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RESUMO

REIS, L. E. A. Uso de redes neurais artificiais para deteccao de fraudes em sistemas
biométricos de reconhecimento facial. 2020. 89p. Monografia (Trabalho de Conclusio de
Curso) - Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2020.

A insercdo do uso de reconhecimento facial em sistemas biométricos forneceu uma maior
velocidade e a praticidade durante os procedimentos de autenticagdo, no entanto, com incremento
desses mecanismos em diversas aplicacdes fez crescer também a necessidade de procedimentos
que evitem falsificacdes e tentativas de fraude, também chamados de métodos anti-spoofing
facial. A utilizacdo de métodos de detec¢do de vida (movimento dos olhos e da face), comparag@o
de face e fundo da imagem, identificacdo da qualidade da imagem por meio de descritores de
cor, textura, e processamentos para a retirada de possiveis ruidos, sdo utilizados com o intuito
de avaliar a veracidade da face. Agrega-se, também, a estes métodos, o uso de tecnologias de
aprendizado de maquina com o objetivo de reconhecer padrdes existentes tanto para faces reais,
quanto para as adulteradas. Desta maneira, o objetivo deste trabalho € avaliar o comportamento
das Redes Neurais Artificiais quando expostas a dois diferentes cendrios: a identificacdo da
identidade da pessoa por tras do sistema de autenticacdo e a classificagdo de fraude biométrica
utilizando o mesmo sistema de avaliagdo. Para isto, utilizou-se, como método de avaliacdo, a
técnica de Fine-Tuning, retreinando um modelo convolucional de classificagdo facial, expondo-o
a uma base de faces reais de 5105 imagens e de 7509 imagens fraudulentas (falsas) também,
a técnica de Data Augmentation por meio de um pré-processamento, com o filtro Gaussiano
passa-alta e o descritor de textura Local Binary Pattern (LBP). Como resultado, observou-
se que a utilizacao de apenas uma rede neural para o sistema biométrico de reconhecimento
facial convencional, quando exposto a entrada de imagens falsas, possui um decaimento em
sua performance de classificacdo, enquanto, a utilizagdo do mesmo sistema para a classificacao
de veracidade das faces, apresenta um melhor desempenho, ainda mais se atrelado a técnicas
de pré-processamento. Desta maneira, conclui-se que a utilizacao de diferentes redes neurais
artificias, para diferentes objetivos, contribui tanto para melhorar a efici€ncia dos métodos de

reconhecimento facial quanto para a detec¢do de fraudes.

Palavras-chave: reconhecimento facial, fraude, Data Augmentation, Fine-Tuning, aprendizado

de méquina.






ABSTRACT

REIS, L. E. A. Use of artificial neural networks for spoofing detection in biometric face
recognition systems. 2020. 89p. Monografia (Trabalho de Conclusao de Curso) - Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2020.

The insertion of the use of facial recognition in biometric systems provided greater speed and
practicality during authentication procedures, however, with the increase of these mechanisms
in several applications, the need for procedures that prevent forgeries and fraud attempts, also
called of facial anti-spoofing methods. The use of methods of detecting life (movement of the
eyes and face), comparing the face and background of the image, identifying the quality of the
image through color descriptors, texture, and processing to remove possible noise, are used in
order to assess the veracity of the face. The use of machine learning technologies is also added
to these methods in order to recognize existing patterns for both real and adulterated faces. Thus,
the objective of this work is to evaluate the behavior of Artificial Neural Networks when exposed
to two different scenarios: the identification of the person’s identity behind the authentication
system and the classification of biometric fraud using the same evaluation system. For this, the
Fine-Tuning technique was used as an evaluation method, retraining a convolutional model of
facial classification, exposing it to a base of real faces of 5105 images and 7509 fraudulent
(false) images as well. Data Augmentation technique through pre-processing, with the high-
pass Gaussian filter and the Local Binary Pattern (LBP) texture descriptor. As a result, it was
observed that the use of only one neural network for the conventional facial recognition biometric
system, when exposed to the entry of false images, has a decline in its classification performance,
while the use of the same system for the classification of veracity of the faces, presents a better
performance, even more linked to pre-processing techniques. Thus, it is concluded that the use
of different artificial neural networks, for different purposes, contributes both to improve the

efficiency of facial recognition methods and to the detection of fraud.

Keywords: face recognition, fraud, Data Augmentation, Fine-Tuning, machine learning.
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1 INTRODUGAO

1.1 Biometria

Com o desenvolvimento da tecnologia nos tltimos anos, tanto no campo de uso pessoal,
quanto no uso profissional, os sistemas que necessitam confirmar a identidade dos usudrios, por
motivos de seguranca a dados, passaram a utilizar algumas maneiras para a identificagdo humana
com o intuito de evitar tentativas de fraude. Pode-se dividir estes métodos de autenticacdo em
trés maneiras, considerando os conhecimentos pessoais, neste caso, fazendo-se uso de senhas,
perguntas pessoais ou PINs; levando em conta itens que encontram-se em posse humana, como
tokens ou pen-drivers com informagdes de autenticacdo criptografadas; também, caracteristicas

pessoais, as quais sdo denominadas caracteristicas biométricas (WEAVER, 2006).

Segundo o Diciondrio Priberam da Lingua Portuguesa, biometria pode ser definida como:

* medicdo dos seres vivos e de propriedades mensuraveis;

* estudo das propriedades unicas mensuraveis de cada individuo, em especial

para verificacdo automatica de identidade;

e célculo da duragdo provével da vida.

Assim no escopo deste trabalho, a biometria € baseada em caracteristicas pessoais, as
quais podem ser divididas em dois campos, o comportamental e biolégico (WEAVER, 2006). A
primeira abordagem refere-se a padrdes de assinatura, reconhecimento de voz, maneira de andar,
entre outros; ja o segundo campo trata-se de escaneamento de iris e retina, impressoes digitais,
reconhecimento facial, entre outros. Esses atributos tinicos podem ser utilizados como forma de
prevenir tentativas de acesso a ambientes pessoais por pessoas ndo autorizadas, utilizando-se de

equipamentos que verifiquem a autenticidade da conexdao (BABICH, 2012).

Sendo assim, muitos dispositivos eletronicos, desde computadores pessoais, até transa-
¢Oes bancdrias e confirmagdes cadastrais por parte de governos, tem utilizado caracteristicas
biométricas como forma de autentica¢do com o intuito de minimizar fraudes e acessos indevidos.
Em especial, tem-se empregado o reconhecimento facial nos sistemas de autenticagdo, por ser

uma caracteristica unica de cada individuo, método que ndo € invasivo e nao colaborativo, como o
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reconhecimento de iris, ou que € facilmente reproduzida por fraudadores, como o reconhecimento

por impressao digital (SCHUCKERS, 2002).

1.2 Técnicas de Fraude

As tentativas de fraudes existentes em sistemas biométricos podem ser dividas em dois
cendrios: (1) quando o ataque ao sistema € realizado for¢ando o individuo que possui a permissao
de conexao a realizar e validar o acesso; (2) quando as caracteristicas biométricas sao falsificadas,
utilizando-se de moldes reais ou digitais. Para o caso de reconhecimento facial, o processo de
autenticagdo torna-se mais vulnerdvel pela alta disponibilidade de imagens faciais na internet,
em especial em redes sociais, o que acaba favorecendo o processo de fraude, diferentemente do
reconhecimento por iris ou impressoes digitais, para os quais nao ha essa facilidade de captura

de informag¢des biométricas (SCHUCKERS, 2002).

Com o intuito coibir estas tentativas de fraude, tem-se que, para o primeiro cenério, a
existéncia desde cameras de seguranca, até botdes de panico ou alarmes, sdo solu¢des empre-
gadas para tentar evitar esse tipo de invasao. J4 para o segundo cendrio, torna-se necessario a
implementagdo de algoritmos que identifiquem padrdes de fraude com o intuito de minimizar os

ataques aos sistemas biométricos (SCHUCKERS, 2002).

Alguns testes realizados em procedimentos de autenticacdo biométrica, por meio de
pesquisas cientificas, constataram que os equipamentos ainda sdo vulnerdveis a ataques de
falsificacdo. Essas pesquisas abordaram a confec¢ao de dedos falsos com impressoes digitais
desejadas, a utilizacdo de métodos para capturar impressoes digitais existentes nas superficies
empregadas para autenticacdo, e também fotos e videos para legitimar o reconhecimento facial,
e, para todas as técnicas, houve momentos em que os sistemas verificaram 0 acesso como
verdadeiro (SCHUCKERS, 2002). Desta maneira, tem-se que as principais técnicas de fraude em
sistemas de reconhecimemento facial resumem-se na utilizacao de fotografias e videos em alta
resolucdo, mascaras 2D para o recorte da drea dos olhos para movimentag@o ocular, e méscaras

3D, obtidas por meio de impressoras de dltima geragao.

1.3 Justificativa

Com o avango tecnoldgico dos tltimos anos, a utilizacdo de sistemas biométricos para
autenticacdo de acesso passou a ser implementada com maior frequéncia e a fazer parte da rotina

da populacdo. Um dos sistemas biométricos convencionais implementado pode ser observado
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na Figura 1, para o qual é efetuado a extragdo da imagem face e suas caracteristicas, e, poste-
riormente, realizada a classificacdo da imagem em relagdo a sua identidade juntamente com a

avaliacdo de veracidade da face por trds da camera (GALBALLY et al., 2014).

