UNIVERSIDADE DE SAO PAULO
ESCOLA POLITECNICA

MATHEUS FERREIRA FIGUEIREDO

Uso de séries temporais para modelagem de inadimpléncia em recebiveis imobiliarios e
seu monitoramento por graficos de controle

Séo Paulo
2020






MATHEUS FERREIRA FIGUEIREDO

Uso de séries temporais para modelagem de inadimpléncia em recebiveis imobiliarios e
seu monitoramento por graficos de controle

Trabalho de Formatura apresentado a
Escola Politécnica da Universidade de
S&o Paulo para obtencdo do Diploma de
Engenheiro de Producéo.

Orientador: Profa. Dra. Linda Lee Ho

Sao Paulo
2020






MATHEUS FERREIRA FIGUEIREDO

Uso de séries temporais para modelagem de inadimpléncia em recebiveis imobiliarios e
seu monitoramento por graficos de controle

Trabalho de Formatura apresentado a
Escola Politécnica da Universidade de
S&o Paulo para obtencdo do Diploma de
Engenheiro de Producéo.

Orientador: Profa. Dra. Linda Lee Ho

Sao Paulo
2020



Autorizo a reproducdo e divulgacao total ou parcial deste trabalho, por qualquer meio convencional ou
eletronico, para fins de estudo e pesquisa, desde que citada a fonte

Catalogag&o-na-publicagdo

Figueiredo, Matheus Ferreira
Uso de séries temporais para modelagem de inadimpléncia em
recebiveis imobiliarios e seu monitoramento por graficos de controle /
M. F. Figueiredo — S&o Paulo, 2020.
104 p.

Trabalho de Formatura — Escola Politécnica da Universidade de
Séo Paulo. Departamento de Engenharia de Producao.

1. Séries temporais 2. Modelos paramétricos de previsdo 3.
Monitoramento por graficos de controle 4. Séries de inadimpléncia
I. Universidade de Séo Paulo. Escola Politécnica. Departamento de
Engenharia de Produc&o I1.t.




Nome: FIGUEIREDO, Matheus Ferreira

Titulo: Uso de séries temporais para modelagem de inadimpléncia em recebiveis imobiliérios e
seu monitoramento por gréaficos de controle

Trabalho de Formatura apresentado & Escola Politécnica da Universidade de S&o Paulo para
obtenc¢éo do Diploma de Engenheiro de Producéo. Séo Paulo, 2020.

Aprovado em:

Banca Examinadora

Prof. Dr.

Instituicdo:

Julgamento:

Prof. Dr.

Instituicdo:

Julgamento:

Prof. Dr.

Instituicao:

Julgamento:







AGRADECIMENTOS

A professora Linda Lee Ho, por sua dedicagio, compreens&o e apoio durante todo este processo.

Sua orientacdo e ensinamentos foram essenciais ao desenvolvimento deste trabalho.

A minha familia, por todo o apoio e motivacdo que sempre me deram, e por seu esforgo em
sempre me oferecer as melhores oportunidades. Foi gragas a vocés que eu pude chegar onde

estou hoje.

Aos meus amigos da Poli e do Porto, que me acompanharam por toda essa jornada, por me

ajudar nos momentos de dificuldade e partilhar dos momentos de alegria.






RESUMO

Este trabalho de formatura propde o desenvolvimento de uma metodologia para previséo e
monitoramento de indices de inadimpléncia em carteiras de recebiveis imobiliarios cedidas para
operacdes de securitizacdo, para fornecer informacg6es quantitativas para embasar a tomada de
deciséo e diminuir os riscos de ndo pagamento durante a operacdo. Primeiro foi analisada e
tratada uma série temporal de inadimpléncia para o ajuste de um modelo paramétrico de classe
ARIMA. Em seguida, foi selecionado o grafico de média movel exponencialmente ponderada
para 0 monitoramento desta série, com o objetivo de identificar um processo fora de controle.
Para tal, foram desenvolvidos algoritmos usando a linguagem de programagéo R para definir
seus parametros, de modo a atingir o ARL, pré-estabelecido de 36 meses. Entéo foi simulado
um processo fora de controle para estudar a sensibilidade do grafico em relacdo a mudancas na
média da série. A andlise dos resultados consistiu de uma avaliacdo da capacidade de previsao
do modelo ajustado, a partir da comparacao dos valores previstos com as observacdes reais.
Quanto ao gréfico de controle, este foi avaliado pela sua capacidade de identificar processos
fora de controle e perceber pequenas variacbes na média da variavel monitorada. Ao final do
desenvolvimento, foi constatado que a solugédo proposta apresentou uma capacidade de previsdo
adequada para o curto prazo e uma sensibilidade satisfatoria a variacbes na média da

inadimpléncia.

Palavras-chave: Inadimpléncia. Séries temporais. Modelos ARIMA. Controle estatistico de

processos. Graficos de controle.






ABSTRACT

This paper proposes the development of a methodology for the forecasting and monitoring of
default rates in real estate credit portfolios granted for a securitization operation, in order to
provide quantitative information to support the decision-making process and mitigate the risks
of payment default throughout the operation. First, the default rate time series was analyzed and
treated for the adjustment of an ARIMA-class parametric model. Then the exponentially
weighted moving average chart was chosen for the series monitoring, for the purpose of
identifying an out-of-control process. To this end, several algorithms were developed using the
R programming language to define the chart’s parameters, in order to achieve the pre-
established ARL, of 36 months. The next step consisted of simulating an out-of-control process
to determine the chart’s sensibility to changes in the process average. The result analysis began
with the evaluation of the adjusted model forecasting capacity, by comparing the forecasts with
the actual values observed in the process. Regarding the control chart, it was evaluated on its
ability to identify an out-of-control process and to detect small variations in the monitored
variable. Having concluded the result analysis, it was verified that the proposed solution
presented an appropriate forecasting ability in the short-term and a satisfactory sensitivity in its

monitoring capacity.

Keywords: Default ratios. Time series. ARIMA models. Statistical process control. Control

charts.
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1. INTRODUCAO

Este trabalho de formatura foi desenvolvido junto a Forte Securitizadora S.A.
(Fortesec), instituicdo financeira na qual o autor esta realizando estagio supervisionado na area
comercial. A empresa foi escolhida para servir de alvo para o trabalho pela proximidade do
autor com ela, que permitiu a identificacdo do problema e uma grande disponibilidade de
informacdes. Neste primeiro capitulo serdo apresentados o contexto em que se elaborou o
trabalho, o problema levantado e sua relevancia e, finalmente, a abordagem proposta para

solugéo deste problema.
1.1. Contexto

A securitizacdo é uma operacdo de estruturacdo e emissdo de titulos de divida lastreados
em direitos creditorios, com o intuito de captar recursos para empreendedores via investidores
do mercado de capitais. Apenas empresas especializadas, chamadas de securitizadoras, tem a
permissdo da Comissdo de Valores Mobiliarios (CVM) para emitir esses titulos. Os direitos
creditérios envolvidos podem ser de diversas naturezas, mas neste trabalho sera abordado o

caso especifico de créditos oriundos de empreendimentos imobiliarios.

Normalmente, durante a venda de unidades de um empreendimento imobiliario, os
compradores assinam contratos com pagamento parcelado por um longo periodo. O conjunto
de todas as parcelas a receber de todos os contratos de um empreendimento constitui o que é
chamado de carteira de recebiveis. No entanto, em diversas situacdes, é interessante para 0
empreendedor antecipar o recebimento dessas parcelas para poder usa-lo no presente, para
financiar obras, aplicar em outros projetos, ou diversas outras finalidades. E € essa necessidade
que a securitizacdo busca satisfazer. Empresas com interesse em antecipar recebiveis contatam
a securitizadora, e esta analisa o valor da carteira de recebiveis oferecida. Uma vez feita a
precificacdo, a securitizadora contata potenciais investidores, e oferece a eles o direito aos
recebiveis da carteira por um prazo determinado. Caso haja interesse, € feito um acordo e 0s
investidores oferecem um certo valor em troca dos direitos aos recebiveis. A securitizadora atua
entdo como intermediaria, que repassa o0 recurso dos investidores ao empreendedor, e faz a
gestdo da carteira por toda duracdo da operacdo, acompanha e garante 0os pagamentos aos
investidores. A transferéncia dos recursos pelos direitos creditorios € formalizada pela emissdo

de um titulo de divida chamado de Certificado de Recebiveis Imobiliarios (CRI).
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Esse processo ganhou espaco no mercado como uma alternativa as linhas mais
tradicionais de financiamento, como o financiamento bancério, devido a seu formato mais
flexivel e customizavel de acordo com as necessidades dos clientes. Algumas das vantagens
da securitizacdo que podem ser citadas em relacdo as linhas tradicionais sdo um maior prazo de
financiamento, transferéncia de risco para os investidores, menores impactos no balancgo

patrimonial e desintermediagdo bancéria.

O mercado de securitizacdo brasileiro ainda é pouco desenvolvido, especialmente se
comparado aos mercados em paises europeus ou nos Estados Unidos, 0 que sugere que ainda
h& um enorme potencial a ser aproveitado pelas empresas do setor. Nos Gltimos anos ja foi
registrado um crescimento relevante, sinal de que existem cada vez mais empresas buscando

captar recursos por esta modalidade.

A Fortesec faz um mapeamento constante das novas operagdes de CRI para monitorar
as condicOes de mercado e acompanhar novas tendéncias. Os dados consolidados em uma base
anual estéo apresentados na Figura 01. Em 2019, foi calculado um volume recorde de recursos
captados via CRI, um total de R$ 21,8 bilhdes. Fica clara a tendéncia de crescimento desse
mercado observando os ultimos 5 anos, tanto em relagdo ao volume quanto ao nimero de
operacdes de securitizacdo. Importante ressaltar que a Figura 01 apresenta dados relativos
apenas as operacdes nas quais as cedentes dos créditos ndo sdo os proprios investidores da
operacdo e ndo é usada a Taxa Referencial como indexador.

Figura 01 - Evolucéo de emissdes de CRI
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1.2. A empresa

A Fortesec foi fundada em 2015 com o objetivo de conectar empreendedores que
buscam recursos com investidores que procuram investimentos rentaveis. Atua na securitizacao
de recebiveis dos setores de agronegdcio e imobiliario, sendo este Gltimo seu foco e
especialidade, que corresponde a 98,7% de suas operacdes. Atende empresas de diversos portes
em todas as regides do pais. Tem como diferenciais a modelagem customizada de cada estrutura
de divida, para atender as necessidades especificas de cada cliente, e um foco maior na gestédo
do CRI, ao manter um contato préximo com empresas e investidores, 0 que proporciona maior

éxito e seguranca a todas suas operagoes.

Segue uma breve explicacdo do processo interno de securitizagdo. Inicia-se na area
comercial, na qual o autor deste trabalho estagia. A area comercial faz um primeiro contato com
a empresa interessada em securitizar recebiveis e solicita todos documentos necessarios a
anélise. E feita uma avaliacio detalhada das caracteristicas do empreendimento e do valor da
carteira de recebiveis, através de critérios como nimero de contratos, desempenho das vendas,
valor presente dos recebiveis e comportamento de pagamentos da carteira, que é analisado
através de indices de inadimpléncia. Em seguida, realiza-se uma modelagem financeira inicial
da operacdo, que determina caracteristicas como o volume de captacao, a taxa de juros, o prazo,
a forma de pagamento, entre outros diversos aspectos. Essa primeira estrutura é entdo
apresentada a potenciais investidores, e é negociada uma estrutura final para a operacao que
seja financeiramente interessante para eles. Essas condigdes sdo entdo apresentadas em forma

de proposta de emisséo de CRI para a empresa.

