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RESUMO

REIS, L. E. A. Uso de redes neurais artificiais para detecção de fraudes em sistemas
biométricos de reconhecimento facial. 2020. 89p. Monografia (Trabalho de Conclusão de
Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2020.

A inserção do uso de reconhecimento facial em sistemas biométricos forneceu uma maior
velocidade e a praticidade durante os procedimentos de autenticação, no entanto, com incremento
desses mecanismos em diversas aplicações fez crescer também a necessidade de procedimentos
que evitem falsificações e tentativas de fraude, também chamados de métodos anti-spoofing

facial. A utilização de métodos de detecção de vida (movimento dos olhos e da face), comparação
de face e fundo da imagem, identificação da qualidade da imagem por meio de descritores de
cor, textura, e processamentos para a retirada de possíveis ruídos, são utilizados com o intuito
de avaliar a veracidade da face. Agrega-se, também, a estes métodos, o uso de tecnologias de
aprendizado de máquina com o objetivo de reconhecer padrões existentes tanto para faces reais,
quanto para as adulteradas. Desta maneira, o objetivo deste trabalho é avaliar o comportamento
das Redes Neurais Artificiais quando expostas a dois diferentes cenários: a identificação da
identidade da pessoa por trás do sistema de autenticação e a classificação de fraude biométrica
utilizando o mesmo sistema de avaliação. Para isto, utilizou-se, como método de avaliação, a
técnica de Fine-Tuning, retreinando um modelo convolucional de classificação facial, expondo-o
a uma base de faces reais de 5105 imagens e de 7509 imagens fraudulentas (falsas) também,
a técnica de Data Augmentation por meio de um pré-processamento, com o filtro Gaussiano
passa-alta e o descritor de textura Local Binary Pattern (LBP). Como resultado, observou-
se que a utilização de apenas uma rede neural para o sistema biométrico de reconhecimento
facial convencional, quando exposto a entrada de imagens falsas, possui um decaimento em
sua performance de classificação, enquanto, a utilização do mesmo sistema para a classificação
de veracidade das faces, apresenta um melhor desempenho, ainda mais se atrelado a técnicas
de pré-processamento. Desta maneira, conclui-se que a utilização de diferentes redes neurais
artificias, para diferentes objetivos, contribui tanto para melhorar a eficiência dos métodos de
reconhecimento facial quanto para a detecção de fraudes.

Palavras-chave: reconhecimento facial, fraude, Data Augmentation, Fine-Tuning, aprendizado
de máquina.





ABSTRACT

REIS, L. E. A. Use of artificial neural networks for spoofing detection in biometric face
recognition systems. 2020. 89p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2020.

The insertion of the use of facial recognition in biometric systems provided greater speed and
practicality during authentication procedures, however, with the increase of these mechanisms
in several applications, the need for procedures that prevent forgeries and fraud attempts, also
called of facial anti-spoofing methods. The use of methods of detecting life (movement of the
eyes and face), comparing the face and background of the image, identifying the quality of the
image through color descriptors, texture, and processing to remove possible noise, are used in
order to assess the veracity of the face. The use of machine learning technologies is also added
to these methods in order to recognize existing patterns for both real and adulterated faces. Thus,
the objective of this work is to evaluate the behavior of Artificial Neural Networks when exposed
to two different scenarios: the identification of the person’s identity behind the authentication
system and the classification of biometric fraud using the same evaluation system. For this, the
Fine-Tuning technique was used as an evaluation method, retraining a convolutional model of
facial classification, exposing it to a base of real faces of 5105 images and 7509 fraudulent
(false) images as well. Data Augmentation technique through pre-processing, with the high-
pass Gaussian filter and the Local Binary Pattern (LBP) texture descriptor. As a result, it was
observed that the use of only one neural network for the conventional facial recognition biometric
system, when exposed to the entry of false images, has a decline in its classification performance,
while the use of the same system for the classification of veracity of the faces, presents a better
performance, even more linked to pre-processing techniques. Thus, it is concluded that the use
of different artificial neural networks, for different purposes, contributes both to improve the
efficiency of facial recognition methods and to the detection of fraud.

Keywords: face recognition, fraud, Data Augmentation, Fine-Tuning, machine learning.
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1 INTRODUÇÃO

1.1 Biometria

Com o desenvolvimento da tecnologia nos últimos anos, tanto no campo de uso pessoal,

quanto no uso profissional, os sistemas que necessitam confirmar a identidade dos usuários, por

motivos de segurança a dados, passaram a utilizar algumas maneiras para a identificação humana

com o intuito de evitar tentativas de fraude. Pode-se dividir estes métodos de autenticação em

três maneiras, considerando os conhecimentos pessoais, neste caso, fazendo-se uso de senhas,

perguntas pessoais ou PINs; levando em conta itens que encontram-se em posse humana, como

tokens ou pen-drivers com informações de autenticação criptografadas; também, características

pessoais, as quais são denominadas características biométricas (WEAVER, 2006).

Segundo o Dicionário Priberam da Língua Portuguesa, biometria pode ser definida como:

• medição dos seres vivos e de propriedades mensuráveis;

• estudo das propriedades únicas mensuráveis de cada individuo, em especial

para verificação automática de identidade;

• cálculo da duração provável da vida.

Assim no escopo deste trabalho, a biometria é baseada em características pessoais, as

quais podem ser divididas em dois campos, o comportamental e biológico (WEAVER, 2006). A

primeira abordagem refere-se a padrões de assinatura, reconhecimento de voz, maneira de andar,

entre outros; já o segundo campo trata-se de escaneamento de iris e retina, impressões digitais,

reconhecimento facial, entre outros. Esses atributos únicos podem ser utilizados como forma de

prevenir tentativas de acesso a ambientes pessoais por pessoas não autorizadas, utilizando-se de

equipamentos que verifiquem a autenticidade da conexão (BABICH, 2012).

Sendo assim, muitos dispositivos eletrônicos, desde computadores pessoais, até transa-

ções bancárias e confirmações cadastrais por parte de governos, tem utilizado características

biométricas como forma de autenticação com o intuito de minimizar fraudes e acessos indevidos.

Em especial, tem-se empregado o reconhecimento facial nos sistemas de autenticação, por ser

uma característica única de cada indivíduo, método que não é invasivo e não colaborativo, como o
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reconhecimento de íris, ou que é facilmente reproduzida por fraudadores, como o reconhecimento

por impressão digital (SCHUCKERS, 2002).

1.2 Técnicas de Fraude

As tentativas de fraudes existentes em sistemas biométricos podem ser dividas em dois

cenários: (1) quando o ataque ao sistema é realizado forçando o indivíduo que possui a permissão

de conexão a realizar e validar o acesso; (2) quando as características biométricas são falsificadas,

utilizando-se de moldes reais ou digitais. Para o caso de reconhecimento facial, o processo de

autenticação torna-se mais vulnerável pela alta disponibilidade de imagens faciais na internet,

em especial em redes sociais, o que acaba favorecendo o processo de fraude, diferentemente do

reconhecimento por íris ou impressões digitais, para os quais não há essa facilidade de captura

de informações biométricas (SCHUCKERS, 2002).

Com o intuito coibir estas tentativas de fraude, tem-se que, para o primeiro cenário, a

existência desde câmeras de segurança, até botões de pânico ou alarmes, são soluções empre-

gadas para tentar evitar esse tipo de invasão. Já para o segundo cenário, torna-se necessário a

implementação de algoritmos que identifiquem padrões de fraude com o intuito de minimizar os

ataques aos sistemas biométricos (SCHUCKERS, 2002).

Alguns testes realizados em procedimentos de autenticação biométrica, por meio de

pesquisas científicas, constataram que os equipamentos ainda são vulneráveis a ataques de

falsificação. Essas pesquisas abordaram a confecção de dedos falsos com impressões digitais

desejadas, a utilização de métodos para capturar impressões digitais existentes nas superfícies

empregadas para autenticação, e também fotos e vídeos para legitimar o reconhecimento facial,

e, para todas as técnicas, houve momentos em que os sistemas verificaram o acesso como

verdadeiro (SCHUCKERS, 2002). Desta maneira, tem-se que as principais técnicas de fraude em

sistemas de reconhecimemento facial resumem-se na utilização de fotografias e vídeos em alta

resolução, máscaras 2D para o recorte da área dos olhos para movimentação ocular, e máscaras

3D, obtidas por meio de impressoras de última geração.

1.3 Justificativa

Com o avanço tecnológico dos últimos anos, a utilização de sistemas biométricos para

autenticação de acesso passou a ser implementada com maior frequência e a fazer parte da rotina

da população. Um dos sistemas biométricos convencionais implementado pode ser observado
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na Figura 1, para o qual é efetuado a extração da imagem face e suas características, e, poste-

riormente, realizada a classificação da imagem em relação a sua identidade juntamente com a

avaliação de veracidade da face por trás da câmera (GALBALLY et al., 2014).

Figura 1 – Sistema biométrico convencional - Adaptado (Fonte: GALBALLY et al., 2014)

.