Figura 1 — Sistema biométrico convencional - Adaptado (Fonte: GALBALLY et al., 2014)

Identidade
canhecida

Rede neural

Imagem s, Exiracdo das

=4 pa Classificagdo
ariginal aracteristica &

/identidade’,
desconhecidg

..\ J

Observa-se que alguns trabalhos recentes, como SOUZA (2019) e DESAI (2019), busca-
ram abordar, com diferentes métodos de aprendizado de maquina, técnicas de aprimoramento a
estes sistemas por meio de redes neurais convolucionais profundas (CNNs), maquina de Boltz-
mann restrita (RBM), redes neurais temporais e redes neurais recorrentes, conforme mostra
a Figura 2. Esses observaram que a proposta de novas arquiteturas de redes profundas, para
imagens em duas dimensdes, em relacdo aos modelos existentes, sdo boas alternativas para a
deteccdo de fraude em sistemas de reconhecimento facial, tanto no quesito de extracdo de carac-
teristicas de fisionomia, quanto para o processamento do reconhecimento facial em dispositivos

com arquiteturas computacionais menos robustas.
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Figura 2 — Sistema biométrico proposto na literatura recente utilizando redes neurais convolucio-
nais (Fonte: Autor)
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Além disso, estudos relacionados a detec¢@o de vida nas imagens da face, como observado
em TIRUNAGARI et al. (2015), por meio dos movimentos oculares e labiais, que utilizam
conceitos da dindmica dos fluidos, por meio do fluxo sanguineo, sdo empregados na prevencao
de fraudes. Esta técnica faz uso de métodos de decomposi¢do de videos em uma sequéncia
de frames, para o qual as imagens sdo submetidas a um descritor de textura, neste caso, o
Local-Binary Pattern (LBP), e, posteriormente, extraidos os seus histogramas, para que estes

sejam submetidos a um modelo SVM (Support Vector Machine) para a classificagao - Figura 3.

Figura 3 — Sistema biométrico proposto na literatura recente por meio de pré-processamento de
imagens (Fonte: Autor)
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Entretanto, todas estas abordagem buscaram somente solug¢des voltadas para a modi-
ficacdo na arquitetura do sistema de reconhecimento biométrico ja existente. Desta maneira,
observa-se que, no cendrio atual, com o aumento do acesso a tecnologias por parte da populagdo

e a maior exposi¢do de imagens faciais em veiculos de imprensa, redes sociais, além de novas
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técnicas de impressdo 3D, torna-se necessario a implementagdo de novas arquiteturas de reco-
nhecimento facial, utilizando desde técnicas de pré-processamento de imagens, até diferentes
técnicas de aprendizagem profunda, visando uma melhor detec¢do de fraude e performance de

processamento.

1.4 Objetivo

Este estudo tem como objetivo: a) a verificagdo do desempenho da atual abordagem do
sistema biométrico convencional quando exposto a tentativas de spoofing facial, por meio da
insercdo de imagens falsas em um modelo de classificacao facial; b) a verificacio do comporta-
mento do modelo de classificagdo facial quando exposto somente a imagens reais e falsas; ¢) a
avaliacdo de desempenho da implementacdo de pré-processamento, por meio do filtro Gaussiano
e do descritor de textura LBP, com a técnica de Data Augmentation, em um modelo de classi-
ficacao facial para classificacdo de imagens reais e falsas; d) a comparacdo dos resultados do
sistema biométrico convencional quando exposto a tentativas fraude com outra rede responsavel

somente pela identificacao da veracidade da face.

1.5 Organizacao da monografia

Em adicdo a este capitulo introdutério, constard também neste trabalho de conclusao de

curso as seguintes partes:

* Capitulo 2 - Estudo Tedrico: Nesse capitulo serd apresentada toda a teoria aplicada neste
trabalho, desde as técnicas de processamento de imagens e reconhecimento de padroes,

até o funcionamento das redes neurais e sua construcao.

* Capitulo 3 - Materiais: Nesse capitulo serdo especificados todas as técnicas utilizadas no

desenvolvimento deste trabalho e as ferramentas utilizadas na sua elaboracao.

* Capitulo 4 - Métodos: Nesse capitulo serdo apresentadas as caracteristicas da rede neural

utilizada, além das métricas de avaliacdo e a especificacdo dos testes desenvolvidos.

* Capitulo 5 - Resultados: Nesse capitulo serdo mostrados os resultados obtidos dos testes

propostos.
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* Capitulo 6 - Conclusdo: Nesse capitulo serd apresentada uma conclusdo dos estudos
realizados, das implicacdes de possiveis implementagdes em sistemas reais e de futuros

trabalhos a serem propostos.
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2 ESTUDO TEORICO

2.1 Processamento de imagem
2.1.1 Dominio Espacial

Como primeira abordagem de processamento de imagens, tem-se as operacdes baseadas
no dominio espacial - manipulagcdo direta dos pixels da imagem - as quais, por meio dos
filtros passa-alta, atuam no realce de imagem, procurando melhorar a qualidade das imagens,
adequando-as para uma futura aplicagdao de reconhecimento de padroes (ACHARYA, 2005).
As técnicas de realce sdo dividas em duas categorias: a primeira sdo as transformacoes de
intensidade, as quais agem sobre o nivel cinza da imagem; e, a segunda, a filtragem espacial, a
qual considera a vizinhanca de cada pixel antes de realizar qualquer processamento na imagem.
Em especial tem-se as técnicas que sdo utilizadas para o agucamento das imagens, que sao
utilizadas com o intuito de evidenciar as transi¢des das imagens, gerando, desta maneira, um

aumento da nitidez. (GONZALEZ WOOQODS, 2009).

2.1.1.1 Filtro Gaussiano

O filtro Gaussiano € um filtro utilizado em processos de suavizacdo de imagens o qual
proporciona a atenuagdo do ruido. No entanto, pode-se utilizar o filtro Gaussiano como filtro
passa-alta, com o intuito aplicar técnicas de agucamento e realcar as regides de alta frequéncia

das imagens.

Para este aplicacdo, tem-se na Equacio 2.1 o filtro Gaussiano passa-baixa dado por G e
o filtro Gaussiano passa-alta dado por GG,, 0 qual é gerado por meio do complemento do filtro

gaussiano passa-baixa.

G,=1-G, (2.1)

Como exemplo da utilizacdo do filtro Gaussiano passa-alta em imagens faciais, pode-
se observar na Figura 4 a imagem original a esquerda e a imagem apds a aplicacdo do filtro

Gaussiano passa-alta a direita.
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Figura 4 — Exemplo da utilizagdo do filtro Gaussiano em uma imagem - Esquerda: Original -
Direita: Filtro Gaussiano. (Fonte: Autor)

Filtro Gaussiano

Desta maneira, observa-se que a aplicacdo do filtro Gaussiano para a deteccdo de fraude
em imagens faciais é valida, pois, para as regides em que tem-se o reflexo da luz natural na
face real, a utilizag@o do filtro Gaussiano passa-alta gera destaque, fendmeno ndo observado nas

imagens falsas - o qual serd observado posteriormente no Capitulo 4.

2.2 Representacao e Descricao

Para a etapa de representacdo e descri¢ao, ambos os procedimentos se iniciam apds a
obtencao de resultados da etapa de segmentacgdo, o qual fornece insumos referentes as partes da
imagem, como bordas, por exemplo. O processo de representacao € dividido em duas abordagens,
a primeira quando o foco é dado a regido interna da forma - representacdo por regido - € a
segunda quando o foco volta-se para a regido extrema da forma - representacao por fronteira. J&
para o processo de descricdo, tem-se a selecdo de caracteristicas, na qual os atributos da imagem

sdo extraidos gerando, desta maneira, informacdes quantitativas da imagem (GONZALEZ et al.,

2009).

2.2.1 Descritor de textura

A utilizagdo de descritores de textura em uma imagem proporciona a identificagdo de
uma regido e, posteriormente, a classificagdo da mesma, por meio de algumas propriedades como
rugosidade, suavidade e regularidade (OLIVEIRA et al, 2014). Existem trés principais métodos
de abordagem de uso destes descritores: estatistica, a qual gera uma caracterizacdo de textura
como suave, rugosa, granulada, entre outras; estrutural, em que arranjos primitivos da imagem
sdo analisados, gerando, por exemplo, a descri¢do por meio de linhas paralelas espacadas; e,
por fim, a espectral, na qual utiliza-se do espectro de Fourier para detectar comportamentos

semelhantes dos picos de energia presentes no espectro (GONZALEZ et al., 2009).
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2.2.1.1 Local-Binary Pattern

Local-Binary Pattern (LBP) pode ser definido como um descritor de textura ndo paramé-
trico, o qual resume as informacdes de estruturas locais de uma imagem, comparando-as a cada
pixel existente em sua vizinhanga, tornando-se um descritor muito poderoso que despertou inte-
resse de pesquisas nos campos de visao computacional e processamento de imagem (HUANG,

2001).

O LBP tem sido aplicado em diversas areas, desde andlise de imagens faciais, recuperacdo
de imagens, andlise biomédica, até mesmo modelagem de ambiente e sensoriamento remoto. As
pesquisas mais recentes apresentam resultados que sustentam que a abordagem LBP fornece
6timos resultados na representacdo e andlise facial tanto em imagens fixas, quanto em sequéncias
de video (HUANG, 2001). Desta maneira a utilizagdo do LBP para a andlise de imagens faciais
para deteccdo de fraude € pertinente, pois a intensidade de cinza nos pixels das imagens reais
difere-se em comparacao com as imagens falsas, ficando evidente com a aplicac@o do descritor
de textura LBP - exemplos dessa diferenca serdo abordados no Capitulo 4. Como da aplicacao

do descritor LBP em uma imagem tem-se a Figura 5,

Figura 5 — Utilizacao do descritor de textura LBP em uma imagem - Esquerda: Original - Centro:
Mapa de textura gerado pelo descritor LBP - Direita: Histograma do nivel de cinza do
mapa de textura gerado pelo descritor LBP. Adaptado (Fonte: HUANG et al., 2011)
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2.3 Reconhecimento

O reconhecimento de imagens € o procedimento utilizado apds a segmentacdo de regides
em que as caracteristicas de cada regidao da imagem sao interpretadas, e um rétulo € atribuido
as areas da imagem por meio da utilizacao dos resultados obtidos nos descritores (QUEIROZ,
2006). Além disso, quando vdrios objetos possuem caracteristicas semelhantes, define-se que
estes sdo atribuidos a uma mesma classe. J4 em relacao as metodologias abordadas na etapa de

reconhecimento, estas podem ser dividas em duas categorias: a tedrica, na qual sdo utilizados
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descritores quantitativos - forma, drea, comprimento e textura - para as andlises; e a estrutural,
na qual descritores qualitativos sdo abordados para o entendimento dos padrdes existentes nos

objetos (GONZALEZ et al., 2009).