Uma vez que a proposta é assinada, a area de estruturacdo assume a operacdo. Ela ira
elaborar todos 0s documentos necessarios, registrar a emissao junto as institui¢oes reguladoras
do mercado, supervisionar o processo de auditoria da carteira de recebiveis e do
empreendimento e finalmente contratar todos os prestadores de servico que irdo atuar junto a
securitizadora. Assim que todos requisitos legais e operacionais forem cumpridos, ocorre a
liquidacdo, ou seja, recebimento de capital dos investidores que € repassado para a empresa

cedente dos créditos.

A partir da liquidacao até o vencimento da operacdo, a area de gestdo assume. Ela fara
um acompanhamento e monitoramento do empreendimento junto a todos os prestadores de

servicos, que avalia o progresso de obras, o recebimento dos créditos e os indices de



22

inadimpléncia. E a partir desse acompanhamento ir& prover tanto os empreendedores quanto 0s

investidores de todas informacdes que necessitam para garantir transparéncia por todo processo.

1.3. Problema a ser abordado

Este trabalho tem como foco a analise dos indices de inadimpléncia dos recebiveis
imobiliarios, que como explicado anteriormente, impactam tanto a etapa de modelagem
financeira quanto de gestdo da operacdo. Atualmente, em ambas as etapas, analisa-se o historico
de pagamentos da carteira e calculam-se as quantidades de pagamentos em dia, atrasados,
antecipados e inadimplentes, e entdo toma-se as decisdes com base no comportamento passado

da carteira.

No entanto, a empresa carece de projecdes desses indices para periodos futuros para
apoia-la na tomada de decisGes. Essas projecdes serdo de grande auxilio, principalmente ao
levar em consideracdo a longa duracdo dessas operacdes, que necessariamente exige um

planejamento de longo prazo desde as primeiras etapas da securitizacao.

O indice a ser estudado € a inadimpléncia mensal bruta. Este pode ser calculado através
de dados fornecidos por um prestador de servigcos contratado para auditar mensalmente a

carteira de recebiveis.

Para resolver o problema sera empregado um modelo de séries temporais e estatistica
para se desenvolver projecdes do indice de inadimpléncia e uso de métodos de controle de
processos para se elaborar critérios de decisdes através de limites de controle, que possibilitem

a tomada de decisGes com um maior embasamento quantitativo.

A relevancia do problema abordado se justifica pela utilidade da solucéo proposta para
as areas comercial e de gestdo. A comecar pela area comercial, a possibilidade de prever um
comportamento futuro dos pagamentos de uma carteira dara uma visdo muito mais precisa sobre
0s riscos da securitizacdo, e esses riscos serdo levados em conta na modelagem, onde serédo
aplicados mecanismos para mitiga-los, como ajustes no volume de emissdo ou estabelecimento
de garantias adicionais. Além disso, levar essas informacOes para a negociacdo com 0S
investidores disponibilizara uma base mais rica para suportar uma decisdo de investimento, o

que aumentard a atratividade dos produtos ofertados pela Fortesec.
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Em relagdo ao departamento de gestdo, atualmente ao notar um aumento na
inadimpléncia, eles alertam a empresa dona do empreendimento e auxiliam no planejamento e
implantacdo de medidas para corrigir a situacdo, como, por exemplo, a contratacdo de agentes
de cobranca. Mas dado que é analisado o comportamento atual e passado, esses sinais surgem
apenas quando o problema se apresenta, o que possibilita apenas a tomada de medidas
corretivas. ProjecOes bem fundamentadas possibilitariam medidas preventivas, fornecendo uma
maior seguranca aos investidores e agregando um maior valor para seus clientes, através de

informacdes que permitem uma administracdo mais eficiente.

1.4. Estrutura do trabalho

Este trabalho foi iniciado através do presente capitulo “Introdugdo”, que fornece ao
leitor todo o contexto necessario para se entender o problema que serd abordado e qual a sua

relevancia para a empresa alvo deste trabalho.

Em seguida, nos capitulos “Revisdo Bibliografica- Séries Temporais” e “Revisdo
Bibliografica — Controle Estatistico de Processos” sera feito um relato de todo conhecimento
tedrico necessario para abordagem do problema proposto. Serdo apresentados conceitos sobre
modelos paramétricos para séries temporais e ferramentas de controle estatisticos de processo,

com foco em graficos de controle.

No capitulo “Metodologia” sera estruturado um processo para desenvolvimento de um
modelo paramétrico de previsdo e monitoramento por gréaficos de controle, utilizando dos

conceitos abordados na revisao bibliogréfica.

Tendo sido apresentada toda base conceitual e tedrica, sera feita a “Aplicacao sobre o
problema proposto”, no qual os métodos levantados sdo utilizados para uma base de dados
especifica fornecida pela Fortesec. Apds o término do desenvolvimento da solucéo sera feita

uma analise dos resultados.

Por ultimo, o capitulo “Conclusdo” trara um resumo deste trabalho de formatura, uma
avaliacdo geral da solugéo encontrada, suas limitagdes e o quanto ela pode conseguir solucionar
0 problema levantado, além de prover alternativas de estudos futuros para aprimorar essa

solucéo.
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Para se realizar todas as analises necessarias e desenvolver o modelo proposto, serdo
usados os softwares Microsoft Excel, para tratamento de dados e elaboracdo de graficos para
apresentar os resultados de forma mais visual, e 0 RStudio, ambiente de desenvolvimento em
linguagem R, usado para a constru¢do do modelo de previsdo e determinacdo dos limites do

grafico de controle.
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2. REVISAO BIBLIOGRAFICA - SERIES TEMPORAIS

Neste capitulo serdo apresentados os principais conceitos e metodologias empregados
no estudo da série de dados de inadimpléncia, e que servirdo de base para a construcdo do
modelo de projecéo de valores futuros.

De acordo com Morettin e Toloi (2006), séries temporais podem ser definidas como
“qualquer conjunto de observacBes ordenadas no tempo”. Segundo esta definicdo, pode-se
afirmar que uma série de observagcfes mensais de indices de inadimpléncia configura uma série
temporal. Morettin e Toloi (2006) também enumeram alguns dos principais objetivos

associados a aplicacao deste conceito:
a) investigar o mecanismo gerador da série temporal;
b) fazer previsdes de valores futuros da série;
c) descrever apenas 0 comportamento da série;
d) procurar periodicidades relevantes nos dados.

A partir desses possiveis usos € possivel justificar o uso de séries temporais em diversas
areas do conhecimento. Apesar de suas aplicacbes mais tradicionais estarem relacionadas aos
campos da economia ou fisica, por exemplo, seu uso também € bem justificado neste trabalho,
uma vez que o objetivo € obter projecdes de valores futuros de indices de inadimpléncia a partir

de comportamento passado da série.

A andlise por séries temporais pode ser abordada por duas perspectivas diferentes. Uma
delas é a analise no dominio temporal, que seria a observacdo dos diversos valores de Z(t) ao
longo de um periodo de observacdo. Neste caso, sdo construidos os chamados modelos
paramétricos, que sdo aqueles definidos por um numero finito de parametros. Esta € a
perspectiva que serd adotada neste trabalho. A segunda perspectiva é a analise da série no
dominio das frequéncias, onde € feita uma analise espectral que resulta em um modelo néo

paramétrico.

Nas secOes seguintes serdo explicados alguns conceitos fundamentais para a aplicagéo

de séries temporais.
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2.1. Processos estocasticos

Morettin e Toloi (2006) definiram processos estocasticos como:

Definicédo: Seja T um conjunto arbitrario. Um processo estocastico é uma familia Z =

{Z(t),t € T}, tal que, para cada t € T, Z(t) é uma variavel aleatoria.

Assim, definido um espaco de probabilidades (12, A, P), pode-se considerar processos
estocasticos como uma familia de variaveis aleatorias definidas neste espaco. Esses processos

séo regularmente usados como forma de descrever séries temporais.

Ainda segundo Morettin e Toloi (2006), é possivel classificar os processos estocasticos
de acordo com trés categorias:

a) processos estacionarios ou ndo estacionarios, de acordo com a independéncia ou

ndo relativamente a origem dos tempos;

b) processos normais (Gaussianos) ou ndo normais, de acordo com as fungdes

densidade de probabilidade que caracterizam os processos;

c) processos Markovianos ou ndo Markovianos, de acordo com a independéncia dos

valores do processo, em dados instante, de seus valores de instantes precedentes.

2.2. Estacionariedade

A estacionariedade € a existéncia de um comportamento constante no desenvolvimento
da série ao longo do tempo, sempre mantendo sua média e variancia para todas as observacdes.
Dessa forma, caso 0 processo seja estacionario, a origem dos tempos ndo tem impacto na
analise, uma vez que as mesmas caracteristicas seriam encontradas independente do ponto de
partida. Segundo Morettin e Toloi (2006), as séries podem ter estacionariedade fraca ou forte,

de acordo com as defini¢cdes apresentadas a seguir:

Definigdo: Um processo estocastico Z = {Z(t),t e T } diz-se estritamente estacionario
se todas as distribuicdes finito-dimensionais permanecem as mesmas sob translagfes no tempo,

ou seja,

F(zy, o, Zpiti + T, sty + T) = F(2q, .., Zp5 te, e L )
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para quaisquer ty, ... ,t,, T € T. Isso significa que, para qualquer t e T tem-se que:

a) u®) =
b) V(t) = o2

Defini¢do: Um processo estocastico Z = {Z(t),t € T} diz-se fracamente estacionario

ou estacionario de segunda ordem (ou em sentido amplo) se e somente se:
a) E{Z(t)} = u(t) = u, constante paratodot € T;
b) E{Z(t)} < oo, paratodot € T;

c) y(ty, ty) = Cov{Z(t,),Z(t,)}éumafunciode | t; — t,|, onde y(ty,t,) éafuncio
de autocovariancia, que é apresentada em detalhes na subsecdo 2.4.1. deste
trabalho.

Existem diversas alternativas de testes estatisticos disponiveis para verificar se uma
série é ou ndo estaciondria. Aqui serd abordado o caso do teste desenvolvido por Dickey e Fuller
(1979), que leva o nome dos autores. Este método busca determinar se o polinémio
autorregressivo de uma série temporal possui raizes sobre o circulo unitario. Caso possua,
conclui-se que o0 processo estocastico ndo apresenta estacionariedade, e € necessario o
tratamento da série original através das suas diferencas (esse conceito é apresentado em detalhe
na subsecdo 2.5.4).

Para exemplificar a aplicacdo do teste, é considerado o seguinte modelo de média zero:
Zy =0Z g+ ag a;.~RBN (0,0%)

sendo a, um ruido branco de média zero e desvio variancia igual a o2, com distribuicdo
aproximada pela distribuicdo normal. Ruido branco foi definido por Morettin e Toloi (2006)

como:

Definigdo: Dizemos que {&;, t € Z} ¢ um ruido branco discreto se as variaveis aleatorias

& Nao sdo correlacionadas, isto é Cov{e;, &5} = 0, t # s.

Ja ¢ é o operador translacéo para o futuro, definido por Morettin e Toloi (2006) como
GZy = Zt41-
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Para ajustar o modelo proposto, é necessario subtrair Z,_; de ambos lados da equacé&o,

que resulta em:
AZy =" Zi 1 + ag

onde ¢* = ¢ — 1. A partir do resultado desta equacdo, serd aplicado o seguinte teste de

hipotese:
Hy:d*= 0
Hi:$*"< 0

A hipotese H, representa 0 caso em que existe a0 menos uma raiz unitaria para o
polindmio autorregressivo. Caso seja verificado como verdadeira, implica na néo
estacionaridade da série. Por outro lado, caso H, seja falsa, e entdo H, considerada verdadeira,

assume-se que ndo existem raizes unitarias e que a série é estacionaria.