Observa-se que alguns trabalhos recentes, como SOUZA (2019) e DESAI (2019), busca-

ram abordar, com diferentes métodos de aprendizado de máquina, técnicas de aprimoramento a

estes sistemas por meio de redes neurais convolucionais profundas (CNNs), máquina de Boltz-

mann restrita (RBM), redes neurais temporais e redes neurais recorrentes, conforme mostra

a Figura 2. Esses observaram que a proposta de novas arquiteturas de redes profundas, para

imagens em duas dimensões, em relação aos modelos existentes, são boas alternativas para a

detecção de fraude em sistemas de reconhecimento facial, tanto no quesito de extração de carac-

terísticas de fisionomia, quanto para o processamento do reconhecimento facial em dispositivos

com arquiteturas computacionais menos robustas.
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Figura 2 – Sistema biométrico proposto na literatura recente utilizando redes neurais convolucio-
nais (Fonte: Autor)

.

Além disso, estudos relacionados a detecção de vida nas imagens da face, como observado

em TIRUNAGARI et al. (2015), por meio dos movimentos oculares e labiais, que utilizam

conceitos da dinâmica dos fluidos, por meio do fluxo sanguíneo, são empregados na prevenção

de fraudes. Esta técnica faz uso de métodos de decomposição de vídeos em uma sequência

de frames, para o qual as imagens são submetidas a um descritor de textura, neste caso, o

Local-Binary Pattern (LBP), e, posteriormente, extraídos os seus histogramas, para que estes

sejam submetidos a um modelo SVM (Support Vector Machine) para a classificação - Figura 3.

Figura 3 – Sistema biométrico proposto na literatura recente por meio de pré-processamento de
imagens (Fonte: Autor)

.

Entretanto, todas estas abordagem buscaram somente soluções voltadas para a modi-

ficação na arquitetura do sistema de reconhecimento biométrico já existente. Desta maneira,

observa-se que, no cenário atual, com o aumento do acesso a tecnologias por parte da população

e a maior exposição de imagens faciais em veículos de imprensa, redes sociais, além de novas
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técnicas de impressão 3D, torna-se necessário a implementação de novas arquiteturas de reco-

nhecimento facial, utilizando desde técnicas de pré-processamento de imagens, até diferentes

técnicas de aprendizagem profunda, visando uma melhor detecção de fraude e performance de

processamento.

1.4 Objetivo

Este estudo tem como objetivo: a) a verificação do desempenho da atual abordagem do

sistema biométrico convencional quando exposto a tentativas de spoofing facial, por meio da

inserção de imagens falsas em um modelo de classificação facial; b) a verificação do comporta-

mento do modelo de classificação facial quando exposto somente a imagens reais e falsas; c) a

avaliação de desempenho da implementação de pré-processamento, por meio do filtro Gaussiano

e do descritor de textura LBP, com a técnica de Data Augmentation, em um modelo de classi-

ficação facial para classificação de imagens reais e falsas; d) a comparação dos resultados do

sistema biométrico convencional quando exposto a tentativas fraude com outra rede responsável

somente pela identificação da veracidade da face.

1.5 Organização da monografia

Em adição a este capítulo introdutório, constará também neste trabalho de conclusão de

curso as seguintes partes:

• Capítulo 2 - Estudo Teórico: Nesse capítulo será apresentada toda a teoria aplicada neste

trabalho, desde as técnicas de processamento de imagens e reconhecimento de padrões,

até o funcionamento das redes neurais e sua construção.

• Capítulo 3 - Materiais: Nesse capítulo serão especificados todas as técnicas utilizadas no

desenvolvimento deste trabalho e as ferramentas utilizadas na sua elaboração.

• Capítulo 4 - Métodos: Nesse capítulo serão apresentadas as características da rede neural

utilizada, além das métricas de avaliação e a especificação dos testes desenvolvidos.

• Capítulo 5 - Resultados: Nesse capítulo serão mostrados os resultados obtidos dos testes

propostos.
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• Capítulo 6 - Conclusão: Nesse capítulo será apresentada uma conclusão dos estudos

realizados, das implicações de possíveis implementações em sistemas reais e de futuros

trabalhos a serem propostos.
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2 ESTUDO TEÓRICO

2.1 Processamento de imagem

2.1.1 Domínio Espacial

Como primeira abordagem de processamento de imagens, tem-se as operações baseadas

no domínio espacial - manipulação direta dos pixels da imagem - as quais, por meio dos

filtros passa-alta, atuam no realce de imagem, procurando melhorar a qualidade das imagens,

adequando-as para uma futura aplicação de reconhecimento de padrões (ACHARYA, 2005).

As técnicas de realce são dividas em duas categorias: a primeira são as transformações de

intensidade, as quais agem sobre o nível cinza da imagem; e, a segunda, a filtragem espacial, a

qual considera a vizinhança de cada pixel antes de realizar qualquer processamento na imagem.

Em especial tem-se as técnicas que são utilizadas para o aguçamento das imagens, que são

utilizadas com o intuito de evidenciar as transições das imagens, gerando, desta maneira, um

aumento da nitidez. (GONZALEZ WOODS, 2009).

2.1.1.1 Filtro Gaussiano

O filtro Gaussiano é um filtro utilizado em processos de suavização de imagens o qual

proporciona a atenuação do ruído. No entanto, pode-se utilizar o filtro Gaussiano como filtro

passa-alta, com o intuito aplicar técnicas de aguçamento e realçar as regiões de alta frequência

das imagens.

Para este aplicação, tem-se na Equação 2.1 o filtro Gaussiano passa-baixa dado por Gb e

o filtro Gaussiano passa-alta dado por Ga, o qual é gerado por meio do complemento do filtro

gaussiano passa-baixa.

Ga = 1 − Gb (2.1)

Como exemplo da utilização do filtro Gaussiano passa-alta em imagens faciais, pode-

se observar na Figura 4 a imagem original a esquerda e a imagem após a aplicação do filtro

Gaussiano passa-alta a direita.
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Figura 4 – Exemplo da utilização do filtro Gaussiano em uma imagem - Esquerda: Original -
Direita: Filtro Gaussiano. (Fonte: Autor)

Desta maneira, observa-se que a aplicação do filtro Gaussiano para a detecção de fraude

em imagens faciais é válida, pois, para as regiões em que tem-se o reflexo da luz natural na

face real, a utilização do filtro Gaussiano passa-alta gera destaque, fenômeno não observado nas

imagens falsas - o qual será observado posteriormente no Capítulo 4.

2.2 Representação e Descrição

Para a etapa de representação e descrição, ambos os procedimentos se iniciam após a

obtenção de resultados da etapa de segmentação, o qual fornece insumos referentes as partes da

imagem, como bordas, por exemplo. O processo de representação é dividido em duas abordagens,

a primeira quando o foco é dado a região interna da forma - representação por região - e a

segunda quando o foco volta-se para a região extrema da forma - representação por fronteira. Já

para o processo de descrição, tem-se a seleção de características, na qual os atributos da imagem

são extraídos gerando, desta maneira, informações quantitativas da imagem (GONZALEZ et al.,

2009).

2.2.1 Descritor de textura

A utilização de descritores de textura em uma imagem proporciona a identificação de

uma região e, posteriormente, a classificação da mesma, por meio de algumas propriedades como

rugosidade, suavidade e regularidade (OLIVEIRA et al, 2014). Existem três principais métodos

de abordagem de uso destes descritores: estatística, a qual gera uma caracterização de textura

como suave, rugosa, granulada, entre outras; estrutural, em que arranjos primitivos da imagem

são analisados, gerando, por exemplo, a descrição por meio de linhas paralelas espaçadas; e,

por fim, a espectral, na qual utiliza-se do espectro de Fourier para detectar comportamentos

semelhantes dos picos de energia presentes no espectro (GONZALEZ et al., 2009).
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2.2.1.1 Local-Binary Pattern

Local-Binary Pattern (LBP) pode ser definido como um descritor de textura não paramé-

trico, o qual resume as informações de estruturas locais de uma imagem, comparando-as a cada

pixel existente em sua vizinhança, tornando-se um descritor muito poderoso que despertou inte-

resse de pesquisas nos campos de visão computacional e processamento de imagem (HUANG,

2001).

O LBP tem sido aplicado em diversas áreas, desde análise de imagens faciais, recuperação

de imagens, análise biomédica, até mesmo modelagem de ambiente e sensoriamento remoto. As

pesquisas mais recentes apresentam resultados que sustentam que a abordagem LBP fornece

ótimos resultados na representação e análise facial tanto em imagens fixas, quanto em sequências

de vídeo (HUANG, 2001). Desta maneira a utilização do LBP para a análise de imagens faciais

para detecção de fraude é pertinente, pois a intensidade de cinza nos pixels das imagens reais

difere-se em comparação com as imagens falsas, ficando evidente com a aplicação do descritor

de textura LBP - exemplos dessa diferença serão abordados no Capítulo 4. Como da aplicação

do descritor LBP em uma imagem tem-se a Figura 5,

Figura 5 – Utilização do descritor de textura LBP em uma imagem - Esquerda: Original - Centro:
Mapa de textura gerado pelo descritor LBP - Direita: Histograma do nível de cinza do
mapa de textura gerado pelo descritor LBP. Adaptado (Fonte: HUANG et al., 2011)

2.3 Reconhecimento

O reconhecimento de imagens é o procedimento utilizado após a segmentação de regiões

em que as características de cada região da imagem são interpretadas, e um rótulo é atribuído

as áreas da imagem por meio da utilização dos resultados obtidos nos descritores (QUEIROZ,

2006). Além disso, quando vários objetos possuem características semelhantes, define-se que

estes são atribuídos a uma mesma classe. Já em relação as metodologias abordadas na etapa de

reconhecimento, estas podem ser dividas em duas categorias: a teórica, na qual são utilizados
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descritores quantitativos - forma, área, comprimento e textura - para as análises; e a estrutural,

na qual descritores qualitativos são abordados para o entendimento dos padrões existentes nos

objetos (GONZALEZ et al., 2009).

