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RESUMO 

 

SIMÕES, Priscila B. O. Impactos de Internet of Things e Data Streaming na 

Manutenção 4.0. 2022. P. 60. Monografia (MBA em Internet of Things). Programa 

de Educação Continuada em Engenharia da Escola Politécnica da Universidade de 

São Paulo. São Paulo. 2020. 

 

Historicamente, em organizações tradicionais, ações e pesquisas relacionadas à 
manutenção não recebiam grande atenção, investimentos ou esforços. Costumava-
se trazer o assunto à tona apenas na ocorrência de falhas, o que causava grande 
aumento nos custos operacionais em médio e longo prazo. Porém nota-se, nos 
últimos anos, maiores intenções de investimentos financeiros e iniciativas de 
pesquisa no assunto por conta das exigências de mercado relacionadas ao tempo e 
à qualidade dos produtos ofertados. Assim, a manutenção tem despertado maior 
interesse das organizações e das instituições de pesquisa. A maior complexidade 
dos equipamentos atuais e consequente elevação dos custos de manutenção é um 
dos fatores responsáveis pela mudança de foco da importância da manutenção nos 
mais diversos processos produtivos. Com o advento da Indústria 4.0 e a 
consequente utilização ubíqua de dados no funcionamento e gestão dos processos, 
desenvolveu-se a Manutenção 4.0. Esta possui como objetivo estabelecer ações de 
prevenção com base na comunicação entre dispositivos e análise de dados 
coletados em diversas fontes, a fim de evitar paradas em equipamentos devido a 
falhas e a queda na qualidade dos produtos derivados do processo de produção. 
Assim, o objetivo deste trabalho é analisar a utilização de data streaming em 
sistemas de Manutenção 4.0 apoiados pela IoT. Utilizou-se como método a busca de 
referências em bases de artigos científicos, livros especializados, sites de 
fornecedores de tecnologia e portais de notícias. Elaborou-se um comparativo entre 
estudos de caso de aplicação de data streaming na manutenção, em diferentes 
áreas. Conclui-se que é possível aplicar os princípios relacionados à Manutenção 
4.0 além da manufatura, baseados em dados em tempo real. 
 

Palavras-chave: Internet das Coisas, Indústria 4.0, manutenção, data streaming. 

 



 

ABSTRACT 

 

SIMÕES, Priscila B. O. Impactos de Internet of Things e Data Streaming na 

Manutenção 4.0. 2022. P. 60. Monografia (MBA em Internet of Things). Programa 

de Educação Continuada em Engenharia da Escola Politécnica da Universidade de 

São Paulo. São Paulo. 2020. 

 

Historically, in traditional organizations, actions and research related to maintenance 
did not receive much attention, investment or effort. It used to be brought up only in 
the event of failures, which caused a large increase in operating costs in medium and 
long terms. However, in recent years, more intentions of financial investments and 
research initiatives on the subject have been noted, due to market requirements 
related to time and the quality of the products offered. Thus, maintenance has got 
interest from organizations and research institutions. The greater complexity of 
current equipment and the consequent increase in maintenance costs is one of the 
factors responsible for the change in focus of the importance of maintenance in the 
most diverse production processes. With the advent of Industry 4.0 and the 
consequent ubiquitous use of data in the operation and management of processes, 
Maintenance 4.0 was developed. This aims to establish preventive actions based on 
communication between devices and data analysis, collected from different sources, 
in order to avoid equipment downtime due to failures and the drop in the quality of 
products derived from the production process. Thus, the objective of this work is to 
analyze the use of data streaming in Maintenance 4.0 systems supported by IoT. The 
method used was to search for references in scientific articles databases, specialized 
books, technology supplier and news websites. A comparison between case studies 
of data streaming application in maintenance, in different areas, was made. It is 
concluded that it is possible to apply the principles related to Maintenance 4.0 
beyond manufacturing, based on real-time data. 
 

Keywords: Internet of Things, Industry 4.0, maintenance, data streaming  
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1. INTRODUÇÃO 

 

Internet of Things (IoT) (do inglês, Internet das Coisas) é uma realidade em 

crescente expansão. De acordo com o relatório publicado em setembro de 2021 pelo 

IOT ANALYTICS (2021) (instituto alemão que fornece dados de mercado ou da 

indústria referentes à IoT), em 2020 existiam 11,3 bilhões de dispositivos conectados 

e a previsão para 2025 é que este número atinja 27,1 bilhões de dispositivos. O 

número real é ainda maior, já que a pesquisa não leva em conta a quantidade de 

sensores individuais existentes. Sinha (2021) descreve que o estudo se refere à 

quantidade de dispositivos que concentram sensores conectados via redes 

cabeadas, celulares, Low Power Wide Area Network (LPWAN) (do inglês, rede de 

baixa energia e longo alcance), Wireless Personal Area Network (WPAN) (do inglês, 

rede de área pessoal sem fio) e satélite. 

 

Apesar de ser uma atividade que não costuma receber a devida atenção em 

indústrias baseadas em modelos tradicionais, a gestão de manutenção é 

responsável por processos que visam corrigir e evitar efeitos de falhas. De acordo 

com Nepomuceno (2014), historicamente, a manutenção assumia formatos 

meramente corretivos; ou seja, ações eram tomadas apenas em caso de ocorrência 

de falha ou incidente. Posteriormente foram introduzidos métodos proativos, tais 

como a programação periódica de revisão de equipamentos e substituição de 

componentes. Na atualidade, o foco da manutenção gradualmente progride para 

métodos preditivos e utiliza tecnologias avançadas como apoio. 

 

Segundo relatório divulgado por Lueth (2020), a indústria era o campo que mais 

possuía projetos de IoT em 2020. A manutenção industrial compõe este campo; 

adotar processos baseados em IoT permite monitorar os equipamentos, coletar e 

armazenar dados e identificar oportunidades de melhorias a fim de evitar 

indisponibilidades no processo de produção. Interrupções podem ocorrer por 

diversos motivos, desde a substituição de peças em casos de falha até a 

programação periódica de atividades de manutenção. Conforme Stevan Jr et al. 

(2018), este monitoramento pode ser apoiado por processos baseados em dados e 

trazer benefícios para a operação e para o negócio. 
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De acordo com os números divulgados por IOT ANALYTICS (2021a), a manutenção 

preditiva passa por um processo de expansão nos últimos cinco anos. Em 2016 era 

adotada em pequenos nichos, poucos dispositivos eram conectados e o retorno 

sobre o investimento era desconhecido. O potencial crescimento previsto para 2025 

é que a manutenção preditiva seja ampliada para modelos mais complexos, 

acessíveis a diferentes perfis de usuários e formada por conexões mais complexas 

entre dispositivos. Além disso, Bruegge (2021) afirma que o investimento financeiro 

passará de US$ 1,5 bilhões a US$ 28 bilhões no intervalo de 2016 a 2025. 

 

1.1 Motivações 

 

Percebe-se, através dos números previamente citados, os desafios e oportunidades 

que a área de Manutenção 4.0 apresenta para os próximos anos. Por estar em 

transição entre o estado de domínio de aplicações restritas e atingir grande alcance 

e complexidade técnica, mais pesquisas e investimentos serão necessários. Tal 

evolução é baseada na ubiquidade e compartilhamento de dados em tempo real por 

toda a extensão da organização. Além disso, ao explorar bases da literatura 

científica, percebe-se que o interesse de pesquisa das relações entre data streaming 

(fluxo de dados gerados em tempo real) e Manutenção 4.0 apresenta tendência de 

crescimento nos últimos anos. 

 

1.2 Objetivo 

 

Este trabalho tem como objetivo apresentar, a partir de pesquisa na literatura, o uso 

de dados em tempo real, originados de IoT, como insumo para a Manutenção 4.0. A 

Manutenção 4.0 é conhecida também como manutenção inteligente ou digital. Desta 

forma, a pesquisa relaciona-se à investigação da função desempenhada pelo data 

streaming em sistemas de manutenção inteligente, a fim de detectar 

comportamentos anormais, viabilizar a atuação no tempo apropriado e minimizar a 

ocorrência de falhas ou interrupções do processo produtivo. 
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1.3 Justificativas 

 

É possível, por meio da busca de referências nas bases de artigos acadêmicos 

Scopus e Web of Science, verificar o crescente interesse em pesquisas relacionadas 

a data streaming. Além disso percebe-se, nos últimos anos, uma tendência de 

aumento nos esforços de pesquisa relacionados ao uso de data streaming na 

manutenção industrial. Tais resultados são apresentados nas Tabelas 1 e 2. 

Conforme já descrito por Bruegge (2021), a Manutenção 4.0 receberá investimentos 

maiores nos próximos anos, o que a torna um objeto de pesquisa apropriado e atual. 

 

Tabela 1 – Resultados da pesquisa bibliográfica 
 

  Scopus Web of Science 

String Intervalo Resultados 
Autores 

relevantes 
Resultados 

Autores 

relevantes 

"Data stream*" 
2000 a 

2022 
149799 

Gama, J. 

Bifet, A. 

Yu, P.S. 

Soulsby, C. 

Singh, V.P. 

17881 

Bifet, A. 

Zhang, Y. 

Gama, J. 

Wang, Y 

Wang, W 

("data stream*" AND "mainten*" 

AND ("Internet of things" OR 

"iot")) 

- 73 

Alexandru, A.M. 

Apostolou, D. 

Billaudelle, S. 

Bouguelia, M.R. 

Bousdekis, A. 

28 

Alexandru, A. M. 

Apostolou, D. 

Bousdekis, A. 

Fasanotti, L. 

Fiasche, M. 

Cap 4: 

("digital maintenance" OR 

"maintenance 4.0") AND 

("stream*") 

2016 a 

2021 
2 

Akkari, A.C.S. 

Metso, L. 

Thenent, N.E. 

Valamede, L.S. 

1 
Akkari, A.C.S. 

Valamede, L.S. 