2.3.1 Vetor de Caracteristicas

Como abordado anteriormente, uma classe de padrdes € definida por imagens que
possuam caracteristicas semelhantes, ou seja, quando compartilham propriedades extraidas por
meio dos descritores. Na pratica, observa-se trés tipos de arranjos utilizados para descrever as
classes as quais os objetos pertencem, o vetor, as strings € as arvores - as quais representam
descri¢oes estruturais (GONZALEZ et al., 2009). A unido de todas essas caracteristicas das
imagens, obtidas por meio de medidas estatisticas, geram os componentes que formam o vetor
de caracteristicas (HARALICK, 2010). Como forma de representar o vetor de caracteristicas,
tem-se a Equagdo 2.2, na qual cada componente do vetor representa uma caracteristica atribuida
por um descritor, formando, assim, uma matriz nx1 sendo n o nimero de descritores presentes

na classe (GONZALEZ et al., 2009).

= (2.2)

2.3.2 Classificadores

Durante a etapa de classificacdo de imagens, tem-se o reconhecimento baseado na
utilizacdo de funcdes de decisdo. As técnicas que baseiam-se na comparagao dos vetores de
caracteristicas das imagens, em relac@o a vetores protétipos de cada classe pré definidos, sdo
denominadas casamento de classes. A realizacdo desses comparativos pode ser efetuada de
diversas formas, sendo, a mais simples, a classificacdo que faz uso da distancia minima entre o
vetor das imagens e o vetor padrio das classes, escolhendo, desta maneira, a menor distancia
encontrada para a tomada de decisdao. Além disso, técnicas baseadas na correlacdo, ou em
outras operagdes probabilisticas, entre os vetores, também podem ser utilizadas com o intuito
de encontrar padrdes para o reconhecimento (GONZALEZ et al., 2009). Como exemplo da

utilizacdo de classificadores, observa-se a aplicagdo abordada por Queiroz (2006):
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"Um sistema para a classificacdo de imagens coletadas da Web em duas classes
semdnticas, grdficos e fotografias, foi apresentado. O sistema utilizou um método
de classificagdo baseado em drvores de decisdo (ID3, um algoritmo de indugdo de
drvores de decisdo a partir de exemplos, popular na drea de IA). Foi identificado
um conjunto de caracteristicas adequadas a separacdo entre as duas classes semadn-
ticas escolhidas. Caracteristicas marcantes de fotografias identificadas foram: (i)
existéncias de objetos reais com uma tendéncia a texturas e auséncia de regioes
com cores constantes; (ii) pequenas diferencas na proporcdo (altura x largura); (iii)
poucas ocorréncias de regioes com alta saturagdo de cores; e (iv) presenca de um
grande niimero de cores utilizadas. As caracteristicas identificadas como marcantes
de grdficos foram: (i) presenca de objetos artificiais com bordas bem definidas bem
como a presenga de regioes cobertas com cores saturadas, e (ii) grandes diferencas
na proporcdo e tendéncia a serem menores em tamanho do que fotografias. Assim,
foram definidas métricas sobre o niimero de cores, a cor predominante, o vizinho
mais distante, a saturagdo, o histograma de cores, o histograma do vizinho mais

distante, a proporcdo das dimensoes e a menor dimensdo."

2.4 Rede Neural Artificial

Rede Neural Artificial (RNA) € definida como uma estrutura desenvolvida para assemelhar-
se ao cérebro humano; o conhecimento adquirido pela RNA por meio de um processo de apren-
dizagem e a utilizacdo de sistema andlogo aos neurdnios para armazenamento de conhecimento

evidenciam a semelhanca (HAYKIN et al., 2001).

As unidades denominadas neur6nios artificiais sdo utilizadas para fornecer as RNAS
uma interliga¢do maciga, proporcionando o célculo de fun¢des matemadticas em relacdo a entrada
da rede. Além disso, estas unidades sdo descritas por diversas camadas interligadas por conexdes,
as quais sdo associadas a diferentes pesos, sendo estes utilizados para ponderar as entradas

recebidas da rede (SOARES FILHO et al., 2018).

A aplicagdo desses métodos de cdlculos, em larga escala, utilizando redes neurais artifici-
ais até 2006 nao era possivel, por conta de todo impedimento tecnoldgico existente na época.
Entretanto, apds o surgimento de novas tecnologias e capacidade de processamento, os modelos
baseados em redes neurais de aprendizado em profundidade (Deep Learning) permitiram que

este tipo de método de classificacao fosse empregado em diferentes frentes, como visdo compu-
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tacional, reconhecimento de fala, aplicacdes de multimidia no TensorFlow e processamento de

linguagem natural (BUSSON et al., 2018).

2.4.1 Perceptron

A estrutura primitiva de uma Rede Neural Artificial foi desenvolvida por Frank Rosenblatt
em 1957 e € denominada Perceptron. Na Figura 6 tem-se a representacdo do sistema da RNA
Perceptron, em que cada entrada possui um peso associado a ela, na qual o produto escalar
¢ aplicado, a soma de cada operacao resultante € realizada, e, apds isso € efetivado o cédlculo
da funcdo de ativagdo presente no algoritmo Perceptron, gerando, assim, sua saida - o cdlculo
realizado € representado pela Equagdo 2.3, em que x representa a entrada, w representa o peso

atribuido a entrada e b uma constante qualquer (BUSSON et al., 2018).

1, sewx+b>0
fla) = (2.3)

0, para outros casos

Figura 6 — Estrutura de um Perceptron. (Fonte: BUSSON, 2015)

entrada
pesos

X1 wi produto escalar: z =wT. x

saida: hy(x) = ativiw . x)

X3

Pode-se utilizar o modelo de Perceptron em multicamadas (MLP) para realizar um
processamento paralelo para uso do aprendizado supervisionado por meio de Redes Neurais
Artificiais (JOST, 2015). Nesta aplicacdo, cada neurdnio da rede neural € responsavel por
aprender e ativar uma funcao para cada classe especifica, obtendo, como resultado, uma saida
dada por uma fun¢do argmax a qual seleciona o neurdnio que possuiu uma maior ativacao entre
as classes avaliadas. Além disso, os neur6nios podem ser estruturados em diversas camadas,
nas quais as entradas dos neurdnios das camadas mais profundas sdo ligados nas saidas dos
neurdnios das camadas anteriores, €, desta maneira, a rede neural aplica transformagdes lineares
e ndo-lineares de forma hierdrquica afim de gerar representacdes para dos dados de entrada e
realizar classificacdes (BUSSON et al., 2018). Apds todo o processamento de aprendizado em

profundidade - utilizando dados rotulados, por exemplo - espera-se que a rede neural artificial seja
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capaz de prever saidas baseadas nos dados de entrada fornecidos; esses modelos sdo utilizados

para classificacdo e previsao de valores (JOST et al., 2015).

2.4.2 Rede Neural Convolucional

Para os procedimentos de filtragem de imagens no dominio da frequéncia, tem-se como
principio o teorema da convolugdo. A operagdo de convolugdo entre dois vetores A e B, quando
avaliada no dominio espacial, pode ser definida como g(x,y) = f(x,y) * h(x,y) , sendo
compreendida como a soma dos produtos dos valores dos vetores que se sobrepde a cada passo
temporal. J4 para o dominio da frequéncia, a mesma relacao também € vélida, sendo denotada
por G(u,v) = F(u,v)H (u,v), em que as fun¢des G, F e H representam as Transformada de
Fourier das fungdes g, f e h, respectivamente, sendo a fun¢do H (u,v) denominada fungdo de

transferéncia do filtro (MARQUES FILHO et al., 1999).

Por meio de todo avanco tecnoldgico nos tltimos anos, tanto no campo de novas solugdes
para aprendizado em profundidade - Deep Learning - quando em relacdo a capacidade computa-
cional, tornou-se possivel a soluc¢do de varios problemas existentes. No entanto, outras questdes
surgiram, como no exemplo descrito por Pavlovsky (2017) em Introduction To Convolutional

Neural Networks:

"Digamos que queremos detectar o rosto humano a partir da imagem. Uma rede
neural simples atribuiria cada pixel a um neurénio na camada de entrada. Mas
o que isso significa? Isso significa que ndo mantemos informagdes espaciais de
pixels. Dividimos a imagem em neurdnios individuais e depois alimentamos a rede
com eles. Mas em caso de reconhecimento de rosto, vocé tem partes como olhos.
Os olhos sdo objetos complexos compostos de vdrias partes. Vocé tem pupila, iris,
esclera e até pdlpebras. Todo olho os tem. Vocé seria capaz de detectar o olho
apenas por um pixel ou apenas por uma parte? Provavelmente ndo. Somente o todo
em ordem especifica faz sentido. Se vocé treinar a rede neural na imagem do olho,
sO funcionard se o olho estiver na mesma posicdo exata da imagem todas as vezes.
Quando vocé move, escala ou gira o olho, a rede inevitavelmente falhard em prever
a saida correta. Precisamos de uma maneira de procurar padrées especificos em
vez de pixels individuais. E é isso que as redes neurais convolucionais fazem." -

Traducgdo livre.
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Desta maneira, torna-se necessario a implementacao de Redes Neurais Convolucionais
(CNNp5s), afim de resolver questdes referente ao processamento de imagens de forma dinamica,
afim da rede neural ser capaz de prever entradas dinamicas. As Redes Neurais Convolucionais
sdo redes que utilizam do célculo da operacao de convolucdo para o processamento de dados
organizados em grade (BUSSON et al., 2018). A etapa de convolucdo recebe a imagem fornecida
como entrada, realiza as operacdes no nucleo denominado kernel e fornece como resultado um
mapa de caracteristicas (PACHECO, 2018). As CNNs sao indicadas para o processamento de
imagens, e reconhecimento de padrdes, pelo fato desta, por meio das camadas de convolugdo, en-
contrar features que caracterizem diferentes comportamentos nas imagens de entrada (BUSSON

et al., 2018).