2.3.1 Vetor de Características

Como abordado anteriormente, uma classe de padrões é definida por imagens que

possuam características semelhantes, ou seja, quando compartilham propriedades extraídas por

meio dos descritores. Na prática, observa-se três tipos de arranjos utilizados para descrever as

classes as quais os objetos pertencem, o vetor, as strings e as arvores - as quais representam

descrições estruturais (GONZALEZ et al., 2009). A união de todas essas características das

imagens, obtidas por meio de medidas estatísticas, geram os componentes que formam o vetor

de características (HARALICK, 2010). Como forma de representar o vetor de características,

tem-se a Equação 2.2, na qual cada componente do vetor representa uma característica atribuída

por um descritor, formando, assim, uma matriz nx1 sendo n o número de descritores presentes

na classe (GONZALEZ et al., 2009).

x =



d1

d2

.

.

.

dn


(2.2)

2.3.2 Classificadores

Durante a etapa de classificação de imagens, tem-se o reconhecimento baseado na

utilização de funções de decisão. As técnicas que baseiam-se na comparação dos vetores de

características das imagens, em relação a vetores protótipos de cada classe pré definidos, são

denominadas casamento de classes. A realização desses comparativos pode ser efetuada de

diversas formas, sendo, a mais simples, a classificação que faz uso da distância mínima entre o

vetor das imagens e o vetor padrão das classes, escolhendo, desta maneira, a menor distância

encontrada para a tomada de decisão. Além disso, técnicas baseadas na correlação, ou em

outras operações probabilísticas, entre os vetores, também podem ser utilizadas com o intuito

de encontrar padrões para o reconhecimento (GONZALEZ et al., 2009). Como exemplo da

utilização de classificadores, observa-se a aplicação abordada por Queiroz (2006):
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"Um sistema para a classificação de imagens coletadas da Web em duas classes

semânticas, gráficos e fotografias, foi apresentado. O sistema utilizou um método

de classificação baseado em árvores de decisão (ID3, um algoritmo de indução de

árvores de decisão a partir de exemplos, popular na área de IA). Foi identificado

um conjunto de características adequadas à separação entre as duas classes semân-

ticas escolhidas. Características marcantes de fotografias identificadas foram: (i)

existências de objetos reais com uma tendência a texturas e ausência de regiões

com cores constantes; (ii) pequenas diferenças na proporção (altura x largura); (iii)

poucas ocorrências de regiões com alta saturação de cores; e (iv) presença de um

grande número de cores utilizadas. As características identificadas como marcantes

de gráficos foram: (i) presença de objetos artificiais com bordas bem definidas bem

como a presença de regiões cobertas com cores saturadas; e (ii) grandes diferenças

na proporção e tendência a serem menores em tamanho do que fotografias. Assim,

foram definidas métricas sobre o número de cores, a cor predominante, o vizinho

mais distante, a saturação, o histograma de cores, o histograma do vizinho mais

distante, a proporção das dimensões e a menor dimensão."

2.4 Rede Neural Artificial

Rede Neural Artificial (RNA) é definida como uma estrutura desenvolvida para assemelhar-

se ao cérebro humano; o conhecimento adquirido pela RNA por meio de um processo de apren-

dizagem e a utilização de sistema análogo aos neurônios para armazenamento de conhecimento

evidenciam a semelhança (HAYKIN et al., 2001).

As unidades denominadas neurônios artificiais são utilizadas para fornecer as RNAS

uma interligação maciça, proporcionando o cálculo de funções matemáticas em relação a entrada

da rede. Além disso, estas unidades são descritas por diversas camadas interligadas por conexões,

as quais são associadas a diferentes pesos, sendo estes utilizados para ponderar as entradas

recebidas da rede (SOARES FILHO et al., 2018).

A aplicação desses métodos de cálculos, em larga escala, utilizando redes neurais artifici-

ais até 2006 não era possível, por conta de todo impedimento tecnológico existente na época.

Entretanto, após o surgimento de novas tecnologias e capacidade de processamento, os modelos

baseados em redes neurais de aprendizado em profundidade (Deep Learning) permitiram que

este tipo de método de classificação fosse empregado em diferentes frentes, como visão compu-
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tacional, reconhecimento de fala, aplicações de multimídia no TensorFlow e processamento de

linguagem natural (BUSSON et al., 2018).

2.4.1 Perceptron

A estrutura primitiva de uma Rede Neural Artificial foi desenvolvida por Frank Rosenblatt

em 1957 e é denominada Perceptron. Na Figura 6 tem-se a representação do sistema da RNA

Perceptron, em que cada entrada possui um peso associado a ela, na qual o produto escalar

é aplicado, a soma de cada operação resultante é realizada, e, após isso é efetivado o cálculo

da função de ativação presente no algoritmo Perceptron, gerando, assim, sua saída - o cálculo

realizado é representado pela Equação 2.3, em que x representa a entrada, w representa o peso

atribuído a entrada e b uma constante qualquer (BUSSON et al., 2018).

f(x) =


1, se w.x + b > 0

0, para outros casos
(2.3)

Figura 6 – Estrutura de um Perceptron. (Fonte: BUSSON, 2015)

Pode-se utilizar o modelo de Perceptron em multicamadas (MLP) para realizar um

processamento paralelo para uso do aprendizado supervisionado por meio de Redes Neurais

Artificiais (JOST, 2015). Nesta aplicação, cada neurônio da rede neural é responsável por

aprender e ativar uma função para cada classe específica, obtendo, como resultado, uma saída

dada por uma função argmax a qual seleciona o neurônio que possuiu uma maior ativação entre

as classes avaliadas. Além disso, os neurônios podem ser estruturados em diversas camadas,

nas quais as entradas dos neurônios das camadas mais profundas são ligados nas saídas dos

neurônios das camadas anteriores, e, desta maneira, a rede neural aplica transformações lineares

e não-lineares de forma hierárquica afim de gerar representações para dos dados de entrada e

realizar classificações (BUSSON et al., 2018). Após todo o processamento de aprendizado em

profundidade - utilizando dados rotulados, por exemplo - espera-se que a rede neural artificial seja
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capaz de prever saídas baseadas nos dados de entrada fornecidos; esses modelos são utilizados

para classificação e previsão de valores (JOST et al., 2015).

2.4.2 Rede Neural Convolucional

Para os procedimentos de filtragem de imagens no domínio da frequência, tem-se como

principio o teorema da convolução. A operação de convolução entre dois vetores A e B, quando

avaliada no domínio espacial, pode ser definida como g(x, y) = f(x, y) ∗ h(x, y) , sendo

compreendida como a soma dos produtos dos valores dos vetores que se sobrepõe a cada passo

temporal. Já para o domínio da frequência, a mesma relação também é válida, sendo denotada

por G(u, v) = F (u, v)H(u, v), em que as funções G, F e H representam as Transformada de

Fourier das funções g, f e h, respectivamente, sendo a função H(u, v) denominada função de

transferência do filtro (MARQUES FILHO et al., 1999).

Por meio de todo avanço tecnológico nos últimos anos, tanto no campo de novas soluções

para aprendizado em profundidade - Deep Learning - quando em relação a capacidade computa-

cional, tornou-se possível a solução de vários problemas existentes. No entanto, outras questões

surgiram, como no exemplo descrito por Pavlovsky (2017) em Introduction To Convolutional

Neural Networks:

"Digamos que queremos detectar o rosto humano a partir da imagem. Uma rede

neural simples atribuiria cada pixel a um neurônio na camada de entrada. Mas

o que isso significa? Isso significa que não mantemos informações espaciais de

pixels. Dividimos a imagem em neurônios individuais e depois alimentamos a rede

com eles. Mas em caso de reconhecimento de rosto, você tem partes como olhos.

Os olhos são objetos complexos compostos de várias partes. Você tem pupila, íris,

esclera e até pálpebras. Todo olho os tem. Você seria capaz de detectar o olho

apenas por um pixel ou apenas por uma parte? Provavelmente não. Somente o todo

em ordem específica faz sentido. Se você treinar a rede neural na imagem do olho,

só funcionará se o olho estiver na mesma posição exata da imagem todas as vezes.

Quando você move, escala ou gira o olho, a rede inevitavelmente falhará em prever

a saída correta. Precisamos de uma maneira de procurar padrões específicos em

vez de pixels individuais. E é isso que as redes neurais convolucionais fazem." -

Tradução livre.
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Desta maneira, torna-se necessário a implementação de Redes Neurais Convolucionais

(CNNs), afim de resolver questões referente ao processamento de imagens de forma dinâmica,

afim da rede neural ser capaz de prever entradas dinâmicas. As Redes Neurais Convolucionais

são redes que utilizam do cálculo da operação de convolução para o processamento de dados

organizados em grade (BUSSON et al., 2018). A etapa de convolução recebe a imagem fornecida

como entrada, realiza as operações no núcleo denominado kernel e fornece como resultado um

mapa de características (PACHECO, 2018). As CNNs são indicadas para o processamento de

imagens, e reconhecimento de padrões, pelo fato desta, por meio das camadas de convolução, en-

contrar features que caracterizem diferentes comportamentos nas imagens de entrada (BUSSON

et al., 2018).

