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RESUMO

Freitas, V.T.C A anatomia dos roubos de veículo no Estado de São Paulo. 2023. 100p.
Monografia (Trabalho de Conclusão de Curso) - Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos, 2023.

Diversas abordagens são empregadas para mitigar as ocorrências de crimes em uma determinada
região. Nesse tipo de estudo, grosso modo, é muito importante levar em consideração a distribuição
espacial e o padrão temporal das ocorrências. Assim sendo, a presente monografia tem por objetivo
utilizar os dados espaço-temporais de ocorrências (roubos de veículos), presentes na transparência
do site da Secretaria de Segurança Pública do Estado de São Paulo (SSP-SP), para gerar redes
complexas e extrair informações da dinâmica criminal. A metodologia envolve a subdivisão do
estado em células, a agregação de eventos criminais nessas células e a criação de séries temporais.
A análise de similaridade entre as séries, a partir da medida Event Synchronization, resulta na
construção de uma rede complexa, em que as células representam vértices e as arestas indicam
similaridade entre padrões criminais.

Palavras-chave: Roubo de veículos. Criminalidade. Redes Complexas. Séries Temporais.

https://www.ssp.sp.gov.br/




ABSTRACT

Freitas, V.T.C The Anatomy of Vehicle Theft in the State of São Paulo, Brazil. 2023.
100p. Monograph (Conclusion Course Paper) - Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos, 2023.

Various approaches are employed to mitigate crime occurrences in a specific region. In this
type of study, broadly speaking, it is crucial to take into consideration the spatial distribution
and temporal pattern of incidents. Therefore, the present thesis aims to use the spatiotemporal
data of incidents (vehicle thefts) available on the transparency section of the website of the São
Paulo State Public Security Department (SSP-SP) to generate complex networks and extract
information regarding criminal dynamics. The methodology involves subdividing the state into
cells, aggregating criminal events in these cells, and creating temporal series. The analysis of
similarity between the series, using the Event Synchronization measure, results in the construction
of a complex network where cells represent vertices, and edges indicate similarity between criminal
patterns.

Keywords: Vehicle theft. Crime. Complex Networks. Time Series.

https://www.ssp.sp.gov.br/
https://www.ssp.sp.gov.br/
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1 INTRODUÇÃO

A criminalidade no Brasil é um desafio multifacetado que tem impactos significativos na
sociedade, economia e qualidade de vida dos cidadãos (CHESNAIS, 1999). A complexidade desse
problema envolve uma série de fatores, incluindo desigualdades socioeconômicas, falta de acesso
à educação de qualidade, deficiências no sistema de justiça e desafios estruturais que demandam
uma abordagem holística para sua resolução (CHESNAIS, 1999).

A urgência em enfrentar os problemas relacionados à criminalidade no Brasil é evidente
diante das consequências devastadoras que ela acarreta. O país enfrenta altos índices de violência,
crimes contra a propriedade, homicídios e tráfico de drogas (Instituto de Pesquisa Econômica
Aplicada (Ipea), 2022), o que gera um clima de insegurança generalizado. Além disso, a violência
impacta negativamente o desenvolvimento econômico, afetando o turismo, os investimentos e a
qualidade de vida da população (MARCHEZINI; SPOLADOR; JORGE, 2020).

A busca por soluções eficazes demanda uma colaboração coesa entre o governo, a sociedade
civil e as instituições acadêmicas (DIAS, 2019). A implementação de políticas públicas efetivas,
informadas por pesquisas aprofundadas e estudos na área da criminalidade, se torna imperativa.
Investir em pesquisas que compreendam as causas subjacentes do fenômeno criminal é essencial
para o desenvolvimento de estratégias (GUEDES, 2007). Essa abordagem baseada em evidências
não apenas resgataria a sensação de segurança na população, mas também contribuiria para o
progresso e a prosperidade do país, estabelecendo um ambiente propício para o avanço sustentável.

1.1 Motivação

Crimes envolvendo veículos impactam diretamente na mobilidade e na sensação de
segurança da população (DIXON; FARRELL, 2020), tornando-se um objeto de estudo relevante
para o desenvolvimento de estratégias eficazes de combate à problemática e para a promoção da
segurança pública, em que a tecnologia, como a análise de dados, desempenha um papel crucial
para o sucesso das investigações (WALSH; TAYLOR, 2007). Roubos e furtos de veículos têm
semelhanças em suas naturezas e motivações; porém, o roubo é, muitas vezes, mais sintomático
devido à presença de ameaças e coação1, frequentemente envolvendo o uso de armas. Em
contrapartida, o furto ocorre de maneira não coerciva, diferenciando-se pela ausência de ameaças
diretas à integridade física 2, o que influencia substancialmente a dinâmica e o impacto psicológico
para as vítimas.

Além disso, o roubo de veículos impõe desafios específicos às forças de segurança pública,
exigindo consideráveis recursos humanos, tecnológicos e de infraestrutura para a efetiva recupera-
ção dos automóveis subtraídos (Portal do Governo do Estado de São Paulo, 2012). Há também
uma conexão intrínseca entre o roubo de veículos e redes de crime organizado (WALLACE,
1 O roubo é descrito no artigo 157 do Código Penal, sendo caracterizado pela subtração de bem material

mediante grave ameaça ou violência.
2 O furto é descrito no artigo 155 do Código Penal, é caracterizado pela subtração de bem material

alheio (destacando-se a ausência de ameaça grave ou violência).
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2004), que utilizam os veículos roubados para diversas atividades, tais como o transporte de
drogas, contrabando de mercadorias ilícitas e assaltos à mão armada. Combatê-lo implica também
desmantelar parte das operações dessas organizações criminosas, contribuindo, assim, para a
redução da criminalidade.

A expectativa de que as vítimas notifiquem essas ocorrências de maneira mais consistente,
diminuindo os índices de subnotificação (c.f. Tabela 1), especialmente devido à necessidade de
registro para fins de seguro e recuperação de veículos roubados, cria uma base de dados robusta
e confiável a partir de boletins de ocorrência, diferentemente de outros tipos de crimes, como os
contra a vida, que enfrentam desafios na notificação e perícia (COSTA, 2021).

Tabela 1 – Taxa de Notificação - Cidades com mais de 100 mil habitantes de países selecionados,
1992

Tipo de Crime Ingl. Finl. Espan. Itália C.Rica Brasil Argen.
Roubo de carro 93,9 100,0 80,9 94,9 73,7 91,9 90,3
Furto de dentro do carro 74,3 55,0 29,2 40,1 22,1 18,3 53,8
Vandalismo no carro 35,5 36,1 18,4 14,9 18,2 0,9 18,8
Roubo de moto 93,5 85,7 85,4 76,4 91,7 65,0 79,5
Roubo de bicicleta 74,6 54,6 40,9 27,5 35,7 7,1 41,4
Arrombamento 94,6 75,0 70,8 65,5 50,8 38,4 68,9
Tentativa de arrombamento 55,2 22,2 22,5 20,9 22,5 19,3 40,9
Assalto 52,1 28,6 32,1 37,5 27,6 19,1 42,0
Ofensas sexuais 16,4 11,2 3,6 4,3 9,3 9,8 43,0
Agressão/ameaça 41,7 24,4 24,4 25,4 29,9 11,5 34,4

Fonte: UNICRI / ILANUD

1.2 Objetivos

O estudo proposto visa extrair informações dos dados de boletins de ocorrência rela-
cionados a crimes envolvendo veículos, em particular, o roubo de veículos, no Estado de São
Paulo, a partir de redes complexas. Essas informações estão acessíveis na transparência do site
da Secretaria de Segurança Pública3 (SSP-SP). A metodologia envolve a subdivisão do estado
em células, a agregação de eventos criminais nessas células e a criação de suas séries temporais.
A análise de similaridade entre as séries, a partir da medida Event Synchronization, resulta na
construção de uma rede complexa, em que as células representam vértices e as arestas indicam
similaridade entre padrões criminais.

A ideia de modelar a dinâmica criminal dessa forma surge porque a complexidade
do sistema de crimes em uma região é influenciada por fatores macroeconômicos (BOTHOS;
THOMOPOULOS, 2016), governamentais, legislativos, judiciais, sociais e culturais (HAINES,
1999; WAWRZYNIAK et al., 2018). A interconexão desses elementos, agindo em diferentes
escalas espaciais e temporais, sugere a abordagem de redes complexas como uma ferramenta
eficaz para modelar e compreender as interações que contribuem para o fenômeno.

3 https://www.ssp.sp.gov.br

https://www.ssp.sp.gov.br/
https://www.ssp.sp.gov.br/
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Um número significativo de pesquisas (AMISANO, 2018; JUNIOR, 2021; SANTOS, 2019;
SAMPAIO, 2023) dedicou-se à análise dos fatores que permeiam a ação criminal, fazendo com que
componentes desse sistema tenham sido identificados e descritos na literatura. Essas pesquisas
estão ganhando crescente viabilidade (PAUW, 2011), em parte devido ao acesso facilitado a
dados criminais, uma conquista impulsionada pela era da informação. Contudo, ainda há diversos
desafios relacionados à previsão da mudança em frequência e extensão de padrões para ocorrência
de delitos, fator crucial na mitigação das consequências da dinâmica criminal (WALSH; TAYLOR,
2007). O presente trabalho se propõe a estabelecer conexões entre diferentes regiões geoespaciais,
representadas por células, ao analisar seus padrões criminais e relacionar suas ocorrências. O
objetivo é extrair informações sobre a estrutura dos roubos de veículos no Estado de São Paulo e
estender métodos para previsão em mudanças nos padrões para a ocorrência de delitos.

A escolha por utilizar dados da SSP-SP como representação dos registros do Estado de
São Paulo é respaldada por diversos motivos. Os dados fornecidos pela SSP-SP seguem padrões de
coleta e armazenamento, o que garante a qualidade e confiabilidade das informações. Além disso,
a boa acessibilidade aos dados simplifica o processo de obtenção. A documentação adequada
sobre seu manuseio permite que pesquisas científicas sejam realizadas a partir deles. Ressalta-se
que, embora o estudo tenha se concentrado no Estado de São Paulo, a metodologia desenvolvida
pode ser aplicada a dados de outros estados da União.

O texto foi subdividido entre as informações pertinentes acerca dos dados utilizados,
a teoria necessária para compreensão do trabalho, a metodologia empregada para a obtenção
dos resultados, e os resultados e discussões subsequentes. No Capítulo 2 há uma descrição
das informações que estão sendo utilizadas. Lá consta onde é possível encontrá-las, o sistema
e processo pelo qual elas são aferidas e ratificadas, os critérios utilizados para sua correta
discriminação, os detalhes de cunho jurídico relacionados ao crime cometido, uma metodologia
para sua interpretação e os procedimentos prescritos para a análise, além das limitações de acesso
provenientes da lei geral de dados. Também constam os meios para sua obtenção e estruturação.

O Capítulo 3 traz uma fundamentação teórica sobre os conceitos mais relevantes para
o desenvolvimento do trabalho, indicando bibliografias que possam complementar o conteúdo.
Constam breves conceituações de séries temporais, séries de eventos, medidas de similaridade,
Event Synchronization e redes complexas.

No Capítulo 4, apresenta-se de forma detalhada a metodologia delineada para a seleção
dos dados do trabalho, a determinação das células e a criação do grid que subdivide o estado,
bem como os procedimentos para a criação e filtragem das séries temporais que representam a
atividade criminal de cada célula. Além disso, são apresentadas as escolhas para determinar a
similaridade entre as séries, o que norteia, posteriormente, a criação das redes complexas que
foram estudadas.

No Capítulo 5, apresentam-se os resultados e conclusões em tabelas e gráficos que ilustram
as descobertas obtidas. Além disso, são exploradas as possíveis causas por trás desses resultados,
proporcionando interpretações da teoria discutida. Destacar-se-á uma análise comparativa distin-
tos tipos de redes desenvolvidas, oferecendo uma compreensão aprofundada de suas características
individuais e impactos.
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A versão digital da monografia, que possui interessantes recursos para auxiliar a leitura,
está disponível na Biblioteca Digital de Trabalhos Acadêmicos da USP4. Os programas para gerar
as figuras, para extração dos dados, para o tratamento e seleção dos dados, e para a aplicação
da metodologia e obtenção dos resultados do trabalho estão disponíveis mediante solicitação ao
autor.

4 https://bdta.abcd.usp.br

https://bdta.abcd.usp.br
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2 OS DADOS

A SSP-SP declara possuir o maior portal de informações sobre segurança pública do
país, que teve início em 9 de maio de 2016. Nele, estão presentes: Taxa de Homicídio, que
oferece acesso à série histórica das taxas anuais de homicídio por regiões do estado; Registro
de Óbitos – IML, que disponibiliza informações básicas sobre todas as entradas de óbitos no
IML; Boletins de Ocorrência, a partir do sistema de Registro Digital de Ocorrências (RDO).

Para a presente monografia, são de interesse apenas os dados contidos no sistema RDO,
que concedem acesso a boletins de ocorrência emitidos dentro do Estado de São Paulo desde
o ano de 2003. As seguintes naturezas consumadas estão disponíveis: homicídio doloso, roubo
seguido de morte (Latrocínio), lesão corporal seguida de morte, morte decorrente de intervenção
policial, morte suspeita, roubo de veículo, furto de veículo, roubo de celular e furto de celular. No
presente capítulo, a apresentação foi direcionada para a natureza consumada ”roubo de veículo”,
foco da análise. Mais informações pertinentes às demais naturezas podem ser encontradas na
apresentação do site da Secretaria de Segurança Pública do Estado de São Paulo1.

2.1 Obtenção dos dados

A aquisição dos dados utilizados para o trabalho foi realizada através do site da trans-
parência da SSP-SP2 (c.f. Figura 1). O portal disponibiliza acesso direto a todas as tabelas
referentes às naturezas consumadas mencionadas no início deste capítulo, além de informações
sobre como interpretá-las.

Não há um padrão geral para a extração dos dados de cada tabela. Para baixar todo
o conteúdo presente das naturezas consumadas: homicídio doloso, feminicídio, latrocínio, lesão
corporal seguida de morte e morte decorrente de intervenção policial, basta selecionar os respectivos
botões. Além de todo período disponível vir em um só arquivo, este está em um formato ”.xlsx”,
mais moderno e eficiente.

Já para registro de óbitos - IML, morte suspeita, furto de veículo, roubo de veículo, furto
de celular, roubo de celular e SP dados criminais, é necessário escolher o ano e mês indicados
(c.f Figura 2), o que implica baixar mês a mês, ano a ano, cada planilha que compreenda o
período que se pretende estudar, processo agravado por um alto tempo requerido pelo site para
encontrar os documentos em seu banco de dados. O formato dos arquivos é ”.xls”, obsoleto, com
várias planilhas corrompidas ou com erros sendo fornecidas pelo site. O processo de extração
empreendido pelo trabalho para os dados pertencentes a ”roubo de veículo” foi descrito em
detalhes no Capítulo 4.

É importante destacar que as tabelas apresentam valores ausentes ou inconsistentes, uma
condição que pode ser atribuída a uma variedade de fatores, incluindo possíveis falhas durante o
processo de coleta, erros na entrada de dados e características inerentes à natureza do próprio
1 https://www.ssp.sp.gov.br/transparenciassp/Apresentacao.aspx
2 http://www.ssp.sp.gov.br/transparenciassp/Consulta2022.aspx

https://www.ssp.sp.gov.br/transparenciassp/Apresentacao.aspx
http://www.ssp.sp.gov.br/transparenciassp/Consulta2022.aspx
http://www.ssp.sp.gov.br/transparenciassp/Consulta2022.aspx
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Figura 1 – O portal da transparência da SSP-SP

Registro feito em 10 set. 2023.

conjunto de dados (MIOT, 2019). Valores ausentes, grosso modo, impossibilitam a aplicação
de metodologias e podem adicionar viés ao estudo (HYUN, 2013). Assim, torna-se essencial
ponderar e adotar estratégias para mitigar a ausência de valores ou inconsistências.

Um estudo recente (FREITAS; CLARINDO; AGUIAR, 2023) abordou integralmente o
processo de extração e estruturação, resultando na criação de um banco de dados que abrange
todas as planilhas disponíveis na transparência da SSP-SP. No entanto, esse banco não foi utilizado
no presente trabalho, uma vez que seu desenvolvimento e publicação ocorreram posteriormente à
conclusão das etapas de extração, estruturação e seleção realizadas no presente estudo.

2.2 Introdução aos dados da SSP-SP

A SSP-SP oferece um documento destinado à leitura e interpretação dos dados, acessível
por meio do botão ”Exportar Metodologia” destacado na Figura 2b. Abaixo, são listados os
principais pontos contidos neste documento.

