo mais breve possível e viável, este trabalho assume as características de uma pesquisa

experimental.

As definições seguintes foram pautadas sobre os dados e ambiente acessíveis para

implementar o ambiente funcional para realizar os experimentos e nas estimativas plausíveis

para os prazos, disponibilidades e custos considerados exequíveis a partir de junho de 2024,

momento em que se completa o planejamento das atividades.

3.2 Localização espacial e temporal do ambiente e dados iniciais

O estudo será realizado sobre o ambiente de produção de um banco digital privado,

especializado em investimentos, em São Paulo, capital, que passa a ser referido como “Banco”.

Entre os códigos das aplicações e serviços em operação no ambiente de produção do

Banco serão selecionados como objeto desse estudo 1.200 aplicações/serviços, entre APIs,

Background Services/Workers, Hubs de Web Sockets (SignalR), Funções sem Servidor etc.,

incluindo todas as suas dependências, componentes, bibliotecas etc., os quais serão a base

principal de refinamento (fine-tuning) para o Modelo Central Gen AI do projeto e formarão o

contexto para as experimentações e suas conclusões.

Esses códigos estão escritos em diversas linguagens, usando diferentes frameworks,

componentes e tecnologias variadas são executadas, principalmente, em Clouds (Nuvens),

majoritariamente na Amazon Cloud, diversas instâncias em Microsoft Azure e GCP (Google

Cloud Platform) e outras poucas instâncias on-premisse.

Atualmente, há aplicações/serviços, e bases de dados, considerados legados, que

mantém arquiteturas, tecnologias, frameworks, componentes e versões, especialmente de

linguagens de programação mais antigas, tanto em função de fusões e aquisições quanto de

31

desenvolvimentos de integrações. Considera-se que, proporcionalmente, esses casos

correspondam a 45% da base operacional.

Conforme registros do Dynatrace, nos últimos 12 meses, esse contexto demanda,

aproximadamente, as seguintes médias mensais dos principais grupos de processamento:

Tabela 1 - Quantidades médias de Grupos de Processamento das principais tecnologias relacionadas aos códigos
selecionados

Tecnologia Quantidade de Grupos de Processos

.NET 100.000

ASP.NET 230

Kubernetes 76.000

GO 61.000

Python 70

Windows 190

Linux 13.800

Nginx 3.600

Apache Tomcat 1.600

Apache HTTP Server 100

IIS 180

Node.js 3.100

Java 1.900

Erlang 70

RabbitMQ 6.800

Amazon SQS 700

Apache Kafka 160

Redis 140

MongoDB 600

Docker 500

Amazon S3 220

Amazon API Gateway 120

Oracle Database 40

MS SQL Server 20

PostgreSQL 40

MySQL 10

Netty 250

Jetty 400

Fonte: Dynatrace – dados coletados pelo autor.

Os códigos selecionados incluem aplicações/serviços de frontend (tradicionais e micro

frontends), mobile e backend, incluindo microsserviços, monolitos, funções sem servidor, BFF

(Backend for Frontend) e outras arquiteturas e estruturas, formando a plataforma do banco que

32

atende clientes, Pessoas Físicas (PF) e Pessoas Jurídicas (PJ), tais como Correntistas,

Investidores, Corretoras de Investimentos, Assessores Internos e Externos, entre outros.

A Plataforma do Banco registra variações de alguns milhares a dezenas de milhares de

acessos únicos diários, que ocorrem em patamares sazonais e pontuais com médias ascendentes,

especialmente nos últimos dois anos.

3.3 Fluxo e cronograma

Em uma visão panorâmica, as etapas seguintes resumem a jornada planejada para o

experimento:

1. Preparação do ambiente e recursos iniciais;

2. Disponibilização do Modelo Central pré treinado no Microsoft Azure;

3. Obtenção dos códigos nos repositórios Azure DevOps originais;

4. Geração dos forks respectivos também no Azure;

5. Vetorização (embeddings) dos códigos do forks;

6. Disponibilização do Banco de Dados Vetorial no Azure;

7. Armazenamento dos códigos na base vetorial;

8. Submissão da base vetorial para conhecimento do Modelo Central;

9. Obtenção dos particionamentos de dados para treino e validação do modelo;

10. Execução do treino e validação para refinamento do modelo;

11. Execução dos ciclos de testes e ajustes do modelo refinado;

12. Disponibilização dos Agentes de Entrada e Saída;

13. Avaliações e ajustes do processo previsto;

14. Análise e síntese dos resultados e conclusões;

15. O Encerramento do estudo.

As etapas 1 a 11 serão realizadas, principalmente, no ambiente Azure Machine learning

(AML), com utilização de seus recursos de programação e execução, especialmente os

notebooks ali disponíveis. Embora seja o conjunto com maior número de etapas, os códigos e

insumos preparados e experimentados com antecedência deverão propiciar a execução objetiva

em um menor período nas 9 primeiras etapas e maior na 10ª e 11ª.

A etapa 12 disponibilizará os agentes no ambiente Azure, orquestrados pelo LangChain,

com base nos códigos já experimentados com scripts e notebooks nas etapas anteriores,

automatizando o processo para sua sequência em regime operacional.

As etapas 13 a 15 concluirão o experimento com as análises pertinentes e conclusões.