De forma mais específica, as camadas que compõe uma Rede Neural Convolucional

podem ser dividas em três etapas - como ilustrado na Figura 7. A primeira etapa consiste na

execução de diversas operações de convolução ocorrendo em paralelo. Na segunda etapa, para

cada ativação linear produzida, executa-se uma função de ativação não-linear, como forma de

um estágio detector. Já no terceiro e último estágio, utiliza-se um processo denominado pooling,

no qual algumas características obtidas nas fases anteriores são agrupadas, com o intuito do

reconhecimento de padrões (GOODFELLOW et al., 2015).

Figura 7 – Componentes das Camadas da Rede Neural Artificial. (Fonte: GOODFELLOW et al.,
2015)
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2.4.2.1 VGGFace

Como modelo de aprendizado profundo pré-treinado, tem-se o VGGFace, um modelo

desenvolvido pelos membros do Visual Geometry Group (VGG) da University of Oxford, em

2015, para reconhecimento facial. O objetivo da VGGFace é o reconhecimento facial - desde

uma única foto até um conjunto de faces presentes em um vídeo. O desenvolvimento desta rede

neural só foi possível por conta da disponibilidade de conjunto de dados para treinamento - neste

caso utilizou-se 2,6 milhões de imagens de, aproximadamente, 2,6 mil pessoas - e, também, da

evolução da complexidade de modelos de rede neurais convolucionais (CNN), podendo atingir

resultados comparáveis a modelos de reconhecimento de imagens desenvolvidos pelo Google e

pelo Facebook (PARKHI et al., 2015).

Pode-se observar nas Figuras 8 e 9 as camadas presentes na VGGFace utilizada.

Figura 8 – Camadas VGGFace. (Fonte: JAWOREK-KORJAKOWSKA et al., 2019)

Figura 9 – Camadas VGGFace. (Fonte: JAWOREK-KORJAKOWSKA et al., 2019)

Como camadas do modelo VGGFace, tem as camadas convolucionais - neste caso cinco

blocos -, os quais são sempre seguidos da camada de Pooling, a qual, possui o objetivo de

sub-amostrar a imagem de entrada para diminuir a carga computacional, o uso de memória e o

número de parâmetros. Além disso, após as operações de convolução, tem-se as camadas com

as funções de ativação, as quais promovem a não-linearidades ao modelo, proporcionando que

a rede aprenda qualquer tipo de característica. E, por fim a camada Fully Connected a qual
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transforma os parâmetros aprendidos por todos os neurônios da camada anterior, em N saídas

que representam a quantidade de classes desejada como saída do modelo (GÉRON, 2019). Todas

essas características citadas podem ser observadas na Figura 10.

Figura 10 – Camadas VGGFace. (Fonte: ANALYTICS VIDHYA)

.

2.5 Técnicas anti-spoofing

Com a intenção de detectar possíveis fraudes em sistemas de autenticação facial, há

alguns anos, diversas pesquisas tem sido desenvolvidas para melhorar o desempenho das técnicas

utilizadas até o momento. Uma abordagem observada por PAN et al. (2007) é a identificação

da utilização de imagens estáticas para fraudar sistemas por meio da movimentação dos olhos,

retirando do processo de verificação vários frames em poucos segundos e comparando-os para

poder realizar a classificação - Figura 11.

Figura 11 – Técnica anti-spoofing de identificação de movimentação dos olhos. (Fonte: PAN,
2007)

.

Utilizando-se dos mesmos princípios de extração de partes do rosto, SINGH et al. (2017)

realizou a verificação da autenticidade de imagens por meio da movimentação da boca, afim de

confirmar a existência de vida por trás dos aparelhos - Figura 12.
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Figura 12 – Técnica anti-spoofing de identificação de movimentação da boca. (Fonte: SINGH et
al., 2017)

.

Além disso, outro método proposto foi abordado por LI et al. (2016) o qual utilizou de

técnicas de processamento de imagem para detectar o fluxo sanguíneo presente na face humana

e assim coibir tentativas de fraude - Figura 13.

Figura 13 – Técnica anti-spoofing de identificação do fluxo sanguíneo. (Fonte: LI et al., 2016)

.

Por outro lado, há também estudos que buscam aprimorar as técnicas de aprendizado

profundo, que, no sistema convencional de autenticação, é utilizada para classificar a identi-

dade da pessoa, afim de extrair características das imagens e classificá-las em reais ou falsas.

Como observado anteriormente, SOUZA (2019) e DESAI (2019), buscaram aplicar diferentes

abordagens de aprendizado de máquina como redes neurais convolucionais (CNNs), máquina
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Boltzmann restrita (RBM), redes neurais temporais e redes neurais recorrentes afim de comparar

o desempenho de cada arquitetura quando expostos a faces falsas.
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3 MATERIAIS

3.1 Google Colaboratory

Para a avaliação das aplicações realizadas neste trabalho, utilizou-se a plataforma do

Google Colaboratory como ambiente de processamento. Segundo o Google, o Colaboratory

(Colab), é um ambiente desenvolvido pelo Google Research no qual é possível que qualquer

pessoa implemente um código em Python dentro do navegador. O Colab é uma solução desenvol-

vida especialmente para aplicações de aprendizado de máquina e análise de dados com o uso de

hardware acelerado para Tensorflow, entre outras soluções, com GPU e TPU, na qual utiliza-se

um Jupyter Notebook.

Além disso, segundo o Google, o serviço do Google Colaboratory é fornecido de forma

gratuita com os recursos operacionais já pré configurados, incluindo GPUs. As GPUs disponível

no ambiente de processamento variam entre Nvidia K80s, T4s, P4s e P100s. Para este trabalho

utilizou-se também uma memória RAM de 12.72GB disponíveis e um disco de 70GB.

3.2 Tensorflow

Como ambiente pré configurado, tem-se a aplicação TensorFlow em Python, a qual

é uma biblioteca de código aberto empregada para projetos voltados para aprendizado de

máquina. A solução do TensorFlow foi originalmente desenvolvida pela equipe Google Brain,

a qual empregou esta biblioteca em pesquisas voltadas para aprendizado de máquina e redes

neurais profundas; atualmente a utilização do TensorFlow permite que os estudos relacionados a

Inteligência Artificial possam ser empregados de forma fácil e rápida, tanto em Python, quanto

em C++.

O TensorFlow é um sistema de aprendizado de máquina que opera em grande escala e em

ambientes heterogêneos. O TensorFlow utiliza-se de grafos de fluxo de dados para representar a

computação, estado compartilhado e as operações que alteram esse estado. Este processo é criado

para mapear os nós de um gráfico de fluxo de dados em muitas máquinas ou em um cluster,

incluindo CPUs multicore, GPUs e também no Tensor Processing Units (TPUs). Esta arquitetura

fornece a flexibilidade para o desenvolvedor de aplicativos, pois, enquanto nos servidores de

parâmetros projeta-se o gerenciamento de estado integrado ao sistema, o TensorFlow permite que
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os desenvolvedores experimentem novas otimizações e algoritmos de treinamento (GOOGLE

BRAIN, 2016).

3.3 Keras

Como solução integrada ao TensorFlow, tem-se o Keras, uma API (Interface de progra-

mação de aplicações) desenvolvida por François Chollet, com código aberto, a qual permite a

utilização do TensorFlow por meio de uma interface acessível e produtiva para a resolução de

problemas de aprendizado de máquina, minimizando as ações necessárias por meio do usuário e

emitindo erros de forma direta e transparente.

Com a criação do Keras, tornou-se possível o maior aproveitamento da escalabilidade

e dos recursos existentes na plataforma do TensorFlow, permitindo o usuário executar o Keras

em TPU ou também em grandes clusters de GPUs. Além disso o Keras possui várias funções

voltadas para a construção de partes necessárias em projetos de redes neurais, como camadas,

funções de perda, funções de ativação, otimizadores, podendo empregá-las também em redes

neurais convolucionais e recorrentes.

3.4 Dataset facial

Como base de imagens faciais voltadas para aplicações anti-spoofing, tem-se a NUAA

(Nanjing University of Aeronautics and Astronautics), uma das base mais utilizadas atualmente

neste campo de estudo. A base NUUA consiste em um relação de 12620 imagens de 15 pessoas

diferentes, divididas em duas categorias, imagens reais - denominada ClientFace - e imagens

falsas - denominada ImposterFace. As imagens foram obtidas, pelo grupo de pesquisadores da

Universidade de Nanjing, por meio da utilização de webcams, para as fotos reais, e, para fotos

falsas, com fotos das fotos. Além disso, as imagens foram obtidas com pessoas de diferentes

idades e gêneros e também em diferentes posições.

Na Figura 14 pode-se observar uma imagem real e na Figura 15 uma imagem falsa. É

possível concluir visualmente as diferenças existentes entre as imagens considerando aspectos

como brilho, textura e cor.



