
Universidade de São Paulo

Trabalho de Conclusão de Curso

Proposta de Sistema de Desvio de
Obstáculos em Robótica Móvel

Autora:

Tatiani Pivem

Orientador:

Edson Gesualdo

Laboratório de Controle e Instrumentação

Departamento de Engenharia Elétrica e Computação

Novembro de 2015



i

.



Tatiani Pivem

Proposta de Sistema de Desvio
de Obstáculos em Robótica

Móvel

Trabalho de Conclusão de Curso apresen-

tado a Escola de Engenharia de São Carlos.

Orientador: Edson Gesualdo

São Carlos

2015



iii

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Pivem, Tatiani
 P579p Proposta de sistema de desvio de obstáculos em 

robótica móvel / Tatiani Pivem; orientador Edson
Gesualdo. São Carlos, 2015.

Monografia (Graduação em Engenharia Elétrica com 
ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2015.

1. Sistemas Embarcados. 2. Desvio de Obstáculos. 3. 
Robótica. I. Título.



iv



v



A Léia Pivem e a Ana Cristina Pivem. . .

vi



Agradecimentos

Agradeço a Deus por abrir a porta do entendimento e nos deixar trilhar e seguir nossos

sonhos, a minha famı́lia, amigos, ao Professor Edson por sempre me motivar e por todo

o conhecimento transmitido, pela paciência inclusive. Agradeço a TODAS as pessoas que

transmitem seu conhecimento e que geram um ciclo de inovação evolutivo, agradeço a

todos os criadores de código de arduino, vocês são incŕıveis! Filipe Flop, Criando robô

com arduino, dentre tantos. Agradeço aos amigos da ”baia dos estagiários - baia do amor”,

afinal, o carrinho está andando!!!

Obrigada!



”O que prevemos raramente ocorre; o que menos esperamos geralmente acontece.”

Benjamin Disraeli



UNIVERSITY OF SÃO PAULO - USP

Abstract

São Carlos School of Engineering

Department of Electrical and Computer Engineering

Trabalho de Conclusão do Curso

System of Obstacle Avoidance

by Tatiani Pivem

This work is about the study and project of a obstacle avoidance system with an

autonomous/manual control, based on ultrasonic sensor. About the commercial devices

available in the market, there was the option of choice based in the benefit-cost ratio, by

studying and testing the components to be used. The system works with manual control

until the obstacle appears, then it changes to automatic control. The end result is a com-

plete station of work, capable to move by itself, communicating with the user via radio and

autonomy to avoid obstacles and perform the original direction route, as well as mapping

the ground by a digital compass and measure the temperature and humidity, ensuring the

best performance.

http://www5.usp.br/
http://www.eesc.usp.br/
http://http://www.sel.eesc.usp.br/


UNIVERSIDADE DE SÃO PAULO - USP

Resumo

Escola de Engenharia de São Carlos

Departmento de Engenharia Elétrica e Computação

Trabalho de Conclusão do Curso

Sistema de Desvio de Obstáculos

por Tatiani Pivem

Este trabalho consiste no projeto de um sistema autônomo de desvio de obstáculos

com controle autônomo/manual, baseado em sensor ultrassonico. Entre os dispositivos

comerciais dispońıveis no mercado fez-se a opção de escolha baseada na relação custo-

benef́ıcio, estudando-se e testando-se os componentes a serem utilizados. O sistema traba-

lha com controle manual até o aparecimento de obstáculo, então ele troca para o controle

automático. O resultado final é uma estação de trabalho completa, capaz de se mover

independentemente, comunicar com o usuário via radio e com autonomia para o desvio

de obstáculos e correção de direção da rota original, tão bem quanto o mapeamento do

solo por meio de uma bússola digital e medição de temperatura e umidade, assegurando a

melhor performance.

http://www5.usp.br/
http://www.eesc.usp.br/
http://http://www.sel.eesc.usp.br/


Sumário

Abstract ix

Resumo x

Sumário xi

Lista de Figuras xiii

Lista de Tablelas xv

Abreviações xvi

1 Introdução 1

2 Sistema de Desvio de Obstáculos 5

2.1 Protótipo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Controle Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Controle Automático . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Fundamentos e Componentes 9

3.1 Arduino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Arduino UNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1.1 Barramento de Potência . . . . . . . . . . . . . . . . . . . . 10

3.1.1.2 Barramento Digital (I/O) . . . . . . . . . . . . . . . . . . . 10

3.1.1.3 Barramento Analógico . . . . . . . . . . . . . . . . . . . . . 11

3.1.1.4 Entradas e Sáıdas . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1.5 Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Arduino Mega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2.1 Alimentação . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2.2 Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2.3 Interrupções . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Chassi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Motores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Baterias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Shield Adafruit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Funções- Shield L293D . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Ponte H- L293D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xi



Sumário xii

3.4 Módulo RF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Dados Gerais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.2 Controle Remoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.3 Bibliotecas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Sensor Ultrassônico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Servo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 CMPS10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7.1 Modo I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 DHT11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Buzzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.10 LCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Análise de Resultados 37

4.1 Componentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Sensor Ultrassônico . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1.1 Objetos metálicos . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1.2 Objetos emborrachados e não uniforme . . . . . . . . . . . 38

4.1.1.3 Testes com Isopor . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1.4 Pedra não uniforme . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1.5 Testes com corrente de ar . . . . . . . . . . . . . . . . . . . 40

4.1.2 DHT11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.3 CMPS10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Sistema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Conclusões e Trabalhos Futuros 47

5.1 Conclusões . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Trabalhos Futuros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A Códigos 49

A.1 Testes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.1.1 HC SR04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.1.2 DHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1.3 CMPS10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.2 Sistema Automático . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.3 Sistema completo com controle do usuário e autonomia para desvio de
obstáculo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B Custos 77

C Folha de dados 79

Referências Bibliográficas 80



Lista de Figuras

1.1 Robô Pioneer AT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Robô PIONEER 2-DX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Robô Julius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Sistema de desvio de obstáculos . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Diagrama de blocos controle manual . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Diagrama de blocos correção automática . . . . . . . . . . . . . . . . . . . . 8

2.4 Desvio automático . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Barramento de potência . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Arduino UNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Entradas e sáıdas digitais e PWM referenciado por: ∼ . . . . . . . . . . . . 11

3.4 Entradas analógicas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Arduino mega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Mapa de pinos e interrupções . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.7 Diagrama de conexões- Atmel2560 e sua relação com pinos do arduino mega 17

3.8 Chassi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.9 Motores CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.10 Esquema interno de um motor . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.11 Esquema básico de um motor CC . . . . . . . . . . . . . . . . . . . . . . . . 20

3.12 Bateria de LiPo utilizada . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.13 Motor shield L293D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.14 Ponte H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.15 Diagrama de ligação- Ponte H . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.16 Diagrama interno- Ponte H L293D,retirado de sua folha de dados dispońıvel
em: http://www.ti.com/lit/ds/symlink/l293.pdf . . . . . . . . . . . . . . . 23

3.17 Módulo RF 433 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.18 Transmissor- diagrama esquemático . . . . . . . . . . . . . . . . . . . . . . . 24

3.19 Receptor- diagrama esquemático . . . . . . . . . . . . . . . . . . . . . . . . 24

3.20 Controle remoto para o protótipo . . . . . . . . . . . . . . . . . . . . . . . . 25

3.21 Conexão com resistor pull up . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.22 Sistema de detecção por ultrassom . . . . . . . . . . . . . . . . . . . . . . . 27

3.23 Ultrassom utilizado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.24 Micro servo motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.25 PWM - Micro servo motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.26 CMPS10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.27 Dimensões do componente CMPS10 . . . . . . . . . . . . . . . . . . . . . . 31

3.28 Diagrama de conexão- CMPS10 . . . . . . . . . . . . . . . . . . . . . . . . . 31

xiii



Lista de Figuras xiv

3.29 Barramento f́ısico I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.30 Ilustração: start sequence e stop sequence . . . . . . . . . . . . . . . . . . . 32

3.31 DHT11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.32 Buzzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.33 Display de LCD (16x2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Sistema para a realização de testes para o sensor ultrassônico . . . . . . . . 37

4.2 Aparatos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Sistema para a realização de testes para o sensor DHT11, vista superior . . 41

4.4 Sistema para a realização de testes para o sensor DHT11, vista frontal . . . 41

4.5 Valores recebidos para teste do sensor DHT11 . . . . . . . . . . . . . . . . . 42

4.6 Valores esperados para teste com sensor de temperatura DHT11 . . . . . . 42

4.7 Sistema para a realização de testes para a bússola CMPS10 . . . . . . . . . 43

4.8 Programa utilizado para comparação - utiliza GPS . . . . . . . . . . . . . . 43

4.9 Śımbolo e nome do programa utilizado para comparação . . . . . . . . . . . 43

4.10 Teste de desvio de obstáculos à esquerda com correção de rota . . . . . . . 44

4.11 Teste de desvio de obstáculos à direita com correção de rota . . . . . . . . . 45



Lista de Tabelas

3.1 Dados gerais referentes ao Arduino Uno. . . . . . . . . . . . . . . . . . . . . 9

3.2 Arduino Mega2560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Tipos de operação e desencadeadores da interrupção . . . . . . . . . . . . . 15

3.4 Especificação da interrupção. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Especificação do chassi MSGX001 fornecidos pelo fabricante MAGILUX
para operação a 25 ◦C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Shield L293D Driver Ponte H . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7 Especificação de valores máximos para operação da ponte H L293D . . . . . 22

3.8 Especificação do receptor RF433MHz . . . . . . . . . . . . . . . . . . . . . . 24

3.9 Especificação do transmissor RF433MHz . . . . . . . . . . . . . . . . . . . . 25

3.10 Especificação do HC SR04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.11 Especificação do micro servo motor SG90 . . . . . . . . . . . . . . . . . . . 30

3.12 Especificação do DHT11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.13 Especificação do Buzzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.14 Pinos e descrição de funcionamento do LCD de 16x2 utilizado. . . . . . . . 35

4.1 Teste do sensor ultrassônico para operação a 29 ◦C . . . . . . . . . . . . . . 39

4.2 Teste do sensor ultrassônico para operação a 28 ◦C . . . . . . . . . . . . . . 39

4.3 Teste do sensor ultrassônico para operação a 29 ◦C . . . . . . . . . . . . . . 39

4.4 Teste do sensor ultrassônico para operação a 28 ◦C . . . . . . . . . . . . . . 40

B.1 Tabela de custos nacional do sistema estudado. . . . . . . . . . . . . . . . . 77

B.2 Tabela de custos internacional do sistema estudado. . . . . . . . . . . . . . 78

C.1 Tabela de especificações do sistema. . . . . . . . . . . . . . . . . . . . . . . 79

xv



Abreviações

IoT Internet of Things

RFID Radio Frequency IDentification

GND GrouND

I/O Input/Output

PWM Pulse Width Modulation

SRAM Static Random Access Memory

EEPROM Electrically Erasable Programmable Read Only Memory

DC Direct Current

CC Corrente Cont́ınua

AC/DC Alternating Current/Direct Current

AREF Analogue REFerence

Vin Voltage input

RF Radio Frequency

TCCRx Timer Counter Control Register

TCNTx Timer Counter Register

ICRx Input Capture Register

OCRx Output Compare Register

TIMSKx Timer Counter Interrupt Mask register

ISR Interrupt Service Routine

CPU Central Processing Unit

LiPo Lithium ion Polymer battery

I2C Inter IC

SDA Signal DAta

SCL Signal CLock

CMPS CoMPaSs

xvi



Abreviações xvii

MSB Most Significant Bit

UR Umidade Relativa

LCD Liquid Crystal Display

LSB Least Significant Bit

V Volt

A Ampère

rpm rotações por minuto

ICSP In-Circuit Serial Programming



Caṕıtulo 1

Introdução

A conectividade inteligente de dispositivos f́ısicos, conhecida mais popularmente

como ”Internet of Things” (IoT) [1], está em alto crescimento nas últimas décadas con-

forme mostrado pelos meios de comunicação em massa atualmente.”Internet of Things”

não é um novo conceito, existindo antes mesmo do ano 2000, e formalizado por Kevin

Ashton o qual, em suas pesquisas sobre Internet e RFID, publicou em um artigo no RFID

Journal em 1999 do qual extraiu-se o seguinte trecho:

”Se tivéssemos computadores que soubessem tudo o que existe para se conhecer

sobre coisas - usando dados recolhidos sem ajuda humana- nós estaŕıamos aptos a mo-

nitorar e contar tudo, e evitar eficientemente desperd́ıcios, perdas e aumento dos custos.

Podeŕıamos saber coisas que precisam ser substitúıdas, reparadas ou recolhidas. Se estão

frescas ou passadas do ponto. Precisamos capacitar os computadores com seus próprios

meios de recolher informações, para que eles possam ver, ouvir e sentir o cheiro do mundo

por si mesmos, em toda sua glória aleatória. RFID e tecnologia de sensores permitem que

os computadores observem, identifiquem e compreendam o mundo - sem as limitações dos

dados fornecidos pelo homem [2].”

