ESCOLA POLITECNICA DA UNIVERSIDADE DE SAO PAULO
DEPARTAMENTO DE ENGENHARIA MECATRONICA E DE
SISTEMAS MECANICOS

FERRAMENTA BASEADA EM REDE DE PETRI PARA
MODELAGEM, SIMULACAO, PROGRAMACAO E SUPERVISAO
DE SISTEMAS DE AUTOMACAO

Renato Gongalves de Freitas
Victor Anselmo Silva

Séo Paulo
2006

DEDALUS - Acervo - EPMN

RAMRRRAEAD e
31600012451
FICHA CATALOGRAFICA
544 edo

Freitas, Renato Gongalves de

Ferramenta gréfica baseada em rede de Petri para modela-
gem, simulagéo, programacio e supervisio de sistemas de
automacéo / R.G. de Freitas, V.A. Silva. -- Sa0 Paulo, 2006.

84 p.

Trabalho de Formatura - Escola Politécnica da Universidade
de 5ao Paulo. Departamento de Engenharia Mecatrénica e de
Sistemas Mecanicos.

1.Controladores programaveis 2.Redes de Petri 3.Softwares
{Modelagem; Simulagao) I.Silva, Victor Anselmo Il.Universidade
de Sao Paulo. Escola Politécnica. Departamento de Engenharia
Mecatronica e de Sistemas Mecanicos lll.t.

DEDALUS - Acervo - EPMN

AR T

31600012451
FICHA CATALOGRAFICA

51449020

Freitas, Renato Gongalves de

Ferramenta gréafica baseada em rede de Petri para modela-
gem, simulagdo, programacio e supervisao de sistemas de
automagéo / R.G. de Freitas, V.A. Silva. -- S3o Paulo, 2006.

84 p.

Trabalho de Formatura - Escola Politécnica da Universidade
de Sao0 Paulo. Departamento de Engenharia Mecatrénica e de
Sistemas Mecéanicos.

1.Controladores programaveis 2.Redes de Petri 3.Softwares
{Modelagem; Simulagao) L.Silva, Victor Anselmo [l.Universidade
de Sao Paulo. Escola Politécnica. Departamento de Engenharia
Mecatronica e de Sistemas Mecéanicos lIl.t.

Aos meus pais e minha irma,
que sempre me incentivaram nos

meus trabalhos.

Renato Gongalves de Freitas

Ao meu avd, Samuel Anselmo,
e a minha mae, Marisa Anselmo,
que desde os meus primeiros dias
de vida tém me dado suporte, forga
e tém aguardado por esse
momento. E a0 meu irmao Heitor,

um filho e um irméao exemplar.

Victor Anselmo Silva

AGRADECIMENTOS

Ao nosso orientador, Prof. Dr. Paulo Eigi Miyagi, pelo direcionamento e
atencéo dados ao longo do desenvolvimento deste trabalho de formatura.

Ao Eng. doutorando Marcosiris Amorim de Oliveira Pessoa que nos
auxiliou, na fase final deste trabalho, na realizag¢éo dos estudos de caso.

A Verénica, minha namorada, pela paciéncia, apoio e carinho
demonstrados por mim nestes Ultimos trés anos (victor).

Aos nossos professores, que contribuiram para nossa formagdo na
Escola Politécnica da Universidade de Sdo Paulo.

"Ndo existe trabalho ruim. O ruim é ter que trabalhar.”

Seu Madruga (Don Ramon)

RESUMO

Os chamados sistemas a eventos discretos (SEDs), isto é, sistemas cuja
dinamica é dirigida essencialmente pela ocorréncia de eventos instantaneos e
estados discretos, apresentam caracteristicas como concorréncia, sincronismo,
assincronismo e conflitos entre processos e podem ser modelados e
analisados por meio de uma ferramenta gréfica e matematica chamada Rede
de Petri (RdP).

Tendo como foco a implementacéo de sistemas de automagéo de SEDs
com controladores programaveis (CPs), o objetivo do presente trabalho e a
construgdo de uma ferramenta baseada em RdP para modelagem, simulagéo,

programagao e supervisdo destes sistemas.

Por meio de uma interface grafica, a ferramenta permite ao usuario criar
modelos em RdP ou editar modelos existentes. Como formato de intercambio
entre softwares que trabalham com RdP, esses modelos séo traduzidos pela
ferramenta para a notagdo XML (eXtensible Markup Language), a qual baseia-
se em tags que estabelecem um procedimento para identificar, categorizar e

organizar informagdes.

Esta ferramenta também é utilizada para traduzir o modelo em RdP de
uma estratégia de controle para um programa escrito em linguagem adequada
a implementagio em CPs. Assim, este programa pode ser carregado e
executado diretamente em um CP, responsavel pela automagéo do sistema.
Além disso, durante a operagédo efetiva do sistema, os sinais de entrada e de
saida tratados pelo CP podem ser monitorados pela ferramenta de modo que
possivel acompanhar a dinamica do sistema, indicada pela evolugdo dos

estados da RdP apresentada na interface.

Palavras-chave: Controladores programaveis, Redes de Petri, modelagem,

simulagéo.

ABSTRACT

Discrete events systems (DES) are systems whose dynamic is
essentially driven by the occurrence of instantaneous events and discrete
states. They present characteristics as concurrency, synchronism,
asynchronism and conflicts among processes, and can be modeled and
analyzed through a graphical and mathematical tool called Petri Net (PN).

Considering as focus the implementation of automation systems of DESs
with programmable controllers (PCs), the objective of the present work is the
development of a tool based on PN for modeling, simulation, programming and

supervision of these systems.

Through a graphical interface, the tool allows the user to create models
in PN or edit existing models. As a format of data interchange among softwares
that work with PN, the models are translated by the tool into XML (eXtensible
Markup Language) notation, which is based on tags that establish a procedure

to identify, categorize and organize information.

This tool is also used to translate the PN model of a control strategy for a
PC program written in suitable language. Thus, this program can be directly
loaded and executed in a PC, responsible for the automation of the modeled
system. Throughout the effective operation of the system, the tool can monitor
input and output signals treated by the PC, then, it is possible to follow/visualize
the dynamics of the system, indicated by the evolution of the states of the PN

presented in the interface.

Keywords: Programmable controliers, Petri Nets, modeling, simulation.

SUMARIO

LISTA DE FIGURAS........cocorvvimemrmrersnssesssns . N 2
LISTA DE TABELAS.........comisrresssierrenisriisenssosssisss sessssssssstsststssnsensessmss sensessnsensessssssssssssssssots oeeseesesson 3
1. INTRODUGAD cccnrrvereerrrereesssnsssssssssssnesmmsmsessssesssssssssssssssssssssanns i
L1 MOTIVACAD E JUSTIFICATIVA c...c.cevvvevrseeisres sttt e e ess e e s seas s e s s ese e e e 4
L2 OBJETIVO .. .5
2. CONCEITOS FUNDAMENTAIS............ -
2.1, SISTEMA A EVENTOS DISCRETOS (SED)ooooooveeeeeeeeeeececeee oo reeseereeeerers s eee e 6
2.2 SISTEMA DE MANUFATURA (SM) .ovoovveveeteeee ot e e v st et s eesssss s e et 7
2.3 REDE DE PETRI (RDP} SRRV, .
2.4, CONTROLADORES PROG‘RA MA VEIS (CPS) ESUAS LINGUA GENS DE PROGMMACAO 16
2.5. EXTENSIBLE MARKUP LANGUAGE (XML) E PETRI NET MARKUP LANGUAGE (PNML) 21
2.6, ORIENTACAQ A OBIETOSc.coeooeeevceiiinisivemeeeeeeeoeerseereseesaseessstesss s teseses e reeeeresesssesse e oo ee s 2
2.7 ANALISE DE REQUISITOSoooioreaeireeee e sesssissssossss s sssssss s teseseeteesnsensesonsossss e sssses oo 26
2.8. CA4sos DE Uso .. .27
2.9, QUALIDADE DE Sop TWARE .28
2.10. TESTE DE SOFTWARE... .29

3. FERRAMENTA PARA MODELAGEM, SIMULA(}AO PROGRAMACAO E SUPERVISAQ

DE SISTEMAS DE AUTOMAGADccceeeerieeseomssssssssssssssssesessssessesemssensessmssssssssosssssessenseesmsseesesseses 31
3.5 ESCOLHA DAS LINGUAGENS DE PROGRAMACHOD ..o ooveoes oo eeeeer s eestsseoeoo P e |
3.1.1. Linguagem para a implementagdo da ferrament..............c.ccovcoeeeoreroverinrosieeoeeeeeseeesonn 31
3.1.2. Linguagem de programaqao do CP...........c.eeeeieeuccieiseeeeoeeeseeeeeses o vesseesessesses s 33
3.2 LEVANTAMENTO DE REQUISITOSoocooveeeeeeecveeevr s eseeceresenraeseressseeeeseereessess s s enseennsss 3
3.2.1. Requisitos dos ATGOFINOSccoccvvmrirmeinsiaieesissterecee e oo seees s ses s et stes e e e eren 35
3.22. RequiSitos da JRETSACEcooocco. v ent e e ettt ee e 35
3.3 ESTRUTURAS DE DADOS .. TR Nelt. e o I . ¢
3.3.1. Modelagem da RdP segundo a anentag:ao a ob jeto ... 36
3.3.2. Estrutura dos modelos em RdP descritos segundo a nota¢Go XML ..o 38
3.4 ALGORITMO “TOGADOR DE MARCAS™ «..ovviaeiavoeeeeeeeeeeeeeers e er v e s e s e eeneeeeeeee v 38
3.5, GERACAO DE PROGRAMAS DE CONTROLE DE CPS A PARTIRDESIPN <o A0
3.6. DESENVOLVIMENTO DA INTERFACE GRAFICA w.ooveeeeeeeeeeeevrevecvoreevereeseais BN .
3.7.1 Crmgao e edxgao de RdPs ... 46
3.7.2. DescricGo da RAP em XMcocoommeeereeeeeeeeeeee e e 48
3.7.3. Geragdio de programa de CP a partiv de um SIPNccoccoioeeroeee e ceeeeeeeer s 48
4. ESTUDOS DE CASO....cmriinmerernvesesessereseosssmsssssssssesares B - eCsSpeTasessats 50
4.1 MODELAGEM E SIMULACAO - MINICIM rretebe s es s bee s s eeaneaneeernre D0
4.2, PROGRAMACAO DA ESTACAO DE MOoNTA GEM DO MINICIM ... 53
4.3. SUPERVISAO REMOTA . .55
5. CONCLUSAO.........coosrmrernrrrmsensesmesasssmssrassssessssssssssseesemensesns 58
6. TRABALHOS FUTURDS.......coivernrsrrimsssemintsssssissssrssssssssssssssssstsrsssesssssossssessssesssssssestosssssosmeesense 61
7. REFERENCIAS BIBLIOGRAFICAS..........ccooemssessosesesescsssssessessssssssessesessssessesssmmammesmemnsssssssosess 62
ANEXO A - ESTRATEGIA DE CONTROLE DESCRITA EM NOTAGCAO XML......covvrrvrcsineceens 65
ANEXO B - PROGRAMA DE CONTROLE EM INSTRUCTION LIST GERADO PELA
FERRAMENTAoititiiiiinmrmmreseresisssaessaressasssossssssssnsssesssssasssesssssmseserssn sessssssssessesessessaseastssessssessnsmsasen 69
ANEXO C ~ CODIGO EM /L GERADO PELA FERRANMENTAcovoveeeeeemeeeeeeeieeeosresssesssssssssennen 73

LISTA DE FIGURAS

FIGURA 2.1: COMPORTAMENTO DE UMA VARIAVEL DE UM SED. ..onoeeeeeeeeeeeeseereeerssssssesesssssssessesmmsseseses 6
FIGURA 2.2: REPRESENTACAO PARA UM SISTEMA DE MANUEATURA. eeeomveveveeeesesrarssssssessssssssssssssssssnsesssses 8
FIGURA 2.3: EXEMPLO DE UMA RDP CE.ooieeeeeeeereeesereeesesessssesssesseassssesssasssssssessessssssasesssesssssassssns 11
FIGURA 2.4: (A) TRANSICAO HABILITADA. (B) ESTADO APOS O DISPARO. (C) SITUAGAO EM QUE O
DISPARD NAQ OCORRE. . e T T e e T e e e T e 113
FIGURA 2.5: REPRESENTA(,‘J\O DO SISTEMA ... 15
FIGURA 2.6: CONTROLADOR MODELADO EM SIPIN. ... eeeeeeeevee e ieres s eseevesseseessseessesnsesessessesssesoessssens i6
FIGURA 2.7: ESTRUTURA SIMPLIFICADA DE UM CP.ooieeeceeeereneeeeseseesseseessesssesssssesesssssssesesssssssessnes 17
FIGURA 2.8: REPRESENTAGOES EM LINGUAGENS TEXTUAIS DE UMA OPERAGAO BOOLEANA, 19
FIGURA 2.9: EXEMPLO DE UM PROGRAMA ESCRITO EM LD, w.o.oeeeveeeeeeeeeeeeseeeeseeessesssesesssnssrsssssesssasssens 20
FIGURA 2102 FBD.ooveeireisiceintnssssssiescstessssssnssas s ssenssssesastsssesnsesssssssasnsssmsssesaseassnssssassssosssasssssesesasans 20
FIGURA 2.11: EXEMPLO DE UM PROGRAMA EM SFC. ..ot evevsetasascesessassssssssessasersssssosessenssenes 21
FIGURA 2.12: (A) ESTRUTURA EM XML. (B) TRECHO DE UM DOCUMENTO EM XML oo, 22
FIGURA 2.13: (A) RDP. (B) DESCRIGAO EM PNIML.ovoeieeecerernceseeseescsssnsesssonsesesssasesssssessmsssssaserssses 23
FIGURA 3.1: DIAGRAMA UML DO PATOTE "CORE. w.ootetecererrevesesesesssssssssensmsessasssssssssssssssssssssesssesssssssssssnes 37
FIGURA 3.2: ALGORITMO PARA O “JOGADOR DE MARCAS" DE UMA RDP. ..o eeer s 39
FIGURA 3.3: MODELO EM SIPN E CODIGO EM /L GERADO PARA O MODELO. .v.eeeeeeeeeereereeeressssssssessssens 41
FIGURA 3.4: FERRAMENTA EM EXECUGAD. c..u.cevvvmrreersssssseseeesesssscosmmssnssassassesssssssssasassseneeessesssmsssssessnens 45
FIGURA 3.5: RDP SIMPLES ..c.ivcoiiveevetesccasesisisicsssssssnssensessssasssnsasesesessasssssasassestassssssssssssssesssssssmmsensen s 46
FiGURA 3.6: RDP COM CONFLITO E ARCOS COM PESO. ...coeeeeereeereceeeeesessessssssesesssssssesssssesssssssssmssensns 47
FIGURA 3.7: RDP QUE MODELA UM BOTAO LIGA / DESLIGA. ...ouvuevveseeseseseeseessssesssssssssssssesssssssssessssssesessases 47
FIGURA 3.8: RDP QUE MODELA UM SENSOR DE PRESENGA..........oveveveeeesersesesssessssessessssessasssessssessssssns 47
FIGURA 3.9: DESCRICAC DA RDP EM XML. .. B U RSURRTOTIY . !,
FIGURA 3.10: RDOP DE MAIOR PORTE DESCRITA EM XML ... 49
FIGURA .71 MINICHM. ...ttt et e e e e seseasesas e e e avsnsessssensesesesesesesesesssensnsssessennes 51
FIGURA 4.2: MINICIM MODELADO NA FERRAMENTA DESENVOLVIDA.ovueeeeeveeemseessessssssssessssssssssssesssans 52
FIGURA 4.3: MiNICIM MODELADO NO HPSIM. . eerreeesnressres e e v e s aee b e v neiaennners D2
FIGURA 4.4: RDP QUE CONTROLA A MOVIMENTAQAO 0o MANIPUI.ADOR ... 54
FIGURA 4.5: SIMULACAO DO MODELO EM RDP PARA CONTROLE DA ESTAGAO DE MONTAGEM. 55
FIGURA 4.6: SIMULAGAO DO MODELO EM SIPN DO ACUMULADOR.cvevveeeverereesesseseresenssssssssrememessemeen 56
FIGURA 4.7. SOFTWARE COM O SISTEMA MODELADO. ...crtveitrisiisisseememsrssssssssnsesesesesssssessssssnssssensmssseseses 57
FIGURA 4.8: SOFTWARE COM ACESSO REMOTO......couemmreeeeeeresereseseesssssssssasseeesesemessrerersessesesssssssessassasens 57

LISTA DE TABELAS

TABELA 2.1: | ALGUMAS INTERPRETAGCOES TIPICAS PARA LUGARES E TRANSICOES. o..oveeeeeeeeeeeen. 10
TABELA 2.2: CODIFICAGAQ DOS SINAIS DO CONTROLADOR. «.....eeuvieieieeeeeaeeerseesteneeseeeeeeeeeeeeeseee e 16
TABELA 2.3: ELEMENTOS PINML. ..ottt ettt s v et s eee s e aneavesaseanesssensssnsensssasesseenees 23
TABELA 3.1: COMPARATIVO ENTRE LINGUAGENS ORIENTADAS A ozJET0 (ADAPTADO DE CULWIN,
D07)ttt et eee e et r e et e e et ee et een et eaeeeeate st e s anebe st asaeabenes 32
TABELA 5.1: RELAGAO DE FUNCIONALIDADES DOS SOFTWARES....v0-vereveereeseseeereeseersasessesessesssssessesses 59

1. INTRODUGAO
1.1. Motivagao e Justificativa

Segundo MIYAGI (1996), man made systems (sistemas feitos pelo
homem), como sistemas de manufatura, de transporte, de comunicacéo, de
redes de computadores, etc. podem ser caracterizados por uma dinamica
causada pela ocorréncia de eventos discretos e em muitos casos s&o tratados
como objetos de controle de sistemas de automagio comandados por
controladores programaveis (CPs).

Em linhas gerais, os SEDs s&o caracterizados por apresentarem
comportamento dindmico governado pela ocorréncia de eventos discretos,
vinculados a condigbes pré-estabelecidas, ndo havendo, necessariamente,
uma pré-determinagdo do instante em que cada evento ocorre. Nesses
sistemas, as transicdes de estados ocorrem em instantes de tempo discretos e
assincronos, em resposta a eventos considerados instantaneos (ARAKAKI,
1993).

Os SEDs incluem desde sistemas relativamente simples e de pequeno
porte até sistemas de grande porte, com elementos dispostos geograficarmente
e com interagdes e fungdes de alta complexidade em atendimento a critérios de
desempenho, produtividade e qualidade. Observa-se, no entanto, que se
alguns desses critérios sio mais claros em sistemas de manufatura, 0 mesmo
néo acontece em areas como de automagéo residencial.

Do ponto de vista de modelagem e analise de SEDs, uma das técnicas
de comprovada eficiéncia € a Rede de Petri (RdP). De fato, além dos varios
trabalhos ja publicados que exploram a aplicacéo de RdP na representacao e
aprimoramento de SEDs, a RdP foi também adotada como a base de uma
linguagem de descri¢ao funcional de CPs, o SFC (Sequential Flow Chart).

Existem assim, atualmente, diversas ferramentas de edigao e analise de
SEDs baseadas em RdP, bem como trabalhos que estabelecem uma relagéo
entre grafos de RdP e programas de controle de CPs. Um exemplo disso pode
ser encontrado em ZHURAWASKI & ZHOU (1994), no qual é apresentada uma

comparacéo entre redes de Petri de Tempo Real (RTPN — Real Time Petri
Nets) e diagramas elétricos de relés (LLD — Ladder Logic Diagram).

Contudo, os arquivos gerados por estas ferramentas, em geral, estéo
em um formato que impossibilita o intercdmbio com outras ferramentas de
modelagem e analise de SEDs e que também n&o € proprio para serem

diretamente carregados como programas de CPs.

1.2. Objetivo

Tendo como foco a implementagéo de sistemas de automagéo de SEDs
comandados por CPs, o objetivo do presente trabalho € a consirugéo de uma
ferramenta, baseada em RdP, para modelagem, simulagéo, programagao e

supervisao destes sistemas.

Por meio de uma interface grafica, a ferramenta deve permitir ao usuario
a criagdo de modelos em RdP ou a edigdo de modelos existentes. Como
formato de intercambio entre soffwares que trabalhem com RdP, esses
modelos devem ser traduzidos pelo software para a notagcdo XML (eXtensible
Markup Language), a qual baseia-se em tags que estabelecem uma técnica

para identificar, categorizar e organizar informagdes em arquivos de dados.

Esta ferramenta grafica também deve ser capaz de traduzir o modelo em
RdP de uma estratégia de controle para um programa para CPs, escrito em
linguagem adequada & implementagdo. Assim, este programa poderia ser
carregado diretamente em um CP, responsavel pela execugéo do controle do
sistema. Além disso, quando da execugdo, os sinais de entrada e de saida
tratados pelo CP também devem ter a possibilidade de serem monitorados
através da ferramenta de modo que se possa acompanhar a dinamica do
sistema, por meio da evolugio dos estados da RdP apresentada na interface

grafica para o usuario.

2. CONCEITOS FUNDAMENTAIS

2.1. Sistema a Eventos Discretos (SED)

Um Sistema a Eventos Discretos (SED) é um sistema em que as
variaveis de estado variam bruscamente em instantes determinados e tal que
os valores das variaveis nos estados seguintes podem ser obtidos por meio de
calculos, diretamente a partir dos valores precedentes, ndo sendo necessario
considerar o intervalo de tempo entre os instantes analisados (VALLETE,
1997). A figura 2.1 apresenta um gréfico ilustrativo do comportamento de uma

variavel de um SED ao longo do tempo.

Ocorréncia de eventos
instantaneos

N Estados
\ discretos
) 1=
% K ! A
Valor da 3 I .,
. \] \,
varidvel \ i ™,
A Y
K 4 \ il

P Eventos

Figura 2.1: Comportamento de uma variavel de um SED.

Outra defini¢éo para um SED, estabelecida por RAMADGE & WONHAM
(1989), caracteriza este tipo de sistema como sendo construido e concebido
pelo homem e cuja dindmica é regida pela ocorréncia de eventos discretos a

intervalos em geral irregulares e desconhecidos.

Dentre algumas particularidades de SEDs, GUSTIN (1999) cita:
sincronizagdo, assincronismo, concorréncia, causalidade, conflito entre
processos e compartilhamento de recursos.

2.2. Sistema de Manufatura (SM)

Como um SED, um sistema de manufatura (SM) é decomposto por duas
partes principais: o sistema fisico e o sistema de controle (DICESARE et. Al
1993). O sistema fisico abrange o conjunto de recursos os quais operam sobre
os materiais e sobre os processos em trabalho. Como exemplos, tém-se 0s
tornos e fresadoras de comando numeérico, unidades de produgéo, sistemas de
transporte (transportadores, veiculos automatizados, gruas, etc.), méo-de-obra
humana, estoques, estagbes de carga e descarga, estagbes de controle de
qualidade.

O sistema de controle é responsavel pela tomada de decisdo com
relagéo aos processos e atividades que a parte fisica realiza. O sistema de
controle otimiza a produgdo de um SM baseando-se em critérios de
produtividade previamente estabelecidos. Como exemplo, considere um
sistema de estoque de dois tipos de materiais os quais s&o utilizados
conjuntamente para a produgdo de um determinado componente. Os niveis de
estoque destes materiais devem ser monitorados, evitando-se assim a
interrupcdo na produgdc para reposigdo de material e, além disso, a
quantidade de cada um necessdria @ produgdo do componente deve ser
medida por dispositivos auxiliares. Ao sistema de controle, neste exemplo,
seriam atribuidos os comandos relativos a fungéo de verificagéo periédica dos
niveis de material em estoque e também dos comandos relativos & verificagao
da quantidade ideal de cada material necessaria a produgéo do componente.

Para ZHOU & VENKATESH (1998), um sistema automatizado de
manufatura pode ser definido como um sistema que trabatha com
processamento distribuido de dados e fluxo automatico de material, utilizando
maquinas controladas por computador, unidades de montagem, robés
industriais, maquinas de inspecdo, manipulagdo e movimentagéo de materiais
e estoques todos devidamente integrados por computador. Como exemplo de
um SM, a figura 2.2 esquematiza, simbolicamente, um sistema para usinagem

de uma peca.

/ pegikc Inspe: Inspegio \

Fresadorn | Furadeira

o
ponis

Pegas descartadas)

Figura 2.2: Representagio para um sistema de manufatura.

Nesta representagdo ha duas operagdes de usinagem envolvidas:
fresamento e furagéo: trés estagbes de inspecdo: uma para verificagéo da pega
que chega para ser usinada e outras duas para verificagéo de especificacdes
apo6s o fresamento e a furagdo. Caso alguma inspegéo indique um resuftado

inadequado, a peca é descartada.

2.3. Rede de Petri (RdP)

O conceito de rede de Petri (RdP) foi introduzido por Carl Adam Petri em
sua tese de doutorado (1962), como ferramenta para descrever relagbes entre
condigbes e eventos. A RdP é uma ferramenta matematica e grafica que
possibilita um formalismo adequado para a modelagem, analise e projeto de
SEDs (ZURAWSKI & ZHOU, 1894).

Uma RdP é um grafo bipartido composto por dois tipos de nés: lugares' e
transicdes. Os lugares sdo representados graficamente por circulos, e as
transigdes por barras. Lugares 880 conectados as transigdes (e transi¢des S&80
ligadas a lugares) por meio de arcos orientados. Arcos que partem de um lugar
devem, necessariamente, chegar a uma transiciio e, arcos partindo de uma
transicio devem chegar a um lugar. Um arco que ligue dois lugares ou duas
transicbes ndo & permitido. Uma marcagio em uma RdP determina um ndmero
inteiro de marcas as quais s&o distribuidas entre os lugares. As marcas
distribuidas entre os lugares identificam um estado discreto do sistema

modelado. A defini¢cdo formal de uma RdP € dada a seguir.

! Termos referentes 4 RdP estdo em fonte Times New Roman.

Defini¢do (VILLANI, 2004) — Uma RdP marcada é um par u =< R, M, >, onde:
¢ Re uma RdP definida pela 4-tupla < P,T, pre, pos >, onde:
- P={p, p;s.... p,}, € Uum conjunto finito de lugares.
- T'={1.t,....1,} , € um conjunto de transi¢des.
-PnT=¢,PuT=¢.

- pre: PxT — N define 0s arcos de entrada das transigdes { N € 0 conjunto dos

nameros naturais).