O cronograma previsto deverá seguir o seguinte esquema geral:

33

• Etapas 1 a 9: dias 1 a 3;

• Etapas 10 e 11: dias 4 a 29;

• Etapa 12: dias 30 e 31;

• Etapas 13 a 15: dias 32 a 35.

3.4 Dados de entrada e Modelo Central

Um fork (réplica integral independente) dos repositórios dos códigos das 1.200

aplicações/serviços selecionados será disponibilizado em um novo contexto de projeto com

acesso protegido e limitado à IA, seus agentes e os desenvolvedores e administradores do

composto de IA, para receber as recomendações e atualizações recomendadas pelo Modelo

Central, através de seus agentes, em branches cronologicamente identificados e criados a partir

do branch principal (main) do fork.

A partir do fork, os códigos e demais informações disponíveis nos repositórios serão

armazenadas em uma base de dados vetorial para o refinamento inicial e atualizações do

Modelo Central.

Para armazenamento dos dados vetoriais, será utilizada uma instância do Banco de

Dados Vetorial Weaviate (WEAVIATE, 2024) (WEAVIATE, 2024), criado nativamente para

IA, de código aberto e utilização gratuita para estudos e pesquisa.

Os scripts necessários para as execuções dessas atividades, credenciais inerentes e

recursos de apoio foram preparados e testados em contextos e simulações locais durante o

processo de planejamento, restando editar as referências e endereços que somente estarão

disponíveis a partir da etapa 1. Essas mesmas preparações foram realizadas a respeito de todas

as etapas de 1 a 11.

Após o refinamento do Modelo Central e seus agentes, a ser concluído com os testes da

etapa 11, alterações que ocorrerem nos repositórios originais serão atualizados no

conhecimento do Modelo Central, pelos agentes no branch principal (main) do fork, que será o

único branch considerado atual e válido, para a IA, embora, para fins de aprendizado e

referência, todos os branches originais, com todos os seus commits registrados, serão incluídos

no fine-tuning inicial do modelo.

O conhecimento do Modelo Central a respeito dos códigos será enriquecido e ajustado

sempre que necessário por prompts de instruções, que esclarecerão os aspectos evolutivo e

progressivo dos branches, commits, versões e suas cronologias, com especial ênfase nas

34

indicações dos pipelines, builds, rollbacks etc., conforme registrados nas ocorrências dos seus

eventos.

Juntamente com os códigos das aplicações e serviços, providos inicialmente na base

vetorial, os dados históricos de observabilidade e logs, obtidos sobre as execuções das

aplicações/serviços do contexto e suas relações com seus ambientes de execução e outras

aplicações no contexto e/ou externas a ele, serão utilizados no processo de fine-tuning inicial

do Modelo Central para refinar, validar e testar o entendimento do processo de análise a partir

desses dados.

Esses dados foram registrados no primeiro semestre de 2024 e serão particionados em:

- Dados de treinamento: referentes ao primeiro quadrimestre; e

- Dados de validação: referentes ao terceiro bimestre.

Após a geração e tratamento inicial dos forks, nas etapas 4 e 5 e a conclusão do

refinamento propriamente dito, conforme abordado nas etapas 8 a 10, durante as quatro semanas

seguintes, diariamente, serão obtidos os dados de observabilidade e logs pertinentes, que serão

usados para realização, no dia seguinte, de testes com o modelo (Dados de teste), com ajustes

de hiperparâmetros, prompts e demais necessidades percebidas, de modo que, ao final de cada

semana, 7 dias corridos, sejam realizadas avaliações, revisões e eventuais realinhamentos do

processo e/ou do modelo.

O aspecto da cronologia dos registros de observabilidade e logs é especialmente

significativo, assim como a relação de cada registro/evento com cada aplicação específica e os

trechos de código especificamente em execução durante as ocorrências.

Portanto, as informações entregues ao Modelo Central para análise serão estruturadas

com base nesses aspectos, de modo a terem as relações devidamente vinculadas com as

execuções do código e encadeados logicamente para preservação da integridade relacional,

inclusive, de causa e efeito, considerando cada aplicação/serviço individualmente e suas

interações com o ambiente (contêiners, clusters, memória, processador, rede etc.) e com outras

aplicações/serviços, seja como consumidores, seja como servidores, seja como pares e/ou

dependências

A cronologia, como aspecto relevante das informações de observabilidade e logs,

implica, especialmente, no particionamento dos dados para refinamento do Modelo Central,

indicando como critério mais apropriado uma divisão temporal do que uma aleatória, de modo

que os conjuntos de Treino, Validação e Testes sejam escolhidos, respectivamente, com base

na sua ordem e momento de geração e referenciados adequadamente a cada aplicação/serviço.

35

O modelo Llama3.1-70B-Instruct, versão mais recente do modelo Llama a essa altura

do trabalho, foi escolhido como Modelo Central, para ser executado no ambiente Microsoft

Azure por sua proximidade com a infraestrutura em uso no Banco, especialmente o Azure

DevOps.

Os dados relativos às operações das aplicações em ambiente de produção, e sobre o

ambiente de produção em si, serão coletados e disponibilizados para a IA com proteção por

anonimização e ofuscação, no que tange a informações sensíveis ou internas. É relevante

pontuar que os dados e informações, em nenhum momento, serão usados ou apresentados em

qualquer ambiente externo aos do Banco.