Cap. 4: 

("data stream*" or "stream 

processing") and 

("maintenance" or "abnormal") 

and ("4.0" or "intelligent" or 

"digital") 

2016 a 

2021 
103 

Borangiu, T. 

Anton, F. 

Anton, S. 

Morariu, O. 

Răileanu, S. 

35 

Borangiu, T. 

Lewandowski, M. 

Morariu, O. 

Raileanu, S. 

Adhikari, B. 

Cap. 4: 

("data stream*" or "data stream* 

learning") and "maintenance" 

2016 a 

2021 
285 

Affenzeller, M. 

Zahmatkesh, S. 

Zenisek, J. 

Borangiu, T. 

Dey, M. 

147 

Borangiu, T. 

Dey, M. 

Dudley, S. 

Kitagawa, H. 

Liu, C. 

 

Fonte: Própria autora. 
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Ao analisar os resultados das pesquisas em ambas as bases, verifica-se que a 

produção acadêmica acerca do tema “data streaming” mantém comportamento 

crescente desde 2000, limite inicial para a busca. Executou-se, para compreender o 

contexto de data streaming e stream learning no contexto de manutenção, a última 

consulta (com número mais significativo de resultados) descrita na Tabela 2. 

Conclui-se, ao verificar a quantidade identificada de referências nos intervalos de 

tempo, que pesquisas relacionadas a data streaming aplicado à Manutenção 4.0 

vêm recebendo atenção da comunidade acadêmica nos últimos anos. Este 

comportamento é ilustrado na Tabela 2. 

 

Tabela 2 – Comportamento do número de referências na linha do tempo 

 

String Scopus Web of Science 

"Data stream*" 

 

 

(x 1000) 

 

 

(x1000) 

("data stream*" or "data 

stream* learning") and 

"maintenance" 

 

 

Dados inconclusivos 

 

Fonte: Própria autora. 

 

De acordo com Angelov e Kordon (2010), os processos produtivos enfrentam, 

atualmente, o desafio de desenvolver sensores inferenciais que sejam adaptativos e 

autocalibráveis a fim de reduzir os custos de manutenção e manter alta qualidade e 

precisão na produção.  Zhou et al. (2021) apresentam um modelo inteligente de 

detecção de anomalias a partir de um conjunto de dados coletados pelo laboratório 

de uma empresa de segurança de redes na Austrália. Assim, propõe-se apresentar 
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variadas possibilidades de utilização de data streaming no campo da manutenção 

inteligente. 

 

1.4 Método de Pesquisa 

 

Este trabalho foi construído através de consultas às bases de literatura científica 

Scopus e Web of Science. Aplicaram-se strings de busca (limitadas a abstract, título 

e palavras-chave no idioma inglês) a fim de refinar os resultados e obter dados a 

respeito do tema, tais como número de publicações por ano e autores mais 

relevantes. Os resultados das buscas estão representados na Tabela 1. 

 

A partir das buscas realizadas, foram selecionados artigos que contribuem com a 

elaboração desta monografia. Além da bibliografia acadêmica, foram utilizadas 

outras referências na construção deste trabalho: livros que tratam sobre Indústria 

4.0, manutenção, gestão de dados e data streaming aplicado à manutenção 

preditiva baseada em IoT; páginas de um fornecedor de tecnologias estruturantes 

(Amazon) e institutos de pesquisa de IoT no mundo dos negócios.  

 

1.5 Estrutura do Trabalho 

 

O Capítulo 1 INTRODUÇÃO apresenta motivações, objetivo, justificativas, método 

de pesquisa e estrutura do trabalho. 

 

O Capítulo 2 GESTÃO DE DADOS E INTERNET OF THINGS apresenta o ciclo de 

vida dos dados genérico, no contexto de IoT e voltado a Big Data, a serem aplicados 

na geração de insumos para a Manutenção 4.0. 

 

O Capítulo 3 MANUTENÇÃO: DO TRATAMENTO DE FALHAS À PREDIÇÃO 

apresenta a evolução histórica das atividades de manutenção, desde a atuação para 

a correção de falhas até atuações preditivas que operam com maior independência.  
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O Capítulo 4 INTERAÇÕES ENTRE MANUTENÇÃO 4.0 E DATA STREAMING 

descreve o processo de aplicação de data streaming a ações inteligentes de 

manutenção (não apenas industrial). 

 

O Capítulo 5 CONSIDERAÇÕES FINAIS apresenta a conclusão, contribuição e 

trabalhos futuros. 

 

REFERÊNCIAS relaciona as fontes de pesquisa consultadas para a construção 

desta Monografia. 
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2 GESTÃO DE DADOS E INTERNET OF THINGS 

 

Este capítulo contextualiza a gestão de dados no domínio de IoT. O subcapítulo 2.1 

apresenta o ciclo de vida dos dados de forma geral e no contexto de IoT; o 

subcapítulo 2.2 apresenta os modelos de processamento comumente utilizados 

neste contexto e o subcapítulo 2.3 discorre sobre a aplicação destes modelos em 

IoT. 

 

De acordo com Helu et al. (2020), a fim de se extrair valor dos dados amplamente 

disponíveis, é necessária a construção de fluxos robustos, que suportem grande 

volume e variedade de dados. Dados brutos são coletados em diversas fontes e 

formatos e devem ser enriquecidos semanticamente a fim de fornecer contexto para 

análises sob diferentes pontos de vista. 

 

2.1 Ciclo de vida dos dados genérico 

 

Fluxos de dados são idealizados de forma a viabilizar todo o ciclo de vida dos dados, 

desde a coleta até o descarte. Amaral (2016) descreve o ciclo de vida de dados por 

meio de cinco etapas, que serão apresentadas nos próximos itens. São eles: 1. 

produção, 2. armazenamento, 3. transformação, 4. análise e 5. descarte. Os 

conceitos de cada etapa são apresentados e contextualizados de acordo com sua 

aplicação em IoT. A Figura 1 ilustra a estrutura do ciclo de vida dos dados.  

 

Figura 1 – Ciclo de vida dos dados 

 

 
 

Fonte: Amaral (2016). 
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2.1.1 Produção 

 

De acordo com Amaral (2016), a produção de dados em processos tradicionais é 

viabilizada através dos seguintes recursos: 

 

 Produção por processamento e análise: a saída de um processamento de 

dados atua como insumo para outros processos. A construção de modelos 

estatísticos e de Aprendizado de Máquina também podem ser enquadradas 

nesta classificação. 

 

 Produção por transformação: alterar a estrutura dos dados de forma a 

adequá-los a um processo ou finalidade específicos, tais como processos de 

análise ou construção de data warehouse (do inglês, armazém de dados). 

Podem ocorrer transformações significativas nos dados. 

 

 Sensores: telefones celulares e smartphones são equipados com sensores 

desde a sua concepção, que permitem a execução de diversas atividades. 

Alguns exemplos de sensores em smartphones: câmeras, telas sensíveis ao 

toque, acelerômetros, módulos de geolocalização, giroscópio e 

magnetômetro. Como passaram a ser mais eficientes e baratos, os sensores 

serão incorporados a mais dispositivos e sua quantidade aumentará. Desta 

forma, pode-se esperar que o volume de dados produzidos através de 

sensores aumente na mesma proporção nos próximos anos. Além de coletar 

dados, os sensores podem disparar atuadores e executar ações de acordo 

com o que se deseja obter. 

 

Segundo Shimei et al. (2020), sob a ótica de IoT, dados podem originar-se de 

diversas fontes: manuais de operação, sistemas legados, registros de operação, 

sensores e Realidade Aumentada. Além dos recursos já conhecidos, a seguir são 

apresentadas particularidades específicas dos sensores inteligentes e Realidade 

Aumentada. 
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Sensores Inteligentes: no contexto de IoT, o sensoriamento envolve a coleta e 

devolução de dados por determinados objetos através da rede. Os dados coletados 

são analisados e devolvidos à rede a fim de disparar ações programadas. De acordo 

com Corral-Plaza et al. (2020), os dispositivos inteligentes podem servir como 

sensores ou atuadores e operam com dados de diferentes formatos, em grandes 

volumes. 

 

Realidade Aumentada e Simulação: consiste em uma visão melhorada do mundo 

físico por meio da sobreposição de imagens, sons e interações por toques. É uma 

das tecnologias de ponta da Indústria 4.0 na geração de funcionalidades 

inteligentes. Previne erros que poderiam ser detectados em vários estágios da 

operação e colabora com melhorias de produtividade. Segundo Oztemel e Gursev 

(2020), a aplicação de Realidade Aumentada na manutenção e assistência remota 

reduz tempos de execução e erros humanos, além de disponibilizar análises de 

desempenho aos gerentes de manutenção. 

 

2.1.2 Armazenamento 

 

A segunda fase do ciclo de vida de dados apresentada por Amaral (2016) é o 

armazenamento. Após o processo de produção, os dados precisam ser persistidos 

para uso futuro. Esta operação depende de algumas premissas: segurança, 

integridade, minimização de redundância e concorrência e otimização do uso de 

espaço de armazenamento.  Muitas vezes a utilização dos dados, em seu ciclo de 

vida, requer movimentação entre diferentes tipos de dispositivos, como é o caso das 

cópias de segurança. Neste caso, os dados são apenas replicados sem que ocorram 

quaisquer alterações. Já no caso dos armazéns de dados, há a alteração na 

estrutura dos dados a fim de proporcionar melhor qualidade e manter registros 

históricos. A depender da função a desempenhar, os dados podem ser 

armazenados em diferentes estruturas durante o ciclo de vida. 