- pos: TxP-» N define os arcos de saida das transigdes.
e M, :P— N é marcacio inicial da rede.

As representacdes de pre e pos séo feitas sob a forma de matrizes, em

que as linhas correspondem aocs lugares € as colunas as transigdes. O valor de
cada componente da matriz representa o peso de um arco orientado ligando um
lugar € uma transi¢fio, caso tal componente tenha valor zero, interpreta-se como
inexistente o arco que liga o lugar e a transi¢do correspondentes a este

componente.

O comportamento dinamico da RdP se da por meio da ocorréncia de
eventos que movimentam as marcas entre os lugares da rede. Os evenios sdo
as transi¢des, € a ocorréncia de um evento € interpretada como o disparo de
uma transi¢do. Uma transi¢dio esta habilitada para disparo quando os lugares a
sua entrada (lugares p,,onde pre(p,,t,)>0) possuem um nlmero de marcas
M(p,)z pre(p,.t,;). Quando uma transicio ¢, dispara, removem-se de cada lugar

p, de entrada da transi¢io pre(p,,f) marcas, € a cada lugar p, de saida da

transigéio s&o adicionadas pos(p,.t;) marcas (VILLANI, 2004).

Segundo MURATA (1989), em sistemas modelados por RdPs os lugares
e as transicGes podem assumir diversas inferpretactes (vide tabela 2.1). A
presenca de uma marca em um lugar, ao qual se associa uma condic¢éo, torna
esta condicdo satisfeita. Em uma outra interpretagdo, um nimero % inteiro de
marcas colocadas em um lugar indicaria & tipos de dados (informagdes, valores)

ou k tipos de recursos (peg¢as, ferramentas) disponiveis.

Tabela 2.1: : Algumas interpretagoes tipicas para lugares e transicdes.

Lugares de entrada Transigio Lugares de saida

Pré-condigdes Evento Pés-condigbes
Dados de entrada Passo computacionat | Dados de saida
Sinais de entrada Processador de sinal Sinais de salda

Recursos necessarios | Tarefa ou trabalho Recursos liberados

Tipos de RdPs

A literatura apresenta varias classes de RdP, tais como (ZHOU &
VENKATESH, 1998; MIYAGI, 1996):

¢ Redes de Petri Coloridas (CPN — Coloured Petri Nets);

¢ Redes de Petri Temporizadas (TPN — Timed Pelri Nets): redes que
modelam SEDs cujas especificagbes de tempo para a ocorréncia de um

evento sdo importantes;

+ Redes de Petri de Tempo Real (RTPN — Real Time Peltri Nels): redes
as quais se associam temporizagdes, tal como em uma RTPN, e sinais de
/0 (entrada/saida);

o Redes de Petri Aciclicas (APN — Acyclic Petri Nets): redes que néo
apresentam foops na estrutura de grafo. Sdo usadas para representar
alguns tipos de processos como de manufatura, de montagem e

desmontagem de peg¢as ou componentes.

10

Entretanto, com base nos estudos realizados e nos objetivos
considerados do presente frabalho, apresenta-se a seguir os tipos de RdP que
descrevem as principais propriedades desta técnica e que foram considerados
para o0 desenvolvimento da ferramenta de modelagem, simulagéo,

programacao e supervisao.

A) Rede Condig¢édo-Evento (CE)

Da-se o nome de rede Condigdo-Evento (CE) a rede que sé permite
lugares com marcacfio binaria, isto €, cada lugar da RdP pode conter apenas uma
unica marca, ou nenhuma (REALI, 2001). Neste tipo de rede, as transi¢des s&0
eventos que, ao ocorrerem, alteram o estado da rede. Os lugares sdo condigdes
que, quando preenchidos por uma marca, denotam que a condicao associada

esta satisfeita. A figura 2.3 ilustra uma rede CE.

Rido de

Frimzvera vonze Verlo
Bicio da Bddo do

roae cukme
Tewrno Cufrno

Rlde &
mvane

Figura 2.3: Exemplo de uma RdP CE.

Na rede da figura 2.3, a condicdo Primavera esta satisfeita. Para que
haja um disparo, um evento deve estar habilitado e, cada um dos lugares
(condigbes) 2 saida deste evento ndo pode conter uma marca. Observando-se a
figura 2.3, o evento Inicio do verdo pode ser disparado. Apés o disparo deste
evento, uma marca € adicionada ao lugar (condicdo) Verdo, tornando esta
condigdo satisfeita e, consequentemente, habilitando a ocorréncia do evento
Inicio do Qutono. Os estados da rede mudam de acordo com o disparo de

cada evento.

11

B) Rede Lugar-Transigio (LT)

Em uma rede Lugar-Transicio (LT), os lugares podem ter mais de uma
marca € 0s arcos sdo ponderados, isto &, possuem um valor inteiro (peso) que
indica quantas marcas $30 retiradas e/ou inseridas com o disparo da transigio. O
Jugar em uma rede LT possui uma capacidade, isto &, um valor inteiro que denota
0 nimero maximo de marcas que o lugar pode conter. Para que haja um disparo
em uma rede LT, de acordo com MIYAGI (1996) duas regras devem ser

obedecidas:

(1) Para cada lugar p do pré-conjunto de uma transigdo f, 0 nimero de marcas

em p nédo pode ser inferior ao peso do arco de p para {;

(2) Para cada lugar p do pos-conjunto de f, o peso do arco de f para p
somado ao niimero de marcas contidas em p néo pode exceder a capacidade

de p.

O disparo de uma transigio causa o decremento (dado pelo peso do arco)
de marcas nos lugares pertencentes ao pré-conjunto da ftransi¢ho, e um
incremento de marcas (também segundo o peso do arco) nos lugares
pertencentes ao pés-conjunto da transiciio. A figura 2.4 apresenta uma rede LT

para analise de situagdes em que o disparo pode ou nao ocorrer.

Inicialmente, convém esclarecer que a capacidade de cada lugar €
definida na figura 2.4 por meio do valor da constante K, indicada junto a cada
lugar. Observando a parte (a) desta figura, nota-se que a transico esta

habilitada, pois as regras de disparo (1) e (2) apresentadas sé&o obedecidas.

12

3
Disparo
’@ e — 2—>®
K=5
1
(b

)

Disparo
NAO
m— g ocorre.

Transigdo
nio
habilitada.

Figura 2.4: (a) Transicfio habilitada. (b) Estado apos o disparo. {c) Situagdo em que o
disparo ndo ocorre.

Desta forma, a transi¢io dispara e o novo estado é ilustrado na parte (b)
da figura. No entanto, ao aplicarem-se as regras (1) e (2) para rede da parte (C)
da figura, conclui-se que estas ndo sdo atendidas e, conseglientemente, o

disparo nao ocorre.

C) Rede de Sinal Interpretado

Uma RdP de Sinal Interpretado (SIPN — Signal Interpreted Petri Net),
segundo FREY (2000), & descrita por uma S-tupla SIPN = (P, T, F, My, I, O, o,
w, 1) em que:

e (P, T, F, Mp) € uma RdP com conjuntos de lugares P, transi¢des T e arcos
F, e uma marcacdo binaria inicial Mg. |P], |71, |F] > 0, sendoc F = F; U F,, em

que F; =arcos de entrada e F, = arcos de saida;
» /& um conjunto de sinais logicos de entrada tal que |/|>0;

e O & um conjunto de sinais légicos de saida tal que /N O = @, |0|>0;

13

¢ (um mapeamento associando toda transi¢do f; pertencente T com uma
condicao de disparo ¢(f;) = fungdo booleana de /.

¢ w um mapeamento associando todo lugar p; pertencente a P com uma
saida w(p;) pertencente a (0, 1, -)'”!, em que (-) significa “nao importa”;

¢ () uma fung¢do que combina a saida w de todos os lugares marcados {2
M — (- 1,0, ¢, ro, 1, Co, C1, Cot)°. Esta saida combinada pode ser
indefinida (-), um (1), zero (0), contraditéria (c), zero ou um redundante (ro,

r1), uma combinagdo entre contradi¢édo e redundancia (co, ¢1, Co1).

A mudanca de estado da rede é causada pelo disparo de transi¢des. O
disparo de uma transicio remove a marca de cada um dos pré-lugares (definidos
por F)) desta transi¢do e adiciona uma marca aos pods-lugares (definidos por Fy)
desta transicdo. No processo de disparo, quatro regras devem ser seguidas
(FREY, 2000):

1. Uma transi¢do esta habilitada se todos os seus pré-lugares (lugares p;
tais que (p;,) € F;) estdo marcados, e todos os seus pos-lugares {(lugares p;
tais que (t, p)e Fo) estéo desmarcados;

2. Uma transic¢io dispara imediatamente se ela estiver habilitada e se sua
condicdo de disparo for satisfeita (valor 1 para o resultado da fungéo @(£));

3. Todas as transi¢des disparaveis e que ndo estdo em conflito com outras

transi¢des disparam simultaneamente;

4. O processo de disparo é iterado até que uma marcagio estavel seja
atingida, isto &, até que n&o haja mais transicSes disparaveis. Disparos
iterados sdo interpretados como simultédneos. Isto significa que uma
mudanca nos valores dos sinais de entrada ndo pode ocorrer durante o

processo de disparo.

Alcangada uma marca¢do estavel, os sinais de saida sZo recalculados
aplicando-se a fungdo Q & marcagfo. A figura 2.5 apresenta um exemplo de
sistema cuja estratégia de controle foi modelada por uma rede do tipo SIPN.

14

Nesta figura, representa-se um sistema comumente encontrado em
aplicagbes industriais (acumulador de ar comprimido conectado a
compressores e equipado com sensores de presséo) o qual teve sua estratégia
de controle modelada por uma SIPN (MERTKE & FREY, 2001). A figura 2.5
mostra uma camara de ar (acumulador) da qual se pode retirar uma parte do ar
comprimido por meic de uma valvula instalada na camara. Dois sensores
binarios PS1 e PS2 s&o usados para monitorar a pressdo no interior da
camara. Por meio de dois compressores A e B, a camara ¢ alimentada com ar
comprimido. Os compressores geram um sinal elétrico quando s&o
interrompidos (desligamento automatico, falha, interrupgéo temporaria). A
estratégia de controle deve atender as especifica¢bes a seguir:

1. Se a pressdo for maior do que 6,1 bar (PS1 alterna para a posigéo

OFF), nenhum dos compressores entra em agao;

2. Se a presséo for menor do que 6,1 bar e maior do que 5,8 bar (PS1

alterna para a posicao ON), apenas um dos compressores entra em agéo;

3. Se a pressao for menor do que 5,9 bar (PS2 alterna para a posigdo

ON), e ambos compressores entram em acao;
4. Ambos compressores devem trabalhar alternadamente,

5. Se um compressor é interrompido, o outro deve substitui-lo.

PS1
Compressor A
M PS2
Ar
Cfimara d

Ar

Ar comprimido

Compressor B

Figura 2.5: Representacio do sistema.

Para implementar o controlador, os sinais de I/O s&o codificados na
tabela 2.2. Na figura 2.6 tem-se uma possivel solugéo para o sistema de
controle, modelada por uma SIPN. Junto a cada lugar da RdP foi escrito o

15

mapeamento w(pi)=(c1,02} dos sinais de saida correspondentes, e junto a

cada transi¢do, 0 mapeamento @{ti) correspondente.

Tabela 2.2: Codificagdo dos sinais do controlador.

Sinais de Significado do valor valor Sinais de Significado do valor
entrada légico “1” saida logico “1”
i1 Pressao < 6,1 bar o1 Compressor A em agéo
i2 Presséo < 5,9 bar 02 Compressor B em agéo
i3 Compressor A perturbado
i4 Compressor B perturbado

@(I2)- i
o (Ply (10}
2(T1) il @ (P4) - (0,0)
i ®
I A
' (P35 (1L,

o (TG} =il

w(PZ) (00

w(P3) (0,1)

e(T%} 13

Figura 2.6: Controlador modelado em SIPN.

2.4. Controladores programaveis (CPs}) e suas linguagens de

programacgao

Um CP é, segundo definicio da NEMA - National Electrical
Manufacturers Association, um aparelho elefrdnico digital que utiliza uma
memoria programavel para o armazenamento interno de instrugdes a fim de
implementar fungbes especificas tais como légica, seqlenciamento,
temporizagdo, contagem e operagdes aritméticas, para controlar maguinas ou
processos através de modulos de entrada / saida analbgicos ou digitais

16

(SOUZA, 2001). A estrutura de um CP pode ser dividida em trés partes,
conforme ilustrado na figura 2.7.

2 UNIDADE CENTRAL
N oE
PROCESSAMENTO

Figura 2.7: Estrutura simplificada de um CP.

Um CP é formado por cinco elementos basicos: processador, memoria,
sistema de entrada / saida, fonte de alimentacio e terminal de programagao. A
trés partes principais (processador, meméria e fonte de alimentagdo) formam o
que se chama de CPU — Central Processing Unit. O processador i@ dados de
enfrada de dispositivos de comando efou detecgdo, executa o programa do
usuario armazenado na memoéria e envia dados de saida para comandar os
dispositivos de atuagao e monitoragdo. Este processo de leitura das entradas,
execucido do programa e controle das saidas é feito de uma forma ciclica e é
chamado de ciclo de varredura (SOUZA, 2001).

0O sistema de entrada / saida de sinais forma a interface pela qual
dispositivos de campo (dispositivos de comando, de monitoracéo, de atuagao,
de detecgdo) sdo conectados ao controlador. O propdsito desta interface é
condicionar os varios sinais recebidos ou enviados ao mundo externo. Sinais
provenientes de dispositivos de comando e de detecg¢do tais como push-
buttons, chaves limites, sensores analégicos, chaves seletoras e chaves tipo
tambor (thumbwheel), sdo conectados aocs terminais dos mddulos de entrada.
Dispositivos de atuagcdo e de monitoragdo, como valvulas solendides,
lampadas-piloto e outros, sdos conectados aos terminais dos médulos de
saida. Uma fonte de alimentagdo fornece a energia necessaria para a devida
operacao do CP e da interface dos médulos de entrada e saida.

Outro componente do CP é o dispositivo de programacgéo. Embora seja
considerado como parte do controlador, o terminal de programag&o, como
também é chamado, é requerido apenas para carregar o programa de

17

aplicagdo na memdria do controlador. Uma vez carregado o programa, o
terminal pode ser desconectado do controlador. Atualmente, usa-se o
microcomputador com um software proprio para programar o CP e devido a
capacidade de processamento do mesmo, este também é utilizado na edigao e
depuracéo do programa (SOUZA, 2001).

As linguagens comumente utilizadas na programagdo de CPs e
padronizadas pela norma /EC 61137-3 podem ser divididas em trés grupos:
textuais, graficas e tabulares. Nas linguagens textuais, os procedimentos de
controle séo descritos textualmente por meio de simbolos, letras e expressoes
matematicas. Dentre as linguagens textuais, tém-se (MIYAGI, 1996):

e Algebra Booleana: relagbes logicas s&o representadas por meio de
expressdes booleanas. A desvantagem deste tipo de linguagem € a
incapacidade de representar temporiza¢des e seqlencializacles;

e L (Instruction Lisf): trata-se de uma lista composta por comandos, 0s
quais correspondem a fungbes, tais como LD (load), AND, OR, ST (store),
e codigos das entradas e saidas organizados seqlienciaimente a ordem

em que estes devem ser executados;

o ST (Structured Texf): baseia-se em uma representacéo em linguagem
de alto nivel, de forma que a ordem em que o fexto & escrito ndo tem
relagdo com a ordem de execucdo do programa. A vantagem desta
linguagem esta na capacidade de estruturagéo de programas.

A figura 2.8 mostra uma mesma operag¢do logica descrita nas trés

linguagens anteriormente citadas.

18

LD 11

O10 = 11.12.(13.14+ 15.16).07 + I8.19 ol

ANDN 14

(2) Aigebra OR(15

booleana. AND 16
)
)

OlO=I1 &NOTIZ & (I3 &NOTHHORIS &6} & 811;1(]'_) };

I7ORIB & 19 AND 19
(b) ST.)

ST 010
(¢} IL.

Figura 2.8: Representagoes em linguagens textuais de uma operagio booleana.

As linguagens graficas s&o de facil visualizagdo e identificagdo do fluxo
de procedimento de controle. Devido a caracteristica grafica destas linguagens,
0 projeto, a programacéo, a depuracdo e a manutengdo de programas de CPs
séo facilitados, e a ocorréncia de erros é dificultada. A seguir descrevem-se

sucintamente estas linguagens, de acordo com MIYAGI (1996).

o Diagrama de Relés (Ladder Diagram - LD): esta linguagem baseia-se
em representagbes graficas de relés (swifches) cujo chaveamento
depende de sinais de entrada ou varidveis internas, e de nlcleos
(enrolamentos) os quais quando excitados por corrente elétrica
comportam-se como memorias para armazenagem de valores de
variaveis e sinais de saida. A figura 2.9 ilustra um diagrama de relés. O
processamento de sinais ao longo das linhas (rungs) em LDs é feito
ciclicamente, de cima para baixo e da esquerda para a direita;

19

Var3 Vard

Varl Var?
__{ l [1 [
' [N -~ 1° linha:
IF (Varl==1 AND
. Var2==1) THEN
M (Var3:=1; Vard:=0)
| |
b L J 2°linha;
IF (Var3==1 OR
Ml Vard= =0) THEN
|| (Varl:=1)

Figura 2.9: Exemplo de um programa escrifo em LD.

e FBD (Function Block Diagram). as operacgbes sao representadas por
meio de blocos logicos (AND, OR, NOT, etc.) e blocos aritméticos. A figura
2.10 ilustra esta linguagem. Se apenas fungbes logicas estiverem
presentes, & também chamada de Diagrama de Circuito Légico.

n — & 010
i2 OR —

I3 &

14 00

Figura 2.10: FBD.

* Fluxograma: trata-se da mesma técnica utilizada no desenvolvimento
de algoritmos para computadores, somando-se fun¢des adequadas de
controle. E adequada para controles sequenciais;

o SFC (Sequential Flow Charf). € uma descricdo baseada em sfeps
(condigGes) e eventos (transi¢des) que alteram o estado do sistema
modelado. E uma linguagem originada da RdP, sendo adequada para o
controle de sistemas de manufatura. A figura 2.11 apresenta um programa
em SFC.

As linguagens tabulares descrevem as operagcdes por meio de tabelas
contendo acdes correspondentes para cada passo, uma identificacdo do
proximo passo a ser realizado e a condicdo necessaria para que ocorra a
transi¢éio para o proximo passo.

20

>RET> ——

80, 51, 82: estados ¢ suas operagSes

associadas,
a, b, ¢; eventos que causam uma
a —— mudanga de estado.
S1 NI A
b —_— s
S1 N| A
¢ ———
> RET >

Figura 2.11: Exemplo de um programa em SFC.

As normas do IEC apresentam o IL, ST, LD e FBD como linguagens de
programagéo de CPs (MIYAGI, 1996), ao passo que o SFC e os blocos s&o
definidos como elementos compartilhaveis e préprios para a representagéo de

programas de CP.

2.5. Extensible Markup Language (XML) e Petri Net Markup Language
{(PNML)

Segundo DYKES & TITTEL (2005), XML é uma notagcdo baseada em
fags que estabelece uma técnica para identificar, categorizar e organizar
informagdes. As tags descrevem documentos, dados e sua organizagdo. O
conteldo destas fags envolve as informagdes (textos, referéncias para
imagens, tabelas) de que um determinado documento trata. A figura 2.12 ilustra

um trecho de um documento em notagéo XML.

21

<,.> = fag
<livro>

<descricao>cont:eﬁdo< /descricao:» <titulo>Night Fall</titulo>
v ! AN IR~ <editora>Warner</editora>
/’ i \\ <ano>2003</ano>
F 4 Y L Y <preco>R$27.50</preco>
Tag de inicio Informagio Tag de término <flivro>
(a) (b)

Figura 2.12: (a) Estrutura em XML. (b) Trecho de um documento em XML.

O contetido envolvido por um par inicio-término de fags pode apresentar
nédo sod informacgbes relativas & descricdo de um documento, mas também
pares internos de tags com descri¢des, configurando assim, um conjunto de
informacdes segundo um formato em cascata, conforme visto na figura 2.12.

Fundamentada em XML, o Petri Net Markup Language (PNML) é uma
notagédo destinada ao intercambio de modelos em RdP. Com ela, pode-se
descrever um modelo em RdP segundo um conjunto pré-determinado de fags
que relacionam os elementos lugar, transi¢dio € arco de uma RdP. Segundo
BILLINGTON et al. (2003), o PNML foi projetado para ser um formato padrao
de intercambio, independente de ferramentas (sofiwares) e de plataformas. Em
adicao, tal formato apresenta caracteristicas como: flexibilidade, que permite a
representacdo de diversos tipos de RdP; compatibilidade, que permite a
definicdo de diferentes tipos de fags para uma perfeita caracterizagdo dos
diversos tipos de RdP; auséncia de ambigliidade entre modelos e entre tipos
de RdP. Como um exemplo, figura 2.13 apresenta uma RdP e sua descrigdo

segundo a notagdo PNML.

22

Ready

</initialMarking>
</place>
<fransition id="t1">
<graphics>
2 <position x="20" y=""20"/>
</graphics>
{(a). <toolspecific tool="PN4all” version="1.0">
<ftoolspecific>
<ftransition>
<pnml xmls="hitp://www example.org/pnm[”> <ar¢ id="al" source="p1"> target="t1">
<net id="n1" type=" hitp:/’yww.example.org/pnml/PTNet™> <graphics>
<pame> <position x="30" y="5"/>
<text>A Petri Net example</text> <position x="60" y="5"1>
</name> </graphics>
<place id-=”p 1> <inscription>
<graphics> <texi>2<ftext>
<position x="20" y="20"/> <graphics>
</graphics> <offset x="15" y="-2">
<name> </graphics>
<text>Ready</text> <finscription>
<graphics> <farc>
<offset x="-10" y="-8"/> </net>
</graphics> </pnml>
</name>
<initiaiMarking>
<Aext>2</text> (b)

Figura 2.13: {a) RdP. (b) Descricdo em PNML.

Para que um modelo em RdP, descritc em PNML, seja interpretado sem
ambigliidade, deve-se definir um conjunto de fags para cada tipo de RdP,
sendo que a cada uma atribui-se um significado especifico. O PNML ndo é um
trabalho fechado, permitindo assim novas contribuicées. A tabela 2.3 apresenta
algumas descrigdes para as fags do modelo em PMNL da figura 2.13.

Tabela 2.3: Elementos PNML.

Tipo Tag Atributo XML Descrigdo
Documento
PNML SPRTL])
Rede de Petri <nef> id: ID Identificador
Place <place> id: 1D Identificador
Transition <transition> id: ID Identificador
id: ID Identificador
Arc <arc> Source: iDRef Referéncia para elemento da RdP
Target: IDRef Referéncia para elemento da RdP
Gréfico <graphics> - Posicao do elemento na tela

23

Nome <name> - Nome do elemento da RdP
) tool: sting | Ferramenta utilizada para leitura do modelo
Ferramenta <toolspecific>
version: string em PNML
Posicéo <position> x X Coordenada absoluta no eixo X
v Y Coordenada absoluta no eixo Y
x X Coordenada relativa no eixo X
Offset <pffset>
y.Y Coordenada relativa no eixo Y
Texto <texto> - Comentario, nimero, etc
Inscrigéo <inscription> - Inscrigéo (pe50) de um arco
Marcacéo S . s i
<inicialMarking> - Marcagdo inicial de um lugar
inicial

Assim sendo, dada uma classe especifica de RdP (i.e., CE, LT, RTPN,
APN), pode-se empregar a notagdo oferecida pelo PNML e, caso seja
necessario, novas tags podem ser criadas para que se especifique
apropriadamente as caracteristicas do tipo de RdP utilizado na modelagem de
um SED.

2.6. Orientacao a Objetos

A orientacdo a objetos € uma abordagem, voltada ao desenvolvimento de
software, que propde um enfoque baseado no refacionamento que existe entre
o homem, a natureza e as entidades feitas pelo homem. Desta forma, o
dominio do problema & caracterizado como um conjunto de objetos? que tém
atributos e comportamentos especificos. Os objetos sdo manipuiados
como uma colegdo de fungdes (chamadas métodos, operagdes ouU
servicos) e comunicam-se uns com os outros através de um protocolo de
mensagens (PRESSMAN, 2002).

2 Termos Especificos da Orientac&o a Objetos s&o apresentados em Courier New.

24

O elemento basico da orientagdo a objeto é a classe. Uma classe €
um tipo de objeto que pode ser definido pelo programador para descrever uma
entidade real ou abstrata. Pode-se entender uma classe como um modeio ou
uma especificacdo para certos objetos, ou seja, a descricdo genérica dos
objetos individuais pertencentes a determinado conjunto (JANDL JUNIOR,
2002).

Segundo ANGEL-RESTREPO (2004), um objeto € definido como uma
estrutura gue possui dados, estados e métodos. Os dados sdo a
especificagbes da informagéo que caracterizam 0 objeto, 0s métodos sao as
formas de manipular os dados, permitindo alterar o estado do objeto. Os
métodos podem ser de trés tipos: métodos de construgéo / destruicdo, que
permitem que um objeto passe a ser parte do sistema ou deixe de ser;
métodos cOm acesso a escrita, cuja fungio é modificar os dados do objeto;
e métodos com acessc a leitura, que permitem o acesso aos dados do

objeto, sem altera-los.

No paradigma de orientagéo a objetos, & necessario observar algumas
caracteristicas intrinsecas (ANGEL-RESTREPO, 2004):

e Classificacdo: € um mapeamento enitre ocbjetos € classes

conhecidas. Se um objeto ndo se “encaixa” em nenhuma das classes

conhecidas, cria-se uma nova classe,

e Reutilizacdo: consiste em utilizar instdncias de uma classe

fazendo referéncia aos seus métodos de criagdo. Tal caracteristica
proporciona a possibilidade de construir diversas entidades que fagam uso

da mesma classe de objetos;

e Heranca: consiste no fato de que uma classe contem as
propriedades de todas as classes de objetos das quais ela &

descendente na arvore de classificacdo das classes;

25

e Composicio: propriedade de um objeto poder ser composto de

outros objetos ou construido com base neles, permitindo a construgao

de objetos complexos a partir de objetos relativamente simples;

e Encapsulamento: combinagdo de dados e procedimentos que

manipulam os dados em uma (nica classe. O acesso ao objeto fica

limitado a uma interface controlada, de forma que o dado seja protegido;

e Polimorfismo: capacidade de um objeto ter diversos métodos

com o mesmo nome, porém com formas diferentes, isto é, com namero e /

ou tipo de parametros diferentes.