De forma mais especifica, as camadas que compde uma Rede Neural Convolucional
podem ser dividas em trés etapas - como ilustrado na Figura 7. A primeira etapa consiste na
execucdo de diversas operagdes de convolucdo ocorrendo em paralelo. Na segunda etapa, para
cada ativagao linear produzida, executa-se uma fungao de ativacao nao-linear, como forma de
um estagio detector. Ja no terceiro e ultimo estdgio, utiliza-se um processo denominado pooling,
no qual algumas caracteristicas obtidas nas fases anteriores s@o agrupadas, com o intuito do

reconhecimento de padroes (GOODFELLOW et al., 2015).

Figura 7 — Componentes das Camadas da Rede Neural Artificial. (Fonte: GOODFELLOW et al.,
2015)
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2.4.2.1 VGGFace

Como modelo de aprendizado profundo pré-treinado, tem-se o VGGFace, um modelo
desenvolvido pelos membros do Visual Geometry Group (VGG) da University of Oxford, em
2015, para reconhecimento facial. O objetivo da VGGFace é o reconhecimento facial - desde
uma unica foto até um conjunto de faces presentes em um video. O desenvolvimento desta rede
neural s6 foi possivel por conta da disponibilidade de conjunto de dados para treinamento - neste
caso utilizou-se 2,6 milhdes de imagens de, aproximadamente, 2,6 mil pessoas - e, também, da
evolucao da complexidade de modelos de rede neurais convolucionais (CNN), podendo atingir
resultados compardveis a modelos de reconhecimento de imagens desenvolvidos pelo Google e

pelo Facebook (PARKHI et al., 2015).
Pode-se observar nas Figuras 8 e 9 as camadas presentes na VGGFace utilizada.

Figura 8 — Camadas VGGFace. (Fonte: JAWOREK-KORJAKOWSKA et al., 2019)

Figura 9 — Camadas VGGFace. (Fonte: JAWOREK-KORJAKOWSKA et al., 2019)
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Como camadas do modelo VGGFace, tem as camadas convolucionais - neste caso cinco
blocos -, os quais sdo sempre seguidos da camada de Pooling, a qual, possui o objetivo de
sub-amostrar a imagem de entrada para diminuir a carga computacional, o uso de memoria e o
nimero de parametros. Além disso, apos as operagdes de convolucgdo, tem-se as camadas com
as fung¢des de ativagdo, as quais promovem a nao-linearidades ao modelo, proporcionando que

a rede aprenda qualquer tipo de caracteristica. E, por fim a camada Fully Connected a qual
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transforma os parametros aprendidos por todos os neurdnios da camada anterior, em N saidas
que representam a quantidade de classes desejada como saida do modelo (GERON, 2019). Todas

essas caracteristicas citadas podem ser observadas na Figura 10.

Figura 10 — Camadas VGGFace. (Fonte: ANALYTICS VIDHYA)
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2.5 Técnicas anti-spoofing

Com a inten¢do de detectar possiveis fraudes em sistemas de autenticagdo facial, hd
alguns anos, diversas pesquisas tem sido desenvolvidas para melhorar o desempenho das técnicas
utilizadas até o momento. Uma abordagem observada por PAN et al. (2007) € a identificacdo
da utilizacdo de imagens estdticas para fraudar sistemas por meio da movimentagdo dos olhos,
retirando do processo de verificagdo vdrios frames em poucos segundos e comparando-os para

poder realizar a classificagdo - Figura 11.

Figura 11 — Técnica anti-spoofing de identificacdo de movimentacdo dos olhos. (Fonte: PAN,
2007)

Utilizando-se dos mesmos principios de extracdo de partes do rosto, SINGH et al. (2017)
realizou a verificacdo da autenticidade de imagens por meio da movimentacao da boca, afim de

confirmar a existéncia de vida por trds dos aparelhos - Figura 12.
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Figura 12 — Técnica anti-spoofing de identificacdo de movimentag¢do da boca. (Fonte: SINGH et
al., 2017)

Além disso, outro método proposto foi abordado por LI et al. (2016) o qual utilizou de
técnicas de processamento de imagem para detectar o fluxo sanguineo presente na face humana

e assim coibir tentativas de fraude - Figura 13.

Figura 13 — Técnica anti-spoofing de identificagdo do fluxo sanguineo. (Fonte: LI et al., 2016)

Por outro lado, hd também estudos que buscam aprimorar as técnicas de aprendizado
profundo, que, no sistema convencional de autenticacao, € utilizada para classificar a identi-
dade da pessoa, afim de extrair caracteristicas das imagens e classificd-las em reais ou falsas.
Como observado anteriormente, SOUZA (2019) e DESAI (2019), buscaram aplicar diferentes

abordagens de aprendizado de maquina como redes neurais convolucionais (CNNs), maquina
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Boltzmann restrita (RBM), redes neurais temporais e redes neurais recorrentes afim de comparar

o desempenho de cada arquitetura quando expostos a faces falsas.
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3 MATERIAIS

3.1 Google Colaboratory

Para a avaliac@o das aplicagcdes realizadas neste trabalho, utilizou-se a plataforma do
Google Colaboratory como ambiente de processamento. Segundo o Google, o Colaboratory
(Colab), € um ambiente desenvolvido pelo Google Research no qual é possivel que qualquer
pessoa implemente um c6digo em Python dentro do navegador. O Colab € uma solu¢do desenvol-
vida especialmente para aplica¢des de aprendizado de médquina e andlise de dados com o uso de
hardware acelerado para Tensorflow, entre outras solugdes, com GPU e TPU, na qual utiliza-se

um Jupyter Notebook.

Além disso, segundo o Google, o servico do Google Colaboratory é fornecido de forma
gratuita com os recursos operacionais ja pré configurados, incluindo GPUs. As GPUs disponivel
no ambiente de processamento variam entre Nvidia K80s, T4s, P4s e P100s. Para este trabalho

utilizou-se também uma memoria RAM de 12.72GB disponiveis e um disco de 70GB.

3.2 Tensorflow

Como ambiente pré configurado, tem-se a aplicacdo TensorFlow em Python, a qual
¢ uma biblioteca de cddigo aberto empregada para projetos voltados para aprendizado de
maquina. A solucdo do TensorFlow foi originalmente desenvolvida pela equipe Google Brain,
a qual empregou esta biblioteca em pesquisas voltadas para aprendizado de méquina e redes
neurais profundas; atualmente a utilizacdo do TensorFlow permite que os estudos relacionados a
Inteligéncia Artificial possam ser empregados de forma facil e rdpida, tanto em Python, quanto

em C++.

O TensorFlow é um sistema de aprendizado de mdquina que opera em grande escala e em
ambientes heterogéneos. O TensorFlow utiliza-se de grafos de fluxo de dados para representar a
computacdo, estado compartilhado e as operagdes que alteram esse estado. Este processo € criado
para mapear os nds de um gréfico de fluxo de dados em muitas maquinas ou em um cluster,
incluindo CPUs multicore, GPUs e também no Tensor Processing Units (TPUs). Esta arquitetura
fornece a flexibilidade para o desenvolvedor de aplicativos, pois, enquanto nos servidores de

parametros projeta-se o gerenciamento de estado integrado ao sistema, o TensorFlow permite que
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os desenvolvedores experimentem novas otimizacdes e algoritmos de treinamento (GOOGLE

BRAIN, 2016).

3.3 Keras

Como solugdo integrada ao TensorFlow, tem-se o Keras, uma API (Interface de progra-
macao de aplicacdes) desenvolvida por Francois Chollet, com cédigo aberto, a qual permite a
utilizacdo do TensorFlow por meio de uma interface acessivel e produtiva para a resolugao de
problemas de aprendizado de maquina, minimizando as a¢des necessarias por meio do usudrio e

emitindo erros de forma direta e transparente.

Com a criagdo do Keras, tornou-se possivel o maior aproveitamento da escalabilidade
e dos recursos existentes na plataforma do TensorFlow, permitindo o usudrio executar o Keras
em TPU ou também em grandes clusters de GPUs. Além disso o Keras possui varias fungdes
voltadas para a constru¢do de partes necessarias em projetos de redes neurais, como camadas,
fun¢des de perda, fungdes de ativagdo, otimizadores, podendo emprega-las também em redes

neurais convolucionais e recorrentes.

3.4 Dataset facial

Como base de imagens faciais voltadas para aplicacdes anti-spoofing, tem-se a NUAA
(Nanjing University of Aeronautics and Astronautics), uma das base mais utilizadas atualmente
neste campo de estudo. A base NUUA consiste em um relacao de 12620 imagens de 15 pessoas
diferentes, divididas em duas categorias, imagens reais - denominada ClientFace - € imagens
falsas - denominada ImposterFace. As imagens foram obtidas, pelo grupo de pesquisadores da
Universidade de Nanjing, por meio da utilizacdo de webcams, para as fotos reais, e, para fotos
falsas, com fotos das fotos. Além disso, as imagens foram obtidas com pessoas de diferentes

idades e géneros e também em diferentes posicoes.

