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Resumo

Dicalcogenetos de Metais de Transi¢cao (DMTs) sdo compostos quimicos definidos pela equagao
MQ,, onde M é um metal de transicdo, como molibdénio (Mo) e tungsténio (W), e Q pode ser
enxofre (S), telurio (Te) ou selénio (Se). Eles possuem uma grande gama de morfologias, di-
mensionalidades e aplicacdes e, devido a essas propriedades, tem sido objeto de varios estudos
desde a década de 1960, com o intuito de compreender melhor suas propriedades. No entanto,
um empasse nesses estudos € o requisito computacional para se calcular essas propriedades,
pode-se levar dias para que terminem. Neste quesito, o aprendizado de miquina € importante
para a quimica pois, se for possivel encontrar um erro baixo aceitavel, os milissegundos de
predicdo das ditas propriedades aceleraria em muito os estudos dessas estruturas. Portanto
neste projeto, foi utilizado diferentes modelos de regressao e variagdes da Matriz de Coulomb
para prever a energia total das moléculas de DMTs. Como resultado, a regressao Linear com os
autovalores da Matriz de Coulomb ordenada obteve um erro médio de 3.31e-5%, equivalente a
um erro normalizado de 6.3kcal/mol, um erro elevado impossivel de substituir os cdlculos atu-
ais, que possuem um erro de 1kcal/mol. Concluindo que a Matriz de Coulomb ndo € o suficiente

para gerar os erros baixos esperados, sendo necessario uma representacdo mais robusta.

Palavras-chaves: Matriz de Coulomb, Dicalcogenetos de Metais de Transi¢do, Aprendizado
de Méquina.
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CAPITULO

1

Introducao

Machine learning (ML) € um campo da inteligéncia artificial que concerne o aprendizado pro-
gressivo de maquina através de algoritmos estatisticos [1]. O desenvolvimento da area de ML
se deu para mitigar problemas que surgiam de processos de triagem onerosos [2], baseados em
tentativa e erro [3]. O advento de técnicas de ML, entdo, foi integrado a vérias dreas que de-
mandam a proje¢do de resultados com a observancia de dados prévios, como na engenharia de
processos e controle, além de varios campos de novos materiais para otimizacdo de estocagem
e geracao de energia [1]. Neste sentido, a aplicacdo de técnicas de ML na drea da quimica vem
ganhando crescente atencdo na literatura [4], tendo sido aplicada com sucesso em estudos de
reagOes quimicas, notadamente no sentido de predi¢ao de performance de dada reacdo e quais
os produtos das reagdes quimicas estudadas. A integracdo de técnicas de ML com dreas da
quimica foi determinante para o desenvolvimento de pacotes de ML como o python materials
genomics (Pymatgen) [5], Factsage [6] e Aflow. Desta maneira, se desenvolveu o panorama
de pacotes de alto rendimento high-throughput (HT) para o desenvolvimento de pesquisas que
exijam menor tempo para o desenvolvimento de dreas que possam ser industrialmente tteis no
desenvolvimento de novos materiais funcionais [7].

Dentre os materiais funcionais que tém ganho grande destaque na literatura estdo materiais
bidimensionais (2D), e, em particular, dicalcogenetos de metais de transicdo bidimensionais
(DMTs 2D) [8]. Os DMTs 2D sao definidos pela equacdo quimica MQ;, na qual M é o metal
de transicdo, como Mo, e Q = S, Se, Te. A variedade de composi¢cdes quimicas e os diferentes
ambientes de coordenacdo no entorno dos d&tomos metélicos (politipo), como o octaédrico (1T),
octaédrico distorcido (1T’) e trigonal prismética (2H), faz com que DMTs 2D possuam grande
variedade de propriedades estruturais [9], eletronicas [10] e energéticas [4] que os candidatam

para uma gama sem precedentes de aplicacdes, que vao de catdlise (como na reacao de evolugdo
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do hidrogénio e de reducao do CO;) até o uso como dispositivos fotovoltaicos [11] de espessura
atdmica, uma vez que as camadas de DMTs 2D de metais do grupo 6 sdo compostas de planos
metdlicos entremeados por planos de Q, sendo estas camadas interagentes através da acdo de
interacoes de van der Waals [7].