2.7. Analise de Requisitos

Uma etapa indispensavel para projeto de software & a “analise de
requisitos”. Segundo PRESSMAN (2002), a anélise de requisitos € uma tarefa
de engenharia de soffware que ‘“vence o espago” entre a engenharia de
requisitos, no nivel de sistemas, e o projeto de software. As atividades de
engenharia de requisitos resultam na especificagdo das caracteristicas
operacionais do software (fungdo, dados e comportamento), indicam a
interface do soffware com outros elementos do sisiema e estabelecem
restrigdes a que o software deve atender. A andlise de requisitos fornece ao
projetista de soffware uma representagdo da informagéo, fungdo e
comportamento, que podem ser traduzidos para os projetos dos dadoes,

arquitetura e interface e para o nivel de classes.

A analise de requisitos de sofiware pode ser dividida em cinco areas de
esforgo: reconhecimento do problema, avaliagio e sintese, modelagem,
especificacdo e revisdo. A meta & reconhecer os elementos basicos do
problema tal como sdo percebidos pelos clientes / usuarios do software a ser
desenvolvido (PRESSMAN, 2002). Esta etapa garante o pleno reconhecimento
do problema.

26

O analista deve definir todos o0s objetos de dados observaveis
externamente, avaliar o fluxo e o conteldo de informagdo, definir e refinar
todas as fun¢des do software, entender o comportamento do soffware no
contexto dos eventos que afetam o sistema, estabelecer as caracteristicas das
interfaces do sistema e descobrir restricbes adicionais de projeto. Cada uma
destas tarefas serve para descrever o problema de modo que uma abordagem
ou solugéo global possa ser sintetizada.

Durante a avaliagdo e sintese de solugao, o principal foco do analista €
“o que” e ndo “como”. A preocupacdo se baseia em quais dados o sistema
produz e consome, quais fungbes o sistema deve desempenhar, que
comportamentos ¢ sistema exibe, que interfaces sao definidas e que restricoes

se aplicam.

Para que as metas da andlise de requisitos sejam atingidas, convém ao
analista a utilizagdo de técnicas e ferramentas desenvolvidas para este fim. A
seguir & discutida uma ferramenta de ampla utilizagdo na engenharia de

software, os “casos de uso’.

2.8. Casos de Uso

Segundo COCKBURN (1899), um caso de uso é uma descricdo das
possiveis seqiéncias de interagdes entre o sistema em discussao e seus

atores externos, relacionados a um objetivo particular.

A medida que os requisitos s3o elicitados nas etapas iniciais da analise
de requisitos, 0 engenheiro de software pode criar um conjunto de cenarios que
identifica uma linha de uso para o sistema a ser construido. Estes cenarios séo
chamados de casos de uso, e fornecem uma descrigdo de como o sistema sera
usado (PRESSMAN, 2002).

A primeira etapa na criagdo de um caso de uso & a definigéo do ator. Um
ator representa cada diferente tipo de pessoas (ou dispositivos) que usam o
sistema ou o produto. Como a elicitagdo dos requisitos é uma atividade

27

evolutiva, nem todos os atores s&o identificados durante a primeira iteragéo. E
possivel identificar atores secundarios quando se toma maior conhecimento do

sistema.

Definidos os atores, os casos de uso podem ser desenvolvidos tomando
como base os modos que estes atores interagem com o sistema. Algumas
questdes que esta etapa deve responder sdo quais tarefas ou funcdes
principais séo desempenhadas pelo ator; quais informagdes do sistema o ator
vai adquirir, produzir ou modificar; quais informagdes externas o ator deve
informar ao sistema; e se o ator deseja ser informado de modificagbes

inesperadas.

Para PRESSMAN (2002), cada caso de uso fornece um cenario ndo-
ambiguo de interagéo entre um ator e o soffware. Ele pode também ser usado

para especificar requisitos de tempo ou outras restri¢des do cenario.

2.9. Qualidade de Software

Qualidade pode ser definida e medida se uma melhoria € atingida.
Entretanto, o maior problema da qualidade em engenharia & gerenciamento €
que o termo qualidade é ambiguo, e comumente mal entendido (KAN, 2002).

No desenvolvimento de software, a qualidade do projeto abrange os
requisitos, as especificacbes e o projeto do sistema. A qualidade da
conformidade é um assunto concernente, principalmente a implementagéo. Se
a implementag#o segue o projeto e o sistema resultante satisfaz os requisitos e
metas de desempenho, a qualidade de conformagédo € alta (PRESSMAN,
2002).

Sendo assim, pode-se dizer que um software é de qualidade quando
concilia qualidade de projeto e de conformidade. A satisfagdo do usuéario pode
ser entendida como uma relacéo intuitiva, representada abaixo (PRESSMAN,
2002):

28

“Satisfacéo do usuario = produto adequado + maxima qualidade +
entrega dentro do orgamento e do cronograma”

Resumidamente, a qualidade de software pode ser definida formalmente
como conformidade com requisitos funcionais e de desempenho explicitamente
declarados, padrdes de desenvolvimento explicitamente documentados e
caracteristicas implicitas, que sdo esperadas em todo soffware desenvolvido

profissionalmente.

2.10. Teste de Software

Uma vez gerado o codigo-fonte, o soffware deve ser testado para
descobrir e corrigir tantos erros quanto possiveis antes de ser entregue ao seu
cliente. O teste de software é um elemento critico da garantia de qualidade de
software e representa a reviséo final da especificagéo, projeto e geracdo de

cadigo.

Segundo MYERS (1979), algumas regras podem servir como objetivo do

teste:

e Teste & um processo de execugdo de um programa com a finalidade

de encontrar um erro.

Fd

e Um “bom” caso de teste & aquele que tem alta probabilidade de
encontrar um erro ainda nao descoberto.

e Um teste “bem” sucedido é aquele que descobre um erro ainda néo

descoberto.

Para que se tenha um conhecimento pleno de projeto de casos de testes
efetivos, & necesséario compreender os principios basicos que guiam o teste de
software. DAVIS (1995) sugere um conjunto de principios de teste:

e Todos os testes devem ser relacionados aos requisitos do cliente;

e Os testes devem ser planejados muito antes do inicio do teste;

29

» O Principio de Pareto se aplica ao teste de soffware (isso implica que
80% de todos os erros descobertos no teste estao relacionados a 20% de

todos os componentes do programay);

e O teste deve comegar em componentes individuais € se estender aos
conjuntos integrados de componentes e finalmente ao sistema;

e Teste completo ndo é possivel, pois a permutagdo de caminhos €
excepcionalmente grande, impossibilitando percorrer todas as

combinactes.

30

3. FERRAMENTA PARA MODELAGEM, SIMULAGAO, PROGRAMAGAO E
SUPERVISAO DE SISTEMAS DE AUTOMACAO

3.1. Escolha das linguagens de programacéo

3.1.1. Linguagem para a implementacéo da ferramenta

Como técnica de modelagem de software empregada para ©
desenvolvimento da ferramenta, foi adotada a orientacéo a objetos. Com ela
podem-se construir aplicagdes que facilitam o reuso de cédigo, dada a
existéncia de mecanismos como heranca e polimorfismo. Além disso, a
orientagdo a objetos possibilita a modelagem adequada de estruturas de
dados complexas e também dos relacionamentos entre estas estruturas. Por
ultimo, uma grande comunidade de programadores tem adotado a modelagem
orientada a objetos como uma técnica de comprovada eficiéncia no
desenvoivimento de software (MUNDOOO, 2006).

Sendo assim, dentre as linguagens disponiveis para a implementaco da
ferramenta, optou-se por avaliar apenas aquelas que suportam o paradigma de
orientagdo a objetos. As linguagens mais conhecidas sdo C++, C#, Java,
Eiffel e SmallTalk. Sao difundidas e consideradas adequadas para o
desenvolvimento do soffware (MUNDQOQQ, 2006).

CULWIN (1997) relatou uma pesquisa na qual analisa as informacdes de
grandes desenvolvedores de soffware, e compilou os dados em uma tabela
comparativa. Os colaboradores foram instruidos para qualificar as
caracteristicas das linguagens com notas de -5 a 5, deixando em branco os
campos que nhao obtivessem o conhecimento necessario para responder. Os

resultados sdo mostrados na tabela 3.1.

31

Tabela 3.1: Comparativo entre linguagens orientadas a objeto (Adaptado de CULWIN,

1997).

Quesito Java C++ Ada "95 Smalitalk Eiffel
Polimorfismo 3.41 3.38 3.36 3.90 3.25
Genéricos 3.47 2.83 4.40 262 3.86
Encapsulamento 3.71 3.76 425 4.30 4.75
Heranca 3.61 3.10 2.58 3.95 3.11
Reuso 3.63 2.35 3.33 4.19 3.86
Simplicidade 3.48 -2.24 -0.35 2.95 2.44
Seguranca de tipos 3.65 -0.03 4.36 1.1 3.50
Gerenciamento de

. 3.66 -1.42 0.05 3.65 3.50
Meméoria
Interface e Implementagdo 2.95 1.80 4.08 2.58 3.22

Média das 3.41 1.49 2.97 3.26 3.47

Notas
Namero de colaboradores 43 66 28 21 9

Os dados da tabela 3.1 indicam que, considerando o numero de
respostas (nlimero de pessoas com conhecimento sobre a linguagem) e a nota
média obtida, a linguagem Java se destaca das demais sendo, portanto, a
linguagem escolhida para a implementagéo da ferramenta.

Ao avaliar e selecionar uma linguagem para o projeto da ferramenta, que
permite a edicdo e a andlise de modelos em RdP, torna-se necessario definir
alguns critérios de comparacdo. Para uma ferramenta de apoio ao projeto de
automacéo residencial, é interessante ressaltar que algumas caracteristicas
s&o convenientes. Uma facil adaptacgéo a sistemas operacionais de distribui¢éo
livre diminui o custo de implementacéo da solugdo de automacgédo. Um software
portavel garante que uma mesma implementacdo em diferentes sistemas
operacionais seja possivel. Ferramentas de desenvolvimento de disponibilidade
livre e sem custos também sao atrativos para o projetista. Facilidade e

32

disponibilidade de documentagéo e bibliotecas de codigos, bem como uma
comunidade receptiva e prestativa facilitam o desenvolvimento do soffware.

A linguagem Java atende a todos estes requisitos. O soffware de edigéo
e analise deve neste caso ser acionado através de uma maquina virtual (JVM -
Java Virtual Machine), que funciona como uma ponte entre a linguagem Java e
o sistema operacional. Esta JVM esta disponivel para os principais sistemas
operacionais do mercado e remete a um soffware de “boa” portabilidade. Os
compiladores, as ferramentas de desenvolvimento e a JVM sdo
disponibilizadas de forma livre, o que torna o projeto livre de custos relativos a
utilizacdo de softwares pagos.

Considerando estes pontos, para o desenvolvimento do presente
trabalho, esta sendo utilizada a versdo 5 do JSE (Java Standard Edition), que
contém o compilador Java e a JVM (maquina virtual desenvolvida pela Sun
Microsystems, 2006), ferramentas imprescindiveis para o desenvolvimento de
aplicagbes em Java. Como ambiente de desenvolvimento, no qual arquivos-
fonte podem ser implementados considerou-se o software Netbeans 5.0, que
facilita a geracéo de codigo e de processos de depuragido (NETBEANS, 2008).

3.1.2. Linguagem de programacio do CP

Em uma proposta apresentada por FREY & MINAS (2001), a
modelagem de estratégias de controle para CPs é feita inicialmente de forma
grafica utilizando-se SIPNs. Em seguida, desenvolvendo-se algoritmos
adequados, pode-se converter automaticamente a estratégia de controle para
uma linguagem apropriada ac uso em CPs, a Lista de Instrugdes (/L —
Instruction List, também conhecida como Statement List — STL).

A dindmica de um programa de controle de um SED modelado por uma
SIPN assemelha-se a forma de trabalho de um CP devido ao fato de que em
ambos os eventos e as alteragbes de estado s&o governados por sinais de
entrada e sinais de saida. Com relagdo & iinguagem /L, MERTKE & FREY
(2001) afimam ser possivel utiliza-la para implementar programas de controle

33

modelados em RdP, sem desconsiderar caracteristicas fundamentais de SEDs
cOMo concorréncia, assincronismo e sincronismo, nao-determismo.

Como o objetivo do projeto em questdo engloba tambem o
desenvolvimento de um ambiente grafico para programacgdc de CPs, baseado
em RdP, a abordagem utilizada neste projeto baseia-se na proposta de FREY
& MINAS (2001). Outros trabalhos encontrados na literatura também abordam
0 uso de grafos bipartidos, tal como uma RdP, para o projeto de programas de
controle que podem ser carregados e executados em CPs apds a conversao
para um formato apropriado. Um exemplo disso pode ser encontrado em ZHCU
& VENKATESH (1998).

Como nas S/PNs descritas em FREY & MINAS (2001) é utilizada a
linguagem IL para a implementagdo de programas de CPs, isto determina, por
sua vez, a linguagem utilizada no projeto para a qual programas de controle
executados por CPs e modelados por SIPNs seréo traduzidos.

3.2. Levantamento de Requisitos

Para que a implementagéo e o levantamento de requisitos sejam mais
eficientes, o desenvolvimento foi dividido em duas etapas. A primeira,
relacionada com o algoritmo em si, corresponde ao desenvolvimento da
estrutura de dados e ao algoritmo que implementa as regras de execucédo de
RdP. A segunda, relacionada com a interagdc com usuario, envolve o
desenvolvimento de uma interface grafica para a modelagem e visualizagao da
RdP.

Desta forma, as informagdes da RdP devem ser passadas do usuario
para a interface grafica, e esta devera fazer a devida comunicagdo com ©
algoritmo, para que o desenvolvimento e a analise do SED modelado pela RdP

sejam efetivados.

34

3.2.1. Requisitos dos Algoritmos

Para que o algoritmo seja capaz de permitir ao usuario a edigdo e a
analise de RdP, ele deve satisfazer algumas funcionalidades (casos de uso):
¢ Implementag¢&o dos elemenios da RdP em objetos;
¢ Implementag¢éo das regras de execugdo da RdP;
¢ Construgdo de RdP em estrutura de dados;
¢ Recuperagio e edi¢do de RdPs ja criadas;
¢ Definicdo do estado da RdP (posicionamento das matcas);
e Acesso ao estado da rede de Petri (visualizagdo das marcas).
Estas funcionalidades devem ser garantidas para que a interface seja
capaz de traduzir as informacdes que deverédo ser fornecidas para o usuario,

ou que o usuario devera fornecer para a ferramenta. Desta forma, considera-se
que o ator destes casos de uso é a interface com o usuario.

3.2.2. Requisitos da Interface

O usuario deve ser capaz de transferir para a ferramenta toda a
informag&o necessaria para o funcionamento desta. Para isso, devem-se
considerar as seguintes funcionalidades para uma RdP (casos de uso):

e Desenho;

o Edicao (alteragdo de caracteristicas);
+ Visualizag&o;

¢ Salvamento e recuperacao;

¢ Facilidades de organizagéo (quadros e textos);

e Execugao em modo automatico, ou passo-a-passo.

35

Neste caso, o ator destes casos de uso é o usuario final. Ele deve ser
capaz de realizar todas estas agées, de forma a satisfazer as necessidades do
da ferramenta baseada em RdP.

3.3. Estruturas de dados

3.3.1. Modelagem da RdP sequndo a orientagio a cbjeto

Como primeiro passo, foi definido um conjunto de classes chamado
“core” (nucleo). Este conjunto contém toda a infra-estrutura necessaria para a

execucao da RdP.

Este conjunto de classes deve realizar a edigdo de uma RdP e a
execucio das regras de disparo das transicdes. Para isso o conjunto deve

oferecer a estrutura dé dados necesséria, bem como 0s métodos com que a

comunicagido com 0s objetos do conjunto é realizada.

Segundo JANDL (2003), um componente pode ser entendido, no seu
sentido mais genérico, como um bloco de codigos utilizado em tempo de
execugao, que possui uma interface definida claramente, por meio da qual

prové servigos a outras classes.

No contexto da orientacdo a objetos, os elementos da RdP (lugar,
transicio e arco) podem ser tratados como um novo tipo de dado que envolve
um conjunto de atributos. Esses elementos carregam consigo informagdes
que os caracterizam no contexto de uma RdP. Como exemplo, tem-se a
capacidade € a marcagdo inicial, informages caracteristicas e fundamentais do
elemento lugar. Com uma transi¢io © mesmo se passa, pois esta pode ser
deterministica (i.e., estando ativada, dispara apés um intervalo de tempo pré-
determinado) ou instantanea (i.e., dispara assim que se encontra ativada), ou
ainda podem apresentar outras informagbes como um nome especifico.
Igualmente com relagédo ao arco, é necessario saber seu peso, qual lugar e qual
transi¢dio ele conecta, e seu sentido também. Todos esses aspectos, cada um
inerente a um determinado elemento da RdP, precisam ser armazenados para

36

recuperacdo e manipulagio. Consequlientemente, lugares, transi¢des € arcos néo
podem ser analisados simplesmente como variaveis primitivas tal como um
namero inteiro ou um caractere, mas sim como estrufuras complexas
constituidas por diversos atributos, 0 que permite modela-los como

objetos pertencentes a classes.

O relacionamento entre os elementos da RdP, apés modelados como
objetos, pode ser implementado por meio de métodos®. Na figura 3.1 é
apresentado o relacionamento entre as classes implementadas na
ferramenta e que modelam os elementos da RdP. A notagdo apresentada
nesta figura baseia-se nos diagramas de classes da UML* (Unified Modeling

Language).
Arco Lugar Transigdo
ArcoInibidor ArcolAbstrate |— LugarAbstrato [= TransicioAbstrata [e——
ArcoTeste RedeDePetri TransigaoTemporizada

Figura 3.1: Diagrama UML do pacote “core”.

Na figura 3.1, os relacionamentos entre as entidades s&o indicados por
meio de setas e de linhas. Uma seta conota uma relagdo de heranca, em que
a classe conectada na extremidade de onde o arco parte “herda” os
atributos e métodos da classe na qual o arco chega. Como exemplo, tem-
se a classe ArcoInibidor que herda os métodos e atributos da

classe ArcoRbstrato. Ja as linhas expressam apenas um relacionamento

3 Um método, segundo HORTON (2003), pode ser entendido como uma mensagem enviada a um
objeto. Mensagem esta que invoca uma aglo especifica para objeto.
4 A UML é, segundo HORTON (2003), uma notagéio destinada & modelagem de classes de objetos.

37

entre classes, definido pela forma como o sistema foi modelado e

implementado.

3.3.2. Estrutura dos modelos em RdP descritos sequndo a notacdo XML

A ferramenta desenvolvida neste trabaiho deve ser capaz de interpretar
modelos em RdP descritos segundo a notagao XML, a qual é considerada pela
comunidade de RdP como um formato préprio para intercambio de modeios
entre softwares que trabalhem com RdP (BILLINGTON et al., 2003).

A principio, optou-se pelo usc da notacdo PNML para a descricao da
RdP representativa de um programa de controle de um CP, devido &
flexibilidade apresentada por esta notag&o. No entanto, observou-se que esta
n&o suportava a descrigdo de estratégias de controle de SMs modeladas por
SIPN. Desta forma foi necessario criar um novo conjunto de fags, baseado no
PNML, de modo a dar suporte as SIPNs.

Ao longo do processamento do arquivo XML contendo um modelo em
RdP, o soffware interpreta e armazena as informagdes a respeito de cada lugar,
transigio € arco existentes neste modelo. Este arquivo descreve o
relacionamento, tais como conexdes entre os elementos da RdP, marcagdo
inicial da rede, posicdo na tela de cada um dos elementos e informagoes

textuais, por meio de pares de fags.

3.4. Algoritmo “jogador de marcas”

O disparo interativo de transigdes e as alterages resultantes nas
marcagbes em uma RdP é chamado de “‘jogo de marcas”. Implementando-se
apropriadamente os elementos da RdP segundo as técnicas da orientacé@o a
objetos e também baseando-se nas ferramentas e APIs ja existentes na
linguagem Java, é possivel implementar um algoritmo capaz de realizar o “jogo
de marcas” (ZHURUWASKI & ZHOU, 1994).

38

Muitos soffwares utilizados para modelagem e simulagcido de SEDs
empregam um mesmo algoritmo jogador de marcas. Desta forma, pesquisando-
se na literatura, implementou-se um algoritmo “jogador de marcas” similar ao
apresentado em ZHURUWASKI & ZHOU (1994). A figura 3.2 mostra o

algoritmo desenvolvido.

Caloular Transicoes
Habilitadas

‘Transicoes
Ativas >0 7

Verifica Gonflifos

" Exists Confitos?

Saleciona gual transicao
deve ser disparada

I

F

Digpara as lransicoss
{soma & subtrai marcas)

Figura 3.2: Algoritmo para o “jogador de marcas” de uma RdP.

Transi¢des habilitadas

Nesta etapa, o algoritmo procura na RdP por transicdes que estejam
prontas para serem disparadas. Ele gera, entdo, uma lista com estas transicdes.

Solucionador de conflitos

Um conflito, em um SED, resulta de uma situagdo em que um
determinado elemento é compartilhado por um ou mais elementos do sistema
modelado. Em termos de RdP, duas transi¢bes de uma rede estdo em conflito

39

uma com a outra se ambas estao habilitadas e o disparo de uma torna a outra
ndo habilitada (MIYAGI, 1996). Um exemplo, em um SED, seria um robd
servindo duas maquinas que demandam algum tipo de servigo prestado

apenas por este robd.

A solugdo para um conflito, no caso do “jogador de marcas” deste projeto,
foi implementada baseando-se em uma escolha aleatéria da transi¢do que sera
disparada quando a RdP for do tipo CE ou LT e, para SIPNs, o conflito &
automaticamente resolvido pela condi¢éo de disparo da transi¢fo. Ou seja, dada
um estado em que duas transicdes habilitadas apresentam pré-lugares em
comum, sera disparada aquela que tiver sua condi¢do de disparo satisfeita

primeiro.

Atualizacdo da marcaciio

Ap6s a ocorréncia de um disparo de uma ou mais transigdes, a RdP
apresenta uma nova marcagiio e, conseqilentemente, 0 modelo em RdP atinge
um novo estado. As marcas séo redistribuidas nos lugares da rede.

3.5. Geragdo de programas de controle de CPs a partir de SIPN

Como resultado da conversido de um modelo de um sistema,
representado por um SIPN, a ferramenta de conversdo produzira um arquivo
contendo um programa para CP em /L. A figura 3.3 apresenta um modelo em
SIPN e o arquivo de saida gerado pela ferramenta para este modelo.

40

(¥**+Set stability variable (0 te® ¥}

P1: Q0=0; Q1=0 [H S Stab
(****** Tl'ansiti[)n T] ******}
15 LD PV 1 (* pre place P1
*
ANDN PV 2 (* post place
P2 #}
T1: 10 ANDI1 IMPCN 12
AND button pressed
AND machine on
IMPCN 12
. R PV 1 (* pre place P1
)
S PV 2 (* post place
P2 %)
P2: Q0=1;Ql1~1 R Stab
(****+* Transition T2 *RARRRY
12 LD PV 2 (* pre place P2
(a) Modelo em SIPN.)
ANDN PV 1 (* post place
Pl %)
JMPCN 13
1 AND time off
PROGRAM Main JMPCN 13
VAR R PV 2 (* pre place P2
*)
PV 1 BOOL :=TRUE; (*P1%) -
PV2 :BOOL:-FALSE: (*P2%) 14 2 BRI ffipeslipiace
Stab : BOOL:=TRUE: R Stab
* 1h 1 &
- VAR(Stability variable¥) (*+*+*Siability check**4*+4%)
13 LD Stab
JMPCN | 0
VAR GI“'OBAL (******** Placc P] ********)
button pressed at %I1X0.0: BOOL; | 4: LD PV 1
machine off at %[X0.1:BOOL;) IMPCN 1 3
time off at %I1X0.2:BOOL; R hi
machine on at %0QX0.0: LI g
BOOL: R alert light
o (******** Place P2 ********)
alert light at %QX0.1: BOOL: - = e
END VAR

{b} Programa em /L.

Figura 3.3: Modelo em SIPN e cadigo em IL gerado para o modelo.

Os programas em /L gerados pela ferramenta de conversao apresentam

a estrutura descrita a seguir.

Declaracdo de variaveis

Uma variavel booleana é declarada para cada lugar do modelo em SIPN.
Seu valor inicial depende da presenga de uma marca no lugar, ou seja, a um
lugar com uma marca atribui-se uma variavel binaria com valor logico 1. Caso

nao haja marca, atribui-se o valor légico 0.

Cadigo para as transi¢oes

41

A compilacao de uma transicio deve testar se esta se encontra habilitada
e se a condig¢do de disparo associada a ela esta satisfeita. Se o resultado dos
testes indicar um valor l6gico 1, conclui-se que todas as condigbes foram
satisfeitas, entdo a transiciio dispara. Do contrario, um salto condicional para a
proxima transigfio evita o disparo. O disparo retira a marca de cada um dos pré-
lugares € coloca uma marca em cada um dos poés-lugares da transi¢io. Para
otimizar o codigo, a condicdo de disparo ndo & avaliada se a transigdo nédo
estiver habilitada.

Considerando que o processo de disparo é iterativo, sendo interrompido
apenas gquando ndo ha mais transi¢Ges disparaveis dada uma configuragdo de
sinais de entrada do CP, uma variavel indicadora foi introduzida (Stab). A ela é
atribuido o valor 1 no come¢o do processo (I_0: S Stab) e, caso alguma
transicéo dispare, € atribuido o valor 0. Apés a verificagdo da existéncia de
transi¢des, a variavel de parada é testada. Se seu valor for 0, conclui-se que
alguma transi¢io disparou e, desta forma, o processo de disparo ¢ iterado. Caso
seu valor continue sendo 1, o programa executa um salio condicional para o
processamento do cédigo relativo aos lugares. O emprego dessa variavel na
légica do programa em /L tem a finalidade de modelar a ocorréncia de disparos
simultaneos de transicBes, ou seja, recebidos sinais de entrada, deve-se
disparar todas as transi¢des habilitadas que tenham suas condigbes de disparo

satisfeitas.