 

A Tabela 3 resume o contexto histórico dos modelos de armazenamento de dados e 

suas principais características. 
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Tabela 3 – Evolução dos modelos de armazenamento de dados 

 

Modelo Década Característica principal 

Pré-relacional 1960 Baseados em armazenamento e navegação entre vínculos 

Relacional 1970 
Normalização dos dados e recuperação de dados através de 

linguagem estruturada para consultas 

Orientado a 

Objetos 
1980 

Suporte a dados orientados a objetos, provenientes das 

linguagens de programação com esta característica 

NoSQL 2000 
Suporte a dados não normalizados, poucas restrições de 

integridade e controle mínimo de transações 

 

Fonte: Própria autora. 

 

Amaral (2016) descreve cada um destes modelos de armazenamento de dados: 

 

 Modelos pré-relacionais: desenvolvidos na década de 1960, os modelos pré-

relacionais eram baseados em estruturas de navegação, em que os dados 

eram armazenados em registros vinculados. A fim de se recuperar um 

registro, era necessário navegar entre os vínculos. Modelos hierárquicos e em 

rede fazem parte desta classificação. 

 

 Modelos relacionais: criados em 1970 com a finalidade de manter a 

integridade entre as transações e reduzir redundâncias de dados. Permitem 

inclusão, exclusão e alteração de registros sem renunciar à integridade. As 

operações em bancos de dados relacionais devem apresentar as 

características de atomicidade, consistência, isolamento e durabilidade. A 

consulta de dados é feita através de linguagem SQL (structured query 

language) (do inglês, linguagem estruturada de consulta).  

 

 Bancos Orientados a Objetos: desenvolvidos a fim de fornecer suporte à 

Programação Orientada a Objetos. Porém, o uso dos bancos de dados 

relacionais já estava consolidado na época e as empresas não estavam 

dispostas à migração. Assim, foi desenvolvida a arquitetura conhecida como 

“Banco de Dados Objeto-Relacional”. Utiliza também a linguagem SQL. 
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 NoSQL (Not Only SQL) (do inglês, não somente SQL): tecnologia construída 

a fim de trabalhar com grandes volumes e diversos formatos de dados, o que 

requer uma estrutura mais flexível, escalável e de menor custo. Fatima e 

Wasnik (2016) descrevem o modelo NoSQL como não relacional, que conta 

com um esquema flexível, capaz de trabalhar com variedade de dados. 

Bancos de dados NoSQL são escaláveis e fornecem grande disponibilidade, o 

que os torna favoráveis à armazenagem de dados de Big Data e IoT. 

Apresenta o modelo NewSQL, que apresenta características dos modelos 

relacionais tradicionais e NoSQL. Os bancos de dados NewSQL são 

considerados promissores por serem mais adeptos ao processo de 

enriquecimento para IoT. 

 

Os três grupos de bancos de dados NoSQL apresentados por Amaral (2016) são os 

Key-Value (Chave-Valor), Column-Oriented (Orientado a Colunas) e Graph Based 

(Baseados em Grafos). 

 

 Key-Value (Chave-Valor): segundo a definição fornecida por Amazon (2021a), 

os bancos de dados chave-valor não possuem atributos fixos para descrever 

os dados, como ocorre nas estruturas relacionais tradicionais. Ao invés disso, 

armazena dados em um formato no qual os registros são construídos em uma 

estrutura simples, composta por uma chave e um valor. Esta chave é utilizada 

para identificar de forma única qualquer formato de dados, desde objetos 

simples aos mais complexos.  

 

 Column-Oriented: estes bancos, ao invés da tradicional orientação por linhas, 

possuem dados orientados a colunas. A principal vantagem da adoção de 

bancos de dados orientados a colunas é a otimização de recursos para rápida 

recuperação de dados. As consultas analíticas apresentam melhor 

desempenho pois este modelo de banco de dados reduz expressivamente a 

quantidade necessária de entradas, saídas e recuperação de dados em disco, 

de acordo com definições fornecidas por Amazon (2021c). 

 

 Graph-Based: de acordo com Amazon (2021b), bancos de dados baseados 

em grafos possuem como principal função o armazenamento e a navegação 
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entre relacionamentos, o principal item gerador de valor para este formato de 

banco de dados. Utilizam nós para armazenar entidades de dados e bordas 

para armazenar o relacionamento entre tais entidades. Assim, é possível 

existir uma infinidade de tipos de relacionamentos entre os nós, que são 

armazenados no próprio banco de dados e não se faz necessário calculá-los 

em todas as consultas. São utilizados em redes sociais, mecanismos de 

recomendação e detecção de fraudes. 

 

Além dos três formatos citados, bancos de dados NoSQL podem ser Document-

Based (Orientados a Documentos). Hashem e Ranc (2016) descrevem que tais 

documentos, geralmente associados a uma chave, são formados por um conjunto de 

campos encapsulados que podem ser individualmente indexados. São construídos 

em diversos formatos que utilizam estruturas de dados auto descritivos e em árvore 

hierárquica. Os documentos são agrupados em coleções; um conjunto de coleções 

compõe um banco de dados orientado a documentos. A Figura 2 ilustra os quatro 

formatos de bancos de dados NoSQL descritos. 

 

Figura 2 – Modelos de bancos de dados NoSQL 

 

 

 

Fonte: adaptado de Hashem e Ranc (2016). 

 

Os principais formatos de dados utilizados pelos bancos descritos acima são os 

estruturados, não estruturados e semiestruturados. Segue breve descrição, segundo 

Eberendu (2016): 

 

 Dados estruturados: possuem formato definido, o que torna simples sua 

análise e armazenamento. Os dados são armazenados em estruturas 

identificáveis e permitem consultas para utilização organizacional. São 
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comumente armazenados em bancos de dados relacionais e permitem 

diferentes tipos de dados, tais como número, data, caractere e outros. O foco 

da análise de dados tradicional são os dados estruturados. 

 

 Dados semiestruturados: dados de formato irregular, que podem ser 

incompletos e sua estrutura, que não está vinculada a um modelo fixo, pode 

ser alterada rapidamente. Permitem a carga de dados de diferentes origens 

com propriedades relacionadas e que podem ser agrupadas em um grande 

conjunto. Alguns exemplos são e-mails e arquivos de texto. 

 

 Dados não estruturados: além de texto, os dados não estruturados incluem 

formatos que não fazem parte de um modelo tradicional. Algumas 

classificações apresentadas pela autora incluem estáticos (documentos 

digitalizados), dinâmicos (documentos que podem ser criados, editados, 

revistos e aprovados, tais como procedimentos e políticas), mídias digitais 

(áudio, vídeo e imagens) e documentos de comunicação (e-mail, conteúdos 

de mídias sociais e registros de comunicação via mensagens instantâneas). 

 

Os dados não estruturados compõem mais de 80% do total de dados disponíveis 

atualmente, segundo Rizkallah (2017). Assim, é necessário estabelecer ações a fim 

de explorar tais dados, pois são ricas fontes de conhecimento. Os bancos de dados 

NoSQL são parte importante deste processo. 

 

2.1.3 Transformação 

 

De acordo com Amaral (2016), os dados, após a coleta, precisam passar por um 

processo de transformação. Isto ocorre por conta da diversidade e heterogeneidade 

das fontes; assim, faz-se necessário preparar e adequar os dados ao consumo. Os 

processos de transformação podem efetuar diversas operações com os dados, tais 

como sumarização, agregação, cálculos, qualidade e limpeza de dados, mudança de 

codificação e alteração de formatos.  
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Nas transformações tradicionais de dados são executados os processos de 

extração, transformação e carga. O objetivo é, conforme mencionado acima, 

adequar os dados a fim de servirem como insumo para análises. Os processos de 

extração conectam-se às diversas fontes de dados, copiam-nos a uma área 

temporária e, então, os dados são transformados e armazenados na base definitiva. 

 

De acordo com Mehdipour et al. (2016), no contexto de Big Data e IoT, a etapa de 

transformação de dados é desdobrada em etapas. De forma semelhante aos 

processos de extração, transformação e carga tradicionais, após a aquisição ou 

coleta os dados precisam ser integrados devido a suas diversas fontes e formatos. O 

próximo passo é a limpeza dos dados, responsável por reduzir significativamente a 

volumetria a fim de otimizar tempo e esforço nas futuras análises. Os dados brutos 

geralmente são não estruturados; assim, não estão organizados em um modelo 

predefinido. Podem ser, caso necessário, transformados em dados estruturados e 

semiestruturados na última fase do processo. 

 

Khare e Totaro (2019) definem a etapa de transformação de dados para IoT como o 

processo de limpeza a fim de torná-los corretos e consistentes tecnicamente. Os 

passos envolvidos na melhoria e refinamento de dados são codificação, 

decodificação, conversão, rotulagem e associação a metadados. Após tal 

processamento ainda podem existir inconsistências; assim, é necessário domínio de 

conhecimento do dispositivo em questão a fim de identificar e corrigir tais erros. 

 

2.1.4 Análise 

 

De acordo com Amaral (2016), a análise de dados é definida como a busca de 

conhecimento nos dados. Tal processo pode ser exploratório, implícito e explícito: 

 

 Processo exploratório: de acordo com Amaral (2016), antes de iniciar uma 

análise, é necessário explorar os dados em termos de distribuição, médias, 

desvios padrões, relacionamentos e verificação de valores anormais. As 

análises exploratórias podem utilizar técnicas quantitativas e qualitativas. 

Técnicas quantitativas incluem medidas de dispersão e posição, tais como 
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média, mediana, amplitude e desvio padrão. Nestas análises é possível, além 

da análise numérica, utilizar os diagramas de dispersão, diagramas de caixa, 

histogramas e nuvens de palavras. 

 

 Processo explícito: Amaral (2016) descreve que o processo explícito possui 

como objetivo destacar informações já existentes nos dados analisados. A 

principal diferença entre o processo explícito e o exploratório é que, enquanto 

o primeiro procura atingir um objetivo claro e específico, o segundo é utilizado 

para conhecer os dados. Alguns exemplos de processos explícitos são as 

junções, resumos, estratificação e identificação de distorções. 