Em particular, DMTs baseados em molibdénio (Mo) possuem em sua carta de compostos o
MoS,, DMT 2D mais popularmente estudado na literatura [7], que tem encontrado validagdes
tedricas e experimentais para os mais diversos usos de DMTs 2D. Por outro lado, o MoTe,
tem sido o DMT 2D baseado em Mo com o menor nimero de estudos reportados na literatura
[12], revelando, no entanto, propriedades distintas de suas contrapartes, servindo de base para
o estudo de “novas fisicas”, como para semimetais de Weyl [13], isto é, materiais que possuem
carreadores de carga que se comportam como particulas sem massa no ponto no qual as bandas
de conducao e valéncia se cruzam na forma de uma dispersao linear (nodo de Weyl). DMTs ba-
seados em tungsténio (W), como o WS, sdo particularmente importantes devido ao maior raio
atomico do W quando comparado com o Mo, o que permite que DMTs com W na composi¢cao
sejam mais flexiveis em relacdo a modulacdo de propriedades fisico-quimicas através de dopa-
gem [14], além de serem aplicdveis para materiais com aplicacdo em fotonica [15], fotocatélise

[16] e dispositivos com alta pseudocapacitancia [17].

Para que se possa compreender a fisico-quimica basica de DMTs 2D € necessario que se obtenha
conhecimento em nivel atomistico sobre estes sistemas. Tal conhecimento detalhado é capaz
de prover principios de design [18] DMTs 2D energeticamente estaveis € que possam servir
como materiais funcionais [7]. Para a avaliacdo de propriedades fisico-quimicas de DMTs 2D
tém sido utilizada como ferramenta de calculo o formalismo da teoria do funcional da densidade
(DFT) [19], implementado na forma da resolu¢@o auto-consistente das equagdes de Kohn—Sham
(KS) [20] em cddigos computacionais que diferem na representacdo dos orbitais de KS. A
resolucdo das equagdes de KS traz consigo uma escala de tempo que varia entre dias ou semanas
dependendo do tamanho do sistema de DMT 2D de tamanho finito (nanofloco) investigado.
Ademais, as propriedades fisico-quimicas de nanoflocos de DMTs 2D dependem sensivelmente
da geometria do nanofloco [12], o que faz com que a predi¢ao de propriedades fisico-quimicas
destes sistemas precise envolver amostragens de configuracdes. Experimentalmente, o método
de sintese mais utilizado para nanoflocos de DMTs 2D, chemical vapor deposition, CVD [21],
permite a sintese de nanoflocos de distintas geometrias com politipos distintos, fato que inte-
gra predicdes tedricas com a possibilidade de sintese de compostos previamente investigados
através da DFT. Tendo em vista o aumento da agilidade da pesquisa de nanoflocos de DMTs 2D,
diminuindo custo e tempo computacional, isto €, diminuir a escala de tempo de dias para tem-
pos 1rrisorios, na escala de minutos ou segundos, passa pela integracdo adequada de abordagens
de ML aplicadas a estes sistemas [1].

Patra et al. [22] combinaram algoritmos genéticos (GAs) para a geracdo de estruturas com
vacancias de S de monocamadas de MoS; otimizadas com dindmica molecular (DM) para com-

preender os mecanismos de extensdo e coalescéncia de defeitos neste material em escalas de
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tempo de minutos. Na investigacdo foi possivel determinar a formacao da fase 1T no entorno
das vacancias de enxofre, diferindo do politipo de monocamada estudada, 2H. Além do mais,
os resultados obtidos através da combinacdo ML/DM foram validados através de microscopia
eletronica. Zhao et al. [1] aplicaram o procedimento de aplicacdo de métodos de amostragem
e selecdo de DMTs que encontrassem uso na detecgio de Hg? baseados em ML, como imple-
mentado no Pymatgen, para selecionar previamente os materiais que seriam avaliados através
de célculos DFT. Portanto, os métodos de ML serviram como base de pré-processamento de
selecdo de materiais que poderiam encontrar as propriedades desejadas. Estabeleceu-se que o
DMT com maior capacidade de deteccdo de Hg? foi o NiS,.

Tawfik et al. [3] realizaram a predicao de propriedades fisico-quimicas de bicamadas de DMTs
2D, encontrando a diminui¢ao de cinco vezes no tempo de tratamento entre as técnicas aplicadas
e os cdlculos de DFT. Neste estudo, utilizou-se um conjunto de treinamento de 267 estruturas
calculadas por DFT em um conjunto de testes de 1500 bicamadas, sendo o conjunto de testes
provindo de Miro et al. [23]. Ademais, com os resultados obtidos, os autores ressaltam ser
possivel estudar 1,7 milhdes de possibilidades de bicamadas de DMTs através das estruturas
reportadas por Mounet et al. (dentro de c), que reporta 1800 blocos de constru¢do de bicamadas

para materiais 2D.

No entanto, nao hé na literatura nenhum estudo que combine técnicas de ML para o estudo de
amostragens de nanoflocos de DMTs 2D. Para explorar estes aspectos, utilizamos conjuntos de
DMTs no formato (WQ3),, onde W =Mo ou W, Q =S, Se ou Te, n = 1 — 16 para os conjuntos
com Moen=1-16, 36, 66, 105 para os com W. Os modelos de ML para regressao, como
Linear, Kernel Ridge e Redes Neurais Multi layer Perceptron [24], foram aplicados utilizando
as representacdes obtidas através da Matriz de Coulomb [2, 25] para prever a energia total das

moléculas.