• Os dados constantes foram extraídos do sistema de Registro Digital de Ocorrências (RDO)
que é a ferramenta de registro dos boletins de ocorrência nas delegacias de polícia. Para
todas as tabelas, cada linha representará um boletim de ocorrência emitido dentro da
jurisdição do Estado de São Paulo.
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Figura 2 – Opções para seleção e download

(a) Seleção de ano e mês

(b) Botão ”Exportar” realiza download

• O sistema RDO teve sua implantação concretizada de modo gradual nas diversas unidades
policiais do Estado, alcançando todos os municípios apenas a partir do ano de 2010.

• Os boletins são apresentados conforme foram registrados pelas unidades policiais, no
sistema RDO. Isso significa que eventuais erros, como valores ausentes ou inconsistentes,
vêm diretamente do momento de confecção dos boletins.

• O número total de boletins de ocorrência registrados sob uma natureza consumada não
representa a estatística criminal do estado ou de determinada área ou região. Isso se deve,
entre outros fatores, à subnotificação.

• A inclusão ou alteração de um campo e respectivos períodos de implementação podem
influenciar diretamente nos critérios de pesquisa executados, não havendo na base fornecida
o tratamento metodológico necessário para qualificá-las como dados estatísticos oficiais.
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• Cada linha constante na tabela registra os dados de uma pessoa, natureza ou objeto
relacionado no boletim. Assim, um boletim que possua a identificação de mais de uma
pessoa, natureza ou objeto (a depender da pesquisa solicitada) terá os dados da ocorrência
multiplicados pelos indexadores solicitados, ou seja, várias linhas podem se referir ao mesmo
boletim.

• Para conclusões quanto às quantidades nominais de ocorrências, é necessária a exclusão
das duplicidades por meio dos campos: NOME_DELEGACIA, ANO_BO, NUM_BO.

• Boletins que envolvem múltiplas naturezas, disponíveis no portal, serão apresentados em
ambas as categorizações. Isto é, um mesmo incidente pode estar presente em tabelas de
diferentes naturezas se ele contempla mais de um tipo de crime.

O documento ressalta, adicionalmente, a presença de restrições legais que afetam as
informações veiculadas. Essas limitações estão associadas a questões jurídicas e regulatórias,
impondo condições específicas sobre a divulgação e acessibilidade de determinadas informações.

• Não serão fornecidos históricos de quaisquer naturezas do Título VI - Dos Crimes Contra
os Costumes/Dignidade sexual e do Título I - Dos Crimes Contra a Pessoa Capítulo V -
Dos Crimes Contra a Honra do Código Penal.

• São protegidas as ocorrências que tenham associadas quaisquer naturezas do Título VI, do
Código Penal (Crimes contra os Costumes/Dignidade Sexual), suprimindo-se o nome da
vítima.

• Os campos que podem levar à identificação da pessoa são protegidos de acordo com o art.
31 da Lei de Acesso a Informação.

• Não são disponibilizados endereços quando o tipo de local tiver sido registrado como
residência ou congênere.

• Em virtude das características das informações contidas nos históricos, que tem por
finalidade principal a coleta de subsídios para o início das investigações pelas autoridades
policiais, além de conterem dados pessoais, para acesso aos históricos deverá ser atendido o
previsto no art. 31 da Lei nº 12.527, de 18 de novembro de 2011, em especial o §3º:

Art. 31. O tratamento das informações pessoais deve ser feito de forma transpa-
rente e com respeito à intimidade, vida privada, honra e imagem das pessoas,
bem como às liberdades e garantias individuais.

§1. As informações pessoais, a que se refere este artigo, relativas à intimidade,
vida privada, honra e imagem:
II - poderão ter autorizada sua divulgação ou acesso por terceiros diante

de previsão legal ou consentimento expresso da pessoa a que elas se
referirem.

§2. Aquele que obtiver acesso às informações de que trata este artigo será
responsabilizado por seu uso indevido.
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§3. O consentimento referido no inciso II do §1 não será exigido quando as
informações forem necessárias:
I - à prevenção e diagnóstico médico, quando a pessoa estiver física ou

legalmente incapaz, e para utilização única e exclusivamente para o
tratamento médico;

II - à realização de estatísticas e pesquisas científicas de evidente interesse
público ou geral, previstos em lei, sendo vedada a identificação da pessoa
a que as informações se referirem;

III - ao cumprimento de ordem judicial;
IV - à defesa de direitos humanos; ou
V - à proteção do interesse público e geral preponderante.

2.3 Dados relativos a veículos

Para esclarecer as operações deste trabalho, faz-se relevante destacar alguns detalhes
das planilhas referentes a roubos de veículos. Seus dados abrangem o período de 2003 a 2022.
No entanto, o sistema RDO não estava completamente implementado em todo o estado até
2010, como mencionado anteriormente. Portanto, os registros fora das regiões metropolitanas
possivelmente não são representativos, pois não abrangem todas as delegacias do estado.

No total, são 240 tabelas, 12 para cada ano, cada uma representando um mês. A
quantidade total de instâncias, juntando todas as planilhas, é de 2.568.107. Removendo-se as
entradas duplicadas, um total de 1.376.519 roubos de veículo distintos foram registrados no
período. Para o ano de 2022, em específico, constam 124.512 instâncias, com 52.554 ocorrências
sendo distintas entre si.

As tabelas brutas extraídas do site da SSP-SP possuem 54 colunas representando in-
formações a serem registradas durante a confecção do BO. Um fator inesperado é a presença
de informações que são pertinentes a crimes envolvendo celulares. A SSP-SP não faz qualquer
menção a isso em seu documento de interpretação, mas possivelmente foi usado o mesmo template
para ambos os contextos por envolverem naturezas afins (furto ou roubo).

Um quadro com todas as colunas das planilhas, suas respectivas descrições e tipo ideal
está no Apêndice A. O Quadro 1 destaca as colunas mais relevantes para o presente trabalho,
usadas no Capítulo 4 para obter os resultados. Os demais campos não foram usados diretamente.

Os três primeiros campos são necessários para a exclusão de entradas duplicadas, conforme
indicado na Seção 2.2. As colunas ’DATAOCORRENCIA’ e ’HORAOCORRENCIA’ fornecem
informações temporais das ocorrências, fator crucial para identificar o padrão criminal. Os
campos subsequentes, ’BAIRRO’ e ’CIDADE’, apresentam informações espaciais categóricas
sobre unidades administrativas que localizam a ocorrência. Por fim, ’LATITUDE’ e ’LONGITUDE’
fornecem informações espaciais e geográficas, que permitem localizar com precisão o ponto exato
em que o delito se sucedeu.
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Quadro 1 – Principais campos contidos nas tabelas de roubo de veículo

Nome da Coluna Descrição Tipo de Dado (ideal)
ANO_BO Ano de identificação do BO Inteiro
NUM_BO Número de identificação do BO Inteiro
DELEGACIA_NOME Nome da delegacia de registro Texto
DATAOCORRENCIA Data da ocorrência Data
HORAOCORRENCIA Hora da ocorrência Hora
BAIRRO Bairro da ocorrência Texto
CIDADE Cidade da ocorrência Texto
LATITUDE Latitude da ocorrência Ponto flutuante
LONGITUDE Longitude da ocorrência Ponto flutuante

Fonte: Elaborado pelo autor.
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3 FUNDAMENTAÇÃO TEÓRICA

A fundamentação teórica tem como objetivo contextualizar os principais temas para
a compreensão deste trabalho: séries temporais, com ênfase em séries de eventos; medidas de
similaridade entre séries temporais, com foco em Event Synchronization; e Redes Complexas.

3.1 Séries temporais

A análise de dados experimentais observados em momentos distintos no tempo traz
consigo novos e singulares desafios na modelagem estatística e inferência ”tradicionais”. A cor-
relação evidente introduzida pela amostragem de pontos de tempo adjacentes pode restringir
significativamente a aplicabilidade de muitos métodos estatísticos convencionais, que tradici-
onalmente dependem da suposição de que essas observações adjacentes são independentes e
identicamente distribuídas. A abordagem sistemática para lidar com as questões matemáticas e
estatísticas levantadas por essas correlações temporais é comumente conhecida como análise de
séries temporais (WEI, 1994)

O impacto da análise de séries temporais em aplicações científicas pode ser parcialmente
documentado ao produzir uma lista resumida dos diversos campos nos quais problemas impor-
tantes de séries temporais podem surgir (WEI, 1994). Por exemplo, muitas séries temporais
conhecidas ocorrem no campo da economia, onde há continua exposição de cotações diárias do
mercado de ações ou dados mensais de desemprego. Cientistas sociais acompanham séries sobre
a população de um determinado lugar, como datas de nascimento ou matrículas escolares. Um
epidemiologista pode estar interessado no número de casos de COVID-19 observados ao longo de
algum período de tempo. O governo pode estar interessado em várias séries temporais de padrões
criminais que poderiam ser estudadas para prevenir futuros delitos.

3.1.1 Noções gerais

Uma série temporal pode ser intuitivamente definida como qualquer conjunto de observa-
ções ordenadas no tempo (c.f Figura 3). São exemplos de séries temporais:

• Os índices diários da Bolsa de Valores de São Paulo (como o Ibovespa) são séries temporais
que rastreiam o desempenho das ações e ativos financeiros ao longo do tempo. Esses
índices são calculados com base nas flutuações dos preços das ações negociadas na bolsa e
são atualizados diariamente. Eles são usados para acompanhar a evolução dos mercados
financeiros e tomar decisões de investimento.

• A quantidade mensal de nascimentos em uma determinada região é uma série temporal
cujas observações são o valor nominal da natalidade e cada observação está condicionada a
um determinado mês de registro.
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• A quantidade semanal de novos casos positivos para COVID-19 é uma série temporal cujas
observações são o total de casos nos sete dias e elas estão dispostas conforme a sequência
das semanas.

• O total de ocorrências diárias de roubos de veículos em uma área específica é uma série
temporal cujas observações são ocorrências deste tipo de crime num determinado dia, e
elas estão dispostas conforme a sequência dos dias.

• O registro de um evento sísmico é uma série temporal cujas observações são os movimentos
de vibração provocados e ele está disposto continuamente durante todo o registro do evento.

Figura 3 – Exemplos gráficos de séries temporais

(a) Exemplo de série financeira (b) Exemplo de série de natalidade

(c) Exemplo de série epidemiológica (d) Exemplo de série sísmica

Séries ilustrativas geradas pelo autor

Nos exemplos listados, as quatro primeiras séries possuem seu intervalo de tempo discreto;
séries temporais de tempo discreto referem-se a conjuntos de dados onde as observações são
registradas em intervalos de tempo definidos e distintos, como dias, semanas ou meses. O tamanho
do intervalo de tempo é dito o lag ou defasagem da série e a quantidade de intervalos é chamada
de timesteps, passos de tempo ou resolução. A última série possui intervalo de tempo contínuo,
pois a atividade sísmica não acontece em intervalos, mas continuamente no tempo. Muitas vezes,
uma série temporal discreta é obtida através da amostragem de uma série temporal contínua em
intervalos de tempos iguais (MORETTIN, 2006).
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Além disso, os valores assumidos pela séries, ou observações, podem ser discretos (valores
enumeráveis) ou contínuos (números reais). Por estarem limitados aos centavos (centésimos),
pode-se classificar os índices da bolsa como discretos, entretanto, o tratamento destes muitas
vezes será como dados contínuos. As quantidades descritas nos exemplos anteriores representam
contagens e, portanto, os valores são discretos. Contudo, o último exemplo representa uma série
de valores essencialmente contínuos.

Além dessa categorização, é útil compreender as nuances entre séries temporais univariadas
e multivariadas, unidimensionais e multidimensionais. Séries temporais univariadas registram
as flutuações de apenas uma quantidade ao longo do tempo, como as séries mencionadas
anteriormente. Por outro lado, as series temporais multivariadas registram simultaneamente várias
quantidades (MORETTIN, 2006). Por exemplo, uma série que represente altura, temperatura
e pressão de um gás é considerada multivariada, pois contempla múltiplas variáveis ao mesmo
tempo.

No contexto da dimensionalidade, as séries unidimensionais são indexadas em um único
fator, geralmente o tempo. Todas as séries previamente discutidas são unidimensionais. Por outro
lado, séries temporais multidimensionais possuem mais de um fator indexador, podendo incluir,
por exemplo, tempo, latitude e longitude. Uma série que realize a medição da temperatura e
pressão geoespacial dos oceanos é um exemplo de série multivariada e multidimensional. 1

Lidar com as diversas naturezas das séries temporais é um desafio em si, uma vez que os
conceitos gerais, tais como padrões, ciclos, autocorrelação, entre outros, variam de acordo com a
forma como a série registra e assume seus valores. Isso, por sua vez, influencia diretamente os
métodos utilizados para estudar, modelar e prever essas séries. Os procedimentos descritos a seguir
idealizam séries com intervalo de tempo discreto, ou ao menos que possam ser transformadas
para tal, sem prejuízo da análise. Mais detalhes em Morettin (2006).

3.1.2 Definição formal

Ao discutir séries temporais, é essencial conceituar variável aleatória e processo estocástico.
Uma variável aleatória é uma formalização matemática de uma quantidade ou objeto sujeito a
eventos aleatórios, que consiste em uma função dos resultados possíveis em um espaço amostral
para um espaço mensurável, muitas vezes associado aos números reais. Sua definição formal é
dada por:

Seja (Ω, F , P) um espaço de probabilidade para o espaço amostral Ω, a σ-álgebra F e a
função de probabilidade P. Denomina-se variável aleatória qualquer função X : Ω → R tal que

X−1(I) = {ω ∈ Ω : X(ω) ∈ I} ∈ F ,

para todo intervalo I ⊂ R. Pode-se entender uma série temporal como uma sequência de
observações ordenadas ao longo do tempo, em que cada observação é uma realização de uma
variável aleatória em um ponto específico desse intervalo temporal. Em outras palavras, para
cada instante de tempo na série, é obtida uma variável aleatória associada, representando a
aleatoriedade inerente aos dados observados: considerando a série temporal X(t), onde t pertence
1 Neste estudo, o interesse reside em séries temporais univariadas e unidimensionais.
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ao conjunto T de instantes de tempo, cada X(t) é uma variável aleatória. Para uma compreensão
mais aprofundada, recomenda-se a consulta ao capítulo 2 do livro de Magalhães (2006).

Agora, considerando um conjunto arbitrário T , um processo estocástico é uma família
Z = {Z(t) , t ∈ T} tal que, para cada t ∈ T , Z(t) é uma variável aleatória. Em outras palavras,
um processo estocástico é uma família de variáveis aleatórias definidas no mesmo espaço de
probabilidades (Ω, A, P). Dado que, para t ∈ T , Z(t) é uma variável aleatória definida sobre Ω,
na realidade Z(t) é uma função de dois argumentos, Z(t, ω), t ∈ T , ω ∈ Ω. Mais detalhes sobre
processos estocásticos e séries temporais podem ser encontrados em Shumway e Stoffer (2006).

Assim sendo, pode-se encarar toda a série temporal como um processo estocástico.
Precisamente, uma série temporal representa apenas uma entre as diversas realizações possíveis
de um processo estocástico (MORETTIN, 2006). Ao considerar um processo estocástico como
uma coleção de variáveis aleatórias indexadas ao longo do tempo, cada série temporal específica
corresponde a uma trajetória particular desse processo no espaço amostral, dado que cada
ponto na série temporal é uma observação singular de uma variável aleatória associada a um
instante específico no tempo. A análise de séries temporais no contexto de variáveis aleatórias e
processos estocásticos permite identificar tendências e realizar previsões, levando em consideração
a natureza probabilística dos eventos ao longo do tempo.

3.1.3 Séries temporais de eventos

Séries temporais de eventos, ou séries de eventos, são séries temporais binárias, isto é,
cujo valor da variável aleatória assume apenas 0 ou 1, e em que valores não nulos representam
um evento, como ilustra a Figura 4. Sua representação é muito simples e pode ser visualizada a
partir dos seus eventos.

Figura 4 – Exemplos de séries de eventos com nove passos de tempo (t1, ..., t9)

Séries ilustrativas geradas pelo autor

Existem muitas opções possíveis para a definição de evento. Por exemplo, os eventos
podem ser momentos no tempo em que o valor da série temporal está acima de um limiar
global, ou em que esse valor está acima de um percentil específico da distribuição dos valores,
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ou momentos no tempo em que os valores da série mudam drasticamente. Como essa escolha
depende da pergunta de pesquisa específica e da aplicação, a definição de eventos pode variar
bastante (BOERS, 2015).

Uma série de eventos de alta resolução é caracterizada pela divisão em um grande número
de passos de tempo, o que implica uma granularidade fina na representação temporal. Por outro
lado, uma série de baixa resolução é aquela que é dividida em um número menor de passos
de tempo, indicando uma representação temporal mais generalizada. Uma série de eventos é
considerada esparsa quando a quantidade de passos de tempo é substancialmente maior do que a
quantidade de eventos observados.