Os dados de treino, validação e testes serão buscados no Dynatrace e no Kibana pelos

códigos dos notebooks, e, posteriormente, pelos agentes orquestrados por LangChain, com base

nos namespaces das aplicações/serviços e pelas designações a eles atribuídas em seus pipelines

de publicação, trazendo, também os registros/eventos relacionados às suas execuções e às

chamadas recebidas ou efetuadas, de e para os outras aplicações/serviços com que se

relacionem, conforme sejam registradas no código e nas informações de observabilidade e logs

do Dynatrace e do Kibana.

Sendo conhecidas e reconhecidas pelos códigos dos agentes, essas referências poderão

ser vinculadas trechos específicos dos registros das execuções dos códigos vetorizados como

conhecimentos a partir dos repositórios dos seus forks e, a partir daí, relacionados para análises

que evidenciem os ajustes, correções, evoluções e aperfeiçoamentos.

36

3.5 Dados de Saída e resultados

O Modelo Central, com base na análise dos códigos reconhecidos e aprendidos a partir

da base vetorial a que foram adicionados advindos dos forks dos repositórios originais, e,

posteriormente, de suas atualizações, em comparação com as informações de observabilidade

e logs, recebidas do ambiente de produção pelo Dynatrace e Kibana, deverá gerar códigos

completos, que serão adicionadas aos mesmos repositórios respectivos, através dos agentes

especializados para esse fim, na forma de novos branches criados a partir dos branches main

de cada repositório dos códigos selecionados e, a partir desses novos branches, os agentes

deverão, também, gerar os respectivos pull-requests (PR) para sua promoção à branch main

pertinente.

Depois de gerar recomendações/código para um repositório, o Modelo Central deverá

voltar a gerar novas recomendações para o mesmo repositório apenas se houver diferenças

substanciais não indicadas anteriormente ou se for instruída a ignorar as recomendações

anteriores.

Os agentes deverão, também, enviar notificações e alertas aos responsáveis pelos

repositórios em que ocorrerem alterações.

Os testes buscarão nos códigos gerados por faltas de pertinência e/ou valor nas

recomendações e códigos gerados, assim como inconsistências, incompletudes, alucinações,

imprecisões, omissões e/ou erros efetivos de lógica, sintaxe ou padrões reconhecíveis, além

daqueles perceptíveis através da execução de testes unitários, de integração e/ou de regressão

ou estresse, conforme existam previamente, sejam evoluídos e/ou adicionados/criados como

parte dos processos criativos da própria IA.

Com base nos resultados analisados nos testes será tomada a decisão de indeferir a

recomendação, ajustar os códigos ou aprovar os PR gerados pelos agentes do Modelo Central,

após a geração dos branches respectivos, serão tomadas, de modo análogo ao que será feito,

posterior e eventualmente, no caso de se prosseguir com a utilização do composto de IA.

Adicionalmente, quando novas versões das linguagens, frameworks, componentes e

demais tecnologias forem publicadas, o modelo deverá ser atualizado com o conhecimento

dessas novidades, através de agentes especializados para essas tarefas, assim como deverá

ocorrer, também, para os casos de adoções de novas tecnologias nas alterações dos códigos

adidos ao contexto de conhecimento da IA.

37

4 PROPOSTA E DESENVOLVIMENTO

Nesta sessão é apresentado um resumo da execução de cada etapa do trabalho com
comentários pertinentes para o entendimento da experiência.

4.1 Etapas 1 a 9

Nas etapas iniciais foi liberado o acesso ao ambiente AML, tendo os scripts e códigos

disponíveis para a preparação do ambiente, os procedimentos partiram do aprovisionamento

de:

• Duas máquinas virtuais (VM: Virtual Machine):

o 1 VM Standard_NC6:

▪ 6 vCPUs (Virtual Central Process Unity);

▪ 56 GB RAM (Giga Bytes de Random Access Memory);

▪ 1 GPU NVIDIA Tesla K80 (GPU: Graphic Process Unity);

▪ Para utilização nos refinamentos do Modelo Central;

o 1 VM Standard_D4_v3:

▪ 4 vCPUs;

▪ 16 GB RAM;

▪ Para utilização em processamentos e tarefas gerais;

• Uma unidade SSD (Solid Disk State) de 1 TB (Tera Bytes), para armazenamento de

arquivos, recursos e transferências de dados.

 Um espaço de trabalho (workspace) foi criado no AML para execução dos

procedimentos necessários e o modelo Llama-3.1-70B-Instruct foi registrado no workspace.

Um novo Projeto foi criado no Azure DevOps e os forks dos repositórios originais

selecionados foram adicionados a esse novo Projeto, usando uma lista dos repositórios

selecionados e a um script Python executando subprocessos com comandos do Azure CLI. Esta

atividade demandou quase 10 horas.

O Banco de Dados Vetorial Weaviate foi instalado no Azure Kubernetes Service (AKS),

a partir do GitHub (https://weaviate.github.io/helm-charts/), usando o Helm Charts.

A classe ‘CodeDoc’ foi criada para estruturar os códigos e informações adicionais

vetorizadas no Weaviate.