Na Figura 14 pode-se observar uma imagem real e na Figura 15 uma imagem falsa. E
possivel concluir visualmente as diferengas existentes entre as imagens considerando aspectos

como brilho, textura e cor.
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Figura 14 — Imagem real. (Fonte: NUAA)

Figura 15 — Imagem falsa. (Fonte: NUAA)
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4 METODOS

Neste capitulo serdo apresentados os métodos utilizados no desenvolvimento desta
monografia, abordando desde as caracteristicas e fungdes utilizadas na rede neural convolucional,
as métricas de avaliacao dos resultados obtidos, as técnicas utilizadas, at€ o método proposto,

em comparagdo com a literatura, e as particularidades dos testes realizados.

4.1 Caracteristicas do modelo
4.1.1 Fungdes de ativacdo

Como funcdes de ativagdes, foram utilizadas nas camadas intermedidrias e ndo convolu-

cionais do modelo VGGFace as func¢des Rectified Linear Unit (ReLU) e softmax.

A funcao de ativacdo Rectified Linear Unit, mais conhecida como ReLLU, é uma forma
de funcdo de ativacdo usada comumente em modelos de aprendizado profundo. Em esséncia, a
funcgdo retorna zero se receber uma entrada negativa e se receber um valor positivo, a funcao
retornard o mesmo valor positivo. Os beneficios de usar a fun¢do ReLLU sdo que sua simplicidade
a torna uma funcao relativamente barata de calcular. Como ndo ha matematica complicada, o
modelo pode ser treinado e executado em um tempo relativamente curto. Da mesma forma, ele
converge mais rapido, o que significa que a inclinacdo nao se estabiliza conforme o valor de X

fica maior (GOODFELLOW, 2016).

f(z) = max(0, x) 4.1)
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Figura 16 — Rectified Linear Unit (ReLU). (Fonte: EXPERT ACADEMY)

Fungdo de ativacao

A funcdo de ativagdo softmax, ou fun¢ao exponencial normalizada, ¢ uma funcio logistica
desenvolvida para aplica¢cdes de dimensdes multiplas. Esta fungdo € utilizada tanto em problemas
que envolvem regressao logistica multinomial quanto como a ultima fun¢do de ativagdo de uma
rede neural para normalizar a saida de uma rede para uma distribui¢do de probabilidade sobre as

classes de saida previstas (GOODFELLOW, 2016).

O funcionamento da fungao softmax - Equacao 4.2 - é dado pelo calculo de uma pon-
tuacdo para o vetor z para cada classe /K, para o qual € realizado o cédlculo do exponencial, e,
posteriormente, a normalizacio, obtendo como resultado a probabilidade do vetor pertencer a
cada classe. Sendo assim, antes da aplicacdo da funcao softmax, alguns componentes do vetor
podem possuir valores negativos ou maiores que um e a soma deles podem nao somar um. Apds a
aplicacdo da fungdo, cada componente presente na entrada possuird um valor no intervalo (0, 1),
e 0s componentes somardao um, de forma que possam ser interpretados como probabilidades,
e também correspondendo, os maiores componentes de entrada, as maiores probabilidades

(GOODFELLOW, 2016).

= ——,paraj = 1,..., K. (4.2)
= eZk
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Figura 17 — Softmax. (Fonte: EXPERT ACADEMY)
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4.1.2 Func¢do de Otimizacdo

Como func¢do de custo para otimiza¢do do modelo, utilizou-se a funcdo do Gradiente
Descendente Estocastico, ou SGD (stochastic gradient descent, em ingl€s), para a qual, o
algoritmo € utilizado para calcular o gradiente da funcdo de perda da rede em relagdo a cada
peso individual na rede. Para cada passagem para frente pela rede, retorna-se uma certa fungao
de perda parametrizada, e utiliza-se cada um dos gradientes criados para cada um dos pesos,
multiplicando-os por uma certa taxa de aprendizado, para mover os pesos em qualquer direcao

que seu gradiente esteja apontando(BOTTOU, 2010).

O SGD diferencia-se dos outros gradientes existentes por escolher aleatoriamente uma
instancia no conjunto de treinamento em cada etapa e calcular os gradientes para uma amostra
dos dados, procurando minimos locais. Desta maneira, o algoritmo do SGD acaba possuindo
uma velocidade de treinamento maior, por realizar cilculos somente em uma instancia por etapa,
e permite, também, o treinamento de um grande conjunto de dados, pois somente uma instancia

precisa ficar na meméria por iteragio (GERON, 2019).

4.1.3 Funcdo de perda

Como fungdo de perda utilizou-se o método denominado Categorical Cross-Entropy. A
Cross-Entropy (CE) € um método heuristico utilizado para resolver problemas de otimizagao
combinatdria, calculando-se a diferenca entre duas distribui¢des de probabilidade em relacio ao
mesmo conjunto de eventos (MANNOR et al, 2005). A fun¢do de perda de CE € quase a tnica

escolha para tarefas de classificacdo na préatica. Seu uso predominante € apoiado teoricamente
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por sua associagdo com a minimizagdo da divergéncia de probabilidade entre a distribuicdo
empirica de um conjunto de dados e a confianca do classificador para o conjunto de dados (NAR

etal, 2019).

Desta maneira a fun¢do de perda de Cross-Entropy, mede o desempenho de um modelo
de classificac@o cuja saida € um valor de probabilidade entre O e 1, a qual é dada pela Equagao

4.3.

L

CE = — Z y;. log 4;, sendo L o cumprimento da vetor de saida (4.3)
i=1

Para modelos de classificacdo com N classes diferentes, mas ndo mutuamente exclusivas,
utiliza-se o método denominado Categorical Cross-Entropy, no qual cada classe é convertida
para um vetor 1.X NV possuindo valores unitirios para a posi¢do que representa sua classe e

valores nulos para as outras classe. Na Figura 18 tem-se um exemplo desta aplicacdo.

Figura 18 — Exemplo Categorical Cross-Entropy. (Fonte: Autor)
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4.1.4 Meétricas de avaliagdao

Como métricas de avaliacdo do desempenho das redes neurais treinadas, utilizou-se
desde a acuricia obtida a cada época de treinamento, como a perda em cada iteracdo. Além
disso, métricas como precisdo, revocagdo, F'I-score, a area sob a curva ROC (AUC) e matriz de

confusdo foram observadas por se tratar de um modelo de classificacdo com diversas classes.

A acurécia, pode ser definida como a quantidade de amostras que foram classificadas
corretamente, tanto positivas quanto negativas. No entanto, é necessdrio atentar-se em relagdo a
essa métrica pois como nao hd um padrdo na quantidade de imagens pertencentes a cada classe

existente no modelo treinado e ha um niimero consideravel de classes, sempre serd observado
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mais segmentos da classe negativa. Dessa maneira mesmo fixando um valor para as predicdes da

classe negativas, a acurdcia apresentaria um valor alto (MARQUES, 2017).

A precisdo € definida como a acuricia das previsdes positivas, ou seja, a quantidade
de segmentos classificados positivos que realmente pertencem a classe selecionada (Equagao
4.4). Jarevocagdo, ou Recall, é a sensibilidade do modelo, a qual expressa a taxa de verdadeiros
positivos, isto €, a quantidade de classes positivas que foram corretamente identificadas (Equagao
4.5). Para ambas equagdes, tem-se que TP é o nimero de verdadeiros positivos, FP é o nimero

de falsos positivos e FN é o ntimero de falsos negativos (GERON, 2019).
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TP
precisﬁo = m (44)
TP
= —" _ 4.5
reca TP+ FN 4.5)

Tem-se também o FI-score, que, pode ser definida como uma métrica que combina os
valores de precisdo e revocagdo utilizando o cdlculo da média harmonica entre as duas outras

métricas - Equacdo 4.6 (GERON, 2019).

2

1
+ revocacao

Fl = T
precisiao

(4.6)

A curva ROC (traduzida do inglés como caracteristicas operacionais do receptor) repre-
senta a taxa de verdadeiros positivos (revocagdo) em relagdo a taxa de falsos positivos. Os valores
na curva ROC variam em cada eixo de zero até um, sendo considerado um bom classificador
aquele que possui um comportamento distante da linha pontilhada - Figura 19 - a qual representa
um classificador aleatério. J4 o valor da Area sob a curva (AUC) ¢ utilizado para a comparagio
entre classificadores, sendo este considerado satisfatério para valores préximos a um (GERON,

2019).

Figura 19 — Curva ROC com representacdo do calculo AUC. (Fonte: REBELLO, 2020)
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Além disso utilizou-se o cdlculo da matriz de confusdo, para a qual obtém-se a quantidade
de vezes em que uma classe A - valores nas linhas da matriz - foi classificada como uma classe
B - valores nas colunas da matriz. Desta maneira, cada linha da matriz representa a classe

verdadeira que se deseja classificar e, cada coluna da matriz representa a classe em que o dado foi
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classificado, ou seja, para se obter bons resultados, deve-se possuir maiores valores na diagonal

principal da matriz (GERON, 2019).

4.2 Técnicas utilizadas
4.2.1 Fine-tuning

A técnica de Fine-tuning, em geral, significa fazer pequenos ajustes em um processo
para obter a saida ou desempenho desejado. O Fine-tuning do aprendizado profundo envolve o
uso de pesos de um algoritmo de aprendizado profundo anterior para programar outro processo
de aprendizado profundo semelhante. Pesos sdo usados para conectar cada neur6nio em uma
camada a cada neurdnio na préoxima camada da rede neural. O processo de Fine-tuning diminui
significativamente o tempo necessdrio para programar e processar um novo algoritmo de aprendi-
zado profundo, pois ele ja contém informagdes vitais de um algoritmo de aprendizado profundo

pré-existente.