Como exemplo para que se entenda o funcionamento do processo de
disparo de uma transi¢io, considere o trecho de cddigo para a transi¢éo t1, na
figura 3.3 (linha |_1 do programa). Nele, verifica-se se a transi¢io esta habilitada

por meio das instru¢des:
LD PV _1
ANDN PV_2

Caso as transi¢des estejam habilitadas, o salto condicional “JMPCN |_2"
n&o é executado. Se as transi¢des estiverem habilitadas, o programa executa as

instrugdes:

42

AND button_pressed
AND machine_on

Caso o resultado desta verificagdo seja verdadeiro, o programa
interpreta a condigéo de disparo como satisfeita, o segundo salto condicional
“JMPCN |_2" nao é executado e, a atualizagdo do estado da RdP é feita

com as instrugdes:
R PV 2
S PV_2
Por fim, o valor da variavel de parada é resetado por meio da instrugao:
S Stab

E o processo de iteragdo continua até que nao haja mais transi¢des

disparaveis.

Caodigo para os lugares

Se um lugar contém uma marca, entéo a fungéo de saida correspondente
deste lugar é executada, isto &, sinais de saida sdo gerados. Se o lugar ndo
contém uma marca, entdo um salto condicional para o préximo rétulo® no
programa & executado e o segmento de codigo relative a fungéo de saida ndo
é executado. Nota-se que a implementagéo da fun¢ao de saida resulta em um
valor 1 ou 0 (verdadeiro ou falso) para cada um dos sinais de saida do modelo
em SIPN. Para um valor de saida indefinido, a execugéo do programa do CP
permanece no Ultimo valor de saida valido, ou seja, anterior ac indefinido.

Como exemplo de execugdo do codigo relativo um lugar, considere
novamente na figura 3.3(b) o trecho de cédigo iniciado no rétulo |_4. Nele,
verifica-se se a variavel PV_1 (relativa ao lugar P1) contém o valor 1, isto é, se

h& uma marca neste lugar. Caso esta condigdo resulte em verdadeiro, o salto

* As identificages 1 0,1 1,1 2, ...,1 3 na Fig.12(b) sdo os rétulos que sinalizam ao programa o inicio de
um novo bloco de instrugdes,

43

condicional “JMPCN |_5" nZo é realizado, e o programa executa as instrugdes

relativas aos sinais de saida do CP:
R machine_on
R alert_light

Se ndo houver a marca, ou seja, PV_1 tem valor 0, executa-se o salto
condiciona! e os sinais de saida ndo sdo gerados. A instrugdo “RET" no rétulo
| 6 do programa determina o retornc ao inicio do programa pringcipal, assim, o

programa é executado continuamente.

3.6. Desenvolvimento da Interface Grafica

Segundo BASS (1993), a interface com usuario de um sistema € um dos
primeiros determinantes da satisfacdo do usuario com o sistema. O
desenvolvedor de um sistema interativo deve estar concentrado nos
pardmetros de ciclo de vida e usabilidade. Usabilidade € um parametro de
tempo de execugdo, importante quando o usuario esta realmente utilizando o
sistema. O ciclo de vida comega na concepgéo do sistema e termina quando o

sistema nao esta mais sendo usado.

ERICKSON (1990) diz que problemas de interface sdo freqiientemente
obvios. Ja as solugdes, sdo menos Obvias. Pode ser dificil achar uma solugéo
que resolva um problema particular sem criar novos problemas. Mesmo assim,
uma solugéo separada para cada problema pode resultar numa interface com
tanta complexidade que deixa de ser usavel. O que é realmente necessario &
uma solugdo que “elegantemente” resolva uma série de problemas.

Do ponto de vista de projetistas, o desenvolvimento de uma interface sofre
das mesmas dificuldades encontradas no desenvolvimento de soffware de
proposito geral, além de outros problemas como: grande disparidade de
conhecimento geral e especifico entre usuarios, influéncia do estado emocional
no desempenho de uma tarefa, influéncia de fatores humanos de dificil

44

avaliacdo, auséncia de padronizacdo de métodos € recursos interativos
(AGUILERA FERNANDES, 1993).

Levando-se em consideracgéo os problemas e as dificuldades apresentadas,

e os requisitos levantados anteriormente, o projeto e desenvolvimento de uma
interface com usuario podem ser iniciados.

Utilizando ainda o paradigma de orientagdo a objetos, dentro da
linguagem Java, é possivel

desenvolver componentes graficos que
implementem as funcionalidades exigidas no levantamento de requisitos.

Desta forma, o projeto utilizou primitivas graficas e componentes de
bibliotecas padrées da linguagem Java para criar um elemento grafico pelo que

é possivel a edicdo e visualizaggo da RdP. Este componente foi chamado de
PetriPanel.

O PetriPanel é capaz de receber eventos do mouse (como clique,

movimentagio do cursor e arrasto) e criar a RdP através das informagdes

inseridas pelo usuario. Na figura 3.4 é possivel visualizar a ferramenta em
execucao.

Figura 3.4: Ferramenta em execucao.

45

Afravés da janela da ferramenta & também possivel salvar e recuperar a
RdP no sistema de arquivos do sistema operacional. E possivel também
executar a rede e visualizar 0 seu estado em tempo de execucio.

Além disto, existem botdes e janelas para manipulagéo de variaveis, caso
da SIPN, bem como ferramentas para a monitoragéo e modificagcdo dos sinais

declarados.

3.7. Testes

Segundo PRESSMAN (2002), o teste € um processo de execucdo de um
programa computacional com a finalidade de encontrar um erro. Portanto, para
validar a implementacéo dos algoritmos propostos, é necessario realizar alguns

testes.

3.7.1. Criacao e edigdo de RdPs

ram desenvolvidas algumas RdP para serem executadas pelo conjunto

“core”.

Primeiramente, o algoritmo foi testado com RdP relativamente simples,

como a mosirada na figura 3.5.

©O——0O—1—0

Figura 3.5: RdP simples.

Apés esta primeira fase de testes, o algoritmo foi testado com RdP de maior

complexidade.

46

Figura 3.6: RdP com conflito e arcos com peso.

Na figura 3.6, tem-se uma RdP com arcos com peso, com lugares com mais
que uma marca e transi¢des em conflitos potenciais.

Foram utilizadas ainda como teste duas RdPs que modelam atividades num
sistema de automacg&o. A primeira modela um botdo que liga uma l1ampada
caso esteja desligada, e desliga a lampada, caso esteja ligada. A segunda
modela um caso de um sensor de presenca, que acende uma lampada quando
é acionado, aguarda um tempo e desliga.

Biotao Acionado

\ l

Botao Desacionaclo Lampaidla OFF

Figura 3.7: RdP que modela um botdo liga / desliga.

Lampaca ON

Botao Aclonado : P SRS S Y S

Tempo

Batao Desacionada

Figura 3.8: RdP que modela um sensor de presenca.

47

3.7.2. Descricdo da RdP em XML

Para os testes de conversao entre a estrutura de dados da rede de Petri
em orientagdo a objeto @ XML, foram utilizadas duas redes como exemplo.
Primeiramente foi testada uma RdP simples, para que a geragdo do XML
pudesse ser interpretada de maneira rapida. Os resultados podem ser vistos na
figura 3.9.

<net id="rede">
A <place id="L0" x="178.0" y="78.0" desc="L0" tamanho="20" capacidade="1"/>
Lo <place id="L1" x="177.0" ¥="191.0" desc="L1" tamanhe="20" capacidade="1"/>
<transition id="T0" x="228 0" y="133.0" tamanho="20" type="normal" dese="T)"/>
<transition id="T1" x="124.0" y="131.0" tamarho="20" type="normal’ dese="T1"/>

u = <are id="a0" sentido="0" source="L0" target="T0" type="standard"/>
<are id="a0" sentido="1" source="T0" target="L1" type="standard’/>
K » <arc id="a0" sentido="0" source="L.1" target="T1" type="standard"/>

<are id="a0" sentido="1" source="T1" target="T1.0" type="standard’f>
<met>

Figura 3.9: Descrigdo da RdP em XML.
Para um teste mais apurado, foi utilizada uma rede de maior
complexidade. Esta rede modela novamente uma atividade num sistema de

automacao, onde um botéo liga uma lampada caso desligada, e desliga caso

ligada. A figura 3.10 apresenta esta rede.

No Anexo A encontra-se a descri¢do, em notagao XML, da RdP da figura
2.6.

3.7.3. Geracao de programa de CP a partir de um_SIPN

Como exemplo de teste de uma conversdo automatica de um modelo
em RdP do tipo SIPN para um programa de CP, o modelo da figura 2.6 foi
editado com a ferramenta desenvolvida e, com base nesta rede foi gerado o
programa /L para um controlador programavel SIMATIC S7-300 fabricado pela
empresa SIEMENS (S7-300). No Anexo B os resuitados desta conversao

podem ser analisados.

48

Botao Desacicnado Liinpada OFF

<netid="rede">
<place id="Botao Acionado" x="136.0" y="86.0" dest="Botac Acionado” tamanho="20" capacidade="1"/>
<place id="Botao Desacionade" x="135.0* y="200.0" desc="Botao Desacionado" tamanho="20" capacidade="1"/>
<transition id="T0" x="186.0" y="142.0" tamanho="20" type="normal’ desc="T9"/>
<transition id="T1" x="82.0" y="140.0" tamanho="20" type="normal’ desc="T1"/>
<are id="a0" sentide="0" source="Botao Acionade” target="T(" type="standard"/>
<are id="a0" sentido="1" source="T(" target="Botao Desacionado" type="standard"/>
<are id="a0" sentido="0" source="Botao Desacionade" target="T1" type="standard"/>
<art id="a0" sentido="1" source="T1" target="Botac Acionade’ type="standard"f>
<place id="Lampada ON" x="362.0" y="85.0" desc="Lampada ON" tamanho="20" capacidade="1"/>
<place id="Lampada OFF" x="364.0" y="199.0" desc="Lampada OFF" tamanho="20" capacidade="1"f>
<transition id="T2" x="284.0" y="144.0" tamanho="20" type="normal* desc="T2"/>
<trancition id="T3" x="445.0" y="141.0" tamanho="20" type="normal" dese="T3"/>
<arg id="a0" sentido="1" souree="T2" target="Lampada ON" type="standard"(:
<are id="a0" sentido="0" source="Lampada ON" target="T3" type="standard"f>
<arc id="a0" sentido="1" source="T3" target="Lampada OFF" type="standard"/>
<are id="a0" sentido="0" source="Lampada OFF" target="T2" type="standard"/>
— <are id="a0" sentido="0" source="Botac Acionado" target="T2" type="test">
— <pontos>
<ponte x="286.0" y="85.0"f>
</pontos>
<fare>
= <are id="a0" sentido="0" source="Botac Acionado" target="T3" type="test">
— <pontos>
<ponta x="137.0" y="35.0"/>
<ponte x="447.0" y="34.0"f>
</pontos>
<farc>
<fnat>

Figura 3.10: RdP de maior porte descrita em XML.

4, ESTUDOS DE CASO

Para fim de demonstracdo das funcionalidades da ferramenta
desenvolvida, neste topico foram avaliadas algumas aplicagbes da ferramenta

desenvolvida.

4.1. Modelagem e Simulacdo - MiniCIM

O sistema CIM é um equipamento para fins de treinamento
especializado da empresa Festo que, na configuragdo disponivel no
Laboratorio de Sistemas de Automagio do PMR-EPUSP é composto de 5
estacoes de trabalho, cada uma capaz de ser operada individualmente ou, no
contexto de um sistema integrado e automatizado, cada estagéo possui certa
autonomia na execucédo de suas tarefas. As estagdes de trabalho sao as
seguintes: Estacéo de Testes; Estagio de Distribuicao; Estagao de Montagem
com Unidade de Execucéoc da Montagem; Sistema Inteligente de Transporte
(SIT); Estacdo de Controle de Célula de Trabaiho.

A Estagédo de Distribuicao armazena as bases (cilindros) e as encaminha
ao processo de produgdo de acordo com a demanda. Ja a Estagéo de Testes €
responsavel pela identificacéo da cor (prateada, rosa ou preta) e teste da altura
das bases (cilindros) vindas da estagéo de distribuigdo. Esta estagéo & também
responsavel por descartar pecas rejeitadas neste teste. O Sistema Inteligente
de Transporte conta com uma esteira de transporte e cinco carros (pallets).
Este sistema de transporte tem pré-definido quatro locais distintos para a
parada dos carros, sendo um deles destinado & Estagéo de Testes e um outro
a Estacdo de Montagem. O SIT destina-se a transportar as bases {cilindros)
identificadas e testadas da Estacido de Testes para a Estagdo de Montagem,
onde a montagem da peca é finalizada. As pecas montadas s&o entao
transportadas pelo SIT para uma outra localidade distinta. A figura 4.1
representa o MiniCIM.

50

Estacfo de SIT
Estacdo de Testes
Distribuigsio l l

Estagdo de Controle de : —
Célula de Trabalho flgurait:1: MiniCItd.

Estacfo de
Montagem

Este sistema foi modelado e simulado com a ferramenta desenvolvida e
os resultados foram comparados com uma simulagdo realizada no soffware
comercial disponivel HPSim (Versdo 1.1). A figura 4.2 mostra uma imagem de

modelo pronto e a da simulagdo em andamento.

51

. -la1x]
Arguivn
a 2 u Destigar ! ' Reset Passo Vaniweis inicial Senddor —
Propriadae valor | X]
_Propr [minicimAd.emi g
Sensores T
Buffer de pecas base La A —tSen sl LA
Braos TrRnsparte 30
i ' ’. T0
Capackive
et I | e |L1g L1
Elamanta Tipo i
[m] Grafto = ik o £ ¥ 3 L
+ : T R
[m] |Orifico - Fim hspacae s <
O Orafico
o arafico eesac i | (0
[m} [Grifico Caln J
[m} arifico T3 Seetacas
[m] \Grifico
- - LA Pecana cariie
=45 ' 16
O _L. i T4 transpone base
O L2 : i
N L5 Bstacao e Montagers T17 Ti8 718
.’J i R) l
8 2 T 4 Lig o
Fina Frato P
O T LS Whntagem
) 4 I
Q &t | Té LiE Lig V130T i
L8 | W
8 ' o (" {57 Lo |
; _\ 20 ™ 2z
8 L0 726 LLLg Y |
L‘ 1 - 3
. T N e e Te JE I
ﬁ =] 1 | i — = ' et | »

Figura 4.2: MiniCIM modelado na ferramenta desenvolvida.

Na figura a seguir, mostra-se a modelagem do MiniCIM no software

comercial HPSim.

Be X den wokw Lok fow Smdeon b |

OEE > RP@ YN (#2070 RO |HDT O8h AAQA %517 |
= | -

A
ok

gty

It gl e B dex.

Bogt Boe N
Wurar do pogr de bant

SapicicTis P47, omn comp

Figura 4.3: MiniCIM modelado no HPSim.

52

Ap6s a modelagem, foi possivel a simulag&o do sistema MiniCIM através
do “jogador de marcas”. Comparando-se o resultado com o esperado pelas
regras da RdP, com ¢ software comercial HPSim e com o algoritmo “jogador de
marcas” encontrado ZHURAWASKIi & ZHOU (1994), garantiu-se que a
funcionalidade de modelagem e simulacdo de RdP fosse plenamente

alcangada.

4.2. Programacéo da Estagdo de Montagem do MiniCIM

A Estacdio de Montagem do MiniCIM é controlada através de um CP
(SIMATIC S7-300, fabricado pela empresa SIEMENS). Este CP controla um
robd manipulador que realiza a montagem das pegas de acordo com as

informagdes dos sensores da Estagdo de Distribuig&o.

As atividades do robd manipulador foram modeladas em RdP e através
da ferramenta gerou-se o programa em /L para o CP desta estac&o. No Anexo

B o codigo-fonte deste programa esta disponivel.

Para a geragdo deste programa, o tipo de RdP utilizado na modelagem
foi SIPN. Com ela pode-se realizar o controle da movimentagéo do brago
utilizando-se os sinais de entrada provenientes dos sensores e, baseando-se
nestes, os sinais de saida correspondentes séo gerados. A figura 4.4 apresenta
a RdP que foi criada para controlar o brago, e que possibilitou a geragéo do
programa em /L que foi carregado e executado no CP $7-300 da Estagao de

Montagem.

53

T1: Automatic T2: Fim de 13: Continuar T4: Inicio de
ON curso curso

P1: Descer P2: Parar P3: Subir P4: Parar
braco brago (fim) braco braco (inicio)
T5: Tampa T6: Pino
detectada detectado
P5: Estender P6: Disponibifizar P7: Disponibilizar
lampa pino prefo mola

Figura 4.4: RdP que controla a movimentacao do manipulador.

Nota-se que, além dos lugares P1, P2, P3 e P4 que representam os
sinais de saida enviados ao CP, foram adicionados os lugares P5, P6 e P7 que
indicam os sinais de saida enviados ao CP para que os componentes da pega

produzida na Estac&o de Montagem sejam disponibilizados.

Com a RdP da figura 4.4 modelada na ferramenta e, ap6és uma
simulagao executando-se o “jogador de marcas”, verificou-se que dinamica de
movimentagdo do manipulador, bem como o processo de disponibilizagdo dos

componentes de montagem da pega haviam sido modelados corretamente.

Foi, entdo, gerado o programa de controle em IL que foi diretamente
carregado e executado no CP S7-300 da Estacdo de Montagem do MiniCIM. A

figura 4.5 apresenta a interface da ferramenta com a RdP da figura 4.4.

54

Arquivo
a a u | Desliyar ! ’ Reset Passa Warlkeeis Iniciar Servidor
_ Propriedade Valor : T .
g = e [rode2ant i g B
ITamanho 7= 18- 3
Marczs L -
Mareas Inicias |
G -
Codigo
|
Flaments Tipo

Grifico
Grifico
Grifico
Grifico
Grifico
L17

. ._L.!_

_Iﬂ

Gv.a.ﬁ.cn —

Orafico
Trkfica
:-3r.\ﬁnu

Grafico I
Grufico |
Grafico

_:}.'al\-:n I
Orifico)

Grifico = g i ‘
.-,1-!_-1ﬁ-:n)

Grafico

Oréfica
Ordfico = L]] -

lllldv!&-LHv-H##}O0.0rrh»»

Figura 4.5: Simulagdo do modelo em RAP para controle da Estagdo de Montagem.

O codigo do programa de controle gerado neste estudo de caso consta

no Anexo C.

4.3. Supervisdo remota

Para realizag&o de uma supervisdo / monitoragéo remota utilizando-se a
ferramenta desenvolvida, foi utilizado um sistema comumente encontrado em
instalagBes industriais (FREY & MINAS, 2001): acumulador de ar comprimido
conectado a compressores e equipado com sensores de pressdo (vide figura
2.6). Na figura 4.6 a seguir, apresenta-se o modelo em RdP de um controlador

para o acumulador.

35

T R 2181x]

Arquivn
ij m H Deskgar l ’ Rese! Passo itiar Senkdor
[Fropriedace | vaior | [T now - e lg:sl-
——* T8 |
Fi(T8}=i4 I
- . = |
w(LO)= (1.0) Fi(T2) = i1 W1)=(9,0)
' Elemanty | Tipo < - AQ L
L TS - y
— i Fi(T1)=i2
| - 7 | "
‘ - T |
| —» tritica | Fi(T0) = NOT i1 wilL4) ={t1) Fi(T4) = NCT
| —» Sriflco | i ™ =
‘ e Grafico ta 4
—» Grafico -
I i'?“w ‘ FiTT}= NOT 12
> rafico y _in h
| —» orfico I® = 5 N
v irafico
— Grifico
— 4 ___mr = .
| —» Srifico L3 FI(T3)=I1 w(;::) -0 1) |
e Grafico wi(l.3) = (0.0) - 8 |
— Grafico
—» Gréfizo X
| -+ fico FifTS) =13 1
— il
—> srafico -
- afll K1 - e —————

Figura 4.6: Simulagdo do modelo em SIPN do acumulador.

Afravés de comandos e janelas especificas da ferramenta desenvolvida,
€ possivel realizar a supervisdo de um sistema de controle modelado em RdP.
Para isso, variaveis declaradas na ferramenta como sinais de entrada e de
saida do sistema modelado s&o ilustradas na forma de botdes (caso sejam

sinais de entrada) e imagens de leds (caso sejam sinais de saida).

Para o uso desta caracteristica em uma aplicagéo pratica, a estratégia
de controle modelada na RdP do tipo SIPN apresentada na figura 4.6 foi
construida no software desenvolvido. Os sinais de entrada (i1, i2, i3 e 04) e
saida (01 e 02) puderam ser visualizades em um computador remoto, através

de conexéo via Internet.

O usuario remoto identificou a conexao através de enderecos de rede /P
(Internet Protocol), permitindo ao software a recuperagdo e atualizagdo dos
sinais do modelo. Foi possivel também a sua interagdo com o modelo,

alterando as variaveis de sinais de entrada.

56

Abaixo seguem

imagens da ferramenta em funcionamento no

computador com o modelo (figura 4.7), € no computador com acesso remoto

(figura 4.8).

e ——————————————

Reipia

il B . | Dmu."nmlmw

Tinshar SorBol SeOm0r (ot e et - 1T DAL

B - v d @ -* [
P [Comphkst B wne acio
® 0400 bt 04 R
b 1o [] Prasson et e 58
l.}:-»— S i Lt I N T ® Comralwitor A perturtusda
‘-'"ki\' L] Comguusns § parns hotn
¥ & v
: l -yt
: J'-ﬁ;‘}rv oy #};_) o
S |
Figura 4.7: Software com o sistema modelado.
£ Acesso Remoto e =10| x|
Desconectar
. Compressor A em acao
O Compressor B em acao
O ' Pressao menor que 6.1
| e m————
: O Pressao menor gue 5.9
O Compressor A perturbado
' g Compressor B perturbado

Figura 4.8: Software com acesso remoto.

57

5. CONCLUSAO

Neste trabatho foi desenvolvida uma ferramenta que permite criacdo e
edigao de modelos em rede de Petri (RdP) de sistemas de automagéo. Os tipos
de RdP que a ferramenta disponibiliza para a modelagem sé@o as redes
Condigao-Evento (CE), Lugar-Transi¢io (LT), e as redes de Sinal Interpretado
(SIPN).

Dentre as funcionalidades da ferramenta desenvolvida, quatro sio
consideradas principais. A primeira delas é a possibilidade de edigdo grafica
dos modelos criados. Para fins de verificagdo do comportamento destes
modeles, a ferramenta também permite que eles sejam executados de acordo
com as regras da RdP. Nesta execucgdo, pode-se observar a dindmica do
sistema, representado pelo modelo, através da alteragio das marcagdes na
RdP. Assim, & possivel estudar o comportamento do sistema modelado. Caso
0 modelo n&o apresente o comportamento desejado, pode-se reedita-lo e

executa-lo novamente.

A segunda funcionalidade que a ferramenta desenvolvida neste projeto
possui & a capacidade de programagio de controladores. Com a ferramenta
pode-se desenvolver um programa de controle de um controlador programavel
(CP) graficamente, utilizando S/PNs. Aos lugares do modelo em RdP sdo
atribuidas instruges de comando que geram sinais de saida processados pelo
CP e enviados ao objeto de controle efou operador envolvido, através de
dispositivos de atuagdo e dispositivos de monitoracdo, respectivamente. Em
resposta, o objeto de controle envia sinais através dos dispositivos de deteccao
para o modelo, isto & como condigdes para o disparo das transigdes. Estes
sinais séo processados e estabelecem a mudanga de estado, ou seja, a
alteragdo da marcagéio na RdP. O programa de controle desenvolvido com a
ferramenta pode ser convertido para uma linguagem adequada ao uso em CPs,
e diretamente carregado em um CP para execugao da tarefa de controle. A
linguagem de CP adotada & o Insfruction List, que é um dos padrées

internacionais para o CP.

58

A terceira funcionalidade é o armazenamento dos modelos criados em
formato XML. Apods editar e salvar o modelo, a ferramenta gera um arquivo com
a extensao “.xml" o qual contém a descricdo da RdP desenvolvida. A razao
para o uso deste formato de armazenamento € o intercdmbio de modelos de
SEDs entre ferramentas / soffwares que trabalhem com RdPs através de um
formato pradonizado e aceito internacionalmente.

A quarta funcionalidade principal que destaca-se na ferramenta
implementada € médulo de supervisdo remota. Com este médulo tem-se uma
interface grafica, em RdP, para monitorar um sistema geograficamente
distante, via Infemet. Os sinais de saida de um CP s&o processados e
enviados através da Internet para um computador com a ferramenta
desenvolvida e esta, através de uma interface grafica apropriada, apresenta a
RdP que descreve o comportamento do respectivo sistema.

Realizando-se uma andlise comparativa de funcionalidades da
ferramenta implementada neste trabalho e de outros soffwares especializados
na modelagem de SEDs baseando-se na técnica de RdP, foi possivel gerar
uma tabela que relaciona as caracteristicas destes soffwares e da ferramenta.

A tabela 5.1 traz esta relagéo.

Tabela 5.1: Relacdo de funcionalidades dos softwares.

SOFTWARE

FUNCIONALIDADE FERRAMENTA SIPN

= e e DESENVOLVIDA HPSIM Epitor PIPE2.VZ PNK2.2
QUANTO A MODELAGEM
EDITAR Sim SIM SIM SiM SIM
SALVAR SIM SIM SIM SIM SiM
RECUPERAR Siv Siv SiM Sim SIM
QUANTO A SIMULACAOD
EXECUTAR ("JOGADCR DE
MARCAS") SIM SIM NAO SIM Sim
PAUSAR Sim Siv NAO SIM sim
CONTINUAR SIM SIM NAO SIM SIM
QUANTO A SUPERVISAOD
REMOTA SiM NAO NAO NAO NAO
LOCAL Siv SIMm SIM SIM SiM
GERAGAQ DE CODIGO PARA CPS
INSTRUCTION LIST SIM NAO SIM NAO NAQ

59

STRUCTURED TEXT NAO NAO NAOC NAO NAO

LADDER NAO NAC NAQ NAO NAO
SFC NAO NAO NAO NAC NAO
FORMATO PARA INTERCAMBIO

DE MODELOS

XML Siv NAO SiM NAO SIM

Observando-se esta tabela, nota-se que a ferramenta desenvolvida
disponibiliza, em principio, todas as funcionalidades que os demais softwares
apresentam. No entanto, para aplicagbes que necessitem de monitoragéo
remota e / ou geragdo de programas de controle em /L para CPs apenas a
ferramenta apresentada neste trabalho atende a este requisito, dentre os

softwares relacionados.