Para realizar o teste, € utilizada a seguinte estatistica:

-1
. _ N NZi 10y
TpF

sy zz )Y

na qual N corresponde tamanho = da amostra e S? representa o estimador da variancia o2, dado

por:
N

2 1 g 2

St = m;(AZt - ¢MQZt—1)

no qual <13,’;,Q é 0 estimador considerado de minimos quadrados de ¢* por meio da regresséo de

AZ, sobre Z;_;.

Uma limitag&o do teste Dickey-Fuller é que ele opera sobre a premissa de que 0 processo
estocastico analisado tenha dependéncia apenas em relacéo ao valor imediatamente anterior, ou
seja, a Z;_,. Dessa forma, um método mais robusto criado a partir do teste Dickey-Fuller €
conhecido como Dickey-Fuller aumentado, que conta com as mesmas hipoteses, mas com uma

nova forma de célculo da estatistica:
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. N'YZ, qa;
Tapr = — . 12
SIN"23(Zeey — 2D

Serdo definidos valores criticos para cada tabulacéo da estatistica em funcdo de N. Caso
a estatistica para um determinado N seja menor que o valor critico, toma-se H, como falso, e

considera-se a série como estacionaria.

Um problema comum ao se analisar séries temporais € a ndo apresentacdo de um
comportamento estacionario em sua variancia devido a grandes variagdes no decorrer do tempo.
Dessa forma, para que se obtenha estacionariedade € necessario manipular esta série para
estabilizar sua variancia. Existem diversas categorias de transformacdes para este fim, como as
exponencias e as logaritmicas. Neste caso, sera considerada a transformacéo proposta por Box
e Cox (1964), da forma:

7V —¢
s _ ==, sey#0
t = 14

log Z,, sey =0

sendo y e ¢ parametros a serem estimados de forma a se obter uma variancia constante e uma

série com distribuicdo aproximadamente normal.

2.3. Normalidade

Segundo Morettin e Toloi (2006) um processo é definido como gaussiano se:

Definigdo: um processo estocéstico Z = {Z(t),t e T } diz-se Gaussiano se, para
qualquer conjunto t,, t,, ..., t, de T, as varidveis aleatdrias Z(t,),..., Z(t,) tem distribuicdo

normal n-variada.

Sendo o processo estocastico identificado como normal, ou gaussiano, ele pode ser
determinado pelas suas médias e covariancias. Um caso particular € aquele no qual a série seja
gaussiana e estacionaria de segunda ordem, que implica necessariamente que ele seja

estritamente estacionario.

Para processos gaussianos, a funcéo de densidade de probabilidade a ser usada é aquela

da distribui¢do normal, tal como mostrado na Figura 02, dada por:
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1 2
f(x) = e_f(T) , para —o < x < ©

oV2an

Figura 02- Exemplo de distribui¢do normal

Densidade de Probabilidade
2

Valor de X
Fonte: Elaborado pelo autor

Devido & complexidade dos célculos, muitas vezes ndo estdo disponiveis valores da
esperanca u e desvio padrdo o. Assim, uma aproximagéo aceitavel sdo os estimadores X e S

para esperanca e desvio padrdo, respectivamente, que sdo dados por:

_ X;
A
lin

n
i=1

(X —X)?

S =
n—1

sendo n o tamanho da amostra e X; os valores de cada uma das observacGes da amostra.

Para determinar se uma serie apresenta distribuicdo proxima a normal, pode-se aplicar
um teste ndo paramétrico. Uma opg¢do popularmente utilizada nesses casos é aquele proposto
por Shapiro e Wilk (1965), que leva o nome dos autores. Ele se baseia em um teste de hipdtese

para verificar se uma série pode ser considerada Gaussiana, a partir das seguintes hipdteses:

H,:0s dados apresentam disutribui¢io normal N(u, c?)

H, :0s dados ndo apresentam distribuicao normal
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A reprovacdo, ou ndo, da hipétese nula é feita a partir do calculo da estatistica W,

calculada da seguinte forma:

b2

e —
(X — x)?

sendo x; os valores das observacdes, X a média desses valores, n 0 tamanho da amostra e b uma
constante obtida em funcéo de n. Como critério de avaliacdo da hipdtese nula, a estatistica W é
comparada com valores criticos de estatistica WW,, obtidos através de n e do nivel de
significancia a adotado. Caso W < W, a rejeita-se H,e conclui-se que a série ndo possuli

distribuicdo normal.

Importante citar que este teste € indicado para amostras com um numero relativamente
baixo de observacdes. Dado que a série de percentual de inadimpléncia a ser analisada
posteriormente possui menos de 200 amostras, esta metodologia se mostra apropriada para o

estudo proposto.

Para analisar visualmente a distribuicdo de uma série, um dispositivo grafico muito
usado é 0 Q-Q Plot, que se baseia na comparacao entre os quantis de uma distribuicdo tedrica
e da série estudada, na qual se deseja verificar se ha ou ndo normalidade. Conforme mostrado
na Figura 03, a distribuicdo normal é representada pela reta tedrica, e os pontos distribuidos ao
seu redor simbolizam a distribuicdo que se deseja testar. Quando mais aderéncia houver, ou
seja, mais proximos da reta os pontos estiverem, mais préximo de uma distribuicdo normal a

distribuicéo testada esta.

Figura 03 — Exemplo de grafico Q-Q

Sample Quantiles

T T T T T
2 -1 0 1 2

Theoretical Quantiles

Fonte: Elaborado pelo autor
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2.4. Independéncia

Aqui serdo apresentadas as funcdes de autocovariancia, autocorrelagéo e autocorrelacao
parcial, que séo utilizadas na andlise de séries temporais com o intuito de classifica-las como

Markovianas ou néo.
2.4.1. Funcdo de autocovariancia

A funcdo de autocovariancia (facv) mede o grau de variacdo de segundo momento, ou
segunda ordem, entre dois elementos situados em diferentes espacos de tempo. Morettin e Toloi

(2006) definem esta fungdo como:

Definigdo: Seja {X;, t € Z} um processo estacionario real com tempo discreto, de média
zeroe facvy, = E {X, X; + 1}

A facv y, satisfaz as seguintes propriedades:
a) Yo > 0;

b) Vier = Ve

) lvel < vo;

d) y: é ndo negativa definida, no sentido que:

n n
ZZaakYU tk >O

j=1k=1
para quaisquer nameros reais a,, ..., a, € Ty, ..., T, de Z.

Como seu célculo pode se provar muito complexo, muitas vezes a funcdo é

desconhecida. Assim, pode ser usada a estimativa c; dada por:

N-j
1 _ _
= NZ[(Xt — X)(Xe4; -X)],j=01,..,N—1,
t=1

sendo X = Y . X, amédia amostral, e com ¢ = c_j.
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2.4.2. Funcéo de autocorrelacao

A funcéo de autocorrelacao (fac) mede o efeito de uma observacdo X, sobre as demais
observacdes da serie, levando em consideracdo um intervalo de tempo t entre as duas. Morettin

e Toloi (2006) definem esta funcdo como:

P = y—t,TeZ

Yo

Sdo mantidas as propriedades de y,, exceto que agora p, = 1. Quando p; = 1, temos
uma correlagdo perfeita e p; = —1 indica uma correlagdo perfeita em sentidos opostos entre
duas variaveis. p; = 0 indica a auséncia de correlagdo elas. A partir da definigao da estimativa
da facv, € possivel obter uma estimativa da funcdo de autocorrelagdo r; dada por:

Cj .
=== 0,1,...,n—1
Co

A fac é utilizada para avaliar se o processo de identificagdo de um modelo esta adequado
a serie proposta.

2.4.3. Funcéo de autocorrelagéo parcial

Box, Jenkins e Reinsel (1994) sugerem o conceito de funcdo de autocorrelacdo parcial
(facp) como ferramenta adicional no processo de identificagdo de modelos para simplifica-lo.
A facp mede a correlacdo pura entre duas variaveis X.e X, ;, excluindo efeitos de quaisquer

outras variaveis sobre elas. Morettin e Toloi (2006) definem a facp da seguinte forma:

Defini¢do: Vamos denotar por ¢,; o j-ésimo coeficiente de um modelo AR(K) (0

modelo AR(k) serd definido posteriormente na subsecdo 2.5.1), de tal modo que ¢, Seja 0

ultimo coeficiente. Sabemos que:
Pj = br1p1 + Przpz + -+ drpj—k j=1..k,
A partir das quais obtemos as equagdes de Yule-Walker:

1 P1 Pz Pr—1][Pr1 P1
P1 1 P1 o Pr-z2||br2| _ |P2

Prk-1 Pk-2 Pr-3 - 1 1ldgg Pk
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Resolvendo estas equagdes sucessivamente para k = 1, 2, 3, ... obtemos:

d11 = p1
1 m 5
(1) _ P1 P2 _ P2 — P1
22 1 m 1— p?
p1 1
1 p1 p
p1 1 p;
_1p2 P1 Pp3
P33 1 p1 p
pr 1 p1
p2 p1 1
Em geral,
| Py |
i = 1P|

onde P, é a matriz de autocorrelacGes e P; é a matriz P, com a Gltima coluna substituida pelo

vetor de autocorrelacdes.

2.5. Modelos Paramétricos

Conforme dito anteriormente, a série alvo de estudo deste trabalho sera analisada sobre
0 escopo do dominio temporal, e para isso sdo construidos modelos paramétricos. Nesta
subsecdo serdo estudadas quatro variedades de modelos: autorregressivos, de médias moveis,
autorregressivos de médias mdveis e, finalmente, autorregressivos integrados de médias

moveis.

2.5.1. Modelos Autorregressivos

Os modelos autorregressivos séo representados pela notagdo AR(p), no qual p
representa a ordem. Modelos desta natureza assumem que o valor de um elemento Z; de uma
série temporal é definido pelos valores das p observacGes passadas, acrescido de um erro,

representado por um ruido branco.

A forma genérica de um modelo AR(p) é definida por Morettin e Toloi (2006) como:
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Zo = 01 Ze 1+ PrZi p + -+ ¢pr +a;

onde Z, = Z, — u, sendo u a média das observacoes, ¢, 0 peso atribuido a observagéo passada

Ze_;i=1,...,pea, umruido branco RB(0, o2). Segundo Morettin e Toloi (2006) outra forma
de representar modelos AR(p) é atraves de um operador autorregressivo de ordem p, definido

por eles como:
¢(B) =1—¢B— ¢,B> —++— ¢po
sendo B o operador translacao para o passado, definido por Morettin e Toloi (2006) como:
BZ, = Z,_, B™Z,=2Z,_,
Assim, podemos representar modelos AR(p) por:
¢(B)Z;, = a;
2.5.2. Modelos de Medias Moveis

Os modelos de médias mdveis séo representados pela notacdo MA(Q), sendo g a ordem.
Diferente dos modelos AR(p), neste caso 0 modelo assume que os valores de Z; sdo obtidos
através de um sistema linear, nos quais as entradas sdo os ruidos brancos verificados nas q
observacdes passadas. Morettin e Toloi (2006) apresentaram a seguinte equacao genérica para
representar modelos MA(q):

Zt - at - Blat_l — = Qqat_q

sendo 6; o peso atribuido ao ruido a;_j,j = 1,...,q € a, ..., a;_, ruidos brancos RB(0, ).
Analogamente, é possivel representar essa equacao através do operador de médias moveis

apresentado por Moretin e Toloi (2006):
0(B)=1-6,B—6,B%—-—6,B1
Dessa forma, 0 modelo MA(q) é representado por:
Z, = 0(B)a,

2.5.3. Modelos Autorregressivos de Médias Moveis
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Modelos autorregressivos de média moéveis, denotados ARMA(p,q), séo resultados da
aplicacdo simultanea dos modelos AR(p) e MA(Q), para se analisar a progressdo das
observacbes Z; sob um escopo mais amplo. Na pratica, modelos ARMA(p,q) sdo uma
alternativa eficiente a modelos puramente de autorregressdo ou de médias moveis, por
possibilitar uma analise com um nimero menor de parametros. Segundo Morettin e Toloi