Desta maneira, como o conjunto de 2.6MM de imagens utilizadas para treinar o modelo
VGGFace € muito maior em relagdo ao conjunto de imagens utilizadas neste trabalho, entre 6
mil reais e 6 mil falsas, a utilizacdo dos pesos pré-treinados pela VGGFace tornou-se necessaria,

sendo possivel com a implementacdo da técnica de Fine-tuning.

4.2.2 Data Augmentation

A técnica de Data Augmentation, pode ser definida como uma técnica de regularizacio a
qual consiste na geracdo de novos objetos para treinamento do modelo proposto, por meio dos
objetos ja existentes, e, desta maneira, aumentando, consideravelmente, o tamanho da base de

dados utilizada para treinamento e reduzindo o sobre-ajuste do modelo (GERON, 2019).

Como exemplo, tem-se as Figuras 20 e 21 nas quais, a primeira representa a imagem
original utilizada para classificagdo no modelo, e, a segunda, as imagens geradas para a im-
plementacdo da técnica de Data Augmentation, utilizando técnicas de rotacdo de imagens e

alteracdo de cores.
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Figura 20 — Exemplo Data Augmentation - Imagem original. (Fonte: BROWNLEE, 2019)

Desta maneira, a avaliagdo da aplicagdo da técnica de Data Augmentation, por meio da
adicao de imagens com filtro Gaussiano passa-alta e do descritor de textura LBP, é apropriada
para a deteccao de fraude em reconhecimento facial. A extracdo de diferentes caracteristicas
das imagens agrega valor ao modelo classificatdrio, realizando diferentes comparacdes entre
as imagens reais e falsas, considerando, neste caso, zonas de alta frequéncia e distribui¢ao da

intensidade de cinza em relacdo aos pixels vizinhos.

4.3 Meétodo proposto

Observa-se que o método convencional utilizado em sistemas biométricos - como visto
na Figura 1 - realiza a verificacao da identidade da face. Dessa maneira, torna-se necessaria a
avaliacdo do desempenho da atual abordagem utilizada e a implementacdo de alternativas ao
método convencional de reconhencimento facial, avaliando o comportamento da rede neural para

a classificacdo de imagens reais e falsas, verificando assim a autenticidade das imagens.
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Além disso, os trabalhos recentes propostos por SOUZA (2019) e DESAI (2019) in-

vestigaram diferentes procedimentos de detec¢do de fraude por meio da avaliagdo de diversas

abordagens de arquiteturas de redes neurais artificiais, porém, nao foi avaliado o desempenho do

aplicagcdo quando exposta a diferentes técnicas de pré-processamento das imagens faciais, por

meio, por exemplo, da utilizacdo conjunta de descritores de textura e filtros passa-alta.

Sendo assim, a proposta deste trabalho para a autenticacdo biométrica por meio da face,

seria necessario, primeiramente, a realizacdo de um pré-processamento das imagens faciais,

por meio de descritor de textura e filtro passa-alta (LBP e filtro Gaussiano, respectivamente)

e utilizando técnicas de Fine-tuning e Data Augmentation. Posteriormente, torna-se preciso a

implementacdo de um modelo classificatério para avaliar a autenticidade da imagem utilizada

para a autenticacdo, o qual serd avaliado neste trabalho, e outro para identificacdo da identidade

da face, como ja utilizado na arquitetura convencional, diferenciando-se do sistema biométrico

atual, como pode-se observar na Figura 22.

Figura 22 — Proposta de cendrio ideal para autenticacao biométrica facial (Fonte: Autor)
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4.4 Testes realizados

Pode-se dividir o conjunto de testes em duas etapas: a primeira com o intuito de veri-

ficar a abordagem convencional do reconhecimento facial, utilizando imagens rotuladas com

a identidade das pessoas e expondo o modelo a imagens falsas; a segunda visando analisar o

desempenho do modelo quando exposto somente a classificacdo de imagens reais e falsas.
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4.4.1 Fine-tuning para quinze classes de imagens reais

Com o intuito de avaliar o modelo pré-treinado da VGGFace realizou-se a técnica de
Fine-tuning no modelo, retreinando, desta maneira, as quatro tltimas camadas com as seguintes

caracteristicas:

Batch Size: 32

Numero de épocas: 100
e Parimetros treinaveis: 13,109,250

e Parimetros nao treinaveis: 14,714,688

Quantidade de classes: 15

Caracteristica(s) das imagens: somente imagens reais

» Métricas utilizadas: Acuricia, Perda, Precisdo, Revocacdo, Area sob a curva ROC e Matriz

de Confusao

Para este teste foi utilizado por classe a quantidade de imagens que pode-se observar na

Figura 23, todas como o exemplo presente na Figura 24.

Figura 23 — Quantidade de imagens utilizadas no teste de Fine-tuning para quinze classes de
imagens reais
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Figura 24 — Exemplo de imagem real utilizada no teste de Fine-tuning para quinze classes de
imagens reais

4.4.2 Fine-tuning para quinze classes de imagens reais € uma classe falsa

Para avaliar como o modelo pré-treinado da VGGFace comporta-se em relacdo a imagens
falsas, realizou-se a técnica de Fine-tuning no modelo, retreinando, desta maneira, as quatro

dltimas camadas com as seguintes caracteristicas:

Batch Size: 32
* Numero de épocas: 100
¢ Pardmetros treinaveis: 13,109,250

e Pardmetros nao treinaveis: 14,714,688

Quantidade de classes: 16

Caracteristica(s) das imagens: 15 classes reais e 1 classe falsa

» Métricas utilizadas: Acuricia, Perda, Precisdo, Revocacdo, Area sob a curva ROC e Matriz

de Confusao

Para este teste foi utilizado por classe a quantidade de imagens que pode-se observar na
Figura 25, selecionando, de forma aleatdria, em torno de vinte imagens falsas relacionadas as
pessoas presentes em cada classe real - 300 imagens falsas. Na Figura 26 pode-se observar um

exemplo de uma imagem real e na Figura 27 um exemplo de uma imagem falsa.
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Figura 25 — Quantidade de imagens utilizadas no teste de Fine-tuning para quinze classes de
imagens reais e uma classe falsa
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Figura 26 — Exemplo de imagem real utilizada no teste de Fine-tuning para quinze classes de
imagens reais € uma classe falsa




57

Figura 27 — Exemplo de imagem falsa utilizada no teste de Fine-tuning para quinze classes de
imagens reais e uma classe falsa

4.4.3 Fine-tuning para uma classe real e uma classe falsa

Com o intuito de avaliar a forma como o modelo pré-treinado da VGGFace comporta-se
na classificagcdo somente de imagens reais e imagens falsas, realizou-se a técnica de Fine-
tuning no modelo, retreinando, desta maneira, as quatro ultimas camadas com as seguintes

caracteristicas:

Batch Size: 128

Nudmero de épocas: 100

e Pariametros treinaveis: 13,109,250

Parametros nao treinaveis: 14,714,688

Quantidade de classes: 2

Caracteristica(s) das imagens: 1 classe real e 1 classe falsa

Métricas utilizadas: Acuricia, Perda, Precisdo, Revocacdo, Area sob a curva ROC e Matriz

de Confusao

Para este teste foi utilizado por classe a quantidade de imagens que pode-se observar na
Figura 28. Na Figura 29 pode-se observar um exemplo de uma imagem real e na Figura 30 um

exemplo de uma imagem falsa.
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Figura 28 — Quantidade de imagens utilizadas no teste de Fine-tuning para uma classe real e uma

classe falsa
Quantidade de imagens reais x falsas
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Figura 29 — Exemplo de imagem real utilizada no teste de Fine-tuning para uma classe real e

uma classe falsa
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Figura 30 — Exemplo de imagem falsa utilizada no teste de Fine-tuning para uma classe real e

uma classe falsa

y, \Y

4.44 Fine-tuning para uma classe real e uma classe falsa com Data Augmentation utilizando

descritor de textura LBP

Para avaliar a forma como o modelo pré-treinado da VGGFace comporta-se na classifica-
cdo somente de imagens reais e imagens falsas, realizou-se a técnica de Fine-tuning no modelo,

retreinando, desta maneira, as quatro ultimas camadas com as seguintes caracteristicas:

Batch Size: 128

Numero de épocas: 100
e Parametros treinaveis: 13,109,250

e Parimetros nao treinaveis: 14,714,688

Quantidade de classes: 2

Caracteristica(s) das imagens: 1 classe real e 1 classe falsa com descritor de textura LBP

Métricas utilizadas: Acuracia, Perda, Precisdao, Revocacdo, Area sob a curva ROC e Matriz

de Confusao

Para este teste foi utilizado também a técnica de Data Augmentation em ambas as classes
- real e falsa - utilizando, além das imagens originais processadas no teste anterior, os resultados
do processo de descricdo com o descritor de textura LBP. Desta maneira, a quantidade de imagens
por classe utilizada neste treinamento pode ser observada na Figura 31. Na Figura 32 pode-se

observar um exemplo de uma imagem real e na Figura 33 um exemplo de uma imagem falsa.
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Figura 31 — Quantidade de imagens utilizadas no teste de Fine-tuning para uma classe real e uma
classe falsa com Data Augmentation utilizando descritor de textura LBP
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Figura 32 — Exemplo de imagens reais utilizada no teste de Fine-tuning para uma classe real
e uma classe falsa com Data Augmentation utilizando descritor de textura LBP.