 

 

 Processo implícito: segundo Amaral (2016), processos implícitos são as 

análises executadas via Aprendizado de Máquina Computacional a fim de 

identificar padrões ocultos nos dados. Alguns exemplos são a classificação, 

regressão, agrupamento e regras de associação. Os processos implícitos de 

análise de dados são especialmente aplicáveis aos atuais cenários de Big 

Data, que exigem recursos mais robustos para extrair conhecimento de 

grandes volumes de dados. 

 

2.1.5 Descarte 

 

A última fase do ciclo de vida dos dados é o descarte ou eliminação. No caso do 

Brasil, a LGPD (Lei Geral de Proteção de Dados) regulamenta a eliminação dos 

dados como fase essencial. De acordo com BRASIL (2020), a eliminação é a 

“exclusão de dado ou de conjunto de dados armazenados em banco de dados, 

independentemente do procedimento empregado”. Os dados devem ser descartados 

ao término do ciclo de tratamento, salvo condições previstas em lei. Os dados 

devem ser conservados, dentre outros motivos, para cumprimento de obrigação ou 

regulatória e estudo por órgão de pesquisa, desde que anonimizados. 

 

Em suma, a Tabela 4 apresenta a relação, elaborada pela autora, entre as fases do 

ciclo de vida dos dados genérico e IoT. 
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Tabela 4 – Ciclo de vida de dados em IoT 

 

Fase Aplicação 

Produção 
Coleta de dados de sensores, realidade virtual, manuais e registros de 

operação. 

Armazenamento Guarda dos dados em bancos de dados, geralmente NoSQL. 

Transformação Limpeza e correção de inconsistências; uniformização. 

Análise 
Geração de conhecimento através de diversas formas de estudo dos 

dados. 

Descarte Eliminação dos dados após o término do ciclo. 

 

Fonte: Própria autora. 

 

2.2 Ciclo de vida dos dados aplicado a Big Data 

 

Além do modelo elaborado por Amaral (2016), para fins de aplicação em ambientes 

de Big Data, Sinaeepourfard et al. (2016) apresenta a proposição de um ciclo de 

dados específico. Aplicações de Manutenção 4.0 envolvem, muitas vezes, a 

utilização de Big Data devido ao grande volume, velocidade e variedade de dados 

gerados e processados. O modelo é composto por três grandes fases, que se 

dividem em elementos. São elas: aquisição de dados, composta por coleta, 

filtragem, qualidade e descrição dos dados; processamento de dados, composto por 

processo, qualidade e análise de dados e preservação de dados, composta por 

classificação, qualidade, armazenamento e disseminação de dados. A Figura 3 

apresenta, de forma gráfica, os componentes do modelo proposto: 

 

 

 

 

 

 

 

 



28 

 

Figura 3 – Modelo proposto de ciclo de vida de dados para Big Data 

 

 

 

Fonte: Sinaeepourfard et al. (2016) 

 

2.3 Formas de processamento de dados 

 

Podem-se destacar, dentre as formas comumente utilizadas para processamento de 

dados, as formas de processamento batch (em lote) e streaming (em fluxo). Nas 

próximas seções são abordados os conceitos e alguns exemplos de aplicação. 

 

2.3.1 Processamento batch (em lote) 

 

Os motores de processamento em lote são projetados para processar, de forma 

eficiente, grandes conjuntos de dados. Executam operações complexas, tais como a 

distribuição de recursos computacionais por diversos nós de processamento. Uma 

vez que o processamento é finalizado, os resultados são coletados e 

disponibilizados para consumo. Esta abordagem pode ser útil se um conjunto de 

dados precisa ser processado em conjunto e é requerido que todos os dados 

estejam disponíveis antes de o processamento iniciar, de acordo com Pfandzelter e 

Bermbach (2019). Um exemplo de aplicação é a geração de relatório de gastos, 

geralmente disponibilizados ao cliente mensalmente para pagamento. 
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2.3.2 Streaming 

O processamento em streaming, de acordo com AWS (2021d), possui como 

principal característica serem gerados por diversas fontes de dados que enviam 

registros de tamanho pequeno em fluxo contínuo. Estes dados podem pertencer a 

diversas variedades, tais como registros de atividades de clientes em aplicativos, 

compras em e-commerce, redes sociais, serviços financeiros e geoespaciais e 

telemetria de dispositivos conectados. Devem ser processados por registro ou 

durante períodos móveis a fim de alimentar análises diversas, que permitem ao 

negócio acompanhar em tempo real suas operações e agir em tempo hábil quando 

um comportamento anormal é detectado. 

 

A Tabela 5 apresenta uma comparação entre características dos processamentos 

em lote e streaming, de acordo com AWS (2021d): 

 

Tabela 5 – Comparação entre processamentos em lote e streaming 

 

 Processamento em lotes Processamento de streams 

Escopo de dados 
Consultas ou processamento 
de todos ou da maioria dos 
dados no conjunto de dados. 

Consultas ou processamento de dados 
dentro de um período sem interrupções, ou 
apenas no registro de dados mais recente. 

Tamanho dos 
dados 

Grandes lotes de dados. 
Registros individuais ou micro lotes 
compostos de alguns registros. 

Desempenho 
Latências em minutos a 
horas. 

Exige latência na ordem dos segundos ou 
milissegundos. 

Análise Análise complexa. 
Métricas simples de funções, agregação e 
rotação de respostas. 

 

Fonte: AWS (2021d). 

 

De acordo com Bahri et al. (2021), “data stream” pode ser definido como sequências 

esporádicas e transitórias de dados obtidos através do tempo. Uma infinidade de 

instâncias de dados pode ser gerada através deste processo; assim, valiosos 

insights de dados podem ser obtidos através de processos de análise em tempo 

real. Para tal, é necessário empregar recursos computacionais eficientes e 

paralelização de processamento. 
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2.4 Considerações sobre o capítulo 

 

O Capítulo 2 apresenta o ciclo de vida de dados genérico e aplicado ao contexto de 

IoT. Este é composto por cinco fases: 1. Produção (coleta de dados originados de 

sensores inteligentes, Realidade Aumentada, manuais de operação e registros de 

operação), 2. Armazenamento (bancos de dados relacionais, não relacionais e, no 

contexto de IoT, NoSQL e NewSQL), 3. Transformação (processo de uniformização 

e tratamento dos dados de forma a prepará-los para a fase de análise), 4. Análise 

(aplicação de técnicas para extrair conhecimento dos dados) e 5. Descarte (remoção 

dos dados quando tiverem cumprido sua função ou segundo leis e normas). Além 

disso, é apresentado um modelo de ciclo de vida dos dados adaptado às 

características de Big Data, composto pelas fases Aquisição, Processamento e 

Preservação de dados. 

 

As particularidades do ciclo de vida dos dados em IoT estão concentradas nas 

etapas Produção (dados gerados por dispositivos inteligentes em tempo real) e 

Análise (produção de conhecimento baseado em dados de tempo real). Os 

processos de manutenção podem ser beneficiados por este recurso através da 

medição e coleta de dados relacionados a variáveis críticas. Estes dados podem 

gerar alertas preditivos ou disparar ações sem a necessidade de intervenção 

humana. Assim, são evitadas paradas de equipamentos e prejuízos à produção 

devido a falhas. 
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3 MANUTENÇÃO: DO TRATAMENTO DE FALHAS À PREDIÇÃO 

 

Qualquer instalação ou sistema, que possui como objetivo a produção de um bem, 

utiliza dispositivos simples ou complexos. Independente de qual seja o dispositivo, 

podem ocorrer diversas formas de incidentes durante o processo de produção. 

Assim, toda atividade produtiva requer manutenção, sob o risco de a produção entrar 

em colapso sob a ocorrência de falhas.  

 

Segundo apresentado por Nepomuceno (2014), em instalações industriais clássicas, 

as atividades de manutenção recebem pouca importância e são consideradas 

apenas quando ocorrem falhas. Porém, quando há um planejamento adequado, os 

custos de manutenção tornam-se baixos em comparação aos retornos de longo 

prazo. Boa conservação dos equipamentos aumenta sua vida útil e proporciona 

retorno satisfatório, muitas vezes superior ao investido na manutenção praticada. À 

medida que a complexidade dos equipamentos aumenta, os problemas relacionados 

à manutenção também aumentam. Isto torna necessário o investimento em 

mudanças organizacionais de forma a dar à manutenção um papel de maior 

destaque. 

 

Este capítulo mostra um breve histórico das práticas de manutenção e sua evolução, 

desde a simples correção de falhas até a manutenção digital e baseada em dados. 

Identifica diferenças entre a manutenção tradicional e a Manutenção 4.0. Apresenta 

recursos inerentes à Manutenção 4.0, tais como o conceito de Internet Industrial das 

Coisas e sensores inteligentes. 

 

3.1 Manutenção tradicional: evolução histórica 

 

De acordo com Poor et al. (2019) são encontradas, na literatura, diversas definições 

para “manutenção”.  Em suma, referem-se a ações aplicadas com o objetivo de 

manter a qualidade esperada de um equipamento, reduzir os efeitos de falha e 

melhorar o desempenho. 
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Conforme descrevem Slack et al. (2018) e Jacobs e Chase (2012), apesar dos 

processos de produção serem planejados de forma a evitar a ocorrência de falhas, a 

manutenção continua a ser uma necessidade. Isto ocorre através de procedimentos 

que indicam os cuidados requeridos pelas instalações e equipamentos de uma 

organização. Alguns dos benefícios derivados de um processo eficaz de 

manutenção são maior segurança, maior confiabilidade, melhor qualidade, custos 

operacionais menores, maior vida útil da tecnologia de processo e maior valor final. 

