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Resumo

Dicalcogenetos de Metais de Transição (DMTs) são compostos quı́micos definidos pela equação

MQ2, onde M é um metal de transição, como molibdênio (Mo) e tungstênio (W), e Q pode ser

enxofre (S), telúrio (Te) ou selênio (Se). Eles possuem uma grande gama de morfologias, di-

mensionalidades e aplicações e, devido a essas propriedades, tem sido objeto de vários estudos

desde a década de 1960, com o intuito de compreender melhor suas propriedades. No entanto,

um empasse nesses estudos é o requisito computacional para se calcular essas propriedades,

pode-se levar dias para que terminem. Neste quesito, o aprendizado de máquina é importante

para a quı́mica pois, se for possı́vel encontrar um erro baixo aceitável, os milissegundos de

predição das ditas propriedades aceleraria em muito os estudos dessas estruturas. Portanto

neste projeto, foi utilizado diferentes modelos de regressão e variações da Matriz de Coulomb

para prever a energia total das moléculas de DMTs. Como resultado, a regressão Linear com os

autovalores da Matriz de Coulomb ordenada obteve um erro médio de 3.31e-5%, equivalente à

um erro normalizado de 6.3kcal/mol, um erro elevado impossı́vel de substituir os cálculos atu-

ais, que possuem um erro de 1kcal/mol. Concluindo que a Matriz de Coulomb não é o suficiente

para gerar os erros baixos esperados, sendo necessário uma representação mais robusta.

Palavras-chaves: Matriz de Coulomb, Dicalcogenetos de Metais de Transição, Aprendizado
de Máquina.
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Caṕıtulo

1
Introdução

Machine learning (ML) é um campo da inteligência artificial que concerne o aprendizado pro-
gressivo de máquina através de algoritmos estatı́sticos [1]. O desenvolvimento da área de ML
se deu para mitigar problemas que surgiam de processos de triagem onerosos [2], baseados em
tentativa e erro [3]. O advento de técnicas de ML, então, foi integrado a várias áreas que de-
mandam a projeção de resultados com a observância de dados prévios, como na engenharia de
processos e controle, além de vários campos de novos materiais para otimização de estocagem
e geração de energia [1]. Neste sentido, a aplicação de técnicas de ML na área da quı́mica vem
ganhando crescente atenção na literatura [4], tendo sido aplicada com sucesso em estudos de
reações quı́micas, notadamente no sentido de predição de performance de dada reação e quais
os produtos das reações quı́micas estudadas. A integração de técnicas de ML com áreas da
quı́mica foi determinante para o desenvolvimento de pacotes de ML como o python materials

genomics (Pymatgen) [5], Factsage [6] e Aflow. Desta maneira, se desenvolveu o panorama
de pacotes de alto rendimento high-throughput (HT) para o desenvolvimento de pesquisas que
exijam menor tempo para o desenvolvimento de áreas que possam ser industrialmente úteis no
desenvolvimento de novos materiais funcionais [7].

Dentre os materiais funcionais que têm ganho grande destaque na literatura estão materiais
bidimensionais (2D), e, em particular, dicalcogenetos de metais de transição bidimensionais
(DMTs 2D) [8]. Os DMTs 2D são definidos pela equação quı́mica MQ2, na qual M é o metal
de transição, como Mo, e Q = S, Se, Te. A variedade de composições quı́micas e os diferentes
ambientes de coordenação no entorno dos átomos metálicos (politipo), como o octaédrico (1T),
octaédrico distorcido (1T′) e trigonal prismática (2H), faz com que DMTs 2D possuam grande
variedade de propriedades estruturais [9], eletrônicas [10] e energéticas [4] que os candidatam
para uma gama sem precedentes de aplicações, que vão de catálise (como na reação de evolução
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2 Capı́tulo 1. Introdução

do hidrogênio e de redução do CO2) até o uso como dispositivos fotovoltaicos [11] de espessura
atômica, uma vez que as camadas de DMTs 2D de metais do grupo 6 são compostas de planos
metálicos entremeados por planos de Q, sendo estas camadas interagentes através da ação de
interações de van der Waals [7].