Redes de sensores além de ser um ramo de ”Internet of Things” é também muito

utilizado em Sistemas Embarcados. Um sistema embarcado (ou sistema embutido) é um

sistema microprocessado no qual o computador é completamente encapsulado ou dedicado

ao dispositivo ou sistema que ele controla[3] .

1



Caṕıtulo 1. Introdução 2

O crescimento dos ramos de ”Internet of Things” e Sistemas Embarcados de-

monstra a importância e a necessidade do recolhimento de dados do mundo que nos cir-

cunda por meio de sensores. Este trabalho situa-se nesse contexto e fará uso e estudará

alguns sensores e componentes necessários para um sistema de desvio de obstáculos.

Sistemas de Desvios de Obstáculos

A área de sistemas embarcados comporta diferentes procedimentos para se es-

tudar um sistema de desvio de obstáculos. Pode ser direcionado para a área de software

e elaboração de algoritmos e programas ou para a área de hardware, identificando os blo-

cos fundamentais como percepção de obstáculos, sistema de processamento, controle de

operação e transmissão de informação, se necessário.

Tendo em vista melhorias por software, pode se citar a computação reconfi-

gurável e a análise de imagens em visão computacional. Um robô com sensor laser e

câmera pode ser usado para tal estudo usando computação reconfigurável conforme des-

crito em [4], com o exemplo do Robô Pioneer AT mostrado na figura 1.1. Controladores

podem ser desenvolvidos para o objetivo de desvio de obstáculos com sensores laser e

ultrassônicos, câmera, computador embarcado, como é o caso do Robô PIONEER 2-DX

descrito em [5] e mostrado na figura 1.2.

O protótipo desenvolvido neste trabalho foi batizado de Robô Julius e é mos-

trado na figura 1.3. Aborda soluções em software e hardware visto que seu objetivo é a

integração e estudo dos blocos necessários ao sistema de desvio já descritos. O projeto

do hardware busca soluções para a situação em que o protótipo permanece em desloca-

mento e o desenvolvimento do software busca melhor desempenho na utilização de timers

e interrupções por mais de um componente.



Caṕıtulo 1. Introdução 3

Figura 1.1: Robô Pioneer AT do Laboratório de Robótica Móvel ICMC-USP com sen-
sor laser e câmera[4]. Fonte: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-

30032010-092432/pt-br.php acessado em 04/09/2015



Caṕıtulo 1. Introdução 4

Figura 1.2: Robô móvel a rodas PIONEER 2-DX[5].
Fonte: http://portais4.ufes.br/posgrad/teses/tese 2359 DissertacaoMestradoFlavioGarciaPereira.pdf

acessado em 04/09/2015

Figura 1.3: Robô Julius



Caṕıtulo 2

Sistema de Desvio de Obstáculos

2.1 Protótipo

O protótipo se baseia na presença ou ausência de obstáculos, caso não exista

obstáculo a frente, o usuário possui o controle do sistema (no caso, o controle remoto do

protótipo), caso o obstáculo seja alcançado, o protótipo entra no modo automático, ne-

gando o controle ao usuário até que o obstáculo seja desviado e o sentido da rota retornado.

Para a percepção do obstáculo é usado o sensor ultrassônico descrito na seção

3.5. O controle manual é descrito na seção 2.2 e o controle automático na seção 2.3.

O diagrama de blocos do sistema pode ser visto na figura 2.1.

2.2 Controle Manual

O Controle Manual é realizado enquanto a mı́nima distância a um obstáculo a

frente não seja alcançada. Se baseia em um controle remoto com um transmissor e um

receptor no carrinho, descritos na seção 3.4, seu diagrama de blocos é mostrado na figura

2.2.

As direções posśıveis são condicionadas às caracteŕısticas mecânicas do protótipo

e pelo sentido de giro do motor, sendo descritas na seção 3.2.

� Frente: O protótipo anda para frente;

5



Chapter 2. Sistema de Desvio de Obstáculos 6

Figura 2.1: Sistema de desvio de obstáculos

� Ré: O protótipo vai para trás;

� Esquerda: O protótipo vira para a esquerda;

� Direita: O protótipo vira para a direita;

� Parar: O protótipo para.

Figura 2.2: Diagrama de blocos controle manual



Chapter 2. Sistema de Desvio de Obstáculos 7

2.3 Controle Automático

O Controle Automático é realizado quando a mı́nima distância permitida ao

obstáculo a frente é alcançada. Como mostra o diagrama de blocos da figura 2.3, o sistema

efetua a parada do protótipo, um aviso sonoro é dado ao usuário, o controle do usuário é

retirado e o sistema começa no seu ciclo de funcionamento até que o número máximo de

tentativas é alcançado ou o obstáculo seja desviado e sua rota retornada.

O número máximo de tentativas depende dos requisitos de processamento e

armazenamento, pois cada obstáculo encontrado no caminho é guardado como uma direção

a ser corrigida em pilha (última direção guardada é a primeira a ser corrigida). Essa

metodologia pode ser melhor entendida com a figura 2.4, na qual o ćırculo verde é o

protótipo e os obstáculos são representados pelos quadrados a sua frente; para a parte

superior da figura, existe um obstáculo a frente do sentido da trajetória do protótipo e

um obstáculo a esquerda, sendo portanto sua maior distância dispońıvel para percurso a

direita. Desviando do obstáculo, é necessário uma correção de rota que mantenha o sentido

inicial de percurso; caso esteja indo ao norte, deve-se manter o norte como referencial, o

mesmo vale para os outros pontos cardeais. Nessa correção, caso o obstáculo encontrado o

leve a desviar virando a direita, o protótipo deve posteriormente virar a esquerda e manter

a rota.

Na parte inferior da figura existe um obstáculo a frente e outro a direita, sendo

portanto o desvio usado a esquerda e corrigido virando-se a direita no próximo momento

dispońıvel.

Caso o protótipo não consiga corrigir a sua rota, sendo por exemplo o obstáculo

muito grande em extensão, o sistema deve continuar com sua direção (caso não haja

obstáculo), até que o obstáculo acabe e sua rota seja corrigida, retornando o controle ao

usuário e reiniciando o sistema.

Caso o obstáculo não tenha acabado e exista outro obstáculo a frente, o sistema

deve verificar se o número máximo de tentativas foi alcançado e caso não seja, o próximo

desvio é guardado em um buffer para ser corrigido voltando sucessivamente até o primeiro.

Só quando o sistema não possui obstáculos a corrigir que é retornado o controle ao usuário.

Sendo o número máximo de tentativas alcançado, o sistema retorna a mensagem de terreno

tortuoso e desliga.



Chapter 2. Sistema de Desvio de Obstáculos 8

Figura 2.3: Diagrama de blocos correção automática

Figura 2.4: Desvio automático



Caṕıtulo 3

Fundamentos e Componentes

3.1 Arduino

3.1.1 Arduino UNO

O Arduino UNO[6], mostrado na figura 3.2, é uma placa microcontroladora

baseada na versão ATmega328, e trabalha com dados analógicos e digitais, com fácil

interação com diversos sensores. Os dados gerais referentes ao Arduino UNO são mostrados

na tabela 3.1.

Tabela 3.1: Dados gerais referentes ao Arduino Uno.

Arduino UNO - Microcontrolador ATMega328

Tensão de Operação +5 V
Tensão de Entrada (recomendada) 7-12 V

Tensão de Entrada (limites) 6-20 V
Pinos Digitais I/O 14 pinos (dos quais 6 podem ser usados como sáıda PWM)

Pinos de Entrada Analógica 6 pinos
Corrente CC por Pino I/O 40 mA

Corrente CC para o Pino de 3,3 V 50 mA
Flash Memory 32 kB

SRAM 2 kB
EEPROM 1 kB

Velocidade de Clock 16 MHz

9



Caṕıtulo 3. Fundamentos e componentes 10

3.1.1.1 Barramento de Potência

O barramento de potência, mostrado na figura 3.1, apresenta os seguintes pinos:

GND : Pino Ground ;

5 V: Fornece uma sáıda regulada em 5 V (não recomendado utilizá-lo para alimentar a

placa);

3,3 V: Fornece a tensão de 3,3 V e sua máxima corrente é de 50 mA;

Vin: Fornece a tensão utilizada para alimentar a placa.

Figura 3.1: Barramento de potência.

3.1.1.2 Barramento Digital (I/O)

Possui 14 pinos digitais de entrada/sáıda, dos quais 6 podem ser usados como

sáıdas PWM, como mostra a figura 3.3; esse barramento se encontra na parte superior da

placa. Apresenta ńıvel High em 5 V e Low em 0 V.

Figura 3.2: Arduino UNO.



Caṕıtulo 3. Fundamentos e componentes 11

Figura 3.3: Entradas e sáıdas digitais e PWM referenciado por: ∼.

3.1.1.3 Barramento Analógico

Suas seis entradas analógicas se encontram no canto inferior direito, podem

assumir diversos valores de tensão, entre 0 e 5V, como mostra a figura 3.4.

Figura 3.4: Entradas analógicas.

3.1.1.4 Entradas e Sáıdas

Cada um dos 14 pinos digitais pode ser usado como entrada ou sáıda, com as

funções pinMode(),digitalWrite() edigitalRead() . Operam com 5 V e cada pino pode

providenciar um máximo de 40 mA.

Alguns pinos de importância para esse trabalho são:

Serial: Usado para receber (RX) e transmitir (TX);

Interrupções Externas (pinos 2 e 3): Podem ser configuradas para inter-

rupção com valor alto ou baixo, com descida ou subida de borda, através da função

attachInterrupt();

PWM (pinos 3, 5, 6, 9, 10 e 11): Fornecem sáıda PWM com a função analogWrite().

Para cada uma das seis entradas analógicas (nomeadas de A0 a A5), se possui

10 bits de resolução (i.e. 1024 valores distintos). Por padrão, medem do referencial ground

a 5V, no entanto pode-se aumentar a extremidade superior da faixa usando o pino AREF

e a função analogReference() .



Caṕıtulo 3. Fundamentos e componentes 12

3.1.1.5 Timer

Um timer é uma peça do hardware presente dentro de placas controladoras

Arduino [7] e também em outros controladores, que tem como objetivo medir eventos de

tempo. Pode ser programado por alguns registradores especiais.

O controlador do Arduino UNO é o Atmel AVR ATMega 168 ou ATmega328, a

diferença entre ambos é o tamanho da memória interna. Ambos tem 3 timers, chamados:

timer0, timer1 e timer2. Timer0 e timer2 são ambos de 8bits e timer1 é de 16 bits. A

diferença entre um timer de 8bits e 16bits é a sua resolução, 8 bits significa que podem

haver 256 possibilidades de valores e um timer de 16bits indica que podem existir 65536

valores, providenciando uma maior resolução e/ou contagem mais longa.

3.1.2 Arduino Mega

O Arduino Mega[8], mostrado na figura 3.5, é uma placa microcontroladora ba-

seada no processador ATmega1280, tem 54 pinos digitais de entradas e/ou sáıdas (dos

quais 14 podem ser usados como sáıdas PWM), 16 entradas analógicas, 4 UARTs (por-

tas seriais para os hardwares), um cristal oscilador de 16 MHz, uma conexão USB, um

cabeçário ICSP, e um botão de reset. Suas especificações estão contidas na tabela 3.2.

Tabela 3.2: Arduino Mega2560

Dados Arduino Mega

Tensão de Operação +5 V
Tensão de Entrada (recomendada) 7-12 V

Tensão de Entrada (limites) 6-20 V
Pinos Digitais I/O 54 pinos dos quais 15 providenciam sáıdas PWM

Pinos de Entrada Analógica 16 pinos
Corrente CC por Pino I/O 40 mA

Corrente CC para o Pino de 3,3 V 50 mA
Flash Memory 128 kB

SRAM 8 kB
EEPROM 4 kB

Velocidade de Clock 16 MHz

3.1.2.1 Alimentação

O Arduino Mega pode ser alimentado via conexão USB ou com alimentação

externa.



Caṕıtulo 3. Fundamentos e componentes 13

Externa (não-USB): Pode vir de um adaptador AC/DC ou bateria. O adaptador

pode ser conectado com um plug de 2,1 mm com centro positivo no plug de cor preta da

placa. Para se utilizar a tensão de entrada fornecida ao arduino pela bateria, deve-se

retirar sua tensão entre os pinos Vin e GND.

A placa pode operar com uma alimentação externa de 6 a 20 volts. Se alimentada

com menos do que 7 V, o pino de 5 V pode alimentar o dispositivo conectado com menos

do que 5 V e a placa pode ficar instável. Se usados mais de 12 V, o regulador de tensão

pode danificar a placa. A faixa recomendada fica entre 7 V e 12 V.