O melhor modelo de regressdao da energia total para estas moléculas com até 315 adtomos foi
o Linear, utilizando os autovalores da Matriz de Coulomb ordenada como representacdo. Foi
obtido um erro médio absoluto de 3.31e-5%, que embora parega baixo, ele se traduz para um
erro médio normalizado por n de 6.3kcal/mol. A DFT, para comparagao, produz erros maximos
de 1kcal/mol.

Concluiu-se que os autovalores ndao sao o suficiente para gerar erros comparaveis a DFT. A
regressao Linear € melhor baseada apenas no tamanho, gerando um erro médio normalizado
de 5.5kcal/mol, também ainda insuficiente para reproduzir o comportamento de relaxacao da
DFT. E necessdrio uma representacio mais robusta que os autovalores, por exemplo algo que

contenha uma energia base para o tamanho da molécula além da estrutura.
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CAPITULO

2

Metodologia

Para realizar o objetivo de aplicar modelos de aprendizado de maquinas nos DMTs e prever as
suas propriedades de maneira mais rdpida que a DFT, alguns passos sdo necessarios: reunir,
organizar e padronizar os dados existentes; representar as moléculas em um vetor de carac-

teristica; selecionar os modelos para regressao, treind-los e finalmente testa-los.

Para isso, serd utilizada a linguagem Python [26], especificamente as bibliotecas: numpy, scikit-
learn e keras. O Numpy [27] fornece diversas fun¢des de manipulagdo de vetores, dlgebra linear
e outras operacOes matematicas mais genéricas. O Scikit-Learn [28] € uma das bibliotecas mais
utilizadas em Python para aprendizado de maquina, possuindo diversos métodos para mineragao
de dados e analise de dados. Por fim, o Keras [29] fornece uma interface de alto nivel a bibli-
oteca TensorFlow [30], que proveem rotinas de alto desempenho para treinamento de modelos

de redes neurais.

2.1 Cronograma

Este trabalho teve inicio em Janeiro de 2019 como um projeto de Iniciagdo Cientifica. O crono-
grama entao foi criado de maneira que o primeiro semestre fosse realizado atividades seguindo
a mesma sequéncia de etapas aprendidas na disciplina SCC5871 de Aprendizado de Maquina.

Veja a tabela 2.1 para mais detalhes.
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Tabela 2.1: Atividades Planejadas

Inicio Fim Descricao

01/02/2019 15/02/2019 Atividade 1: Familiarizacdo com os dicalcogenetos

15/02/2019 15/03/2019 Atividade 2: Padronizacdo dos Dados

15/03/2019 15/04/2019 Atividade 3: Estudo e uso da Matriz de Coulomb

15/04/2019 01/10/2019 Atividade 4: Estudo e uso dos algoritmos de Aprendizado de
Maquina

01/10/2019 01/11/2019 Atividade 5: Analise dos resultados e escrita do TCC

01/02/2019 30/12/2019 Atividade 6: Participacdo nos workshops e semindrios do

grupo QTNano

2.2 Dados

Os dados do projeto sao formados por 6 conjuntos de treinamento, compostos por isdmeros
bidimensionais de tamanho finito (nanoflocos) e separados pela configuracdo molecular. Os
conjuntos sdo formados por: (i) (MoQ3),, @ =S, Se, Tecomn=1-16 ¢ (i1)) (WQ2),, O =
S, Se, Te comn =1 - 16, 36, 66, 105. Os conjuntos de (i) foram obtidos através do trabalho
de Caturello et al. [12], enquanto que do trabalho de Da Silva et al. [18] foram obtidos os
conjuntos utilizados em (ii). Para o conjunto de teste utilizou-se nanoflocos gerados através do

método drunk-walk do proprio grupo QTNano.

Para cada uma dessas moléculas, existe um arquivo de saida do FHI-aims [31], o algoritmo
utilizado para a calcular as energias totais dos isdmeros, que utiliza o formalismo da teoria do
funcional de densidade (DFT). O processo de avaliacdo de energia total € associado ao processo
de relaxacdo estrutural, algoritmo que causa transformag¢des na estrutura molecular em busca
da minima energia, como critério de parada, o processo € terminado quando a diferenca de
energia entre dois passos ou a forga total atuando sobre os d&tomos do sistema € abaixo de um
threshold. Uma vez que um minimo de energia potencial é alcancado, a relaxagdo € finalizada.
As propriedades fisico-quimicas dos sistemas otimizados em todos os passos de otimiza¢do dos

célculos sao calculadas e estocadas nos arquivos de saida do programa.