Séries de eventos podem possuir o que se denomina na bibliografia de agrupamento
temporal de eventos (ODENWELLER; DONNER, 2020). Eventos agrupados temporalmente
ocorrem quando uma série esparsa possui dois ou mais eventos justapostos entre si (c.f. Figura
5). Formalmente, seja uma série de eventos xi cuja quantidade total de eventos é si. Sejam l

e l + 1 índices para dois eventos subsequentes quaisquer dentro da série. Os eventos l e l + 1
estão agrupados temporalmente se os instantes de tempo ti

l e ti
l+1, em que ocorrem l e l + 1,

respectivamente, diferem de uma unidade de tempo. Ou seja, dois eventos estão agrupados
temporalmente se ocorrem em tempos subsequentes.

Figura 5 – Séries com padrão de agrupamento temporal

(a) Em séries com esse padrão, os eventos tendem a estar circundantes

(b) Todos os eventos desta série estão agrupados temporalmente

Séries ilustrativas geradas pelo autor

Existem algumas formas de medir de quão temporalmente agrupados os eventos estão.
Uma delas é o pairing coefficient, ou coeficiente de emparelhamento (ODENWELLER; DONNER,
2020), presente na Equação 3.1:

Pi = 1
si−1

si−1∑
l=1

δ[(ti
l+1 − ti

l) − 1] (3.1)

Na Equação 3.1, Pi quantifica o agrupamento temporal de eventos em séries temporais e
assume valores entre Pi = 0 (nenhum evento agrupado) e Pi = 1 (todos os eventos em passos
de tempo subsequentes). A função δ(·) assume o valor 1 apenas para argumento nulo, e 0 caso
contrário. Além disso, nessa definição, a medida de tempo é adimensional. O coeficiente de
emparelhamento, contudo, tem algumas limitações no tocante à sua interpretação no contexto
do trabalho, como discutido na Seção 3.3.2.
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3.2 Medidas de Similaridade

Existem muitas formas de medir semelhança, similaridade, relação, dependência ou
associação entre variáveis. No contexto de séries temporais, muitas medidas diferentes foram
utilizadas para quantificar essas associações, e, em termos gerais, essas medidas são nomeadas de
medidas de similaridade. Cada medida tem sua empregabilidade determinada pela natureza das
séries temporais (BOERS, 2015).

3.2.1 O Coeficiente de Correlação de Pearson e outras medidas

A medida de similaridade mais amplamente utilizada é o Coeficiente de Correlação de
Pearson. Para duas séries temporais x e y de comprimento T com médias existentes x, y e desvios
padrão σx, σy, ela é definida como a forma bilinear na Equação 3.2:

Cor(x, y) := Cov(x, y)
σxσy

= ΣT
i=1(xi − x)(yi − y)√∑T

i=1(xi − x)2∑T
i=1(yi − y)2

(3.2)

Portanto, Cor(x, y) ∈ [−1, +1] para todos os pares de x, y, sendo os valores próximos de
0 associados à baixa correlação, e os valores próximos a ±1 indicam forte correlação (BENESTY
et al., 2009). Essa medida é adequada para quantificar as dependências lineares entre x e y. No
entanto, isso não exclui possíveis dependências não lineares entre elas. A Figura 6 exemplifica
pares com alta e baixa correlação.

A limitação dos coeficientes de correlação lineares impulsionou o desenvolvimento de
medidas mais abrangentes de similaridade. Entre essas alternativas, destacam-se os coeficientes
de correlação de postos de Spearman e Kendall, que quantificam dependências monótonas gerais
entre x e y, incluindo não linearidades (KENDALL; GIBBONS, 1990).

O Coeficiente de Correlação de Spearman avalia a relação monotônica entre duas variáveis,
valendo-se do conceito de postos. O conceito de postos está relacionado à atribuição de posições
relativas a diferentes valores em um conjunto de dados. Quando se está lidando com duas variáveis,
como no caso do Coeficiente de Correlação de Spearman, é comum classificar os valores de cada
variável em ordem crescente, atribuindo a cada valor o seu ”posto” na ordem (DANIEL, 2000).
A correlação de Spearman é calculada por meio da Equação 3.3:

Cor(x, y) = 1 − 6∑ d2
i

n(n2 − 1) (3.3)

em que di representa as diferenças entre os postos de cada par de observações (xi, yi), e n é o
número total de observações. Assim como para Pearson, os valores de correlação de Spearman
variam entre −1 (anticorrelação perfeita) e 1 (correlação perfeita), sendo 0 e seus valores
circundantes um indicativo de ausência de correlação, vide a Figura 7.

Já o Coeficiente de Kendall (KENDALL, 1938) mede a correlação entre pares de observa-
ções concordantes e discordantes, de acordo com a Equação 3.4:

Cor(x, y) = Número de pares concordantes − Número de pares discordantes
1
2n(n − 1)

(3.4)
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Figura 6 – Pares de séries temporais com valores alto e baixo para Correlação de Pearson

(a) As séries acima têm Correlação de Pearson muito alta ≈ 0, 921

(b) Já o último par tem Correlação de Pearson baixa ≈ 0, 146

Séries ilustrativas geradas pelo autor

em que n é o número total de observações (c.f. Figura 8).

Mais detalhes acerca de medidas de similaridade aplicadas em séries temporais podem
ser vistos em Wei (1994), Serrà e Arcos (2014), Keogh et al. (2001). A busca por medidas mais
gerais, que transcendam dependências monótonas, levou ao desenvolvimento de conceitos como a
Informação Mútua, uma medida de similaridade não linear que quantifica a ”informação conjunta”
contida em x e y. A Correlação de Informação Mútua (COVER; THOMAS, 2001) avalia a
dependência estatística entre duas variáveis e pode ser calculada através da Equação 3.5:

MI(x, y) =
∑

xi∈X

∑
yj∈Y

p(xi, yj) log
(

p(xi, yj)
p(xi)p(yj)

)
(3.5)

em que p(xi, yj) representa a probabilidade conjunta das observações xi e yj , e p(xi) e p(yj)
são as probabilidades marginais de xi e yj . Essa medida proporciona uma avaliação robusta e
abrangente da relação entre x e y, indo além das limitações impostas por métodos lineares. Ela
atinge valores diversos a partir do conjunto de dados e sua unidade convencional é bits. A Figura
9 exemplifica uma aplicação.

3.2.2 A limitação intrínseca ao problema

As medidas de similaridades apresentadas anteriormente possuem seu escopo de atuação
e limitações. Em geral, todas as medidas propostas tendem a absorver muito bem correlação em



44

Figura 7 – Pares de séries temporais com valores alto e baixo para Correlação de Spearman

(a) Alta correlação de Spearman ≈ 0, 941

(b) Baixa correlação de Spearman ≈ −0, 107

Séries ilustrativas geradas pelo autor

contextos de variável contínua, pela própria natureza de suas definições. Contudo, em contextos
discretos, especialmente binários, esse bom desempenho não é observado, como mostra o exemplo
com as séries i e j presentes na Figura 10, em que a série j é definida a partir da série i, com
seus eventos deslocados um passo de tempo para a direita. A evidente correlação entre essas
séries não é bem captada pelas medidas anteriores, conforme pode-se inferir da Tabela 2.

Tabela 2 – Medidas de similaridade para as séries da Figura 10

Medida de similaridade valor (três casas decimais)
Pearson 0,114

Spearman 0,114
Kendall 0,114

Informação Mútua 0

Fonte: Elaborada pelo autor.

Os valores de correlação seriam ainda mais baixos quanto mais passos de tempo as duas
séries possuíssem. Ademais, deslocar os dados em mais unidades de tempo para a direita ou
esquerda não teria qualquer efeito significativo nessas correlações. O fato é que para dados
binários, especialmente se forem esparsos, os padrões são difíceis de se estabelecer.

Para compreender plenamente o contexto do presente estudo, é crucial considerar a
possibilidade de um atraso temporal entre eventos ocorridos em diferentes localidades, sendo esse
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Figura 8 – Pares de séries temporais com valores alto e baixo para Correlação de Kendall

(a) Alta Correlação de Kendall ≈ 0, 891

(b) Baixa Correlação de Kendall ≈ 0, 081

Séries ilustrativas geradas pelo autor

Figura 9 – A Correlação de Informação Mútua entre X e Y é ≈ 0, 029

Séries ilustrativas geradas pelo autor

atraso não necessariamente constante ao longo do tempo. A existência de fatores interligando
eventos criminais em locais distintos, como a presença de organizações criminosas, o impacto de
medidas de segurança ou leis, ou mesmo fatores ocultos, pode resultar em padrões de ocorrências
que se manifestam inicialmente em um local e, posteriormente, em outro, com variação nos
períodos entre cada evento (RUITER, 2017; SLEEUWEN; STEENBEEK; RUITER, 2020).

Os atrasos entre os eventos em x e os eventos associados em y são influenciados por esses
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Figura 10 – Séries de eventos com padrão muito similar

Séries ilustrativas geradas pelo autor

fatores e apresentam variações temporais. Para abordar essa dinâmica, é possível considerar
deslocamentos temporais entre as séries temporais x e y por meio de janelas de tempo pré-
definidas (avanço ou atraso), seguido pelo cálculo de medidas de similaridade. Entretanto, em
uma ”análise de avanço-atraso”, apenas um único avanço (ou atraso) é atribuído ao par (x, y),
assumindo-se como válido para todo o intervalo de tempo considerado.

Portanto, deve-se procurar uma medida de similaridade não linear que seja adequada
para dados binários, forneça uma associação única entre eventos e permita um atraso dinâmico,
ou seja, intervalos de tempo variáveis entre eventos de uma série temporal e eventos da outra
série temporal. Uma opção possível para tal fim seria a Event Synchronization (ES), introduzida
pela primeira vez em Quiroga, Kreuz e Grassberger (2002), que atende a todos esses requisitos.

3.3 Event Synchronization

O Event Synchronization foi introduzido como um método sem parâmetros para a análise
de fenômenos de sincronização em dados espigados de eletroencefalografia, mas tem sido aplicado
recentemente a outros campos de pesquisa também. A seguir, a definição original dada por
Quiroga, Kreuz e Grassberger (2002) e sua respectiva correção:

Seja um conjunto de N séries temporais de eventos {x1, ..., xN }, cada uma de comprimento
T , e (xi, xj) denota um par dessas séries temporais. Sejam dois eventos, l e m, pertencentes a
duas séries distintas i e j, respectivamente, com quantidade de eventos si e sj . Seja ti

l e tj
m o

passo de tempo em que esses eventos ocorreram. Define-se a taxa de eventos ri de uma série
temporal xi como o quociente entre o número de eventos si e o comprimento T de xi: ri = si

T .

Primeiramente, pode-se assumir que há uma taxa de evento característica, bem definida
e igual para toda série temporal. Assim, pode-se permitir um atraso de tempo ±τ ij global entre
eventos síncronos das séries i e j (que deve ser menor que a metade da distância mínima entre
eventos, para evitar a contagem dupla). Denotando por c(i|j) o número de vezes que um evento
aparace em i e logo após aparecer em j, isto é,

c(i|j) =
si∑

l=1

sj∑
m=1

J ij
lm (3.6)
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com

J ij
lm =


1 se 0 < ti

l − tj
m ≤ τ ij

1
2 se ti

l = tj
m

0 caso contrário

(3.7)

e de forma análoga para c(j|i), define-se a combinação simétrica:

Qij = c(i|j) + c(j|i)
√

sisj
(3.8)

que mede a sincronização dos eventos entre as séries i e j e assume valores Qij ∈ [0, 1]. Tem-se
Qij = 1 se e somente se os eventos estiverem totalmente sincronizados, e Qij = 0 na ausência de
sincronização2.

Nos casos em que se deseja evitar uma escala de tempo global τ ij entre todos os eventos
das séries, já que as taxas de eventos serão distintas em quase todas as séries temporais, usa-se a
definição local τ ij

lm para cada par de eventos l, m. Mais precisamente, define-se:

τ ij
lm = 1

2 min
(
ti
l+1 − ti

l, ti
l − ti

l−1, tj
m+1 − tj

m, tj
m − tj

m−1

)
(3.9)

e adequa-se J ij
lm para a nova medida, com notação Jlm indicando intervalos locais (variáveis para

cada l, m), conforme a Figura 11.

J ij
lm =


1 se 0 < ti

l − tj
m ≤ τ ij

lm

1
2 se ti

l = tj
m

0 caso contrário

(3.10)

Então:

c(i|j) =
si∑

l=1

sj∑
m=1

J ij
lm (3.11)

e Qij = c(i|j) + c(j|i)
√

sisj
, como anteriormente.

O fator 1
2 na definição de τ ij

lm evita a contagem dupla se, por exemplo, dois eventos da
série i estão próximos a um mesmo evento em j. Em alguns casos, especialmente para séries
esparsas, é possível que τ ij

lm, como definido anteriormente, torne-se indesejadamente grande, o
que pode ser evitado a partir de um parâmetro τmax, definido previamente à aplicação de ES.

A definição anterior é bastante flexível e consegue absorver bem a natureza do problema
de medir similaridade entre séries de eventos, mas ainda precisa de adaptações que delimitem
melhor a análise e corrijam a contagem múltipla de eventos. Elas foram propostas por Odenweller
e Donner (2020):

Dois eventos em ti
l e tj

m são considerados sincronizados se ambos ocorrerem dentro de um
certo intervalo de tempo adaptativo aos dados, com largura τ ij

lm definida como na Equação 3.12:

τ ij
lm = 1

2 min
(
ti
l+1 − ti

l, ti
l − ti

l−1, tj
m+1 − tj

m, tj
m − tj

m−1

)
(3.12)

2 Duas séries com valor suficientemente grande de ES são ditas sincronizadas em vez de correlacionadas.
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Figura 11 – Ilustração da análise de padrões feita no ES

Gerada pelo autor

com l = 2, 3, ..., si − 1 e m = 2, 3, ..., sj − 1, de modo que τ ij
lm não seja avaliado para o primeiro

e último evento, a fim de garantir uma consideração apropriada das fronteiras (c.f. Figura 12).
Portanto, não se computa τ1m ou τl1, nem τsim ou τlsj

. Ainda sim, estes são usados para o
segundo e penúltimo evento (como ti

l−1 ou ti
l+1). Novamente, é possível limitar superiormente

τ ij
lm a partir de τmax, para evitar intervalos grandes demais entre eventos.

Figura 12 – Análise de padrões com ES corrigida

Gerada pelo autor

A Equação 3.12 implica que quanto mais raramente os eventos ocorrem em uma ou
ambas as séries temporais, maior será τ ij

lm, de modo que ela se configura como um intervalo
de coincidência dinâmica (local). Assim, se os eventos são raros nas proximidades de um dos
dois eventos, maiores desvios de uma coincidência instantânea ainda podem ser considerados
sincronizados. A natureza dinâmica de τ ij

lm simplifica a separação de eventos independentes, o
que, por sua vez, resulta em uma variedade de escalas temporais capturadas por uma única
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medida. A compensação é que, por design, o valor de τ ij
lm muda constantemente entre diferentes

pares de eventos.

Contar o número de ocorrências de eventos sincronizados em i, dado um evento em j,
resulta em

c(i|j) =
si−1∑
l=2

sj−1∑
m=2

J ij
lm (3.13)

em que J ij
lm é uma função de contagem que incorpora τ ij

lm e depende se a condição de sincronização
presente na Equação 3.14:

σij
lm =

1 se 0 < ti
l − tj

m ≤ τ ij
lm

0 caso contrário
(3.14)

é satisfeita para os eventos considerados e vizinhos:

J ij
lm =


1 se σij

lm = 1 e σji
m,l−1 = 0 e σji

m+1,l = 0,

1
2 se ti

l = tj
m ou (σij

lm = 1 e (σji
m,l−1 = 1 ou σji

m+1,l = 1)),

0 caso contrário.

(3.15)

A função de contagem na equação anterior difere da definição original de ES e essas
mudanças são inevitáveis para uma especificação correta, pois, do contrário, a contagem dupla
errônea poderia ocorrer. Devido à condição de uma distância entre eventos que é menor ou igual
ao intervalo de coincidência dinâmica τ ij

lm, na definição original os eventos poderiam ser contados
duas vezes. Para evitar isso, é preciso verificar para todos os pares de eventos se um dos eventos
já foi contado como sincronizado na direção oposta. Se for o caso, um peso de 1

2 é atribuído a esse
par, garantindo assim que a normalização seja feita corretamente. Essa situação só pode ocorrer
se ti

l − tj
m = τ ij

lm e, em seguida, os eventos respectivos contribuem igualmente para c(i|j) e c(j|i).