60

6. TRABALHOS FUTUROS
Como propostas para trabalhos futuros, tém-se os topicos a seguir:

» Novas classes de RdP: dada a implementacdo estruturada da

ferramenta, baseada nos conceitos de classe, objeto, heranca e
polimorfismo provenientes da orientagdo a objetos, pode-se
reaproveitar o codigo-fonte ja escrito com o intuito de ampliar o nimero de
classes de RdP disponiveis para modelagem e simulagdo de SEDs de
maior complexidade. Como exemplo, as classes RTPN e CPN poderiam
ser incluidas como opg¢des para representacio de SEDs;

» Geracéo de programas de controle: no projeto desenvolvido, pode-se

gerar um programa em IL para ser carregado e executado diretamente em
um CP. No caso deste trabalho, o CP para o qual programas sdo gerados
é o SIMATIC S7-300, fabricado pela Siemens. Contudo, a sintaxe da
linguagem /L pode apresentar variagbes dentre os CPs comerciais
disponiveis. Assim, pode-se adicionar & ferramenta moédulos especificos
de conversdo de estratégias de controle para outras linguagens de
programagéo, de acordo com o CP utilizado.

e Comunicacado direta com CPs: outra possibilidade para um trabalho

futuro seria o acréscimo a ferramenta de um moédulo que ofereca uma
interface de comunicagéo direta com um CP, isto &, sem o intermédio de
um soffware comercial que realize esta comunicacdo. Este funcionalidade
adicional permitiria que programas fossem diretamente carregados
(downloading) e executados em um CP, ou lidos (uploading) dele
diretamente da ferramenta.

61

7. REFERENCIAS BIBLIOGRAFICAS

AGUILERA FERNANDES, EDSON. Um modelo de referéncia para
desenvolvimento de interfaces homem-computador, dissertacdo de
mestrado, Escola Politécnica da Universidade de Sao Paulo, 1992.

ALVES, G. R,, COSTA, J. D., ARMELLINI, F. ET AL. Petri Net's Execution
Algorithm for Applications in Manufacturing Systems Control. Artigo
Técnico, Universidade de Sao Paulo, 2003.

AMORY, A. PETRINI, J. J. Sistema Integrado e Multiplataforma para
Controle Remoto de Residéncias. Trabalho de Conclusédo de Curso, PUC-RS
— Faculdade de Informatica, Porto Alegre, RS, 2001.

ANGEL-RESTREPO, P. L. Modelagem orientada a objetos de sistemas a
eventos discretos: estudo de caso na sintese de controle de sistemas
prediais, dissertacao de mestrado, Escola Politécnica da Universidade de Sao
Paulo, 2004.

ARAKAKI, J., Analise de Sistemas de Manufatura através da Metodologia
PFS/IMFG e Regras de Producédo, dissertacdo de mestrado, Escola
Politécnica da Universidade de Sao Paulo, 1993.

AURESIDE. Associagdo Brasileira De Automac¢do Residencial.
<http://www.aureside.org.br>. Acesso em: 14 abril 2006.

BASS, L. User Interface Software. Ed. Wiley, 1993.

BILLINGTON, J. ET AL. The Petri Net Markup Language: Concepts,
Technology and Tools. Springer-Verlag, Berlin, Heidelberg, 2003.

BOLZANI, C. Residéncias Inteligentes. Editora Livraria da Fisica, 2004.

COCKBURN, ALISTAIR. Writting Effective Use Cases. Addison-Wesley
Ltongman, 1999.

CULWIN, FINTAN. Java in the C.S. Curriculum. Workshop at the 27" ACM
SIGCSE Conference. 1997.

Disponivel em http:/iwww.scism.sbu.ac.uk/jfl/sanjose/sanjose.html. Acessado
em 20/06/06.

DAVIS, A., 201 Principles of Software Development, McGraw-Hill, 1995.

DICESARE, F. HARHALAKIS, G., PROTH, J.M, SILVA, M., VERNADAT, F.B.
Practice of Petri Nets in Manufacturing, Chapman & Hall, 1993.

DYKES, L. TITTEL, E. XML for Dummies. Wiley Publishing, Hoboken, NJ, 4",
2005.

62

ERICKSON, THOMAS D. The art of human-computer interface design.
Edited by Laurel, Brenda. Introduction to ‘Creativity and Design’ session.
Editora Addison-Wesley Publishing Company, 1990.

FREY, G., MINAS, M. Internet-based development of logic controllers
using Signal Interpreted Petri Nets and IEC 61131. In Proceedings 5th World
Multi-Conference on Systematics and Informatics (SCI 2001), Vol. 3, Orlando
(FL), USA, pp. 297-302. [Online]. Available: citeseer.nj.nec.com/451425.htm!|

HORTON, |. Beginning Java 2: A comprehensive tutorial to Java
programming. Wrox Press, 2003.

JANDL JUNIOR, PETER. Introdugao ao Java. Editora Berkeley, 2002.
JANDL JUNIOR, PETER. Mais Java. Editora Futura, 2003.

KAN, Stephen H., Metrics and Models in Software Quality Engineering,
Second Edition. Ed. Addison Wesley Professional, 2002.

KERNIGHAN, BW.; RITCHIE, D.M. C, A Linguagem de Programacao:
Padriao ANSI. Campus Ltda, Rio de Janeiro, 1990.

MERTKE, T., FREY, G. Formal Verification of PLC-Programs Generated
from Signal interpreted Petri Nets. In Proceedings of the IEEE Systems, Man,
and Cybernetics Conference, 2001 [Online].

MIYAGI, P. E. Controle Programavel — Fundamentos do Controle de
Sistemas a Eventos Discretos. Editora Edgard Blucher, Sao Paulo, 1996.

MUNDOOO. Mundo Orientagdo a Objeto. <hitp://mww.mundooo.com.br>.
Acesso em: 02 maio 2006.

MURATA, T. Petri nets: Properties, Analysis and Applications. In
Proceedings of the IEEE, Vol. 77, N° 4, April de 1989 [Online}.

REALI, A. H. C. Redes de Petri - Loégica Computacional. PCS0527, Sao
Paulo, 2001.

MYERS, G., The Art of Software Testing, Wiley, 1979.

NETBEANS. Site oficial Netbeans. <http://www.netbeans.org>. Acesso em 05
maio 2006.

PRESSMAN, R. S. Engenharia de Software. Editora McGraw-Hill, 2002.

SUN MICROSYSTEMS. Site oficial Java. <http:/fjava.sun.com>. Acesso em
05 maio 2006.

SOUZA, L. E. Controladores Ldgicos Programaveis. FUPAI, 2001.

63

VILLANI, E. Modelagem e Analise de Sistemas Supervisorios Hibridos.
Tese de Doutorado, EPUSP, Sao Paulo, SP, 2004.

ZHOU, M.; VENKATESH, K. Modeling, simulation, and control of flexible
manufacturing systems: a Petri net approach. World Scientific Publishing
Co. Pte. Ldta, Singapura, 1998.

ZHURUWASKI, R. AND ZHOU, M. Petri nets and industrial applications: a

tutorial. IEEE Transactions on Industrial Electronics, v.41, n.6, p.567-583,
December, 1994.

64

ANEXO A - Estratégia de controle descrita em notagdo XML

Exemplo de uma estratégia de controle, descrita em notagdo XML,
modelada por uma RdP do tipo S/PN. A RdP utilizada é apresentada na figura

2.6.

<?xml version="1.0' encoding='SO-8859-1'?>
<net id="n2">
<name desc="acumulador de ar comprimido"/>
<signals>
<var type="input" id="i1">pressure_lower_than_6.1_bar</var>
<var type="input" id="i2">pressure_lower_than_5.9_bar</var>
<var type="input” id="i3">compressor_A_disturbed</var>
<var type="input" id="i4">compressor_B_disturbed</var>
<var type="output” id="01">compressor_A_runnning</var>
<var type="output" id="02">compressor_B_runnning</var>
</sighals>
<p|ace id=llp1ﬁ x=l|50ll y="150“ desc=llp1ll offx=l|0" offy=ll22|l>
<initialMarking marking="false" offx="-20" offy="-10"/>
<output desc="p1:01=1;02=0" offx="0" offy="-24"/>
<code>
<statement>
<operator>S</operator>
<signal>compressor_A_runnning</signal>
<fstatement>
<statement>
<operator>R</operator>
<gignal>compressor_B_runnning</signal>
</statement>
<fcode>
</place>
<place id="p2" x="250" y="150" desc="p2" offx="-1" offy="20">
<jnitialMarking marking="false" offx="25" offy="5"f>
<putput desc="p2:01=0;02=0" offx="-1" offy="-22"/>
<code>
<statement>
<pperator>R</operator>
<signal>compressor_A_runnning</signal>
</statement>
<statement>
<pperator>R</operator>
<signal>compressor_B_runnning</signal>
</statement>
<fcode>
</place>
<place id="p3" x="250" y="150" desc="p2" offx="-1" offy="20">
<initialMarking marking="false" offx="25" offy="5"/>
<output desc="p3:01=0;02=1" offx="-1" offy="-22"/>
<code>
<gtatement>
<operator>R</operator>
<signal>compressor_A_runnning</signal>
</statement>
<statement>
<operator>S</operator>

65

<signal>compressor_B_runnning</signal>
</statement>
</code>
</place>
<place id="p4" x="250" y="150" desc="p2" offx="-1" offy="20">
<initialMarking marking="true" offx="25" offy="5"/>
<output desc="p4:01=0;02=0" offx="-1" offy="-22"/>
<code>
<statement>
<operator>R </operator>
<signal>compressor_A_runnning</signal>
</statement>
<statement>
<operator>R</operator>
<signai>compressor_B_runnning</signal>
</statement>
</code>
</place>
<place id="p5" x="250" y="150" desc="p2" offx="-1" offy="20">
<initialMarking marking="false" offx="25" offy="5"/>
<output desc="p&:01=1;02=1" offx="-1" offy="-22"/>
<code>
<statement>
<operator>S</operator>
<signal>compressor_A_runnning</signal>
</statement>
<statement>
<operator>S</operator>
<signal>compressor_B_runnning</signal>
</statement>
<fcode>
</place>

<transition id="t1" x="150" y="50" type="normal" desc="t1" offx="0" offy="26">
<delay interval="0" offx="7" offy="7"/>
<input desc="i1" offx="-1" offy="-22"/>
<code>
<statement>
<operator>AND</operator>
<signal>pressure_lower_that_6.1_bar</signal>
</statement>
</code>
<ftransition>
<transition id="{2" x="150" y="250" type="normal" desc="t2" offx="-1" offy="22">
<delay interval="0" offx="7" offy="7"{>
<input desc="i2" offx="-1" offy="-22"f>
<code>
<statement>
<operator>AND</operator>
<signal>pressure_lower_that_5.9_bar</signal>
</statement>
<fcode>
</transition>
<transition id="t3" x="150" y="250" type="normal" desc="{3" offx="-1" offy="22">
<delay interval="0" offx="7" offy="7"/>
<input desc="i4" offx="-1" offy="-22"/>
<code>
<statement>
<operator>AND</operator>
<signal>compressor_B_disturbed</signal>

66

<fstatement>
</code>
</transition>
<fransition id="t4" x="150" y="250" type="normal" desc="t4" offx="-1" offy="22">
<delay interval="0" offx="7" offy="7"/>
<input desc="NOT i1" offi="-1" offy="-22"/>
<code>
<statement>
<operator>ANDN</operator>
<signal>pressure_low_that_6.1_bar</signal>
</statement>
<fcode>
<ftransition>
<transition id="t5" x="150" y="250" type="normai” desc="t5" offx="-1" offy="22">
<delay interval="0" offx="7" offy="7"/>
<input desc="i3" offx="-1" offy="-22"/>
<code>
<gtatement>
<operaior>AND</operator>
<signal>compressor_A_disturbed</signal>
</statement>
</code>
</transition>
<transition id="t6" x="150" y="250" type="normal" desc="t6" offx="-1" offy="22">
<delay interval="0" offx="7" offy="7"/>
<input desc="NOT i2" offx="-1" offy="-22"/>
<code>
<gtatement>
<operator>ANDN</operator>
<signal>pressure_low_that_5.9_bar</signai>
</statement>
</code>
</transition>
<transition id="t7" x="150" y="250" type="normal" desc="t7" offx="-1" offy="22">
<delay interval="0" offx="5" offy="4"/>
<input desc="NOT i1" offix="-1" offy="-22"/>
<code>
<statement>
<operator>ANDN</operator>
<signal>pressure_low_that_6.1_bar</signal>
</statement>
</code>
<ftransition>
<transition id="t8" x="150" y="250" type="normal" desc="t8" offx="-1" offy="22">
<delay interval="0" offx="8" offy="4"/>
<input desc="i2" offx="-1" offy="-22"/>
<code>
<statement>
<operator>AND</operator>
<signal>pressure_low_that_5.9_bar</signal>
</statement>
</code>
<ftransition>
<transition id="t9" x="150" y="250" type="normal" desc="t9" offx="-1" offy="22">
<delay interval="0" offx="4" offy="4"/>
<input desc="i1" offx="-1" offy="-22"/>
<code>
<gtatement>
<operator>AND</operator>
<signal>pressure_low_that_6.1_bar</signal>

67

</statement>
</code>
<ftransition>

<arc id="a1" x="75" y="75" source="t3" target="p1" type="standart"/>
<arc id="a2" x="225" y="75" source="t1" target="p1" type="standart"/>
<arc id="a3" x="225" y="225" source="p4" target="t1" type="standart"/>
<arc id="a4" x="75" y="225" source="p1" target="t5" type="standart"/>
<arc id="a8" x="75" y="75" source="p3" target="t3" type="standart"/>
<arc id="a6" x="225" y="75" source="p1" target="t4" type="standart"/>
<arc id="a7" x="225" y="225" source="p1" target="t2" type="standart">
<arc id="a8" x="75" y="225" source="t2" target="p5" type="standart"/>
<arc id="a9" x="75" y="75" source="t7" target="p4" type="standart"/>
<arc id="a10" x="225" y="75" source="p5" target="t6" type="standart"/>
<arc id="a11" x="225" y="225" source="t4" target="p2" type="standart"/>
<arc id="a12" x="75" y="225" source="t8" target="p5" type="standart"/>
<arc id="a13" x="75" y="75" source="t6" target="p3" type="standart"/>
<arc id="a14" x="225" y="75" source="p3" target="t7" type="standart"/>
<arc id="a15" x="225" y="225" source="p2" target="{9" type="standart"/>
<arc id="a16" x="75" y="225" source="p3" target="t8" type="standart"/>
<arc id="a17" x="75" y="75" source="t9" target="p3" type="standart"/>
<arc id="a18" x="225" y="75" source="t5" target="p3" type="standart"/>

</net>

68

ANEXO B - Programa de controle em Instruction List gerado pela
ferramenta

Este programa foi gerado a partir da RdP da figura 2.6. A sintaxe desta
implementacgéo € propria para a execugdo em controladores da familia S7-300
fabricados pela empresa Siemens.

ORGANIZATION_BLOCK "Cycle Execution”

TITLE = "Main Program Sweep (Cycle) - Air Chamber Controller"
/ICONTROLADOR PARA UMA "CAMARA DE AR".

VERSION : 0.1

VAR_TEMP
OB1_EV_CLASS : BYTE ; //Bits 0-3 = 1 (Coming event), Bits 4-7 = 1 (Event class 1)
OB1_SCAN_1: BYTE; //1 (Cold restart scan 1 of OB 1), 3 (Scan 2-n of OB 1)
OB1_PRIORITY : BYTE ; //Priority of OB Execution
OB1_OB_NUMBR : BYTE ; /1 (Organization block 1, OB1)
OB1_RESERVED_1: BYTE; //Reserved for system
OB1_RESERVED_2 ;: BYTE ; //Reserved for system
OB1_PREV_CYCLE : INT; //Cycle time of previous OB1 scan (milliseconds)
OB1_MIN_CYCLE : INT ; //Minimum cycle time of OB1 (milliseconds)
0OB1_MAX_CYCLE : INT ; //iMaximum cycle time of OB1 (milliseconds)
OB1_DATE_TIME : DATE_AND_TIME ; //Date and time OB1 started
p1:BOOL;
p2: BOOL ;
p3: BOOL ;
p4 . BOOL ;
p5: BOOL ;
stab : BOOL ;
END_VAR
BEGIN
NETWORK
TITLE =n1
/IReinicializa a rede de Petri.
"Initial_Marking";
#pt,
#p2;
#p3;
#p4,
#pb,
"compressor_A_running";
"compressor_B_running";
NETWORK
TITLE =n2
ffCaso alguma transicio tenha disparado, a variavel de estabilidade deve ser
{freinicializada para informar scbre a ocorréncia do dispare.
LO01: R #stab;
NETWORK
TITLE =n3
//Verifica se a transig&o t1 & disparavel. Se for, realiza-se o disparo e
Hatualizam-se os pré e pos lugaes da rede.
I/ transition t1
A #p4;
AN #p1;
A "pressure_lower_6.1_bar";

ADODNIODIODAD>

69

R #p4;
S #p1;
S d#stab;
NETWORK
TITLE =n4
/Nerifica se a transigéo 12 é disparavel. Se for, realiza-se o disparo e
/latualizam-se os pré e pos lugaes da rede.
{! transition t2

A #p1;
AN #p5;
A "pressure_lower_5.9 bar";
R #p1;
S #p5;
S #stab;
NETWORK
TITLE =n5

/Verifica se a transicao t3 ¢ disparavel. Se for, realiza-se o disparo e
/fatualizam-se os pré e pés lugaes da rede.
I fransition t3

A #p3;
AN #pf1;
A "compressor_B_disturbed";
R #p3;
S #p1;
S #stab;
NETWORK
TITLE =n6

NVerifica se a transigéo t4 é disparavel. Se for, realiza-se o disparo e
/fatualizam-se os pré e pos lugaes da rede.
I iransition t4
A #p1;
AN #p2;
AN ‘"pressure_lower_6.1_bar";
R #p1;
S #pZ;
S #stab;
NETWORK
TITLE =n7
/Nerifica se a transigdo t5 & disparavel. Se for, realiza-se o disparo e
/{atualizam-se os pré e pés lugaes da rede.
{f transition t5

A #p1;
AN #p3;
A "compressor_A_disturbed":
R #pt,
S #p3;
S #stab;
NETWORK
TITLE =n8

INerifica se a transicao t6 € disparavel. Se for, realiza-se o disparo e
ffatualizam-se os pré e pds lugaes da rede.
i/ transition i6

A #pb;

AN #p3;

AN "pressure_lower_5.9_bar":

R #p5;

S #p3;

S d#stab;
NETWORK
TITLE =ng

70

/IVerifica se a transigéo {7 & disparavel. Se for, realiza-se o disparo e
/fatualizam-se os pré e pés lugaes da rede.
i transition t7
A #p3;
AN #p4;
AN “"pressure_lower_8.1_bar"
R #p3;
S #p4
S #stab;
NETWORK
TITLE =n10
/N erifica se a transicéo t8 & disparavel. Se for, realiza-se o disparo e
fatualizam-se os pré e pos lugaes da rede.
/l transition t8

A #p3;
AN #p5;
A "pressure_lower_5.9 bar"
R #p3;
S #p5;
S #stab;
NETWORK
TITLE =n11

/N erifica se a transigéo 19 é disparavel. Se for, realiza-se o disparo e
/fatualizam-se os pré e pds lugaes da rede.
! transition t9

A #p2,
AN #p3;
A "pressure_lower_6.1_bar";
R #p2;
S #p3;
S #stab;
NETWORK
TITLE =n12

//Se alguma transigao foi disparada, tem-se stab=1. Logo realiza-se o jump.
/f Check stability variable
A #stab;
JC L0O1;
NETWORK
TITLE =n13
//Se o lugar p1 estiver marcado, envias-se o(s) sinal(s) de saida
flcorrespondeste(s) a ele.
{l ptace p1
A #p1;
S ‘“compressor_A_running";
R "compressor_B_running";
NETWORK
TITLE =n14
//Se o lugar p2 estiver marcado, envias-se o(s) sinal(s) de saida
lfcorrespondeste(s) a ele.
{/ place p2
A #p2;
R "compressor_A_running";
R ‘"compressor_B_running";
NETWORK
TITLE =n15
f/Se o lugar p3 estiver marcado, envias-se o(s) sinal(s) de saida
{/lcorrespondeste(s) a ele.
/I place p3
A #p3;
R "compressor_A_running";

71

S "compressor_B_running";
NETWORK
TITLE =n16
/fSe o lugar p4 estiver marcado, envias-se o(s) sinal(s) de salda
flcorrespondeste(s) a ele.
/f place p4
A #p4;
R "compressor_A_running"”;
R “compressor_B_running";
NETWORK
TITLE =n17
//Se o lugar p5 estiver marcado, envias-se 0(s) sinal(s) de saida
Hcorrespondeste(s) a ele.
/f place p5
A #pb;
S "compressor_A_running";
S compressor_B_running";
END_ORGANIZATION_BLOCK

72

ANEXO C - Cadigo em IL gerado pela ferramenta

Codigo em /L gerado pela ferramenta para programacéo da Estagao de

Montagem do MiniCIM, referente ao estudo de caso apresentado no item 4.2.

ORGANIZATION_BLOCK "Cycle Execution"
TITLE ="Main Program Sweep (Cycle)"
VERSION :

VAR_TEMP

OB1_EV_CLASS : BYTE ; //Bits 0-3 = 1 (Coming event), Bits 4-7 = 1 (Event class 1)
OB1_SCAN_1: BYTE ; //1 (Cold restart scan 1 of OB 1), 3 (Scan 2-n of OB 1)
OB1_PRIORITY : BYTE ; //Priority of OB Execution

OB1_OB_NUMBR : BYTE ; //1 (Organization block 1, OB1)
OB1_RESERVED_1: BYTE ; //Reserved for system

OB1_RESERVED_2 : BYTE ; //Reserved for system

OB1_PREV_CYCLE : INT ; //iCycle time of previous OB1 scan {milliseconds)
OB1_MIN_CYCLE : INT ; //Minimum cycle time of OB1 (milliseconds)
OB1_MAX_CYCLE : INT ; //Maximum cycle time of OB1 (milliseconds)
OB1_DATE_TIME : DATE_AND_TIME ; //Date and time OB1 started

! variaveis do programa gerado a partir da rede de Petri.

LO:BOOL;
L1:BOOL;
L2:BOOL;
L3:BOOL;
L4:BOOL,;
L.5:BOOL,;
L6:BOOL;
stab:BOOL,;

END_VAR

BEGIN

NETWORK

TITLE =

/ (Re)inicializa rede de Petri
A 112.3;
R #L.0;
R #L1;
R #L2;
] #13;
R #L4;
R #L5;
R #L6;

NETWORK

TITLE =

LO01: R #stab;

NETWORK

TITLE=

!/ Transition TQ
A #L3;
AN #L0;
A 112.0; /X
R #L3;
S #LO;

73

S #stab:

NETWORK
TITLE =
{l Transition T1
A #LO:
AN #L1;
AN #L4,
A 116.6; /X
R #L0;
S #L1;
S #L4,;
S #stab;
NETWORK
TITLE =
/f Transition T2
A #L1;
A #l6;
AN #L2;
A M2.2; IX
R #L1;
R #1.6:
S #1L2;
S #stab;
NETWORK
TITLE =
/f Transition T3
A #L2:
AN #L3;
A 116.4; /X
R #L2;
S #1.3;
S #stab;
NETWORK
TITLE =
/I Transition T4
A #L4;
AN #L5;
A 120.6: /X
R #14;
S #L5;
S #stab;
NETWORK
TITLE =
/I Transition T5
A #L5;
AN #L6;
A 120.7; X
R #L5;
S #L6:
S #stab;
NETWORK
TITLE =
/] Check stability variable
A #stab;

74

JC

NETWORK
TITLE =
/f Place LO
A
S
S
R
S

NETWORK

TITLE =

// Place L1
A
R
R
R

NETWORK
TITLE=
/f Place L2

nwaozLLLWY

NETWORK
TITLE =
/ Place L3

WTTDDNWITDODNN>

NETWORK
TITLE =
// Place L4
A
s

NETWORK

TITLE =

/l Place L5
A
S
R

NETWORK
TITLE =

LOO1;

#LO;

Q16.5;
Q16.1;
Q12.1;
Q16.2;

#L1:

Q16.5;
Q16.1;
Q16.2;

#L2;

Q16.4;
Q16.0;
Q16.3;
Q20.4;
Q20.1;
Q20.0;

#L3;

Q16.4;
Q16.0;
Q18.2;
Q16.3;
Q12.1;
Q20.5;
Q204
Q20.1;
Q20.0;
Q20.2;

#L4;
Q20.5;

#L5,
Q20.1;
Q20.5;

"X
X
IX
X

X
X
X

X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X

H#X
X

75

/f Place L6
A #L6;
R Q20.2; #X

END_ORGANIZATION_BLOCK

76

RESUMO

Neste relatério, procurare-se expor todos os avangos obtidos na
elaboracdo da documentagdo, casos de uso, pesquisas bibliograficas e
implementag&o do software para geragao de massas de teste. No capitulo de
resumo tedrico, colocam-se alguns concsitos pesquisados e que servem
como base para o desenvolvimento do software. Ha uma discussio sobre os
tipos de teste mais comuns, como caixa-preta e caixa-branca. Também
abordamos algumas linguagens préprias existentes, qualidade de software
representada pelo conceito de co-standard e uma discussdo um pouco mais
genérica sobre o teste em si: seus objetivos, a forma como pode ser
encarado, como pode ser conduzido e fatores de sucesso e fracasso para o
teste. Evidentemente que toda essa discussdo serd cercada pelo tema
principal de nosso trabalho, ou seja, a geracdo de massas de teste. Em
resumo, propoe-se aqui, desenvolver um software capaz de gerar massas de
teste adequadas para condugéo futura de homologagdes. Em geral, o teste
de um software, em ambiente profissional ou ndo, se resume a geragdo de
uma massa de teste genérica e verificagdo de algumas funcionalidades
basicas, em especial, aquelas que interagem diretamente com o usudrio. Tal
metodologia resulta em produtos que atendem parcialmente os requisitos ou
apresentam problemas durante sua vida Giil. Além disso, ha manutengéo,
retrabalho e descontentamento por parte do usuério. O software proposto
fara a verificagdo de como o alvo do teste lida com as entradas e se as
saidas sao satisfatorias (teste caixa-preta). Em anexo, temos todos os casos
de uso desenvolvidos, j4 com exemplos de telas,. Casos dentro do escopo

deste trabalho sdo apresentados e discutidos.

Palavras-chave: Engenharia de Software. Testes. Massa de Testes. Java.
Casos de Uso.