Em particular, DMTs baseados em molibdênio (Mo) possuem em sua carta de compostos o
MoS2, DMT 2D mais popularmente estudado na literatura [7], que tem encontrado validações
teóricas e experimentais para os mais diversos usos de DMTs 2D. Por outro lado, o MoTe2

tem sido o DMT 2D baseado em Mo com o menor número de estudos reportados na literatura
[12], revelando, no entanto, propriedades distintas de suas contrapartes, servindo de base para
o estudo de “novas fı́sicas”, como para semimetais de Weyl [13], isto é, materiais que possuem
carreadores de carga que se comportam como partı́culas sem massa no ponto no qual as bandas
de condução e valência se cruzam na forma de uma dispersão linear (nodo de Weyl). DMTs ba-
seados em tungstênio (W), como o WS2, são particularmente importantes devido ao maior raio
atômico do W quando comparado com o Mo, o que permite que DMTs com W na composição
sejam mais flexı́veis em relação à modulação de propriedades fı́sico-quı́micas através de dopa-
gem [14], além de serem aplicáveis para materiais com aplicação em fotônica [15], fotocatálise
[16] e dispositivos com alta pseudocapacitância [17].

Para que se possa compreender a fı́sico-quı́mica básica de DMTs 2D é necessário que se obtenha
conhecimento em nı́vel atomı́stico sobre estes sistemas. Tal conhecimento detalhado é capaz
de prover princı́pios de design [18] DMTs 2D energeticamente estáveis e que possam servir
como materiais funcionais [7]. Para a avaliação de propriedades fı́sico-quı́micas de DMTs 2D
têm sido utilizada como ferramenta de cálculo o formalismo da teoria do funcional da densidade
(DFT) [19], implementado na forma da resolução auto-consistente das equações de Kohn–Sham
(KS) [20] em códigos computacionais que diferem na representação dos orbitais de KS. A
resolução das equações de KS traz consigo uma escala de tempo que varia entre dias ou semanas
dependendo do tamanho do sistema de DMT 2D de tamanho finito (nanofloco) investigado.

Ademais, as propriedades fı́sico-quı́micas de nanoflocos de DMTs 2D dependem sensivelmente
da geometria do nanofloco [12], o que faz com que a predição de propriedades fı́sico-quı́micas
destes sistemas precise envolver amostragens de configurações. Experimentalmente, o método
de sı́ntese mais utilizado para nanoflocos de DMTs 2D, chemical vapor deposition, CVD [21],
permite a sı́ntese de nanoflocos de distintas geometrias com politipos distintos, fato que inte-
gra predições teóricas com a possibilidade de sı́ntese de compostos previamente investigados
através da DFT. Tendo em vista o aumento da agilidade da pesquisa de nanoflocos de DMTs 2D,
diminuindo custo e tempo computacional, isto é, diminuir a escala de tempo de dias para tem-
pos irrisórios, na escala de minutos ou segundos, passa pela integração adequada de abordagens
de ML aplicadas a estes sistemas [1].

Patra et al. [22] combinaram algoritmos genéticos (GAs) para a geração de estruturas com
vacâncias de S de monocamadas de MoS2 otimizadas com dinâmica molecular (DM) para com-
preender os mecanismos de extensão e coalescência de defeitos neste material em escalas de
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tempo de minutos. Na investigação foi possı́vel determinar a formação da fase 1T no entorno
das vacâncias de enxofre, diferindo do politipo de monocamada estudada, 2H. Além do mais,
os resultados obtidos através da combinação ML/DM foram validados através de microscopia
eletrônica. Zhao et al. [1] aplicaram o procedimento de aplicação de métodos de amostragem
e seleção de DMTs que encontrassem uso na detecção de Hg0 baseados em ML, como imple-
mentado no Pymatgen, para selecionar previamente os materiais que seriam avaliados através
de cálculos DFT. Portanto, os métodos de ML serviram como base de pré-processamento de
seleção de materiais que poderiam encontrar as propriedades desejadas. Estabeleceu-se que o
DMT com maior capacidade de detecção de Hg0 foi o NiS2.

Tawfik et al. [3] realizaram a predição de propriedades fı́sico-quı́micas de bicamadas de DMTs
2D, encontrando a diminuição de cinco vezes no tempo de tratamento entre as técnicas aplicadas
e os cálculos de DFT. Neste estudo, utilizou-se um conjunto de treinamento de 267 estruturas
calculadas por DFT em um conjunto de testes de 1500 bicamadas, sendo o conjunto de testes
provindo de Miro et al. [23]. Ademais, com os resultados obtidos, os autores ressaltam ser
possı́vel estudar 1,7 milhões de possibilidades de bicamadas de DMTs através das estruturas
reportadas por Mounet et al. (dentro de c), que reporta 1800 blocos de construção de bicamadas
para materiais 2D.