Por plena analogia, define-se ainda c(j|i) e infere-se a força de sincronização de eventos
entre i e j como:

Qsym
ij = c(i|j) + c(j|i)√

(si − 2)(sj − 2)
(3.16)

que é normalizada, de modo que 0 ≤ Qsym
ij ≤ 1, onde Qsym

ij = 1 implica uma sincronização
completa de eventos e Qsym

ij = 0 a ausência de eventos sincronizados.

Para a geração de uma representação de rede complexa de um conjunto de séries temporais,
considera-se a força de sincronização de eventos como uma medida estatística de similaridade,
cujos valores estimados fornecem os coeficientes de uma matriz Qsym = (Qsym

ij ). Uma vez que
Qsym

ij , conforme definido acima, é simétrico em relação a permutações entre i e j, essa matriz é
simétrica e pode, portanto, ser usada para construir uma rede não direcionada a partir de dados
de eventos. Contudo, essa definição simétrica para a matriz pode ter algumas limitações (vide
Seção 3.3.1).

Dadas duas séries temporais xi e xj , medidas nos locais i e j, pode-se estar interessado no
número total de eventos síncronos que ocorreram primeiro em j e depois em i, e, separadamente,
no número total de eventos síncronos que ocorreram primeiro em i e depois em j. Por esse
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motivo, uma versão modificada da Event Synchronization direcionada foi introduzida (BOERS
et al., 2014), onde as somas correspondentes serão armazenadas separadamente. Além disso,
especialmente ao aplicar ES a dados com alta resolução temporal, podem ocorrer situações
em que vários eventos ocorrem durante passos de tempo consecutivos (agrupamento temporal).
Nessas situações, apenas o primeiro será considerado como um evento, ponderado pelo número
de eventos subsequentes, que são descartados da soma. Portanto, para cada evento l em i , há
um peso wi

l . Então, define-se W ij
lm como:

W ij
lm =

min(wi
l , wj

m) se 0 < ti
l − tj

m ≤ τ e ti
l − tj

m ≤ τmax,

0 caso contrário.
(3.17)

em que deve ser enfatizado que eventos exatamente no mesmo tempo não contribuem, pois
não permitem determinar a ordem temporal. A introdução de pesos wi

l acima assegura que em
situações em que há agrupamento temporal em uma determinada série de eventos xj , seguido
por um agrupamento temporal em outra série xi, com sobreposição temporal entre os dois, todos
os eventos ainda são contados de maneira ordenada no tempo.

Define-se Event Synchronization direcionada como:

Qdir
ij =

∑si−1
l=2

∑sj−1
m=2 W ij

lm√
(si − 2) · (sj − 2)

(3.18)

que não é necessariamente simétrico: em geral, Qdir
ij ̸= Qdir

ji .

Para gerar redes complexas a partir dessa medida, considera-se a força de sincronização
de eventos como uma medida estatística de associação genérica, cujos valores estimados fornecem
os coeficientes de uma matriz Qdir = (Qdir

ij ). Uma vez que Qdir
ij não é simétrico em relação a

permutações entre i e j, Qdir não é simétrica e pode, portanto, ser usada para construir uma
rede direcionada.

3.3.1 A taxa de eventos

Apesar do fator de normalização
√

(si − 2) · (sj − 2)
−1

nas equações , o valor de ES
depende das taxas de eventos ri e rj se τmax for finito, já que a probabilidade de sincronizações
”aleatórias” aumenta com o aumento das taxas de eventos. Os valores da matriz Q, Qij ∈ [0, 1]N×N ,
calculados para diferentes pares de séries de eventos não são diretamente comparáveis se a taxa
de eventos variar entre as séries de eventos (BOERS, 2015).

A maneira mais intuitiva de obter valores comparáveis com ES é definir o conceito de
evento de modo que a taxa de eventos seja igual para todas as séries em consideração (BOERS,
2015). No entanto, algumas definições comuns, por construção, não permitem taxas de eventos
iguais em todas as séries de eventos (por exemplo, se os eventos são definidos como passos de
tempo nos quais os valores correspondentes estão acima de um limiar global), exigindo assim
uma solução mais sofisticada para esse problema.

Uma abordagem adequada em tais situações é comparar os valores de Qij em termos
de sua significância estatística, que por sua vez depende das taxas de eventos ri e rj das séries
de eventos consideradas xi e xj . Modelos estatísticos nulos apropriados para ES dependem da
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definição específica de eventos. Denotando a função de densidade de probabilidade correspondente
por Hri,rj , a significância estatística de um dado valor empírico Qij pode ser estimada pela
probabilidade de obter um valor Qij , maior ou igual a Qij :

P (Qij ≥ Qij) =
∫ 1

Qij

Hri,rj (s) ds (3.19)

Ao contrário dos valores Qij em si, suas posições na distribuição do modelo P (Qij ≥ Qij)
são comparáveis entre pares de séries de eventos com diferentes taxas de eventos (ri, rj). Nota-se
que nesta abordagem, é possível omitir completamente a normalização por √

si · sj nas equações
anteriores (BOERS, 2015).

3.3.2 O agrupamento temporal nas séries de eventos

Em séries temporais de eventos, os eventos podem estar potencialmente agrupados
temporalmente, o que gera um viés ao aplicar a Event Synchronization (ES) em sua definição
original. Esse viés surge principalmente da redução do intervalo de coincidência dinâmica local
para 1

2 em cálculos de pares eventos agrupados, permitindo apenas a coincidência simultânea
(ODENWELLER; DONNER, 2020).

Para o Event Synchronization direcionado, a definição já lida com esse problema, a
partir do conceito de pesos. Mas para a rede simétrica, o agrupamento temporal faz com que a
quantidade de conexões seja subestimada (ODENWELLER; DONNER, 2020), pois nos eventos
em que ele ocorre, apenas coincidências simultâneas influenciariam no cálculo da similaridade.

Uma maneira de saber quão agrupados temporalmente os dados estão foi indicada na
Seção 3.1.3, o coeficiente de emparelhamento, mas ele sofre de uma limitação de interpretação,
uma vez que não há uma faixa de valores para quantificá-lo como alto ou baixo. Por exemplo, na
figura 13, vê-se uma série cujos eventos sofrem todos com o agrupamento temporal. Contudo,
seu coeficiente de emparelhamento é aproximadamente 0, 57.

Figura 13 – Todos os eventos ocorrem em pares

Série ilustrativa gerada pelo autor

Assim, uma medida que aparenta ser mais interpretável é aqui proposta, como ”taxa de
agrupamentos”, cuja ideia é contar quantos eventos agrupados (que estão em um ’grupo’, em
que grupo é uma coleção de dois ou mais eventos subsequentes) existem em relação ao total. A
medida expressa a porcentagem de eventos que estão antecedidos ou sucedidos por outros, pois é
isso que faz o intervalo de coincidência local ir para 1

2 :
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Ri = 1
si

(
δ[ti

2 − ti
1 − 1] + δ[ti

si
− ti

si−1 − 1] +
si−1∑
l=2

δ[(ti
l − ti

l−1 − 1) · (ti
l+1 − ti

l − 1)]
)

(3.20)

A primeira parcela dentro dos parênteses, δ[ti
2 − ti

1 − 1], verifica se o primeiro evento da
série está agrupado temporalmente (com o segundo). A segunda parcela, δ[ti

si
− ti

si−1 − 1], verifica
se o último evento está agrupado temporalmente (com o penúltimo). O somatório verifica evento
a evento, do segundo ao penúltimo, se ele está agrupado temporalmente com seu antecessor ou
sucessor, a partir de (ti

l − ti
l−1 − 1) e (ti

l+1 − ti
l − 1), respectivamente. Se estiver, o parênteses vai

a zero, assim como o produto, e este evento é somado. Assim, há uma análise evento a evento,
para encontrar aqueles a um passo de tempo de seus adjacentes.

3.4 Redes Complexas

O termo redes complexas é relativamente recente. Ele começou a ser usado no final da
década de 1990, quando pesquisadores de disciplinas muito distintas - cientistas da computação,
biólogos, sociólogos, físicos e matemáticos - passaram a estudar de forma intensiva as redes do
mundo real e seus modelos. As limitações das metodologias de investigação da época para alguns
contextos proporcionaram o desenvolvimento da teoria subsequente (ALBERT; BARABáSI, 2002;
DOROGOVTSEV, 2010).

Em termos muito gerais, uma rede é qualquer sistema que admita uma representação
matemática abstrata como um grafo, cujos nós (vértices) identificam os elementos do sistema
e em que o conjunto de conexões (arestas) representa a presença de uma relação ou interação
entre esses elementos. Claramente, esse alto nível de abstração se aplica a uma ampla gama de
sistemas. Nesse sentido, as redes fornecem um arcabouço teórico que permite uma representação
conceitual conveniente de interconexões em sistemas complexos, nos quais a caracterização do
nível do sistema implica o mapeamento das interações entre um grande número de indivíduos
(BARRAT, 2013).

Com o aumento significativo do poder computacional nos últimos anos, o estudo de
sistemas interconectados em grande escala tem experimentado um avanço notável. Isso se deve,
em grande parte, à disponibilidade crescente de conjuntos de dados extensos e à capacidade
dos computadores para armazenar e manipular essas informações de forma eficiente. À medida
que a capacidade de processamento de dados continua a avançar e as técnicas de análise de
dados se tornam cada vez mais sofisticadas, é natural esperar um crescimento constante e um
desenvolvimento exponencial nesta área de pesquisa (BARRAT, 2013).

3.4.1 Definições formais

Matematicamente, uma rede é representada como um grafo G(V, E), isto é, um objeto
que consiste em um conjunto de nós (ou vértices) V representando os objetos (ou agentes) na
rede, e um conjunto E de arestas (ou conexões) representando as interações ou relações entre
os nós (c.f. Figuras 14 e 15). A cardinalidade desses conjuntos, que representa o número total
de nós e arestas, é geralmente denotada por N e M , respectivamente. As arestas podem ser
direcionadas ou não direcionadas, com ou sem pesos.
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Figura 14 – Rede com nós representando personagens de Les Misérables

Figura 15 – Outra possibilidade de disposição para a mesma rede. Percebe-se que a visualização
de uma grande rede é uma tarefa complexa

Figuras ilustrativas geradas pelo autor

O escopo do presente trabalho não contempla grafos G que possuem mais de uma aresta
para um mesmo par de nós (multigrafo), ou que possuem arestas que partem de um nó para
ele mesmo (laços). Esses tipos de grafo possuem uma modelagem muito própria que não é
contemplada pelo que será visto a seguir.

A topologia de uma rede é muitas vezes representada pela matriz de adjacências AN×N ,
em que o elemento aij representa uma aresta entre o nó i e o nó j. No caso de um grafo
não direcionado e sem pesos, os elementos aij da matriz de adjacências A assumem valores
aij = aji = 1 se o nó i e o nó j estão conectados e aij = aji = 0 se não estão. Nesse caso, o não
direcionamento do grafo torna sua matriz de adjacências simétrica, explicitando uma relação
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bidirecional, e a falta de pesos significa que não há hierarquia entre as conexões estabelecidos
pelos diferentes nós. Matrizes ilustrativas são apresentadas nas Figuras 16, 17, 18, e 19.

Figura 16 – Matriz de adjacências para
grafo não direcionado sem pe-
sos

Figura 17 – Matriz de adjacências para
grafo direcionado sem pesos

Figura 18 – Matriz de adjacências para
grafo não direcionado com pe-
sos

Figura 19 – Matriz de adjacências para
grafo direcionado com pesos

Exemplos ilustrativos gerados pelo autor

Algumas redes representam relações unidirecionais entre os nós que não são perfeitamente
capturadas por arestas bidirecionais. Nesse caso, a aresta aij representa uma conexão que sai do
nó i e vai para o nó j, e não necessariamente assume o mesmo valor que aji (que sai do nó j para
o nó i). A matriz de adjacências, portanto, deixa de ser simétrica, e a rede é dita direcionada.

Pesos em arestas de um grafo geralmente são motivados por diferenças sistemáticas entre
a importância e a natureza das conexões entre dois nós. Quando a modelagem os considera, a
matriz A tem elementos aij que podem assumir, a princípio, qualquer valor. A ligação agora
deixa de ter um significado booleano entre existir e não existir e passa a representar algum tipo
de grandeza, e a rede torna-se ponderada. Para o presente trabalho, são de interesse as redes
direcionadas e não direcionadas, sem pesos.

3.4.2 Medidas estruturais

Em uma rede com N nós, o número máximo de arestas é dado por Mmax = N · (N − 1).
Contudo, na maioria das redes do mundo real, apenas uma pequena parte das possíveis arestas é
deferida. Para avaliar quão conectada é a rede, define-se uma medida que representa a razão entre
a quantidade de arestas existentes e a máxima possível, chamada de Densidade de Conexões
(DONNER; WIEDERMANN; DONGES, 2017):

ρ = 2M

Mmax
=

∑
ij aij

N(N − 1) (3.21)
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As arestas existentes entre os nós acabam por definir caminhos, que levam de um
determinado nó até outro. Uma maneira de entender o quão interconectados os nós de uma rede
estão é calcular o comprimento médio do caminho mais curto entre dois nós (NEWMAN, 2010):

⟨l(i, j)⟩ = 1
N(N − 1)

N∑
i ̸=j

l(i, j) (3.22)

Na Equação 3.22, l(i, j) mede o comprimento do caminho mais curto entre o nó i e o
nó j, que denota o número de arestas que existe no menor caminho entre eles (c.f. Figura 20).
Nota-se que para calcular o comprimento médio do caminho mais curto, é necessário lidar com
um grafo conexo.

Figura 20 – Exemplo de caminho mais curto entre os nós 1 e 8, com comprimento igual a 4

Rede ilustrativa gerada pelo autor

A excentricidade em uma rede refere-se ao maior comprimento do caminho mais curto
entre um nó específico e todos os outros nós da rede (HAGE; HARARY, 1995). Em outras
palavras, a excentricidade de um nó é o número máximo de arestas que deve percorrer para
alcançar o nó mais distante a partir dele. Formalmente, a excentricidade ei de um nó i é dada
por:

ei = max
j ̸=i

l(i, j) (3.23)

em que l(i, j) é o comprimento do caminho mais curto entre os nós i e j. A excentricidade fornece
uma medida da ”distância máxima” de um nó para os demais na rede. Ela é crucial para o cálculo
de outras métricas topológicas, como o raio da rede, que é o menor valor das excentricidades,
representado por:

R = min
i

ei (3.24)
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Além disso, a excentricidade também é utilizada no cálculo do diâmetro da rede, que é o maior
valor das excentricidades:

D = max
i

ei (3.25)

3.4.3 Medidas globais

Pode-se quantificar a existência de conexões transitivas em uma rede, calculando sua
transitividade T . Ela é a razão entre o número de triângulos na rede e o número de ternas
conectadas (NEWMAN, 2010), podendo ser calculada pela matriz de adjacências. A fórmula
para a transitividade T é dada por:

T =
∑N

i,j,k=1 aijaikajk∑N
i,j,k=1,j ̸=k aijaik

(3.26)

Na Equação 3.26, o numerador representa o número de triângulos na rede, pois aijaikajk

é igual a 1 somente quando há arestas entre todos os três nós, formando um triângulo. O
denominador representa o número total de ternas conectadas, excluindo as ternas em que j é
igual a k, para evitar a contagem de laços e de conexões duplicadas. Assim, a transitividade T

oferece uma medida da propensão da rede em formar triângulos, indicando o quão frequentemente
os vizinhos de um nó estão conectados entre si. Redes mais transitivas tendem a exibir padrões
de conexões mais fortemente interligados e organizados.

Assortatividade (NEWMAN, 2010) em uma rede refere-se à tendência dos nós de se
conectarem a outros nós que possuem características semelhantes. Essa propriedade pode ser
observada através de diferentes atributos dos nós, como grau (número de conexões) ou outros
traços específicos. A medida, muitas vezes denotada por r, quantifica essa preferência de conexão
entre nós similares. Para redes baseadas no grau dos nós, a assortatividade pode ser calculada
pela correlação entre os graus dos nós conectados. A fórmula geral para r é dada por:

r =
∑

jk jk(mjk − qjqk)
σ2

q

(3.27)

em que:
- j e k representam os graus dos nós conectados,
- mjk é o número de arestas entre nós de grau j e k,
- qj e qk são as frações de arestas ligadas a nós de grau j e k, respectivamente, em relação ao
total de arestas,
- σ2

q é a variância de qj .

Se r > 0, a rede é assortativa, indicando uma preferência por conexões entre nós de graus
similares. Se r < 0, a rede é dissortativa, sugerindo uma tendência para conexões entre nós de
graus diferentes.