 

Stevan Jr et al. (2018), Nepomuceno (2014) e Slack et al. (2018) definem a 

execução de processos de manutenção sob três formas: corretiva, preventiva e 

preditiva. Segundo estas referências, as definições de cada um dos termos são: 

 

 Corretiva: a manutenção corretiva é executada em caso de falha ou baixo 

desempenho do equipamento. Apresenta alta probabilidade de ocorrência de 

erros humanos durante a execução e há custos referentes ao estoque de 

componentes que suprem o processo. A parada inesperada da operação em 

caso de falhas traz prejuízos ao processo produtivo e, consequentemente, à 

organização. 

 

 Preventiva: parada programada do equipamento para substituição de 

componentes e execução de procedimentos planejados de manutenção. O 

equipamento deve ser parado para que a manutenção seja efetuada, o que 

pode trazer prejuízos econômicos devido à interrupção ou estoque e 

substituição desnecessária de componentes. Por conta dos custos envolvidos 

nas manutenções corretivas e preventivas, faz-se necessário um 

levantamento comparativo entre custo de manutenção e custo de falha. 

 

 

 Preditiva: dados sobre variáveis críticas são coletados pela própria máquina 

em tempo real, a fim de evitar a parada do equipamento devido a falhas. 

Através desta é possível programar, com a devida antecedência, operações 

de manutenção de acordo com o comportamento das variáveis mensuradas. 

Viabiliza a alteração dos parâmetros de condição ou desempenho através de 
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acompanhamento sistemático. Assim, o estudo contínuo dos dados obtidos 

pode determinar com antecedência a necessidade de manutenção. 

 

 

O conceito de manutenção preditiva não é recente; porém, uma limitação 

apresentada por Nepomuceno (2014) ao final da década de 80 é a não existência de 

métodos de manutenção preditiva aptos a detectar defeitos em tempo hábil. A 

solução vigente na época era a instalação de sensores de medição nos 

equipamentos; porém, tais sensores funcionavam com a energização do 

equipamento e, em caso de interrupção do fornecimento de energia, a medição era 

interrompida. Conforme será tratado adiante, a evolução da manutenção nas 

próximas décadas supre esta limitação. 

 

Os conceitos referentes à gestão de manutenção começaram a receber maior foco 

no século XX, com o advento do Sistema Toyota de Produção e popularização da 

manufatura enxuta. A Figura 4, elaborada por Stevan Jr et al. (2018), apresenta a 

evolução histórica dos conceitos de manutenção. 

 

Figura 4 – Evolução da manutenção 

 

 
 

Fonte: Stevan Jr et al. (2018). 
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Conforme apresentado na Figura 4, a primeira geração de manutenção, entre as 

décadas de 1940 e 1950, costumava ser puramente reativa. A segunda geração, 

entre as décadas de 1960 e 1970, possuía enfoque mais proativo. Foram incluídas 

revisões programadas às rotinas de manutenção dos equipamentos e deu-se início 

às primeiras formas de predição. A terceira geração (décadas de 1980 e 1990) 

passa a adotar atividades de monitoramento do processo produtivo apoiadas por 

recursos computacionais. Finalmente, a quarta geração (2000-presente) incorpora 

recursos tecnológicos mais avançados, tais como sistemas especialistas, 

dispositivos para acompanhamento visual e integração da gestão digital. 

 

3.2 Manutenção 4.0 

 

Os processos de manutenção descritos anteriormente evoluíram e deram origem à 

Manutenção 4.0 (também conhecida por “manutenção digital”). A Manutenção 4.0, 

de acordo com Slack et al. (2018), permite monitorar totalmente o sistema através de 

mecanismos de confiabilidade, otimização de recursos e segurança, integração dos 

sistemas Manufacturing Execution System (MES) (do inglês, sistema de execução 

de manufatura) e Enterprise Resource Planning (ERP) (do inglês, planejamento de 

recursos de empreendimento) com mecanismos de modelagem e simulação, além 

de um completo sistema de gestão integrada. No ambiente da Indústria 4.0, os 

sistemas computacionais estão inseridos e integrados entre si. Com o advento da 

inteligência artificial, começou-se a desenvolver o conceito de manutenção 

inteligente: as máquinas e equipamentos identificam as condições anormais de 

operação e emitem notificações para que ações sejam tomadas. Além disso, o 

sistema permite que o manutentor não se preocupe com o fluxo de manutenção, 

pois o sistema inteligente realiza todos os procedimentos para que as máquinas 

possam ser corrigidas, incluindo previsão de recursos (equipe, peças, tempo). 

 

Assim, processos de manutenção corretiva são minimizados no ambiente da 

Indústria 4.0 por meio da contínua coleta e análise de dados, o que fornece 

embasamento para a atualização de informações. Em sistemas de Manutenção 4.0 

existe um fluxo contínuo de dados trafegando pela arquitetura. Assim, toda a 

informação está disponível para qualquer parte da estrutura industrial. 
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Um recurso utilizado neste processo é a virtualização de um elemento industrial e 

acesso a todos os seus dados via equipamentos móveis. Isto inclui manuais, 

modelo, parâmetros, histórico de manutenção e outras informações relevantes. 

Assim, o processo de acompanhamento de um equipamento é composto por sua 

virtualização e criação de perfis de manutenção preventiva e programada, o que 

inclui dados históricos. Estes dados ficam armazenados em nuvem, o que permite 

acompanhar individualmente os elementos a fim de apresentar planos de 

manutenção para otimizar custos e reduzir o número de paradas. Além disso, os 

dados são facilmente acessíveis a diferentes níveis da organização e são mantidos 

durante todo o tempo de vida útil do equipamento, o que permite melhor gestão de 

suprimentos, interações humanas e redistribuição de ativos. 

 

3.2.1 A função de Internet of Things na Manutenção 4.0 

 

A fim de viabilizar a Manutenção 4.0, descrita o subcapítulo anterior, algumas 

tecnologias habilitadoras são necessárias. A Industrial Internet of Things (IIoT) (do 

inglês, Internet Industrial das Coisas) é uma delas.  

 

De acordo com Sisinni et al. (2018), IoT é, em suma, um conceito que descreve a 

conexão ubíqua à Internet e a conversão de objetos comuns em dispositivos 

conectados. A IIoT é um subconjunto da IoT que associa tecnologias de 

comunicação a aplicações de automação industrial. Viabiliza a melhor compreensão 

do processo produtivo a fim de melhorar sua eficiência e sustentabilidade, além de 

enfatizar a integração entre diferentes plantas produtivas e locais de trabalho. 

Conecta todos os ativos da indústria a sistemas de informação e aplicações de 

negócios. O grande volume de dados produzidos e trocados pela IIoT possui como 

objetivo final análises preditivas, tais como manutenção e logística aprimorada. 

Assim, a IIoT é um subconjunto da IoT, específico para aplicações industriais. A 

intersecção entre a Indústria 4.0 e a IoT ocorre na IIoT.  

 

Segundo apresentado por O’Donovan et al. (2015, a. 25), a fim de tratar de alguns 

problemas relacionados ao ambiente industrial tradicional, emergiu a manufatura 
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inteligente, um campo interdisciplinar. A manufatura inteligente pode ser descrita 

como orientada a dados, onde dados em tempo real coletados via sensores 

diretamente na fábrica podem ser analisados em processos de decisão. É uma 

especialização de Big Data que atende especificamente as necessidades do 

processo de produção e utiliza como tecnologias de apoio o Aprendizado de 

Máquina e a IIoT. É importante o foco em manutenção e diagnóstico por conta do 

impacto nos custos operacionais totais, que podem exceder 30%. O tempo de vida 

dos equipamentos pode ser melhorado através da redução das retiradas de 

operação; técnicas preventivas e preditivas podem ser empregadas na programação 

das paradas para manutenção. Porém, a manufatura inteligente possui extremo foco 

em tratamento de dados e compartilhamento de informação em tempo real entre 

processos físicos e computacionais a fim de alimentar aplicações analíticas.  

 

De acordo com Gilchrist (2016), em conjunto com Big Data, computação em nuvem, 

sensores, tecnologias machine-to-machine (M2M) (do inglês, máquina a máquina) e 

outras habilitadoras, a IIoT provê recursos para se obter melhor visibilidade dos 

processos e recursos de uma indústria. Dados são coletados através deste sistema 

e transformados em conhecimentos úteis para o negócio através de analytics 

avançado. Benefícios para o negócio são obtidos pois tais tecnologias fornecem 

recursos para a elaboração de análises que trazem ganho operacional, aceleração 

da produtividade e redução do tempo em que a operação precisa ficar parada. 

 

Em suma, pode-se afirmar que a IIoT é requisito primordial para a implantação da 

manufatura inteligente, da qual a manutenção preditiva faz parte. Foco é dado à 

coleta e análise de dados em tempo real a fim de permitir que decisões sejam 

tomadas o quanto antes e, quando possível, sem necessidade de intervenção 

humana. 

 

3.3 Considerações sobre o capítulo 

 

Este capítulo aborda o histórico de evolução da gestão de manutenção e a 

crescente atenção que tal conceito recebe com o passar do tempo. Os processos de 

manutenção tiveram seu princípio em atividades corretivas; isto é, ações eram 
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tomadas apenas na presença de falhas e não se tomavam ações para evitar novas 

ocorrências. Posteriormente foram desenvolvidos procedimentos preventivos, nos 

quais rotinas de manutenção programada retiravam os equipamentos de operação. 

Finalmente, adotou-se a manutenção preditiva, na qual variáveis críticas do 

processo são monitoradas a fim de prever a necessidade de manutenção antes que 

a falha ocorra. 

 

A manufatura inteligente, da qual a manutenção 4.0 é integrante, caracteriza-se pela 

comunicação ubíqua entre dispositivos. Para tal, é essencial a adoção da IIoT a fim 

de garantir o tráfego de dados em tempo real entre os dispositivos e entre as 

instalações físicas, que podem estar distantes entre si. O capítulo apresentou 

algumas diferenças entre IoT e IIoT e o papel da IIoT como geradora de dados em 

tempo real para a Manutenção 4.0. 
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4 DATA STREAMING E A MANUTENÇÃO 4.0 

 

Neste capítulo é apresentada a utilização de data streaming (fluxo de dados gerados 

em tempo real) como requisito de evolução da manutenção tradicional. A fim de se 

obter o melhor aproveitamento de tais dados, são necessários recursos para análise. 