No entanto, não há na literatura nenhum estudo que combine técnicas de ML para o estudo de
amostragens de nanoflocos de DMTs 2D. Para explorar estes aspectos, utilizamos conjuntos de
DMTs no formato (WQ2)n, onde W = Mo ou W, Q = S, Se ou Te, n = 1 – 16 para os conjuntos
com Mo e n = 1 – 16, 36, 66, 105 para os com W. Os modelos de ML para regressão, como
Linear, Kernel Ridge e Redes Neurais Multi layer Perceptron [24], foram aplicados utilizando
as representações obtidas através da Matriz de Coulomb [2, 25] para prever a energia total das
moléculas.

O melhor modelo de regressão da energia total para estas moléculas com até 315 átomos foi
o Linear, utilizando os autovalores da Matriz de Coulomb ordenada como representação. Foi
obtido um erro médio absoluto de 3.31e-5%, que embora pareça baixo, ele se traduz para um
erro médio normalizado por n de 6.3kcal/mol. A DFT, para comparação, produz erros máximos
de 1kcal/mol.

Concluiu-se que os autovalores não são o suficiente para gerar erros comparáveis à DFT. A
regressão Linear é melhor baseada apenas no tamanho, gerando um erro médio normalizado
de 5.5kcal/mol, também ainda insuficiente para reproduzir o comportamento de relaxação da
DFT. É necessário uma representação mais robusta que os autovalores, por exemplo algo que
contenha uma energia base para o tamanho da molécula além da estrutura.
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Caṕıtulo

2
Metodologia

Para realizar o objetivo de aplicar modelos de aprendizado de máquinas nos DMTs e prever as
suas propriedades de maneira mais rápida que a DFT, alguns passos são necessários: reunir,
organizar e padronizar os dados existentes; representar as moléculas em um vetor de carac-
terı́stica; selecionar os modelos para regressão, treiná-los e finalmente testá-los.

Para isso, será utilizada a linguagem Python [26], especificamente as bibliotecas: numpy, scikit-
learn e keras. O Numpy [27] fornece diversas funções de manipulação de vetores, álgebra linear
e outras operações matemáticas mais genéricas. O Scikit-Learn [28] é uma das bibliotecas mais
utilizadas em Python para aprendizado de máquina, possuindo diversos métodos para mineração
de dados e análise de dados. Por fim, o Keras [29] fornece uma interface de alto nı́vel à bibli-
oteca TensorFlow [30], que proveem rotinas de alto desempenho para treinamento de modelos
de redes neurais.

2.1 Cronograma

Este trabalho teve inı́cio em Janeiro de 2019 como um projeto de Iniciação Cientı́fica. O crono-
grama então foi criado de maneira que o primeiro semestre fosse realizado atividades seguindo
a mesma sequência de etapas aprendidas na disciplina SCC5871 de Aprendizado de Máquina.
Veja a tabela 2.1 para mais detalhes.

5



6 Capı́tulo 2. Metodologia

Tabela 2.1: Atividades Planejadas

Inı́cio Fim Descrição
01/02/2019 15/02/2019 Atividade 1: Familiarização com os dicalcogenetos
15/02/2019 15/03/2019 Atividade 2: Padronização dos Dados
15/03/2019 15/04/2019 Atividade 3: Estudo e uso da Matriz de Coulomb
15/04/2019 01/10/2019 Atividade 4: Estudo e uso dos algoritmos de Aprendizado de

Máquina
01/10/2019 01/11/2019 Atividade 5: Análise dos resultados e escrita do TCC
01/02/2019 30/12/2019 Atividade 6: Participação nos workshops e seminários do

grupo QTNano

2.2 Dados

Os dados do projeto são formados por 6 conjuntos de treinamento, compostos por isômeros
bidimensionais de tamanho finito (nanoflocos) e separados pela configuração molecular. Os
conjuntos são formados por: (i) (MoQ2)n, Q = S, Se, Te com n = 1 – 16 e (ii) (WQ2)n, Q =
S, Se, Te com n = 1 – 16, 36, 66, 105. Os conjuntos de (i) foram obtidos através do trabalho
de Caturello et al. [12], enquanto que do trabalho de Da Silva et al. [18] foram obtidos os
conjuntos utilizados em (ii). Para o conjunto de teste utilizou-se nanoflocos gerados através do
método drunk-walk do próprio grupo QTNano.