Foi iniciado o script Python escrito para (a) vetorizar os códigos e adicionar os

embeddings à base Weaviate e (b) carregá-los no workspace AML para utilização pelo Modelo

Central. São previstas 42 horas para a sua conclusão, executando assíncrona e paralelamente as

duas atividades (a e b) com (b) sendo iniciada 6 horas após (a).

https://weaviate.github.io/helm-charts/

38

A monitoração dos processos de vetorização e disponibilização dos embeddings

receberam o foco até serem concluídos com sucesso, sendo seguidos pelo início do treinamento

do Modelo Central com os embeddings dos códigos paralelamente com o começo da obtenção

das informações de observabilidade e logs para a segunda etapa do refinamento do modelo,

com o treinamento e validação usando essas informações.

Com a conclusão dessas duas últimas atividades iniciadas, encerraram-se as etapas de 1

a 9 e foi iniciada a segunda parte do refinamento do Modelo Central, com previsão de

encerramento em 24 horas.

4.2 Etapa 10

Concluída pouco depois do previsto, a validação com o particionamento do terceiro

bimestre de dados de observabilidade e logs, encerrando a etapa 10 da jornada desse estudo.

Observados os resultados dessa etapa, foram registrados os seguintes parâmetros:

Desempenho Acurácia Geral: 82%

Precisão: 80%

Recall: 83%

F1-Score: 81,5%

Correlação de Dados O modelo registrou correlação forte entre os logs de erros seções

de código, identificando corretamente padrões de falhas em 83%

dos casos analisados.

Consistência A validação mostrou que o modelo mantém consistência na

análise de dados, mesmo quando exposto a variações nos padrões

de logs.

Robustez Até onde foi possível perceber, pequenas variações nos dados de

entrada não afetaram significativamente o desempenho do Modelo

Central, indicando uma robustez adequada para operações em

ambientes de produção.

Com base nos resultados observados, o modelo aparenta estar em condições para iniciar

a fase de testes diários com dados coletados do ambiente de produção.

39

4.3 Etapa 11

No início da Etapa 11 foi executado o script que obtém as informações relativas ao dia

anterior e os disponibiliza para o Modelo Central realizar as análises.

Os testes são analisados por amostragem, aleatoriamente em termos individuais.

Durante essa etapa de teste, o Modelo Central deverá gerar recomendações a cada 5 dias para

as aplicações/serviços em que os critérios previamente estabelecidos sejam atendidos, gerando

os códigos que serão adicionados aos repositórios pertinentes como novos branches com os PR

respectivos, ambos providenciados, posteriormente, por agentes especializados e, nesta etapa,

por scripts e notebooks com execução agendada.

Durante os testes e, especialmente, após cada geração de códigos, ajustes e correções

poderão ser efetuados visando o aperfeiçoamento do Modelo Central, dos agentes e do

processo.

Nos dias de teste sem pontos notáveis apenas uma nota “os testes foram bem-sucedidos”

será registrada, deixando espaço para anotações mais significativas sempre que útil ou

necessário. Nos dias em que houver geração de códigos haverá maiores informações.

Nesse primeiro dia nenhum destaque pareceu necessário, então, os testes foram bem-

sucedidos.

Analisando os dados dos primeiros 6 dias os testes foram bem-sucedidos.

Na análise dos dados do sétimo dia foram verificados tempos aumentados nas

obtenções das informações dos dados de observabilidade e logs. Uma análise mais detalhada

deu a perceber que um aumento significativo do tempo das respostas às APIs do Dynatrace e

do Kibana e as ocorrências de diversos eventos e ações de resiliência causados por timeouts

frequentes, mas não foram encontradas evidências que indicassem problemas com relação ao

processo de coletas de informação ou análises.

A análise dos dados do oitavo dia foi a primeira em que ocorreu a geração de códigos.

Das 1.200 aplicações/serviços em observação, 63 novos branches foram gerados com as

seguintes considerações:

• No caso de 3 desses novos branches, havia falhas graves, como trechos faltantes, erros

de má formação de textos e dois deles não puderam ser compilados.

• Em 14 branches as alterações foram apresentadas exclusivamente críticas sobre práticas

pouco recomendáveis (code smell), de modo geral, relevantes, mas que, aparentemente,

não significavam problemas sérios.

40

• Em 22 dos 63 novos branches indicavam alterações relevantes, porém em aplicações

legadas, que apresentavam elevada complexidade para alterações e já tinham previsão

de substituição em médio prazo.

• Outros 15 branches identificaram questões de componentes com vulnerabilidades

documentadas, de fato, precisam de atenção em curto prazo, embora representassem

riscos menores para impactos eventuais.

• Nas 9 restantes foram identificadas questões pertinentes a respeito de melhorias de

desempenho ou estabilidade, destacando-se como as contribuições mais importantes

entre os 63 casos.

Para aprimorar as análises do Modelo Central um arquivo com esclarecimentos e

orientações relativos aos pontos levantados foi elaborado e disponibilizado para o Modelo

através da base vetorial, a fim de servir de referência para alinhar os comportamentos menos

desejados e algumas indicações foram adicionadas aos prompts de instrução.