A partir desse arquivo de saida, foi aplicado expressoes regulares para extrair as informacoes,
que sdo: a estrutura molecular e a energia total. A estrutura é salva em um arquivo no formato
“M(n)Q(2*n)_numero-da-estrutura_id-da-iteracdo.xyz”, contendo cada dtomo da molécula se-
guido da sua posi¢ao no eixo X, Y e Z, e a energia (em elétrons-volt) de cada molécula € salva

em uma tabela .csv.

O préximo passo € verificar a integridade desses dados, foi observado que existem dtomos di-
ferentes com a mesma energia, devido ao truncamento que o FHI-aims realiza na escrita do
arquivo de saida, ou seja, as variacoes foram pequenas o suficiente para as energias trunca-
das serem iguais. Portanto, para que o conjunto se torne balanceado com energias tnicas, foi

retirado as duplicadas para moléculas de mesmo tamanho.
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Em resumo, para cada conjunto, existe os arquivos .xyz contendo a estrutura de cada molécula
dos conjuntos e uma tabela .csv com o nome da molécula e sua energia, onde todas as energias

sa0 unicas.

2.3 Representacao molecular

Os algoritmos de aprendizado de mdquina normalmente sdo compostos de dados padronizados
para que todas as varidveis estejam na mesma ordem de grandeza. Para isso, € necessdrio entao
representar os dados de maneira relevante e de mesma dimensionalidade, chamado de vetor
de caracteristica. Neste projeto, esse vetor precisa representar tanto as moléculas de 3 dtomos

quanto as de 315.

Para isso, serd utilizada a matriz de Coulomb [2] e suas variagdes: Ordenada e Autovalores
[25]. A matriz de Coulomb gera uma representacdo matricial de uma molécula, levando em

considerac@o os nimeros atdmicos e a posicao de cada dtomo. Ela é gerada a partir da equacao:

0,52&’4 ,seax=p3
Mg =1 27, . 2.1)
Ra—Rg| ’

na qual se utiliza as coordenadas cartesianas, {Ry}, enquanto que Z, sdo as cargas nucleares

dos a-ésimos atomos componentes dos sistemas.

O tamanho da matriz ndo € invaridvel pelo da molécula, portanto ela é transformada em uma
matriz MxM, onde M € o tamanho maximo das moléculas do conjunto, € 0s novos espacos
sao preenchidos com zero. Em sequéncia, é observado que a matriz é simétrica pela diagonal,
portanto apenas a triangular superior € utilizada, achatando-a para finalmente considerar essa

representacdo um vetor de caracteristica.

As outras representacdes possuem passos extras: a matriz de Coulomb Ordenada € ordenada
pela soma das linhas antes da separacdo da triangular superior; os Autovalores sdo literalmente
os autovalores da matriz ordenada, gerando uma representagdo linear ao tamanho da molécula
ao invés da quadratica das matrizes anteriores. Em resumo, os arquivos .xyz sao transformados
em vetores de caracteristicas, existem aqueles quadraticos: a matriz original e a ordenada; e

linear: os autovalores.

2.4 Modelos de Regressao

Possuindo os dados em vetores de caracteristicas, € necessario escolher modelos de regressao
para mapear a entrada para a saida desejada, isto €, conseguir a partir da estrutura molecular
prever a energia total com rapidez. Como aprendizado de maquina ndo possui um modelo

universal para se aplicar em todos os problemas, alguns foram escolhidos para serem utilizados
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no projeto: Linear, Kernel Ridge, Rede Neural, K-Nearest Neighbors (KNN), Decision Tree e
Random Forest [24, 32, 33].

2.4.1 Linear

Sendo uma das regressdes mais simples, a Linear calcula um hiperplano que minimize a soma
das distancias entre a propriedade sendo prevista e o hiperplano. Se o problema for linearmente

separavel, esse modelo produz bons resultados. A regressao é dada pela férmula:

m
Y =PBo+ ) X;B; (2.2)
j=1
no qual Y € o valor da propriedade predita, X é o vetor de caracteristica, m é o tamanho desse

vetor e ; sdo os pardmetros ocultos da regressao.

2.4.2 Kernel Ridge Polinomial

Como uma escolha levemente mais complexa que o modelo anterior, o Kernel Ridge foi es-
colhido por conseguir resolver problemas ndo lineares. Utilizando-se do truque de kernel, que
consiste em realizar transformagdes no vetor de caracteristica (como aplicar uma exponencial),

possibilita uma boa regressao para dados que ndo possuem comportamento linear.