Para cada uma dessas moléculas, existe um arquivo de saı́da do FHI-aims [31], o algoritmo
utilizado para a calcular as energias totais dos isômeros, que utiliza o formalismo da teoria do
funcional de densidade (DFT). O processo de avaliação de energia total é associado ao processo
de relaxação estrutural, algoritmo que causa transformações na estrutura molecular em busca
da mı́nima energia, como critério de parada, o processo é terminado quando a diferença de
energia entre dois passos ou a força total atuando sobre os átomos do sistema é abaixo de um
threshold. Uma vez que um mı́nimo de energia potencial é alcançado, a relaxação é finalizada.
As propriedades fı́sico-quı́micas dos sistemas otimizados em todos os passos de otimização dos
cálculos são calculadas e estocadas nos arquivos de saı́da do programa.

A partir desse arquivo de saı́da, foi aplicado expressões regulares para extrair as informações,
que são: a estrutura molecular e a energia total. A estrutura é salva em um arquivo no formato
”M(n)Q(2*n) numero-da-estrutura id-da-iteração.xyz”, contendo cada átomo da molécula se-
guido da sua posição no eixo X, Y e Z, e a energia (em elétrons-volt) de cada molécula é salva
em uma tabela .csv.

O próximo passo é verificar a integridade desses dados, foi observado que existem átomos di-
ferentes com a mesma energia, devido ao truncamento que o FHI-aims realiza na escrita do
arquivo de saı́da, ou seja, as variações foram pequenas o suficiente para as energias trunca-
das serem iguais. Portanto, para que o conjunto se torne balanceado com energias únicas, foi
retirado as duplicadas para moléculas de mesmo tamanho.
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Em resumo, para cada conjunto, existe os arquivos .xyz contendo a estrutura de cada molécula
dos conjuntos e uma tabela .csv com o nome da molécula e sua energia, onde todas as energias
são únicas.

2.3 Representação molecular

Os algoritmos de aprendizado de máquina normalmente são compostos de dados padronizados
para que todas as variáveis estejam na mesma ordem de grandeza. Para isso, é necessário então
representar os dados de maneira relevante e de mesma dimensionalidade, chamado de vetor
de caracterı́stica. Neste projeto, esse vetor precisa representar tanto as moléculas de 3 átomos
quanto as de 315.

Para isso, será utilizada a matriz de Coulomb [2] e suas variações: Ordenada e Autovalores
[25]. A matriz de Coulomb gera uma representação matricial de uma molécula, levando em
consideração os números atômicos e a posição de cada átomo. Ela é gerada a partir da equação:

Mαβ =

0,5Z2,4
α , se α = β

Zα Zβ

|Rα−Rβ |
, se α 6= β

, (2.1)

na qual se utiliza as coordenadas cartesianas, {Rα}, enquanto que Zα são as cargas nucleares
dos α-ésimos átomos componentes dos sistemas.

O tamanho da matriz não é invariável pelo da molécula, portanto ela é transformada em uma
matriz MxM, onde M é o tamanho máximo das moléculas do conjunto, e os novos espaços
são preenchidos com zero. Em sequência, é observado que a matriz é simétrica pela diagonal,
portanto apenas a triangular superior é utilizada, achatando-a para finalmente considerar essa
representação um vetor de caracterı́stica.

As outras representações possuem passos extras: a matriz de Coulomb Ordenada é ordenada
pela soma das linhas antes da separação da triangular superior; os Autovalores são literalmente
os autovalores da matriz ordenada, gerando uma representação linear ao tamanho da molécula
ao invés da quadrática das matrizes anteriores. Em resumo, os arquivos .xyz são transformados
em vetores de caracterı́sticas, existem aqueles quadráticos: a matriz original e a ordenada; e
linear: os autovalores.

2.4 Modelos de Regressão

Possuindo os dados em vetores de caracterı́sticas, é necessário escolher modelos de regressão
para mapear a entrada para a saı́da desejada, isto é, conseguir a partir da estrutura molecular
prever a energia total com rapidez. Como aprendizado de máquina não possui um modelo
universal para se aplicar em todos os problemas, alguns foram escolhidos para serem utilizados
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no projeto: Linear, Kernel Ridge, Rede Neural, K-Nearest Neighbors (KNN), Decision Tree e
Random Forest [24, 32, 33].