Abstract

At this report, we try to expose all of the advances concerning documentation,
use cases, bibliographic research and program implementation. In the chapter
of theorical briefing, there are some concepts investigated that were the base
for the software development. We discuss about the two principal types of
tests: Black box and White Box. We aiso discuss about software quality,
represented by the concept of co-standard and a more generic approach on
software test: Objectives, the way it can be faced, how can we conduct it and
which are the factors of success and failure. To sum up, we seek for the
creation of a software capable of generating a reliable and relevant mass of
test used for homologation. Nowadays, mass of tests are creaied without
professional parameters, just for the test of basic functionalities, especially
those related with interface. This behavior results in products that just partially
meet users requirements and always have problems during its life time.
Furthermore there is always the need for rebuilding and the user getting
angry. The appendix presents all the use cases and UML diagrams developed

during our work. Cases within the scope are discussed and analyzed.

Key Words: Software Engineering. Tests. Mass of tests. Java. Use Cases

Tabela de Figuras

Figura 1 - Tela de cadastro de Projeto.........cceeeeeeeeevveeeeeeann.
Figura 2 - Tela de cadastro de Cenarios..........cccovevveveorevennnn..
Figura 3 - Tela de cadastro de €as0S......ccocovvevveeeeeeeseeeeesrn
Figura 4 - Tela de cadastro de Regrasocoevveeevvveveennn.
Figura 5 - Tela de cadastro de pardmetro.........ccoceecvvvveveennn..
Figura 6 - Tela de cadastro de constantes.........coeeevveveeveeennonn
Figura 7 - Tela de cadastro de tabelasccceeveveeeeerernenn.n,
Figura 8 - Tela de GEeragao........cceeeveeeeiveeeeeeeeeeeeeeeeeeeevee s
Figura 9 Diagrama UML - Projectoceevveeeeceeeeeeeeeeeeo.
Figura 10 Diagrama UML - Constantccocevveeeeeevevsnnnn.
Figura 11 Diagrama UML - CONCEPTeveeeerreeeeeeeere oo,
Figura 12 Diagrama UML - SCeNerycoecoveeveeeeeereeeeeeearnn.
FFigura 13 Diagrama UML - Parameter.......ccoevevveeeoveveseroan.
Figura 14 Diagrama UML - TaSK......ccvceemeeeeeeeeeeeeeeserseess o,
Figura 15 Diagrama UML - RUIScooveeeeeeeee e
Figura 16 Diagrama UML - Geracdo da Massacceeeveuvvnnnsn.
Figura 17 Diagrama UML — Tela Principalocoovevervveernnnn
Figura 18 Diagrama UML — Qutras Classesccoeevvveveven.nn,
Figura 19 Diagrama UML — Dadosooreeeeeveveveeeeeesiernseen o

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

SUMARIO

LR e e TS 7
2. RESUMO TEONICO ovvvoveneeveescereeeeeseae oo oo oo 8
2.1 ODJetiVO dOTBSEE ...t oo 10
2.2 TIPOS 08 1ESLE.....uuveveeeceerereee oo oo 11
2.3 Particularidades da divisdo da programacao de softwares 12
8. O SOfWATE......oree et e 14
3.1 Estratégias de IMPIEMENMAGED ... 15
3.2 MOdulo de Cadastro...........oecuvuuereeeeeees oo 16
8.3 Moduio de gerag&o de massa de teStes...........vvnmvern oo 22
4. DIagramas UML.......uvvueeceeieeeeeeenneeeeneeeessees s oo 22
5. RESURAUOS......eeooeet e eeeseee oo 35
6. CONCIUSEO......oom vttt 38
7. BIDNOGIAMA. ...oo.oeeoev e 39
APBNTICE T oo 40

1. Introducgéo

O presente trabalho tem por objetivo apresentar aliernativas para
testes de software, campo vasto e ainda pouco explorado devido a
precariedade de estudos e materiais sobre 0 assunto.

Nosso foco se dara na geragdo de massa de testes. Atualmente, a
geracdo da massa de testes é feita de modo pouco profissional, por nao
dizer, amador. N&do ha nenhum método na selegido dos registros que serdo
retirados da base e usados no teste. A ndo ser que haja um ambiente de
homologagdo, os dados s&o escolhidos, normalmente, por serem os
primeiros da tabela. Tal metodologia resulta em produtos gue atendem
parcialmente os requisitos ou apresentam problemas durante sua vida atil.
Além disso, ha manutencdo, retrabalho e descontentamento por parte do
usuario. Mas como garantir que tais dados sao realmente relevantes? Como
garantir que a carga de registros utilizada é suficiente? Por outro lado, como
garantir que a massa de testes gerada ndo & excessiva e que esforgo e
dinheiro estéo sendo desperdicados? Enfim como garantir que a massa de
testes fornecera condigdes para um teste satisfatorio?

Neste momento pode-se expandir a discussdo. Uma primeira
abordagem que deve ser compreendida por desenvolvedores de softwares é
0 por que do ieste do software. A grande maioria dos desenvolvedores
acredita que o objetivo do teste de software é provar que o mesmo funciona,
mas isso € um grande erro. Ao se tentar verificar que uma simples conta de

soma realmente estd correta, precisamos verificar se todas as somas

possiveis estdo corretas, afim de garantir cem por cento de certeza, o que é
simplesmente invidvel. Assim, conclui-se que o foco do teste esta errado. O
verdadeiro objetivo do teste de software nido é provar o que funciona
corretamente, mas sim encontrar erros, também chamados de Bugs. E neste
ponto que uma massa de testes gerada com parcimdnia ajuda no teste.
Alguns criticos propalam que o teste de software pode consumir um
tempo excessivo do projeto, aumentando de forma desproporcional o custo
do mesmo. Porém € comprovado que um teste profissional, orientado,
conduzido durante todo ¢ projeto e, principalmente, otimizado, reduz o
retrabalho e manutengdo diminuindo os custos. Um software de geragao de
massas de testes caminha lado a iado com este conceito, pois serve como

ferramenta para a ja citada otimizagdo. A seguir detalhamento do trabalho.

2. Resumo Teorico

No curso de graduagéo em engenharia tem-se dado muito enfogue em
toda a sorte de métodos e processos de célculo que sdo essenciais para a
realizagéo de projetos de engenharia. Por conseguinte, o aluno tem um
grande conhecimento sobre Calculo Integral, Calcule Variacional, teorias de
controle cldssicas e modernas, célculo estatistico e tantas outras ferramentas
Uteis para analises numéricas sobre 0s problemas. Porém, essa estrutura
curricular tem como objetivo final formar uma mente “engenheira” .

Apesar dessa estrutura formar profissionais de altissimo nivel, o
assunto que discutiremos nesse tdpico também é de grande utilidade para
um engenheiro moderno, mesmo ndo possuindo a estrutura classica

supracitada.

Em uma primeira andlise, parece que estamos diante de um
paradigma de pouca utilidade. Porém, o uso de técnicas nao tdo focadas em
célculos e mais célculos tem se mostrado uma ferramenta poderosa na
analise de sistemas alto grau de complexidade se os aplicarmos de forma
correta em varios &mbitos do mesmo.

A caixa preta consiste de uma maquina com uma ou mais entradas
que processa uma ou mais saidas. Ela simplifica muito a analise de um
sistema, ja pensando em projetos de software, pois a fungio que ela substitui
pode ter qualquer grau de complexidade, desde um simples filtro passa baixa
em uma automagdo industrial, até equa¢des de transferéncia de calor
multidimensionais em um bloco de maotor.

z

A area da engenharia em que essa forma de pensamento é mais
utilizada € na eletrbnica. Nos primeiros microprocessadores produzidos
existiam pouco mais de 2000 transistores para serem polarizados. Por conta
disso um engenheiro daquela sabia exatamente qual o numero do transistor
deveria ser polarizado para que a légica que ele necessitava fosse feita.

Com o passar dos anos o niimero de transistores encapsulados em
um circuito cresceu exponencialmente e por conta disso ndo havia mais
como um (nico profissional ter todos os transistores do circuito integrado em
sua memoéria. Com isso teve-se que criar algumas caixas pretas para
simplificar o processo, surgindo as portas ldgicas E, OU, OQU-EXCLUSIVO e
outras para simplificar o trabalho.

Mas, com o tempo, outras caixas pretas tiveram que ser pensadas

para abstrair mais o pensamento e com isso formaram-se os flip-flops,

Unidade Logicas Aritméticas(ULA) e assim por diante. Seguindo a mesma

linha de raciocinio, podemos dizer que o grau de abstragio na programagcéo
chegou hoje as linguagens orientadas a objeto com, por exemplo, o Java, na
qual uma simples instrugdo de soma é na verdade uma caixa preta que
comanda diversos operadores 16gicos que por sua vez comandam uma serie
de transistores para realizar as operagdes.

Atraves desses exemplos podemos perceber o quanto j4 nos
utilizamos dessa ferramenta sem perceber e vimos o poder de se olhar por
através dela. Nas préximas paginas veremos como podemos utilizar esse

conceito, entre outros, na geragdo de massas de teste.

2.1 Objetivo do teste

Um assunto muito pouco compreendido por desenvolvedores de
softwares é o por que do teste do software. A grande maioria dos
desenvolvedores acredita que o objetivo do teste do software é provar que o
mesmo funciona, mas isso é um grande erro.

Se tentarmos verificar que uma simples conta de soma realmente esta
correta devemos verificar se todas as somas possiveis estdo corretas, o que
é simplesmente inviavel. Por isso vemos que o foco do teste estd errado. O
verdadeiro objetivo do software ngo € provar que ele funciona corretamente,
o verdadeiro sentido do teste & encontrar os erros do software, ou seja, os
famigerados Bugs.

Essa afirmagéo nos leva a derrubar mais um conceito sedimentado na
maioria dos desenvolvedores que é o de que “Um teste bem sucedido é
aquele que nao resulta em nenhum erro”. A forma correta de se analisar um

bom teste & pela quantidade de erros encontrados, e quanto mais erros

10

melhor! Assim temos que perceber que um teste que nao resulte em nenhum
erro foi um teste ruim, pois gastou tempo de desenvolvimento e néo agregou
valor ao projeto.
Devemos também sempre nos lembrar que as caracteristicas basicas
que norteiam os testes sao:
* O software deve atender integraimente aos requisitos do cliente
e Um teste completo é impossivel
e Deve-se testar primeiramente pequenas fungdes isoladas, para depois
testarmos maddulos completos.
¢ Sempre que possivel os testes devem ser projetados e realizados por

pessoas nao envolvidas em sua programagcao.

2.2 Tipos de teste

Ha uma grande gama de tipos de teste, todos buscando cobrir a maior
qguantidade de casos de software. Testes de Integracdo, Testes de Stress,
Testes de Func¢do... todos sendo utilizados de acorde com a necessidade do
usuario. Porém, ha duas estratégias de teste reconhecidamente universais e
comumente utilizadas, independente do tipo de teste que se esta conduzindo.
Séo elas Teste Caixa-Preta e Teste Caixa-Branca. A seguir um pequeno

resumo destas duas estratégias, e como se relacionam com nosso programa.

a) Teste Caixa-Preta: O teste caixa preta consiste em uma verificagdo de
fronteiras do software. O testador fornece as entradas necessdrias e espera
pela saida, comparando com a esperada. Se h& qualquer problema, o

usudrio pode verificar se a entrada estd contaminada. Em caso negativo, o

11

problema & interno e outros testes deverdo ser conduzidos. Nosso software
permite ao testador gerar bases de dados para este tipo de teste, basta

apenas cadastrar um cendrio que contemple apenas as fronteiras.

b) Teste Caixa-Branca: O teste caixa branca é mais invasivo do que o caixa
preta, exigindo do testador mais tempo, conhecimenio do codigo e
experiéncia em teste de software. Neste caso, todo o c6digo do programa
sera varrido. Limites de fungbes serdo testados, relacionamentos,
acessibilidade... Em 0ltima analise, podemos encarar o teste caixa branca
como uma sucessao de “n” testes caixa preta em menor escala. E neste tipo
de teste que se encontram erros de légica e sintaxe, j4 apontados no teste
caixa preta. Para gerar massas de teste para este tipo de aplicagdo, o
usuario deve cadastrar como cendrio apenas a fungdo ou conjunto de

fungbes alvo, trabalhando da mesma forma gue no caso anterior.
2.3 Particularidades da divisdo da programacéo de softwares

Nos dias de hoje a maior parte dos projetos desenvolvidos s&o
elaborados por mais de uma pessoa ao mesmo tempo, 0 que é de grande
valia quando pensamos que todas as pessoas que estdo colaborando unem
seus esforcos em prol de um objetivo comum. Essa afirmagio vale para
todas as dreas de atuagdo, tanto em uma mesa de cirurgia, onde diversos
profissionais trabalham de diferentes formas ao mesmo tempo, quanto na
elaboracéo de um projeto cientifico. Mas serd que essa mesma afirmagéo é

correta na elaboragéo de softwares?

12

E indtil tentar supor que tal afirmagao néo seja valida na construgio de
software, pois ndo ha como imaginar como uma Unica pessoa poderia
desenvolver sozinha um sistema com mais de algumas mil linhas de cédigo,
gue dira, entdo, um programa como um sistema operacional que
normalmente apresenta algumas dezenas de milhdes de linhas de cédigo.
Portanto, vamos tentar provar que é possivel a unido de diversas pessoas na
programagéo de um dnico software, mostrando abaixo como fazer para que
iss0 seja possivel.

O principal problema que uma equipe de programacéo pode enfrentar
durante um projeto é como garantir que toda a equipe escreverd um cédigo
que tenha sentido quando unificado e como garantir que a linguagem que
uma pessoa esti utilizando para escrever seu cbdigo segue o mesmo
principio da linguagem utilizada pelo resto da equipe. Para que isso seja
possivel é necessario que se estabelega alguns parametros bésicos antes da

equipe sair escrevendo cédigos isoladamente, como veremos abaixo:

A)Linguagem Padrdo: Uma linguagem padrido especifica a sintaxe e a
semantica de uma linguagem de programagdo (por exemplo Cobol, Ada,
C++) ou em uma linguagem de sistemas (por exemplo SQL). Um padrao de
finguagem & composto de um conjunto de regras de sintaxe que informam
como devemos nomear as varidveis que serdo utilizadas, qual sera a
estrutura de dados que sera utilizada, quais mneuménicos serdo utilizados
dentre outras regras que fardo com gue cada programador saiba faciimente
ler os codigos escritos por seus colegas e saiba como integrar esses c6digos

com 0 menor retrabalho possivel.

13

B)Protocolo Padréo: O protocolo padrio especifica para os programadores
qual deve ser a estrutura de envio e recebimento de mensagens que deve
ser utilizado quando tivermos que fazer dois sistemas diferentes se
comunicarem automaticamente, isso evita que cada programador crie seu
proprio protocolo o que faria com que em um mesmo sistema diversos
protocolos diferentes fossem utilizados aumentando a complexidade do
software desnecessariamente e fazendo com que 0 mesmo programado
tivesse que programar tanto o envio das mensagens como o recebimento das

mesmas.

C) Bibliotecas Padrfes: A estipulagio de bibliotecas padrdes é necesséria
para evitar que inconsisténcias de falta de biblioteca ocorram entre os
programadores assim, se estipulam quais‘ bibliotecas poderao ser utilizadas e
qual versdo das mesmas serdo utilizadas. Dessa forma, qualquer recurso que
um programador precise e nao esteja nas bibliotecas devera ser escrito como
uma fung&o do programa, fazendo com que qualquer programador da equipe

possa compilar o programa sem erros dessa ordem.

3. O Software

O software se divide em, basicamente, dois moédulos: Telas de
cadasiro e Nucleo de geracédo de massas de testes e criagdo do arquivo de

saida. Porém, antes de explicitar o comportamento de cada mddulo, cabe

ressaltar a estratégia de imlementaco utilizada.

14

3.1 Estratégias de Implementacao

Os dois modulos foram construidos baseados no modelo de trés
camadas, ou seja, classes especializadas que se comunicam por um
DataObject. O DataObject consiste em uma classe formada apenas por
‘getters” e “setters”, responsavel pelo transporte de dados entre as camadas
e com © banco de dados.

As camadas se apresentam da seguinte forma:

A) Camada de Dados: Formada por classes responséveis pela comunicagéo
com banco de dados, se valendo dos dados do DataObject. Todas as classes
gue necessitam de informagbes do banco de dados devem acionar sua

respectiva camada de dados.

B) Camada de Negécios: Camada intermediaria, possui toda a inteligéncia do
aplicativo, seja em termos de cadastro, seja represeniando o “core” do
programa. Recebe os dados e requisigbes da camada de interface através do
DataObject e os trabalha disparando requisi¢bes para a camada de dados,

tanto de insergdo quanto de consulta, delegédo ou alteragéo.

C) Camada de interface: Essa camada faz toda a interagdo com o usudrio,
transmitindo as informagbes fornecidas por este. Estas informagbes podem

ser dados, como nomes ou valores ou requisigdes como salvar ou deletar.

As vantagens deste modelo se encontram na garantia da consisténcia

dos dados, que trafegam através de uma classe especifica, da garantia de

15

qualidade do banco de dados que tem seu acesso controlado pela classe de
dados e, principalmente, pelo desacoplamento de fungbes que permite que
se fagam manutencdo ou upgrades em determinadas classes e fungdes sem

necessidade de altera¢éo de todo o cédigo.

3.2 Médulo de Cadastro

O programa encadeia informagdes de cadastro com dois objetivos. O
primeiro é montar uma imagem légica do banco de dados que o usuério
usara como fonte para a massa de testes. O segundo consiste na construgao
dos cenérios de testes pretendidos pelo usuério, entendendo quais séo os
objetivos e, consequentemente, selecionando os registros mais adequados. A

seqUéncia de cadastro € a seguinte:

1) Cadastro do projeto

Usuério cadastra o projeto e 0 caminho para o banco de dados usado.

16

£ : — —— Lok
Action Select Project Tools Help
=] Tasty

Progst Nore

. Cornection Path to the Base FmﬁopammmeRautbme

User Mame of the Base \ser bame of the Resuit Base
Password of the Base Password of the Result Base
Croate Project

Figura 1 - Tela de cadastro de Projeto

2) Cadastro de Cenario

Usuario cadastra um cendrio de testes, que sera referéncia para o tipo

de teste conduzido.

* -—-. . e s o T ——— s -—.-..._.T‘:‘.vn‘.k
Action Select Projct Tools Help
| o Tuste
i_Project 1arme_Scenery
Teske Eanco
Teshe Eantal

Project Hams: Taske
Scorery Name: Adld_Sconery

| At Cancel liuk tw Parathaters

Figura 2 - Tela de cadastro de Censrios

17

3} Cadastro de Casos

Usuéario cadastra os casos periencentes ao cenario, associados
regra de consulia

Action Seloct Project Tooks Holp
= .7 Tasta — .
Beenary Cose FRules Bingle Mubipleyer
ancy Bole alon = p Twsbs AND Wi
Senary Concept Operaticn Vahra
T R T ol R O 1]
Symtax AND OR / Teste -
Constant
Mount Fige (Testelable
Unie &
Rhuitilaver, 10
Cogo Name Rudo [v'cr Gagawili be bild hara Add Case Cancel
Al

Figura 3 - Tela de cadastro de casos
4} Cadastro de regras

Usudrio cadastra regras associadas aos casos, que os especificam e
personalizam.

18

= -
Action SelectFraject locls Help
M e
Ccenery
Bance
Scenesy ,Danco
Casg {'I’lncw
Rl Hane |

tTastapy

. ek

K ™ Lagiz g
meshetiad RO=p Tese OR Ssiag_asl Quips

Concepl Ot ation Vo

fum_Conta I, o - *
Parameter

Symtax AND oR Tonta
Constanl
Mount Fule [TesteTatie
| Outputs. Outputs.
Aner || peiere

Bumten

Figura 4 - Tela de cadasiro de Regras

5) Cadastro de parametros

Usuario associa nomes a conjunto de valores que serdo largamente

utilizados, poupando trabalho de recadastro.

= — e ~ -
b — - -
[Actin SetectProject Tows Help
= [Teste
Faranmeer Nams_ Parameter Tupa
Parameters
Namo Wokug
e
Tye o
Wntnges > Add Parameter

Tinish

Buton

Figura 5 - Tela de cadastro de parametro

6) Cadastro de Constantes

19

Usuario atribui nome a um parémetro largamente utilizado. Espécie de

fungéo Define.

= — — - —JoE
Action Select Project Tools Help
o= [Teste
| Hame Type Valta
TeslTable ntages 1 -
_TF!P _"}1!!; 17
| |
|
[
I
I |
1=
Mama Valua
Typa Name Here, -
Tyre
[T = Adas
intoger | | And Constant
Lot
| JEmtont

Figura 6 - Tela de cadastro de constantes
7) Cadastro de Tabelas

Usuario descreve légicamente o banco de dados utilizado como fonte.

20

"Action SetoctProjct Tools Holg

=ETeste S TN W e

Tobie Mame | Trpe |__Mopping Table | Mapping Fleld

humn_Conta Antpger eonta MNum_Conls

Nome Tiular Sting [onts Noms_Tauier

Sada~ misgereora Baido__

Agemia (Inl=ger Fun:a Agencla

Namg Tiwlar? Bting lienita Moms_Thular?

= _ntager cliente H

Enderaco. ___;Sieng tlienle Endereca

Ed_a_de [Coue's [eliente Idade

iName _Titulard igting aplicacan Homa_Thulard

Bumearg_apli: ntager splicacas Mumer_spic

Noma_aplic Bhtng laplicacan Homa_apic

Baklo_sphc [Dozrioa __[oplicacnn Sakdo_spl:

Noeie Tatte !:_

Tope [inegor I=]
Mappg Table | 1.0 —

Tatia . Flald

[_ iﬂ"— -: ECI;:; Aot Detate

Duiton1

Figura 7 - Tela de cadastro de tabelas

8) Tela de Geragéo

Permite ao usudrio selecionar os cenérios a serem considerados na
geragéo da massa de testes.

Actin SelectProject Tools bew E __ E _E

[= 3 Teste
[_ Brenery Oplion Croose |
Baneo_ S E:f ol
[Bancaz - - i
bl
= e v
1
e — |
- e
pr—— n»l
- ol
| |
l— o
- = | {
L L= lal od
| |'
File Hamo E | Genorate Mass of Test

I Buttond

Figura 8 - Tela de Geracio

3.3 Modulo de gerag¢ido de massa de testes

Este é o core do programa. A primeira parte é composta por fungdes
responsaveis pela leitura e quebra das Strings de regras e casos, gerando
informagGes que compordo a consuita. Assim, a regra é quebrada em
tabelas, conceitos, valores operagdes e operadores légicos sendo gravada
em vetores de Strings.

Em seguida, todas as tabelas sdo reclassificadas no vetor por ordem
alfabética e as fungbes de montagem sdo chamadas. Essas fungbes
remontam as regras na forma de chamadas sql. Para tanto conectam-se as
regras de casos e suas regras personalizadoras através da varidvel fbgica
“and”.

Com a chamada montada, procedemos com a consulta e os registros
encontrados, advindos das regras cadastfadas, sé@o gravados em um arquivo
txt, que sera disponibilizado para ¢ usuario.

Em resumo, o programa tem duas utilidades. A primeira delas é a de
orientag@o na formulagéo dos cenarios de testes. Procura-se automatizar e
padronizar o processo, fazendo com que o usuério pense e estude quais
cenarios s&o relevantes a sua pesquisa e qual serd a estratégia de testes.

Além disso, através de cadastros simples, montam-se consuitas
complexas na base de dados, facilitando e garantindo gue a massa de testes

gerada realmente é adequada para aquele determinado caso.

4. Diagramas UML

22

Apresentam-se aqui os diagramas UML que deram origem ao software,
gerados a partir dos casos de uso construidos. Ha dois tipos de diagramas: O
diagrama de classes, que explicita as classes com seus atributos e métodos,
além das interrelagdes existentes e o diagrama de dados gue mostra a légica

e as relagbes do banco de dados construido para o programa.

23

¥C

19foxy - TN vwreadelq ¢ eandig

§¢

Juepsuo]) - TN eweadel(y ¢ eansiy

9T

1d20u0)) - TN eweade 11 vIngiyy

LT

£33u30¢ - TINN ewresdeyq 71 emsSg

8¢

JppmeIey - TN tweidelq ¢ vnsly

6T

¥seL

- TINN eweldelq 1 eandiy

0€

amy

TN wwerseiq $1 eandyg

[

i
ESSEIA] BP ORIRIdD) - "TIAIN vwieadelq 9] emSry

(43

edpuig ep

= "PIN(eweageq L] vy

£t

53s5€[D) sennQ - TIAN) eweaSel 81 vandiy

12>

sope(y

TN eweadeiq 6] eandiy

5. Resultados

Como resultado, espera-se que apds o cadastro dos cendrios, o programa
seja capaz de gerar um arquivo txt no formato “CVS", ou seja, exportavel para
Microsoft Excel, com os regisiros relevantes para o caso de teste em
questao. Para avaliag&o da efic4cia da solugdo, foi gerada a seguinte base de

testes:
mysgql> describe cliente;

varchar<3a>
int{18)
varchar{(38)>
decimal<3.,8>

Mome_Titular
G

Endereco

4 e e 4
$ == b a4
o ==

b 4 e a e
+

Figura 20 - Tabela do banco de testes

Esta tabela possui os seguintes registros:

35

Rafacl

Carlos

Jose

Renato 4 Araios

Marta 53 | Araios

Eliana Araio

Andreia Araio

Juliana Arai

Clara Ara

Luana Araio

Canila Araio

Silvia Araio

Annelise i Araio

Raquel Araio

Andre . Araios

MArcio 25 Araios

Igor ! Araio

Alberto A 253 Araio

Sandra 25 i

Dehora

Renato]

Rogerio

Ualter

Ivany

Aldo

Aracy

Luis

Helena Arai
Arai
Arai

L N R L N0 T KT T

WWWwwwiww

Fernando

Giovanna

Marcela

Luiza

Rodwigo) Araio
Maria 2 Araio
Anderson i Arai
Jose 253 Ara
Antonio

Carolina

Tulio

Figura 21 ~ Registros
No programa foram inseridos no caso de teste as seguintes regras:

Cenario: Cliente

Caso: Maior de Idade (Constante cadastrada)
Regra_Caso: Idade > 18;

Regra: RG = 1253 (Parametro cadastrado)

O arquivo resuitante foi:

Your Case was descripted as:

Select * from cliente where idade > 18 and (RG = 1253)

And the significant registers for this case are:

‘Nome_Titular','RG','Endereco','idade’,

'‘Eliana’,'1253",'Araioses’,'19','Juliana’,' 1253','Araioses','20",'Clara’,'1 253','Araio

ses','21','Luana’,'"1253','Araioses','22','Camila’,'1253','Araioses’,'23",'Silvia','"125
3','Araioses’,'24','Annelise','1253','Araioses','25','Raquel’,'1 253','Araioses', 26",
Andre','1253",'Araioses’,'27','MArcio','1 253','Araioses’,'28','Igor','"1253','Araiose

s','29','Alberto’,'"1253",'Araioses’,'30",'Sandra’,'1253','Araioses','31','Debora’,'1 2

53','Araioses’,'32','Renato]','1253','Araioses’,'34','Rogerio’,'1 253", 'Araioses','35'
,'Valter','1253','Araioses’,'36', Ivany’,'1253",'Araioses','37','Aldo’,'1253' 'Araiose

s','38','Aracy','"1253','Araioses','39",'Luis','1253','Araioses’,'40','Helena’,'1253''A
raioses','41',’Renata’,'1253','Araioses','42','Miguel',"1253",'Araioses', 43", 'Ulisse
s','1253','Araioses’,'44','Tiago','1253",'Araioses', 45", Fernando’,'1 253','Araioses
,'46','Giovanna','1253','Araioses','47','Marcela','"1253",'Araioses','48', Luiza',"12

53','Araioses’,'49','Rodrigo’,'1253','Araioses’,'49','Maria','1253','Araioses’,'50','A
nderson’,"1253','Araioses’,'51','Jose’,'1253','Araioses','52",'Antonio’,'1253','Arai

oses','53','Carolina’,'1253'",'Araioses','54, Tulio’,'1253",'Araioses’,'55','Cassio’, "1

253''Araioses','56', Wagner','1253','Araioses’,'57','Nelson','1 253','Araioses’,'58'
,Gabriel','1253','Araioses’,'60','MArina’,'1253','Araioses','61'

Em seguida foram inseridos:
Cenario: Cliente
Caso: Meia |dade
Regra_Caso: Idade > 30 (Valor inserido);
Regra: Nome_Titular = Tiago (Constante cadastrada)

O arquivo resultante foi:

Your Case was descripted as:

37

Select * from cliente where idade > 30 and Nome_Titular = ‘Tiago'

And the significant registers for this case are:

‘Nome_Titular','RG','Endereco','idade’,
'Tiago','1253','Araioses','45",

6. Conclusao

Em vista da escassez de material sobre o tema, acredita-se no pionerismo
deste trabalho, bem como na aplicabilidade nos mais variados casos de teste.
Bem utilizado, o programa pode apresentar ganho para o testador, tanto em
termos de tempo quanto em termos de eficiéncia. Deixa-se como sugestio
para melhorias futuras, a saida do programa como uma planilha Excel ou
apenas os D dos registros, para que o UsUArio possa se conectar em seu
banco de dados pelo préprio programa e buscar os registros. Além disso,
pode-se mapear automaticamente o banco de dados do usudrio, incluindo as
relagles entre tabelas, fazendo com que se possa incrementar ainda mais a

complexidade das consultas sql.