Alguns conceitos, algoritmos e recursos que apoiam estas análises, apresentados 

nas referências citadas neste trabalho, são descritos. A Manutenção 4.0 é a 

evolução da manutenção segundo a Quarta Revolução Industrial; assim, é parte 

integrante da Indústria 4.0. Sob esta ótica, são investigados alguns fatores 

viabilizadores que devem ser considerados para a implantação bem-sucedida de 

processos de manutenção inteligente. Por fim são apresentados alguns cases de 

aplicação em áreas diferentes, extraídos da literatura citada. 

 

4.1 A importância do data streaming na Manutenção 4.0 

 

A respeito das possíveis fontes de dados utilizadas na Manutenção 4.0, Sahal et al. 

(2020) afirmam que aplicações de manutenção preditiva devem ser capazes de 

identificar falhas com antecedência, de modo que os responsáveis tomem ações a 

tempo; sejam elas reposição de componentes ou parada de máquina planejada. 

Proporcionam economia na manutenção de equipamentos e melhoram a 

produtividade através do aumento de tempo em que permanecem em operação. 

Muitas vezes a ocorrência de falha em um equipamento causa impactos negativos 

em todo o processo produtivo. Porém, para que as soluções de manutenção 

preditiva sejam exatas, é essencial coletar e analisar grandes volumes de dados 

relevantes em espaços de tempo razoáveis. Desta forma, recursos de análise 

avançada e processamento em tempo real são requisitos-chave para a manutenção 

preditiva.  

 

A visão apresentada por Munirathinam (2020) declara que a IoT deu origem a um 

subsegmento voltado à indústria: a Internet Industrial das Coisas. A Internet 

Industrial das Coisas baseia-se fortemente em interconectividade, automação, 

autonomia, aprendizado de máquina e dados em tempo real. A captura e 
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transmissão de dados entre equipamentos proporciona oportunidades de 

crescimento às empresas. A IoT e seus derivados baseiam-se em conectividade, o 

que significa maior quantidade de dados obtidos em diversos lugares e em tempo 

real. Seus objetivos são o aumento de produtividade, lucro e eficiência, além da 

viabilização de decisões tomadas em tempo real. 

 

Com base nestas referências, pode-se concluir que a coleta e a análise de data 

streams são essenciais para o sucesso de um processo de manutenção preditiva 

nos moldes atuais. Dados em tempo real possibilitam identificar possíveis futuras 

falhas e permitem a adoção de planos de ação em tempo hábil, de forma a evitar e 

tratar tais falhas com antecedência. 

 

Conforme destacado no Capítulo 3, a engenharia de manutenção pode ser 

beneficiada com a adoção de tecnologias inovadoras relacionadas à Indústria 4.0, a 

fim de prover mitigação da ocorrência de falhas, aumento da eficiência na utilização 

de recursos e maior precisão no fornecimento de valor ao cliente. A utilização de IIoT 

neste processo é a maior viabilizadora do sucesso de um projeto de Manutenção 4.0 

devido à possibilidade da coleta e intercâmbio de dados em tempo real entre 

dispositivos e instalações físicas. 

 

De acordo com Cohen et al. (2017), a Indústria 4.0 é guiada por quatro princípios: 

conectividade, informação, conhecimento e inteligência. Consequentemente, a 

Manutenção 4.0 (também denominada “manutenção inteligente”) deve ser 

caracterizada pelos mesmos fatores. Bokrantz et al. (2020) definem a manutenção 

inteligente, em linhas simples, como um projeto organizacional de gerenciamento de 

manutenção em ambientes com tecnologias digitais pervasivas. Trata-se de um 

conceito multidimensional baseado em decisões baseadas em dados, recursos de 

capital humano, integração interna e integração externa. 

 

Desta forma, a Manutenção 4.0 é caracterizada pelo constante fluxo de dados 

coletados nos dispositivos, compartilhamento da informação por toda a organização 

e utilização destes dados em análises de manutenção preditiva e processos de 

tomada de decisão. Além disso, os dados devem estar facilmente acessíveis via 

Internet, de qualquer lugar do mundo. Desta forma é possível atuar em possíveis 
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incidentes dentro do tempo apropriado, evitando-se prejuízos como paradas na 

operação e perda de componentes. 

 

A fim de viabilizar a implantação e uso eficiente da Manutenção 4.0 é necessário 

identificar alguns fatores essenciais. Navas et al. (2020) apresentam alguns dos 

requisitos técnicos básicos para a construção de um ambiente de Manutenção 4.0 

de qualidade: 

 

 Design ergonômico de sistemas para reduzir o tempo de parada para 

manutenção, montagem e desmontagem de componentes e ajuste de 

elementos. Os sistemas ergonômicos são, de acordo com Ciccone et al. 

(2021), desenvolvidos para melhorar a acessibilidade de uma maior variedade 

de perfis de usuários; 

 

 Sensores que viabilizam o monitoramento de variáveis físicas e operacionais 

para a implantação de técnicas de manutenção preditiva em tempo real. O 

uso de sensores na manutenção industrial não é recente; porém, com o 

advento da Indústria 4.0, foram adotados os sensores inteligentes. Os 

sensores inteligentes possuem pequena memória e trocam dados com a rede 

através de comunicação padronizada, segundo Aksa et al. (2021). Estes são 

elementos básicos da Manutenção 4.0 e podem-se adotar diversas 

variedades de sensores em conjunto; 

 

 Portas exclusivas de comunicação para a gestão do processo de 

manutenção, estados, alarmes e variáveis preditivas. A integração do 

equipamento ao centro de manutenção deve ser feita por meio da 

implantação de protocolos padronizados de comunicação a uma porta 

dedicada, a fim de simplificar e reduzir os custos de integração; 

 

 Autoteste e testes funcionais de sistemas projetados para tarefas de 

manutenção, a fim de garantir que cumpra os requisitos particulares do 

projeto. 
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De acordo com Navas et al. (2017), a manutenção tradicional opera de forma pouco 

eficiente ao utilizar uma grande quantidade de recursos humanos e técnicos. 

Complexos modelos foram desenvolvidos nas últimas décadas para esta função; 

porém, nem sempre há comprovação real de benefícios. A fim de viabilizar ações de 

manutenção precisas e no tempo exato, dados devem ser coletados em tempo real. 

Atuar em incidentes em um intervalo de tempo inapropriado pode causar prejuízos à 

operação e a outros departamentos da empresa, além dos prejuízos financeiros.  

 

Le Nguyen et al. (2020) apresentam duas abordagens de dados que podem ser 

utilizadas na Manutenção 4.0: knowledge-based (baseada em conhecimento) e data-

driven (orientada a dados). A primeira pode ser desdobrada em modelos físicos e 

sistemas especialistas, enquanto a segunda é composta por Aprendizado de 

Máquina e modelos estocásticos. Tal desdobramento é apresentado na Figura 5: 

 

Figura 5 – Taxonomia das abordagens de manutenção preditiva 

 

 

 

Fonte: Le Nguyen et al. (2020). 

 

A abordagem knowledge-based conta com especialistas de domínio para a 

construção de modelos de manutenção preditiva. Pode ser dividida em duas classes: 

modelos físicos e sistemas especialistas. 

 

Os modelos físicos são o conjunto de equações matemáticas que descrevem o 

mecanismo de deterioração de um equipamento. Estes são formados por vasto 

conhecimento de mecânica e especialização de domínio. Desta forma, os modelos 

adequados podem refletir com acurácia o comportamento físico de deterioração e 

fornecer insights confiáveis para a manutenção da saúde do equipamento. Porém, 
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este modelo pode não ser prático pois a complexidade dos sistemas do mundo real 

exige uma modelagem precisa e não é possível adaptar o mesmo modelo para 

sistemas diferentes. A fim de validar os parâmetros da equação, resultados de testes 

físicos são utilizados ao invés de dados. A operação do equipamento precisa ser 

interrompida para que tais testes sejam feitos. 

 

Os sistemas especialistas são compostos por uma base sólida de conhecimento 

gerada por pessoas que detêm extenso conhecimento sobre o domínio, composta 

por fatos formalizados, regras e resultados de consultas. Esta solução é útil para 

diagnóstico de falhas através de alertas e agendamento de manutenções quando os 

indicadores excedem determinado limite ou quando um componente está próximo de 

sofrer uma falha. Contam com equipamento computacional poderoso e algoritmos 

que permitem a geração de soluções mais rapidamente que especialistas humanos. 

Porém, a modelagem necessária é complexa e não consegue lidar com situações 

não cobertas pelas regras. Desta forma, ainda de acordo com Le Nguyen et al. 

(2020), a abordagem data-driven é a mais apropriada para a Manutenção 4.0. 

 

A abordagem data-driven, diferente da abordagem knowledge-based, estrutura-se 

em dados coletados por dispositivos conectados, tais como logs de sistemas, 

históricos de manutenção e leituras de sensores ou fluxos de dados de qualquer tipo 

ou fonte. Com base nestes dados é possível reconhecer padrões e predizer futuras 

falhas.  

 

De acordo com Bahri et al. (2021), data streams podem ser definidos como 

sequências esporádicas e transitórias de dados obtidos através do tempo. A fim de 

extrair o maior valor destes dados, é necessário explorar formas de análise em 

tempo real. Um streamer gera altos volumes de dados em tempo real e insights ricos 

podem ser obtidos através de sua análise. Para tal, é necessário empregar recursos 

computacionais eficientes e paralelização de processamento. Porém, é necessário 

levar em consideração alguns desafios para a adoção de sistemas baseados em 

data streaming. São eles: flexibilidade de evolução, curto tempo de processamento, 

uso de memória, alta dimensionalidade, concept drifts, rotulagem atrasada e 

rotulagem desbalanceada. 
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O data streaming viabiliza a geração de alto volume de dados em tempo real. A fim 

de utilizar ao máximo a resultante capacidade de obtenção de conhecimento, faz-se 

necessário o uso de recursos de análises de dados, tais como o stream learning (do 

inglês, aprendizado de fluxo), em aplicações de Manutenção 4.0.  