43

Figura 14 – Imagem real. (Fonte: NUAA)

Figura 15 – Imagem falsa. (Fonte: NUAA)
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4 MÉTODOS

Neste capítulo serão apresentados os métodos utilizados no desenvolvimento desta

monografia, abordando desde as características e funções utilizadas na rede neural convolucional,

as métricas de avaliação dos resultados obtidos, as técnicas utilizadas, até o método proposto,

em comparação com a literatura, e as particularidades dos testes realizados.

4.1 Características do modelo

4.1.1 Funções de ativação

Como funções de ativações, foram utilizadas nas camadas intermediárias e não convolu-

cionais do modelo VGGFace as funções Rectified Linear Unit (ReLU) e softmax.

A função de ativação Rectified Linear Unit, mais conhecida como ReLU, é uma forma

de função de ativação usada comumente em modelos de aprendizado profundo. Em essência, a

função retorna zero se receber uma entrada negativa e se receber um valor positivo, a função

retornará o mesmo valor positivo. Os benefícios de usar a função ReLU são que sua simplicidade

a torna uma função relativamente barata de calcular. Como não há matemática complicada, o

modelo pode ser treinado e executado em um tempo relativamente curto. Da mesma forma, ele

converge mais rápido, o que significa que a inclinação não se estabiliza conforme o valor de X

fica maior (GOODFELLOW, 2016).

f(x) = max(0, x) (4.1)
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Figura 16 – Rectified Linear Unit (ReLU). (Fonte: EXPERT ACADEMY)

.

A função de ativação softmax, ou função exponencial normalizada, é uma função logística

desenvolvida para aplicações de dimensões múltiplas. Esta função é utilizada tanto em problemas

que envolvem regressão logística multinomial quanto como a última função de ativação de uma

rede neural para normalizar a saída de uma rede para uma distribuição de probabilidade sobre as

classes de saída previstas (GOODFELLOW, 2016).

O funcionamento da função softmax - Equação 4.2 - é dado pelo cálculo de uma pon-

tuação para o vetor z para cada classe K, para o qual é realizado o cálculo do exponencial, e,

posteriormente, a normalização, obtendo como resultado a probabilidade do vetor pertencer a

cada classe. Sendo assim, antes da aplicação da função softmax, alguns componentes do vetor

podem possuir valores negativos ou maiores que um e a soma deles podem não somar um. Após a

aplicação da função, cada componente presente na entrada possuirá um valor no intervalo (0, 1),

e os componentes somarão um, de forma que possam ser interpretados como probabilidades,

e também correspondendo, os maiores componentes de entrada, as maiores probabilidades

(GOODFELLOW, 2016).

Θ(z)j = ezj∑K
k=1 ezk

, paraj = 1, ..., K. (4.2)
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Figura 17 – Softmax. (Fonte: EXPERT ACADEMY)

.

4.1.2 Função de Otimização

Como função de custo para otimização do modelo, utilizou-se a função do Gradiente

Descendente Estocástico, ou SGD (stochastic gradient descent, em inglês), para a qual, o

algoritmo é utilizado para calcular o gradiente da função de perda da rede em relação a cada

peso individual na rede. Para cada passagem para frente pela rede, retorna-se uma certa função

de perda parametrizada, e utiliza-se cada um dos gradientes criados para cada um dos pesos,

multiplicando-os por uma certa taxa de aprendizado, para mover os pesos em qualquer direção

que seu gradiente esteja apontando(BOTTOU, 2010).

O SGD diferencia-se dos outros gradientes existentes por escolher aleatoriamente uma

instância no conjunto de treinamento em cada etapa e calcular os gradientes para uma amostra

dos dados, procurando mínimos locais. Desta maneira, o algoritmo do SGD acaba possuindo

uma velocidade de treinamento maior, por realizar cálculos somente em uma instância por etapa,

e permite, também, o treinamento de um grande conjunto de dados, pois somente uma instância

precisa ficar na memória por iteração (GÉRON, 2019).

4.1.3 Função de perda

Como função de perda utilizou-se o método denominado Categorical Cross-Entropy. A

Cross-Entropy (CE) é um método heurístico utilizado para resolver problemas de otimização

combinatória, calculando-se a diferença entre duas distribuições de probabilidade em relação ao

mesmo conjunto de eventos (MANNOR et al, 2005). A função de perda de CE é quase a única

escolha para tarefas de classificação na prática. Seu uso predominante é apoiado teoricamente
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por sua associação com a minimização da divergência de probabilidade entre a distribuição

empírica de um conjunto de dados e a confiança do classificador para o conjunto de dados (NAR

et al, 2019).

Desta maneira a função de perda de Cross-Entropy, mede o desempenho de um modelo

de classificação cuja saída é um valor de probabilidade entre 0 e 1, a qual é dada pela Equação

4.3.

CE = −
L∑

i=1
yi. log ~yi, sendo L o cumprimento da vetor de saída (4.3)

Para modelos de classificação com N classes diferentes, mas não mutuamente exclusivas,

utiliza-se o método denominado Categorical Cross-Entropy, no qual cada classe é convertida

para um vetor 1XN possuindo valores unitários para a posição que representa sua classe e

valores nulos para as outras classe. Na Figura 18 tem-se um exemplo desta aplicação.

Figura 18 – Exemplo Categorical Cross-Entropy. (Fonte: Autor)

.

4.1.4 Métricas de avaliação

Como métricas de avaliação do desempenho das redes neurais treinadas, utilizou-se

desde a acurácia obtida a cada época de treinamento, como a perda em cada iteração. Além

disso, métricas como precisão, revocação, F1-score, a área sob a curva ROC (AUC) e matriz de

confusão foram observadas por se tratar de um modelo de classificação com diversas classes.

A acurácia, pode ser definida como a quantidade de amostras que foram classificadas

corretamente, tanto positivas quanto negativas. No entanto, é necessário atentar-se em relação a

essa métrica pois como não há um padrão na quantidade de imagens pertencentes a cada classe

existente no modelo treinado e há um número considerável de classes, sempre será observado
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mais segmentos da classe negativa. Dessa maneira mesmo fixando um valor para as predições da

classe negativas, a acurácia apresentaria um valor alto (MARQUES, 2017).

A precisão é definida como a acurácia das previsões positivas, ou seja, a quantidade

de segmentos classificados positivos que realmente pertencem a classe selecionada (Equação

4.4). Já revocação, ou Recall, é a sensibilidade do modelo, a qual expressa a taxa de verdadeiros

positivos, isto é, a quantidade de classes positivas que foram corretamente identificadas (Equação

4.5). Para ambas equações, tem-se que TP é o número de verdadeiros positivos, FP é o número

de falsos positivos e FN é o número de falsos negativos (GÉRON, 2019).
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precisão = TP

TP + FP
(4.4)

recall = TP

TP + FN
(4.5)

Tem-se também o F1-score, que, pode ser definida como uma métrica que combina os

valores de precisão e revocação utilizando o cálculo da média harmônica entre as duas outras

métricas - Equação 4.6 (GÉRON, 2019).

F1 = 2
1

precisão + 1
revocação

(4.6)

A curva ROC (traduzida do inglês como características operacionais do receptor) repre-

senta a taxa de verdadeiros positivos (revocação) em relação a taxa de falsos positivos. Os valores

na curva ROC variam em cada eixo de zero até um, sendo considerado um bom classificador

aquele que possui um comportamento distante da linha pontilhada - Figura 19 - a qual representa

um classificador aleatório. Já o valor da Área sob a curva (AUC) é utilizado para a comparação

entre classificadores, sendo este considerado satisfatório para valores próximos a um (GÉRON,

2019).

Figura 19 – Curva ROC com representação do cálculo AUC. (Fonte: REBELLO, 2020)

.

Além disso utilizou-se o cálculo da matriz de confusão, para a qual obtêm-se a quantidade

de vezes em que uma classe A - valores nas linhas da matriz - foi classificada como uma classe

B - valores nas colunas da matriz. Desta maneira, cada linha da matriz representa a classe

verdadeira que se deseja classificar e, cada coluna da matriz representa a classe em que o dado foi
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classificado, ou seja, para se obter bons resultados, deve-se possuir maiores valores na diagonal

principal da matriz (GÉRON, 2019).

4.2 Técnicas utilizadas

4.2.1 Fine-tuning

A técnica de Fine-tuning, em geral, significa fazer pequenos ajustes em um processo

para obter a saída ou desempenho desejado. O Fine-tuning do aprendizado profundo envolve o

uso de pesos de um algoritmo de aprendizado profundo anterior para programar outro processo

de aprendizado profundo semelhante. Pesos são usados para conectar cada neurônio em uma

camada a cada neurônio na próxima camada da rede neural. O processo de Fine-tuning diminui

significativamente o tempo necessário para programar e processar um novo algoritmo de aprendi-

zado profundo, pois ele já contém informações vitais de um algoritmo de aprendizado profundo

pré-existente.

Desta maneira, como o conjunto de 2.6MM de imagens utilizadas para treinar o modelo

VGGFace é muito maior em relação ao conjunto de imagens utilizadas neste trabalho, entre 6

mil reais e 6 mil falsas, a utilização dos pesos pré-treinados pela VGGFace tornou-se necessária,

sendo possível com a implementação da técnica de Fine-tuning.