2.4.1 Linear

Sendo uma das regressões mais simples, a Linear calcula um hiperplano que minimize a soma
das distâncias entre a propriedade sendo prevista e o hiperplano. Se o problema for linearmente
separável, esse modelo produz bons resultados. A regressão é dada pela fórmula:

Y = β0 +
m

∑
j=1

X jβ j (2.2)

no qual Y é o valor da propriedade predita, X é o vetor de caracterı́stica, m é o tamanho desse
vetor e β j são os parâmetros ocultos da regressão.

2.4.2 Kernel Ridge Polinomial

Como uma escolha levemente mais complexa que o modelo anterior, o Kernel Ridge foi es-
colhido por conseguir resolver problemas não lineares. Utilizando-se do truque de kernel, que
consiste em realizar transformações no vetor de caracterı́stica (como aplicar uma exponencial),
possibilita uma boa regressão para dados que não possuem comportamento linear.

2.4.3 Redes Neurais

Com uma maior complexidade, o principal modelo explorado foram as redes neurais, escolhidas
pela variedade de customização. Veja a figura 2.1 para uma explicação.

O modelo Keras construı́do é composto de: até 2 camadas densas com ativações lineares, a
quantidade de nós em cada uma varia de acordo com o vetor de caracterı́stica, para a representação
com matriz de Coulomb original e ordenada, que é quadrática, o modelo possui uma camada
densa com 100 nós e outra com 1, já para os autovalores, os resultados fizeram o modelo evo-
luir até restar apenas uma camada densa com 1 nó, que faz o MLP se comportar de maneira
parecida com uma regressão linear; o modelo então foi compilado utilizando loss=MAE, opti-
mizer=default adam e metrics=MAPE.

2.4.4 Outros modelos

Para testes mais diversificados, foram escolhidos outros modelos para serem testados sem ex-
tensa exploração de parâmetros, que são: KNN, Decision Tree e Random Forest.

O KNN é um modelo que não necessita de treino em si, para cada dado novo, ele percorre todos
os dados do conjunto de treino e encontra os K vizinhos mais próximos a partir de métricas
como a distância euclideana, ele então retorna as médias das propriedades dos vizinhos como
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Figura 2.1: Exemplo de uma rede neural MLP, cada nó de camadas ocultas ou de saı́da são
resultados de um valor bias com a soma dos valores da camada anterior multiplicados pelos

respectivos pesos (marcados pelas linhas). O valor do nó então passa por uma função de
ativação, como um efeito para simular a ativação de um neurônio. Então, comparando o

resultado da camada de output com o valor dado de treino, os pesos e bias são atualizados de
maneira a minimizar o erro.

predição. É um modelo que, dependendo da quantidade de dados para treino, as propriedades
podem demorar para serem calculadas.

O Decision Tree e Random Forest são modelos baseados em árvore. No Decision Tree, a partir
de um nó raiz, é calculado com os dados de treino algo que maximize o “ganho de informação”.
Basicamente, o nó divide em dois (ou mais) subconjuntos que possua uma diferença marcante.
Cada divisão então se torna outro nó, no qual é calculado o ganho de informação, dividindo
o subconjunto novamente, de maneira recursiva. A Random Forest nada mais é que várias
Decision Trees, diminuindo a dependência em uma única árvore. Dependendo dos parâmetros
utilizados, o modelo pode ser tão bem treinado para os dados de treino que gera um erro alto
para os dados de teste (chamado de overfitting), o que não é algo desejado.

2.4.5 Validação e Métrica de Erro

Para o treino e validação dos métodos aplicados, utilizou-se a validação cruzada estratificada
com 10 divisões, que foram estratificadas pelo tamanho das moléculas (n). Isso garante que
cada divisão possui a mesma proporção de cada tamanho, diminuindo a variância do erro de
validação.

Para a amostragem de erro, ao invés do Mean Absolute Error (MAE) utilizado na literatura,
será utilizado o Mean Absolute Percentage Error (MAPE). Essa mudança se deve pelo tama-
nho máximo das moléculas, enquanto os conjuntos amplamente explorados na literatura são
divisões do QM9 [34], que são moléculas orgânicas com até 9 átomos “pesados” (C, N, O,
S), as moléculas deste projeto chegam a ter até 315 átomos. Quanto maior o tamanho de uma
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molécula, maior sua energia total, portanto o MAE resultaria em um erro médio aparentemente
inaceitável para moléculas com tamanho pequeno, mas utilizando a porcentagem é mais seguro
afirmar a acurácia dos modelos.