(2006), modelos ARMA(p,q) podem ser descritos através da seguinte equagao:
Zy = $1Zi g+ GoZeg + -+ Gply + ap — 010, — - — 0ga,_4

sendo ay, ..., a;—4 ruido branco RB(0, a%). Usando o operador autorregressivo de ordem p e o
operador de medias moveis de ordem @, é possivel reescrever a equacdo para modelos

ARMA(p,q) da seguinte forma:
¢(B)Zt = 0(B)a;

2.5.4. Modelos Autorregressivos Integrados de Médias Moveis

E comum ao se analisar uma série temporal que ela ndo apresente 0 comportamento
estacionario necessario a aplicacdo dos modelos ARMA(p,q). Uma ferramenta Gtil para usar na
série de forma que o resultado seja estacionario é o operador diferenca, definido por Morettin e
Toloi (2006) como:

AZy = Zy —Zy

Ou, considerando a n-ésima diferenca, tem-se:
AnZt = A[An_lzt]

Na maior parte dos casos, uma ou duas diferencas séo suficientes para se obter a
estacionariedade. Este operador é combinado aos modelos ARMA(p,q) para se obter modelos
ARIMA(p,d,q), sendo d o numero de diferencas aplicadas sobre a série original. Morettin e

Toloi (2006) apresentam a seguinte equacao genérica para modelos ARIMA(p,d,q):

gl)(B)AdZt = 0(B)a;
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3. REVISAO BIBLIOGRAFICA - CONTROLE ESTATISTICO DE PROCESSOS

Neste capitulo serdo apresentados os conceitos e ferramentas de controle estatistico de
processos (CEP) necessérios para a concep¢do de um modelo de monitoramento da série de

indices de inadimpléncia para auxiliar a tomada de decisdes no cotidiano da empresa.

CEP é um conjunto de ferramentas estatisticas de controle de qualidade, aplicadas para
se avaliar um determinado processo visando aumentar sua estabilidade e previsibilidade, e
assim otimiza-lo através da reducédo da variabilidade.

Esse conjunto é composto por sete ferramentas diferentes. Elas serdo brevemente

apresentadas a seguir, e ao final sera determinada qual é a mais apropriada para os fins propostos
neste trabalho.

a) gréafico de Pareto: é usado para se analisar a distribui¢do de defeitos em um processo,
que possibilita a identificacdo dos problemas mais recorrentes e uma abordagem mais
focada nas causas de maior impacto (vide Figura 04);

Figura 04 — Gréfico de Pareto

1 de abril a 30 de junho

2 100
Quantidade de itens inspecionados: 5.000
180+ - %0
160 - - 80
2 40 1 g
3
2 120F - 60 Z
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2 ]
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3 2
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3 30 4 40 g,
E =
S wt 7 30
0 1 20
201 __|-_'—_r—_ o

D B F A C E Outros
A Timea D Delormagiio
H: Riseo B! Fenda
C: Mancha F: Poresidade

Fonte: Kume (1993)

b) diagrama de causa-e-efeito: desenvolvido em 1953 por Kaoru Ishikawa, consiste em
um diagrama que determina diversas causas, primarias e secundarias, que levam a

ocorréncia de um determinado efeito ou evento (vide Figura 05);
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Figura 05 — Diagram de causa e efeito

Profundidade
Derrota em uma

partida espartive

Fonte: Kume (1993)

c) histograma: uma forma gréafica de apresentar a distribuicdo de frequéncias em uma
amostra. Permite uma analise visual rapida para avaliar a média e dispersdo dos dados

(vide Figura 06);
Figura 06 - Histograma
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Fonte: Kume (1993)
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d) folha de verificacdo: um formulario impresso elaborado de forma a facilitar a coleta de
dados durante a observacdo de um processo, e permitir sua organizacdo de maneira

simples (vide Figura 07);

Figura 07 — Folha de verificagédo

—_—
| Folha de Verificagio
|
| Produto:
| L — Dam: —
| Estdgio de fabricagiio: inspegiio final
| . . Segio:
| Tipo de defeito: marca, pega. incom- et
| pleta, trinca, def gl i Inspetor:
| Total inspecionado: 1525  Loten? -
| Observagtes: todos os itens inspe- N
cionados - Pedido nf:
Defeito Marca Sub-Total
Marcas na superficie W W m ” 17
Trincas W W / 11
Pega Incompleta W M W HQ W / 26
Deformagio .‘!f‘f 3
Qutros M 5
Total: 62
, PR RHE HUL L TR ,
Total Rejeitado W m W l[ 42

Fonte: Kume (1993)

e) grafico de controle: esta ferramenta busca classificar um processo como dentro ou fora
de controle com base em seu comportamento ao longo do tempo e o estabelecimento

de limites de controle (vide Figura 08);

Figura 08 - Grafico de controle

e e e e E— e ———————— Limite supenor de controle
2 \ A /X M Lanha central
X A" { w V v/..

- e —— . Limite imfenor & controke

Grifico de controle para processo ford de controle

Fonte: Montgomery (2004)
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f) diagrama de disperséo: ideal para estudar a relacdo entre duas varidveis, que podem ser

caracteristicas de qualidade ou fatores que as afetam. Seu objetivo é constatar se existe

correlacéo entre os dados,

e se houver, classificar esta correlacdo (vide Figura 09);

Figura 09 - Diagrama de dispersdo

(%)
0,93

0,92
0,91
0,90
0,39
0,88

0,87

Percentagem defeituosa

0,36

(L85

(1 de outubro a 9 de novembro)

8.0 90

Pressiio de sopro

Fonte: Kume (1993)

8.5 9.5 (kgffem®)

g) diagrama de concentracdo de defeito: representacdo plana de um determinado objeto,

sobre a qual sdo marcados os locais onde ha incidéncia de defeitos. A partir de sua

analise, é possivel reconhecer pontos de concentracdo levantar informagfes sobre

possiveis causas (vide Figura 10).

Figura 10

- Diagrama de concentracgdo de defeito

Parte superior

Lado
esquerdo

Lado
direito

4 Frente ; Atras

Parte inferior
Fonte: Kume (1993)

Essas ferramentas normalmente sdo citadas em contexto de analise de processos

industriais. Porém, segundo Montgomery (2004), “aplicagdes ndo industriais ndo diferem
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substancialmente das aplicagdes industriais, mais usuais”. Portanto, neste trabalho de
formatura, a série de inadimpléncia ser& considerada com um processo, a ser avaliado a partir

da aplicacdo de ferramentas de controle da qualidade.

Dentre todas as ferramentas apresentadas, o grafico de controle é aquele que apresenta
a maior utilidade na abordagem do problema proposto, por ser a mais adequada para analisar a
variacdo no decorrer do tempo. Esta ferramenta serd apresentada em detalhe nas subsecdes a

sequir.
3.1. Gréficos de controle

Kume (1993) apresenta a seguinte defini¢do para graficos de controle:

Definicdo: Um gréfico de controle consiste em uma linha central, um par de limites de
controle, um dos quais localiza-se abaixo e outro acima da linha central, e valores caracteristicos

marcados no grafico representando o estado do processo.

O limite abaixo da linha central (LC) é conhecido como limite inferior de controle (LIC),
e o limite acima é chamado de limite superior de controle (LSC). Um processo pode ser
considerado sob controle se os valores observados para o processo estiverem contidos entre 0s
dois limites, sem apresentar tendéncias. Caso contrario, o processo pode ser considerado fora

de controle, e é, portanto, passivel de a¢bes corretivas para melhorar seus resultados.

E inerente a qualquer processo a existéncia de variaces nas caracteristicas observadas.
Segundo Kume (1993), existem dois tipos de causas para tais variac@es, as aleatdrias, que sdo
aquelas que inevitavelmente acontecerdo e sdo de dificil prevencédo, e as assinalaveis, que
sinalizam a existéncia de fatores relevantes que podem ser analisados para buscar a otimizagao
de um processo. Classificar um processo como fora de controle através da aplicacédo do grafico

de controle é equivalente a dizer que existem uma ou mais causas assinalaveis fora de controle.

Montgomery (2004) apresenta um modelo geral para graficos de controle. Sendo u,,
uma estatistica, u,,, sua média e a,, seu desvio padréo, os limites de controle e a linha central

sdo dados pelas seguintes equacoes:

LSC = u,, + Loy,
LC = py
Lic = u,, — L oy,
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nas quais L representa a distancia entre a linha central e os limites de controle, expressa em
unidades de desvios padrfes. Normalmente seu valor é encontrado a partir de processos
iterativos que buscam atender um critério de desempenho pré-determinado de acordo com as

especificidades do processo analisado.

Montgomery (2004) afirma que “ha uma relacdo muito préxima entre graficos de
controle e testes de hipotese”. De fato, analisar um processo a partir dos limites de controle do
grafico pode ser andlogo a aplicar um teste de hipdtese repetidamente para cada periodo de

tempo, com as seguintes hipdteses:

H,: O processo esta sob controle

H;: 0 processo esta fora de controle

Dessa forma, a hipoOtese nula é rejeitada caso a estatistica calculada esteja fora dos
limites de controle, ou apresente algum tipo de tendéncia em seu comportamento. No entanto,
pode-se notar que o tamanho do intervalo entre os limites de controle depende do L usado no
modelo. Assim, o valor de L é fundamental na decisdo do processo como dentro ou fora de

controle. Mas como todo processo de decisdo, pode ocorrer dois tipos de erros. Sdo eles:

a) erro tipo I: rejeitar a hipotese nula, enquanto esta é verdadeira. Significa que o
modelo aponta a existéncia de um processo fora de controle, sem que de fato esteja.
E conhecido como alarme falso. Montgomery (2004) apresenta a probabilidade de

ocorréncia a dada por:
a = P{erro tipo 1} = P{rejeitar H,|H, é verdadeira};

b) erro tipo Il: ndo rejeitar a hipotese nula, sendo que esta € falsa. O modelo deixa de
detectar um processo fora de controle. De acordo com Montgomery (2004), a

probabilidade de ocorréncia 8 é dada por:
B = P{erro tipo II} = P{deixar de rejeitar H,|H, é falsa}.

Uma meétrica muito usada para avaliar a eficiéncia um grafico de controle quanto a
ocorréncia de erros € o comprimento médio de sequéncia (ARL, do termo inglés “Average Run
Length”). Segundo Montgomery (2004), o ARL ¢ a quantidade média de observagdes dentro

dos limites de controle até a ocorréncia de uma observagéo fora dos limites de controle.
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Existem duas medidas de ARL, o0 ARL,, usado para processos sob controle, e 0 ARL;,

para processos fora de controle, que s&o dados por:

1
ARLo =~

1
ARL, = s
Como o objetivo € obter o maximo de observac6es dentro do limite de controle (para
um processo sob controle), a situacao ideal é aquela em que o ARL, é maximizado e 0 ARL,
minimizado. No entanto, para se aumentar ARL, e obter mais pontos dentro dos limites, é
necessario aumentar a distancia entre os limites de controle e a linha central. Ao fazer isso, o
modelo perde uma parte de sua capacidade de detectar pontos fora de controle, ou seja, aumenta
a incidéncia de erro tipo Il. Dessa forma, ao se tentar aumentar o0 ARL,, consequentemente ha

um aumento do ARL, também. E preciso entfo encontrar valores satisfatorios para ambos.

Existem diferentes categorias de graficos de controle que podem ser utilizadas, cada
uma com caracteristicas préprias que a tornam adequada a um certo tipo de processo. Nas
subsecOes a seguir serdo exploradas algumas variedades que podem ser Uteis a0 monitoramento

de indices de inadimpléncia em carteiras de recebiveis.
3.1.1. Gréficos de Controle Shewhart

Os graficos de Shewhart sdo amplamente utilizados para controle estatistico de
processos, principalmente por ser uma ferramenta de facil implantacéo e interpretacéo, e buscar

avaliar a estabilidade de uma determinada variavel com a evolucéo do tempo.