Baterias de 9 V se encontram próximas ao centro da faixa aceitável, e são fáceis

de ser encontradas e de preço popular, esse trabalho fará uso dessa bateria para alimentação

do arduino quando não conectado ao computador.

Figura 3.5: Arduino mega.

3.1.2.2 Timer

O controlador da série Arduino Mega é o Atmel AVR ATmega1280 ou ATmega

2560, com diferença no tamanho da memória interna. Esses controladores tem 6 timers.

Timer0, timer1, e timer2 são idênticos ao ATmega168/328. O timer3, timer4 e timer5

são todos de 16bits, similar ao timer1.

Os timers0 e 1 [9] precisam de atenção redobrada para mudanças pois são

empregados em funções internas ao arduino e bibliotecas mais conhecidas.

Timer0: 8bits timer.



Caṕıtulo 3. Fundamentos e componentes 14

Timer0 é usado para funções de tempo de uso geral no arduino, como: delay(),

millis() e micros(). Se houver mudanças nos registradores do timer0, isso irá influenciar

tais funções, podendo comprometer seu funcionamento e desempenho caso não recebam

tratamento adequado.

Timer1: 16bits timer.

No Arduino UNO, o timer1 é usado pela biblioteca ”Servo library” e pela bi-

blioteca ”VirtualWire”, no Arduino Mega se usa o timer5 para ambas as bibliotecas.

Quando juntas em um programa podem não funcionar adequadamente, sendo necessário

a mudança dos timers ou a mudança de alguma das duas bibliotecas.

Existem bibliotecas para o timer2 tanto no caso do controle de servos motores

(SoftwareServo) como no caso de controle RF(RCSwitch).

Registradores do Timer

Pode-se mudar o comportamento dos Timers pelos registradores de timer. Como

mostra [9], os mais utilizados são:

TCCRx - Timer/Counter Control Register. O prescaler pode ser configurado

através desse registrador.

TCNTx - Timer/Counter Register. O valor atual do timer é armazenado aqui.

OCRx - Output Compare Register.

ICRx - Input Capture Register (somente para timer de 16 bits).

TIMSKx - Timer/Counter Interrupt Mask Register. Usado para habilitar/desa-

bilitar interrupções de tempo.

TIFRx - Timer/Counter Interrupt Flag Register. Indica uma interrupção pen-

dente.

3.1.2.3 Interrupções

O programa rodando em um controlador é normalmente sequencial, sendo exe-

cutado instrução por instrução. Uma interrupção é um evento externo que desvia o fluxo



Caṕıtulo 3. Fundamentos e componentes 15

do programa e executa uma rotina de serviço de interrupção especial (ISR-Interrupt Ser-

vice Routine). Depois da ISR terminar, o programa continua com a próxima instrução de

máquina.

Todas as interrupções devem estar habilitadas para que possa ocorrer o trata-

mento em uma ISR. Pode-se habilitar/desabilitar uma interrupção com a função interrupts()

e noInterrupts(). Por padrão o firmware do arduino vem com interrupções habilitadas.

Interrupt masks também estão habilitadas, e podem ser modificadas setando/limpando

bits no registrador da Interrupt mask (TIMSKx).

Quando uma interrupção ocorre, uma flag no interrupt flag register (TIFRx)

é setada. Essa interrupção irá automaticamente ser limpa quando entrar na ISR ou pode

ser manualmente limpa com o bit da interrupt flag register.

As funções do arduino attachInterrupt() e detachInterrupt() podem so-

mente ser usadas para pinos de interrupção externas. A estrutura de attachInterrupt()

recomendada é a seguinte:

attachInterrupt(número da interrupç~ao(pino),funç~ao de tratamento,TIPO),

sendo o número da interrupção dado na figura 3.6 com o pino correspondente onde a mu-

dança do TIPO vai ser observada. TIPO, como mostrado em [10] pode-se seguir as opções

mostradas na tabela 3.3.

Tabela 3.3: Tipos de operação e desencadeadores da interrupção

Tipos de interrupção

LOW O pino do número da interrupção é colocado em ńıvel baixo
CHANGE O pino do número da interrupção tem seu valor lógico mudado (alto ou baixo)

HIGH O pino do número da interrupção é colocado em ńıvel alto
RISING O momento da transição do pino da interrupção de alto para baixo

FALLING O momento da transição do pino da interrupção de baixo para alto

De acordo com [11] as interrupções são chamadas ”vetoradas”por conter um

endereço espećıfico, assim existirá um endereço de tratamento da interrupção para cada

uma.

A ordem dos endereços determina o ńıvel de prioridade das interrupções, quanto

menor o endereço do vetor de interrupção, maior será sua prioridade. Por exemplo, a

interrupção INT0 tem prioridade sobre a INT1.



Caṕıtulo 3. Fundamentos e componentes 16

Figura 3.6: Mapa de pinos e interrupções fonte:Interrupt names to pin mappings, Nick
Gammon, dispońıvel em: http://gammon.com.au/interrupts.

Como mostra a tabela 3.4 retirada da folha de dados do componente Atmel2560

dispońıvel em [13], e mostrado na figura 3.7.

Tabela 3.4: Especificação da interrupção.

Especificação da interrupção

Endereço Interrupção Função
0000 RESET Reset (Maior prioridade)
0002 INT0 External Interrupt Request 0
0004 INT1 External Interrupt Request 1
0006 INT2 External Interrupt Request 2
0008 INT3 External Interrupt Request 3
000A INT4 External Interrupt Request 4
000C INT5 External Interrupt Request 5(Menor prioridade)

Ainda de acordo com [11], o ATmega não suporta interrupções aninhadas, isto é,

uma interrupção não pode interromper outra em andamento, mesmo que tenha

maior prioridade. Ocorrendo uma ou mais interrupções enquanto uma está sendo tratada,

é formada uma fila de espera que é atendida pela prioridade (prioridades das interrupções

externas mostradas na tabela 3.4). Dessa forma, ao tratar uma interrupção a unidade

central de processamento (CPU- Central Processing Unit) automaticamente desabilita

todas as interrupções, voltando a ligá-las ao final da rotina de interrupção.



Caṕıtulo 3. Fundamentos e componentes 17

Figura 3.7: Diagrama de conexões- Atmel2560 e sua relação com pi-
nos do arduino mega.fonte:Arduino MEGA 2560, Fábio Souza, dispońıvel

em:http://www.embarcados.com.br/arduino-mega-2560/ acessado 18/09/2015 [12]

3.2 Chassi

A construção do protótipo para testes em campo do projeto do sistema de desvio

de obstáculos utilizou o Chassi MSGX001s, escolhido pela sua robustez mecânica pois

possui placa de acŕılico de 3mm e dois motores com caixa de redução (1:48). O Chassi é

mostrado na figura 3.8 e suas especificações dadas pelo fabricante MAGILUX seguem na

tabela 3.5.



Caṕıtulo 3. Fundamentos e componentes 18

Figura 3.8: Chassi.

Tabela 3.5: Especificação do chassi MSGX001 fornecidos pelo fabricante MAGILUX
para operação a 25 ◦C

Especificação do Chassi

Tensão de cada Motor +3 V a +6 V
Corrente do Motor sem Carga 200 mA (6 V) e 150 mA (3 V)

Velocidade do Motor 200 rpm (6 V) e 90 rpm (3 V)
Dimensão Chassi 22 cm x 14,7 cm

Dimensão da Roda 7 cm x 7 cm x 2,6 cm
Espessura da Plataforma em Acŕılico 3 mm

3.2.1 Motores

Figura 3.9: Motores CC.

Os motores de corrente cont́ınua (CC ou do inglês Direct Current - DC), mos-

trados na figura 3.9, são dispositivos que operam através das relações de forças de atração

e repulsão geradas por eletróımãs ou imãs permanentes.

Dada a teoria eletromagnética, quando um condutor, atravessado por corrente

elétrica, é imerso em um campo magnético, surge sobre o condutor uma força mecânica,

dada por:

F = BiL[N ] (3.1)



Caṕıtulo 3. Fundamentos e componentes 19

Juntamente com o efeito da Força Eletromagnética, ocorre a Tensão de Veloci-

dade: quando um condutor imerso em um campo magnético é colocado em movimento,

surge uma tensão induzida em seus terminais.

e = Blv[V ] (3.2)

Os dois processos ocorrem simultaneamente em qualquer processo de conversão

eletromecânica de energia, mas o efeito da Força Eletromagnética prevalece no caso do

Motor.

Estator é a parte fixa da máquina e o rotor é a parte móvel, são separadas por

um entreferro.

Figura 3.10: Esquema interno de um motor

Um elemento muito importante no motor é o comutador, mostrado nas figuras

3.10 e 3.11. Uma vez que o torque surge devido à busca de alinhamento entre os campos

do rotor e do estator torna-se necessário o aparecimento de um desbalanço antes do alinha-

mento. Tal desbalanço é causado pelo comutador que varia continuamente a orientação

do campo produzido pela armadura, não permitindo que os dois campos se alinhem e que

o torque seja nulo.

3.2.2 Baterias

Para a alimentação dos motores, dada sua faixa de tensão, foram testadas algu-

mas pilhas alcalinas, mas não foi obtida corrente suficiente, optando-se então por baterias

LiPo a qual fornece tensão de 7,4V e capacidade de descarga de 2200mAh, mostrada na

figura 3.12.



Caṕıtulo 3. Fundamentos e componentes 20

Figura 3.11: Esquema básico de um motor CC.

Figura 3.12: Bateria de LiPo utilizada

3.3 Shield Adafruit

O controle do sentido do protótipo pelos motores é realizado através do Shi-

eld Motor Adafruit, utilizado pela sua robustez, qualidade de montagem, funcionalidades

obtidas e custo ( ApêndiceB ).

Figura 3.13: Motor shield L293D.



Caṕıtulo 3. Fundamentos e componentes 21

O Motor Shield L293D, como mostrado na figura 3.13 é uma placa composta

por duas pontes H duplas, o que permite o controle de até 4 motores CC, 2 servos ou 2

motores de passo.

A tabela 3.6 mostra a especificação do componente de acordo com o vendedor[14]:

http://www.filipeflop.com/pd-6b643-arduino-motor-shield-l293d

Tabela 3.6: Shield L293D Driver Ponte H

Especificação do Shield L293D Driver Ponte H

Tensão de Operação 4,5-36 V
Corrente de Sáıda 600 mA por canal
Corrente de Pico 1,2 A

3.3.1 Funções- Shield L293D

A biblioteca utilizada para controlar as funções do shield pode ser obtida em[15]:

https://github.com/adafruit/Adafruit-Motor-Shield-library/zipball/master

As principais funções utilizadas:

motor.setSpeed(velocidade): Define a velocidade de rotação do motor, po-

dendo ser um valor entre 0 (motor parado) e 255 (rotação máxima);

motor.run(sentido): Aciona o motor no sentido definido sendo FORWARD

(frente/horário), BACKWARD (sentido contrário/anti- horário), ou para o motor (RE-

LEASE).

É necessário incluir a definição de quais portas os motores estão ligados.

3.3.2 Ponte H- L293D

A ponte H L293D é designada para prover correntes bidirecionais acima de 1 A

para tensões de 4.5 V a 36 V. É uma ponte quadrupla, conforme indica seu sufixo D.

Da teoria de motores, para se controlar um motor CC, é necessário que uma

corrente elétrica passe pelo mesmo no sentido em que se quer o giro, ou seja, uma inversão

no sentido da corrente pode mudar o sentido do giro de um motor.

http://www.filipeflop.com/pd-6b643-arduino-motor-shield-l293d
https://github.com/adafruit/Adafruit-Motor-Shield-library/zipball/master


Caṕıtulo 3. Fundamentos e componentes 22

O circuito de condicionamento que promove essa aplicação é chamado de ponte

H, pelo seu formato semelhante a letra H como mostra a figura 3.14. Seu diagrama de

conexões pode ser visto na figura 3.15 e especificado na tabela 3.7, seu diagrama interno

dado pela folha de dados presente em [16] e representado na figura 3.16

Figura 3.14: Ponte H.

Figura 3.15: Diagrama de ligação- Ponte H.

Tabela 3.7: Especificação de valores máximos para operação da ponte H L293D

Valores Máximos para Operação a 25 ◦C

Tensão de Entrada 7 V
VCC1 36 V

Corrente de Sáıda 600 mA
Corrente de Pico 1.2 A

Temperatura para Armazenamento −65 ◦C a 150 ◦C
Dimensão 38 mm x 17 mm x 11.9 mm

Dissipação Cont́ınua Total a 25 ◦C 2075 mW



Caṕıtulo 3. Fundamentos e componentes 23

Figura 3.16: Diagrama interno- Ponte H L293D, retirado de sua folha de dados dis-
pońıvel em: http://www.ti.com/lit/ds/symlink/l293.pdf.