Caṕıtulo

3
Desenvolvimento e Resultados

3.1 Dados

Após a extração dos dados únicos, os conjuntos de dados para treino são compostos dos seguin-
tes valores:

Figura 3.1: Configuração dos conjuntos (MQ2)n, com n = 1 – 16.

Adicionalmente, para que seja realizado testes com estruturas com n ≥ 16, foram adicionadas
novas moléculas para os conjuntos WQ2, com n = 36, 66 e 105.

11
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Figura 3.2: Quantidade de moléculas adicionais para os treinos e testes com n≥ 16. Na
legenda, o número após o conjunto é o total de moléculas daquele grupo.

3.2 Representação via matriz de Coulomb

Utilizando o MoTe2 como base, por ser o conjunto com menor quantidade de dados (espera-se
que os outros conjuntos tenham uma melhor performance pelo maior número de moléculas), a
escolha de qual representação da matriz de Coulomb a ser utilizada foi direta.

Tabela 3.1: MAPE das diferentes representações das moléculas do conjunto MoTe2.

Representação Algoritmo de Regressão MAPE
Original Linear 145.41
Original MLP 1.86e-1

Ordenada Linear 2.31e-4
Ordenada MLP 5.08e-2

Autovalores Linear 4.32e-5
Autovalores MLP 2.24e-4

Observando os resultados da tabela 3.1 acima, pode-se verificar que, do ponto de vista do apren-
dizado de máquina, tanto para a regressão linear quanto para a MLP, os autovalores resultaram
no menor erro.

3.3 Redes Neurais

Devido a customização extensa que as redes neurais possuem, vários testes foram realizados até
o modelo final ser concretizado em um que utilize os melhores parâmetros encontrados.
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3.3.1 Optimizers

A biblioteca Keras possuem uma série de “optimizers”, heurı́sticas responsáveis por definir
parâmetros importantes das redes neurais, como a taxa de aprendizado, momento e outros es-
pecı́ficos de cada heurı́stica.

Tabela 3.2: Exploração dos optimizers. Parâmetros especificados são aqueles que, no treino
com menor MAPE, se diferencia do valor padrão.

Optimizer MAPE
Adadelta() 0.0149
SGD() 0.0033
Adamax(lr=0.01) 0.0032
Adagrad(lr=0.3) 0.0026
RMSprop() 0.0021
Nadam(schedule decay=0.001) 5.18e-4
Adam() 3.41e-4

A partir desses resultados, o optimizer Adam default foi utilizado para os diversos treinos.

3.3.2 Configuração das camadas

A princı́pio, a escolha da quantidade de camadas e de nós partiu do pressuposto: muitas camadas
gera complicações para a regressão e que uma camada inicial com uma quantidade nós similar
ao tamanho do vetor de caracterı́stica é um bom ponto de partida.

Portanto, a partir dessas inferências, os primeiros modelos com a matriz de Coulomb original,
cuja representação para moléculas com até 48 átomos gera um vetor de caracterı́stica de 1176
atributos, foram criados com 2 camadas com ativações lineares: uma com 1000 nós e outra com
1 (a de saı́da), que para o conjunto MoTe2 gerou um MAPE de 3.84e-1. Testes então foram
realizadas até se chegar no modelo final: uma camada com 100 nós e outra com 1, gerando o
MAPE de 1.86e-1. Para a matriz de Coulomb ordenada, esse modelo foi o mesmo, com um
MAPE de 5.08e-2.

Para os autovalores da matriz de Coulomb, o modelo sofreu drásticas mudanças, como expli-
cado na tabela 3.3, o modelo final, com apenas uma camada com ativação linear e 1 nó, é
basicamente uma regressão linear.
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Tabela 3.3: Evolução dos modelos MLP com a representação sendo os autovalores da Matriz
de Coulomb. Os dados utilizados são os do conjunto MoTe2. Nos Modelos, cada número

significa a quantidade de nós em cada camada daquele modelo.