Os graficos sdo classificados de acordo com a estatistica que esta sendo monitorada. A
seguir serdo apresentados os graficos de controle mais usados para monitoramento de média e

variabilidade do processo.
I.  Gréfico de controle x

Este tipo de grafico de controle é usado para 0 monitoramento da media dos valores

observados em determinada amostra m, denotada por x e dada por:
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_ Xm,1 + Xm,2 + et Xm,i
Xm = "

comi=1,...,t,sendo t o nimero de observacbes na amostra m.

Montgomery (2004) apresenta os limites de controle como:

LSC =%+ A,R

C=x

h

LIC =X — A,R
onde A, é uma constante tabulada para diversos tamanhos de amostra, x é a média das

observacdes das m amostras e R a média das amplitudes das m amostras, que sdo dadas por,

respectivamente:
m

=l
Il

R1+R2+“’+Rm
m

R

onde R;,j = 1, ..., m amplitude calculada para a a amostra j, dada por:

R; = méx(xj_i) — min (x;;)

Il.  Gréafico da amplitude (R)

Este grafico usa a amplitude de um processo como estatistica a ser controlada, com o

intuito de monitorar, e controlar, a variabilidade de um processo. Neste caso, 0s parametros

para o grafico R apresentados por Montgomery (2004) s&o:

LSC = D,R
LC=R
LIC = D4R

onde D, e D5 sdo constantes tabuladas de acordo com o nimero de observagdes da amostra.
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I1l.  Gréfico para desvio-padrao

Também conhecido como gréfico S, o gréafico para desvio padrdo é utilizado para
controlar a variabilidade do processo, assim como os graficos R, mas a partir do monitoramento

do desvio padréo, que pode ser calculado da seguinte forma:

Para elaborar os graficos de controle, sdo usados os seguintes limites definidos por
Montgomery (2004):

LSC = B,S
LC=S
LIC = B;S

onde B; e B, sdo constantes tabuladas para diversos tamanhos de amostras e S é o desvio padrio

médio das m amostras.
3.1.2. Gréficos de Controle de Soma Cumulativa (CUSUM)

Os graficos CUSUM foram introduzidos por Page (1954), e sdo classificados como
graficos com memoria. Isso significa que, diferente dos graficos de Shewhart, ele considera
informacdes fornecidas por toda a sequéncia de observacgdes, ndo apenas a mais recente. Esta

caracteristica permite que graficos com memoria sejam mais sensiveis a pequenas variagdes.

O processo de soma cumulativa pode ser aplicado a diversas variaveis, mas nesta
subsecdo sera abordado apenas o caso do CUSUM tabular para monitoramento de meédia de
processos. Basicamente, considerando a média do processo u, como valor alvo, é calculado a
soma total de todos os desvios acima deste valor, o que resulta na estatistica CUSUM unilateral
superior C*. Analogamente, para os desvios abaixo do valor alvo é calculada a estatistica
CUSUM unilateral inferior C*. Montgomery (2004) apresenta a seguinte forma de calculo

destas estatisticas:

Cit = méx[0,x; — (uo + K) + Ci,]
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C; =max[0, (U, + K) —x; + C_4]

onde C;" e C; sdo os valores da estatistica acumulados até a observacéo i, sendo que C;j =
Cy = 0, e K éovalor de referéncia, ou valor de folga. Seu valor é calculado como a metade da

distancia entre u, e o valor da média fora de controle p;:

6 _ |1 — ol
2 2

Para que seja classificado como fora de controle, as estatisticas C;" e C;” devem exceder
o intervalo de decisdo H. Este intervalo é definido a partir do valor de ARL que se deseja obter,

através da testagem de diversos cenarios.
3.1.3. Gréficos de Controle de Média Movel Exponencialmente Ponderada (MMEP)

O grafico MMEP apresentado por Roberts (1959), assim como 0 modelo CUSUM, é
classificado como grafico com memoéria. E normalmente aplicado aos casos em que as
observagdes feitas sdo individuais e é regularmente lembrado por ser de facil aplicagdo.
Segundo Montgomery, Jennings e Kulachi (2008), este tipo de grafico € muito utilizado para

previsdes e modelos de séries temporais.

O primeiro passo da construcdo da estatistica z;, para a qual Samohyl (2009) apresenta

a SegUinte equa(;é.o:
Z; = /1X'i + (1 - A)Zi—l

onde i representa o periodo de tempo, x; é o valor da série observado em i e A € uma constante,

sendoque 0 < A < 1.Parai = 0, é considerado z, = u,, a média dos valores observados.

Samohy! (2009) aponta que como z; é calculado em funcéo de x; e z;_;, a partir de uma
série de substituicbes sequenciais para valores passados € possivel observar que 0 MMEP
calcula o valor atual da estatistica com base em todos valores passados, com as observacdes

mais recentes tendo um peso maior no célculo da média.

A partir do célculo da estatistica z; para todos valores de i do processo analisado,
Montgomery (2004) apresenta as seguintes formas de calculo dos parametros LC, LSC e LIC

do grafico de controle:
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[1-(@1 -]

LSC = L
SC =y, + G\/(Z—A)

LC = u,

2 .
LIC=uo—L0\/(2_A)[1—(1—l)2‘]

Sendo ¢ o0 desvio padrdo dos valores observados e u, 0 valor alvo do processo. Tanto
os valores de A quanto L devem ser selecionados de acordo com o ARL que se deseja alcancar.
Vale ressaltar aqui, que a partir da equacdo da estatistica z; percebe-se que um A menor significa
um maior peso atribuido aos dados histéricos do processo, 0 que possibilita uma deteccao mais
eficaz de pequenas variag@es. Se for usado A = 1, o gradfico MMEP ¢é equivalente a um grafico
de Shewhart.
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4. METODOLOGIA

Neste capitulo sera explicada detalhadamente a metodologia aplicada para se obter um
modelo de previsdo da série e como sera feito seu monitoramento a partir de controle estatistico

de processos e gréficos de controle.

4.1. Obtencéo dos dados

O primeiro passo do trabalho sera a coleta de dados para 0s quais se busca construir o
modelo de monitoramento. Um ponto importante a ser considerado € a confiabilidade das
informacdes. Para 0 modelo se provar Gtil e cumprir seu prop6sito, é necessario que ele seja
alimentado com informacgdes que realmente reflitam a situagdo real. Esse ponto se torna ainda
mais importante considerando a complexidade de se realizar o controle de uma carteira de
recebiveis. Para se calcular a inadimpléncia, € necessario possuir, para todas as parcelas de

todos os devedores, as seguintes informagdes:
a) data de Vencimento;
b) valor da parcela;
c) data de pagamento;
d) valor pago.

Uma operacgéo de securitizagdo pode envolver diversos empreendimentos, que podem
totalizar milhares de devedores, cada um com dezenas de parcelas a pagar. Para se calcular o
indice de inadimpléncia, é necessario apurar todos pagamentos recebidos, associar cada um
desses pagamentos a um devedor especifico e comparar o valor pago com o valor da parcela, e

a data de pagamento com a data de vencimento.

Para realizar esse controle, normalmente a securitizadora contrata um prestador de
servico denominado Servicer, que realiza um monitoramento mensal dos pagamentos
recebidos. O Servicer entdo condensa todas essas informac¢es em uma planilha de uma forma
apropriada para tratamento dos dados e anélise. Dessa forma, ao se utilizar este relatorio pode-

se contar com informac®es confiaveis e de facil uso.
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No entanto, este relatorio apresenta apenas uma relacdo dos pagamentos devidos e
recebidos, ndo contemplando o indice de inadimpléncia em si, que devera ser calculado pela

seguinte formula:

Pagamentos Recebidos em Dia

Inadimplénciano Més = 1 —
P Pagamentos Esperados — Pagamentos Antecipados

sendo 0s pagamentos expressos em seu valor em reais.

Assim, ao final desta etapa, deve-se estar em posse de uma planilha com o calculo deste
indice para cada més desde o inicio das vendas do empreendimento, para poder contemplar a

evolucdo dessa métrica ao longo do tempo, obtendo assim uma série temporal.

4.2. Andlise e ajuste da série

O objetivo desta secdo é aplicar métodos e conceitos para que a série analisada possua
as caracteristicas necessarias ao uso de modelos paramétricos lineares. Os codigos
desenvolvidos para esta subsecdo, bem como para as secOes 4.3 e 4.4, estdo apresentados no
Apéndice A. Foram considerados 0s seguintes passos:

Passo 1: uma andlise visual da série. Caso seja observada instabilidade na variancia ao
longo do tempo, sera aplicada a transformacéo proposta por Box e Cox (1964), introduzida na
secdo 2.2 deste trabalho, para que se estabilize a variancia. Conforme explicado, para aplicar
esse método € necessario estimar os parametros y e c. Estes serdo definidos a partir da funcéo

boxcox.lambda() do RStudio, que fornece os valores que minimizam a variagdo da variancia.

Passo 2: avaliar a estacionariedade da série. Para isso, sera aplicado o teste Dickey-
Fuller aumentado. Como output, o programa retorna um valor p — value, e caso ele seja menor
que 0,05, pode-se rejeitar a hipotese nula e assumir estacionariedade. Caso seja verificada a ndo
estacionariedade da série, serdo tomadas quantas diferencas forem necessarias até ela se torne
estacionaria. No entanto, Morettin e Toloi (2006) defendem que na maioria dos casos 1 ou 2

diferencas costumam ser suficientes para obter uma série estacionaria.

Passo 3: € avaliado se a série possui uma distribui¢do aproximadamente igual a normal
com a aplicagdo do teste de Shapiro-Wilk, através da fungdo shapiro. test() do RStudio, que
jacalculaavariavel b adequada. Esta funcéo retorna o valor p — value, e caso este seja superior

a 0,05, pode-se aceitar a hipotese nula e concluir que a série € gaussiana. Ainda para analisar a
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normalidade, sera elaborado o gréafico Q-Q Plot com os pontos da série, e seré feita uma analise
visual deste. Se 0s pontos estiverem proximos da reta que representa a distribuicdo normal,
pode-se assumir normalidade. Caso ndo haja normalidade, deverdo ser aplicadas

transformacdes adicionais para corrigir a série.

Passo 4: finalmente serd avaliada a independéncia da série, através da analise das
autocorrelagdes e autocorrelagdes parciais, usando as fungdes fac() e facp() do RStudio,
respectivamente. Essas func¢des serdo aplicadas até o lag 50, para se avaliar um intervalo
suficientemente longo e perceber a existéncia de todas autocorrelacdes relevantes. O intervalo
limite que divide as autocorrelagcdes relevantes das demais ja é calculado pelo programa, e

mostrado visualmente junto aos valores encontrados para facilitar a analise.

4.3. Identificagcdo do modelo

Uma vez analisadas as caracteristicas da série e aplicados os devidos ajustes, parte-se
entdo para a etapa de identificacdo do modelo paramétrico que se adequa melhor a ela. Uma
metodologia que serve de referéncia neste campo € a abordagem iterativa em 4 estagios de Box
e Jenkins (1976):

a) especificacdo: uma classe geral de modelos é considerada para andlise;

b) identificacdo: com base nas autocorrelagdes, nas autocorrelagdes parciais e outros

critérios, identificar um candidato de modelo;
c) estimacdo: determinar os parametros para 0 modelo candidato;

d) diagndstico/verificacdo: analise de residuos para determinar se 0 modelo ajustado é
adequado para os fins que se procura atingir.

Durante as etapas de estimacdo ou diagndstico, caso os resultados obtidos ndo sejam
satisfatorios, volta-se para a etapa de identificagdo, seguindo desta forma até se achar um

modelo adequado. Nesta subsecdo serdo abordados os trés primeiros passos.