2.4.3 Redes Neurais

Com uma maior complexidade, o principal modelo explorado foram as redes neurais, escolhidas

pela variedade de customizacdo. Veja a figura 2.1 para uma explicacgao.

O modelo Keras construido é composto de: até 2 camadas densas com ativagdes lineares, a
quantidade de nés em cada uma varia de acordo com o vetor de caracteristica, para a representacao
com matriz de Coulomb original e ordenada, que é quadratica, o modelo possui uma camada
densa com 100 nés e outra com 1, ja para os autovalores, os resultados fizeram o modelo evo-
luir até restar apenas uma camada densa com 1 nd, que faz o MLP se comportar de maneira
parecida com uma regressao linear; o modelo entdo foi compilado utilizando loss=MAE, opti-

mizer=default adam e metrics=MAPE.

2.4.4 Outros modelos

Para testes mais diversificados, foram escolhidos outros modelos para serem testados sem ex-

tensa exploracdo de parametros, que sao: KNN, Decision Tree e Random Forest.

O KNN é um modelo que nao necessita de treino em si, para cada dado novo, ele percorre todos
os dados do conjunto de treino e encontra os K vizinhos mais préximos a partir de métricas

como a distancia euclideana, ele entdo retorna as médias das propriedades dos vizinhos como
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Bias 1 Bias 2

Camada
de Output

Camada
de Input

Camada Camada
Oculta 1 Oculta 2

Figura 2.1: Exemplo de uma rede neural MLP, cada né de camadas ocultas ou de saida sdo
resultados de um valor bias com a soma dos valores da camada anterior multiplicados pelos
respectivos pesos (marcados pelas linhas). O valor do né entio passa por uma fungdo de
ativacdo, como um efeito para simular a ativagao de um neurdénio. Entdo, comparando o
resultado da camada de output com o valor dado de treino, os pesos e bias sdo atualizados de
maneira a minimizar o erro.

predicdo. E um modelo que, dependendo da quantidade de dados para treino, as propriedades

podem demorar para serem calculadas.

O Decision Tree e Random Forest sdo modelos baseados em arvore. No Decision Tree, a partir
de um no raiz, é calculado com os dados de treino algo que maximize o “ganho de informagao™.
Basicamente, o n6 divide em dois (ou mais) subconjuntos que possua uma diferenca marcante.
Cada divisdo entdo se torna outro nd, no qual é calculado o ganho de informagao, dividindo
o subconjunto novamente, de maneira recursiva. A Random Forest nada mais € que vérias
Decision Trees, diminuindo a dependéncia em uma tnica drvore. Dependendo dos pardmetros
utilizados, o modelo pode ser tao bem treinado para os dados de treino que gera um erro alto

para os dados de teste (chamado de overfitting), o que ndo é algo desejado.

2.4.5 \Validacao e Métrica de Erro

Para o treino e validagao dos métodos aplicados, utilizou-se a validacao cruzada estratificada
com 10 divisdes, que foram estratificadas pelo tamanho das moléculas (n). Isso garante que
cada divisdo possui a mesma propor¢do de cada tamanho, diminuindo a variancia do erro de
validacao.

Para a amostragem de erro, ao invés do Mean Absolute Error (MAE) utilizado na literatura,
seré utilizado o Mean Absolute Percentage Error (MAPE). Essa mudanca se deve pelo tama-
nho maximo das moléculas, enquanto os conjuntos amplamente explorados na literatura sao
divisdes do QM9 [34], que sdao moléculas organicas com até 9 dtomos “pesados” (C, N, O,

S), as moléculas deste projeto chegam a ter até 315 dtomos. Quanto maior o tamanho de uma
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molécula, maior sua energia total, portanto o MAE resultaria em um erro médio aparentemente

inaceitdvel para moléculas com tamanho pequeno, mas utilizando a porcentagem € mais seguro

afirmar a acuracia dos modelos.
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3

Desenvolvimento e Resultados

3.1 Dados

Ap0s a extracdo dos dados tnicos, os conjuntos de dados para treino sao compostos dos seguin-

tes valores:

Quantidade de moléculas nos conjuntos de dados

2000 Mo52 MoSe2 MoTe2 wWs2 wWse2 WTe2
Total Tota Total Total Total Total
0 6641 1697 4616 5033 4581 10951
L
O 1500
w
£
o 10001
=
(@]
]
e 500
3
=
0

1 8 161 8 161 8 161 8 161 8 161 8 16
N

Figura 3.1: Configuracdo dos conjuntos (M(Q3),, comn =1 —16.

Adicionalmente, para que seja realizado testes com estruturas com n > 16, foram adicionadas

novas moléculas para os conjuntos W(Q5, com n = 36, 66 e 105.