3.4.4 Medidas locais

Para investigar o papel e a importância dos nós em uma rede, diversas medidas de
centralidade foram propostas, que frequentemente levam em consideração propriedades muito
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específicas. Elas quantificam diferentes aspectos da posição de um nó, indicando a sua relevância
para a estrutura da rede.

O grau do nó é a medida mais básica dentre todas as medidas de centralidade e simples-
mente equivale ao número de arestas adjacentes a um único nó (NEWMAN, 2010). Isso pode ser
alcançado matematicamente por uma soma sobre as colunas da matriz de adjacência. Em uma
rede não direcionada e não ponderada, o grau k do nó i é dado por:

ki =
N∑

j=1
aij (3.28)

Seguindo uma lógica diferente, podemos medir a centralidade de um nó calculando quantos
caminhos mais curtos em uma rede passam por ele. A medida de centralidade correspondente,
intermediância bi, avalia a importância de um nó i com base na frequência com que ele atua
como ponte ao longo dos caminhos mais curtos entre outros nós na rede (NEWMAN, 2010). Ela
é definida por:

bi =
∑

j ̸=i ̸=k

l(j, k|i)
l(j, k) (3.29)

em que i, j e k servem como rótulos de nó e l(j, k|i) denota um caminho mais curto entre o nó j

e k que passa pelo nó i. Assim, intermediância é o número total de caminhos mais curtos entre
j para k que passam pelo nó i dividido pelo total de caminhos entre j e k. Um nó que possui
muitos caminhos mais curtos que passam por si possui uma intermediância alta.

Para quantificar a conectividade da vizinhança de um nó, foi introduzido o coeficiente de
agrupamento local c (NEWMAN, 2010):

ci = 2mi

ki(ki − 1) (3.30)

Na Equação 3.30, mi representa o número de arestas que conectam os vizinhos topológicos do nó
i. O coeficiente de agrupamento local assume valores entre 0 (nenhum nó vizinho está conectado)
e 1 (vizinhos formam um subgrafo completo).

3.4.5 Medidas em redes direcionadas

Em redes direcionadas, as medidas estruturais consideram a orientação das arestas,
adicionando complexidade à análise topológica (NEWMAN, 2010). Para calcular a densidade de
conexões em uma rede direcionada, é preciso distinguir entre arestas de chegada e saída entre os
nós. A densidade de conexões (ρ) em uma rede direcionada com N nós é dada por:

ρ = M

N(N − 1) =
∑

ij aij

N(N − 1) (3.31)

em que M é o número total de arestas na rede. No caso de redes direcionadas, a matriz A não
é mais simétrica, e ∑ij aij agora conta individualmente cada aresta, devido à orientação das
arestas.

O comprimento médio do caminho mais curto entre dois nós (⟨l(i, j)⟩) em uma rede
direcionada leva em consideração a direção das arestas e pode ser definido como:

⟨l(i, j)⟩ = 1
N(N − 1)

N∑
i ̸=j

l(i, j) (3.32)
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em que l(i, j) representa o comprimento do caminho mais curto da forma mais direta possível de
i para j.

A excentricidade (ei) em uma rede direcionada refere-se novamente ao comprimento
máximo do caminho mais curto de um nó específico para todos os outros nós na rede. O raio (R)
e o diâmetro (D) da rede direcionada são análogos aos conceitos em redes não direcionadas.

R = min
i

ei (3.33)

D = max
i

ei (3.34)

3.4.6 Medidas globais em Redes Direcionadas

A transitividade (T ) em redes direcionadas leva em conta a formação de triângulos,
considerando entra. A fórmula para a transitividade (T ) em uma rede direcionada é ajustada
para refletir a orientação das arestas:

T =
∑N

i,j,k=1 ajiaikakj∑N
i,j,k=1,j ̸=k ajiaki

(3.35)

A assortatividade em redes direcionadas pode ser analisada considerando a correlação
entre os graus dos nós conectados. A fórmula geral para (r) em redes direcionadas pode levar em
conta o grau de saída, de entrada, ou a soma:

r =
∑

jk jk(mjk − qjqk)
σ2

q

(3.36)

Uma nova métrica que se faz útil no contexto de redes direcionadas é a reciprocidade
(GARLASCHELLI; LOFFREDO, 2004). A reciprocidade é uma medida que quantifica a tendência
das relações entre os nós a serem ”bidirecionais”, é a razão entre o número de arestas recíprocas
(quando dois nós i,j possuem arestas tanto de i para j quanto de j para i) pelo total de arestas.

A reciprocidade pode ser expressa considerando a presença de arestas em ambas as
direções. Se aij representa a existência de uma aresta direcionada de i para j e aji representa a
existência da aresta de j para i, então a reciprocidade pode ser calculada como:

R =
∑

i,j aij · aji∑
i,j aij

(3.37)

A Equação 3.37 compara o número de arestas bidirecionais com o total de arestas na
rede, fornecendo uma medida relativa de reciprocidade. Em uma rede altamente recíproca, os
nós têm uma propensão significativa para se relacionarem reciprocamente, enquanto em uma
rede com baixa reciprocidade, as relações são predominantemente unidirecionais.

3.4.7 Medidas locais em Redes Direcionadas

A medida de grau (ki) em uma rede direcionada representa o número de arestas que
saem ou entram em um nó específico:

kout
i =

N∑
j=1

aij (3.38)
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kin
i =

N∑
j=1

aji (3.39)

Dessa forma, muitas medidas de rede que usam o conceito de grau podem ser estendidas.
Uma medida que é apenas definida para redes direcionadas é a divergência de rede ∆k (WOLF,
2021). Calcula-se a divergência de rede considerando a diferença entre os graus de entrada e
saída:

∆ki = kin,i − kout,i (3.40)

e interpreta-se a divergência de rede como uma indicação de fontes e sumidouros em uma rede.

A intermediância (bi) em uma rede direcionada é calculada levando em conta a frequência
com que um nó atua como ponte ao longo dos caminhos mais curtos entre outros nós, considerando
a direção das arestas:

bi =
∑

j ̸=i ̸=k

l(j, k|i)
l(j, k) (3.41)

O coeficiente de agrupamento local (ci) em uma rede direcionada também leva em
consideração a orientação das arestas:

cout
i =

∑N
j,k=1 aijaikajk

kout
i (kout

i − 1) (3.42)

cin
i =

∑N
j,k=1 ajiakiajk

kin
i (kin

i − 1) (3.43)

Essas extensões oferecem uma compreensão mais refinada das propriedades estruturais,
globais e locais, levando em consideração a direcionalidade na análise.

3.4.8 Componentes conexas e Comunidades

Componentes conexas em um grafo são conjuntos de nós que estão interligados por
arestas, formando subgrafos onde cada par de nós está conectado por pelo menos um caminho
(BARABáSI; POSFAI, 2016; NEWMAN, 2010). Em outras palavras, um componente conexo é
um subconjunto do grafo original no qual é possível chegar de qualquer nó para qualquer outro
nó por meio de arestas, seguindo um caminho na subestrutura.

Formalmente, um componente conexo Ci é definido como um subgrafo Gi = (Vi, Ei), em
que:
- Vi é o conjunto de nós pertencentes ao componente conexo,
- Ei é o conjunto de arestas que conectam os nós em Vi,
- Para cada par de nós i, j em Vi, existe pelo menos um caminho em Gi que os conecta.

Grafos não direcionados podem ter um ou mais componentes conexas, enquanto em
grafos direcionados, é possível falar em componentes fortemente conexas (onde há caminhos em
ambas as direções entre quaisquer dois nós) ou fracamente conexas (onde considera-se a direção
das arestas) (NAGAMOCHI; IBARAKI, 2008). A identificação de componentes conexas é uma
parte fundamental da análise de grafos, pois fornece pistas sobre a estrutura global, destacando
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grupos de nós que estão mais intimamente ligados entre si em comparação com o restante do
grafo (NAGAMOCHI; IBARAKI, 2008).

Para analisar uma rede em escala mesoscópica, o conceito de comunidades foi desenvolvido
(WOLF, 2021). Uma comunidade dentro de uma rede descreve um conjunto de nós altamente
interconectados e que exibe menos conexões com o restante da rede. Tais comunidades são mais
comumente derivadas por algoritmos não supervisionados e podem ter muitos atributos diferentes.
Além disso, a definição específica de uma comunidade difere entre os algoritmos.

O algoritmo de Girvan-Newman (GIRVAN; NEWMAN, 2002) é um método de detecção
de comunidades em redes complexas. Ele pertence à classe de algoritmos que utilizam o conceito
de modularidade para identificar comunidades em uma rede. A modularidade é uma medida que
quantifica a diferença entre a densidade de arestas dentro de um conjunto de nós e a densidade
esperada de um grafo aleatório (NEWMAN, 2010). Sua fórmula é dada por:

Q = 1
2M

∑
i,j

(
aij − kikj

2M

)
δ(Xi, Xj) (3.44)

em que Q é a modularidade, M é o número total de arestas na rede, aij é o elemento da matriz
de adjacência que representa a conexão entre os nós i e j, ki e kj são os graus dos nós i e
j, respectivamente, δ(Xi, Xj) é uma função delta que é 1 se os nós i e j pertencem à mesma
comunidade e 0, caso contrário.

O algoritmo de Girvan-Newman segue os passos de remoção iterativa das arestas que mais
contribuem para a modularidade da rede. Isso é feito removendo as arestas que estão associadas à
medida de centralidade intermediância (GIRVAN; NEWMAN, 2002). A remoção de arestas com
alta intermediância desfaz gradualmente a estrutura da rede, revelando comunidades distintas.
Esse processo é repetido até que a estrutura da comunidade desejada seja revelada.
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4 DESENVOLVIMENTO

Para modelar uma rede complexa, é preciso propor uma representação abstrata em um
grafo, cujos nós (vértices) identificam os elementos do sistema e em que o conjunto de conexões
(arestas) representa a presença de uma relação ou interação entre esses elementos. A partir
dos dados da SSP-SP, realizou-se uma subdivisão do Estado de São Paulo em milhares de
microrregiões (células), que juntas formam uma grade ou grid (c.f. Figura 21). As células foram
usadas como elementos do sistema (nós do grafo).

Posteriormente, procedeu-se à agregação das ocorrências de roubo de veículos cujas
coordenadas de latitude e longitude estavam contidas em uma mesma célula. A partir dessa
consolidação, foram construídas séries temporais que registravam a quantidade de eventos
(ocorrências) em um determinado período de tempo para cada célula. Para demarcar relação,
considerou-se traçar a similaridade entre as séries temporais, já que estas descrevem bem a
dinâmica criminal de cada microrregião. Duas células são similares se têm séries temporais
similares, e neste caso, estão conectadas (por uma aresta).

Este capítulo apresenta a metodologia subdividida em etapas, cada uma abordando
diferentes aspectos do estudo. O software que desempenhou um papel central em todas as
operações computacionais realizadas neste trabalho foi a linguagem de programação Python1,
que combina uma sintaxe concisa e clara com os recursos poderosos de sua biblioteca padrão,
além de módulos e frameworks desenvolvidos por terceiros.

4.1 Extração dos dados

Embora o processo de extração dos dados seja uma parte integrante da metodologia,
os resultados finais independem da maneira pela qual a base de dados é obtida. A extração
foi realizada utilizando a biblioteca Selenium2, que possibilita a automação de interações com
páginas da web. Um script foi desenvolvido para interagir com os elementos do site da transpa-
rência da Secretaria de Segurança Pública do Estado de São Paulo, permitindo a seleção dos
botões necessários para o download de cada tabela associada a roubo de veículo. No entanto,
é importante ressaltar que o site apresenta problemas relacionados à falta de padronização no
design, inconsistências no back-end e questões de servidor e hospedagem, o que dificulta a ação
de qualquer algoritmo de mineração.

Adicionalmente, foi preciso lidar com a presença de arquivos corrompidos, cuja leitura
não podia ser feita diretamente. Para solucionar esse problema, cada planilha corrompida foi
aberta manualmente e teve seu conteúdo copiado para um novo documento em formato ”.xlsx”,
seguro, garantindo a integridade dos dados ali presentes. Em seguida, todos as planilhas foram
fundidas em um único arquivo ”.csv”, agregando todas as instâncias das planilhas originais e
formando a base de dados do trabalho.

1 https://www.python.org/
2 https://www.selenium.dev/

https://www.python.org/
https://www.selenium.dev/
http://www.ssp.sp.gov.br/transparenciassp/Consulta2022.aspx
http://www.ssp.sp.gov.br/transparenciassp/Consulta2022.aspx
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4.2 Seleção dos dados

Uma vez que a extração foi realizada, deferiu-se os procedimentos para a seleção na base
de dados. Foi necessário traçar um período de interesse, remover duplicidades, tratar valores
ausentes, e selecionar os campos com informações relevantes, conforme documentado. No processo
de leitura, manipulação e seleção dos dados, a biblioteca Pandas3 desempenhou um papel essencial.
A partir dela, foi possível instanciar as planilhas oriundas do portal da transparência como
objetos do pandas (DataFrame), que têm todos os métodos necessários.

4.2.1 Seleção das instâncias

Inicialmente, optou-se por não utilizar dados dos anos iniciais da coleta, de 2003 a 2010,
devido à não completa implementação do sistema RDO, que registra e fornece os boletins de
ocorrência, em todas as delegacias do estado. Além disso, havia inúmeros valores ausentes e
registros inconsistentes nas datas iniciais. Essas limitações tornaram prudente considerar dados
somente a partir de 2011.

Entretanto, eventos marcantes no intervalo de 2011 a 2021, como a Copa do Mundo
de Futebol em 2014, ocorrida no Brasil, e a pandemia de COVID-19, que provocou mudanças
substanciais nas políticas públicas entre os períodos em que se sucederam, poderiam introduzir
padrões incomuns na dinâmica criminal (GOMES et al., 2023), impactando negativamente a
análise. Devido a esses fatores, o ano de 2022 foi selecionado, por apresentar pouca influência de
eventos externos, como os mencionados. Além disso, é o ano mais recente com dados completos
disponíveis. Após juntar todos os meses de 2022, um total de 124.512 ocorrências, representando
instâncias na base, foram reunidas.

Cada linha constante na base registra os dados de uma pessoa, natureza ou objeto
relacionado, o que significa que um boletim possuindo a identificação de mais de uma pessoa,
natureza ou objeto possui mais de uma instância associada. Como o objetivo foi analisar o
número bruto de ocorrências, foi removida a multiplicidade das instâncias relacionadas a um
mesmo boletim. A remoção se deu por meio dos campos: ’NOME_DELEGACIA’, ’ANO_BO’,
’NUM_BO’, conforme orientação da SSP-SP. Após o processo, restaram 52.554 ocorrências de
roubos de veículo distintas entre si.

Mesmo restrita ao ano de 2022, a base possuía valores ausentes. Em particular, ausências
nos campos de latitude e longitude tornavam as instâncias inviáveis para utilização, pois a
componente espacial seria fundamental para agregar as ocorrências em células, conforme foi
melhor discutido na Seção 4.2.2, e a escolha foi por preteri-las da análise. Das variáveis de
interesse, também havia valores ausentes para a hora da ocorrência, o que impossibilitaria a
criação de séries temporais com defasagem menor do que um dia. A fim de permitir uma análise
que contemplasse as ocorrências para defasagens na unidade de hora, esses dados também foram
excluídos da base final (para mais informações, confira Apêndice B, Seção B.2.1). Após a remoção
das instâncias com valores ausentes, sobraram 46.231 ocorrências.

Um tratamento adicional foi necessário para a preparação das séries temporais, visto que

3 https://pandas.pydata.org/

https://pandas.pydata.org/
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as tabelas incluíam boletins de delitos que ocorreram em anos anteriores e foram registrados
apenas em 2022. Considerar esses delitos introduziria um viés significativo, pois estenderia as
séries até o período em que eles ocorreram sem, contudo, considerar os outros crimes que se
sucederam dentro da janela temporal aberta e foram notificados no seu ano de circunscrição, que
são a maior parte dos casos. Dessa forma, optou-se por considerar apenas os boletins referentes a
ocorrências registradas no período de 31 de dezembro de 2021 a 31 de dezembro de 2022, levando
em consideração o campo ’DATAOCORRENCIA’. Após isso, sobraram 45.916 instâncias, sendo
esse o número final de ocorrências analisadas.

4.2.2 Seleção das colunas

Após a seleção dos dados, restava escolher os campos pertinentes à análise. Optou-se por
incluir as colunas ’BAIRRO’, que continha informações sobre o bairro ou distrito onde o crime
ocorreu, ’CIDADE’, com informações sobre a cidade do incidente, ’LATITUDE’ e ’LONGITUDE’
para precisas coordenadas geoespaciais, e ’DATAOCORRENCIA’ e ’HORAOCORRENCIA’ para
informações temporais específicas de data e hora, respectivamente.