3.4 Módulo RF

3.4.1 Dados Gerais

O módulo RF 433 MHz, mostrado na figura 3.17, pode ser encontrado em di-

versos modelos. O modelo utilizado (de menor preço) não possui muitas informações

dispońıveis ou mesmo folhas de dados, segue com seu esquemático interno fornecido pelo

vendedor [17] http://www.electrodragon.com/, e mostrado na figura 3.18 e tabela 3.9

como transmissor e na figura 3.19 e tabela 3.8 como receptor.

Figura 3.17: Módulo RF 433 MHz.

http://www.electrodragon.com/


Caṕıtulo 3. Fundamentos e componentes 24

Figura 3.18: Transmissor- diagrama esquemático.

Figura 3.19: Receptor- diagrama esquemático.

Tabela 3.8: Especificação do receptor RF433MHz

Especificação do receptor

Tensão de Operação 5 V
Corrente Estática 4 mA

Frequência de Recepção 433.92 MHZ
Dimensão 30 mm x 14mm x 7 mm

Antena Externa Opcional



Caṕıtulo 3. Fundamentos e componentes 25

Tabela 3.9: Especificação do transmissor RF433MHz

Especificação do transmissor

Tensão de Operação 3-12 V
Corrente de Operação 20-28 mA

Frequência de Operação 433.92 MHz
Temperatura de Operação −10 ◦C ∼ +70 ◦C
Distância de Transmissão 500 m

Tamanho 19mm x 8mm x 8 mm
Modo de Modulação OOK

Potência de Sáıda 40 mW
Antena Externa Opcional

3.4.2 Controle Remoto

O controle remoto baseado em [18] e mostrado na figura 3.20 é composto de um

circuito transmissor e de um circuito receptor. O circuito transmissor é composto de 5

botões com 5 resistores pull-up.

Figura 3.20: Controle remoto para o protótipo.

O pino do arduino que recebe o sinal (Input) sempre receberá +5 V caso o botão

não seja apertado, ficando em alto. Quando o botão for pressionado, o caminho de menor

impedância será em direção ao terra, por isso o pino será ligado ao terra e seu valor será

igual a GND, ficando em estado baixo. Sem o resistor de pull up, mostrado na figura 3.21

com o valor de 10 kΩ entre os 5 V e o terra, haveria um curto-circuito, o qual danificaria

a fonte de alimentação, o resistor impede esse processo pois funciona como um limitador

de corrente.



Caṕıtulo 3. Fundamentos e componentes 26

Figura 3.21: Conexão com resistor pull up.

3.4.3 Bibliotecas

Dado que a biblioteca mais popular VirtualWire utiliza o Timer1 o qual também

é utilizado pela biblioteca servo, dado que o servo motor, controlado por PWM, precisa

de uma precisão maior do que a requerida pelo RF 433MHz, pois seu acionamento dissipa

muita potência quando requerido posicionamento superior ao seu limite mecânico. Assim

sendo, é necessário um estudo mais aprofundado e descritivo sobre a biblioteca utilizada

nesse caso.

Comandos principais:

Transmissão:

RCSwitch nome = RCSwitch(); //Instância a biblioteca

Em setup:

nome.enableTransmit(10);

//Habilita transmiss~ao com o pino digital 10

No laço loop:

nome.send(valor,24);

//Comando para enviar, caso esteja colocado ",

24"especifica número decimal, caso omitido manda-se binário.

Recepção:

RCSwitch nome = RCSwitch(); //Instância a biblioteca

Em setup:



Caṕıtulo 3. Fundamentos e componentes 27

nome.enableReceive(Numero da interrupç~ao);

//Habilita a

recepç~ao no pino correspondente ao número da interrupç~ao externa

No laço loop:

if(nome.available()) //Se mensagem disponı́vel

efetua comandos seguintes de recepç~ao

nome.getReceivedValue(); //Número recebido,

pode se salvar em alguma variável, mostrar com print(), etc.

existem os comandos opcionais: nome.getReceivedBitlenght();

//o qual mostra o tamanho da informaç~ao recebida

nome.getReceivedProtocol();

//o qual mostra o protocólo utilizado na biblioteca.

Tais comandos não foram analisados nesse trabalho.

Para toda a finalização de leitura, se usa o comando antes do fim do loop:

nome.resetAvailable();

3.5 Sensor Ultrassônico

O sensor ultrassônico utilizado é constitúıdo de duas cerâmicas piezoelétricas:

uma atua como transmissora de vibração mecânica (trigger) e a outra como receptora dos

ecos (echo), produzidos por obstáculos situados no caminho da onda transmitida, como

mostra a figura 3.22.

Figura 3.22: Sistema de detecção por ultrassom.



Caṕıtulo 3. Fundamentos e componentes 28

A distância percorrida pela onda emitida será:

D = V ∗ T
2

(3.3)

Onde:

D é a distância do obstáculo ;

V é a velocidade do som no ar;

T é o tempo total, ou seja, o tempo de ida mais o tempo de volta (os quais são iguais).

A velocidade do som varia de acordo com a temperatura, para um ar ideal

suposto com 0% de umidade, pode se definir que com a temperatura variando de 0 ◦C ∼

T ◦C, a velocidade é dada aproximadamente por:

V = (331, 3 + 0, 606 ∗ T )m/s (3.4)

Caso a umidade aumente, a velocidade também aumentará (de umidade 0% a

100% nota se uma variação de cerca de 1,5m/s a pressão e temperatura padrão, mas com o

aumento da temperatura, seu efeito é aumentado como já descrito anteriormente, o dióxido

de carbono causa diminuição na velocidade [19], mas não é constante dada a poluição e

respiração. http://en.wikipedia.org/ acessada em 27/07 as 22horas.

Nesse trabalho será utilizado o sensor HC-S04, mostrado na figura 3.23, e os

dados apresentados na tabela 3.10 baseiam se na folha de dados do fabricante (Cytron

Technologies®).

Figura 3.23: Ultrassom utilizado.

O dispositivo possui quatro pinos, a saber: VCC, Trigger, Echo, GND, os quais

são utilizados para alimentação, geração de pulsos, recepção dos pulsos e referencial terra.

http://en.wikipedia.org


Caṕıtulo 3. Fundamentos e componentes 29

Vale ressaltar que o som é uma onda longitudinal (i.e. se propaga em uma linha

horizontal), caso o obstáculo não esteja perfeitamente na frente do sensor, os sons serão

refletidos em outras direções que não o do receptor echo. Para o sensor em estudo HC

SR04, o obstáculo não pode estar fora da região de 30 ◦ de operação, caso ocorra serão

fornecidos dados incorretos. Sua faixa experimental é de 10 ◦ a 170 ◦.

Tabela 3.10: Especificação do HC SR04

Especificação do Transmissor

Alimentação +5 V
Corrente de Operação 15 mA

Ângulo Efetivo 15 ◦

Faixa de Distância 2 cm – 400 cm
Resolução 0,3 cm

Ângulo de Medição 30 ◦

Duração do Pulso de Trigger 10 µs
Dimensão 45 mm x 20 mm x 15 mm

3.6 Servo

O micro servo motor utilizado neste trabalho tem a função de movimentar o

sensor ultrassônico para sua varredura de informação. Suas dimensões são mostradas na

figura 3.24 e suas especificações na tabela 3.11, ambas fornecidas pelo fabricante micropik.

Figura 3.24: Micro servo motor.Fonte: datasheet, mikropik presente em [20],
http://www.micropik.com/PDF/SG90Servo.pdf acessado em 29/09/2015



Caṕıtulo 3. Fundamentos e componentes 30

Tabela 3.11: Especificação do micro servo motor SG90

Especificação do Micro Servo

Alimentação +5 V
Torque 1,8 kgf·cm
Peso 9 g

Temperatura de Operação 0 ◦C a 55 ◦C
Velocidade de Operação 0,1 s/60 graus

Dimensão 22,2 mm x 11,8 mm x 31 mm

Figura 3.25: PWM - Micro servo motor.Fonte: datasheet, mikropik presente em [20],
http://www.micropik.com/PDF/SG90Servo.pdf acessado em 29/09/2015

3.7 CMPS10

O módulo CMPS10, mostrado na figura 3.26 e com dados de dimensionamento

mostrados na figura 3.27, é uma bússola com tilt compensado, possui um processador

interno de 16 bits, o qual realiza todas as operações matemáticas necessárias para se obter

sáıdas de 0 a 359.9 graus. Seu diagrama de conexões é mostrado na figura 3.28.

Figura 3.26: CMPS10.

Emprega um magnetômetro e um acelerômetro de 3 eixos, medindo assim com

seus três sensores as componentes x, y e z do campo magnético. As medições de pitch e roll



Caṕıtulo 3. Fundamentos e componentes 31

Figura 3.27: Dimensões do componente CMPS10 [22].Fonte:http://www.robot-
electronics.co.uk/htm/cmps10doc.htm

Figura 3.28: Diagrama de conexão- CMPS10.

são usadas para calcular o bearing, produzindo um resultado de 0-3599 o qual representa

valores de 0 a 359.9 graus, que por sua vez indica a direção do deslocamento do protótipo.

Existem três modos de operação para se obter o bearing do módulo, a saber:

Interface serial, interface I2C ou uma sáıda PWM.

Nesse Trabalho será usada a interface I2C, como mostrado na figura 3.28.

3.7.1 Modo I2C

Barramento I2C f́ısico

São somente dois fios, chamados de SDA e SCL, o primeiro é o barramento

de dados, e o segundo é a linha de clock, usada para sincronizar toda a transferência de



Caṕıtulo 3. Fundamentos e componentes 32

dados. Ambos são conectados a todos os dispositivos no mesmo barramento. Como mostra

a figura 3.29.

Figura 3.29: Barramento f́ısico I2C [21].Fonte:http://www.robot-electronics.co.uk/i2c-
tutorial

Mestres e escravos

Os dispositivos no barramento I2C são mestres e escravos, o mestre é sempre

o dispositivo que deriva as linhas de clock (SCL), os escravos são sempre dispositivos

que respondem ao mestre. Um escravo não pode inicializar uma transferência sobre o

barramento I2C, somente o mestre pode, nesse trabalho, o mestre será o arduino e o

escravo será o componente CMPS10. As transferências são sempre controladas pelo mestre,

arduino no caso.

Protocolo f́ısico I2C

Quando o mestre deseja conversar com o escravo, ele começa com uma sequência

no barramento I2C. A sequência de ińıcio também chamada de start sequence é tão impor-

tante quanto a sequência de parada ”stop sequence”, são sequências especiais no sentido

que são os únicos momentos que SDA pode mudar enquanto SCL está em alto. Enquanto

dados estiverem sendo transferidos, SDA deve permanecer estável e não mudar enquanto

SCL estiver em alto. A figura 3.30 ilustra o funcionamento dos comandos start sequence

e stop sequence.

Figura 3.30: Ilustração: start sequence e stop sequence.Fonte:http://www.robot-
electronics.co.uk/i2c-tutorial



Caṕıtulo 3. Fundamentos e componentes 33

Os dados são transferidos em sequências de 8 bits, que são colocados na linha

SDA começando com o bit mais significativo (MSB - Most Significant Bit). O clock SCL

é então pulsado alto e depois baixo. Para cada 8 bits transferidos, o receptor manda de

volta um bit de confirmação, então existem 9 pulsos de clock para cada transferência de

8 bits de dados. Se o bit de confirmação for baixo, indica que o escravo recebeu os dados

e está pronto para aceitar outro byte, se enviar um bit alto, isso significa que o escravo

não pode aceitar outros dados e o mestre deve terminar a transferência mandando uma

sequência de parada (stop sequence).

3.8 DHT11

De modo a formalizar os testes de operação, foi adotado o sensor DHT11 de

temperatura e umidade, devido a seu baixo custo e relevante precisão, mostrado na figura

3.31, que usa um sensor capacitivo para umidade e um termistor NTC para medir a

temperatura do ar circundante.

Figura 3.31: DHT11.

De acordo com a folha de dados do fabricante SUNROM Technologies®, é

dada a tabela 3.12 com dados de resolução, faixa de operação e valores comuns de seus

parâmetros.

Tabela 3.12: Especificação do DHT11

Especificação do DHT11

Faixa de operação 20 a 90% Umidade e 0 ◦C a 50 ◦C Temperatura
Precisão para Umidade 5% UR

Precisão para Temperatura 2 ◦C
Numero de Pinos 4 pinos

Alimentação 5 V
Corrente em Operação 0,5 mA
Corrente em Stand by 100 µA

Dimensão 12 mm x 15.5 mm x 5.5 mm



Caṕıtulo 3. Fundamentos e componentes 34

3.9 Buzzer

O Buzzer Arduino, mostrado na figura 3.32, pode ser conectado à porta de I /

O digital para a emissão de beeps sonoros. Quando a sáıda é baixa, buzzer reproduzirá

um som longo. Se for ligado a uma modulação de largura de pulso analógico (PWM) de

sáıda, o sinal sonoro pode produzir uma variedade de tonalidades.