11
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Moléculas adicionais de WQ2

1000
WS2 - 1559
% WSe2 - 629
S 800 mmm wTe2 - 1415
(U]
e
o
600
-
L
o 400
| -
£
S 200
=
0 36 66 105
N

Figura 3.2: Quantidade de moléculas adicionais para os treinos e testes com n > 16. Na
legenda, o nimero apds o conjunto € o total de moléculas daquele grupo.

3.2 Representacao via matriz de Coulomb

Utilizando o MoTe; como base, por ser o conjunto com menor quantidade de dados (espera-se
que os outros conjuntos tenham uma melhor performance pelo maior nimero de moléculas), a

escolha de qual representacdo da matriz de Coulomb a ser utilizada foi direta.

Tabela 3.1: MAPE das diferentes representacdes das moléculas do conjunto MoTe.

Representacao Algoritmo de Regressaio MAPE

Original Linear 145.41
Original MLP 1.86e-1
Ordenada Linear 2.31e-4
Ordenada MLP 5.08e-2
Autovalores Linear 4.32e-5
Autovalores MLP 2.24e-4

Observando os resultados da tabela 3.1 acima, pode-se verificar que, do ponto de vista do apren-
dizado de mdaquina, tanto para a regressao linear quanto para a MLP, os autovalores resultaram

no menor €rro.

3.3 Redes Neurais

Devido a customizacao extensa que as redes neurais possuem, varios testes foram realizados até

o modelo final ser concretizado em um que utilize os melhores parametros encontrados.
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3.3.1 Optimizers

_— vem u L. imizers”, heurfsti (vei .
A biblioteca Keras possuem uma série de “optimizers”, heuristicas responsdveis por definir
parametros importantes das redes neurais, como a taxa de aprendizado, momento e outros es-

pecificos de cada heuristica.

Tabela 3.2: Exploracdo dos optimizers. Parametros especificados sdo aqueles que, no treino
com menor MAPE, se diferencia do valor padrao.

Optimizer MAPE
Adadelta() 0.0149
SGD() 0.0033
Adamax(Ir=0.01) 0.0032
Adagrad(Ir=0.3) 0.0026
RMSprop() 0.0021
Nadam(schedule _decay=0.001) 5.18e-4
Adam() 341e-4

A partir desses resultados, o optimizer Adam default foi utilizado para os diversos treinos.

3.3.2 Configuracao das camadas

A principio, a escolha da quantidade de camadas e de nds partiu do pressuposto: muitas camadas
gera complicacdes para a regressao e que uma camada inicial com uma quantidade nds similar

ao tamanho do vetor de caracteristica € um bom ponto de partida.

Portanto, a partir dessas inferéncias, os primeiros modelos com a matriz de Coulomb original,
cuja representacdo para moléculas com até 48 dtomos gera um vetor de caracteristica de 1176
atributos, foram criados com 2 camadas com ativacdes lineares: uma com 1000 nés e outra com
1 (a de saida), que para o conjunto MoTe, gerou um MAPE de 3.84e-1. Testes entdo foram
realizadas até se chegar no modelo final: uma camada com 100 nds e outra com 1, gerando o
MAPE de 1.86e-1. Para a matriz de Coulomb ordenada, esse modelo foi o mesmo, com um
MAPE de 5.08e-2.

Para os autovalores da matriz de Coulomb, o modelo sofreu drasticas mudancas, como expli-
cado na tabela 3.3, o modelo final, com apenas uma camada com ativacdo linear e 1 no, é

basicamente uma regressao linear.
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Tabela 3.3: Evolucdo dos modelos MLP com a representacdo sendo os autovalores da Matriz
de Coulomb. Os dados utilizados sao os do conjunto MoTe,. Nos Modelos, cada nimero
significa a quantidade de nés em cada camada daquele modelo.

Modelo MAPE

100,1  3.73e-2
50,1  1.84e-2
25,1  1.62e-2
1,1 7.05e-4

1 2.24e-4

3.4 Resultados dos diversos algoritmos de regressao

A partir entdo da representacdo pelos autovalores e utilizando o conjunto MoTe; como base,
foram aplicados os demais algoritmos de regressdo: Linear; Rede Neural MLP; Kernel Ridge
Regression com kernel polinomial 2 (chamado de P2) e polinomial 3 (P3); K Nearest Neighbors
considerando os 5 mais proximos (SNN) e outro com apenas o mais préximo (1NN); Decision
Tree com diferentes critérios para qualidade da divisdo, com MAE, mean squared error (MSE)
e Friedman MSE (FMSE); Random Forest também com diferentes critérios de divisdo, MAE e
MSE.

c x1072 Validacao dos modelos de regressao
I Kernel Ridge Regression
Il Decision Tree
4| I K Nearest Neighbors
I Random Forest
m 3
o
<C
=5
1
0_