As demais colunas não possuíam informação relevante para construção e análise das séries
de eventos de cada região, ou não remetiam a fatores geoespaciais ou temporais das ocorrências.
Para facilitar a manipulação dos dados, foi criada uma coluna, denominada ’DATAHORA’, que
aglutinou as informações de ’DATAOCORRENCIA’ e ’HORAOCORRENCIA’, norteando a
criação da séries de eventos.

4.3 Criação do grid

A partir das instâncias selecionadas, foi criado um grid, cujas células representam uma
porção de área com alguma ocorrência registrada, para agregar eventos dentro uma mesma
microrregião. Cada instância compreendida em uma região geográfica (definida pela latitude e
longitude específicas da instância) gerou uma célula quadrada com proporções predefinidas e
idênticas a todas as demais. Instâncias que residiam em regiões que já possuíam células geradas
apenas foram agregadas a estas.

Ao todo, 17.421 células foram geradas (c.f Figuras 21 e 22). O grid foi esparso, à medida
que não faria sentido definir regiões sem nenhum tipo de ocorrência com séries fossem vazias
(sem eventos). Para a sua geração, as bibliotecas Geopandas4 e Shapely5 foram fundamentais. O
Geopandas disponibiliza diversas ferramentas para manipulação de dados geoespaciais, enquanto
o Shapely foi usado para facilitar a determinação da geometria das células a partir do objeto
”Polygon”.

As visualizações em mapa foram produzidas por meio da biblioteca Folium6, que propor-
cionou uma integração simples e eficaz na criação de mapas interativos, facilitando a disposição
e escolha das regiões a ser apresentadas, e permitindo uma interação dinâmica.7

4 https://geopandas.org/
5 https://shapely.readthedocs.io/
6 https://python-visualization.github.io/folium/
7 A maior parte das figuras elaboradas pelo autor que não apresentavam visualizações de mapas foi

gerada pela biblioteca Matplotlib (https://matplotlib.org/)

https://geopandas.org/
https://shapely.readthedocs.io/
https://python-visualization.github.io/folium/
https://matplotlib.org/
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Figura 21 – Visualização das células no mapa de São Paulo

(a) Grid em todo o Estado de São Paulo (b) Células na região metropolitana da Capital

(c) Células na região da Baixada Santista (d) Células na região de Campinas

Gerada pelo autor

As células no mapa bidimensional são representadas como quadrados, todos com o mesmo
comprimento, cada um cobrindo uma área aproximada de cem mil metros quadrados. No entanto,
é importante observar que, devido à natureza esférica da Terra, a área de formas geométricas de
mesmas medidas em diferentes locais pode variar devido à curvatura característica. Essa variação
é determinada pelas coordenadas de latitude e longitude associadas a cada local, influenciando
as células geradas.

Tabela 3 – Estatísticas das áreas entre as células definidas no grid

Estatística descritiva Área (km2)
Média 0.1019

Desvio padrão 0.0005
Menor área 0.1008

Primeiro quartil 0.1017
Segundo quartil 0.1018
Terceiro quartil 0.1019

Maior área 0.1050

Fonte: Elaborada pelo autor.

No entanto, conforme evidenciado pela Tabela 3, a diferença entre as áreas das células
geradas no processo é ínfima, especialmente quando consideramos que cada célula delineia uma
região de crimes. Essa pequena diferença se deve à diminuta variação de latitude e longitude,
uma vez que as células são extremamente pequenas em dimensão e estão confinadas dentro do
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Figura 22 – Dimensão das células em comparação ao centro de São Paulo

Gerada pelo autor

território do Estado de São Paulo. Dessa forma, é seguro afirmar que nenhuma forma de viés
decorrente da disparidade nos tamanhos das regiões analisadas impactou o resultado final. Para
mais informações acerca do tema, recomenda-se Rheinwalt et al. (2012)

4.4 Criação das séries

Uma vez que as células e suas respectivas ocorrências estiveram bem definidas, como cada
ocorrência possui informações de data e hora, foi possível criar séries temporais cujas variáveis
contavam a quantidade de ocorrências em um determinado passo de tempo para cada célula.
A criação da séries, assim como todos os outros procedimentos que envolveram computação
científica, foram assistidos pela biblioteca Numpy8.

4.4.1 Conceitos para a criação das séries

A partir das informações temporais dos eventos, construiu-se a série temporal de cada
célula, num total de 17.421 séries temporais. As séries construídas possuíram uma variável,
contando a quantidade de ocorrências de roubos de veículos registrada na região demarcada pela
célula, e tiveram dimensão temporal, definida durante o período de 31 de dezembro de 2021 a 31
de dezembro de 2022. Para rotular as séries (e consequentemente suas respectivas células) o par
ordenado ’(longitude, latitude)’ do centroide da célula foi usado.

Diferentemente da defasagem da Figura 23, mensal, para melhorar a visualização, a
defasagem adotada para a criação das séries de eventos foi a horária (a série registra eventos
durante o intervalo de uma hora, para cada hora do dia), para uma análise mais granular.

Com as séries temporais criadas, faltava apenas a definição de evento, para obter as
séries de eventos. Como as células são suficientemente pequenas, e suas séries temporais são

8 https://numpy.org/

https://numpy.org/
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Figura 23 – Exemplo com 6 séries temporais das células geradas

Gerada pelo autor

suficientemente esparsas9, pôde-se definir que um determinado passo de tempo, isto é, um
determinado horário do dia, possuiria um evento se uma ou mais ocorrências de roubo de veículo
fossem registradas durante aquele período.

4.4.2 Filtros para as séries

Ao optar por séries temporais horárias, o próximo passo consistiu em filtrar as células,
para direcionar os resultados a um escopo menos genérico. Foram escolhidas as células que
apresentaram os 2% mais altos índices de eventos registrados, isto é, as células que possuíram as
séries com a maior quantidade de eventos, acima de 98% da distribuição total.

Essa seleção permitiu concentrar os esforços de análise nas áreas geográficas que con-
tribuíram de forma mais significativa para a quantidade total de ocorrências observadas em
2022, facilitando a identificação de padrões, tendências e características específicas que podem
influenciar ou refletir aspectos importantes da atividade criminal no estado. Após essa filtragem,
433 células permaneceram do total original, apresentadas na Figura 24.

9 Para séries horárias, com quase 9000 passos de tempo (aproximadamente a quantidade de horas em
366 dias), a célula com mais ocorrências registrou apenas 45 roubos de veículos. Para todas as células
uma quantidade ínfima de eventos aconteceu em um mesmo passo de tempo.
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Figura 24 – Células restantes após a filtragem

Gerada pelo autor

4.5 Aplicação de Event Synchronization

Com as instâncias selecionadas, as células criadas, e suas séries definidas e filtradas, para
gerar as redes complexas, faltava apenas determinar a maneira pela qual as células se associariam.
Pelos motivos discutidos nas Seções 3.2.2 e 3.3, decidiu-se que o critério de associação entre as
células seria dado pela aplicação de Event Synchronization. Os cálculos de Event Synchronization
e as simulações de Monte Carlo para análise de significância foram realizados com auxílio da
biblioteca Pyunicorn10, especializada em análise de séries eventos.

Para fins de comparação e devido à diferente natureza possível para os resultados, fez-
se a aplicação do Event Synchronization simétrico e também do direcionado, com parâmetro
τmax = 252. Assim sendo, uma matriz de adjacências simétrica e outra não simétrica foram geradas.
Conforme descrito na Seção 3.3.1, para séries que apresentam taxas de eventos discrepantes,
os valores para o ES não são comparáveis diretamente. A abordagem adotada foi a análise de
significância, que baseia-se no método estatístico descrito na Seção 3.3.1. O objetivo primordial foi
determinar se os padrões observados nas ocorrências de eventos são estatisticamente significativos,
sugerindo uma possível sincronização entre eventos, ou se ocorrem de maneira aleatória. A
análise de significância neste contexto envolveu o cálculo de valores-p associados às forças de
sincronização Qij calculadas pelo ES.

Os valores-p representam a probabilidade de obter os Qij observados (ou mais extremos)
apenas por acaso. O método emprega uma abordagem de Monte Carlo, onde séries de eventos
simuladas são geradas com a mesma distribuição da série original de eventos, e as forças de
10 https://pyunicorn.readthedocs.io/

https://pyunicorn.readthedocs.io/
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sincronização são calculadas para essas séries simuladas a fim de estabelecer uma base para
comparação. A avaliação é realizada comparando os Qij observados com aqueles obtidos a partir
dos dados simulados. Os níveis de significância resultantes são representados como 1 − valores-p.
Eles fornecem uma medida quantitativa da probabilidade de que os padrões de ES observados
sejam atribuíveis apenas ao acaso.

Realizou-se tal análise de significância com 1000 simulações. Para o Event Synchronization
simétrico, o resultado foi uma matriz simétrica, com valores variando entre 0 e 1. Em tal matriz,
cada linha e cada coluna representam uma célula, e os valores indicam os níveis de significância
associados à sincronização entre os eventos das células correspondentes. A medida ES de cada
célula em relação a si mesma é definida como sendo igual a 0 (c.f Figura 25).

Da mesma forma, para o Event Synchronization direcionado, a análise de significância
proporcionou uma matriz não simétrica, também com valores entre 0 e 1, cujos níveis de
significância dependiam da direção em que se pretendia enxergar as relações (c.f Figura 26).
Esses resultados constituem uma base quantitativa para avaliar a confiabilidade dos padrões
observados de sincronização em relação ao acaso.

Figura 25 – Exemplo de resultado para análise de significância do caso simétrico. O valor aij

representa a significância da sincronização entre as células i e j

Célula ’A’ Célula ’B’ Célula ’C’ . . .
Célula ’A’ 0 0.13 0.3 . . .
Célula ’B’ 0.13 0 0.65 . . .
Célula ’C’ 0.3 0.65 0 . . .

...
...

...
... . . .

Figura ilustrativa gerada pelo autor

Figura 26 – Exemplo de resultado para análise de significância do caso direcionado. O valor aij

representa a significância da sincronização entre as células i e j

Célula ’A’ Célula ’B’ Célula ’C’ . . .
Célula ’A’ 0 0.41 0.89 . . .
Célula ’B’ 0.53 0 0.91 . . .
Célula ’C’ 0.23 0.11 0 . . .

...
...

...
... . . .

Figura ilustrativa gerada pelo autor

4.6 Criação das redes

Uma vez que os resultados da análise de significância foram obtidos, pôde-se determinar
um limiar de nível de significância que represente ou não uma sincronia entre duas regiões, isto
é, uma valor para o qual considera-se que o resultado obtido considerando as 1000 simulações
possa ser tido como uma evidência plausível de sincronia entre os eventos das duas células. Para
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operações envolvendo redes, a biblioteca NetworkX11 foi empregada, oferecendo uma variedade
de algoritmos e ferramentas para análise e visualização de redes complexas. Toda a manipulação
necessária e todas as medidas locais e globais expostas no Capítulo 5.1 foram obtidas a partir
dela, assim como as comunidades.

4.6.1 Matrizes de adjacências

A partir das matrizes resultantes da análise de significância, criou-se as matrizes de
adjacência que dariam origem às redes que se pretendia analisar. Para tanto, considerou-se que
um nível de significância maior ou igual a 0,95 (valor-p menor ou igual a 0,05) representaria
a existência de uma aresta entre dois nós. Isto é, para valores entre células maiores ou iguais
0,95, colocou-se 1 na matriz de adjacências, e 0, caso contrário, tanto para os resultados do ES
simétrico quanto para os resultados do caso direcionado.

Uma matriz de adjacências define totalmente a topologia de uma rede complexa, contendo
as informações dos nós e arestas em questão (c.f. Seção 3.4). Os procedimentos anteriores foram
suficientes, portanto, para gerar as redes que foram discutidas nos resultados do Capítulo 5. Seus
nós representam as células, que são as regiões com mais ocorrências de roubo de veículos do
Estado de São Paulo, e suas arestas representam a existência sincronização entre as séries de
eventos das células conectadas.

11 https://networkx.github.io/

https://networkx.github.io/
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5 RESULTADOS E DISCUSSÃO

Nas Tabelas 4 e 5, encontram-se os resultados para os cálculos relacionados ao agrupa-
mento temporal das séries de eventos das células remanescentes, após a filtragem.

Tabela 4 – Estatísticas do coeficiente de em-
parelhamento para as séries re-
manescentes

Estatística Valor

Média 0.005
Desvio Padrão 0.025
Mínimo 0.0
25º Percentil 0.0
50º Percentil (Mediana) 0.0
75º Percentil 0.0
90º Percentil 0.0
95º Percentil 0.030
99º Percentil 0.143
Máximo 0.2

Tabela 5 – Estatísticas da taxa de agrupa-
mento para as séries remanescen-
tes

Estatística Valor

Média 0.01
Desvio Padrão 0.044
Mínimo 0.0
25º Percentil 0.0
50º Percentil (Mediana) 0.0
75º Percentil 0.0
90º Percentil 0.0
95º Percentil 0.057
99º Percentil 0.25
Máximo 0.363

Fonte: Elaboradas pelo autor

Como é possível observar, ambas as medidas de agrupamento temporal são bastante baixas para
as séries tratadas como um todo. De fato, o agrupamento temporal afeta muito pouco menos de
10% do total delas. Portanto, não se espera que ocorra nenhum viés nos resultados devido a esse
fator.

Antes de explorar os resultados, é relevante destacar que todas as figuras apresenta-
das nas seções seguintes são derivadas de visualizações interativas disponíveis de forma deta-
lhada em https://colab.research.google.com/drive/1_LSg65faUbbET24Nqsb6FGP5g3p_hMzg?
authuser=1. Para fazer o download dessas figuras, basta acessar https://drive.google.com/drive/
folders/1dCTPEEufIQDhh7WOceJqnaLRx1qtzEwG?usp=drive_link.

5.1 Resultados

5.1.1 Rede simétrica

Iniciando a análise dos resultados, apresentam-se as medidas expostas na Seção 3.4 para a
rede simétrica. O estudo detalhado da rede, que valeu-se de medidas globais, locais e da aplicação
de algoritmos para formação de comunidades (Girvan-Newman), revelou informações valiosas
sobre sua estrutura e dinâmica, como destacado na Tabela 6.

https://colab.research.google.com/drive/1_LSg65faUbbET24Nqsb6FGP5g3p_hMzg?authuser=1
https://colab.research.google.com/drive/1_LSg65faUbbET24Nqsb6FGP5g3p_hMzg?authuser=1
https://drive.google.com/drive/folders/1dCTPEEufIQDhh7WOceJqnaLRx1qtzEwG?usp=drive_link
https://drive.google.com/drive/folders/1dCTPEEufIQDhh7WOceJqnaLRx1qtzEwG?usp=drive_link
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Tabela 6 – Medidas globais para a rede simétrica

Medida Global Valor
Densidade de Conexões 0,015

Comprimento médio do caminho mais curto 1,744
Raio da maior componente conexa 4

Diâmetro da maior componente conexa 7
Transitividade 0,128

Assortatividade 0,012

Fonte: Elaborada pelo autor.

A densidade de conexões, notavelmente baixa com um valor de 0,015, indica que apenas
um pouco mais de 1% do total de conexões possíveis na rede foi estabelecido. Esse número
propõe que os nós não se relacionam com facilidade. Isto é, as diferentes regiões geográficas
não apresentam semelhança significativa, grosso modo, o que ressalta as particularidades das
ocorrências criminais.

Ao analisar o comprimento médio do caminho mais curto, observa-se um valor de
1,744. Essa medida sugere uma eficiência notável no alcance entre os nós da rede. No entanto, é
importante ressaltar que o conceito de ”caminho mais curto” só se aplica aos nós dentro da mesma
componente conexa. Com apenas três componentes conexas, das quais uma é significativamente
maior com 362 nós, e as outras duas possuem apenas 2 nós cada, cerca de 67 nós não estão
conectados a nenhum outro.

A caracterização topológica da maior componente conexa revelou um raio de 4 arestas
e um diâmetro de 7 arestas. Esses valores propõem a extensão e alcance dessa componente
específica, pois representam o tamanho médio dos caminhos mais curtos e a distância máxima
entre os nós, respectivamente. Como uma aresta significa sincronização entre as séries de duas
regiões, tal resultado indica que células que sincronizam com outras numa mesma estrutura
podem estar a até 7 graus de separação.

Com relação à transitividade, que mede a propensão de conexões entre os vizinhos de
um nó, o valor de 0,128 sugere uma tendência moderada para a frequência com que as vizinhas
de uma célula estão conectadas entre si. A sincronia proposta pelo Event Synchronization não é
transitiva, no sentido que a conexão dos vizinhos de um nó entre si não é necessária (como se
espera de sincronizações no sentido físico).