4.2.2 Data Augmentation

A técnica de Data Augmentation, pode ser definida como uma técnica de regularização a

qual consiste na geração de novos objetos para treinamento do modelo proposto, por meio dos

objetos já existentes, e, desta maneira, aumentando, consideravelmente, o tamanho da base de

dados utilizada para treinamento e reduzindo o sobre-ajuste do modelo (GÉRON, 2019).

Como exemplo, tem-se as Figuras 20 e 21 nas quais, a primeira representa a imagem

original utilizada para classificação no modelo, e, a segunda, as imagens geradas para a im-

plementação da técnica de Data Augmentation, utilizando técnicas de rotação de imagens e

alteração de cores.
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Figura 20 – Exemplo Data Augmentation - Imagem original. (Fonte: BROWNLEE, 2019)

.

Figura 21 – Exemplo Data Augmentation - Imagens geradas. (Fonte: BROWNLEE, 2019)

.

Desta maneira, a avaliação da aplicação da técnica de Data Augmentation, por meio da

adição de imagens com filtro Gaussiano passa-alta e do descritor de textura LBP, é apropriada

para a detecção de fraude em reconhecimento facial. A extração de diferentes características

das imagens agrega valor ao modelo classificatório, realizando diferentes comparações entre

as imagens reais e falsas, considerando, neste caso, zonas de alta frequência e distribuição da

intensidade de cinza em relação aos pixels vizinhos.

4.3 Método proposto

Observa-se que o método convencional utilizado em sistemas biométricos - como visto

na Figura 1 - realiza a verificação da identidade da face. Dessa maneira, torna-se necessária a

avaliação do desempenho da atual abordagem utilizada e a implementação de alternativas ao

método convencional de reconhencimento facial, avaliando o comportamento da rede neural para

a classificação de imagens reais e falsas, verificando assim a autenticidade das imagens.
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Além disso, os trabalhos recentes propostos por SOUZA (2019) e DESAI (2019) in-

vestigaram diferentes procedimentos de detecção de fraude por meio da avaliação de diversas

abordagens de arquiteturas de redes neurais artificiais, porém, não foi avaliado o desempenho do

aplicação quando exposta a diferentes técnicas de pré-processamento das imagens faciais, por

meio, por exemplo, da utilização conjunta de descritores de textura e filtros passa-alta.

Sendo assim, a proposta deste trabalho para a autenticação biométrica por meio da face,

seria necessário, primeiramente, a realização de um pré-processamento das imagens faciais,

por meio de descritor de textura e filtro passa-alta (LBP e filtro Gaussiano, respectivamente)

e utilizando técnicas de Fine-tuning e Data Augmentation. Posteriormente, torna-se preciso a

implementação de um modelo classificatório para avaliar a autenticidade da imagem utilizada

para a autenticação, o qual será avaliado neste trabalho, e outro para identificação da identidade

da face, como já utilizado na arquitetura convencional, diferenciando-se do sistema biométrico

atual, como pode-se observar na Figura 22.

Figura 22 – Proposta de cenário ideal para autenticação biométrica facial (Fonte: Autor)

.

4.4 Testes realizados

Pode-se dividir o conjunto de testes em duas etapas: a primeira com o intuito de veri-

ficar a abordagem convencional do reconhecimento facial, utilizando imagens rotuladas com

a identidade das pessoas e expondo o modelo a imagens falsas; a segunda visando analisar o

desempenho do modelo quando exposto somente a classificação de imagens reais e falsas.
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4.4.1 Fine-tuning para quinze classes de imagens reais

Com o intuito de avaliar o modelo pré-treinado da VGGFace realizou-se a técnica de

Fine-tuning no modelo, retreinando, desta maneira, as quatro últimas camadas com as seguintes

características:

• Batch Size: 32

• Número de épocas: 100

• Parâmetros treináveis: 13,109,250

• Parâmetros não treináveis: 14,714,688

• Quantidade de classes: 15

• Característica(s) das imagens: somente imagens reais

• Métricas utilizadas: Acurácia, Perda, Precisão, Revocação, Área sob a curva ROC e Matriz

de Confusão

Para este teste foi utilizado por classe a quantidade de imagens que pode-se observar na

Figura 23, todas como o exemplo presente na Figura 24.

Figura 23 – Quantidade de imagens utilizadas no teste de Fine-tuning para quinze classes de
imagens reais

.
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Figura 24 – Exemplo de imagem real utilizada no teste de Fine-tuning para quinze classes de
imagens reais

.

4.4.2 Fine-tuning para quinze classes de imagens reais e uma classe falsa

Para avaliar como o modelo pré-treinado da VGGFace comporta-se em relação a imagens

falsas, realizou-se a técnica de Fine-tuning no modelo, retreinando, desta maneira, as quatro

últimas camadas com as seguintes características:

• Batch Size: 32

• Número de épocas: 100

• Parâmetros treináveis: 13,109,250

• Parâmetros não treináveis: 14,714,688

• Quantidade de classes: 16

• Característica(s) das imagens: 15 classes reais e 1 classe falsa

• Métricas utilizadas: Acurácia, Perda, Precisão, Revocação, Área sob a curva ROC e Matriz

de Confusão

Para este teste foi utilizado por classe a quantidade de imagens que pode-se observar na

Figura 25, selecionando, de forma aleatória, em torno de vinte imagens falsas relacionadas as

pessoas presentes em cada classe real - 300 imagens falsas. Na Figura 26 pode-se observar um

exemplo de uma imagem real e na Figura 27 um exemplo de uma imagem falsa.
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Figura 25 – Quantidade de imagens utilizadas no teste de Fine-tuning para quinze classes de
imagens reais e uma classe falsa

.

Figura 26 – Exemplo de imagem real utilizada no teste de Fine-tuning para quinze classes de
imagens reais e uma classe falsa

.
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Figura 27 – Exemplo de imagem falsa utilizada no teste de Fine-tuning para quinze classes de
imagens reais e uma classe falsa

.

4.4.3 Fine-tuning para uma classe real e uma classe falsa

Com o intuito de avaliar a forma como o modelo pré-treinado da VGGFace comporta-se

na classificação somente de imagens reais e imagens falsas, realizou-se a técnica de Fine-

tuning no modelo, retreinando, desta maneira, as quatro últimas camadas com as seguintes

características:

• Batch Size: 128

• Número de épocas: 100

• Parâmetros treináveis: 13,109,250

• Parâmetros não treináveis: 14,714,688

• Quantidade de classes: 2

• Característica(s) das imagens: 1 classe real e 1 classe falsa

• Métricas utilizadas: Acurácia, Perda, Precisão, Revocação, Área sob a curva ROC e Matriz

de Confusão

Para este teste foi utilizado por classe a quantidade de imagens que pode-se observar na

Figura 28. Na Figura 29 pode-se observar um exemplo de uma imagem real e na Figura 30 um

exemplo de uma imagem falsa.
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Figura 28 – Quantidade de imagens utilizadas no teste de Fine-tuning para uma classe real e uma
classe falsa

.

Figura 29 – Exemplo de imagem real utilizada no teste de Fine-tuning para uma classe real e
uma classe falsa

.
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Figura 30 – Exemplo de imagem falsa utilizada no teste de Fine-tuning para uma classe real e
uma classe falsa

.

4.4.4 Fine-tuning para uma classe real e uma classe falsa com Data Augmentation utilizando
descritor de textura LBP

Para avaliar a forma como o modelo pré-treinado da VGGFace comporta-se na classifica-

ção somente de imagens reais e imagens falsas, realizou-se a técnica de Fine-tuning no modelo,

retreinando, desta maneira, as quatro últimas camadas com as seguintes características:

• Batch Size: 128

• Número de épocas: 100

• Parâmetros treináveis: 13,109,250

• Parâmetros não treináveis: 14,714,688

• Quantidade de classes: 2

• Característica(s) das imagens: 1 classe real e 1 classe falsa com descritor de textura LBP

• Métricas utilizadas: Acurácia, Perda, Precisão, Revocação, Área sob a curva ROC e Matriz

de Confusão

Para este teste foi utilizado também a técnica de Data Augmentation em ambas as classes

- real e falsa - utilizando, além das imagens originais processadas no teste anterior, os resultados

do processo de descrição com o descritor de textura LBP. Desta maneira, a quantidade de imagens

por classe utilizada neste treinamento pode ser observada na Figura 31. Na Figura 32 pode-se

observar um exemplo de uma imagem real e na Figura 33 um exemplo de uma imagem falsa.
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Figura 31 – Quantidade de imagens utilizadas no teste de Fine-tuning para uma classe real e uma
classe falsa com Data Augmentation utilizando descritor de textura LBP

.

Figura 32 – Exemplo de imagens reais utilizada no teste de Fine-tuning para uma classe real
e uma classe falsa com Data Augmentation utilizando descritor de textura LBP.
Esquerda: Original - Direita: Mapa de textura gerado pelo LBP

.
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Figura 33 – Exemplo de imagens falsas utilizada no teste de Fine-tuning para uma classe real
e uma classe falsa com Data Augmentation utilizando descritor de textura LBP.
Esquerda: Original - Direita: Mapa de textura gerado pelo LBP

.