P2 P3 FMSE MAE MSE 5NN MAE MSE

Figura 3.3: O MAPE dos diferentes algoritmos de regressao, utilizando o conjunto (MoTey),,
n=1-16.
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x10~* Validacao dos melhores modelos de regressao

B Linear
2.0 I Multilayer Perceptron
Il K Nearest Neighbors
1.5
L
o
<
=10
0.5
0.0°

Linear MLP INN

Figura 3.4: O MAPE dos 3 melhores algoritmos de regressao, utilizando o conjunto
(MoTey),, n=1-16.
3.5 Regressao da energia total

Aplicando os 3 melhores algoritmos (Linear, MLP e 1NN) para os demais conjuntos geram o
seguinte resultado:

3.0 x1074 Validacao de todos os conjuntos

I Linear
s MLP
I 1NN

2.5

2.0

15

MAPE

1.0

0.5

0.0°

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

Figura 3.5: MAPE da energia total de todos os conjuntos (MQz),, n =1 —16.

O modelo com menor erro se tornou o 1NN, o vizinho mais préximo, apesar do erro ser menor
que a metade do Linear, o 1NN ndo € necessariamente o melhor regressor, ele possui alguns

problemas que serd evidenciado no préximo passo: se houver intervalos de tamanhos que nio
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existem no conjunto de treino, o 1NN gera erros muito piores que os outros, ja que ele atribui

uma energia de uma molécula de tamanho diferente.

A rede neural MLP neste caso é uma regressdo Linear com passos extras desnecessarios, ge-

rando um resultado que, com essa configuracdo, nunca vai ser melhor que a propria Linear.

A Linear em si € a melhor regressado, isso pode se dar pelo fato que todas as informacdes em
torno das moléculas possuem comportamento linear: o formato das moléculas (MQ>),, € linear
pelo N, a representacdo com os autovalores, as energias das moléculas de treino (veja a figura
3.6). Todas essas caracteristicas fazem a regressdo Linear ser surpreendentemente o melhor

modelo de regressdo para esses tipos de DMTs.

3.6 Resultados com intervalos entre N

O ultimo passo consiste em expandir o tamanho das moléculas, adicionando no treino as moléculas
adicionais dos conjuntos (WQ2),, n = 36, 66, 105. As moléculas de N = 8 sdo também retira-
das para utiliza-las apenas para teste, para que seja possivel verificar o comportamento entre os
modelos deste projeto e os calculos da DFT, o modelo de relaxacdo atual que demora dias para

ser computado.

Pela figura 3.6 e como evidenciado anteriormente, o modelo do vizinho mais préoximo (1NN)
gera valores para N do tamanho existente no conjunto, quanto existem tamanhos em falta, ele
atribui energias de tamanhos diferentes, o que ndo ¢é interessante para simular a relaxacdo da
DFT.

A regressdo linear e rede neural MLP conseguem realizar regressdes relativamente boas para
os intervalos, mas observando a figura 3.7, o erro ainda € muito grande comparado com a
DFT, impossibilitando a simulagcdo dos calculos da DFT. Enquanto a linear possui um MAE
normalizado por N de 6kcal/mol, a DFT consegue erros maximos de 1kcal/mol para qualquer
valor de N.

3.7 Discussao dos Resultados

Observando os resultados, principalmente a figura 3.7, fica claro que certos modelos de re-
gressdo e representagdes moleculares nao sao o suficiente para substituir os clculos de relaxagao
da DFT.

O modelo KNN ndo deve ser utilizado com esse objetivo, como o intuito € calcular as proprie-
dades de moléculas que ndo possuem o tamanho no conjunto de treino, o resultado nunca seria
satisfatério. E como o processo de relaxacdo em si causa pequenas mudangas nas moléculas,
usar o KNN para substituir um método com essas caracteristicas, além de poder resultar em
energias de tamanhos diferentes, pode resultar em vdrias moléculas com leves variagdes terem

a mesma energia prevista.
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x107 Regressao com intervalos de N
0 =, - Energias de treino
> T, = Linear
v ) « MLP
= —2 | 1NN
v - -
‘©
s :
4=
E z -
o —6 B
—_
Q "
w
_8 B
1 16 26 36 51 66 85 105
N

Figura 3.6: Resultado da regressdao com o conjunto (WTej),,n=1-7,9 — 16, 36, 66, 105.
Testada com moléculas de N = 8, 26, 51, 85.

—g8.2788e5 Comparacao entre energias totais
5

T —5.5 ~
o —
- —6.0
C = | inear
o) —6.5 . -
el === | inear, N como vetor de caracteristica
Q
c —-7.0 m— DFT
LL] — M LP
—7.5
_8.0 WW

Configuracoes

Figura 3.7: Comparacao entre as energias totais resultantes dos cédlculos de DFT, do modelo
Linear e do MLP para WTe,,, n = 8. As configuracdes sdo compostas apenas das moléculas
pré-expansao dos dados, que sao as moléculas finais da relaxa¢do da DFT, ordenadas pela
energia total da DFT.