Modelo MAPE
100, 1 3.73e-2
50, 1 1.84e-2
25, 1 1.62e-2
1, 1 7.05e-4
1 2.24e-4

3.4 Resultados dos diversos algoritmos de regressão

A partir então da representação pelos autovalores e utilizando o conjunto MoTe2 como base,
foram aplicados os demais algoritmos de regressão: Linear; Rede Neural MLP; Kernel Ridge
Regression com kernel polinomial 2 (chamado de P2) e polinomial 3 (P3); K Nearest Neighbors
considerando os 5 mais próximos (5NN) e outro com apenas o mais próximo (1NN); Decision
Tree com diferentes critérios para qualidade da divisão, com MAE, mean squared error (MSE)
e Friedman MSE (FMSE); Random Forest também com diferentes critérios de divisão, MAE e
MSE.

Figura 3.3: O MAPE dos diferentes algoritmos de regressão, utilizando o conjunto (MoTe2)n,
n = 1 – 16.
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Figura 3.4: O MAPE dos 3 melhores algoritmos de regressão, utilizando o conjunto
(MoTe2)n, n = 1 – 16.

3.5 Regressão da energia total

Aplicando os 3 melhores algoritmos (Linear, MLP e 1NN) para os demais conjuntos geram o
seguinte resultado:

Figura 3.5: MAPE da energia total de todos os conjuntos (MQ2)n, n = 1 – 16.

O modelo com menor erro se tornou o 1NN, o vizinho mais próximo, apesar do erro ser menor
que a metade do Linear, o 1NN não é necessariamente o melhor regressor, ele possui alguns
problemas que será evidenciado no próximo passo: se houver intervalos de tamanhos que não
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existem no conjunto de treino, o 1NN gera erros muito piores que os outros, já que ele atribui
uma energia de uma molécula de tamanho diferente.

A rede neural MLP neste caso é uma regressão Linear com passos extras desnecessários, ge-
rando um resultado que, com essa configuração, nunca vai ser melhor que a própria Linear.

A Linear em si é a melhor regressão, isso pode se dar pelo fato que todas as informações em
torno das moléculas possuem comportamento linear: o formato das moléculas (MQ2)n é linear
pelo N, a representação com os autovalores, as energias das moléculas de treino (veja a figura
3.6). Todas essas caracterı́sticas fazem a regressão Linear ser surpreendentemente o melhor
modelo de regressão para esses tipos de DMTs.

3.6 Resultados com intervalos entre N

O último passo consiste em expandir o tamanho das moléculas, adicionando no treino as moléculas
adicionais dos conjuntos (WQ2)n, n = 36, 66, 105. As moléculas de N = 8 são também retira-
das para utilizá-las apenas para teste, para que seja possı́vel verificar o comportamento entre os
modelos deste projeto e os cálculos da DFT, o modelo de relaxação atual que demora dias para
ser computado.

Pela figura 3.6 e como evidenciado anteriormente, o modelo do vizinho mais próximo (1NN)
gera valores para N do tamanho existente no conjunto, quanto existem tamanhos em falta, ele
atribui energias de tamanhos diferentes, o que não é interessante para simular a relaxação da
DFT.

A regressão linear e rede neural MLP conseguem realizar regressões relativamente boas para
os intervalos, mas observando a figura 3.7, o erro ainda é muito grande comparado com a
DFT, impossibilitando a simulação dos cálculos da DFT. Enquanto a linear possui um MAE
normalizado por N de 6kcal/mol, a DFT consegue erros máximos de 1kcal/mol para qualquer
valor de N.

3.7 Discussão dos Resultados

Observando os resultados, principalmente a figura 3.7, fica claro que certos modelos de re-
gressão e representações moleculares não são o suficiente para substituir os cálculos de relaxação
da DFT.

O modelo KNN não deve ser utilizado com esse objetivo, como o intuito é calcular as proprie-
dades de moléculas que não possuem o tamanho no conjunto de treino, o resultado nunca seria
satisfatório. E como o processo de relaxação em si causa pequenas mudanças nas moléculas,
usar o KNN para substituir um método com essas caracterı́sticas, além de poder resultar em
energias de tamanhos diferentes, pode resultar em várias moléculas com leves variações terem
a mesma energia prevista.
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Figura 3.6: Resultado da regressão com o conjunto (WTe2)n, n = 1 – 7, 9 – 16, 36, 66, 105.
Testada com moléculas de N = 8, 26, 51, 85.

Figura 3.7: Comparação entre as energias totais resultantes dos cálculos de DFT, do modelo
Linear e do MLP para WTe2n, n = 8. As configurações são compostas apenas das moléculas
pré-expansão dos dados, que são as moléculas finais da relaxação da DFT, ordenadas pela

energia total da DFT.