Figura 3.32: Buzzer.

Tabela 3.13: Especificação do Buzzer

Especificação do Buzzer

Corrente ≤ 42 mA
Som de Sáıda ≥85 DB

Frequência de Ressonância 2000 Hz a 2600 Hz
Temperatura de Operação −20 ◦C ∼ +45 ◦C

Temperatura de Armazenamento −20 ◦C ∼ +60 ◦C
Sinalizador Piezoelétrico 12 mm

Dimensão 33 mm x 14 mm

3.10 LCD

Existem no mercado diversos tipos de módulos LCD (Liquid Crystal Display),

os quais são classificados essencialmente pelo número de colunas e linhas e tipo de luz de

fundo, são utilizados como interface para observar alguma informação que acontece em um

sistema eletrônico. Ressalta-se o fato de que para os módulos caracteŕısticos, de acordo

com a variação de colunas e linhas, também variam se o número dos seus pinos terminais,

neste trabalho será utilizado um display caracteŕıstico de 16 colunas e 2 linhas (16x2),

conforme mostrado na figura 3.33 e especificado na tabela 3.14.



Caṕıtulo 3. Fundamentos e componentes 35

Figura 3.33: Display de LCD (16x2).

Tabela 3.14: Pinos e descrição de funcionamento do LCD de 16x2 utilizado.

Pinos

1 Alimentação GND
2 Alimentação VCC
3 Tensão para Ajuste de Contraste V0
4 Seleção de Dado(1) e Instrução(0) RS
5 Seleção de Leitura (1) e Escrita(0) R/W
6 Seleção de Habilitação, sendo Habilitado (1) Desabilitado (0) E
7 Barramento de Dados-LSB D0
8 Barramento de Dados D1
9 Barramento de Dados D2
10 Barramento de Dados D3
11 Barramento de Dados D4
12 Barramento de Dados D5
13 Barramento de Dados D6
14 Barramento de Dados-MSB D7
15 Anodo A
16 Catodo K



Caṕıtulo 3. Fundamentos e componentes 36



Caṕıtulo 4

Análise de Resultados

4.1 Componentes

4.1.1 Sensor Ultrassônico

O subsistema ultrassônico a ser testado é composto de um arduino UNO, dois

sensores ultrassônicos, um display LCD e uma mini protoboard, mostrados na figura 4.1.

Figura 4.1: Sistema para a realização de testes para o sensor ultrassônico.

.

37



Caṕıtulo 4. Análise de Resultados 38

Testes para Tipos de Objetos

Para um ambiente fechado (com correntes de ar despreźıveis) e realizados com

variação temporal de 3 horas, com variação de temperatura menor que 3 ◦C, foram reali-

zados testes para objetos metálicos, emborrachados e não uniformes, como mostra a figura

4.2.

Figura 4.2: Aparatos.

Suas distâncias foram variadas com aux́ılio de régua e fita métrica em solo plano.

O valor de distância retornado pelo sensor é comparado com o valor medido com

régua e fita métrica em todos os casos.

4.1.1.1 Objetos metálicos

Panela Grande

Testes de distância realizados com uma panela grande são indicados na tabela

4.1

Espelho

Testes de distância realizados com espelho são indicados na tabela 4.2

4.1.1.2 Objetos emborrachados e não uniforme

Chinelo



Caṕıtulo 4. Análise de Resultados 39

Tabela 4.1: Teste do sensor ultrassônico para operação a 29 ◦C

Objeto metálico

Distância medida com régua e fita métrica Distância retornada pelo sensor
0,1 cm 3300 cm
0,5 cm 12 cm
1 cm 9 cm

1,5 cm 4 cm
2 cm 2 cm
3 cm 3 cm
30 cm 30 cm
60 cm 60 cm
90 cm 90 cm

Tabela 4.2: Teste do sensor ultrassônico para operação a 28 ◦C

Espelho

Distância medida com régua e fita métrica Distância retornada pelo sensor
0,1 cm 15 cm
0,5 cm 5 cm
1 cm 4 cm
4 cm 4 cm
5 cm 5 cm
30 cm 30 cm
58 cm 58 cm
70 cm 70 cm
90 cm 90 cm

Testes de distância realizados com um chinelo são indicados na tabela 4.3

Tabela 4.3: Teste do sensor ultrassônico para operação a 29 ◦C

Chinelo

Distância medida com régua e fita métrica Distância retornada pelo sensor
0,1 cm 30 cm
2 cm 5 cm
4 cm 4 cm
5 cm 5 cm
30 cm 30 cm
58 cm 58 cm
70 cm 70 cm
78 cm 80 cm

4.1.1.3 Testes com Isopor

Testes de distância realizados com Isopor são indicados na tabela 4.4



Caṕıtulo 4. Análise de Resultados 40

Tabela 4.4: Teste do sensor ultrassônico para operação a 28 ◦C

Isopor

Distância medida com régua e fita métrica Distância retornada pelo sensor
30 cm 29 cm
31 cm 30 cm
60 cm 58 cm
70 cm 68 cm
80 cm 79 cm
90 cm 90 cm

4.1.1.4 Pedra não uniforme

Pedra

Para a pedra mostrada na figura 4.2, o desempenho foi satisfatório para operação

do sistema, a face mais linear do objeto mais próxima ao sensor é medida primeiro como

esperado. Sendo os valores mais precisos dentre todos os testes e obtidos a partir de dois

cent́ımetros.

4.1.1.5 Testes com corrente de ar

Sons são ondas mecânicas e utilizam o ar como meio de transporte, visando

analisar a influência de variações de fluxo de ar na medida do sensor, foi repetido o teste

anterior como objeto não uniforme (pedra) e com objeto metálico (panela).

Utilizando-se um ventilador da marca Mondial®, modelo NV 45 6P, em am-

biente fechado a 27 ◦C, observou-se que a distância medida aumentava com relação a

distância real, esse valor entretanto diminuiu de acordo com o tamanho dos pulsos emiti-

dos pelo sensor ultrassônico; para precisão de 1 cm (usada pela biblioteca Ultrassonic) o

valor a ser somado correspondia a 1 cm, para 0,5 cm tal valor caia ou mesmo 0,3 cm que é

a resolução do sensor. Para o projeto em questão mostra-se que a influência de ventos para

ambientes externos não é relevante. Excetuando-se ventos mais fortes do que os fornecidos

pela máxima velocidade de rotação do ventilador utilizado.



Caṕıtulo 4. Análise de Resultados 41

4.1.2 DHT11

O sensor de temperatura e umidade DHT11 possui suas condições ideais de

operação e suas limitações, como todo o componente utilizado neste trabalho. Assim,

deve-se evitar que opere acima de suas especificações.

Figura 4.3: Sistema para a realização de testes para o sensor DHT11, vista superior.

Afim de testar seu funcionamento foram realizados testes em ambiente aberto,

com seu esquemático mostrado nas figuras 4.3 e 4.4.

Seu código de teste encontra-se no Apêndice A. Os resultados obtidos são mos-

trados na figura 4.5.

Figura 4.4: Sistema para a realização de testes para o sensor DHT11, vista frontal.

Apenas a ńıvel de comparação de resultados, foram observados os valores forne-

cidos pelo sistema de medida dados por ”climatempo”[23], para a região de Campinas, não

é especificada a região exata que o aparato de medidas ”climatempo”se encontra, e suas

informações de temperatura e umidade são mostrados na figura 4.6. Apresentando quatro

graus Celsius de diferença em temperatura e 13% em umidade, com relação ao sensor sob

teste presente em Barão Geraldo (Bairro de Campinas).



Caṕıtulo 4. Análise de Resultados 42

Figura 4.5: [Valores recebidos para teste do sensor DHT11.

Figura 4.6: Valores esperados para teste com sensor de temperatura DHT11.

4.1.3 CMPS10

Em primeira instância, o deslocamento relativo a um referencial previamente

estabelecido será considerado para o mapeamento de rota no terreno; deste modo, será

utilizada a funcionalidade de bearing da bússola digital CMPS10. Para seus testes, foi

utilizado um aplicativo de bússola para celular chamado ”Bússola”como referência, e o

deslocamento angular obtido pelo CMPS10 foi medido com variação de 1 a 3 graus relativo

aos valores do aplicativo.



Caṕıtulo 4. Análise de Resultados 43

O circuito montado pode ser visto na figura 4.7 e o aplicativo nas figuras 4.8 e

4.9.

Figura 4.7: Sistema para a realização de testes para a bússola CMPS10.

Figura 4.8: Programa utilizado para comparação - utiliza GPS.

Figura 4.9: Śımbolo e nome do programa utilizado para comparação.

4.2 Sistema

Os testes realizados para o sistema consistem da análise do controle remoto, da

direção do desvio e a direção da correção. O controle remoto transmitiu as informações de

comando em 433 MHz, sendo a interrupção externa do transmissor desativada no receptor



Caṕıtulo 4. Análise de Resultados 44

no modo automático. O sistema automático de desvio e correção foi testado integralmente,

ou seja, sem a separação das atividades de desvio e correção e os testes são mostrados nas

figuras 4.10 e 4.11. Ressalta-se que uma sequência foi adotada para os testes: O protótipo

tem o deslocamento dado pelo controle manual até o aparecimento do obstáculo a frente,

quando muda o controle para automático, seus motores são parados, calcula-se a distância

dispońıvel para trajeto a esquerda, calcula-se a distância dispońıvel para trajeto a frente

(de modo a verificar se o obstáculo ainda existe), calcula-se a distância dispońıvel para

trajeto a direita(caso exista obstáculo a direita e não exista obstáculo mais próximo a

esquerda, o protótipo efetua o desvio à esquerda, caso contrário, seu desvio será a direita),

verifica-se a extensão do obstáculo e caso tenha acabado inicia-se a correção e então a rota

anterior ao último desvio é retornada; faz-se então uma busca no buffer de todas as rotas

anteriores e são feitas correções das rotas anteriores até que a rota original seja alcançada

e a pilha do buffer não apresente componentes, o sistema reinicia.

Informações gerais de desempenho estão presentes no Apêndice C.

Figura 4.10: Teste de desvio à esquerda com correção de rota.



Caṕıtulo 4. Análise de Resultados 45

Figura 4.11: Teste de desvio à direita com correção de rota.



Caṕıtulo 4. Análise de Resultados 46



Caṕıtulo 5

Conclusões e Trabalhos Futuros

5.1 Conclusões

O sistema de desvio de obstáculos estudado utilizou um sensor ultrassônico para

percepção de obstáculos, o qual apresentou bons resultados nos testes realizados, mostrados

na seção 4.1.1. O Chassi utilizado pode mover-se para a frente, para trás e girar para

a direita e para a esquerda, com dois motores CC e uma roda ”boba”, ou seja, sem

motor. A comunicação por RF foi bem sucedida, permitindo ao controle remoto operação

simultânea com o servo motor, usando a biblioteca RC Switch com o timer 2. De um

modo geral foram estudadas as condições de operação dos sensores, e interligação dos

diversos componentes via programação arduino e a construção mecânica do protótipo. Seu

custo final bem como de cada componente pode ser visto no Apêndice B e suas condições de

operação no Apêndice C. Seus códigos estão presentes no Apêndice A. Algumas dificuldades

surgiram como a demora de entrega das peças importadas, as quais levaram cerca de 2

meses para chegar ao Brasil, com tempo mı́nimo de 1 mês e máximo de 4 meses, e o

mau funcionamento de algumas delas. O trabalho realizado permitiu a aplicação dos

conhecimentos adquiridos durante o curso de Engenharia Elétrica em eletrônica analógica,

controle, programação de microcontroladores e transdutores.

47



Caṕıtulo 5. Conclusões e Trabalhos Futuros 48

5.2 Trabalhos Futuros

Inúmeras aplicações podem ser obtidas para um sistema com a capacidade de

desvio de obstáculos, visando a área de mobilidade urbana, monitoramento de plantações,

competições robóticas, dentre outras.

Para aplicações em campo aberto uma das principais restrições do sistema em

questão é a operação sob chuva; visando reduzir essa limitação, pode-se estudar novos com-

ponentes resistentes a chuva mantendo-se a mesma lógica adotada, e também construções

de proteção mecânica para atingir, por exemplo, o objetivo de um sistema de desvio de

obstáculos para monitoramento de plantações. Ainda nesse sistema, pode-se integrar o

ramo já citado de IoT e através da internet mandar as informações monitoradas de tem-

peratura, solo, umidade, resistividade do solo, ou quaisquer outras que possam ser obtidas

com sensores apropriados, para um ponto de controle em computador.