4.4.5 Fine-tuning para uma classe real e uma classe falsa com Data Augmentation utilizando
filtro Gaussiano

Com o intuito de avaliar a forma como o modelo pré-treinado da VGGFace comporta-se

na classificação somente de imagens reais e imagens falsas, realizou-se a técnica de Fine-

tuning no modelo, retreinando, desta maneira, as quatro últimas camadas com as seguintes

características:

• Batch Size: 128

• Número de épocas: 100

• Parâmetros treináveis: 13,109,250

• Parâmetros não treináveis: 14,714,688

• Quantidade de classes: 2

• Característica(s) das imagens: 1 classe real e 1 classe falsa com filtro Gaussiano aplicado

• Métricas utilizadas: Acurácia, Perda, Precisão, Revocação, Área sob a curva ROC e Matriz

de Confusão

Neste teste foi utilizado também a técnica de Data Augmentation em ambas as classes -

real e falsa - utilizando, além das imagens originais processadas anteriormente, os resultados do

processo de filtragem com o filtro Gaussiano. Desta maneira, a quantidade de imagens por classe
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utilizada neste treinamento pode ser observada na Figura 34. Na Figura 35 pode-se observar um

exemplo de uma imagem real e na Figura 36 um exemplo de uma imagem falsa.

Figura 34 – Quantidade de imagens utilizadas no teste de Fine-tuning para uma classe real e uma
classe falsa com Data Augmentation utilizando filtro Gaussiano.

.

Figura 35 – Exemplo de imagens reais utilizada no teste de Fine-tuning para uma classe real
e uma classe falsa com Data Augmentation utilizando filtro Gaussiano. Esquerda:
Original - Direita: Filtro Gaussiano

.
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Figura 36 – Exemplo de imagens falsas utilizada no teste de Fine-tuning para uma classe real
e uma classe falsa com Data Augmentation utilizando filtro Gaussiano. Esquerda:
Original - Direita: Filtro Gaussiano

.

4.4.6 Fine-tuning para uma classe real e uma classe falsa com Data Augmentation com ambos
os filtros

Afim de avaliar a forma como o modelo pré-treinado da VGGFace comporta-se na

classificação somente de imagens reais e imagens falsas, realizou-se a técnica de Fine-tuning no

modelo, retreinando, desta maneira, as quatro últimas camadas com as seguintes características:

• Batch Size: 128

• Número de épocas: 100

• Parâmetros treináveis: 13,109,250

• Parâmetros não treináveis: 14,714,688

• Quantidade de classes: 2

• Característica(s) das imagens: 1 classe real e 1 classe falsa com filtros LBP e Gaussiano

aplicados

• Métricas utilizadas: Acurácia, Perda, Precisão, Revocação, Área sob a curva ROC e Matriz

de Confusão

Para este último teste foi utilizado também a técnica de Data Augmentation em ambas as

classes - real e falsa - utilizando, além das imagens originais processadas no teste anterior, os

resultados do processo de filtragem com o filtro Gaussiano e o descritor de textura LBP. Desta
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maneira, a quantidade de imagens por classe utilizada neste treinamento pode ser observada na

Figura 37. Na Figura 38 pode-se observar um exemplo de uma imagem real e na Figura 39 um

exemplo de uma imagem falsa.

Figura 37 – Quantidade de imagens utilizadas no teste de Fine-tuning para uma classe real e uma
classe falsa com Data Augmentation

.

Figura 38 – Exemplo de imagens reais utilizada no teste de Fine-tuning para uma classe real
e uma classe falsa com Data Augmentation. Esquerda: Original - Centro: Filtro
Gaussiano - Direita: Mapa de textura gerado pelo LBP

.

Figura 39 – Exemplo de imagens falsas utilizada no teste de Fine-tuning para uma classe real
e uma classe falsa com Data Augmentation. Esquerda: Original - Centro: Filtro
Gaussiano - Direita: Mapa de textura gerado pelo LBP

.
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5 RESULTADOS E DISCUSSÕES

5.1 Resultados

5.1.1 Fine-tuning para quinze classes de imagens reais

Como resultado do teste realizado considerando a técnica de Fine-tuning para quinze

classes de imagens reais, encontram-se os seguintes resultados:

• Acurácia do modelo: Figura 40

• Perda do modelo: Figura 41

• Área sob a Curva ROC em função do número de épocas: Figura 42

• Matriz de confusão do modelo: Figura 43

• Relatório de classificação do modelo: Tabela 1

Figura 40 – Acurácia para o teste utilizando Fine-tuning para quinze classes de imagens reais

.
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Figura 41 – Perda para o teste utilizando Fine-tuning para quinze classes de imagens reais

.

Figura 42 – Área sob a Curva ROC em função do número de épocas para o teste utilizando
Fine-tuning para quinze classes de imagens reais

.
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Figura 43 – Matriz de confusão para o teste utilizando Fine-tuning para quinze classes de imagens
reais

.

Tabela 1 – Relatório de classificação para o teste utilizando Fine-tuning para quinze classes de
imagens reais

precisão recall f1-score

person_1 0,42 1,00 0,59

person_2 0,62 0,76 0,68

person_3 0,45 0,91 0,61

person_4 1,00 0,98 0,99

person_5 1,00 0,93 0,96

person_6 1,00 0,46 0,63

person_7 0,72 0,65 0,68

person_8 1,00 1,00 1,00

person_9 0,74 0,87 0,80

person_10 1,00 1,00 1,00

person_11 1,00 1,00 1,00

person_12 1,00 1,00 1,00

person_13 1,00 1,00 1,00

person_14 1,00 1,00 1,00

person_15 1,00 1,00 1,00

acurácia 0,85



68

5.1.2 Fine-tuning para quinze classes de imagens reais e uma classe falsa

Como desfecho do teste realizado considerando a técnica de Fine-tuning para quinze

classes de imagens reais e uma classe falsa, encontram-se os seguintes resultados:

• Acurácia do modelo: Figura 44

• Perda do modelo: Figura 45

• Área sob a Curva ROC em função do número de épocas: Figura 46

• Matriz de confusão do modelo: Figura 47

• Relatório de classificação do modelo: Tabela 2

Figura 44 – Acurácia para o teste utilizando Fine-tuning para quinze classes de imagens reais e
uma classe falsa

.
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Figura 45 – Perda para o teste utilizando Fine-tuning para quinze classes de imagens reais e uma
classe falsa

.

Figura 46 – Área sob a Curva ROC em função do número de épocas para o teste utilizando
Fine-tuning para quinze classes de imagens reais e uma classe falsa

.
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Figura 47 – Matriz de confusão para o teste utilizando Fine-tuning para quinze classes de imagens
reais e uma classe falsa

.

Tabela 2 – Relatório de classificação para o teste utilizando Fine-tuning para quinze classes de
imagens reais e uma classe falsa

precisão recall f1-score

person_1 0,39 1,00 0,56

person_2 0,62 0,94 0,74

person_3 0,54 0,85 0,66

person_4 0,91 0,97 0,94

person_5 0,98 0,89 0,94

person_6 1,00 0,46 0,63

person_7 0,70 0,62 0,66

person_8 1,00 1,00 1,00

person_9 0,71 0,87 0,78

person_10 0,88 0,95 0,91

person_11 1,00 1,00 1,00

person_12 1,00 1,00 1,00

person_13 1,00 1,00 1,00

person_14 1,00 1,00 1,00

person_15 0,97 1,00 0,99

falsas 0,99 0,73 0,84

acurácia 0,84
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5.1.3 Fine-tuning para uma classe real e uma classe falsa

Como desfecho do teste realizado considerando a técnica de Fine-tuning para uma classe

real e uma classe falsa, encontram-se os seguintes resultados:

• Acurácia do modelo: Figura 48

• Perda do modelo: Figura 49

• Área sob a Curva ROC em função do número de épocas: Figura 50

• Matriz de confusão do modelo: Figura 51

• Relatório de classificação do modelo: Tabela 3

Figura 48 – Acurácia para o teste utilizando Fine-tuning para uma classe real e uma classe falsa

.

Figura 49 – Perda para o teste utilizando Fine-tuning para uma classe real e uma classe falsa

.
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Figura 50 – Área sob a Curva ROC em função do número de épocas para o teste utilizando
Fine-tuning para uma classe real e uma classe falsa

.

Figura 51 – Matriz de confusão para o teste utilizando Fine-tuning para uma classe real e uma
classe falsa

.
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Tabela 3 – Relatório de classificação para o teste utilizando Fine-tuning para uma classe real e
uma classe falsa

precisão recall f1-score

reais 0,94 0,70 0,80

falsas 0,83 0,97 0,89

acurácia 0,86

5.1.4 Fine-tuning para uma classe real e uma classe falsa com Data Augmentation utilizando
descritor de textura LBP

Como desfecho do teste realizado considerando a técnica de Fine-tuning para uma classe

real e uma classe falsa com Data Augmentation utilizando descritor de textura LBP, encontram-se

os seguintes resultados:

• Acurácia do modelo: Figura 52

• Perda do modelo: Figura 53

• Área sob a Curva ROC em função do número de épocas: Figura 54

• Matriz de confusão do modelo: Figura 55

• Relatório de classificação do modelo: Tabela 4

Figura 52 – Acurácia para o teste utilizando Fine-tuning para uma classe real e uma classe falsa
com Data Augmentation utilizando descritor de textura LBP

.
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Figura 53 – Perda para o teste utilizando Fine-tuning para uma classe real e uma classe falsa
com Data Augmentation utilizando descritor de textura LBP

.