 

4.2 Técnicas e ferramentas para extração de conhecimento do data streaming 

 

Algumas das técnicas empregadas na análise de data streams para a Manutenção 

4.0 são a aplicação de algoritmos de aprendizado supervisionado e não 

supervisionado, concept drifts (desvios de conceito) e learning and forgetting 

(aprendizado e esquecimento). Le Nguyen et al. (2020) apresentam os principais 

algoritmos utilizados na Manutenção 4.0 e as definições dos algoritmos são 

apresentados de acordo com as referências citadas nas Tabelas 6 e 7. 

 

Segundo definição apresentada por Le Nguyen et al. (2020), o aprendizado 

supervisionado consiste em regressão ou classificação de streams. Dois exemplos 

de algoritmos de classificação utilizados são o Hoeffding Tree (HT) e o Naïve Bayes. 

De acordo com Antony et al. (2021), HT é um modelo baseado em árvore, 

apropriado para lidar com grandes volumes de dados com aprendizado contínuo por 

instância. Caso sejam fornecidos suficientes exemplos para treinamento, o resultado 

será bastante semelhante ao que outros algoritmos baseados em árvore podem 

fornecer. Por sua vez, o clássico Naïve Bayes, segundo Youssef, A. e Pourghasemi, 

H. (2021), é facilmente adaptável ao modelo de dados em streaming ao atualizar as 

ocorrências dos valores de atributos de forma incremental. 

 

As regressões de streams podem ser baseadas em árvore ou regras, apresentadas 

a seguir.  

 

 Regressão baseada em árvore: Fast Incremental Model Trees with Drift 

Detection; de acordo com Wibisono et al. (2016), funciona através da 

segmentação por seleção de atributos. Cada folha possui um modelo linear 

atualizado a cada vez que recebe uma nova instância. O modelo então 

executa regressões para instâncias não rotuladas na folha. 
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 Regressão baseada em regras: Adaptive Model Rules from High Speed Data 

Streams. Segundo a definição apresentada por Duarte et al. (2016), inicia-se 

com um conjunto vazio de regras, que são incrementalmente 

redimensionadas conforme novos dados chegam. Cada regra contém um 

modelo linear que é treinado incrementalmente nos dados cobertos por tal 

regra. O valor predito para uma instância não vista é a média das regressões 

individuais dadas pelas regras que cobrem tal instância. 

 

A Tabela 6 apresenta um resumo dos algoritmos de aprendizado supervisionado 

utilizado na análise de data streams em Manutenção 4.0. 

 

De acordo com Le Nguyen et al. (2020), por meio de clusterização ou detecção de 

anomalias (aprendizado não supervisionado) são feitas análises para descobrir 

padrões e rotular os dados originários de data stream. A seguir são apresentados 

alguns algoritmos de aprendizado não supervisionado utilizados em data streaming. 

 

 Clusterização em duas fases. CluStream, segundo Hu et al. (2021), é um 

exemplo representativo de algoritmo de clusterização em duas fases. A 

primeira fase (online) coleta e atualiza de forma eficiente a síntese estatística 

de dados no formato de micro-clusters. A fase offline trata estes micro-

clusters como pontos e executa o algoritmo K-Means para apresentar o 

resultado da clusterização em determinado horizonte de tempo. Outros 

exemplos de algoritmos que utilizam a abordagem em duas fases são 

DenStream e D-Stream, segundo Putina et al. (2018). 

 

 Algoritmos de detecção de anomalias. A detecção de anomalias procura 

pontos anormais comparados à distribuição dos dados dominantes nos data 

streams. Exemplos: algoritmos Hierarchical Temporal Memory que, de acordo 

com Ahmad et al. (2017), detecta outliers em streams que apresentam ruídos 

e alterações dinâmicas. O xStream, de acordo com Akyildiz et al. (2018) 

executa detecção de anomalias baseada em densidade, na qual uma 

instância não chega com todos os atributos esperados, mas estes chegam 

parte a parte através do tempo. 
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Tabela 6 – Algoritmos de aprendizado supervisionado 

 

Algoritmo Classificação 

ou regressão 

Definição Fonte 

Hoeffding Tree Classificação Estrutura de árvore de decisão 

incrementalmente induzida. Os nós internos 

contêm testes baseados em um atributo e 

direcionam a instância de dados que chega a 

uma folha, baseado em seus atributos. As 

folhas contêm preditores de classificação e 

classificam cada instância. A diferença entre a 

indução da Hoeffding Tree e as árvores de 

decisão em lote é processar a instância apenas 

uma vez, em vez de iterar por todos os dados. 

Antony et al. 

(2021)  

Naïve Bayes Classificação Método de classificação baseado no teorema 

de Bayes. Assume que todos os fatores são 

independentes, dada a classe de saída. 

Vantagens: robusto contra ruídos e variáveis 

irrelevantes, facilidade na aplicação e 

esquemas iterativos complexos são 

desnecessários. 

Youssef, A.; 

Pourghasemi, H 

(2021) 

 

Fast 

Incremental 

Model Trees 

with Drift 

Detection 

Regressão Algoritmo de aprendizado incremental de 

regressão e árvores de modelo a partir de 

streams que mudam através do tempo. Ao 

invés de processar todos os dados em 

memória, o algoritmo permite que, a cada 

chegada de um stream, dados sejam 

processados e aprendidos. 

Wibisono et al. 

(2016) 

 

Adaptive Model 

Rules from 

High Speed 

Data Streams 

Regressão Primeiro algoritmo de aprendizado baseado em 

regras para problemas de regressão. O 

antecedente de uma regra é um conjunto de 

condições nos valores dos atributos e a saída é 

uma combinação linear dos atributos. 

Duarte et al. 

(2016) 

 

Fonte: Própria autora. 

 

A Tabela 7 resume os algoritmos de aprendizado não supervisionado apresentados 

neste trabalho. 
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Tabela 7 – Algoritmos de aprendizado não supervisionado 
 

Algoritmo Definição Fonte 

CluStream Possui como objetivo executar clusterizações de forma mais rápida 

enquanto garante sua acurácia e é utilizado na correlação de 

alarmes. O algoritmo é formado por clusterização online e offline. 

Na fase online, a meta é analisar rapidamente os data streams e 

gerar um micro registro que se refere ao conjunto de condições 

anormais. Na fase offline, a ideia principal é determinar se o alarme 

está relacionado às características das condições anormais. 

Hu et 

al. 

(2021) 

DenStream Permite descobrir clusters de formato arbitrário ao manter um 

conjunto de micro clusters normais e outliers. O DenStream pode 

unir novos pontos de dados a um micro cluster já existente 

(normal/outlier) ou gerar um novo micro cluster de outliers, o que 

dispara um alarme. 

Putina 

et al. 

(2018)  

Hierarchical 

Temporal Memory 

Suas implementações operam em tempo real e trabalham bem 

com tarefas de predição, além de aprender continuamente e 

modelar as características espaço-temporais de suas entradas. 

Porém, não aplicam diretamente modelagem em anomalias, o que 

não permite obter uma classificação útil de anomalias 

Ahmad 

et al. 

(2017)  

xStream Plataforma flexível que provê dupla comunicação entre aplicações 

que executam em dispositivos conectados à Internet e na rede. 

Pode ser usada para melhorar o desempenho de vários tipos de 

tráfego. 

Akyildiz 

et al. 

(2018) 

 

Fonte: Própria autora. 

 

Além dos algoritmos de aprendizado supervisionado ou não supervisionado, podem 

ser abordados outros conceitos e práticas próprias da análise e mineração de stream 

setting, tais como concept drifts (desvios de conceito) e learning and forgetting 

(aprendizagem e esquecimento). A seguir são apresentadas as considerações de Le 

Nguyen et al. (2020) para estes itens. 

 

Concept drifts (desvios de conceito): Krawczyk et al. (2017) definem os concept drifts 

como problemas resultantes de alterações na distribuição do data stream. Refletem-

se nas instâncias de entrada e deterioram a acurácia de modelos de classificação ou 

regressão aprendidos nas instâncias anteriores de treinamento.  A Figura 6 ilustra 

algumas padronizações de ocorrências de desvios de conceito, tais como 
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incremental (incremental), gradual (gradual), sudden (repentina) e reccouring 

(recorrente).  

 

Figura 6 – Tipos de desvio 

 

 

 

Fonte: Krawczyk et al. (2017). 

 

Um algoritmo incremental, por natureza, pode se adaptar a desvios incrementais 

através da incorporação contínua de novos dados. Porém, desvios abruptos podem 

prejudicar a acurácia do modelo até que receba uma quantidade suficiente de dados 

para adaptar-se ao novo cenário. E, caso ocorram desvios graduais, existe a 

possibilidade de o modelo não se adaptar às mudanças. 

 

Learning and forgetting (aprendizagem e esquecimento): os algoritmos que 

trabalham de forma online possuem a característica de aprender conforme novas 

instâncias chegam, o que pode ocorrer através de um registro individual ou um 

conjunto de registros por vez. A segunda forma depende da técnica conhecida por 

windowing (janelas de aprendizagem): um número de registros é acumulado em uma 

janela de tamanho fixo ou variável e o modelo é atualizado conforme os dados 

recebidos na última janela. Então os registros antigos são excluídos da janela a fim 

de receber os novos. O tamanho da janela é um parâmetro essencial. Janelas de 

tamanho pequeno tornam o modelo sensível a mudanças; porém, são submetidos 

várias vezes a mudança. Enquanto isso, uma janela grande implica em adaptação 

mais lenta a mudanças, mas o modelo é mais estável em fases estacionárias dos 

streams. 
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Por conta da limitação no espaço de memória, a absorção de novos registros implica 

na exclusão e “esquecimento” dos antigos. Porém, esta propriedade não é 

adequada para casos em que desvios graduais ou recorrentes ocorrem. A fim de 

manter registros mais consistentes de janelas anteriores sem recorrer ao 

armazenamento, a estes dados são atribuídos pesos de acordo com sua idade. 