Para melhorar o desempenho dos subsistemas que utilizam timer para seu fun-

cionamento e resolução, pode-se explorar outros timers do microcontrolador utilizado,

construindo, se necessário, novas bibliotecas para o servo motor ou controle RF.

Caso o interesse seja robótica, deve-se melhorar a robustez mecânica, controlar

a velocidade de acordo com o objetivo desejado, estudar o consumo de energia do sistema,

etc.

Para aplicações em mobilidade urbana pode-se, como já citado, tornar o sistema

insenśıvel a chuva e além disso usar IoT como um controle de informação do deslocamento

do objeto móvel através de GPS, deve-se então aplicar uma eletrônica de potência de

acordo com o motor utilizado, bem como realização de testes mais aprofundados.



Apêndice A

Códigos

A.1 Testes

A.1.1 HC SR04

//Programa : Medidor de distancia com HC-SR04

//

//O circuito:

// * LCD RS pino conectado ao pino 12

//* LCD Enable pino conectado ao pino 11

//* LCD D4 pino conectado ao pino 5

//* LCD D5 pino conectado ao pino 4

// * LCD D6 pino conectado ao pino 3

// * LCD D7 pino conectado ao pino 2

// * LCD R/W pino conectado ao pino GND

// Potenciometro de 10k conectado ao

// pino V0 para ajuste de contraste

#include < Ultrasonic.h > //Inclui a biblioteca Ultrasonic

#include < LiquidCrystal.h > //Inclui a biblioteca LCD

49



Apêndice A. Códigos 50

//Define o pino do Arduino a ser utilizado com o pino Trigger do sensor

#define trigger 13

//Define o pino do Arduino a ser utilizado com o pino Echo do sensor

#define echo 10

//Inicializa o sensor ultrasonico

Ultrasonic ultrasonic(trigger, echo);

//Define os pinos que ser~ao ligados ao LCD

//e os inicializa na ordem:RS,E,D4-7

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()

{

Serial.begin(9600);

//Serial.begin(9600); // inicializa a comunicaç~ao serial

pinMode(trigger, OUTPUT); // define o pino trigger como saı́da.

pinMode(echo, INPUT); // define o pino echo como entrada.

lcd.begin(16,2); //Inicializa LCD de 16 colunas e 2 linhas

lcd.clear(); //Limpa o LCD

}

// Loop pincipal do Arduino

void loop() {

float centimet;

//Serial.print( ultrasonic.Ranging(CM) );

//exibido no computador qual a mediç~ao do sensor. Essa funç~ao faz todo os cálculos

e fornece as respostas

centimet=ultrasonic.Ranging(CM);



Apêndice A. Códigos 51

//Apresenta os dados, em centı́metros no LCD

lcd.setCursor(0,0);

lcd.print("Cent.: ");

lcd.print();

lcd.setCursor(7,0);

lcd.print(centimet);

lcd.setCursor(0,1);

lcd.print("cm ");

Serial.print("Cent: ");

Serial.println(centimet);

delay(1000);

}

A.1.2 DHT

O código seguinte é baseado na versão dispońıvel em http://blog.filipeflop.com/sensores/

de filipe flop. E será utilizado para controle de temperatura.

# include "DHT.h"

# define DHTPIN A1 // pino que estamos conectado

# define DHTTYPE DHT11 // DHT 11

// Conecte pino 1 do sensor (esquerda) ao +5V

// Conecte pino 2 do sensor ao pino de dados definido em seu Arduino

// Conecte pino 4 do sensor ao GND

// Conecte o resistor de 10K entre pin 2 (dados)

// e ao pino 1 (VCC) do sensor

DHT dht(DHTPIN, DHTTYPE);

http://http://blog.filipeflop.com/sensores/monitorando-temperatura-e-umidade-com-o-sensor-dht11.html


Apêndice A. Códigos 52

void setup()

{

Serial.begin(9600);

Serial.println("Teste DHT");

dht.begin();

}

void loop()

{

// A leitura da temperatura e umidade pode levar 250ms!

// O atraso do sensor pode chegar a 2 segundos.

float h = dht.readHumidity();

float t = dht.readTemperature();

// testa se retorno é valido, caso contrário algo está errado.

if (isnan(t) || isnan(h))

{

Serial.println("Falha na leitura");

}

else

{

Serial.print("Umidade: ");

Serial.print(h);

Serial.print("% ");

Serial.print("Temperatura: ");

Serial.print(t);

Serial.println("*C");

}

}



Apêndice A. Códigos 53

A.1.3 CMPS10

Código para mapeamento de terreno: /*

Autor.....: Erik Bartmann

URL.......: www.erik-bartmann.de

Version...: 1.0.1

Date......: 10.08.2014

Processing: http://www.oreilly.de/catalog/processingger/

*/

#include < Wire.h > // Biblioteca I2C

#define CMPS10Addr 0x60 // Endereço do CMPS10

void setup()

{

Serial.begin(9600);

Wire.begin(); // Conecta I2C

}

void loop()

{

byte byteHigh, byteLow; // byteHigh / byteLow para Bearing

char pitch, roll; // Pitch e Roll

int bearing; // Bearing

Wire.beginTransmission(CMPS10Addr); // Comunicaç~ao com CMPS10

Wire.write(2); // Start Register (2) método de gravaç~ao envia o valor 2 para

o módulo, o que significa que queremos recuperar os dados de registo 2

Wire.endTransmission();//método endTransmission termina a transmiss~ao iniciada.

Wire.requestFrom(CMPS10Addr , 4); // Requere 4 bytes

while (Wire.available() < 4); // Espera 4 bytes

byteHigh = Wire.read(); // High-Byte para cálculo do Bearing



Apêndice A. Códigos 54

byteLow = Wire.read(); // Low-Byte para cálculo do Bearing

pitch = Wire.read(); // Byte para Pitch

roll = Wire.read(); // Byte para Roll

bearing = ((byteHigh << 8) + byteLow) / 10; // Calculo do Bearing

Serial.print(bearing);

Serial.println(";");

delay(2000);

}

A.2 Sistema Automático

// inclus~ao de bibliotecas.

# include< Servo.h > // inclui biblioteca de manipulaç~ao de servos motores.

# include< Ultrasonic.h > // inclui biblioteca de manipulaç~ao do sensor ultrassônico.

# include< AFMotor.h > // inclui biblioteca de manipulaç~ao de motores DCs.

//definindo os pinos

# define HC SR04 TRIGGER A2 // Define o pino do Trigger do sensor ultrassônico

no pino ANALÓGICO A2

# define HC SR04 ECHO A3 // Define o pino do Echo do sensor ultrassônico no

pino ANALÓGICO A3

# define BUZZER A0 // Define o pino do buzzer (Som) no pino ANALÓGICO A0

AF DCMotor motor1(3); // Define o motor1 ligado ao M3

AF DCMotor motor2(4); // Define o motor2 ligado ao M4

Servo servoUltraSonico; // nomeando o servo motor

int distanciaCm = 0; //variável do valor da distância

int correcao = 0;



Apêndice A. Códigos 55

int manual=1;

// executado na inicializaç~ao do Arduino

void setup()

{ Serial.begin(9600); // inicializa a comunicaç~ao serial para mostrar dados

//configuraç~oes do servos motores

servoUltraSonico.attach(10); // Define o mini servo motor ligado no pino 10.

pinMode(HC SR04 TRIGGER, OUTPUT); // Define o trigger do sensor para enviar

o sinal

pinMode(HC SR04 ECHO, INPUT); // Define o Echo do sensor para receber o sinal

pinMode(BUZZER, OUTPUT); // Define o pino do buzzer como saı́da

motor1.setSpeed(190); // Define a velocidade para os motores 1.A velocidade

máxima é 255

motor2.setSpeed(190); // Define a velocidade para os motores 2. A velocidade

máxima é 255

servoUltraSonico.write(90); // O servo do sensor se inicia a 90 graus (meio)

Parado;

}

// Funç~ao principal do Arduino

void loop()

{

if (manual == 1)

{

// recebeInputUsuario()

if (!andar()) //retorna 0 deu falha, automatico!

{

manual = 0;

}

}

else

{

desvioCorrigido();//mudar pra underline



Apêndice A. Códigos 56

}

}

// Funç~ao para chamar outras funç~oes e definir o que o robô fará

int andar() {

reposicionaServoSonar();

int distancia = lerSonar(); // Ler o sensor de distância

Serial.print("distancia: "); // Exibe no serial

Serial.println(distancia);

if (distancia < 25) { Parado(); return 0; //achaDirecao(); } else {

Frente();

manual=1;

return 1;

}

}

// Funç~ao para fazer o robô andar para frente

void Frente()

{

Serial.println("frente ");

motor1.run(FORWARD); // Roda vai para frente

motor2.run(FORWARD); // Roda vai para frente

delay(500);

}

// Funç~ao para ler e calcular a distância do sensor ultrassônico

int lerSonar() {

digitalWrite(HC SR04 TRIGGER, LOW); // Desliga a emis~ao do som

delayMicroseconds(4); // Aguarda 4 segundos

digitalWrite(HC SR04 TRIGGER, HIGH); // Liga a trasmis~ao de som

delayMicroseconds(20); // Continua emitindo o som durante 20 segundos

digitalWrite(HC SR04 TRIGGER, LOW); // Desliga a emis~ao do som

delayMicroseconds(10); // Aguarda 10 segundos para poder receber o som

long pulse us = pulseIn(HC SR04 ECHO, HIGH); // Liga o recebedor e calcula quandos

pulsos ele recebeu

distanciaCm = pulse us / 59; // Calcula a distaâcia em CM

delay(300);



Apêndice A. Códigos 57

return distanciaCm; // Retorna a distância

}

// Funç~ao para calcular a distância do centro

int calcularDistanciaCentro()

{

servoUltraSonico.write(90);

delay(200);

int leituraDoSonar = lerSonar(); // Ler sensor de distância

delay(600);

leituraDoSonar = lerSonar();

delay(600);

Serial.print("Distancia Centro: "); // Exibe no serial

Serial.println(leituraDoSonar);

return leituraDoSonar; // Retorna a distância

}

// Funç~ao para calcular a distância da direita

int calcularDistanciaDireita()

{

servoUltraSonico.write(30);

delay(200);

int leituraDoSonar = lerSonar();

delay(600);

leituraDoSonar = lerSonar();

delay(600);

Serial.print("Distancia Direita: ");

Serial.println(leituraDoSonar);

return leituraDoSonar;

}

// Funç~ao para calcular a distância da esquerda

int calcularDistanciaEsquerda()

{

servoUltraSonico.write(150);

delay(200);

int leituraDoSonar = lerSonar();



Apêndice A. Códigos 58

delay(600);

leituraDoSonar = lerSonar();

delay(600);

Serial.print("Distancia Esquerda: ");

Serial.println(leituraDoSonar);

return leituraDoSonar;

}

// Funç~ao para pegar as distâncias lidas e calcular qual a melhor distancia

char calculaMelhorDistancia()

{

int esquerda = calcularDistanciaEsquerda();

int centro = calcularDistanciaCentro();

int direita = calcularDistanciaDireita();

reposicionaServoSonar();

int maiorDistancia = 0;

char melhorDistancia = ’0’;

if (centro > direita && centro > esquerda)

{

melhorDistancia = ’c’;

maiorDistancia = centro;

} else if (direita > centro && direita > esquerda) {

melhorDistancia = ’d’;

maiorDistancia = direita;

} else if (esquerda > centro && esquerda > direita){

melhorDistancia = ’e’;

maiorDistancia = esquerda;

}

if (maiorDistancia <= 25) {

Re();

achaDirecao(); //permanece a espera caso obstaculo seja retirado

}

reposicionaServoSonar();

return melhorDistancia;

}



Apêndice A. Códigos 59

// Funç~ao que faz o robô virar à direita

void Direita()

{

Serial.println("Para a direita ");

motor1.run(FORWARD); // Roda vai para frente

motor2.run(BACKWARD); // Roda vai para trás

delay(100);

}

// Funç~ao que faz o robô virar à esquerda

void Esquerda()

{

Serial.println("Para a esquerda ");

motor1.run(BACKWARD); // Roda vai para trás

motor2.run(FORWARD); // Roda vai para frente

delay(100);

}

// Funç~ao para fazer o carro parar

void Parado()

{

Serial.println("Parar ");

motor1.run(RELEASE); // Motor para

motor2.run(RELEASE);

}

// Funç~ao que faz o robô andar para trás e emite som quando ele dá ré

void Re()

{

Serial.println("ré ");

tone(A0, 300, 300); // Configuraç~ao do tom do som

digitalWrite(BUZZER, HIGH); // Liga o som

delay(500); // Aguarda durante 250 milesecundos

digitalWrite(BUZZER, LOW); // Desliga o som

delay(50); // Aguarda durante 250 milesecundos

motor1.run(BACKWARD); // Roda vai para trás

motor2.run(BACKWARD); // Roda vai para trás



Apêndice A. Códigos 60

delay(500);

tone(A0, 300, 300);

digitalWrite(BUZZER, HIGH); // Liga o som

delay(500); // Aguarda durante 250 milesecundos

digitalWrite(BUZZER, LOW); // Desliga o som

delay(50); // Aguarda durante 250 milesecundos

Parado();