Em relacéo a especificagédo, aqui serdo utilizados modelos autorregressivos integrados
de média méveis ARIMA(p,d,q), por ser uma classe mais ampla que engloba tanto os casos de
modelos AR(p), MA(q) e ARMA(p,q).
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A etapa de identificacdo é uma das mais trabalhosas e importantes de todo o processo.
Morettin e Toloi (2006) citam as seguintes caracteristicas da autocorrelacdo de uma serie que

auxiliam na identificacdo de um modelo adequado:

a) um processo AR(p) tem fac que decai de acordo com exponenciais e/ou senoides

amortecidas, infinita em extensao;

b) um processo MA(q) tem fac finita, no sentido em que ela apresenta um corte apos

O Gélag” q;

c) um processo ARMA(p,q) tem fac infinita em extensdo, a qual decai de acordo com

exponenciais e/ou sendides amortecidas ap6s o “lag” p-g.

Da mesma forma, Morettin e Toloi (2006) apresentam as caracteristicas das

autocorrelacOes parciais para cada classe de modelos:
a) Um processo AR(p) tem facp ¢y, # 0, parak < p e oy, = 0 parak > p;

b) Um processo MA(q) tem facp que se comporta de maneira similar a fac de um

processo AR(p): é denominada por exponenciais e/ou sendides amortecidas;

c) Um processo ARMA(p,q) tem facp que se comporta como a facp de um processo
MA puro.

Devido a sua maior complexidade, a identificacdo de modelos ARMA pode ser dificil
atraves da andlise de sua fac e facp. Assim, neste caso, é recomendado o teste de uma variedade
de modelos, preferencialmente com numero reduzido de parametros, e comparacdao deles
através de métodos pré-estabelecidos. Akaike (1973) indica como mais adequado o modelo
ARIMA(Kk,i,I), onde k, i e [ sdo as ordens com as quais 0 seguinte critério apresenta seu valor

minimo:

AIC(k,d,1) = N1n 62 +

N
N_dZ(k+l+1+6d0)

em que:
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sendo N o niimero de observacdes na amostrae 62 o estimador da maxima verossimilhanca de

a2, definido por:

A2 Z?=1(xl' - Zi)z
fl="rbr
n

sendo x; os valores das observagdes da série e z; 0s valores obtidos atraves do modelo. Assim,
o melhor modelo devera ter o menor valor do AlC.

Importante ressaltar que até agora foi abordado apenas o caso dos modelos cheios, que
séo 0s modelos de ordem p e g que possuem p + g + 1 pardmetros diferentes de zero. O caso
ideal é aquele em que se acha um modelo com um nimero minimo de parametros. Assim, é
interessante estudar também os chamados modelos reduzidos, que sdo aqueles de ordem p e g,
mas em que apenas uma fracdo dos p + q + 1 parametros sao diferentes de zero. Para se validar

0 uso do modelo reduzido ao invés do completo, utiliza-se o seguinte teste de hipotese:

H,: 0 modelo reduzido é equivalente ao completo

H;: 0 modelo reduzido ndo é equivalente ao completo

Para tal, sdo comparados o valor AAIC, diferenca entre o critério de Akaike dos modelos
completo e reduzido, e o valor de x?2, que é o valor atribuido para a distribuicdo qui-quadrado
para um grau de liberdade igual a diferenca entre 0 nimero de parametros nos modelos cheio e
reduzido, e um @ = 0,05. Caso AAIC < x?, a hipétese nula é tomada como verdadeira e

segue-se a analise com o modelo reduzido.

Outro critério importante para avaliacdo dos modelos € a precisdo de suas projecoes.
Para tal avaliacdo, é usada apenas uma porcdo da série de dados para definicdo do modelo
paramétrico. Por exemplo, em uma serie de 1.000 observagdes, a modelagem seria feita a partir
dos 900 primeiros. Uma vez que 0 modelo é encontrado e todos seus parametros sédo calculados,
é feita uma projecédo dos valores futuros da série. Estas sdo entdo comparadas aos valores reais

para determinar a sua preciséo.

Sendo y; a observacdo medida em ¢t e F; a previsao para y;, 0 erro da previsdo é dado
por e; =y — F;. Hyndman e Koehler (2005) apresentam critérios de avaliacdo amplamente
utilizados, calculados a partir dessas variaveis: a média do erro ao quadrado MSE (do inglés
Mean Square Error) e a raiz da média do erro ao quadrado RMSE (do inglés Root Mean Square

Error), que séo dados por:
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ef +ej + - +ef

MSE =
f

RMSE = VMSE

sendo f 0 numero de projecBes a serem comparadas com a série original. Os modelos mais
apropriados serdo aqueles que minimizem os resultados de MSE e RMSE, dada a série de

inadimpléncia utilizada.

Uma vez descobertas a classe e as ordens do modelo, 0 préximo passo € estimar seus
parametros. Para isso sera utilizada a fungédo arima() do RStudio. Eles sdo obtidos através do
método dos minimos quadrados. Em suma, este método consiste em buscar 0s parametros que
registrem 0s menores erros entre os Vvalores encontrados pelo modelo e os valores

experimentais.

4.4, Diagnéstico do modelo

Neste momento serd aplicado o quarto passo do método de Box e Jenkins (1976), o
diagndstico do modelo. Aqui serdo realizados uma série de testes para verificar se ele é
adequado para prever os valores futuros da série. Mais especificamente, sdo analisados 0s
residuos da série, que € a diferenca entre os valores experimentais e aqueles encontrados pelo

modelo. Sendo Z,uma série temporal, e W, = AZ,, suponha o modelo:
d(B)W, = 8(B)a;
Morettin e Toloi (2006) definem o erro verdadeiro desse modelo como:
a, = 6" (B)p(B)W,

Segundo os autores, caso 0 modelo seja adequado, esses erros irdo se comportar como
ruidos brancos. Isso portanto servira de critério para sua aprovacdo. Caso este se prove

inadequado, volta-se para a etapa de identificagdo do modelo.

O primeiro teste a ser aplicado é o de Ljung e Box (1978). Esse método se baseia em

um teste de hipétese, onde:

Hy: os residuos sdo independentes e identicamente distribuidos

H,:os residuos ndo sdo independentes e identicamente distribuidos
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Para isso, ¢ calculada a seguinte estatistica:

2

K
Q) =n(n+2) y
=nn-+ —
i (n— )
Jj=1
na qual K € o valor do lag analisado, n é igual 0 nimero de observa¢Ges menos o nimero de

diferencas tomadas, e 7; € a autocorrelagdo do residuo @, dada por:

p o= Dt=r+1 Qe
! X, a’
Considerando um nivel de confianca o, a hipdtese nula H, é rejeitada se o valor de Q(K)
for superior ao valor atribuido a distribui¢do qui-quadrado para a e grau de liberdade igual a

K - p- q. Assim, o modelo serd aprovado no diagnéstico caso a hipétese nula ndo seja

rejeitada.

Mesmo que haja resultados positivos na aplicacdo do teste de Ljung e Box (1978), seréo
aplicados testes adicionais para se garantir que o modelo é apropriado com maior rigor. O
segundo teste entdo serd o de Shapiro-Wilk, para verificar se o0s residuos apresentam
distribuicdo proxima da normal. Novamente, sera assumida normalidade caso o programa

retorne um p — value superior a 0,05.

Por Ultimo serdo avaliadas a fac e facp dos residuos. Uma caracteristica de ruidos
brancos € que as observaces em diferentes momentos ndo estdo correlacionadas. Assim, para
aprovar o modelo, € preciso que a analise das duas funcdes ndo mostre autocorrelacdes fora dos
intervalos de confianga estabelecidos. Caso mostre, significa que ha informacdo relevante

contida nos residuos que nao esta sendo captada pelo modelo.

Tendo resultados favoraveis nos trés testes, pode-se assumir que o modelo encontrado
é adequado e avancar para a proxima etapa. Caso qualquer um dos trés tenha resultado negativo,
nédo se pode assumir que os residuos se comportam como ruidos brancos e deve-se selecionar

outro modelo encontrado na fase de identificagdo, e submeté-lo ao diagndstico aqui explicado.

4.5. Escolha do gréfico de controle
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Nesta etapa, serd selecionada a melhor opcdo de grafico de controle dentre as
alternativas apresentadas na subsecdo 3.1, tendo em mente o propdsito deste trabalho e o

modelo paramétrico encontrado durante a analise da série de inadimpléncia.

Para esta escolha, sera utilizado o fluxograma apresentado na Figura 11, proposto por
Montgomery (2004).

Figura 11 - Fluxograma de selecao de grafico de controle

Guia para Controle e Monitoramento de Processo Univariado

Os dados séo
autocorrelacionados?

NAO SIM
Variaveis ou atributos? Ha uma varidvel de ajuste?
Variaveis Atributos NAO SIM
Tamanho da amostra Tipo de dado apﬁg“jéegf_\;g‘("):a 5
controle padréo Use controle
n>1 n=1 Fracao Defeitos (contagem) (MMEP, CUSUM, x, MR) de retroagéo
ou aos residuos ou com um grafico
aos dados de ajuste
Tamanho da Tamanho da Tamanho da Tamanho da originais ou
mudanca mudanca mudanca mudanca ou outro procedimento
use MMEP com linha de CEnP
Grande Pequeno Grande|Pequeno Grande Pequeno Grande Pequeno central mével ou
ou CEnP/CEP
use uma abordagem
R | |cusum|| . %P |lcysum|| p CUSUM | | ¢ e livre de modelo
25 MMep | | ndividuais) | | yes ||, MMEP | | « MMEF -
MR usando p usando ¢, u;
tempo entre
eventos

Fonte: Montgomery (2004)

Logo, o primeiro passo sera avaliar a funcdo de autocorrelacdo, conforme indicado na
secdo 4.2, e a partir dela serdo avaliados os demais ramos do fluxograma até se encontrar a

alternativa mais adequada.

4.6. Definicéo dos limites de controle

Como sera relatado em detalhes na secéo 5.5, o grafico de controle escolhido através de
fluxograma foi o de media mével exponencialmente ponderada. Portanto, nesta se¢do serdo
apresentados os procedimentos a serem adotados para defini¢do de todos pardmetro necessarios

a aplicacdo do MMEP.

O ponto de partida para definicdo dos limites de controle é definir um valor alvo para o

ARL,. Esta variavel indica o intervalo médio de observacfes entre alarmes falsos em um



57

processo sob controle, e, portanto, deve ser adequada ao contexto em que se busca aplicar o
grafico de controle.

Para servir de referéncia, sera apresentado o caso do grafico x com limite de trés sigmas
(desvio padrdo da estatistica), apresentado por Montgomery (2004). Neste caso, 0 ARL, é
calculado como o inverso do da probabilidade p de um ponto estar fora dos limites de controle.
Para este modelo de limite de trés sigmas, tem-se que p = 0,0027, logo:

ARLy = = = 370

S| -

Esse é o valor considerado padrdo e serve como ponto de partida para outras analises.
No entanto, considerando que os dados de inadimpléncia sdo obtidos em uma frequéncia
mensal, um ARL, igual a 370 significaria um alarme falso a cada 30 anos, um periodo muito
longo considerando o horizonte de observacao da amostra usada. E como foi explorado na se¢éo
3.1., ao se aumentar demais 0 ARL, hd uma reducdo do ARL4, 0 que prejudica a capacidade do

gréafico de detectar observacdes fora de controle.

Assim, conclui-se que devido as caracteristicas da série € necessario adotar um ARL,
significativamente menor. Sera adotado entdo ARL, igual a 36 meses, ou 3 anos. Dado o
contexto em que aumentos na inadimpléncia podem gerar perdas para investidores, e como elas
podem se manifestar em curtos espagos de tempo, é preferivel que seja considerado um
intervalo menor entre alarmes falsos em prol de uma maior capacidade de deteccdo de pontos

fora de controle.