Com os dados do nono ao décimo segundo dias os testes foram bem-sucedidos, embora

possa ser pontuado que o nono dia se tratou de um feriado estadual em São Paulo, mas não se

registrou qualquer variação respectiva.

No dia décimo terceiro dia ocorreu a segunda geração de códigos. Nessa ocasião 3

novos branches foram adicionados aos repositórios pertinentes. Todos os casos foram

significativos, sendo que em um deles se observou elevação irregular e de retenção de sockets

sem utilização por implementação inadequada no uso de clientes do protocolo HTTP.

Em retorno para o Modelo Central, a questão foi marcada como de alta criticidade para

manter sob atenção outros casos semelhantes.

Com os dados do décimo quarto ao décimo sétimo dia os testes foram bem-sucedidos,

porém com percepção de lentidão muito acima do normal nas execuções dos procedimentos.

Com os dados do décimo oitavo dia, quando deveria ter ocorrido a terceira geração de

códigos no período, não foi gerada qualquer recomendação/branch. Após verificações e

análises dos registros de execução, constatou-se que alguns ajustes nos prompts de instruções,

aparentemente, criaram situações inadequadas para as análises, portanto demandaram ajustes

que foram implementados.

As análises dos dados do décimo nono ao vigésimo segundo dia fluíram de modo que

os testes foram bem-sucedidos.

Com os dados do vigésimo terceiro dia, ocasião da quarta geração de códigos prevista,

11 branches foram geradas com sucesso e, embora, pequenas e objetivas, as mudanças indicadas

foram todas significativas e um aspecto que chamou a atenção é que, dos 11 casos, 9 foram

41

relacionados a serviços e os problemas assinalados eram relacionados a baixa eficiência causada

pelo tratamento de encadeamentos de chamadas síncronas e assíncronas. Diante do desempenho

verificado, nenhuma alteração pareceu necessária a essa altura.

Com os dados do período do vigésimo quarto ao vigésimo sétimo dia os testes foram

bem-sucedidos.

Os dados do vigésimo oitavo dia foram os últimos da etapa de testes previstos para

gerar códigos. Na ocasião, apenas 2 branches foram gerados e, embora as indicações fossem

relevantes, não representaram questões a ter em alta consideração por tratarem de questões

relativas a formatos de escrita de código que entraram em desuso nas versões mais recentes e

as aplicações em foco se encaixam entre os legados previstos para atualizações.

O vigésimo nono dia foi dedicado para revisões dos resultados dos testes anteriores e

preparações para as próximas etapas.

4.4 Etapa 12

Os scripts e notebooks em utilização nas etapas anteriores cumpriam as funções que,

efetivamente, devem ser devem ser executadas por agentes especializados sob orquestração

do LangChain, conforme definições para o estudo em sua completude. Sendo assim, os dois

dias seguintes (trigésimo e trigésimo primeiro) foram dedicados a converter aqueles

instrumentos provisórios, que propiciavam tanto acompanhamento granular das execuções

quanto evoluções pontuais e controladas dos códigos, mas que, em sua forma prevista

ganham em desempenho, autonomia e com as características da orquestração mais

elaborada.

O processo em si foi simples e rápido pela aderência dos padrões utilizados na

codificação e pela simplicidade oferecida pelo orquestrador. Realizadas as conversões e

publicadas as novas ferramentas, nos dias seguintes (etapas 13 e 14) tanto os novos agentes

quanto o Modelo Central estiveram sob acompanhamento e avaliações visando a conclusão

apropriada do experimento.

4.5 Etapa 13 a 15

Nos quatro dias das Etapas 13 a 15 poucos ajustes foram realizados quanto a

orquestração dos novos agentes. No demais, transcorreram sem novidades.

42

5 ANÁLISES DE RESULTADOS

Revendo e analisando os resultados obtidos a partir da implementação da inteligência

artificial no ambiente de produção de um banco digital privado, vale estruturar a análise em

torno de três eixos principais: eficiência operacional, qualidade do código gerado e impacto nos

processos de desenvolvimento. Cada um desses aspectos é crucial para entender o valor

agregado pela IA ao contexto.

5.1 Eficiência operacional

A implementação de agentes de IA especializados resultou em melhorias significativas

na eficiência operacional, uma vez que tem capacidade para reduzir, significativamente, o

tempo de resposta às necessidades de ajustes, correções, evoluções, atualizações e adequações

dos códigos em operação no ambiente de produção, o que pode ser atribuído à capacidade da

IA de monitorar continuamente o ambiente e identificar essas necessidades, recomendando as

alterações em formato de código pronto ou muito próximo disso.

5.2 Qualidade do código gerado

De modo geral, embora ainda seja necessário manter bastante atenção aos códigos

gerados pela IA, as peças fornecidas, minimamente, aceleram e facilitam a localização e a

implementação de soluções, além de apontarem os problemas em si ou sua iminência e

eventuais consequências.

Os desenvolvedores são beneficiados porque a IA não apenas produziu códigos

funcionais, mas também ajudou a identificar e corrigir vulnerabilidades e ineficiências que

poderiam ter passado despercebidas em outras formas de revisões.

5.3 Impacto nos processos de desenvolvimento

A análise indica que a IA proporciona suporte aos desenvolvedores, automatizando

tarefas repetitivas e permitindo que o foco fosse direcionado a atividades mais estratégicas.