38

7. Bibliografia

BARRETTO, M. P., Notas de Aula — PMR2490, Sao Paulo, 2005

BEIZER, Boris. Software testing techniques. 2nd ed. New York : Van
Nostrand Reinhold, 1990

DE MILO, Richard A. Software testing and evaluation. Menlo Park : The
Benjamin Cummings Publishin Company, Inc, 1987

HETZEL, William C.The complete guide to software testing. 2nd ed.
Mass. : QED Information Sciences, 1988

KANER, Cem. Lessons learned in software testing : a context-driven
approach. New York : Wiley, 2002

MILLER, Edward. Software testing & validation techniques : tutorial.
2. Ed. New York : leee, 1981

MYERS, Glenford J.The art of software testing New York. New York:
Editora Wiley. 1979

PERRY, William E. Effective methods for software testing. New York :
Wiley, 1995

PERRY, William E. Effective methods for software testing. 2nd ed.
New York : Wiley, 2000

POSTON, Robert M. Automating specification-based software testing.
Los Alamitos, Calif. : IEEE Computer Society Press, 1996

PRESSMAN, R. S.. Engenharia de Software. Sdo Paulo: Bookmark, 2005

ROYER, Thomas C. Software testing management : lif on the critical
path. Englewood Cliffs : P T R Prentice Hall, 1993

SIEGEL, Shel. Object oriented software testing : a hierarchical
approach. New York : Wiley Computer Pub., 1996

39

Especificacdao de Casos de Uso para
nome da iteracdo

GMT — Data Generator

Apéndice 1

USP::Poli::Mecatrénica/PMR2550

Versao 4.0

40

GMT — Data Generator Versdo 4.0

GMT Data: 11/12/2006

Casos _de uso.doc

Historico das Revisfes

Data Versio Descrigédo Autor
15/06 1.0 Descricdo dos casos de Uso | Renato Albolea
apods o detalhamento do mesmo. | Rodrigo Papetti
13/07 2.0 Revisdo dos Casos de Uso, | Renato Albolea

apds reuniao com professor | Rodrigo Papetti
Marcos Barretto

07/09 3.0 Reviséo dos GCasos de Uso, | Renato Albolea
apds implementagao parcial do | Rodrigo Papetti
protétipo

20/11 4.0 Revisao dos Casos de Uso apés | Renato Albolea
implementagdo e testes do | Rodrigo Papetti
Protétipo

42

GMT — Data Generator Verséo 4.0

GMT Data: 11/12/2006
Casos_de uso.doc
indice
ESPECIFICACAO DE CASOS DE USO PARA NOME DA ITERAQA'O 41
LYo 127 Vo o TR 43
1.1 OBUETIVO .ottt et sttt ce st eees e ene s et eeesse 43
2 CONCEITOS GERAIScoomimresmitremresnsseemssssseeeeeemsessmssssesssessssesesesemee e eses e 43
2.1 DICIONARIO DE CONGEITOS «.vuvueurucuaeerieeeeeeeseeeessssseessesessseses s e eeeeoeeen 43
2.2 TECNOLOGIA UTILIZADAuruemerereecrscteesceeeaeseemeeseeeseesses e oo eeeesoeeeees s 43
2.3 SISTEMA DE CADASTRO -.eucuuerreerarsirareac s sscsseseseseeeesmssessssses s ee s eeeeeeeeseeeesees s 43
2.4 SISTEMA DE GERAGAO.....ccucururirieeee et setetscemseeseeesssees st s sses s oo eeseseeee oo 43
3 ADICIONAR PROUJETO — GMTOOcvuereeeerereeeseeseeesmesesessesssseeseseessee s eeeemess 43
3.7 BREVE DESCRIGAO....eeuurcriueurrerereseretreeeeeeseseeetesesessstse s et sessesesee e eeee 43
B2 ATORES...ciuitirteemcesis sttt st ses st e stss s s eee s e ee st eeee et eeeee e 43
3.3 PRE-CONDIGOES......oceititrieeerteresecectesee st see s seseeesee e et eeee oo e 43
3.4 FLUXO DE EVENTOSooeteriiircereees e e veseessseese s ssese e ses e s s 43
34T FIUXO BASICO. ... 43
3.4.2 FIUX0S ARBIMALVOSovoiveeeeeece oo 43
3.4.3 Requerimentos ESPECIAIS.c.wuceeveeeeeeeseeeeeeeeeeeoeeoeeoooooooo 43
3.4.4 PGS-CONAIGOOScvirereeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeoeeooo 43
3.4.5 PON0S A8 EXIONSEOovueeeeeeeeoooeeeeeeeeeeeeeeeeeeeeoooooo 43
4 ADICIONAR, ALTERAR, EXCLUIR CONSTANTES — GMT002..c..nooooooooo 43
4.1 BREVE DESCRIGAO.. ..o uierieerreresssctesseecesseesesseeeeeesiesees e ees s oo eeeeeeesesee s 43
A2 ATORES...oieietecsctt ettt e e s e e ee s 43
4.3 PRE-CONDIGOES......ccemrtrtereararereeeescaeteeseeseseee st esessseeesese e e oo e oo 43
4.4 FLUXO DE EVENTOS w.ootvieeceeecistececeer et e s et 43
44T FIUXO BASICO.........o.eeveee e 43
4.4.2 FIuxos AIEINALIVOSc.oooeeeereereeeeoreeeeeeeeeeeeeoeeeeeeeeo 43
4.4.3 Requerimentos ESPECIAIS.cooveoeveeeeeeeeeeeeeoeooooo 43
4.4.4 POS-CONAIGORS ... 43
4.4.5 PONIOS d@ EXIONSAQv...eeeeeeoeeeeeseeeeoeeeeeeoeeeooooooo 43
5 ADICIONAR, ALTERAR, EXCLUIR CONCEITO~ GMTO03ooee oo 43
9.1 BREVE DESCRIGAC. ... utreecueiets et ettt et e een s e ees e eees s 43
D:2 ATORES. ittt ciscec sttt et e e e e et e ee e ee e 43
5.3 PRE-CONDIGOES.comiritreueeete et et eee e 43
5.4 FLUXO DE EVENTOS ..ottt eem oot et 43
54,1 FIUXO BESICO...........coeeeereeeeseeeeeeeeeeeeeeeeses e 43

43

GMT - Data Generator

Verséo 4.0

GMT Data: 11/12/2006
Casos de uso.doc
5.4.2 FIUXOS AIOINALIVOScovvevereeecereeeeeeeeeeeeeeees oo 43
5.4.3 Requerimentos ESPECIAIS...................cooveeeerreeeeeeoeeeeoeeoeoeoeoooeoooooon 43
5.4.4 POS-CONMIQOBS ...t 43
5.4.5 POMt0S d@ EXIONSEOoveeeeeeeeeoeeeeeeeeeeeeeesee oo 43
6 ADICIONAR, ALTERAR, EXCLUIR CENARIO — GMTOO5......oeeeeeeeoeeoooeoeeon 43
6.1 BREVE DESCRIGAD.....cititririreeieie e eesesseeeessseeeeesesssesesse s esseeeee e eeeosee e 43
B.2 ATORES ..ottt tene st ee e e s et st eeeeeo 43
6.3 PRE-CONDIGOES....cuitiieeeseeeereentete et secs et seses e s e et eeessese e 43
6.4 FLUXODE EVENTOSeveeureetuetieeeentesctene e eeeest s eee et 43
6.4.1 FIUXO BASICO ...t 43
6.4.2 FIUXOS AHBINAIVOS ... 43
6.4.3 Requerimentos ESPECIAIS.ccue.eeoeeeeeemeesoeeeoeoeoeooeooooo 43
6.4.4 POS-CONQIQOBSc.c.ceveeeeeeeeee oo 43
6.4.5 PONIOS 08 EXIONSEOcovveeeeeoeoeeeeeeeeeeeeeeeeeoooooo 43
7 ADICIONAR, ALTERAR E EXCLUIR PARAMETRO - GMTO06........oooeeeooosoon 43
7.1 BREVE DESCRIGAO........ccottiermremetrisieesess e seeseeseessiese e e seeeees oo eeeseeee oo 43
L L L SR 43
7.3 PRE-CONDIGOES......oimtsieneeeeeemeaneee e snese st e s seeeesses s ss s see e 43
7.4 FLUXODE EVENTOS ...o.coeiccnrinaieecser st eeseeseessesess s sesoe s essees e 43
7oAT FIUXO BASICO. ... 43
7.4.2 FIuX0S AROINAVOScoo.eoeeeeeveeeeoeeeeeeeeeeeeeeeee 43
7.4.3 Requerimentos ESPECIalS.................oweeooveeereeeseeooeoeoeooooo 43
7.4.4 POS-CONTIGORSoeerreeeeeeeeeeeee oo 43
7.4.5 POMOS 0@ EXIONSEDceveeeeereeeeeeeeeeeeeeeeoeeooeoeeoooooo 43
8 ADICIONAR, ALTERAR, EXCLUIR CASO = GMTO08..........oeeoeeeeeeeeoeeeeoeeeeoeeeos 43
8.1 BREVE DESCRIGAO......corueurueruirererantessisisesseeeseeeessesse e os st s eeseseessesneee e 43
8.2 ATORES .o iiiiiiececensic et ettt e e et 43
8.3 PRE-CONDIGOES ...t ciieiteeeeriee st e ee et eeeee e oot en s et eee et eeeeeoseeee e 43
8.4 FLUXODE EVENTOS u.ocevimieruciaracanse e sbecesseeseseees s e es s st e 43
84T FIUXO BASICO ... 43
8.4.2 FIUX0S ABMANIVOSooveeeeeeeeveeeeeeeeeeseeeeeeoeooo 43
8.4.3 Requerimentos ESPECIAIS.................ovoveveeeeeeesoeeeeooeoooooo 43
8.4.4 POS-CONAGEES ... 43
8.4.5 PONOS de EXTENSAQovoreeveeeeeeeeeoeeeeeeeeeeeeeeeeeeeooeoooooooooooo 43
9 ADICIONAR, ALTERAR E EXCLUIR REGRA — GMT009...c.o.oeooeeeeeooeoeoeoooeon 43
9.1 BREVE DESCRIGAO.....uctommeeereeetetetereeeseeeeeee et et 43
9.2 ATORES ittt s e et et e s e et es e e 43
9.3 PRE-CONDIGOES. ..ucumirerrccesirctete s teteesssee s e ssesees st es e 43
9.4 FLUXO DE EVENTOS 1ituviieicertrieteee et raeee et et seeeeees s et 43
9. 4.7 FIUXO BESICO ..o 43
9.4.2 Flux0s AHBINAHVOSc.ooeeeeeeeereeeeeeeeeeeeeseeeeeeeeeeeeeeoeeeeoeoeoeoeo 43

GMT — Data Generator Versao 4.0

GMT Data: 11/12/2006

Casos de uso.doc

9.4.3 Requerimentos ESPEGIAIS...............cowweeommmeeooseesmoooo 43
9.4.4 POS-CONACOOSovvoeoeeeeeeeeeeeeeeeeeees oo 43
9.4.5 PONtOS e EXIONSEDovovvmeeeeereeeeeeeeeeeseeeoeeoesooooooooo 43
10 GERAR MASSA DE TESTES E ROTEIRO — GMTO12.euue.vvoeeooooooooooooo 43
101 BREVE DESCRIGAC....ovuuuuieeerererenecesseeettsoe et seese s 43
10.2 ATORES......ovco et sssesseeeess s s mmsssseeneceemesesee oo ssse oo 43
103 PRE-CONDIGOES......covuumrererereressennssns s e seees s essos s ossosoosisnein 43
104 FLUXO DE EVENTOS «..ovveoevveccceeaeneeseeee oo oo 43
10.4.7 FIUXO BESICO ..o 43
10.4.2 FIUXOS AIOINAHVOScovoeeeeeeeeeeeeeeeeeeeeesoooo 43
10.4.3 Requerimentos ESPECIAISoooeeoeoeeeeoereooo 43
10.4.4 POS-CONICOEScooeoerreeeeeeeeeeeeoeeeeooooi 43
10.4.5 PON0S A8 EXIENSEO........oooeeeveeeeoeveeoeoooo 43

45

GMT — Data Generator Versdo 4.0

GMT Data: 11/12/2006

Casos de uso.doc

indice de Figura

Figura 3.1 Tela de cadastro de Projeto(New Project) w.........weceeemmmeeooooooo 43
FIgura 3.2 ANVOre o PrOJBIOcvcrsevsremseeesceeeeoeesssee oo 43
Figura 4.1 Tela de cadastro de Constante(Add Constant)oocouooosoooo 43
Figura 4.2 Tela ap6s a ainclusdo da Constante ... 43
Figura 5.1 Tela de cadastro de Conceito(Add CONCept)uuveeeeeemseeeoeooo 43
Figura 5.2 Tela apés a inclusdo de um Conceito ... 43
Figura 6.1 Tela de cadastro de Cenario(Add SCONEIY)u.uucuueeeeeeeeneeeeeeooooeeooooo 43
Figura 6.2 Tela apés o cadastro de UM CENANIOvvvoooovooeeers oo 43
Figura 7.1 Tela de cadastro de Parametro(Add Parameter)coo.ovvoovooos oo 43
Figura 7.2 Tela apés o cadastro de um Par@metro ..o 43
Figura 8.1 Tela de cadastro de Caso(AAd TaSK).......ccvweemuriiarererneenreenes oo oo 43
Figura 8.2 Tela ap6s o cadastramento de um Caso .o 43
Figura 9.1 Tela de cadastro de Regra(Add RUI)........oerueereeeeeeeeeeesooooo 43
Figura 9.2 Tela apés o cadastro de uma L L= 43
Figura 10.1 Tela de Geragao da Basec...voooooooveomoooooo 43

46

GMT — Data Generator Verséo 4.0

GMT Data: 11/12/2006

Casos_de uso.doc

1 Apresentacéo

1.1 Objetivo

O objetivo deste documenio é a especificagio de requisitos para o conjunto de
funcionalidades referido como Sisterna de Geracdo de Massa de Teste. Nesse
documento serdo detalhados os casos de uso referentes 3 criagdo do Data
Generator.

Este sistema ir4, a partir de alguns parametros fornecidos pelo usuario, indicar
quais registros, presentes num banco de dados previamente formecido, séo
relevantes para os testes que se seguiro. Assim, o usudrio entra com o cendrio
de testes, o desenho do banco de dados e outros parmetros, e recebe um
arquivo txt com os registros que devem ser usados daquele banco.

47

GMT — Data Generator Versao 4.0

GMT Data: 11/12/2006

Casos_de_uso.doc

2 Conceitos Gerais

2.1 Dicionario de conceitos

Abaixo serdo apresentados alguns conceitos que s@o usados no programa de
geragdo de massa de teste.

* Projeto: No programa é entendido como projeto (Project) um conjunto
determinado de tabelas que constituem uma base de dados que sera
avaliada para a geragdo da massa de teste.

* Cenario: No programa é entendido como cendrio (Scenery) um conjunto
de regras, constantes e pardmetros que descrevem de forma macro o

caso de teste,

* Caso: No programa é entendido como casos (Case) uma particularizagao
do universo de registros da base de dados que atende a algumas

caracteristicas.

* Regra: No programa ¢ entendido como regras (Rule) uma particularizagdo
do universo de registro selecionados no Caso ao qual a Regra pertence.

¢ Conceito: No Programa é entendido como Conceito (Concept) o campo
de uma tabela de um banco de dados

48

GMT — Data Generator Versio 4.0

GMT Data: 11/12/2006

Casos_de uso.doc

2.2 Tecnologia Utilizada

O servidor de banco de dados que ser4 utilizado para o desenvolvimento e teste
do sistema em questdo serd o MySQL, sendo a interface desenvolvida em
linguagem Java através da IDE NetBeans 5.0

2.3 Sistema de Cadastro

O sistema de cadastro é caracterizado por possuir um conjunto de telas que
permitirdo ao usuario construir todo o cendrio em que se desenvolve o ieste.
Sera constituido por n telas construidas para que se possa descrever o banco de
dados, como mapear seus registros,quais as principais constantes e parametros
e, principalmente, quais 0s casos e as regras do teste. Neste sistema, localizam-
se todas as telas de interface com o usuario.

2.4 Sistema de Geracdo

O sistema de consulta é caracterizado por possuir toda a inteligénecia do
programa. Apds todos os dados serm cadastrados de forma bem sucedida, o
sistema usa as informagdes para gerar, automaticamente, consultas sgl que
procurardo, dentre todos 0s regsitros presentes na base de dados, aqueles que
se adeguam aos casos de testes que o usudrio cadastrou no sistema.

49

GMT - Data Generator Verséo 4.0

GMT Data: 11/12/2006

Casos _de_uso.doc

3 Adicionar Projeto - GMT001

3.1 Breve Descricédo

Destina-se ao cadastramento de um novo projeto.

3.2 Atores

Este caso de uso ¢ de uso de todos os usuérios do sistema.

3.3 Pré-Condicbes

O ator deve ter selecionado a opgdo New Project na aba Action.

3.4 Fluxo de Eventos

Néo se aplica.

3.4.1 Fluxo Basico

* O Sistema exibe a tela “New Project” com os campos:
v Project Name

Connection path to the base

User name of the base

Password of the base

Connection path to the result base

User name of the result base

AR N N N NN

Password of the result base

50

GMT — Data Generator Verséo 4.0

GMT

Data: 11/12/2006

Casos_de uso.doc

"'m"'— r T T YT T s aadeii gaa 2t T T e TR]
- " —— _ — =JoEd|
|

= Quando usuério clicar em Create Project o sistema verifica se o nome do
projeto € Unico e se as strings de conex&o fornecidas sio validas:

* Se nome do projeto é Unico e se as conexdes com os bancos de dados
séo validas o sistema grava os dados e constréi uma arvore que contem
os elementos relacionados ao projeto conforme se vé na figura abaixo;

¢ Se nado sistema exibe uma mensagem pedindo ao usuério para entrar
COmM um nome NOvVo Qu corrigir a string de conexéo;

A Tela new project é a seguinte:

=y

Action Taols Help

Project Name: |

1
Cornection Path to the Bagse | Connectio Path ta the Result base |
; [

[

User Name of the Base N User Name of the Result Base e
_ N e . . | ,
Passward of the Base Password of the Resuit Base !
—— W — = TN % _ i
!l Creat te F Project

Figura 3.1 Tela de cadastro de Projeto{New Project)

51

GMT — Data Generator

Versao 4.0

GMT

Data: 11/12/2006

Casos de uso.doc

W‘-—-—- - T G —

-Acﬁlm Tools Help

_g_aaasn daUso |
[} scenery

3 constants

[cancapis

- |

Figura 3.2 Arvore do Projeto

3.4.2 Fluxos Alternativos

N&o aplicavel

3.4.3 Requerimentos Especiais

Nao aplicavel.

3.4.4 Pods-Condicoes

ApbGs a criago do novo projeto, qualquer outro projeto que estiver aberto sera

fechado automaticamente.

52

GMT — Data Generator

Versio 4.0

GMT

Data: 11/12/2006

Casos_de uso.doc

3.4.5 Pontos de Extensio

Nao Aplicavel.

53

GMT ~ Data Generator Versio 4.0

GMT Data: 11/12/2006

Casos de_uso.doc

4 Adicionar, Alterar, Excluir Constantes — GMT002

4.1 Breve Descricdo

Destina-se a permitir o cadastro de constantes por parte do usudrio.

4.2 Atores

Este caso de uso é de uso de todos os usuérios do sistema.

4.3 Pré-Condigdes

Para que se possa cadastrar uma constante é necessario haver um projeto

corretamente cadastrado.

4.4 Fluxo de Eventos

Nao se aplica.

4.41 Fluxo Basico

* O sistema exibe a tela de cadastro de constantes com os botdes

“Alter” e “Delete” desabilitados e os seguintes campos:
v' Name
v Value

v" Type (Esse campo s6 pode assumir os valores Integer, Double

e String)

54

GMT - Data Generator

Verséo 4.0

GMT

Data: 11/12/2006

Casos de uso.doc

* Quando o usudrio clica no botdo “Add Constant” o sistema verifica se
0 nome da constante é Unico e se o tipo determinado pelo usurdrio &
valido;

* Se o nome for Unico e o valor fornecido for valido o sistema atualiza a

arvore do programa e grava os dados;

* Se n&o for (nico o sistema exibe uma tela pedindo ao usudrio para
inserir um novo nome ou informando que o tipo da constante

selecionado nédo é compativel com o valor fornecido:

A tela de cadastro de constante é a seguinte:

[action Teols Help

[Caspde Uso
3 seonary
[} constants
D Concepts

Type

S———

Valus

| Ackd Constant

Defele

’_ Alter

Figura 4.1 Tela de cadastro de Constante(Add Constant)

GMT — Data Generator

Verséo 4.0

GMT

Data: 11/12/2006

Casos_de_uso.doc

e

(Action Tools Help

? ClcasodeUse
" [seeneny
¢ = Consiants
¢ [constant PessosFlsica
D Type Integer | -
D Value 1
[concepts b 1

Name
PesgoaFisica

Name Value
{PessoaFisica | 1

Deigte
Type - :
fotower =] [constos_| [e

Figura 4.2 Tela apés a aincluséo da Constante

4.4.2 Fluxos ARernativos

A)Exclusido de uma constante

¢ O ator seleciona uma constante ja cadastrada com na tabela de
constantes

* O sistema habilita 0s botdes “Alter” e “Delete” e todas as informagbes
sobre a constante séo copiadas para os seus respectivos campos de
criagao;

¢ Se o aior clicar no botdo “Delete” o sistema exibe uma mensagem
padréo pedindo a confirmagao da exclusio:

* Se o ator confirmar a exclusdo a tela é atualizada:

56

GMT - Data Generator Versio 4.0

GMT Data: 11/12/2006

Casos de uso.doc

* Se o ator ndo confirmar a exclus&o o processo é abortado e nenhuma
modificagdo é feita;

B)Alteracéo

¢ O ator seleciona uma constante |4 cadastrada com na tabela de
constantes

* O sistema habilita os botdes “Alter” e “Delete” e todas as informacgtes
sobre a constante séo copiadas para os seus respectivos campos de
criagao;

¢ Quando o usudrio clica no botao “Alter” o sistema verifica se 0 nome
da constante € Unico e se o tipo determinado pelo usurério é valido:

* Se o nome for Gnico e o valor fornecido for valido o sistema atualiza a
arvore do programa e grava os dados;

* Se n&o for Unico o sistema exibe uma tela pedindo ao usuério para
inserir um novo nome;

* Se ator clicar no bot&o “Cancel” a operagéo de alteragdo é abortada e
nerthuma modificagdo é feita.

4.4.3 Requerimentos Especiais

Nao se aplica.

4.4.4 Pos-Condicoes

N&o se aplica.

57

GMT — Data Generator Versio 4.0

GMT Data: 11/12/2006

Casos_de_uso.doc

4.4.5 Pontos de Extensio

Nenhum.

5 Adicionar, Alterar, Excluir Conceito— GMT003

5.1 Breve Descricdo

Destina-se ao cadastro de conceitos ao programa para gue seja criada uma

réplica da estrutura do banco de dados do usuério.

5.2 Atores

Este caso de uso é de uso de todos os usuérios do sistema.

5.3 Pré-Condictes

Para que se possa cadastrar um conceito é necessério haver um projeto

corretamente cadastrado.

5.4 Fluxo de Eventos

N&o se aplica.