Os préximos passos entdo consistem na determinacdo do fator de suavizacdo A e,
finalmente, a definicdo dos limites de controle, através de um processo iterativo de simulagdes

que serd explicado em detalhes nas proximas subsecdes.

4.6.1. Calculo do Fator de Suavizagdo A

Conforme explicado na subsecdo 3.1.3, os graficos da classe MMEP s&o definidos por:

Zi = lxi + (1 - A)Zi—l

Os valores de x; sdo as observacfes da série de inadimpléncia, faltando assim definir

apenas o parametro A para que se possa calcular as estatisticas z;.
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Hunter (1986) sugere o método de minima soma dos quadrados dos erros para
determinar A. Primeiramente, é adotado X;,, como a predi¢do feita no final do periodo i para a

observacdo que seré verificada no periodo i + 1. Define-se ent&o:
Xiy1 = 2

Ou seja, a estatistica z; é equivalente a predicéo feita no periodo i para a observagéo que
ocorreraem i + 1. Pode-se entdo calcular o erro do modelo através da diferenca entre a predicéo

da observacéo para o periodo i e o valor de fato observado:

que também pode ser descrita como:

Portanto, atraveés da ferramenta RStudio, serd desenvolvido um processo iterativo para
definir um A 6timo, cujo cddigo estéa apresentado no Apéndice B. Inicialmente serdo calculados
os valores de z; da série e seus respectivos erros para um determinado valor de A, e entdo sera
obtida a soma dos quadrados dos erros. Esse processo sera repetido para diversos valores de A,
e o0 valor da soma dos quadrados dos erros anotado. Aquele A que minimizar esta soma sera o
valor 6timo adotado para o MMEP. Para testar uma variedade significativa de valores, sera

usado um valor inicial de A de 0,01 e um passo de 0,005, que resulta em 198 iteracdes.

4.6.2. Definicdo ARL sob Controle

Ap0s a definicdo do parametro A e do valor de ARL,, 0 Gltimo passo para implementacéo
do gréafico é definir seus limites de controle. Como apresentado na subsecao 3.1.3., os limites

de controle e a linha central do MMEP séo calculados por:

A .
LSC=MO+LJ\/(2_A)[1—(1—A)21]

LC = p,

A .
LIC=u0—Laj(2_/1)[1—(1—/1)2‘]
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Em relacdo a linha central, o valor alvo do processo u,, € especifico para cada operacdo
de securitizagdo. Durante a analise, sdo verificados os niveis atuais de inadimpléncia e a
modelagem é feita a partir deles. Dessa forma, o valor de u, normalmente corresponde a média

do processo observada até ent&o.

A partir da analise da série temporal sera determinado seu desvio padrdo, de modo que
a Gltima variavel a ser definida € o L. Para tal sera aplicado um algoritmo desenvolvido com a

ferramenta RStudio, apresentado no Apéndice C.

O primeiro passo consiste em obter valores da série simulada x;. Para isso sera usado o
modelo paramétrico a ser encontrado pelo procedimento descrito na secdo 4.3. A partir deste
modelo, serdo introduzidos valores de residuos a; para se obter uma simulagao de x,. Segundo
a bibliografia apresentada, a, precisa se comportar como ruido branco em processo sob
controle. Para adaptar o modelo a série de inadimpléncia estudada, os valores de a, usados

serdo gerados a partir da variancia amostral dos residuos o7 do modelo paramétrico ajustado,

ou seja, a;~N(0,+/aZ). Em seguida, com os valores da série, serdo calculados os valores da
estatistica z, do MMEP.

Tendo definido os valores de z;, serdo calculados os limites de controle para cada
periodo t analisado. O programa ira seguir comparando os valores de z, com os limites de
controle, com o intuito de obter o intervalo de observacdes entre a primeira observacao e a
primeira ocorréncia de uma observacéo fora dos limites. Quando esse valor para o comprimento
de sequéncia (o nimero de observacGes até que haja um ponto fora de controle) for obtido, ele
¢ anotado e se inicia uma nova simulagdo com os mesmos parametros. Serdo obtidos N = 2.000
comprimentos de sequéncia para cada iteragdo. Ao fim das simulacées, séo somados todos 0s
comprimentos de sequéncia, e essa soma ¢ dividida pelo nimero de simulagdes, resultando no

valor de ARL médio para estas condi¢oes.

O processo citado acima é entdo iterado para diferentes valores de L, até que o ARL
encontrado seja menor que 0 ARL, pré-definido. Para apresentar o processo de uma forma mais
estruturada, foi elaborado o fluxograma apresentado na Figura 12. Segue um breve resumo das

variaveis envolvidas para orientar a leitura do fluxograma:

a) ARLy: valor alvo do ARL, é usado como referéncia para definir o fim das

simulagdes;
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b)

d)

f)

9)

h)

)

k)

N: nimero de simulagdes a serem feitas para cada valor de L;

X, lista contendo os valores simulados da série, obtida através do modelo ARIMA

ajustado e dos valores de a,~N(0,+/07);

Z,: valor da estatistica para calculo do MMEP. Utiliza o parametro A calculado na

subsecdo 4.6.1. Sera usado z, igual a média dos valores de X;;

LSC: valor para o limite superior de controle, calculado a partir da equacéo

apresentada no inicio desta subsecao;

LIC: valor para o limite inferior de controle, calculado a partir da equacédo

apresentada no inicio desta subsecao;

L: parametro usado para calculo dos limites de controle e valor que se deseja

encontrar. Comecga como 1 e vai sendo incrementado em 0,01 por iteracéo;

Cont: variavel para acompanhar o nimero de simulagdes feitas para cada valor de
L, varia de 1 a 2.000;

t: varidvel que acompanha o nimero de observacdes analisadas;

Soma: soma dos valores de até uma ocorréncia fora dos limites de controle nas N

simulagdes;

ARL_sim: ARL encontrado para a simulacdo atual pela divisdo de Soma por N.
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Figura 12 - Fluxograma do algoritmo de definicdo do ARL em processo sob controle
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Fonte: Elaborado pelo autor

4.6.3. Determinagdo ARL Fora de Controle

ARL_sim >= ARLo

Fim

Com os limites de controle definidos, serad calculado o ARL,; do gréafico de controle

elaborado, através da simulacdo de um processo fora de controle. Retomando a bibliografia, o

ARL, representa 0 numero médio de observacdes até que seja verificada uma observacéo fora

dos limites, para processos fora de controle.

Para isso, foi novamente desenvolvido um algoritmo iterativo, muito semelhante ao

apresentado na subse¢do 4.6.2. Em suma, o algoritmo ird simular uma série temporal a partir
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do modelo paramétrico ajustado durante a etapa de identificacdo do modelo. Serdo simulados
diversos valores de x; a partir de residuos a;, e nesse ponto ha uma diferenca relevante em

relagdo ao calculo do ARL,. Para simular um processo fora de controle, a média dos residuos
sera incrementada por 10% do desvio padrdo por vez, isto é, a;~N(c.\/03,+/03), com ¢ =
0,..,1,5.

Com esses dados, serdo calculadas as estatisticas z; (com o fator de suavizagdo 6timo
encontrado) e os limites de controle para cada periodo t. Os dois serdo comparados para cada
periodo t até que um ponto seja detectado fora do limite de controle. Sera entdo anotado o
nimero de ocorréncias até que haja um alarme, e 0 processo sera repetido para estes parametros
N = 2.000 vezes. Ao fim das simulacfes, 0 ARL, é calculado como a média desses valores.

Esse processo entdo € iterado até que ¢ = 1.5, a partir de incrementos de 0,1 por iteracéo.

Diferente do algoritmo para definicdo do ARL,, 0 objetivo deste ndo é encontrar um
valor fixo para a varidvel a ser iterada, neste caso o fator ¢, mas sim realizar um estudo de
sensibilidade sobre o efeito de um crescimento na média dos residuos sobre a habilidade do

grafico de detectar pontos fora de controle em processos que ndo estdo sob controle.

A Figura 13 mostra o fluxograma que explica a lIdgica do algoritmo, cujo codigo esta
apresentado no Apéndice D. Em adicdo as variaveis apresentadas no algoritmo do ARL,, serdo

usadas neste caso:
a) c: fator de incremento da média dos residuos. Ira variar entre 0 e 1,5;

b) Lista: lista que registra 0 ARL encontrado para cada valor de c.
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Figura 13 - Fluxograma do algoritmo de definicdo do ARL em processo fora de controle
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Fonte: Elaborado pelo autor

4.7. Avaliacao dos Resultados

O objetivo final desse trabalho é o desenvolvimento de um modelo paramétrico que
possa projetar valores de séries de inadimpléncia com base em seu historico, e a aplicacéo de
um gréafico de controle para que se a avalie 0 comportamento dessa série, que aqui sera vista
COmo um processo, e aponte a necessidade de intervencdo quando estiver fora de controle. Com

esses objetivos em mente, a avaliacdo dos resultados obtidos serd dividida em trés etapas:

a) Modelo Parametrico: a série de inadimpléncia que sera utilizada neste trabalho tem
um total de 175 observacdes, correspondente a um periodo de 15,4 anos, lembrando

que a frequéncia de observacdes é mensal. No entanto, para o desenvolvimento do
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b)

modelo, serdo usadas apenas as 155 primeiras observacGes. Portanto, havera 20
observacdes que ndo foram introduzidas no modelo, mas deverdo ser previstas por
ele. A primeira avaliacdo sera feita pelo calculo do erro médio entre as projecoes e
os valores reais. Com essas 20 observacOes sera possivel avaliar a capacidade de
projecdo em um horizonte de 1 anos e 8 meses, que ja seria de grande utilidade a

empresa;

Gréafico de controle: a eficiéncia do grafico desenvolvido sera julgada através da
capacidade de detectar um processo fora de controle, com base no historico
conhecido dessa série em particular. E importante que a partir dele seja possivel
diferenciar variacGes aleatdrias das assinalaveis, que sdo aquelas passiveis de
medidas preventivas ou corretivas. Como 0s recebiveis de carteira imobiliaria
geralmente representam quantias elevadas de capital, é interessante que o grafico
seja capaz de detectar pequenas variages na inadimpléncia, pois estas podem
representar variacOes relevantes no montante de dinheiro a ser recebido. Seréo
analisadas as observaces fora dos limites de controle e comparado com o historico
de inadimpléncia para constatar se correspondem a periodos em que a Ssérie

apresentou um comportamento atipico;

Apos ser constatado que ambas as etapas acima atendem o seu propésito, seré feita
uma comparacao da aplicagdo da metodologia desenvolvida em relagdo a situacdo
atual da empresa. Esta Ultima etapa, de carater mais qualitativo, visa esclarecer
quais beneficios a Fortesec obteria com a uso de séries temporais e graficos de

controle em suas operacdes e validar a adogéo da solugdo proposta.
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5. APLICACAO SOBRE O PROBLEMA PROPOSTO

Neste capitulo sera apresentada a aplicacdo da metodologia desenvolvida no capitulo
anterior para o caso da Fortesec. A partir de uma série temporal de dados de inadimpléncia, sera
ajustado um modelo paramétrico para previsdao dos valores futuros, e na sequéncia serdo
definidos os parametros necessarios para desenvolvimento do MMEP que sera usado para o
monitoramento desta série. Por ultimo, os resultados serdo avaliados para determinar se a

solucdo foi capaz de atender o propdsito proposto neste trabalho.
5.1. Coleta dos dados

Os dados foram extraidos de um relatério fornecido por um agente de monitoramento
contratado pela Fortesec para acompanhar os pagamentos em uma de suas operagdes de
securitizacdo. O empreendimento em questdo se trata de um loteamento no estado de S&o Paulo,

voltado ao publico de classe B e C.