}

// Funç~ao para colocar o carrinho na melhor distância, isto é, girá-lo para

a melhor distância

int achaDirecao()

{

int dir = 0;

char melhorDist = calculaMelhorDistancia();

Serial.print("melhor Distancia: ");

Serial.println(melhorDist);

if (melhorDist == ’c’)

{

andar();

} else if (melhorDist == ’d’) {

dir = dir + 1;

Direita();

} else if (melhorDist == ’e’) {

dir = dir - 1;

Esquerda();

} else {

Re();

}

reposicionaServoSonar();

return dir;

}

// Funç~ao para deixar o sensor "olho"do robô no centro

void reposicionaServoSonar()

{



Apêndice A. Códigos 61

servoUltraSonico.write(90);

delay(200);

}

void decisao()

{

if (correcao < 0)

{

servoUltraSonico.write(30);

int distancia = lerSonar();

if (distancia > 30)

{

Direita();

correcao = correcao + 1;

}

else {

Frente();

desvioCorrigido();

}

}

if (correcao > 0) {

servoUltraSonico.write(150);

int distancia = lerSonar();

if (distancia > 30) {

Esquerda();

correcao = correcao - 1;

}

else {

Frente();

desvioCorrigido();

}

}

}

void desvioCorrigido ()

{



Apêndice A. Códigos 62

while (1)

{

if (correcao < -2 || correcao > 2)

{

while (1){

Parado();

}

}

if (!andar())

{

int deslocamento = achaDirecao();

correcao = correcao + deslocamento;

}

else

{

decisao();

if (correcao == 0)

{

manual=1;

break;

}

}

}

}

A.3 Sistema completo com controle do usuário e autonomia

para desvio de obstáculo

//****************************************

//inclus~ao das Bibliotecas

//****************************************

#include< AFMotor.h > // Inclui biblioteca de manipulaç~ao de motores DCs.



Apêndice A. Códigos 63

#include < RCSwitch.h > //Inclui biblioteca de manipulaç~ao de módulos RF

433 MHz.

#include < Servo.h > //Inclui biblioteca de manipulaç~ao de servos motores.

#include< Ultrasonic.h > //Inclui biblioteca de manipulaç~ao do sensor ultrassônico.

#define HC SR04 TRIGGER A8 // Define o pino do Trigger do sensor ultrassônico

no pino ANALÓGICO A8

#define HC SR04 ECHO A9 // Define o pino do Echo do sensor ultrassônico no pino

ANALÓGICO A9

//Direcoes

#define ANG ESQUERDA 155

#define ANG DIREITA 25

#define ANG CENTRO 90

#define DISTANCIA MINIMA 40

Servo servoUltraSonico; // Nomeando o servo motor.

int distanciaCm = 0; //Variável do valor da distância.

int correcao = 0; //Variável do valor da correç~ao (quando zero n~ao existe correç~ao

a ser feita).

int manual = 1; //Variável que indica o controle manual.

int ande = 10; //Variável que retorna o valor até o obstáculo.

RCSwitch mySwitch = RCSwitch(); //Instância a biblioteca RCSwirch.

AF DCMotor motor1(4); // Define o motor1 ligado ao M4

AF DCMotor motor2(3); // Define o motor2 ligado ao M3

void setup() {

Serial.begin(9600); //Inicia a serial.

mySwitch.enableReceive(3); // Recebe na interrupç~ao 3, que corresponde ao pino

D20.



Apêndice A. Códigos 64

noInterrupts(); //Desabilita interrupç~oes.

pinMode(HC SR04 TRIGGER, OUTPUT); // Define o trigger do sensor para

enviar o sinal.

pinMode(HC SR04 ECHO, INPUT); // Define o Echo do sensor para receber o sinal.

//Buzzer:

pinMode(51, OUTPUT); //Pino do buzzer.

//Velocidade dos motores

motor1.setSpeed(200); // Define a velocidade para o motor 1.A velocidade máxima

é 255.

motor2.setSpeed(210); // Define a velocidade para o motor 2. A velocidade máxima

é 255.

//configuraç~oes do servos motores

servoUltraSonico.attach(10); // Define o mini servo motor ligado no pino 10.

servoUltraSonico.write(90); // O servo do sensor se inicia a 90 graus (meio).

Parado; //Inicializa o protótipo parado.

}

//****************************************

//FUNCOES MOTOR

//****************************************

// Funç~ao para fazer o robô andar para frente

void Frente()

{

Serial.println("frente ");

motor1.run(FORWARD); // Roda vai para frente

motor2.run(FORWARD); // Roda vai para frente

delay(1000);

Parado();



Apêndice A. Códigos 65

}

// Funç~ao para fazer o robô ficar parado

void Parado()

{

Serial.println("Parar ");

motor1.run(RELEASE); // Motor para

motor2.run(RELEASE);

}

// Funç~ao que faz o robô andar para trás

void Re()

{

Serial.println("ré ");

motor1.run(BACKWARD); // Roda vai para trás

motor2.run(BACKWARD); // Roda vai para trás

delay(1000);

Parado();

}

// Funç~ao que faz o robô virar à direita

void Direita()

{

Serial.println("VIREI A direita ");

motor1.run(FORWARD); // Roda vai para frente

motor2.run(RELEASE); // Roda vai para trás

delay(1000);

Parado();

}

// Funç~ao que faz o robô virar à esquerda

void Esquerda()

{



Apêndice A. Códigos 66

Serial.println("VIREI A esquerda ");

motor1.run(RELEASE); // Roda vai para trás

motor2.run(FORWARD); // Roda vai para frente

delay(1000);

Parado();

}

//****************************************

//Tratamento interrupcao

//****************************************

void Tratamento() {

if (mySwitch.available()) {

int value = mySwitch.getReceivedValue();

if (value == 0) {

Serial.print("Unknown encoding");

} else {

Serial.print("Received ");

Serial.print( mySwitch.getReceivedValue() );

Serial.print("/ ");

if (value == 1) //Se o bot~ao 1 é pressionado, i.e. bot~ao forward, frente

{

Frente();

Serial.println("= forward");

}



Apêndice A. Códigos 67

if (value == 2) //Se o bot~ao 2 é pressionado, i.e. bot~ao backward,

atrás

{

Re();

Serial.println("= backward");

}

if (value == 3) //Se o bot~ao 3 é pressionado, i.e. bot~ao para virar

a Esquerda, esquerda

{

Esquerda();

Serial.println("= left");

}

if (value == 4) ////Se o bot~ao 4 é pressionado, i.e. bot~ao para virar

a Direita, Direita

{ Direita();

Serial.println("= right");

}

if (value == 5)//Se o bot~ao 5 é pressionado, i.e. bot~ao stopped, parar

{ Parado();

Serial.println("= stopped");

}

}

mySwitch.resetAvailable();

}

}



Apêndice A. Códigos 68

//****************************************

//Modos de operacao

//****************************************

void modoManual() { mySwitch.enableReceive(3); // Recebe na interrupç~ao 3 que

é referente ao pino D20.

interrupts(); //Liga interrupç~oes.

manual = 1; //Liga a flag de interrupç~oes.

Serial.println("Modo Manual");

}

void modoAutomatico() {

manual = 0; //Desliga a flag de controle manual passando para automático.

Serial.println("Modo Automatico");

}

//****************************************

//Funç~ao para direcionar o "olho"do robô

//****************************************

void reposicionaServoSonar(int angulo) { if (angulo > 15 && angulo

< 160) {

servoUltraSonico.write(angulo); //Move o servo para o ângulo desejado.

delay(200);

}

}

//****************************************

//Leitura do sonar a cada 300ms

//****************************************

// Funç~ao para ler e calcular a distância do sensor ultrassônico

int lerSonar() {

digitalWrite(HC SR04 TRIGGER, LOW); // Desliga a emis~ao do som



Apêndice A. Códigos 69

delayMicroseconds(4);

digitalWrite(HC SR04 TRIGGER, HIGH); // Liga a trasmis~ao de som

delayMicroseconds(20);

digitalWrite(HC SR04 TRIGGER, LOW); // Desliga a emis~ao do som

delayMicroseconds(10);

long pulse us = pulseIn(HC SR04 ECHO, HIGH); // Liga o recebedor e

calcula quandos pulsos ele recebeu

distanciaCm = pulse us / 59; // Calcula a distancia em CM

delay(300);

return distanciaCm; // Retorna a distância

}

//****************************************

//Funç~ao que aponta se existe obstáculos a frente

//****************************************

// Funç~ao para chamar outras funç~oes e definir o que o robô fará

int andar() {

reposicionaServoSonar(ANG CENTRO);

int distancia = lerSonar(); // Ler sensor de distância

delay(600);

distancia = lerSonar();

delay(600);

Serial.print("distancia: "); // Exibe no serial

Serial.println(distancia);

if (distancia < DISTANCIA MINIMA)

{

Parado();

return 0;

} else {

return 1;



Apêndice A. Códigos 70

}

}

//****************************************

//Funç~ao de leitura do Sonar

//****************************************

int calcularDistancia(int angulo) {

reposicionaServoSonar(angulo);

int leituraDoSonar = lerSonar();

delay(600);

leituraDoSonar = lerSonar();

delay(600);

Serial.print("Distancia ");

Serial.println(angulo);

Serial.println(leituraDoSonar);

return leituraDoSonar;

}

//****************************************

//Funç~ao que encontra a melhor distância a seguir para o desvio

//****************************************

// Funç~ao para pegar as distâncias lidas e calcular qual a melhor distancia

char calculaMelhorDistancia() {

int esquerda = calcularDistancia(ANG ESQUERDA);

int centro = calcularDistancia(ANG CENTRO);

int direita = calcularDistancia(ANG DIREITA);

reposicionaServoSonar(ANG CENTRO);

int maiorDistancia = 0;



Apêndice A. Códigos 71

char melhorDistancia = ’0’;

//Compara melhor distância

if (centro > direita && centro > esquerda) {

melhorDistancia = ’c’;

maiorDistancia = centro;

} else if (direita > centro && direita > esquerda) {

melhorDistancia = ’d’;

maiorDistancia = direita;

} else if (esquerda > centro && esquerda > direita) {

melhorDistancia = ’e’;

maiorDistancia = esquerda;

}

if (maiorDistancia <= DISTANCIA MINIMA) {

melhorDistancia = ’r’;

}

reposicionaServoSonar(ANG CENTRO);

return melhorDistancia;

}

//****************************************

//Acha melhor direç~ao para desvio de obstáculo e desvia

//****************************************

int achaDirecao() {

int dir = 0;

char melhorDist = calculaMelhorDistancia();

Serial.print("melhor Distancia: ");

Serial.println(melhorDist); if (melhorDist == ’c’) {

Frente();

delay(500);

} else if (melhorDist == ’d’) {



Apêndice A. Códigos 72

dir = dir + 1;

Direita();

delay(500);

} else if (melhorDist == ’e’) {

dir = dir - 1;

Esquerda();

delay(500);

} else if (melhorDist == ’r’) {

Re();

delay(500);

}

reposicionaServoSonar(ANG CENTRO);

return dir; }

//****************************************

//decisao efetua correç~ao de rota

//****************************************

void decisao()

{

if (correcao < 0)

{

reposicionaServoSonar(ANG DIREITA);

int distancia = lerSonar();

delay(600);

distancia = lerSonar();

delay(600);

if (distancia > DISTANCIA MINIMA)

{

Direita();

delay(500);

correcao = correcao + 1;



Apêndice A. Códigos 73

Serial.println("CORRIGI PARA Direita ");

}

else {

Serial.println("OBST GRANDE ");

Frente();

delay(200);

desvioCorrigido();

}

}

if (correcao > 0) {

reposicionaServoSonar(ANG ESQUERDA);

int distancia = lerSonar();

delay(600);

distancia = lerSonar();

delay(600);

if (distancia > DISTANCIA MINIMA) {

Esquerda();

delay(500);

correcao = correcao - 1;

Serial.println("CORRIGI PARA Esquerda ");

} else { Serial.println("OBST GRANDE "); Frente();

delay(200);

desvioCorrigido();

}

}

}

//****************************************

// desvioCorrigido: Se tentativas de correç~ao extrapoladas, se existe obstáculo

a frente para se guardar no buffer de correç~ao ou se o caminho está livre e



Apêndice A. Códigos 74

pode-se tentar uma correç~ao.