Figura 54 – Área sob a Curva ROC em função do número de épocas para o teste utilizando Fine-
tuning para uma classe real e uma classe falsa com Data Augmentation utilizando
descritor de textura LBP

.
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Figura 55 – Matriz de confusão para o teste utilizando Fine-tuning para uma classe real e uma
classe falsa com Data Augmentation utilizando descritor de textura LBP

.

Tabela 4 – Relatório de classificação para o teste utilizando Fine-tuning para uma classe real e
uma classe falsa com Data Augmentation utilizando descritor de textura LBP

precisão recall f1-score

real 0,92 0,74 0,82

falsa 0,84 0,96 0,90

acurácia 0,87

5.1.5 Fine-tuning para uma classe real e uma classe falsa com Data Augmentation utilizando
filtro Gaussiano

Como desfecho do teste realizado considerando a técnica de Fine-tuning para uma classe

real e uma classe falsa com Data Augmentation utilizando filtro Gaussiano, encontram-se os

seguintes resultados:

• Acurácia do modelo: Figura 56

• Perda do modelo: Figura 57

• Área sob a Curva ROC em função do número de épocas: Figura 58

• Matriz de confusão do modelo: Figura 59

• Relatório de classificação do modelo: Tabela 5
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Figura 56 – Acurácia para o teste utilizando Fine-tuning para uma classe real e uma classe falsa
com Data Augmentation utilizando filtro Gaussiano

.

Figura 57 – Perda para o teste utilizando Fine-tuning para uma classe real e uma classe falsa
com Data Augmentation utilizando filtro Gaussiano

.
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Figura 58 – Área sob a Curva ROC em função do número de épocas para o teste utilizando Fine-
tuning para uma classe real e uma classe falsa com Data Augmentation utilizando
filtro Gaussiano

.

Figura 59 – Matriz de confusão para o teste utilizando Fine-tuning para uma classe real e uma
classe falsa com Data Augmentation utilizando filtro Gaussiano

.
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Tabela 5 – Relatório de classificação para o teste utilizando Fine-tuning para uma classe real e
uma classe falsa com Data Augmentation utilizando filtro Gaussiano

precisão recall f1-score

real 0,97 0,67 0,79

falsa 0,81 0,99 0,89

acurácia 0,86

5.1.6 Fine-tuning para uma classe real e uma classe falsa com Data Augmentation utilizando
ambos os filtros

Como desfecho do teste realizado considerando a técnica de Fine-tuning para uma classe

real e uma classe falsa com Data Augmentation utilizando ambos os filtros, encontram-se os

seguintes resultados:

• Acurácia do modelo: Figura 60

• Perda do modelo: Figura 61

• Área sob a Curva ROC em função do número de épocas: Figura 62

• Matriz de confusão do modelo: Figura 63

• Relatório de classificação do modelo: Tabela 6

Figura 60 – Acurácia para o teste utilizando Fine-tuning para uma classe real e uma classe falsa
com Data Augmentation utilizando ambos os filtros

.
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Figura 61 – Perda para o teste utilizando Fine-tuning para uma classe real e uma classe falsa
com Data Augmentation utilizando ambos os filtros

.

Figura 62 – Área sob a Curva ROC em função do número de épocas para o teste utilizando Fine-
tuning para uma classe real e uma classe falsa com Data Augmentation utilizando
ambos os filtros

.
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Figura 63 – Matriz de confusão para o teste utilizando Fine-tuning para uma classe real e uma
classe falsa com Data Augmentation utilizando ambos os filtros

.

Tabela 6 – Relatório de classificação para o teste utilizando Fine-tuning para uma classe real e
uma classe falsa com Data Augmentation utilizando ambos os filtros

precisão recall f1-score

real 0,92 0,73 0,81

falsa 0,84 0,95 0,89

acurácia 0,86

5.2 Discussões

Considerando os primeiros testes realizados para quinze classes reais e, posteriormente,

com a adição de uma classe de imagens falsas, pode-se observar, por meio do resultado consoli-

dado presente na Tabela 7, que houve uma queda no desempenho do modelo em geral para todas

as métricas avaliadas. Além disso, por meio das matrizes de confusão apresentadas anteriormente,

evidencia-se que, para algumas classes específicas, o modelo apresentou uma queda significante

após o incremento de imagens falsas.
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Tabela 7 – Resultados consolidados do reconhecimento facial considerando a identidade da
pessoa - comparação da eficiência do reconhecimento de imagens reais antes e depois
da adição de imagens falsas

Real 15 classes reais 15 classes reais e 1 falsa

Acurácia 0,850 0,840

Média precisão 0,863 0,838

Média recall 0,904 0,896

Média f1-score 0,863 0,844

Já para os testes realizados apenas com classes reais e falsas, aplicando a técnica de

Data Augmentation, observa-se, por meio das Tabelas 8 e Tabela 9, que, tanto para imagens

reais, quanto para imagens falsas, a adição do descritor de textura LBP favoreceu a classificação

das imagens. Para este caso, houve um incremento de todas as métricas para a classificação de

imagens reais, e, para imagens falsas, observou-se apenas uma queda de 0.01 na taxa de Recall

em relação ao teste realizado sem filtro.

Quando observa-se os outros dois testes realizados com filtros - Gaussiano e LBP+Gaussiano,

tem-se que o modelo não apresentou alteração na acurácia, em relação ao teste efetuado sem a

adição de filtros, e uma piora na taxa de precisão - no caso do Gaussiano -, e uma piora na taxa

de Recall - no caso de ambos os filtros.

Tabela 8 – Resultados consolidados do reconhecimento facial considerando apenas classes reais
- comparação da eficiência da técnica de Data Augmentation

Real Sem Filtro LBP Gaussiano LBP + Gaussiano

Acurácia 0,86 0,87 0,86 0,86

Precisão 0,94 0,92 0,97 0,92

Recall 0,70 0,74 0,67 0,73

f1-score 0,80 0,82 0,79 0,81

Tabela 9 – Resultados consolidados do reconhecimento facial considerando apenas classes falsas
- comparação da eficiência da técnica de Data Augmentation

falsa Sem Filtro LBP Gaussiano LBP + Gaussiano

Acurácia 0,86 0,87 0,86 0,86

Precisão 0,83 0,84 0,81 0,84

Recall 0,97 0,96 0,99 0,95

f1-score 0,89 0,90 0,89 0,89

Dessa maneira, comparando todos os experimentos realizados, pode-se observar que a
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existência de imagens falsas na predição do modelo, feito que caracterizaria uma tentativa de

fraude, prejudica o desempenho do modelo quando este busca classificar a identidade de uma

pessoa. No entanto, quando utiliza-se uma classificação somente entre imagens reais e falsas, o

modelo avaliado (VGGFace) demonstrou bons resultados ao abstrair características das imagens

e classificá-las de maneira correta - vide as matrizes de confusão apresentadas nos resultados -,

possuindo um comportamento ainda melhor quando utilizada a técnica de Data Augmentation

com o descritor de textura LBP.

Sendo assim, observa-se que a abordagem da utilização de duas redes neurais convoluci-

onais distintas - uma para classificação de identidade e outra para detecção de fraude - torna-se

válida pelo fato da rede neural de classificação de identidade possuir uma piora no desempenho

quando exposta a imagens falsas e uma melhora ao ser treinada para diferenciar faces reais de

faces falsas.
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6 CONCLUSÃO

Esse trabalho teve como objetivo realizar um estudo sobre como o sistema biométrico de

reconhecimento facial comporta-se quando exposto a imagens falsas e propor novas abordagens

para detecção de fraude, desde combinar ao sistema uma fase de pré-processamento das imagens

da face por meio de descritores de textura e filtros passa-alta, até a implementação de duas redes

neurais para detecção de fraude e identificação de identidade.

Dessa maneira, os resultados obtidos nos experimentos mostraram que o sistema con-

vencional utilizado para classificação de identidade possui uma queda de desempenho quando

exposto a imagens falsas. Além disso, inferiu-se também, que, quando este sistema biométrico

é atrelado a um procedimento de pré-processamento das faces e fragmentado em duas redes

neurais, uma para detecção de fraude e outra para classificação da identidade, o desempenho

obtido é superior ao convencional.

Vale ressaltar que todos os testes realizados foram obtidos exclusivamente para a base

de dados testada (NUAA) e não consideraram em nenhum momento a robustez do hardware

necessário para a predição das classes e o tempo de predição - como observado em outros

trabalhos citados nesta monografia. Desta maneira, para a implementação do sistema anti-

spoofing facial em dispositivos móveis ou terminais bancários, por exemplo, torna-se necessário

o estudo para balancear todos estes fatores, que são custo, velocidade de processamento e taxa

de assertividade do modelo. Além disso deve-se considerar também o aprimoramento do modelo

para diferentes fisionomias humanas, considerando raça, etnia e sexo, além da possibilidade de

existirem alterações na aparência humana por meio de procedimentos estéticos.
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