Por outro lado, a assortatividade, que mede a preferência dos nós por conexões com pares
de grau semelhante, retornou um valor de 0,012, muito baixo, indicando que não há relação entre
a quantidade de sincronias da célula com a de suas vizinhas. No escopo do trabalho, cabe dizer
que em média, as células têm padrão criminal que sincroniza igualmente com tendências mais e
menos comuns, sem qualquer predileção

A Tabela 7 apresenta as células com maiores medidas locais observadas. Elas são muito
relevantes para traçar os nós tidos como ”centros” ou ”eixos”, que desempenham um papel
fundamental na conectividade e na eficiência da comunicação dentro da rede.

Vale a pena destacar que como as células representam uma porção geográfica, fez-se
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Tabela 7 – Células com maiores medidas locais

Medida Local Célula (longitude, latitude)
Grau (-46,7535, -23,6505)

Intermediância (-46,5405, -23,5935)

Coeficiente de agrupamento local (-46,5495, -23,7105), (-46,4775, -23,6685),
(-46,3185, -23,4675), (-46,2885, -23,4705),
(-46,8165, -23,5335), (-46,4835, -23,5755)

Fonte: Elaborada pelo autor.

interessante apresentá-las a partir de mapas. Contudo, para avaliar os resultados, a visualização
em mapas pode ser prejudicada pela dimensão das células, pequena demais em comparação à
extensão do território que as compreende no grid, conforme ilustra a Figura 27.

Figura 27 – Comunidades na rede considerando células

Gerada pelo autor

A solução para isso foi elaborar mapas com pontos simbólicos, mais largos que as células,
porém de mesma localização que as mesmas, para representá-las (c.f. Figura 28a). Nos contextos
em que foram avaliadas regiões específicas do Estado de São Paulo, notadamente a capital, fez-se
uso das células em seu tamanho real, conforme Figura 28b.

As cores das células representam a comunidade em que elas estão inseridas, com exceção
do preto, que representa uma célula que está em uma comunidade com um único elemento (ela
própria). Para o contexto do presente trabalho, uma célula numa comunidade de um elemento,
na verdade, não possui comunidade.
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Figura 28 – Comunidades na rede simétrica

(a) Em Pontos simbólicos

(b) Nas células da capital

Gerada pelo autor

O algoritmo de Girvan-Newman opera removendo arestas da rede com base em suas
contribuições para a intermediância. No contexto do estudo, as arestas removidas tendem a
ser aquelas que conectam duas células cujos vizinhos são distintos. Quatro comunidades foram



75

formadas: Uma em azul, que compreende a maior parte das células, 357; uma em amarelo com
um total de 5 células, sendo 4 na região metropolitana da capital e 1 em Pedreira, macrorregião
de campinas; uma em laranja, com 2 células, ambas localizadas no Jardim Ângela, na Capital; e
uma em verde, com duas células na região da baixada, precisamente nas cidades de Cubatão e
São Vicente. As demais 67 células não possuem comunidades: estas são, na verdade, exatamente
as 67 células que não estão em nenhuma componente conexa e, portanto, não se ligam a nenhuma
outra.

Na Figura 29, desenvolveu-se uma visualização para a célula (-46,5405, -23,5935), que
aparece na Tabela 6, com suas arestas e células ligantes. A célula de interesse aparece em vermelho,
apesar da cor ser difícil discernir devido aos demais elementos na visualização. As células ligantes
estão em azul.

Figura 29 – Arestas e nós ligados ao nó centrado em (-46,5405, -23,5935)

Gerada pelo autor

Esta célula, com maior centralidade de intermediância na rede, situa-se na cidade de São
Paulo, no distrito São Lucas. Ela liga-se a células nas zonas sudoeste, sudeste e leste, além de
distritos no município de São Paulo. Na região metropolitana, além da capital, há arestas com
outras células em Embu das Artes, Itapecerica da Serra, Diadema, São Bernardo do Campo,
Arandu, Mauá, Guarulhos e Itaquaquecetuba. Duas únicas células aparecem fora da região
metropolitana, localizadas em Hortolândia, vizinhas geograficamente. É interessante notar, desde
já, que a região metropolitana da capital, como era de se esperar (Bulletin d’information sur
la criminalité et l’organisation policière, 2000), acumula a maior parte das células presentes no
estudo e as mais centrais também.
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Figura 30 – Arestas e nós ligados ao nó centrado em (-46,7535, -23,6505)

Gerada pelo autor

A partir da Figura 30, pôde-se observar que a célula de maior centralidade de grau,
(-46.7535, -23.6505), situa-se na cidade de São Paulo, no distrito Jardim São Luis. Ela liga-se
exclusivamente a células na região metropolitana da capital, nas regiões sudoeste, sudeste e leste,
além de distritos no município de São Paulo. As cidades associadas às células que aparecem Embu
das Artes, Itapecerica da Serra, Diadema, São Bernardo do Campo, Arandu, Mauá, Guarulhos e
Suzano. É possível notar algumas localidades em rodovias que cortam o estado, fora de regiões
urbanas.

Na Figura 31, uma visualização para os graus na rede foi desenvolvida a partir do mapa
com as posições de cada célula, em que as cores não representam mais as comunidades, mas sim
seu valor para a medida no contexto da escala de valores observados, que pode ser conferida no
canto superior direito da imagem. Cores frias representam valores mais baixos e cores quentes
representam valores mais altos.

Os graus, ilustrados na Figura 31, têm uma distribuição mais ou menos uniforme, com
muitas células de grau baixo ou nulo (o que indica nenhuma sincronização), algumas poucas
células com grau intermediário e menos de dez células com grau igual ou superior a 30. Células sem
arestas possuem séries de eventos que não foram suficientemente similares, dentro da metodologia
do trabalho, isto é, não sincronizaram com nenhuma outra, mostrando um padrão incomum
ao contexto. Por outro lado, a célula mais conectada, (-46,7535, -23,6505), possui 45 arestas, e
portanto sua série de eventos é síncrona a outras 45 células presentes no grid.

A intermediância teve uma distribuição ainda mais uniforme, conforme Figura 32, com
a maior parte dos valores muito menor do que o maior valor registrado, atingido pela célula
(-46,5405, -23,5935). Justamente as duas células destacadas como eixos aqui assumem valores
expressivos pro contexto, com poucas outras células com um valor alto. A região metropolitana
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Figura 31 – Distribuição dos graus na rede simétrica

(a) Em todo o estado

(b) Nas células da capital

Gerada pelo autor

da capital contém a maior parte das células que atingiram os maiores valores.

Como o coeficiente de agrupamento local indica o quão conectadas entre si estão as
conexões de uma determinada célula, ele é uma medida local que fala sobre a estrutura da rede
também. Nesse sentido, ter muitas conexões diminui o valor esperado para os eixos, a menos de
redes densamente conectadas, que a tabela 6 mostra não ser o caso.

O coeficiente de agrupamento local revelou, na Figura 33, para a maior parte dos nós,
uma porção pequena de suas conexões estão ligadas entre si. Contudo, alguns nós da capital
atingiram valores razoáveis dessa medida. As células centradas em (-46,5495, -23,7105),(-46,4775,
-23,6685), (-46,3185, -23,4675), (-46,2885, -23,4705), (-46,8165, -23,5335) e (-46,4835, -23,5755)
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Figura 32 – Distribuição da intermediância na rede simétrica

(a) Em todo o estado

(b) Nas células da capital

Gerada pelo autor

todas possuíram coeficiente de agrupamento local igual a 1. Este é um indicativo de que as
células e suas conexões possuem, de fato, um padrão comum, já que o ES foi capaz de perceber a
sincronização delas com seus ligantes e dos ligantes entre si.

5.1.2 Rede direcionada

Para a rede direcionada, um estudo similar foi desenvolvido, com as devidas alterações
necessárias para interpretar a direcionalidade das ligações, além de novas métricas emergentes no
contexto. A Tabela 8 as medidas globais do caso direcionado.

A densidade de links, representada pelo valor de 0,017, revela que cerca de 1,7% das
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Figura 33 – Distribuição do agrupamento local nas células da capital para rede simétrica

Gerada pelo autor

Tabela 8 – Medidas globais para rede direcionada

Medida Global Valor
Densidade das conexões 0,017

Comprimento médio do caminho mais curto 3,165
Raio da maior componente conexa 4

Diâmetro da maior componente conexa 7
Transitividade 0,062

Assortatividade 0,022
Reciprocidade 0,005

Fonte: Elaborada pelo autor.

conexões potenciais na rede foram efetivamente estabelecidas. Esse pequeno aumento percentual
em relação ao caso simétrico, contudo, representa mais do que pode parecer, na comparação
entre as duas redes. Como as arestas agora possuem direção, sua quantidade máxima possível,
presente no cálculo da densidade, dobrou. Se o percentual aumentou, a quantidade nominal de
arestas mais que dobrou.

O comprimento médio do caminho mais curto retornou um valor de 3,165. Esse valor
propõe uma distância média relativamente curta entre os nós, revelando eficiência na comunicação
e alcance na rede. O resultado vale para a única componente fortemente conexa registrada, que
possui 319 células, com raio de 4 arestas e diâmetro de 7 arestas. Todas as outras células não
estavam em qualquer componente fortemente conexa. Também há apenas uma componente fra-
camente conexa, com 423 células, com basicamente as mesmas células da componente fortemente
conexa formando-a.

No que se refere à transitividade, o valor calculado de 0,062 denota uma diminuição em
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comparação com a rede simétrica. Isso se deve, possivelmente, à direcionalidade das arestas, que
agora representam um caminho, por exemplo, que vai da célula ”A”, passa pela ”B”, chega a ”C”
e retorna à célula ”A”. Ou seja, agora é preciso que as direções do triângulo formado saíam e
cheguem à mesma célula. Já a assortatividade, apresentou um valor de 0,022.

A reciprocidade calculada foi de 0,005, um valor consideravelmente baixo. Isso ressalta
uma proporção reduzida de conexões bidirecionais na rede, indicando que, em geral, a tendência
é que eventos em uma série sejam sucedidos por eventos na outra, mas não o contrário. Em
outras palavras, os padrões de sincronia são predominantemente unidirecionais: em mais de 99%
das sincronias observadas, eventos sincrônicos ocorreram, em sua maioria, inicialmente em uma
célula e, posteriormente, na outra, sem ocorrência significativa da situação oposta.

Tabela 9 – Células com maiores medidas locais

Medida Local Célula (longitude, latitude)
Grau de entrada (-46,5525, -23,7255)
Grau de saída (-46,5405, -23,5935)
Intermediância (-46,5405, -23,5935)

Coeficiente de agrupamento local de entrada (-46,5525, -23,7255)
Coeficiente de agrupamento local de saída (-46,5405, -23,5935)

Fonte: Elaborada pelo autor.

Para a rede direcionada, o grau e o coeficiente de agrupamento acabam se bifurcando
em duas medidas, uma para entrada e outra para saída, devido à direcionalidade das arestas. É
interessante notar que mesmo com uma variedade maior de medidas de centralidade avaliadas,
apenas duas células distintas aparecem na Tabela 9. A rede, portanto, possui pontos centrais
bastante manifestos.

Analisando as comunidades a partir da Figura 34, é possível notar que a rede direcionada
tem um padrão muito mais homogêneo que a simétrica, com a maior parte das células pertencendo
à mesma comunidade, em azul. De fato, há apenas duas comunidades, a azul, que compreende a
maior parte das células, com 421 elementos, e a amarela, com os exatos 2 elementos na baixada
que apareceram também na rede simétrica. Apenas 10 células permaneceram sem nenhuma
comunidade, o que mostra que de fato a coesão da rede aumentou bastante.

Na representação da rede direcionada, houve uma reestruturação das visualizações de
nós e arestas para acomodar a presença de arestas de entrada e saída. Essa diferenciação foi
necessária para aprimorar a clareza na interpretação dos elementos visuais. As arestas azuis são
de saída para a célula em análise, enquanto as arestas de entrada estão destacadas em vermelho,
acompanhadas por setas com a direção do fluxo. As Figuras 35 e 36 apresentam as células com
maiores centralidades na rede direcionada.

A célula centrada em (-46.5525, -23.7255) teve maior grau de entrada e maior coeficiente
de agrupamento local de entrada na rede. Ela está localizada em São Bernardo do Campo, entre
os bairros Demarchi e Ferrazópolis.

A célula (-46,5405, -23,5935), localizada em São Paulo, distrito São Lucas, que já havia
aparecido na rede simétrica, obteve o maior valor para todas as demais medidas da rede. A
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Figura 34 – Comunidades na rede direcionada

(a) Em todo o estado

(b) Nas células da capital

Gerada pelo autor

quantidade de elementos no mapa aumentou consideravelmente, o que dificulta a análise.

A Figura 37 ilustra todos os tipos de grau para células, com enfoque na região da capital,
seguindo a mesma ideia de cores frias e quentes denotando o valor para a medida.

Os graus de entrada indicam a quantidade de arestas que chegam à célula. No contexto
do trabalho, isso pode revelar a tendência de eventos acontecerem em outras lugares, antes do
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Figura 35 – Arestas e nós ligados ao nó centrado em (-46.5525, -23.7255)

Gerada pelo autor

Figura 36 – Arestas e nós ligados ao nó centrado em (-46.5405, -23.5935)

Gerada pelo autor

lugar em questão. Na distribuição dos graus de entrada, foi possível notar que muitas células
possuem um grau intermediário dentro da faixa de valores possível. Isso evidencia, novamente, o
caráter mais homogêneo da rede direcionada. Para os graus de saída, o raciocínio é oposto: as
células com grau de saída alto tendem a ter eventos em si que são seguidos por eventos em outras
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Figura 37 – Distribuição dos graus na rede direcionada

(a) Graus de entrada em todo o estado (b) Graus de saída em todo o estado

(c) Graus de entrada nas células da capital (d) Graus de saída nas células da capital

Gerada pelo autor

células. Na distribuição encontrada, boa parte dos locais permaneceram em faixas intermediárias,
mas o número de graus baixos diminuiu, comparativamente.

Na distribuição presente na Figura 38, foi possível notar que a maior parte dos locais
apresenta valores baixos para a divergência. Uma divergência alta indica que há muitas arestas
entrando, e relativamente poucas saindo. Assim sendo, com a divergência, é possível determinar
as células que tendem anteceder ou suceder eventos, grosso modo, em outros lugares. De certa
forma, é uma maneira de condensar as informações presentes nos gráficos anteriores em uma
única visualização. Boa parte dos locais têm divergência próxima a 0, com poucas exceções
significativas para valores positivos ou negativos. A célula com maior divergência foi (-46,4745,
-23,5755), no distrito do Parque do Carmo, em São Paulo, com valor igual a 13. A célula com
menor divergência foi (-46.3725, -23.5695), no município de Ferraz de Vasconcelos, bairro Vila
São Sebastião, cujo valor encontrado foi -13.

Como já mencionado anteriormente, (-46,5405, -23,5935) aparece como a maior interme-
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Figura 38 – Distribuição da divergência na rede direcionada

(a) Em todo o estado

(b) Nas células da capital

Gerada pelo autor

diância na rede direcionada, o que pode ser verificado na Figura 39, sugerindo que eventos nessa
célula são frequentemente intermediários para a comunicação entre outras células. No restante
das células houve uma distribuição uniforme, com a maior parte dos locais significativamente
próxima de zero em relação ao máximo, que foi alcançado novamente pela célula localizada no
distrito de São Lucas. Pouquíssimos valores foram altos ou intermediários.

Os coeficientes de agrupamento local de entrada e saída medem a densidade de conexões
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Figura 39 – Distribuição da intermediância na rede direcionada

(a) Em todo o estado

(b) Nas células da capital

Gerada pelo autor

entre os ”vizinhos de entrada e saída” de uma célula. Como, em um grafo direcionado, formar
um subgrafo completo é tarefa bem mais difícil, devido à direção das arestas, o coeficiente de
agrupamento tende a ser muito menor também. Na distribuição, presente na Figura 40, foi
possível observar que muitas células apresentam coeficientes de agrupamento local de entrada e
saída próximos a zero, indicando uma baixa densidade de conexões locais. No entanto, algumas
células na capital apresentam valores mais elevados para essas medidas, indicando uma maior
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Figura 40 – Distribuição do agrupamento local nas células da capital para rede direcionada

(a) Coeficiente de Agrupamento de entrada

(b) Coeficiente de Agrupamento de saída

Gerada pelo autor

densidade de conexões locais nessas células específicas.