Esquerda: Original - Direita: Mapa de textura gerado pelo LBP
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Figura 33 — Exemplo de imagens falsas utilizada no teste de Fine-tuning para uma classe real
e uma classe falsa com Data Augmentation utilizando descritor de textura LBP.
Esquerda: Original - Direita: Mapa de textura gerado pelo LBP

4.4.5 Fine-tuning para uma classe real e uma classe falsa com Data Augmentation utilizando
filtro Gaussiano

Com o intuito de avaliar a forma como o modelo pré-treinado da VGGFace comporta-se
na classificagcdo somente de imagens reais e imagens falsas, realizou-se a técnica de Fine-
tuning no modelo, retreinando, desta maneira, as quatro ultimas camadas com as seguintes

caracteristicas:

Batch Size: 128
* Numero de épocas: 100

e Parametros treinaveis: 13,109,250

Parametros nao treinaveis: 14,714,688

Quantidade de classes: 2

Caracteristica(s) das imagens: 1 classe real e 1 classe falsa com filtro Gaussiano aplicado

* Métricas utilizadas: Acuricia, Perda, Precisdo, Revocacdo, Area sob a curva ROC e Matriz

de Confusao

Neste teste foi utilizado também a técnica de Data Augmentation em ambas as classes -
real e falsa - utilizando, além das imagens originais processadas anteriormente, os resultados do

processo de filtragem com o filtro Gaussiano. Desta maneira, a quantidade de imagens por classe
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utilizada neste treinamento pode ser observada na Figura 34. Na Figura 35 pode-se observar um

exemplo de uma imagem real e na Figura 36 um exemplo de uma imagem falsa.

Figura 34 — Quantidade de imagens utilizadas no teste de Fine-tuning para uma classe real e uma
classe falsa com Data Augmentation utilizando filtro Gaussiano.
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Figura 35 — Exemplo de imagens reais utilizada no teste de Fine-tuning para uma classe real
e uma classe falsa com Data Augmentation utilizando filtro Gaussiano. Esquerda:

Original - Direita: Filtro Gaussiano
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Figura 36 — Exemplo de imagens falsas utilizada no teste de Fine-funing para uma classe real
e uma classe falsa com Data Augmentation utilizando filtro Gaussiano. Esquerda:
Original - Direita: Filtro Gaussiano
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4.4.6 Fine-tuning para uma classe real e uma classe falsa com Data Augmentation com ambos

os filtros

Afim de avaliar a forma como o modelo pré-treinado da VGGFace comporta-se na
classificacdo somente de imagens reais e imagens falsas, realizou-se a técnica de Fine-tuning no

modelo, retreinando, desta maneira, as quatro tltimas camadas com as seguintes caracteristicas:

* Batch Size: 128

* Numero de épocas: 100

¢ Pardmetros treinaveis: 13,109,250

e Parimetros nao treinaveis: 14,714,688
* Quantidade de classes: 2

 Caracteristica(s) das imagens: 1 classe real e 1 classe falsa com filtros LBP e Gaussiano

aplicados

* Métricas utilizadas: Acuricia, Perda, Precisdo, Revocacdo, Area sob a curva ROC e Matriz

de Confusao

Para este ultimo teste foi utilizado também a técnica de Data Augmentation em ambas as
classes - real e falsa - utilizando, além das imagens originais processadas no teste anterior, 0s

resultados do processo de filtragem com o filtro Gaussiano e o descritor de textura LBP. Desta
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maneira, a quantidade de imagens por classe utilizada neste treinamento pode ser observada na

Figura 37. Na Figura 38 pode-se observar um exemplo de uma imagem real e na Figura 39 um

exemplo de uma imagem falsa.

Figura 37 — Quantidade de imagens utilizadas no teste de Fine-funing para uma classe real e uma
classe falsa com Data Augmentation
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Figura 38 — Exemplo de imagens reais utilizada no teste de Fine-tuning para uma classe real
e uma classe falsa com Data Augmentation. Esquerda: Original - Centro: Filtro

Gaussiano - Direita: Mapa de textura gerado pelo LBP

l.

Figura 39 — Exemplo de imagens falsas utilizada no teste de Fine-tfuning para uma classe real
e uma classe falsa com Data Augmentation. Esquerda: Original - Centro: Filtro

Gaussiano - Direita: Mapa de textura gerado pelo LBP
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5 RESULTADOS E DISCUSSOES

5.1 Resultados
5.1.1 Fine-tuning para quinze classes de imagens reais

Como resultado do teste realizado considerando a técnica de Fine-tuning para quinze

classes de imagens reais, encontram-se os seguintes resultados:

* Acuricia do modelo: Figura 40

Perda do modelo: Figura 41

Area sob a Curva ROC em funcio do niimero de épocas: Figura 42

Matriz de confusdo do modelo: Figura 43

Relatério de classificacdo do modelo: Tabela 1

Figura 40 — Acurécia para o teste utilizando Fine-tuning para quinze classes de imagens reais
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Figura 41 — Perda para o teste utilizando Fine-tuning para quinze classes de imagens reais
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Figura 42 — Area sob a Curva ROC em funcio do nimero de épocas para o teste utilizando
Fine-tuning para quinze classes de imagens reais
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Figura 43 — Matriz de confusdo para o teste utilizando Fine-tuning para quinze classes de imagens
reais

Classe prevista
0 2 4 6 8 10 12 14

Classe real

Quantidade de ocorréncias

Tabela 1 — Relatério de classificag@o para o teste utilizando Fine-tuning para quinze classes de
imagens reais

precisdo | recall | fl-score
person_1 0,42 1,00 0,59
person_2 0,62 0,76 0,68
person_3 0,45 0,91 0,61
person_4 1,00 0,98 0,99
person_5 1,00 0,93 0,96
person_6 1,00 0,46 0,63
person_7 0,72 0,65 0,68
person_8 1,00 1,00 1,00
person_9 0,74 0,87 0,80
person_10 1,00 1,00 1,00
person_11 1,00 1,00 1,00
person_12 1,00 1,00 1,00
person_13 1,00 1,00 1,00
person_14 1,00 1,00 1,00
person_15 1,00 1,00 1,00

acuracia 0,85
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5.1.2 Fine-tuning para quinze classes de imagens reais e uma classe falsa

Como desfecho do teste realizado considerando a técnica de Fine-tuning para quinze

classes de imagens reais e uma classe falsa, encontram-se os seguintes resultados:

Acurécia do modelo: Figura 44

Perda do modelo: Figura 45

Area sob a Curva ROC em fungio do nimero de épocas: Figura 46

Matriz de confusido do modelo: Figura 47

Relatério de classificacdo do modelo: Tabela 2

Figura 44 — Acurécia para o teste utilizando Fine-tuning para quinze classes de imagens reais e
uma classe falsa
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Figura 45 — Perda para o teste utilizando Fine-tuning para quinze classes de imagens reais e uma
classe falsa
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Figura 46 — Area sob a Curva ROC em funcio do nimero de épocas para o teste utilizando
Fine-tuning para quinze classes de imagens reais e uma classe falsa
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Figura 47 — Matriz de confusido para o teste utilizando Fine-tuning para quinze classes de imagens
reais e uma classe falsa
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Tabela 2 — Relatorio de classificac@o para o teste utilizando Fine-tuning para quinze classes de
imagens reais € uma classe falsa

precisdo | recall | fl-score
person_1 0,39 1,00 0,56
person_2 0,62 0,94 0,74
person_3 0,54 0,85 0,66
person_4 0,91 0,97 0,94
person_35 0,98 0,89 0,94
person_6 1,00 0,46 0,63
person_7 0,70 0,62 0,66
person_8 1,00 1,00 1,00
person_9 0,71 0,87 0,78
person_10 0,88 0,95 0,91
person_11 1,00 1,00 1,00
person_12 1,00 1,00 1,00
person_13 1,00 1,00 1,00
person_14 1,00 1,00 1,00
person_15 0,97 1,00 0,99
falsas 0,99 0,73 0,84

acuracia 0,84
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5.1.3 Fine-tuning para uma classe real e uma classe falsa

Como desfecho do teste realizado considerando a técnica de Fine-tuning para uma classe

real e uma classe falsa, encontram-se os seguintes resultados:

Acurécia do modelo: Figura 48

Perda do modelo: Figura 49

Area sob a Curva ROC em fungéo do ntimero de épocas: Figura 50

Matriz de confusdo do modelo: Figura 51

Relatério de classificagdo do modelo: Tabela 3

Figura 48 — Acurécia para o teste utilizando Fine-tuning para uma classe real e uma classe falsa
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Figura 49 — Perda para o teste utilizando Fine-tuning para uma classe real e uma classe falsa
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Figura 50 — Area sob a Curva ROC em funcio do nimero de épocas para o teste utilizando
Fine-tuning para uma classe real e uma classe falsa
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Figura 51 — Matriz de confusdo para o teste utilizando Fine-tuning para uma classe real e uma
classe falsa

Classe prevista

0 1

0 —classe real

Classe real
1 — classe falsa

Quantidade de ocorréncias



73

Tabela 3 — Relatério de classificagdo para o teste utilizando Fine-tuning para uma classe real e

uma classe falsa

precisdo | recall | fl-score
reais 0,94 0,70 0,80
falsas 0,83 0,97 0,89
acuracia 0,86

5.1.4  Fine-tuning para uma classe real e uma classe falsa com Data Augmentation utilizando

descritor de textura LBP

Como desfecho do teste realizado considerando a técnica de Fine-tuning para uma classe

real e uma classe falsa com Data Augmentation utilizando descritor de textura LBP, encontram-se

os seguintes resultados:

Perda do modelo: Figura 53

Acurécia do modelo: Figura 52

Matriz de confusdo do modelo: Figura 55

Relatério de classificacdo do modelo: Tabela 4

Area sob a Curva ROC em funcio do nimero de épocas: Figura 54

Figura 52 — Acuricia para o teste utilizando Fine-tuning para uma classe real e uma classe falsa
com Data Augmentation utilizando descritor de textura LBP
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Figura 53 — Perda para o teste utilizando Fine-tuning para uma classe real e uma classe falsa
com Data Augmentation utilizando descritor de textura LBP
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Figura 54 — Area sob a Curva ROC em fungio do nimero de épocas para o teste utilizando Fine-
tuning para uma classe real e uma classe falsa com Data Augmentation utilizando
descritor de textura LBP
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Figura 55 — Matriz de confusdo para o teste utilizando Fine-tuning para uma classe real e uma
classe falsa com Data Augmentation utilizando descritor de textura LBP

Classe prevista
0 1

0 — classe real

Classe real
1 — classe falsa

Quantidade de ocorréncias

Tabela 4 — Relatorio de classificagdo para o teste utilizando Fine-tuning para uma classe real e
uma classe falsa com Data Augmentation utilizando descritor de textura LBP

precisdo | recall | f1-score
real 0,92 0,74 0,82
falsa 0,84 0,96 0,90

acuracia 0,87

5.1.5 Fine-tuning para uma classe real e uma classe falsa com Data Augmentation utilizando

filtro Gaussiano

Como desfecho do teste realizado considerando a técnica de Fine-tuning para uma classe
real e uma classe falsa com Data Augmentation utilizando filtro Gaussiano, encontram-se 0s

seguintes resultados:

Acurécia do modelo: Figura 56

Perda do modelo: Figura 57

Area sob a Curva ROC em funcio do niimero de épocas: Figura 58

Matriz de confusao do modelo: Figura 59

Relatério de classificacdo do modelo: Tabela 5
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Figura 56 — Acuricia para o teste utilizando Fine-tuning para uma classe real e uma classe falsa
com Data Augmentation utilizando filtro Gaussiano
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com Data Augmentation utilizando filtro Gaussiano

07 :
et 1111111 ]
validagio

0.6

05

lass

0.4

03

0z

0 0 an D HO 100



77

Figura 58 — Area sob a Curva ROC em funcio do nimero de épocas para o teste utilizando Fine-
tuning para uma classe real e uma classe falsa com Data Augmentation utilizando
filtro Gaussiano

Figura 59 — Matriz de confusdo para o teste utilizando Fine-tuning para uma classe real e uma
classe falsa com Data Augmentation utilizando filtro Gaussiano
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Tabela 5 — Relatério de classificagdo para o teste utilizando Fine-tuning para uma classe real e
uma classe falsa com Data Augmentation utilizando filtro Gaussiano

precisdo | recall | f1-score
real 0,97 0,67 0,79
falsa 0,81 0,99 0,89
acuracia 0,86

5.1.6 Fine-tuning para uma classe real e uma classe falsa com Data Augmentation utilizando

ambos os filtros

Como desfecho do teste realizado considerando a técnica de Fine-tfuning para uma classe

real e uma classe falsa com Data Augmentation utilizando ambos os filtros, encontram-se os

seguintes resultados:

Perda do modelo: Figura 61

Acuricia do modelo: Figura 60

Matriz de confusao do modelo: Figura 63

Relatério de classificacdo do modelo: Tabela 6

Area sob a Curva ROC em funcdo do nimero de épocas: Figura 62

Figura 60 — Acuricia para o teste utilizando Fine-tuning para uma classe real e uma classe falsa
com Data Augmentation utilizando ambos os filtros
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Figura 61 — Perda para o teste utilizando Fine-tuning para uma classe real e uma classe falsa
com Data Augmentation utilizando ambos os filtros
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Figura 62 — Area sob a Curva ROC em fungo do niimero de épocas para o teste utilizando Fine-
tuning para uma classe real e uma classe falsa com Data Augmentation utilizando
ambos os filtros
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Figura 63 — Matriz de confusdo para o teste utilizando Fine-tuning para uma classe real e uma
classe falsa com Data Augmentation utilizando ambos os filtros
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Tabela 6 — Relatdrio de classificagdo para o teste utilizando Fine-tuning para uma classe real e
uma classe falsa com Data Augmentation utilizando ambos os filtros

precisdo | recall | fl1-score
real 0,92 0,73 0,81
falsa 0,84 0,95 0,89

acuracia 0,86

5.2 Discussoes

Considerando os primeiros testes realizados para quinze classes reais e, posteriormente,
com a adi¢do de uma classe de imagens falsas, pode-se observar, por meio do resultado consoli-
dado presente na Tabela 7, que houve uma queda no desempenho do modelo em geral para todas
as métricas avaliadas. Além disso, por meio das matrizes de confusdo apresentadas anteriormente,
evidencia-se que, para algumas classes especificas, o modelo apresentou uma queda significante

apods o incremento de imagens falsas.
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Tabela 7 — Resultados consolidados do reconhecimento facial considerando a identidade da
pessoa - comparacao da eficiéncia do reconhecimento de imagens reais antes e depois
da adi¢@o de imagens falsas

Real 15 classes reais | 15 classes reais e 1 falsa
Acurdcia 0,850 0,840
Meédia precisao 0,863 0,838
Média recall 0,904 0,896
Média f1-score 0,863 0,844

Ja para os testes realizados apenas com classes reais e falsas, aplicando a técnica de
Data Augmentation, observa-se, por meio das Tabelas 8 e Tabela 9, que, tanto para imagens
reais, quanto para imagens falsas, a adi¢do do descritor de textura LBP favoreceu a classificacio
das imagens. Para este caso, houve um incremento de todas as métricas para a classificagao de
imagens reais, €, para imagens falsas, observou-se apenas uma queda de 0.01 na taxa de Recall

em relacdo ao teste realizado sem filtro.

Quando observa-se os outros dois testes realizados com filtros - Gaussiano e LBP+Gaussiano,
tem-se que o modelo ndo apresentou alteragdo na acurécia, em relacao ao teste efetuado sem a
adicdo de filtros, e uma piora na taxa de precisdo - no caso do Gaussiano -, € uma piora na taxa

de Recall - no caso de ambos os filtros.

Tabela 8 — Resultados consolidados do reconhecimento facial considerando apenas classes reais
- comparagdo da eficiéncia da técnica de Data Augmentation

Real Sem Filtro | LBP | Gaussiano | LBP + Gaussiano
Acuricia 0,86 0,87 0,86 0,86
Precisdo 0,94 0,92 0,97 0,92

Recall 0,70 0,74 0,67 0,73
f1-score 0,80 0,82 0,79 0,81

- comparacgdo da eficiéncia da técnica de Data Augmentation

falsa Sem Filtro | LBP | Gaussiano | LBP + Gaussiano
Acuracia 0,86 0,87 0,86 0,86
Precisdo 0,83 0,84 0,81 0,84
Recall 0,97 0,96 0,99 0,95
fl-score 0,89 0,90 0,89 0,89

Tabela 9 — Resultados consolidados do reconhecimento facial considerando apenas classes falsas

Dessa maneira, comparando todos os experimentos realizados, pode-se observar que a
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existéncia de imagens falsas na predi¢ao do modelo, feito que caracterizaria uma tentativa de
fraude, prejudica o desempenho do modelo quando este busca classificar a identidade de uma
pessoa. No entanto, quando utiliza-se uma classificacdo somente entre imagens reais e falsas, o
modelo avaliado (VGGFace) demonstrou bons resultados ao abstrair caracteristicas das imagens
e classificd-las de maneira correta - vide as matrizes de confusdo apresentadas nos resultados -,
possuindo um comportamento ainda melhor quando utilizada a técnica de Data Augmentation

com o descritor de textura LBP.

Sendo assim, observa-se que a abordagem da utilizagao de duas redes neurais convoluci-
onais distintas - uma para classificacdo de identidade e outra para deteccdo de fraude - torna-se
valida pelo fato da rede neural de classificacdo de identidade possuir uma piora no desempenho
quando exposta a imagens falsas e uma melhora ao ser treinada para diferenciar faces reais de

faces falsas.
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6 CONCLUSAO

Esse trabalho teve como objetivo realizar um estudo sobre como o sistema biométrico de
reconhecimento facial comporta-se quando exposto a imagens falsas e propor novas abordagens
para detec¢do de fraude, desde combinar ao sistema uma fase de pré-processamento das imagens
da face por meio de descritores de textura e filtros passa-alta, até a implementacdo de duas redes

neurais para detec¢do de fraude e identificacao de identidade.

Dessa maneira, os resultados obtidos nos experimentos mostraram que o sistema con-
vencional utilizado para classificacdo de identidade possui uma queda de desempenho quando
exposto a imagens falsas. Além disso, inferiu-se também, que, quando este sistema biométrico
¢ atrelado a um procedimento de pré-processamento das faces e fragmentado em duas redes
neurais, uma para deteccdo de fraude e outra para classificacdo da identidade, o desempenho

obtido € superior ao convencional.

Vale ressaltar que todos os testes realizados foram obtidos exclusivamente para a base
de dados testada (NUAA) e ndo consideraram em nenhum momento a robustez do hardware
necessario para a predi¢do das classes e o tempo de predicdo - como observado em outros
trabalhos citados nesta monografia. Desta maneira, para a implementacao do sistema anti-
spoofing facial em dispositivos mdveis ou terminais bancarios, por exemplo, torna-se necessario
o estudo para balancear todos estes fatores, que sdo custo, velocidade de processamento e taxa
de assertividade do modelo. Além disso deve-se considerar também o aprimoramento do modelo
para diferentes fisionomias humanas, considerando raga, etnia e sexo, além da possibilidade de

existirem alteracdes na aparéncia humana por meio de procedimentos estéticos.
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