Os desenvolvedores podem, assim, dedicar mais atenção à inovação e ao

desenvolvimento de novas funcionalidades, em lugar de se concentrarem em tarefas de

manutenção e buscas de problemas nem sempre evidentes ou fáceis de localizar.

43

6 CONCLUSÕES

As conclusões deste estudo indicam o impacto positivo da IA na gestão de códigos em

ambiente de produção, evidenciando melhorias significativas em eficiência operacional e na

qualidade do software.

A capacidade da IA de detectar e corrigir problemas de forma autônoma resulta em uma

operação mais estável e confiável. A análise sugere que a integração contínua de IA em

processos operacionais pode se traduzir em economias significativas, elevação de eficiência e

melhor alocação de recursos, implicando em melhoria da eficiência operacional.

Sobre a qualidade do código e segurança, a capacidade da IA de identificar

vulnerabilidades e sugerir melhorias é extremamente vantajosa em um contexto em que a

segurança e a conformidade são prioridades. Recomenda-se o aprimoramento do uso da IA e a

conformidade com padrões que facilitem e expandam a sua participação no SDLC,

especialmente nos ambientes de produção.

Consideradas as experiências vivenciadas durante a execução deste trabalho, para

maximizar os benefícios alcançáveis com a tutoria da IA sobre os códigos em operação no

ambiente de produção, é recomendável investir em treinamento para as equipes, propiciando

aos desenvolvedores melhores possibilidades de capacitação para trabalhar em conjunto com

tecnologias de IA. Além disso, a criação de uma cultura de inovação e experimentação pode

facilitar a adoção de novas ferramentas e processos, promovendo um ciclo de melhoria

contínua.

Por fim, este estudo demonstrou que a IA pode ser proficiente em evoluir a eficiência,

a qualidade e a satisfação das equipes internas, clientes e parceiros. As observações sugerem

que, com a implementação adequada, a IA pode facilitar o futuro do desenvolvimento e a

manutenção das aplicações/serviços em ambientes produtivos.

44

45

REFERÊNCIAS

AINSLIE, Joshua et al. GQA: Training Generalized Multi-Query Transformer Models from
Multi-Head Checkpoints. Google Research, 23 dez. 2023.

ALIBABA GROUP - QWEN TEAM. Welcome to Qwen! Read The Docs, fev. 2024. Disponível
em: https://qwen.readthedocs.io/en/latest/. Acesso em: 29 nov. 2024.

ALIBABA GROUP - QWEN TIME. Hello Qwen2. GitHug - Qwen2, 2024. Disponível em:
https://qwenlm.github.io/blog/qwen2/. Acesso em: 29 nov. 2024.

ARSANJANI, Ali. Navigating the Challenges of Hallucinations in LLM Applications: Strategies
and Techniques for Enhanced Accuracy. Medium, 2023. Disponível em: https://dr-
arsanjani.medium.com/navigating-the-challenges-of-hallucinations-in-llm-applications-
strategies-and-techniques-for-ab2b5ddc4a63. Acesso em: 22 jun. 2024.

ÅSNE STIGE, Yuzhen Z. P. M. E. D. Z. Artificial intelligence (AI) for user experience (UX)
design: a systematic literature review and future research agenda. Information Technology
& People, Sheffield, 29 ago. 2023.

AUFFARTH, Ben. Generative AI with LangChain: Build large language model (LLM) apps with
Python, ChatGPT and other LLMs. Birmingham: Packt Publishing, 2023.

AXELTON, Karen. STATE OF ARTIFICIAL: With AI In Its Infancy, B2B Orgs Begin To Prioritize
Early Adoption. Demand Gen Report (DGR), abr. 2023. Disponível em:
https://www.demandgenreport.com/resources/state-of-artificial-intelligence-with-ai-in-its-
infancy-b2b-orgs-begin-to-prioritize-early-adoption/7834/. Acesso em: 22 jun. 2024.

BASKARAN, Saravanan H. A Comparison of Transformer and Autoregressive LLM Designs.
International Journal of Research Publication and Reviews, Vol 4, no 11, nov. 2023. 19-26.

BRQ. Observabilidade: o que é, desafios e ferramentas, dez. 2023. Disponível em:
https://blog.brq.com/observabilidade. Acesso em: 29 nov. 2024.

CODECOMPLETE. AI-Powered DevTools for Enterprise, fev. 2022. Disponível em:
https://codecomplete.ai. Acesso em: 29 nov. 2024.

46

DYNATRACE. The world needs software to work perfectly, ago. 2017. Disponível em:
https://www.dynatrace.com/company. Acesso em: 29 nov. 2024.

DYNATRACE. Meet Davis, our powerful AI-engine, ago. 2021. Disponível em:
https://www.dynatrace.com/platform/artificial-intelligence. Acesso em: 29 nov. 2024.
DYNATRACE. API versions. Developer Dynatrace, 2024. Disponível em:
https://developer.dynatrace.com/platform-services/general/versioning/. Acesso em: 29 nov.
2024.

DYNATRACE. Davis AI service. Davis AI service, 2024. Disponível em:
https://developer.dynatrace.com/platform-services/services/davis-analyzers/. Acesso em:
29 nov. 2024.