Na questão do modelo linear, a regressão realizada está mais dependente do tamanho da molécula
que a estrutura dela em si. Observando o comportamento das energias (figura 3.6), é possı́vel ob-
servar claramente a relação entre o tamanho da molécula e a energia, algo que é óbvio do ponto
de vista quı́mico. Mas para o aprendizado de máquina, o modelo de regressão não “sabe” que
deve utilizar a estrutura da molécula, é algo que o vetor de caracterı́stica deve deixar explı́cito,
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e apesar de os autovalores da matriz de Coulomb serem originados da estrutura molecular, o
aspecto mais marcante que se pode obter deles é o tamanho da molécula.

A rede neural possui o mesmo problema do modelo anterior, os autovalores dão uma representação
que o melhor modelo para fazer sua regressão é o linear, portanto faz sentido a rede neural tentar
imitá-lo.

Analisando a figura 3.7, usar a regressão linear com apenas o tamanho da molécula como vetor
de caracterı́stica gera um erro menor que com os autovalores, mas ainda insuficiente para subs-
tituir a relaxação da DFT. Portanto para se obter um modelo capaz de substituir esses cálculos, é
necessário uma representação molecular mais robusta para utilizar no aprendizado de máquina,
algo que contenha informações explı́citas sobre o tamanho, átomos, estrutura, talvez até usar
como base a energia calculada pela regressão linear usando apenas o tamanho da molécula
como vetor de caracterı́stica, de modo que os outros atributos insiram as pequenas variações da
relaxação.



Caṕıtulo

4
Conclusão

4.1 Discussões finais

Algoritmos de computação com mesma finalidade se diferenciam pelas permutações entre
tempo de execução, uso de memória e acurácia. Os cálculos de DFT são extremamente precisos,
com erro de no máximo 1kcal/mol, e mesmo com supercomputadores, o tempo de execução
é enorme. O aprendizado de máquina, em contrapartida, demora milissegundos para predi-
zer neste caso a energia, mas resulta em um maior erro, com uma média de 60kcal/mol para
moléculas com até 315 átomos. O estudo para moléculas deste tamanho não são muito popula-
res, portanto para melhor comparação, esse erro normalizado por N é em torno de 6.3kcal/mol.

Sobre a representação molecular, ela deve ser incrementada, um dos problemas é a falta de
informação suficiente para diferenciar os isômeros dos DMTs. Visto que o menor erro foi
utilizando apenas o tamanho da molécula como vetor de caracterı́stica (figura 3.7), é necessário
uma representação mais robusta que os autovalores da Matriz de Coulomb.

Sobre os modelos de regressão, o KNN se mostrou impróprio como um candidato para substituir
a DFT e nenhum outro obteve um erro suficientemente baixo para simular a relaxação. Caso
a representação molecular seja incrementada, seria necessário uma re-exploração dos modelos,
principalmente das redes neurais.

Portanto, de forma geral, utilizar a Matriz de Coulomb original, ordenada ou seus autovalores
como vetor de caracterı́stica para os DMTs 2D não é o suficiente para gerar um erro baixo o
suficiente para substituir o processo de relaxação da DFT.

19
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4.2 Considerações sobre o curso de graduação

De modo geral, o curso de graduação me ensinou a ter independência, a pesquisar e aprender
de maneira própria. A base ensinada pelas disciplinas iniciais, como Introdução a Ciência de
Computação (ICC), foram essenciais para meu interesse nesse universo de programação, já que
entrei na faculdade sem saber nada sobre.

Em especı́fico para o projeto, as matérias de Aprendizado de Máquina e Redes Neurais foram
fundamentais para o ponto de partida destas ideias, os trabalhos dessas disciplinas ensinaram a
como organizar, tratar os dados e como começar a trabalhar com as redes neurais.

4.3 Sugestões para o curso de graduação

É impossı́vel realçar o quão importante foi a disciplina de ICC, a extensa lista de exercı́cio se
transformou em um gosto por descobrir coisas novas e resolver problemas de programação.
Portanto espero que o cuidado em como essas disciplinas iniciais são ministradas seja mantido.

4.4 Planos para o futuro

Ainda possuo outro semestre de estágio ou projeto de graduação para fazer, pretendo fazer um
estágio e avaliar qual dos dois ambientes de trabalho prefiro.
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