5.2 Conclusão

Ambas as redes revelaram estruturas e valores interessantes, destacando perfis consistentes,
especialmente quando submetidas a uma comparação detalhada dentro do contexto e natureza
de cada método empregado. A abordagem de redes emerge como uma ferramenta valiosa para a
polícia científica, pois estabelece conexões entre diversas regiões do estado com base em seus
padrões criminais. Essa abordagem possibilita a identificação de elementos anteriormente ocultos
nos dados, como a presença de atividades criminosas organizadas ou áreas particularmente
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vulneráveis, uma vez que a sincronização entre os eventos em cada série destaca uma associação
entre as ocorrências.

As medidas resultantes da escolha de um perfil específico de Event Synchronization para
avaliar a similaridade entre as séries de eventos das células demonstraram uma certa afinidade.
Isso indica que, de maneira geral, a essência da informação obtida por cada perfil é semelhante.
No entanto, uma abordagem direcionada para o Event Synchronization parece oferecer vantagens
significativas para fins preditivos. Nesse enfoque específico, é possível traçar a cronologia entre a
ocorrência de eventos em locais sincronizados, proporcionando a oportunidade de usar os registros
de novas ocorrências em um determinado local para antecipar e mitigar delitos em outros locais.

Os resultados apontam para uma influência muito forte da região metropolitana da cidade
de São Paulo na dinâmica criminal dos roubos de veículos como um todo. As células que foram
filtradas pela quantidade de delitos em si, na Seção 4.4.2, já eram majoritariamente dessa região.
Para além disso, os nós mais centrais, em ambas as redes, para quaisquer medidas, estavam
situados nela. A constatação de que certas localidades, especialmente aquelas em grandes centros
urbanos, exercem influência sobre eventos de roubos de veículos em outras áreas, alinha-se com
teorias sociológicas que enfatizam a influência do ambiente densamente urbanizado na ocorrência
de crimes (Bulletin d’information sur la criminalité et l’organisation policière, 2000; DURKHEIM;
LUKES, 1982; GLAESER; SACERDOTE, 1999). Assim sendo, os resultados terem destacado
essa região está dentro das expectativas.

Esses achados respaldam a importância de um enfoque interdisciplinar na compreensão e
combate à criminalidade, destacando a necessidade contínua de pesquisas e estudos inovadores na
área. A intersecção entre análises estatísticas avançadas, como as realizadas por meio das redes
complexas e técnicas específicas de sincronização de eventos, oferece um panorama abrangente
e dinâmico dos padrões criminais. O reconhecimento da influência regional na propagação de
eventos criminais reforça a pertinência de investigações detalhadas e específicas, ressaltando
a importância do ambiente social na ocorrência de crimes. Esse entendimento mais profundo
não apenas esclarece a complexidade do fenômeno criminal, mas também abre caminho para
estratégias mais precisas e direcionadas por parte das autoridades, permitindo uma abordagem
proativa na prevenção dos crimes.
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APÊNDICE A – TABELA DOS DADOS DE VEÍCULOS

O Quadro 2 possui todas as colunas presentes nas planilhas de roubo e furto de veículos
disponíveis no site da transparência da SSP-SP.

Quadro 2 – Campos contidos nas tabelas de roubo de veículo
Campo Descrição Tipo de Dado (ideal)
ANO_BO Ano do BO inteiro
NUM_BO Número identificador do BO Inteiro
BO_INICIADO Data de início do BO Data
BO_EMITIDO Data de conclusão do BO Data
DATAOCORRENCIA Data da ocorrência Data
HORAOCORRENCIA Hora da ocorrência Hora
PERIODOOCORRENCIA Período do dia da ocorrência Texto
DATACOMUNICACAO Data de comunicação Data
DATAELABORACAO Data de elaboração Data
BO_AUTORIA Autoria do BO Texto
FLAGRANTE Se houve flagrante Booleano
LOGRADOURO Logradouro da ocorrência Texto
NUMERO Número da ocorrência Texto
BAIRRO Bairro da ocorrência Texto
CIDADE Cidade da ocorrência Texto
UF Unidade federativa Texto
LATITUDE Latitude da ocorrência Ponto flutuante
LONGITUDE Longitude da ocorrência Ponto flutuante
DESCRICAOLOCAL Descrição do local Texto
EXAME Exame de perícia Texto
SOLUCAO Solução Texto
DELEGACIA_NOME Nome da delegacia Texto
DELEGACIA_CIRCUNSCRICAO Delegacia de circunscrição Texto
ESPECIE Espécie Texto
RUBRICA Rubrica Texto
DESDOBRAMENTO Desdobramento Texto
STATUS Status da ocorrência Texto
TIPOPESSOA Responsável pelo BO Texto
VITIMAFATAL Se houve vítima Fatal Booleano
NACIONALIDADE Nacionalidade da vítima Texto
SEXO Sexo da vítima Texto
DATANASCIMENTO Data de nascimento da vítima Data
IDADE Idade da vítima Inteiro
PROFISSAO Profissão da vítima Texto
GRAUINSTRUCAO Grau de Instrução da vítima Texto
CORCUTIS Cor da Pele da vítima Texto
NATUREZAVINCULADA Natureza Vinculada do delito Texto
PLACA_VEICULO Placa do veículo Texto
UF_VEICULO Unidade federativa do veículo Texto
CIDADE_VEICULO Cidade do veículo Texto
DESCR_COR_VEICULO Cor do veículo Texto
DESCR_MARCA_VEICULO Marca do veículo Texto
ANO_FABRICACAO Ano de Fabricação Inteiro
ANO_MODELO Ano do Modelo Inteiro
DESCR_TIPO_VEICULO Tipo do Veículo Texto

Fonte: Elaborado pelo autor.

http://www.ssp.sp.gov.br/transparenciassp/Consulta2022.aspx
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APÊNDICE B – TRATAMENTOS DOS DADOS

Em qualquer base de dados extensa e representativa do mundo real, é inevitável encontrar
valores ausentes, inconsistências e outros problemas de integridade (SHADBAHR et al., 2023). Os
valores ausentes podem surgir devido a diversos motivos, como falhas na coleta, erros de digitação
ou mesmo pela própria natureza do fenômeno estudado. Da mesma forma, inconsistências podem
ocorrer devido a processos de coleta de dados não padronizados, falta de controle de qualidade
ou até mesmo por conta de mudanças nos procedimentos ao longo do tempo (MIOT, 2019).
Nesse contexto, ao lidar com bases de dados extensas, é desejável empregar técnicas de limpeza
e pré-processamento para assegurar a qualidade e confiabilidade das informações que serão
utilizadas em análises e tomadas de decisão (ALRUHAYMI; KIM, 2021).

B.1 Por que tratar valores presentes?

Valores presentes na base de dados podem, por vezes, apresentar uma série de problemas,
seja devido à falta de padronização na aferição, equívocos durante o preenchimento ou até
mesmo devido a variações inesperadas nos métodos de coleta, entre outras inconsistências.
Essas divergências podem resultar em um desafio significativo no que diz respeito à análise
e interpretação dos dados, uma vez que, quando se trata de grandes volumes de informações,
realizar uma análise minuciosa de cada entrada torna-se impraticável e inviável.

O primeiro passo para tratar valores inconsistentes é definir qual tipo de entrada esperada
para cada campo na base de dados. Ao definir o tipo de entrada esperada, são estabelecidos
critérios claros sobre o formato e o intervalo ou conjunto aceitável de valores. Com essa base, é
possível identificar e corrigir inconsistências de forma mais eficaz.

Em seguida, é preciso estabelecer uma forma para substituição dos valores presentes.
Se eles podem ser substituídos por um equivalente (que padronize entradas diferentes que
representem a mesma informação) ou se o valor em questão trata-se de um outlier. Neste último
caso, é importante avaliar se a remoção desse valor é a abordagem mais apropriada. Em alguns
casos, outliers podem fornecer informações valiosas sobre o conjunto de dados, mas em outros,
sua presença pode distorcer análises estatísticas (COUSINEAU; CHARTIER, 2010).

Além disso, é fundamental documentar todas as decisões tomadas durante o processo de
tratamento de dados, incluindo a definição de critérios, as escolhas de substituição ou remoção
de valores, e qualquer transformação aplicada. Por fim, é recomendável realizar verificações
adicionais após o tratamento dos dados para garantir que as inconsistências foram adequadamente
abordadas e que o conjunto de dados está pronto para análises mais aprofundadas.

B.1.1 Caminhos para tratar valores presentes nos dados da SSP-SP

Um dos campos cruciais para este estudo, que demandava especial atenção quanto
aos valores inconsistentes, foi o ’BAIRRO’. Durante a elaboração dos boletins, este campo
frequentemente carece de preenchimento adequado, sendo por vezes associado a pontos de
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referência ou nomes de ruas ou parques. Além disso, a nomenclatura de alguns bairros pode
variar, apresentando mais de uma denominação popular. Uma abordagem para tratar esses
valores é empregar as informações de ’LATITUDE’ e ’LONGITUDE’ para identificar o bairro da
ocorrência de maneira direta. Recomenda-se a utilização de um shapefile contendo as delimitações
dos bairros na região de interesse, o qual pode ser acessado através do site oficial da prefeitura
da respectiva cidade.

Para o presente trabalho, apenas as instâncias das cidades de São Paulo, São Bernardo e
Guarulhos tiveram o tal campo tratado. Inicialmente, pretendia-se tratar apenas as 5 cidades
com mais instâncias, já que o processo para todas as cidades de registro seria exaustivo e
pouco influenciaria o resultado final, mas Campinas e Santo André não possuíam shapefiles, ou
qualquer outro tipo de documento que permitisse determinar precisamente os bairros a partir
das coordenadas geográficas, nos sites das suas prefeituras.

B.2 Por que tratar valores ausentes?

Valores ausentes na base de dados representam um problema relevante, não só para a
análise, quando o percentual de valores ausentes não é desprezível em relação ao todo, como
também para o emprego de métodos estatísticos ou computacionais que geram tomada de decisão.
A presença de lacunas na informação pode comprometer a integridade dos resultados obtidos,
levando a conclusões precipitadas ou imprecisas (TAMBOLI, 2023). Além disso, para algoritmos
e técnicas que dependem fortemente dos dados disponíveis, a ausência de informações pode
inviabilizar o processo, resultando em escolhas subótimas ou até mesmo incorretas. De fato, a
maior parte dos algoritmos modernos de aprendizado de máquina não consegue gerar resultados
em cima de dados com valores ausentes (KUMAR, 2022).

O primeiro passo para tratar valores ausentes é identificá-los. Existem diversas maneiras de
identificar valores ausentes em um conjunto de dados. Uma abordagem simples é utilizar métodos
estatísticos descritivos, como a contagem de valores nulos em cada coluna ou a porcentagem de
valores ausentes em relação ao total de observações.

Após identificar os valores ausentes, a determinação da estratégia de tratamento torna-se
intrinsicamente ligada ao contexto do problema e à natureza dos dados. A análise do contexto
envolve considerações específicas, como a presença de dados geoespaciais ou temporais, que podem
impactar diretamente na escolha da abordagem adequada. Por exemplo, em dados geoespaciais,
a proximidade física entre observações pode ser crucial (BUCKLEY; BUTLER, 2017), enquanto
em dados temporais, padrões ao longo do tempo podem influenciar as decisões de imputação
(FANG; WANG, 2020).

Além disso, a natureza dos dados desempenha um papel fundamental na seleção da
estratégia mais apropriada. Se as informações presentes permitem inferir de maneira confiável os
valores ausentes, a imputação pode ser uma opção viável. Abordagens comuns incluem a exclusão
de observações ou colunas com valores ausentes, a imputação utilizando estatísticas descritivas,
como média, mediana ou moda, e métodos mais avançados, como a imputação baseada em
modelos estatísticos ou algoritmos de aprendizado de máquina.
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É importante ressaltar que a decisão sobre como lidar com os valores ausentes deve ser
fundamentada em uma compreensão profunda do conjunto de dados e no impacto potencial nas
análises subsequentes. Cada abordagem possui suas vantagens e limitações, e a escolha dependerá
das características específicas do problema em questão. A transparência e documentação adequada
das etapas de tratamento de valores ausentes são essenciais para garantir a reprodutibilidade e a
validade das análises realizadas.

B.2.1 Caminhos para tratar valores ausentes nos dados da SSP-SP

Como discutido na Seção 4.2.1, a abordagem adotada neste trabalho para lidar com
valores ausentes nos campos listados no Quadro 1 foi a exclusão das respectivas instâncias. Após
a remoção em torno dos campos ’LATITUDE’, ’LONGITUDE’ e ’HORAOCORRENCIA’, não
restaram quaisquer valores ausentes para os demais campos.

Devido ao fato de o número de instâncias com valores ausentes não ser significativo em
relação ao conjunto de dados como um todo, e considerando que não há razão para acreditar que
essas omissões ocorram de maneira aleatória1, a opção pela exclusão foi considerada uma escolha
razoável, embora essa abordagem introduza um leve viés na análise final.

Uma segunda abordagem considerada, embora não tenha sido implementada, é a impu-
tação. Existem diversas metodologias e algoritmos disponíveis para realizar esse processo. No
entanto, devido à natureza da imputação, que opera sobre valores ausentes, determinar com pre-
cisão o quão bem-sucedida ela foi torna-se desafiador, sendo possível apenas realizar estimativas
com base em hipóteses. Para mais informações sobre a técnica, recomenda-se Shadbahr et al.
(2023), Hyun (2013)

Para os campos de latitude e longitude, foram conduzidos testes utilizando regressores
’linear’, ’KNN’ (com N = 3), e ’Árvore de Decisão’, além de uma abordagem de imputação
baseada em informações de bairro e cidade. As variáveis independentes em todas as regressões
foram ’CIDADE’ e ’BAIRRO’, que passaram por um processo de encoding. A Tabela 10 traz os
resultados, em grau, dos modelos para as principais métricas no contexto de regressão.

Tabela 10 – Resultados de avaliação dos modelos para ’LATITUDE’ E ’LONGITUDE’

Modelo Erro médio Absoluto Erro Quadrático Médio Coeficiente de Determinação
KNN 0.085 0.101 0.653
Linear 0.085 0.101 0.653
Árvore de Decisão 0.013 0.013 0.955
Bairro e Cidade 0.007 0.000 0.999

Fonte: Elaborada pelo autor.

As métricas foram calculadas mediante a divisão dos dados, excluindo aqueles com
valores ausentes, em conjuntos de treinamento e teste. Portanto, representam uma avaliação do
quão eficazes foram as imputações dentro do contexto dos dados conhecidos. Para generalizar

1 há várias regiões em que a polícia teria dificuldade de adentrar para aferir a latitude e a longitude,
por exemplo.
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conclusões sobre a utilização dessas imputações nos valores verdadeiramente ausentes, é necessário
pressupor que os dados ausentes se comportam de maneira semelhante aos dados presentes.

Destaca-se que a estratégia de imputação baseada em bairro e cidade demonstrou ser
a mais bem-sucedida. Essa abordagem envolve a imputação dos valores ausentes utilizando a
mediana das instâncias com valores presentes que compartilham o mesmo bairro e cidade. Caso
não haja correspondência para o par cidade e bairro, a imputação é realizada com base apenas
na cidade. No caso de ausência de correspondentes, nenhuma imputação é realizada, indicando
que, ao contrário das regressões convencionais, essa estratégia não fornece respostas para todos
os valores ausentes, o que é uma desvantagem relevante em muitos casos.

O mesmo procedimento pode ser usado para imputar valores em ’HORAOCORRENCIA’,
a partir de ’CIDADE’, ’BAIRRO’ e ’PERIODOOCORRENCIA’. Porém, não é possível usar
a categoria ’EM HORA INCERTA’, presente em ’PERIODOOCORRENCIA’. Por motivos de
ajuste, os testes foram feitos utilizando-se regressores ’KNN’ (com N=3), ’Árvore de Decisão’ e
’Random Forest’, conforme Tabela 11, cujas métricas estão expostas em minutos.

Tabela 11 – Resultados de avaliação dos modelos para ’HORAOCORRENCIA’

Modelo Erro Médio Absoluto Erro Quadrático Médio Coeficiente de Determinação
KNN 150.074 52723.364 0.687
Árvore de Decisão 84.617 11292.0194 0.933
Random Forest 83.141 10242.456 0.939

Fonte: Elaborada pelo autor.

O regressor ’Random Forest’ se mostrou mais eficiente do que os demais, levemente
superior a ’Árvore de Decisão’. Contudo, o erro cometido por qualquer um dos algoritmos
apresentados não parece ser desprezível numa análise que se pretenda criteriosa. Todos os
regressores empregados basearam-se nas implementações correspondentes disponíveis na biblioteca
scikit-learn2, que oferece uma ampla variedade de algoritmos e ferramentas computacionais
adicionais capazes de auxiliar na execução da tarefa.

—

2 https://scikit-learn.org/

https://scikit-learn.org/
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