DYNATRACE. Dynatrace App-Toolkit. Dynatrace App-Toolkit, 2024. Disponível em:
https://developer.dynatrace.com/reference/app-toolkit/. Acesso em: 29 nov. 2024.
ELK. Elastic Stack. Elastic Stack, 2024. Disponível em: https://www.elastic.co/pt/elastic-
stack. Acesso em: 29 nov. 2024.

ERBEL, J., G. J. Scientific workflow execution in the cloud using a dynamic runtime model.
University of Goettingen - Softw Syst Model, 23, Goettingen, Germany, 2024. 163–193.
ETO. Emerging Technology Observatory. Center for Security and Emerging Technology -
Georgetown University, jan. 2024. Disponível em:
https://sciencemap.eto.tech/?ai_pred=10%2C100&all_subjects=Artificial+intelligence&x_gr
owth_pred=True&mode=summary&cols=cluster_id%2Cclass_arts%2Ccset_extracted_phrase
%2CNP%2Cgrowth_3yr_p_rank%2Cai_pred. Acesso em: 29 nov. 2024.

FOURRIER, Clémentine et al. Open LLM Leaderboard V2. Hugging Face, 2024. Disponível em:
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard. Acesso em: 22
jun. 2024.

GARTNER. Automated Software Testing Adoption and Trends, fev. 2024. Disponível em:
https://www.gartner.com/peer-community/oneminuteinsights/automated-software-
testing-adoption-trends-7d6. Acesso em: 29 nov. 2024.

GITHUB. Início Rápido para o GitHub Copilot, jun. 2022. Disponível em:
https://docs.github.com/pt/copilot/quickstart. Acesso em: 29 nov. 2024.

47

GOOGLE. Artificial Inteligence - Interest over time, set. 2012. Disponível em:
https://trends.google.com/trends/explore?cat=12&date=2022-01-01%202024-06-
22&geo=BR&q=%2Fm%2F0mkz&hl=en. Acesso em: 29 nov. 2024.

HIMASHI RATHNAYAKE, Janani S. R. R. S. R. AdapterFusion-based multi-task learning for
code-mixed and code-switched text classification. Engineering Applications of Artificial
Intelligence, Volume 127, Part A, jan. 2024.

HU, Ke; ZHANG, Yu; AL., Du N. E. Massively Multilingual Shallow Fusion with Large
Language Models. CASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech
and Signal Processing. Rhodes Island, Greece: IEEE. 2023. p. 1 - 5.
IBM. O que é observabilidade e por que é importante?, set. 2023. Disponível em:
https://www.ibm.com/br-pt/resources/automate/observability-basics. Acesso em: 29 nov.
2024.

IBM; ARMAND RUIZ; VIVEK BHARATHI. Scaling generative AI with flexible model choices.
IBM.COM, maio 2024. Disponível em: https://www.ibm.com/blog/scaling-generative-ai-
with-flexible-model-choices/. Acesso em: 29 nov. 2024.

INFORCHANNEL. Empresas usam IA para garantir qualidade no desenvolvimento de
softwares, dez. 2023. Disponível em: https://inforchannel.com.br/2023/12/07/empresas-
usam-ia-para-garantir-qualidade-no-desenvolvimento-de-softwares. Acesso em: 29 nov.
2024.

KONSTANTINOS FILIPPOU, George E. T. G. A. G. A. P. Structure Learning and Hyperparameter
Optimization Using an Automated Machine Learning (AutoML) Pipeline. International
Hellenic University, 09 abr. 2023.

LANGCHAIN. LangChain. LangChain, 2022. Disponível em:
https://python.langchain.com/v0.2/docs/introduction/. Acesso em: 29 nov. 2024.

MAHMUD MH, Nayan M. A. D. K. M. Software Risk Prediction: Systematic Literature Review
on Machine Learning Techniques. Applied Sciences, 2022.

META. Introducing Code Llama, a state-of-the-art large language model for coding, ago.
2023. Disponível em: https://ai.meta.com/blog/code-llama-large-language-model-coding.
Acesso em: 29 nov. 2024.

48

META. Introducing Llama, jul. 2023. Disponível em: https://ai.meta.com/llama. Acesso em:
29 nov. 2024.

META. Introducing Meta Llama 3: The most capable openly available LLM to date. Meta -
Llama3, abr. 2024. Disponível em: https://ai.meta.com/blog/meta-llama-3/. Acesso em: 29
nov. 2024.

MICROSOFT. AutoGen. Microsoft - Github, 2024. Disponível em:
https://microsoft.github.io/autogen/. Acesso em: 29 nov. 2024.

MICROSOFT. Get start with AutoGen for dotnet. Microsoft - Github, 2024. Disponível em:
https://microsoft.github.io/autogen-for-net/. Acesso em: 29 nov. 2024.

MICROSOFT. Microsoft - Autogen. Github - AutoGen, 2024. Disponível em:
https://github.com/microsoft/autogen?formCode=MG0AV3. Acesso em: 29 nov. 2024.

MICROSOFT. what Is Continuous Delivery (CD)? Learn Microsoft, 2024. Disponível em:
https://learn.microsoft.com/pt-br/devops/deliver/what-is-continuous-delivery. Acesso em:
29 nov. 2024.