Na questdo do modelo linear, a regressao realizada esta mais dependente do tamanho da molécula
que a estrutura dela em si. Observando o comportamento das energias (figura 3.6), € possivel ob-
servar claramente a relagdo entre o tamanho da molécula e a energia, algo que é 6bvio do ponto
de vista quimico. Mas para o aprendizado de mdquina, o modelo de regressao ndo “sabe” que

deve utilizar a estrutura da molécula, € algo que o vetor de caracteristica deve deixar explicito,
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e apesar de os autovalores da matriz de Coulomb serem originados da estrutura molecular, o

aspecto mais marcante que se pode obter deles € o tamanho da molécula.

A rede neural possui 0 mesmo problema do modelo anterior, os autovalores dio uma representacao
que o melhor modelo para fazer sua regressao € o linear, portanto faz sentido a rede neural tentar
imita-lo.

Analisando a figura 3.7, usar a regressao linear com apenas o tamanho da molécula como vetor
de caracteristica gera um erro menor que com os autovalores, mas ainda insuficiente para subs-
tituir a relaxacdo da DFT. Portanto para se obter um modelo capaz de substituir esses calculos, €
necessario uma representacao molecular mais robusta para utilizar no aprendizado de maquina,
algo que contenha informacdes explicitas sobre o tamanho, d4tomos, estrutura, talvez até usar
como base a energia calculada pela regressdo linear usando apenas o tamanho da molécula
como vetor de caracteristica, de modo que os outros atributos insiram as pequenas variacoes da

relaxacao.
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4

Conclusao

4.1 Discussoes finais

Algoritmos de computacdo com mesma finalidade se diferenciam pelas permutacdes entre
tempo de execugdo, uso de memoria e acuracia. Os célculos de DFT sao extremamente precisos,
com erro de no maximo lkcal/mol, e mesmo com supercomputadores, o tempo de execugcdo
¢ enorme. O aprendizado de maquina, em contrapartida, demora milissegundos para predi-
zer neste caso a energia, mas resulta em um maior erro, com uma média de 60kcal/mol para
moléculas com até 315 dtomos. O estudo para moléculas deste tamanho nio sdo muito popula-

res, portanto para melhor comparagao, esse erro normalizado por N € em torno de 6.3kcal/mol.

Sobre a representacdo molecular, ela deve ser incrementada, um dos problemas é a falta de
informacao suficiente para diferenciar os isdmeros dos DMTs. Visto que o menor erro foi
utilizando apenas o tamanho da molécula como vetor de caracteristica (figura 3.7), é necessario

uma representacao mais robusta que os autovalores da Matriz de Coulomb.

Sobre os modelos de regressao, o KNN se mostrou impréprio como um candidato para substituir
a DFT e nenhum outro obteve um erro suficientemente baixo para simular a relaxacdo. Caso
a representacdo molecular seja incrementada, seria necessario uma re-exploracao dos modelos,

principalmente das redes neurais.

Portanto, de forma geral, utilizar a Matriz de Coulomb original, ordenada ou seus autovalores
como vetor de caracteristica para os DMTs 2D ndo € o suficiente para gerar um erro baixo o

suficiente para substituir o processo de relaxacdo da DFT.

19
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4.2 Consideracoes sobre o curso de graduacao

De modo geral, o curso de graduagcdo me ensinou a ter independéncia, a pesquisar e aprender
de maneira propria. A base ensinada pelas disciplinas iniciais, como Introdu¢do a Ciéncia de
Computacgado (ICC), foram essenciais para meu interesse nesse universo de programacao, ja que

entrei na faculdade sem saber nada sobre.

Em especifico para o projeto, as matérias de Aprendizado de Mdquina e Redes Neurais foram
fundamentais para o ponto de partida destas ideias, os trabalhos dessas disciplinas ensinaram a

como organizar, tratar os dados e como comegar a trabalhar com as redes neurais.

4.3 Sugestoes para o curso de graduacao

E impossivel realcar o qudo importante foi a disciplina de ICC, a extensa lista de exercicio se
transformou em um gosto por descobrir coisas novas e resolver problemas de programacao.

Portanto espero que o cuidado em como essas disciplinas iniciais sdo ministradas seja mantido.

4.4 Planos para o futuro

Ainda possuo outro semestre de estagio ou projeto de graduacao para fazer, pretendo fazer um

estagio e avaliar qual dos dois ambientes de trabalho prefiro.
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