//****************************************

void desvioCorrigido ()

{

while (!manual)

{

Serial.print("while not manual");

if (correcao < -2 || correcao > 2)

{

while (1) {

Serial.println("Terreno tortuoso ");

Parado();

delay(500);

}

}

if (!andar())

{

Serial.println("MAIS UM OBST ");

int deslocamento = achaDirecao();

correcao = correcao + deslocamento;

}

else {

decisao();

Serial.print("correcao = ");

Serial.print(correcao);

Serial.print("manual = ");

Serial.print(manual);

Serial.println("CORRIGINDO ");

if (correcao == 0)



Apêndice A. Códigos 75

{

Serial.println("CONSEGUIIIII ");

modoManual();

interrupts();

}

}

Serial.print("manual = ");

Serial.print(manual);

}

}

//****************************************

//LOOP Principal

//****************************************

//* Caso controle manual e n~ao exista obstáculo a frente (ande=1), o controle

é dado ao usuário, caso o controle manual esteja ativado mas exista obstáculo

a frente, //o controle é retirado do usuário e o modo automático é ligado, caso

o modo automático esteja ligado, o programa irá desviar e corrigir.

//****************************************

void loop() {

if (manual == 1) {

ande = andar();

if (ande == 1) {

interrupts();

Tratamento(); //ISR para receber comando.

}

else if (ande == 0) {



Apêndice A. Códigos 76

detachInterrupt(3); //Desliga interrupç~ao 3.

delay(200);

tone(51,262,200); //DO

delay(200);

tone(51,262,200); //DO

delay(200);

modoAutomatico();

Serial.print("nao anda");

}

}

else if (manual == 0) {

detachInterrupt(3);

Serial.print("entra em corrigindo");

desvioCorrigido();

Serial.print("sai de corrigindo");

}

}



Apêndice B

Custos

Nesse Apêndice serão mostradas duas cotações uma nacional com base no en-

dereço eletrônico ”mercadolivre”e outra internacional com base no endereço eletrônico

”ebay”. Para cotações nacionais a previsão de entrega é de até uma semana e para a

internacional de 1 a 4 meses. O produto CMPS10 só foi encontrado fora do Brasil. Não é

considerado o frete de cada produto.

Tabela B.1: Tabela de custos nacional do sistema estudado.

Cotação Nacional

Produto Preço
Chassi R$ 93,88

Arduino UNO R$ 37,89
Arduino Mega2560 R$ 72,00

Sensor Ultrassônico HC-SR04 R$ 10,80
Shield Adafruit R$ 27,89

Bateria LiPo 7,4 V 2200 mAh R$ 109,99
Carregador da Bateria LiPo R$ 123,99

Bateria 9 V R$ 7,43
Micro Servo Motor R$ 15,57

RF 433MHz R$ 12,00
Buzzer R$ 4,99

CMPS10 -
DHT11 R$ 8,89

Mini Protoboards R$ 29,99
Jumpers R$ 16,90

Total R$ 572,21

77



Apêndice B. Custos 78

Tabela B.2: Tabela de custos internacional do sistema estudado.

Cotação Internacional

Produto Preço
Chassi U$ 10,32

Arduino UNO U$ 6,89
Arduino Mega2560 U$ 8,25

Sensor Ultrassônico HC-SR04 U$ 1,03
Shield Adafruit U$ 2,64

Bateria LiPo 7,4 V 2200 mAh U$ 13,85
Carregador da bateria LiPo U$ 5,05

Bateria 9V U$ 0,99
Micro Servo Motor U$ 1,59

RF 433MHz U$ 0,99
Buzzer U$ 0,99

CMPS11 £ 23,99
DHT11 U$ 1,03

Mini Protoboards 5*U$ 1,91 (unidade)
Jumpers U$ 0,99

Total U$ 64,12 + £ 23,99



Apêndice C

Folha de dados

Tabela C.1: Tabela de especificações do sistema.

Folha de dados do sistema

Caracteŕıstica Especificação
Máxima Distância do Obstáculo 400 cm
Mı́nima Distância do Obstáculo 5 cm

Máxima Temperatura 40 ◦

Mı́nima Temperatura 0 ◦

Máxima Variação Angular para Obstáculo 30 ◦

Rotação Máxima do Motor 200 RPM
Máxima Umidade 80% UR

Máxima Altura de Desńıveis do Solo 2,3 cm
Máximo Alcance RF 300 m (com Antena)

79



Referências Bibliográficas

[1] Cisco. ”security: The vital element of the internet of things”. A Forrester Consulting

Thought Leadership Paper Commissioned By Cisco, pages 1–11, Março 2015. URL

http://www.cisco.com/web/solutions/trends/iot/vital-element.pdf.

[2] Lopez Research. “an introduction to the internet of things (iot)”. pages 1–6, Novembro

2013. URL http://www.cisco.com/web/solutions/trends/iot/introduction_

to_IoT_november.pdf.

[3] Enciclopédia Livre. Sistema embarcado. wikipedia, Setembro 2015. URL https:

//pt.wikipedia.org/wiki/Sistema_embarcado.

[4] Jecel Mattos de Assupção Junior. ”projeto de um sistema de desvio de obstáculos

para robôs móveis baseado em computação reconfigurável”. USP-São Carlos, No-

vembro 2009. URL http://www.teses.usp.br/teses/disponiveis/55/55134/

tde-30032010-092432/pt-br.php.

[5] Flávio Garcia Pereira. ”navegação e desvio de obstáculos usando um robô móvel

dotado de sensor de varredura laser”. Universidade Federal do Esṕırito Santo, Centro

Tecnologico, pages 1–11, Junho 2006. URL http://portais4.ufes.br/posgrad/

teses/tese_2359_DissertacaoMestradoFlavioGarciaPereira.pdf.

[6] Arduino UNO e Genuino UNO. https://www.arduino.cc/en/Main/

ArduinoBoardUno, 2015. Acessado: 2014-07-28.

[7] Arduino Timers and Interrupts. https://arduino-info.wikispaces.com/

Timers-Arduino, 2015. Acessado: 2015-09-15.

[8] Arduino Mega2560 e Genuino Mega2560. https://www.arduino.cc/en/Main/

ArduinoBoardMega2560, 2015. Acessado: 2015-09-15.

80

http://www.cisco.com/web/solutions/trends/iot/vital-element.pdf
http://www.cisco.com/web/solutions/trends/iot/introduction_to_IoT_november.pdf
http://www.cisco.com/web/solutions/trends/iot/introduction_to_IoT_november.pdf
https://pt.wikipedia.org/wiki/Sistema_embarcado
https://pt.wikipedia.org/wiki/Sistema_embarcado
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-30032010-092432/pt-br.php
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-30032010-092432/pt-br.php
http://portais4.ufes.br/posgrad/teses/tese_2359_DissertacaoMestradoFlavioGarciaPereira.pdf
http://portais4.ufes.br/posgrad/teses/tese_2359_DissertacaoMestradoFlavioGarciaPereira.pdf
https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.arduino.cc/en/Main/ArduinoBoardUno
 https://arduino-info.wikispaces.com/Timers-Arduino
 https://arduino-info.wikispaces.com/Timers-Arduino
 https://www.arduino.cc/en/Main/ArduinoBoardMega2560
 https://www.arduino.cc/en/Main/ArduinoBoardMega2560


Bibliografia 81

[9] Arduino 101: Timers and Interrupts. http://letsmakerobots.com/node/28278, .

Acessado: 2015-09-16.

[10] attachInterrupt(). https://www.arduino.cc/en/Reference/AttachInterrupt,

2015. Acessado: 2015-09-16.

[11] Charles Borges De Lima E Marco V. M. Villaça. Avr E Arduino: Técnicas De Projeto.

Sistema de Bibliotecas Integradas do IFSC, 2012.

[12] Arduino MEGA 2560 fábio souza. http://www.embarcados.com.br/

arduino-mega-2560/, 2015. Acessado: 2015-09-18.

[13] Atmel datasheet. http://www.atmel.com/Images/

Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_

datasheet.pdf, 2015. Acessado: 2015-09-18.

[14] arduino motor shield - Filipe Flop. http://www.filipeflop.com/

pd-6b643-arduino-motor-shield-l293d, .

[15] Adafruit Motor Shield library. https://github.com/adafruit/

Adafruit-Motor-Shield-library/zipball/master, 2015. Acessado: 2015-09-

18.

[16] Quadruple Half-H Drivers, L293 e L293D. pdf.datasheetcatalog.com/datasheet/

texasinstruments/l293d.pdf, 2015. Acessado: 2015-09-18.

[17] RF433MHz. http://www.electrodragon.com/, 2015. Acessado: 2015-09-19.

[18] Arduino Básico, Michael McRoberts. http://www.fema.com.br/arduino/

wp-content/uploads/2014/08/arduino.pdf, 2015. Acessado: 2015-09-16.

[19] Speed of Sound. http://en.wikipedia.org/wiki/Speed_of_sound, 2015. Acessado:

2015-07-27.

[20] Datasheet Servo Motor Micropik. http://www.micropik.com/PDF/SG90Servo.pdf,

2015. Acessado: 2015-09-29.

[21] I2C Tutorial. http://www.robot-electronics.co.uk/i2c-tutorial, 2015. Aces-

sado: 2015-09-29.

[22] CMPS10. http://www.robot-electronics.co.uk/htm/cmps10doc.htm, 2015.

Acessado: 2015-09-29.

 http://letsmakerobots.com/node/28278
https://www.arduino.cc/en/Reference/AttachInterrupt
 http://www.embarcados.com.br/arduino-mega-2560/
 http://www.embarcados.com.br/arduino-mega-2560/
 http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
 http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
 http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
 http://www.filipeflop.com/pd-6b643-arduino-motor-shield-l293d
 http://www.filipeflop.com/pd-6b643-arduino-motor-shield-l293d
 https://github.com/adafruit/Adafruit-Motor-Shield-library/zipball/master
 https://github.com/adafruit/Adafruit-Motor-Shield-library/zipball/master
 pdf.datasheetcatalog.com/datasheet/texasinstruments/l293d.pdf
 pdf.datasheetcatalog.com/datasheet/texasinstruments/l293d.pdf
 http://www.electrodragon.com/
http://www.fema.com.br/arduino/wp-content/uploads/2014/08/arduino.pdf
http://www.fema.com.br/arduino/wp-content/uploads/2014/08/arduino.pdf
http://en.wikipedia.org/wiki/Speed_of_sound
http://www.micropik.com/PDF/SG90Servo.pdf
http://www.robot-electronics.co.uk/i2c-tutorial
http://www.robot-electronics.co.uk/htm/cmps10doc.htm


Bibliografia 82

[23] Campinas, Clima Tempo. http://www.climatempo.com.br/previsao-do-tempo/

cidade/418/campinas-sp, 2015. Acessado: 2015-10-20.

http://www.climatempo.com.br/previsao-do-tempo/cidade/418/campinas-sp
http://www.climatempo.com.br/previsao-do-tempo/cidade/418/campinas-sp

	Abstract
	Resumo
	Sumário
	Lista de Figuras
	Lista de Tablelas
	Abreviações
	1 Introdução
	2 Sistema de Desvio de Obstáculos
	2.1 Protótipo
	2.2 Controle Manual
	2.3 Controle Automático

	3 Fundamentos e Componentes
	3.1 Arduino
	3.1.1 Arduino UNO
	3.1.1.1 Barramento de Potência
	3.1.1.2 Barramento Digital (I/O)
	3.1.1.3 Barramento Analógico
	3.1.1.4 Entradas e Saídas
	3.1.1.5 Timer

	3.1.2 Arduino Mega
	3.1.2.1 Alimentação
	3.1.2.2 Timer
	3.1.2.3 Interrupções


	3.2 Chassi
	3.2.1 Motores
	3.2.2 Baterias

	3.3 Shield Adafruit
	3.3.1 Funções- Shield L293D
	3.3.2 Ponte H- L293D

	3.4 Módulo RF
	3.4.1 Dados Gerais
	3.4.2 Controle Remoto
	3.4.3 Bibliotecas

	3.5 Sensor Ultrassônico
	3.6 Servo
	3.7 CMPS10
	3.7.1 Modo I2C

	3.8 DHT11
	3.9 Buzzer
	3.10 LCD

	4 Análise de Resultados
	4.1 Componentes
	4.1.1 Sensor Ultrassônico
	4.1.1.1 Objetos metálicos
	4.1.1.2 Objetos emborrachados e não uniforme
	4.1.1.3 Testes com Isopor
	4.1.1.4 Pedra não uniforme
	4.1.1.5 Testes com corrente de ar

	4.1.2 DHT11
	4.1.3 CMPS10

	4.2 Sistema

	5 Conclusões e Trabalhos Futuros
	5.1 Conclusões
	5.2 Trabalhos Futuros

	A Códigos
	A.1 Testes
	A.1.1 HC SR04
	A.1.2 DHT
	A.1.3 CMPS10

	A.2 Sistema Automático
	A.3 Sistema completo com controle do usuário e autonomia para desvio de obstáculo

	B Custos
	C Folha de dados
	Referências Bibliográficas