MICROSOFT. what is continuous integration (CI)? Lear Microsoft, mar. 2024. Disponível em:
https://learn.microsoft.com/pt-br/devops/develop/what-is-continuous-integration. Acesso
em: 29 nov. 2024.

NADIRI, Yashar T. A. A. Multi-Agent Collaboration: Harnessing the Power of Intelligent LLM
Agents, 05 jun. 2023.

NEWRELIC. All-in-one observability, maio 2008. Disponível em: https://newrelic.com. Acesso
em: 29 nov. 2024.

NEWRELIC. Meet New Relic AI, your observability assistant, out. 2020. Disponível em:
https://docs.newrelic.com/docs/new-relic-solutions/new-relic-one/core-concepts/new-relic-
ai. Acesso em: 29 nov. 2024.

OPSERVICES. A IA aplicada a observabilidade e monitoramento de TI, abr. 2024. Disponível
em: https://www.opservices.com.br/a-ia-aplicada-a-observabilidade-e-monitoramento-de-
ti. Acesso em: 29 nov. 2024.

49

REBECKA C. ÅNGSTRÖM, Michael B. L. D. M. M. M. W. W. Getting AI Implementation Right:
InsIghts from a global survey. California Management Review 66 (1), California, 30 ago.
2023. 5 - 22.

REMSOFT. Inteligência Artificial: O Futuro Dos Testes De Software, ago. 2023. Disponível em:
https://remsoft.com.br/blog/tecnologias/ia-o-futuro-dos-testes-de-softwares. Acesso em:
29 nov. 2024.

ROZIÈRE, Baptiste; GEHRING, Jonas; GLOECKLE, Fabian E. A. Code Llama: Open Foundation
Models for Code. Meta - Code Llama, ago. 2023. Disponível em:
https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/.
Acesso em: 22 jun. 2024.

SHARMA, Shreta A. P. S. K. Integrating AI Techniques In SDLC: Design Phase Perspective.
Kochi: Association for Computing Machinery, 2015. p. 383–387.

SHEKAR RAMACHANDRAN, Rupali A. P. M. H. B. G. L. A. K. Automated Log Classification
Using Deep Learning. Procedia Computer Science, 31 jan. 2023.

SONG CHEN, Hai L. BERT-Log: Anomaly Detection for System Logs Based on Pre-trained
Language Model. Qingdao University of Technology - Applied Artificial Intelligence, 36, 17
nov. 2022.

SRIVASTAVA, Niharika. What is SOTA in Artificial Intelligence? E2E Networks, 2022.
Disponível em: https://www.e2enetworks.com/blog/what-is-sota-in-artificial-intelligence.
Acesso em: 22 jun. 2024.

TABNINE. The AI coding assistant that you control, nov. 2018. Disponível em:
https://www.tabnine.com. Acesso em: 29 nov. 2024.

TIAGO CARVALHO, João B. P. P. J. M. P. C. A DSL-based runtime adaptivity framework for
Java, Porto, Portugal, 23 ago. 2023.

VERICODE. Desenvolvimento ágil, seguro e eficiente, maio 2022. Disponível em:
https://vericode.com.br/servicos/devsecops. Acesso em: 29 nov. 2024.

50

VERICODE. Os testes automatizados são um imperativo dos negócios digitais, maio 2022.
Disponível em: https://vericode.com.br/servicos/testes-automatizados. Acesso em: 29 nov.
2024.

VERICODE. Seu código fonte está sendo revisado automaticamente?, maio 2022. Disponível
em: https://vericode.com.br/servicos/analise-de-codigo-fonte. Acesso em: 29 nov. 2024.

VERITY. Como a IA pode ajudar um QA (Quality Assurance)?, jun. 2023. Disponível em:
https://www.verity.com.br/post/como-a-ia-pode-ajudar-um-qa-quality-assurance. Acesso
em: 29 nov. 2024.

WEAVIATE. The AI-Native, Open Source Vector Database. Weaviate Platform, 2024.
Disponível em: https://weaviate.io/platform. Acesso em: 29 nov. 2024.

WEAVIATE. Weaviate. GitHub, 2024. Disponível em: https://github.com/weaviate/weaviate.
Acesso em: 29 nov. 2024.

XI, Zhiheng; CHEN, Wenxiang; GUO, Xin E. A. The Rise and Potential of Large Language Model
Based Agents: A Survey, 14 set. 2023.

ZAHRAA SADDI KADHIM, Khalil I. G. H. S. A. Artificial Neural Network Hyperparameters
Optimization: A Survey. International Journal of Online and Biomedical Engineering, 06 dez.
2022.

ZHAO, Wayne X.; ZHOU, Kun; AL., Li J. E. A Survey of Large Language Models. Arxiv, 24 nov.
2023. Disponível em: https://arxiv.org/abs/2303.18223. Acesso em: 22 jun. 2024.

ZHOU, Ce; QIAN, Li; AL., Li C. E. A Comprehensive Survey on Pretrained Foundation Models:
A History from BERT to ChatGPT. Arxiv, fev. 2023. Disponível em:
https://arxiv.org/abs/2302.09419. Acesso em: 22 jun. 2024.