Então tais dados são sumarizados e atualizados de acordo com funções estatísticas 

que determinam a relevância de dados passados. 

 

4.3 Utilização de data streaming em aplicações de Manutenção 4.0 

 

É possível aplicar os princípios da Manutenção 4.0 (conectividade entre dispositivos 

e análise de dados em tempo real) em diversas áreas, além da manufatura. As 

principais investigações, independente do campo de aplicação, são relacionadas ao 

monitoramento de variáveis e investigação de causa raiz. A seguir são apresentados 

três casos em diferentes áreas de aplicação: saúde conforme apresentado por 

Maktoubian e Ansari (2019), energia a carvão conforme se verifica em Wang et al. 

(2018) e energia eólica conforme trabalho de pesquisa apresentado por Wu et al. 

(2021). 

 

Maktoubian e Ansari (2019) apresentam um caso de aplicação na área da saúde. 

Trata-se do monitoramento do estado de operação de diversas máquinas e 

equipamentos hospitalares, baseado em Internet of Things. Sensores são instalados 

em tais máquinas para coletar dados, em tempo real, de variáveis consideradas 

críticas (vibração, temperatura, umidade e outras), além de alimentar análises 

preventivas e preditivas. Após a coleta, tais streams são enviados para uma camada 

de análise genérica, na qual poderão ser adotados diversos algoritmos. O resultado 

da pesquisa foi a proposição de um framework de monitoramento de integridade de 

equipamentos com base em ferramentas de Big Data e dados coletados em tempo 

real. 

 

Wang et al. (2018) desenvolveram melhorias na operação de uma central de energia 

a carvão. Existia um sistema de sensores; porém, eram obtidas apenas leituras 

individuais e os equipamentos não eram conectados entre si. Além disso, não eram 

feitas análises preditivas. Entre 2015 e 2016 foram instalados 629 sensores 
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inteligentes em 21 equipamentos, tais como ventiladores, esteiras e alimentadores, a 

fim de coletar dados referentes a vibração, eletricidade e alimentação de carvão. É 

proposto um framework de predição de anomalias baseadas em correlação temporal 

e construído a partir de um conjunto de dados reais e requisitos de manufatura. 

Minera os grafos de dependência a partir dos dados coletados pelos sensores. 

 

Wu et al. (2021) descrevem que, em turbinas eólicas, medições via sensores 

inteligentes apresentam valores esparsos. Algumas das variáveis medidas são 

velocidade do vento, velocidade da turbina, temperatura e energia. O modelo 

sugerido busca a identificação das possíveis causas da grande variação nas 

medições através de regressão e correlação entre variáveis. O artigo propõe um 

framework de pesquisa para monitoramento em tempo real e diagnóstico de falha na 

presença dos quatro desafios de dispositivos de IoT para monitoramento: 

distribuição de dados complexos, estrutura de correlação, esparsidade e eficiência 

de computação. 

 

A Tabela 8 apresenta os casos destacados acima, de forma resumida, referentes 

aos exemplos de aplicação de data streaming na Manutenção 4.0. 

 

Tabela 8 – Exemplos de aplicação de data streaming na Manutenção 4.0 
 

Área Descrição do caso Forma de análise Fonte 

Saúde Data streaming e sensores para coletar 

leituras de variáveis críticas (vibração, 

temperatura, umidade e outras) e alimentar 

análises de falha. 

Camada genérica de 

análise que pode utilizar 

múltiplos algoritmos.  

Maktoubian 

e Ansari 

(2019) 

Energia a 

carvão 

Habilitar análises preditivas através da 

instalação de sensores inteligentes que 

coletam dados referentes a vibração, 

eletricidade e alimentação de carvão. 

Correlação temporal Wang et al. 

(2018)  

Energia eólica Identificar possíveis causas pelas quais as 

medições tomadas pelos sensores 

inteligentes apresentavam valores esparsos 

de velocidade do vento, velocidade da 

turbina, temperatura e energia. 

Regressão e correlação 

entre variáveis 

Wu et al. 

(2021) 

 

Fonte: Própria autora. 
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Assim, é possível afirmar que os princípios relacionados à Manutenção 4.0 podem 

ser utilizados para a solução de problemas e implantação de melhorias em infinitas 

áreas de aplicação, além da indústria. 

4.4 Considerações sobre o capítulo 

 

Este capítulo apresenta as relações entre a evolução da manutenção tradicional, 

conhecida como Manutenção 4.0 e o data streaming. Demonstra também que o uso 

de dados, especialmente em tempo real, é essencial no apoio a iniciativas de 

manutenção inteligente para garantir a eficiência do processo. A fim de extrair todo o 

conhecimento que esta grande massa de dados pode fornecer, técnicas de análise 

de dados são úteis. Técnicas de Manutenção Preditiva não são utilizadas 

exclusivamente pela manufatura: é possível a aplicação nas mais diversas áreas que 

podem ser beneficiadas por estudos de causa raiz de problemas e detecção 

antecipada de possíveis falhas. 
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5 CONSIDERAÇÕES FINAIS 

 

A Manutenção 4.0 é uma realidade tecnológica em plena expansão nos próximos 

anos. Para que sejam atingidos os objetivos de evitar a ocorrência de falhas, 

aprimorar a qualidade do produto final, otimizar a utilização de recursos e viabilizar a 

coleta de dados em tempo real, a adoção de sistemas de manutenção inteligente 

baseadas em data streaming é essencial. Sem estes recursos, as soluções poderão 

impossibilitar as tomadas de decisão em tempo real caso seja detectado um 

comportamento anormal e predecessor de falhas. Isto poderá interferir 

negativamente na atuação no tempo requerido pelo contexto da produção. 

 

5.1 Conclusões  

 

A previsão de aumento no investimento na Manutenção 4.0 até 2026 e o crescente 

interesse de pesquisa neste campo ilustram a relevância do tema  na atualidade. 

Este trabalho está alinhado ao contexto pois a utilização de data streaming na 

manutenção é incipiente e apresenta a necessidade de maior aprofundamento.  

Estudos de casos em empresas de diversas áreas de atuação demonstram que a 

adoção de sistemas de manutenção inteligente podem trazer grandes benefícios em 

pouco tempo, o que possibilita que os recursos outrora empregados na manutenção 

e recuperação de prejuízos derivados da ocorrência de falhas podem ser aplicados 

no aprimoramento da cadeia de valor da linha de produção. 

 

Dos conteúdos apresentados neste trabalho, podem-se destacar a apresentação, no 

Capítulo 2, do ciclo de vida dos dados nos contextos tradicionais, Internet of Things 

e Big Data. No Capítulo 3 foram exploradas as abordagens de manutenção, desde 

as ações corretivas, passando-se pelas preventivas, até chegar à manutenção 

preditiva. O Capítulo 4 apresentou o uso de dados no contexto da manutenção com 

ênfase na utilização do data streaming como parte essencial em sistemas de 

Manutenção 4.0. 

 

O método utilizado foi a pesquisa nas bases de artigos científicos Web of Science e 

Scopus. Foram selecionados artigos publicados a partir de 2016 a fim de identificar 
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estudos mais recentes na área de Manutenção 4.0. Além dos artigos científicos, 

foram utilizados livros especializados e publicações de organizações fornecedoras 

de tecnologia e relatórios de publicações corporativas, tais como artigos de sites e 

estatísticas apresentadas por um instituto de pesquisa do posicionamento de 

Internet of Things no contexto organizacional. 

 

Em suma, foi possível identificar que o data streaming originado em dados coletados 

por dispositivos de Internet of Things é componente essencial na Manutenção 4.0. 

Tal aplicação não é exclusivamente utilizada na manufatura e pode ser adotada por 

diversas áreas que requeiram análises em tempo real de possíveis falhas.  

 

5.2 Contribuições do Trabalho  

 

Este trabalho procurou apresentar como o data streaming, com origem em 

dispositivos de Internet of Things, apoiam a Manutenção 4.0. Trata-se de sistemas 

de manutenção preditiva baseados em data streaming que apresentam a maior 

independência possível de intervenção humana e que fornecem informações que 

possibilitem tomadas de decisão no tempo apropriado ao contexto da organização. 

 

É apresentada a engenharia de dados necessária a fim de viabilizar a implantação 

de um sistema de Manutenção 4.0. Esta estrutura inicia-se pela coleta de dados 

através de sensores e dispositivos baseados em Internet of Things e termina na fase 

de descarte, seguindo o ciclo de vida de dados exigido pelas leis gerais de proteção 

a dados. 

 

Além de apresentar os conceitos e estudos mais recentes no que se refere à 

aplicação de data streaming a sistemas de manutenção, identifica-se a oportunidade 

de aprofundamento das pesquisas referentes a stream learning no contexto da 

Manutenção 4.0 para melhor aproveitamento dos possíveis insights derivados dos 

dados obtidos. 

 

 

5.3 Trabalhos Futuros 
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Sugere-se, como trabalhos futuros, maior aprofundamento nos algoritmos e técnicas 

de stream learning na Manutenção 4.0. Além disso, a fim de evidenciar a eficiência 

dos sistemas de manutenção baseados em dados, podem-se utilizar os conceitos 

apresentados neste trabalho no projeto e implantação de um sistema de 

manutenção preditiva baseada em data streaming em ambiente real. 
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