5.4.1 Fluxo Basico

* O sistema exibe a tela de cadastro de Conceito com os botdes “Alter”
e “Delete” desabilitados e com os seguintes campos:
v" Concept Name

58

GMT — Data Generator Versio 4.0

GMT

Data: 11/12/2006

Casos de uso.doc

v" Type(Esse campo s6 pode assumir os valores Integer, Double e
String)
v' Mapping: Table
v Mapping: Field
¢ Quando o usudrio clica no botdo “Add Concept” o sistema verifica se o
nome do conceito é Unico no projeto;
¢ Se 0 nome for nico o sistema atualiza a tela;
* Se ndo for dnico o sistema exibe uma tela pedindo ao usuério para
inserir um novo nome;

A tela de criagdo de conceitos tem a seguinte forma:

T EE———————daa
Action Toals Help
l'e T casodaUso

F D) scensry [TasleNama | Type MappingTable | Mapping Field
;GCDnsmn‘s |

¢ [Constant PessoaFisica

) Type rtager

| D\e’.ﬂupd

DEan:eptsi

Concept Name r

| | o S

Manping Tabls 1.]
Table . Fiald

| ' | addconcept || Cancel | amer || Delete

Figura 5.1 Tela de cadastro de Conceito{Add Concept)

59

GMT — Data Generator Verséo 4.0

GMT

Data: 11/12/2006

Casos de uso.doc

- — _— — : {8E) X)

Action Toolg Help
¢ [Caso de Uso
[scenery R
% [Gonstants [Balao iInteger Conta Salda 4
(& ConstantFessoaFisica
i [Type intager
' Bivae 1 l
¢ [} Concepls
¢ [z3 Concept Balgo |
3 Tyoe ntager
[} Mapping Conta Saldo [

[EahleName Type 17‘In[stpgln1'i'able -I:, Mapping Fistd :
o

e S— —— = i =

Concapt Nams i 1

Type integer i [+]

Happing Table B 1.0
Table . Fietd

| Add Concept Cancel Alter Detete

Figura 5.2 Tela apés a incluséo de um Conceito

5.4.2 Fluxos ARternativos

A)Exclusao de um conceito

O ator seleciona um conceito ja cadastrado na tabela de Conceitos

O sistema habilita os botdes “Alter” e “Delete” e todas as informagdes
sobre 0 conceito s&0 copiadas para 0s seus respectivos campos de
criagao;

Se o ator clicar no botdo “Delete” o sistema exibe uma mensagem
padréo pedindo a confirmagéo da exclusao;

Se o ator confirmar a excluséo a tela é atualizada;

Se o ator ndo confirmar a exclusdo o processo & abortado e nenhuma
modificagao é feita;

60

GMT — Data Generator Versao 4.0

GMT Data: 11/12/2006

Casos de uso.doc

B)Alteragdo

* O ator seleciona um conceito j& cadastrado com um duplo clique na
tela “Concept Creation”;

* O sistema habilita os botdes “Alter” e “Delete” e todas as informagdes
sobre o conceito s@o copiadas para os seus respectivos campos de
criagéo;

* Quando o usudrio clica no botdo “Alter” o sistema verifica se 0 nome
do conceito é Gnico no projeto;

* Se o nome for Unico o sistema atualiza a tela “Concept Creation”

* Se ndo for Unico o sistema exibe uma tela pedindo ao usuério para
inserir um Novo nome;

* Se ator clicar no botdo “Cancel” a operagdo de alteragédo é abortada e
nenhuma modificagio é feita;

5.4.3 Requerimentos Especiais

N&o aplicavel.

5.4.4 Pos-Condigoes

N&o se aplica.

5.4.5 Pontos de Extensio

Nao Ha.

61

GMT - Data Generator Verséo 4.0

GMT Data: 11/12/2006

Casos de uso.doc

6 Adicionar, Alterar, Excluir Cenario — GMT005

6.1 Breve Descri¢do

Destina-se ao cadastro de novos cendrios de testes.

6.2 Atores

Este caso de uso é de uso de todos os usuérios do sistema.

6.3 Pré-CondigoOes

s

Para que se possa cadastrar um conceito é necessério haver um projeto

corretamente cadastrado.

6.4 Fluxo de Eventos

Nao se aplica.

6.4.1 Fluxo Basico

* O sistema mostra a primeira tela do wizard de criagdo de cendrios
com os botdes “Alter”, “Delete” e “View Parameiers” desabilitados e
com o campo:

v Scenary Name
¢ Quando o usuério clicar no botdo “Add Scenary” o sistema verifica se

0 nome do cenario é Unico no projeto;

62

GMT — Data Generator Verséo 4.0

GMT Data: 11/12/2006

Casos_de uso.doc

+ Se 0 nome for Unico o sistema grava os dados, atualiza a arvore do
projeto e mostra a segunda tela do Wizard que é a tela de cadastro de
Parametro;

* Se néo for Unico o sistema exibe uma tela pedindo ao usuério para
inserir um novo nome;

A tela de cadastro de Cenario € a seguinte:

L e T A e W~ W = Y T T——
v - - — =08
Action Tools Help
ClCisos de Uso E
[3 Beeneny Name_prejeet Name_Stenaiy |
+ 5] Constants '
o (=] Cancepls
|
i
{
I — S = S I -
ProjectMame: Casos tigUso.
ScemeyMome:| Add_Scenery
Ade Cancel | feirie View Patamelers

| |

Figura 6.1 Tela de cadastro de Cenério(Add Scenery)

63

GMT — Data Generator Versio 4.0

GMT

Data: 11/12/2006

Casos_de uso.doc

SS—— T —— — —
Action Tools Help
[¢ C3casos de Uso [
+ Bt Paramelar tams__ ParameterTyne FammalerVako i |
¢ =] Stenery Beanety 1
[Parameters
[} Faske 1 | — = ‘I

[

| =3 Constants
i ¢ o] Coneepls

FTTTT]
EBRN
3 S— =

‘ Paameters | o |
Rame Vae ———— |
S - = Defete:
RLT L !'
Ioteger |~ | adaParameter
|
| |

Figura 6.2 Tela ap6s o cadastro de um cenario

6.4.2 Fluxos Alternativos

A)Exclusdo de um Cenario
* QO ator seleciona um cenario j& cadastrado na tela “Add Scenary”;
* O Sistema habilita os botdes “Alter”, “Delete” e “View Parameters”

* O Sistema copia o nome do cendrio para o campo “Name Scenery”;

¢ Se o ator clicar no botdo “Delete” o sistema exibe uma mensagem

padréo pedindo a confirmagéo da exclusio;

-

* Se o ator confirmar a exclus&o a tela “Add Scenary” é atualizada e os

dados séo gravados;

* Se o0 ator ndo confirmar a excluséo o processo & abortado e nenhuma

modificagéo é feita;

GMT — Data Generator Versdo 4.0

GMT

Data: 11/12/2006

Casos de uso.doc

B)Alteragao

O ator seleciona um cendrio ja cadastrado na tela “Add Scenary”;

O Sistema habilita os botdes “Alter”, “Delete” e “View Parameters”

O Sistema copia o nome do cenério para o campo “Name Scenery”;
Quando o usudrio clicar no botdo “Alter” o sistema verifica

se 0 nome é Unico no projeto

Se for unico o sistema atualiza a tela de cadastro de Cenario, grava os
dados e abra e a tela seguinte do wizard(tela de cadastro de
Parametro)

Se ndo for Unico o sistema exibe uma tela pedindo ao usuario para
insetir um novo nome;

C)Mostrar Parametros

O ator seleciona um cendrio ja cadastrado na tela “Add Scenary”;

O Sistema habilita os botdes “Alter”, “Delete” e “Show Parameter”

O Sistema copia 0 nome do cendrio para o campo “Name Scenery”;
Quando o usudrio clicar no botéo “View Parameters” o sistema abre a
tela de cadastro de Parametros

Se ator clicar no botdao “Cancel’ a operagao de alteragdo é abortada e nenhuma

modificagao é feita;

6.4.3 Requerimentos Especiais

N&o aplicavel.

65

GMT — Data Generator Verséo 4.0

GMT Data: 11/12/2006

Casos_de uso.doc

6.4.4 Pos-Condigoes

Apds o cadastramento do Cendrio deve-se abrir a segunda tela do wizard,
relativa a criagdo de pardmetros, descrita no préximo caso de uso.

6.4.5 Pontos de Extenséao

Nao se aplica.

66

GMT ~ Data Generator Versao 4.0

GMT

Data: 11/12/2006

Casos_de uso.doc

7 Adicionar, Alterar e Excluir Parametro - GMT006

7.1 Breve Descrigado

Destina-se a cadastrar pardmetros aos cenérios criados na tela Wizard “Add

Scenary”;

7.2 Atores

Este caso de uso é de uso de todos os usuarios do sistema.

7.3 Pré-Condigbes

E necessério ter um cendrio previamente cadastrado.

7.4 Fluxo de Eventos

Nao se aplica.

7.4.1 Fluxo Basico

¢ O sistema mostra a tela de criagdo de parametros com os botdes
“Alter” e “Delete” desabiiitados e com os campos:
¥ Name
v Type(Esse campo s6 pode assumir os valores Integer, Double e
String)
v" Values(Os valore devem ser inseridos com espagos & sem

virgulas)

67

GMT — Data Generator Verséo 4.0

GMT Data: 11/12/2006

Casos_de uso.doc

¢ Quando o usudrio clicar no botdo “Add Parameter” o sistema verifica
se 0 nome do parémetro é (inico no Cenario e se os valores fornecidos
s&o condizentes com o tipo selecionado;

* Se o nome for Unico o sistema grava os dados e atualiza a arvore do
projeto e a tela “Add Parameter”;

* Se néo for tnico o sistema exibe uma tela pedindo ao usuario para
inserir um novo nome;

» Quando o usudrio clicar no botdo “Finish” a tela é encerrada voltando
para a tela "Add Scenery”;

A tela de cadastro de pardmetro("Add Parameter”) é a seguinte

T Py NP = ™™ r——— " m
[e I - e i L e n e e s
¢) Casos de Uso

T [jm Parameder Nsme: i Paramglet Typa Paramaler Yalus

$ [} Scenery Geenary |
[parametors
[Taske

|

[
111

© [Constants
o G Concepts

T
}l
|

1
|

Parameters Ater
Name Value

flish |

Figura 7.1 Tela de cadastro de Parametro(Add Parameter)

68

GMT - Data Generator Versao 4.0

GMT Data: 11/12/2006

Casos de uso.doc

Q’ -: n r— — ~————— —— T —— - —EL'_.T...E_IH
Action Tools Halp
Fl Cazos de Uso
3 Beenary _Parampter Name o _Pgramater Type | Parameter Value
maler Typ!
[Scenery Seenery 1 Paramatro 1 Tintég . 1102050100 = -
§ [Paramaters | _
¢ 6] Parametsr Parametrs 1 - | .
[} Typa intagar ' |
[value 1020 50 100 =
D Taske | |
- 2 Canslants | |
- 3 Cancepts b e — L 1=l
Parameters f ANez
Hame Value
Pansmerot] finz050100_ e
e
— =
@] | Add Parameter
finish

Figura 7.2 Tela apds o cadastro de um Parametro

7.4.2 Fluxos Alternativos

A)Excluséo de um parametro

* O ator seleciona um parémetro j& cadastrado na tela “Add Parameter:

* O sistema habilita os botdes “Alter” e “Delete” e copia os dados do
parametro selecionado para os seus respectivos campos;

* Se o ator clicar no botdo “Delete” o sistema exibe uma mensagem
padréo pedindo a confirmagéo da exclusao;

¢ Se 0 ator confirmar a exclusdo a tela “Add Parameter” é atualizada e
os dados séo gravados;

69

GMT — Data Generator Versao 4.0

GMT

Data: 11/12/2006

Casos de uso.doc

Se 0 ator nfo confirmar a exclus&o o processo é abortado e nenhuma
modificagéo é feita;

B)Alteragdo

O ator seleciona um cendrio ja cadastrado na tela “Add Parameter”;

O sistema habilita os botbes “Alter” e “Delete” e copia os dados do
pardmetro selecionado para os seus respectivos campos:

Quando o usudrio clicar no botdo “Accept Alter” o sistema verifica se o
nome & Unico no cendrio;

Se for Unico o sistema atualiza a arvore do projeto tela “Add
Parameter” e grava os dados

Se néo for Unico o sistema exibe uma tela pedindo ao usudrio para

inserir um novo nome;

7.4.3 Requerimentos Especiais

Nao aplicavel.

7.4.4 Pés-Condiches

Nao aplicavel.

7.4.5 Pontos de Extensao

N&o aplicavel.

70

GMT — Data Generator Versdo 4.0

GMT Data: 11/12/2006

Casos_de uso.doc

8 Adicionar, Alterar, Excluir Caso - GMT008

8.1 Breve Descricéo

Destina-se ao cadastro de casos aos cendrios j4 criados.

8.2 Atores

Este caso de uso é de uso de todos os usuérios do sistema

8.3 Pré-Condigdes

O ator deve ter criado um cendrio para poder adicionar casos a ele.

8.4 Fluxo de Eventos

N&o se aplica.

8.4.1 Fluxo Basico

* O sistema mostra a tela de criagdo de casos com os botdes “Alter’ e
“Delete” desabiiitado e os campos:
v" Concept(Check Box com todos os Conceitos cadastrados)
v Operation(Pode assumir os valores =, <, >, I=)
v Value
v' Parameter(Check Box com todos os Parametros cadastrados

naquele Cendrio)

71

GMT — Data Generator Verséo 4.0

GMT

Data: 11/12/2006

Casos de uso.doc

v

AR NEEAN

v

Gonstant(Check Box com todos as Constantes cadastrados no
projeto)

Unic

Multiplayer

Case Name

Rule

* Quando o usuario clicar no botdo “Mount Rule” o sistema escreve no

campo Rule uma regra conforme os itens selecionados pelo usuario

da seguinte forma:

1. Copia-se para uma String o nome do conceito
selecionado com um espago em branco no final do
nome;

2. Soma-se a String a operagdo selecionada com um
espago em branco no final;

3. Verifica-se qual tipo de valor foi selecionado(Value,
Constant ou Parameter)

= Se for Value soma-se a string um v mindsculo
com um espago em branco e soma-se o valor do
campo value;

» Se for Constant soma-se a string um ¢ mintsculo
com um espage em branco e soma-se o nome da
constante selecionada;

* Se for Parameter soma-se a string um p
mindsculo com um espago em branco e soma-se
0 nome do parametro selecionado:

4. Soma-se a String resultante a String que ja contiver no
campo Rule

5. Se quiser adicionar mais uma regra ao mesmo caso
deve-se clicar no botdo AND ou OR para que seja
adicionado ao final do campo Rule um espago em

72

GMT — Data Generator Versio 4.0

GMT Data: 11/12/2006

Casos _de uso.doc

branco, mais a palavra AND ou OR e outro espago em
branco.
¢ Quando o usudrio clicar no botio “Add task” o sistema verifica se o
nome do caso é (inico no cenario;
* Se o0 nome for dnico o sistema grava os dados e atualiza a tela “Add
Task";
¢ Se n&o for Unico o sistema exibe uma tela pedindo ao usuério para
inserir um novo nome;

¢ Quando o usuério clicar no botdo “Cancel” a tela é atualizada;

A tela serd a seguinte:

'.-!S-— - —— — ——— — - A AT Ty —r— —T;'.‘_JWEIE

Action Tools Help
7 CIcCasosdellan - il i
¥ (23 Scenery Beenary] Casg Rulgs T 13 Gingle] Muliplayer
¢ =] Scenery Scenery 1
o= [Paramalers
D Tasks
o [Canstants
= conzents
Concept Operation Yalug
— I]
Jd —
Paramster
[\
Sytax AND | OR Paramgtret |
Constant
L
Mount Rule E_ezsnaﬂsica =
Unlc s
Muitiptayer 10
CaseName Rute Al Case Cancel
AHer [

Figura 8.1 Tela de cadastro de Caso(Add Task)

73

GMT — Data Generator Verséo 4.0

GMT

Data: 11/12/2006

Casos de uso.doc

i&—“- —ry - - —— > — — =)

[Action Tools Hew

? [casss de Usa

= [Farameters
¢ [Tagks
¢ 3 Task Regrat
[Logic. saldo > |
|:] I Singla. 1
[mungtaver 10 | |
[Ruiss
o- [Constanta
L [» i
£ Concep Concejnt Qparation Vale =
= —] — L] - w—
Parameter
Symtax AND i OR o rl;;rarnu.rnf [v_i
Constant
| Mount Rule anssnaﬂsicn -
Unic @
Wuitiplayer 10
Gase Nams Reqra j __| Rute Salo » p Paramstro 1 AND Saldo < v 50 At Case Cancel

Alter Dele

Figura 8.2 Tela ap6s o cadastramento de um Caso

8.4.2 Fluxos Alternativos

?) Scenery Stenery Case __ Rules . lsBngle | Mukplaver
[Scenesy Scanary 1 Scenery] IRegrar 1 Satdo > p Paremeka 1 AN e 10

A)Exclusdo de um Parametro

¢ O ator seleciona um na tabela de Caso

* O sistema habilita 0s botdes “Alter” e “Delete” e todas as informagdes

sobre o Caso sdo copiados para 0s seus respectivos campos de

criagao;

* Se o ator clicar no botdo “Delete” o sistema exibe uma mensagem

padréo pedindo a confirmagéo da excluséo;

* Se o ator confirmar a exclusdo a tela “Add Task” é atualizada e os

dados sdo gravados;

¢ Se o ator ndo confirmar a exclusdo o processo é abortado e nenhuma

modificagéo é feita;

74

GMT — Data Generator Versao 4.0

GMT

Data: 11/12/2006

Casos_de uso.doc

B)Alteracio

O ator seleciona um cendrio j4 cadastrado na tela “Add Task”:

O sistema habilita os botdes “Alter” e “Delete” e todas as informagdes
sobre o Caso s&o copiados para os seus respectivos campos de
criacéo;

Quando o usuério clicar no boto “Alter” o sistema verifica se o nome
é Unico no cendrio;

Se for Gnico o sistema atualiza a arvore do Projeto e a tela “Add Task”
e grava os dados

Se n&o for Unico o sistema exibe uma tela pedindo ao usudrio para

inserir um Novo nome;

8.4.3 Requerimentos Especiais

N&o aplicavel.

8.4.4 Pés-Condicoes

Néao se aplica.

8.4.5 Pontos de Extensio

Nao se aplica.

75

GMT — Data Generator Versao 4.0

GMT

Data: 11/12/2006

Casos_de uso.doc

9 Adicionar, Alterar e Excluir Regra — GMT009

9.1 Breve Descrigao

Destina-se a adicionar novas regras aos casos j& criados.

9.2 Atores

Este caso de uso é de uso de todos os usudrios do sistema.

9.3 Pré-Condigcoes

O ator deve ter criado um caso para poder adicionar regras a ele.

9.4 Fluxo de Eventos

N&o se aplica.

9.4.1 Fluxo Basico

» O sisterna mostra a tela de criagdo de regras com os botdes “Alter” e

“Delete” desabilitado e com os campos:

v

v
v
v

<

Concept(Check Box com todos os Conceitos cadastrados)
Operation(Pode assumir os valores =, <, >, |=)

Value
Parameter(Check Box com todos os Parédmetros cadastrados

naquele Cenario)
Constant(Check Box com todos as Constantes cadastrados no

projeto)

76

GMT — Data Generator

Versio 4.0

GMT Data: 11/12/2006
Casos _de uso.doc

v" Unic

v" Multiplayer

v Case Name

v Rule

v" Qutput

¢ Quando o usuario clicar no botéo “Mount Rule” o sistema escreve no

campo Rule uma regra conforme os itens selecionados pelo usuério

da sequinte forma:

1.

Copia-se para uma String o nome do conceito
selecionado com um espago em branco no final do
nome;

Soma-se a String a operagdo selecionada com um
espago em branco no final;

Verifica-se qual tipo de valor foi selecionado(Value,
Constant ou Parameter)

*» Se for Value soma-se a string um v mindsculo
com um espago em branco e soma-se o valor do
campo value;

= Se for Constant soma-se a siring um ¢ mindsculo
com um espago em branco e soma-se o0 nome da
constante selecionada;

* Se for Parameter soma-se a string um p
minUsculo com um espago em branco e soma-se
0 nome do parametro selecionado;

Soma-se a String resuitante a String que j& contiver no
campo Rule

Se quiser adicionar mais uma regra ao mesmo caso
deve-se clicar no botdo AND ou OR para que seja
adicionado ao final do campo Rule um espago em

77

GMT ~— Data Generator

Versio 4.0

GMT

Data: 11/12/2006

Casos _de uso.doc

branco, mais a palavra AND ou OR e outro espago em
branco.
* Quando o usudrio clicar no botdo “Add Rule” o sistema verifica se o
nome da regra € Unico no caso;
* Se o0 nome for Unico o sistema grava os dados e atualiza a arvore do
projeto e atela “Add Rule”;
* Se néo for Unico o sistema exibe uma tela pedindo ao usuario para
inserir um novo nome;
¢ Quando o usudrio clicar no botao “Cancel” a tela & encerrada;

A tela serd a seguinte:

= . .-.-.-._—_ - — T —— — oE
Action Tools Hulp
¥ CICasorde Uso) = 1 al
£ conary Sctneny T G Rup Lomic 1 Outpt |
% 9 Bcenany Scanmey 1 |
o LA Pasmuters |
? CAVaeis
¢ i TaskRegra1 I
Logic Bakto »
Diamnge 1
[mumstsen 10]
N
o 2] Constantz
= [Concegts Comcept Opeaation Yole ~
sas - o - . —
Parameter
Synlax AMD Ir OR Parometio 1 |
Cengtant
] G IPassearisies v
Riko Nane | RikeLopic __ Outmng Cututy Akl Paste Cancel

Figura 9.1 Tela de cadastro de Regra{Add Rule)

78

GMT — Data Generator Verséo 4.0

GMT

Data: 11/12/2006
Casos de uso.doc
D ——— T ——— T —— T ——— Y
Activn Touols Help
___Seanary Casa ‘LT __Ruke _ Logi _ Output_
) vt Boangnd TRegrat opra i Ipatto = veD OR AN SRS Joutputs
E;\sl«s
=9 Task Regat
[Logie. Satda » p Farametro 1 A
D!sslnala:1
| [mumptayar 10
r CIRwos
| 1 Rl Regra 1
[Logic: Baltn=v g0 05 A1 Concogt Operation Voo
T Outpur Outputs. koo = | & e
l‘lla Paramelar
syetad_ anD_ | om [Parametro 1 [
Contunt
Moust e [Passuafisica |
Rogra1 | Rl 00k (aldo = v 0 AND Salgo= v 70 Ovimits [Ouiouts AddRule || Cancel

e

Figura 9.2 Tela ap6s o cadastro de uma regra

9.4.2 Fluxos Alternativos

A)Excluséo de uma Regra

O ator seleciona uma regra j& cadastrada na tabela de Regras

O sistema habilita os botdes “Alter” e “Delete” e todas as informagdes
sobre a regra selecionada sdo copiadas para os seus respectivos
campos de criagao;

Se o ator clicar no botdo “Delete” o sistema exibe uma mensagem
padrdo pedindo a confirmagéo da excluséo;

Se o ator confirmar a exclusdo a tela “Add Rule” é atualizada e os
dados sdo gravados;

Se o ator ndio confirmar a exclusdo o processo é abortado e nenhuma
modificacdo é feita;

B)Alteracao

O ator seleciona uma regra ja cadastrada na tela “Add Rule:

79

GMT — Data Generator Versdo 4.0

GMT Data: 11/12/2006

Casos_de uso.doc

» O sistema habilita os botdes “Alter” e “Delete” e todas as informagdes
sobre a regra selecionada sdo copiadas para os seus respectivos
campos de criagao;

* Quando o usuério clicar no botdo “Accept Aiter” o sistema verifica se o
nome da regra é (nico no cenario;

* Se for Gnico o sistema atualiza a tela “Add Rule” e grava os dados

* Se néo for Unico o sistema exibe uma tela pedindo ao usuério para

inserir um novo nome;

9.4.3 Requerimentos Especiais

Nao aplicavel.

89.4.4 Pés-Condicbes

Nao aplicavel.

9.4.5 Pontos de Extensao

Nenhum.

80

GMT - Data Generator Versdo 4.0

GMT Data: 11/12/2006

Casos de uso.doc

10 Gerar Massa de Testes e Roteiro — GMTO012

10.1 Breve Descrigio

Destina-se a selegdo dos cenarios escolhidos, do caminho de gravagao do
arquivo txt e confirmagao da geragao.

10.2 Atores

Este caso de uso é de uso de todos os usuérios do sistemna.

10.3 Pré-Condigdes

Deve existir ao menos uma regra cadastrada.

10.4 Fluxo de Eventos

Néao se aplica.

10.4.1 Fluxo Basico

* O sistema mostra a tela “New Generate” com 0 campo:
v" Path
* Quando o usuério clica no botio botio “Generate Mass of Test” .o
sistema verifica quais cenarios estiio selecionados e verifica quais
registros sao relevantes para cada cendrio gravando a resposta em
um arquivo txt no formato CVS no diretério que esta o programa

81

[GMT = Data Generator Versdo 4.0

GMT Data: 11/12/2008
Casos_de uso.doc

A tela é a seguinte:

g .

e*-lﬁ-c.asus de Uso

—— — — —

| __SI‘_‘_EHE AR ’ 0 IEI"I Chﬂ_t];?_ s -|I
;5{-‘9"99’_1 %] ey -_ L p_—) - |
|

—H——
—_— e

T — [_._ —— .
Fle Name [Arquivo | Generate Mass of Test |

Figura 10.1 Tela de Geragao da Base

10.4.2 Fluxos Alternativos

N&o Aplicavel.

10.4.3 Requerimentos Especiais

82

GMT — Data Generator Versdo 4.0

GMT Data: 11/12/2006

Casos _de uso.doc

Em seguida, todas as tabelas séo reclassificadas no vetor por ordem alfabética e
as fungdes de montagem sao chamadas. Essas fungbes remontam as regras na
forma de chamadas sql. Para tanto conectam-se as regras de casos e suas
regras personalizadoras através da variavel I6gica “and”.

Com a chamada montada, procedemos com a consulta e os registros
encontrados, advindos das regras cadastradas, sdo gravados em um arquivo txt,
que sera disponibilizado para o usuario.

Em resumo, o programa tem duas utilidades. A primeira delas é a de orientagao
na formulagéo dos cenarios de testes. Procura-se automatizar e padronizar o
processo, fazendo com que o usuario pense e estude quais cendrios sio
relevantes & sua pesquisa e qual serd a estratégia de testes.

Além disso, através de cadastros simples, montam-se consultas complexas na
base de dadso, facilitando e garantindo que a massa de testes gerada realmente
é adequada para aquele determinado caso.

10.4.4 P6s-Condigbes

Deve ser gerado um roteiro de testes e uma base de dados relevantes para este
roteiro.

10.4.5 Pontos de Extensio

Nenhum.

83