Foi escolhida uma série com um histérico grande de pagamentos para obter uma amostra
com uma quantidade significativa de observacGes que permitisse a aplicacdo de modelos
paramétricos. Neste caso, a amostra € composta por 175 observacdes, equivalente a quase 15
anos de monitoramento. Mas para fins de validacdo posterior do modelo, apenas os 155

primeiros meses serdao usados nas proximas etapas.

Uma vez obtidos os dados, eles serviram de base para o calculo da inadimpléncia
mensal, a partir do uso do Excel. Os valores séo apresentados no Anexo A. Como se pode notar,

a série é composta por nimeros positivos, entre 0 e 1.

5.2. Analise e ajustes na série

A serie original x; entdo foi introduzida ao RStudio, no qual foi gerado sua
representacdo grafica, mostrada na Figura 14.
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Figura 14 - Série de indices de inadimpléncia
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Fonte: Elaborado pelo autor

Fica claro ao observar a imagem de que é necessario estabilizar a variancia da série.
Principalmente no inicio nota-se uma variacao alta de um més para o outro. Para corrigir a série,

foi aplicada a transformacéo de Box e Cox (1964). O parédmetro y utilizado foi definido pelo

RStudio, com valor igual a 0,26487. A serie xt(”) apos a aplicacao da transformacéo é mostrada

na Figura 15.

Figura 15 - Série transformada
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Fonte: Elaborado pelo autor

Visualmente, nota-se que ha uma estabilizacdo da variancia, apesar de sugerir que ainda

é necessario estabilizar a média da série. Foi entdo aplicado o teste de Dickey-Fuller aumentado.
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O programa retornou um p — value igual a 0,3102. Assim, ndo se pode rejeitar a hipdtese nula

de ndo estacionariedade. Para tentar estabilizar a média, foi utilizada a primeira diferenca da

série xé”. A Figura 16 mostra o resultado desta operacéo.

Figura 16 - Série estacionaria
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Fonte: Elaborado pelo autor

Realizando novamente o teste de Dickey-Fuller aumentado, obteve-se um p — value

menor que 0,01. Dessa forma, a hipdtese nula € rejeitada e pode-se assumir a estacionariedade

da série Ax.".

Para se analisar Axt(”) quanto a sua distribuicdo, foi elaborado o gréafico Q-Q plot

segundo uma distribuicdo normal, conforme mostrado na figura 17.
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Figura 17 - Q-Q Plot da série estacionaria
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Fonte: Elaborado pelo autor

Apesar de nas extremidades 0s pontos da série se afastarem da reta normal, levando em
consideracdo o comportamento médio da série, 0 teste sugere que hd normalidade. Para
confirmar, foi aplicado o teste ndo paramétrico de Shapiro-Wilk. Para a série estacionaria, 0
programa retornou um p — value igual a 0,4311. Como é maior do que 0,05, pode-se tomar a

hip6tese nula como verdadeira e assumir que a série segue uma distribuicdo gaussiana.

Por ultimo, a série sera analisada sob o ponto de vista da independéncia. Os valores
encontrados para as autocorrelagcfes e autocorrelacBes parciais estdo apresentados nas Figuras

18 e 19, respectivamente.

Figura 18 - Valores de autocorrelacdo
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Fonte: Elaborado pelo autor
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Figura 19 - Valores de autocorrelacéo parcial
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Fonte: Elaborado pelo autor

Como se pode observar, ambas as funcgdes apresentam um comportamento que lembra
uma senoide amortecida, o que sugere que o modelo adequado seja da classe ARMA(p,q). Ao
analisar as autocorrelacdes, nota-se que valores significativos ocorrem apenas para os lags 1, 2

e 19. Em relacdo a autocorrelagdo parcial, os lags relevantes sao 0 1, 2, 3 e 9.

5.3. Identificagdo do modelo

A partir da analise da funcdo de autocorrelacdo e autocorrelacdo parcial, a etapa de
identificacdo comecou com o teste de diversos modelos ARMA(p,q). Foi considerada esta
classe de modelos, pois ja esta sendo usada a primeira diferenca da série transformada, e foi
constatado que esta é estacionaria, 0 que dispensa a necessidade de diferencas adicionais.
Portanto serdo avaliados modelos ARMA(p,q), equivalentes ao ARIMA(p,0,q).

Pela analise da autocorrelacdo, ndo é possivel definir p e g. Assim, para se encontrar o
modelo apropriado, foram testadas alternativas para diferentes combinagfes de p e g, ambos
variando de 1 a 12. A partir de dados empiricos, foi adotada a premissa de que apenas as
observagdes ocorridas no Ultimo ano podem ter efeito sobre a inadimpléncia em um dado

periodo, portanto o limite para as ordens p e g escolhido foi 12.

Para cada modelo analisado, foi calculado o valor de seu AIC como critério de selecéo.
Por se tratar de um nimero muito grande de alternativas, foi aplicado um teste preliminar de

diagndstico do modelo, através da geracdo um gréfico de autocorrelagdo dos residuos. Aqueles
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que possuiam autocorrelagdes relevantes foram eliminados. Dessa forma pdde-se realizar uma
selecdo preliminar mais rapida que o diagndstico completo, e assim avancgar apenas com 0S
modelos mais promissores. A Tabela 01 mostra os 10 modelos com os menores valores de AIC

encontrados.

Tabela 01 - Valores de AIC para os modelos testados

Modelo AIC
ARMA (4,5) 85,107
ARMA (5,5) 86,915
ARMA (6,4) 87,069
ARMA (3,6) 87,664
ARMA (6,6) 87,817
ARMA (6,5) 87,919
ARMA (7,4) 88,600
ARMA (5,8) 88,887
ARMA (8,2) 88,916
ARMA (7,4) 89,150

Fonte: Elaborado pelo autor

Dentre as possibilidades, a melhor escolha é o modelo ARMA(4,5) pelo critério de
Akaike. Como pode ser notado ao visualizar a Tabela 01, a avaliacdo pelo AIC privilegia 0s

modelos de menor ordem.

Em seguida foi analisada a possibilidade de se utilizar um modelo reduzido, com o
intuito de simplificar o modelo através de uma menor quantidade de pardmetros. A Tabela 02
mostra as estimativas dos elementos do modelo completo, bem como o0 p — value associado a
hipbtese nula: se 0 p — value associado ao componente do modelo apresentar um valor inferior

a 0,05, ele é considerado relevante. O modelo completo encontrado €é entdo dado por:

Zt = _0’5033Zt—1 - 0'3322Zt—2 + O,42211Zt_3 + 0’7202Zt—4- + at + 0,0205at_1
+0,0598a,_, + 0,6751a,_3 + 0,4858a,_, — 0,5106a,_s + 0,0034



Tabela 02 - Estimativa dos coeficientes do modelo ARMA(4,5)

Parametro Estimativa P-value
AR1 -0,5033 0,0001*
AR2 -0,3322 0,0001
AR3 0,4221 0,0001*
AR4 0,7202 0,0001*
MA1 -0,0205 0,8201
MAZ2 -0,0598 0,4933
MA3 -0,6751 0,0001*
MA4 -0,4858 0,0001*
MAS5 0,5106 0,0001*

Intercept 0,0034 0,7262

*valores menores do que 0,0001

Fonte: Elaborado pelo autor
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. Como pode ser observado, os parametros considerados significativos pela analise do

p — value foram ARy, AR,, AR5, AR,, MA;, MA, e MAs. Foi entdo ajustado um modelo

reduzido considerando apenas estes parametros, conforme Tabela 03.

Tabela 03 - Estimativa dos coeficientes do modelo ARMA(4,5) reduzido

Pardmetro Estimativa P-value
AR1 -0,5152 0,0001*
AR2 -0,4340 0,0001*
AR3 0,3771 0,0001*
AR4 0,4638 0,0001*
MA3 -0,6933 0,0001*
MA4 -0,2930 0,0001*
MA5S 0,3532 0,0001*

*valores menores do que 0,0001

Fonte: Elaborado pelo autor

Por altimo, foi verificado se 0 modelo reduzido é equivalente ao cheio. A variagdo entre
0 AIC do modelo cheio e do reduzido é igual a 1,997. O valor encontrado na tabela qui-quadrado
foi 7,815, para a = 5% e um numero de graus de liberdade igual a diferenca entre o nimero de

parametros nos dois modelos, igual a 3. Assim, conclui-se que ndo se pode rejeitar a hipotese

nula, entdo o modelo reduzido foi considerado equivalente ao cheio.
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Dessa forma, a verséo reduzida é dada por:

Z, = —0,51527,_, — 0,4340Z,_, + 0,3771Z,_5 + 0,4638Z,_, + a, + 0,6933a,_s
+0,930a,_, — 0,3532a,_s

Ao analisar os parametros autorregressivos encontrados, é possivel notar que o valor
observado nos dois meses anteriores afeta inversamente Z,, apesar do més t — 1 ter uma
influéncia um pouco maior. Assim, um aumento em Z,_ e Z;_, resultaem uma reducéo de Z;.
Dados que os coeficientes AR, € AR, sdo proximos de 0,5, pode-se dizer que o valor de Z; varia

em funcdo de uma aproximacao da média aritmética de Z;_; e Z;_,.

Por outro lado, o modelo leva & conclusdo de que aumentos em Z,_; e Z,_, geram

aumentos no valor observado no periodo atual.

Interessante notar que de acordo com o modelo identificado, o valor do indice s6 é
afetado por eventos em um horizonte de 5 meses. Por se tratar de um estudo sobre percentual
de pagamentos ndo cumpridos em uma base mensal, faz sentido o modelo depender

principalmente de observagdes no curto prazo.

5.4. Diagndstico do modelo

Para validar o0 modelo, o primeiro teste aplicado foi o de Ljung e Box (1978). Para o
modelo reduzido, o programa retornou um valor p — value igual a 0,9641. Dessa forma, nao
se pode rejeitar a hipotese nula e se considera que os residuos sao independentes e identicamente

distribuidos.

O segundo teste aplicado sobre os residuos do modelo foi o de Shapiro-Wilk. O valor
de p — value encontrado foi 0,825. Assim, ndo se pode rejeitar a hipotese nula e conclui-se que
os residuos apresentam distribuicdo normal. Para apresentar esse resultado de forma visual, foi
gerado o grafico Q-Q Plot, mostrado na Figura 20. A proximidade dos valores retirados da série

com a reta normal corrobora o resultado do teste de Shapiro-Wilk.
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Figura 20 - Q-Q Plot dos residuos
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Fonte: Elaborado pelo autor

Por ultimo, foi analisada a existéncia de autocorrelagcdes e autocorrelacBes parciais
significantes dentre os residuos. O resultado obtido estd demonstrado nas Figuras 21 e 22. Como
pode ser observado, ndo existem autocorrelacdes fora do critério utilizado, o que leva a

conclusdo de que ndo ha autocorrelagéo relevante entre os residuos.

A partir dos resultados favoraveis obtidos em todos os estagios da etapa de diagndstico,

conclui-se que o modelo obtido é adequado para a previsdo da série de inadimpléncia.

Figura 21 — Valores de autocorrelagéo nos residuos
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Fonte: Elaborado pelo autor
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Figura 22 - Valores das autocorrelacdes parciais nos residuos
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Fonte: Elaborado pelo autor

5.5. Escolha do gréfico de controle

Conforme visto durante a etapa de anélise da série temporal, existe uma correlagdo entre
os dados analisados. Dessa forma, segundo a metodologia representada na Figura 11, o proximo
passo para a defini¢do do tipo de grafico de controle mais adequado é verificar a existéncia de

uma variavel de ajuste, que ndo faz parte da série analisada.

Portanto, de acordo com o fluxograma de Montgomery (2004), para este caso séo
escolhas adequadas tanto os modelos MMEP, CUSUM, x e MR (aplicados ou aos residuos ou

a série original), quanto um MMEP com linha central mével ou um modelo livre de abordagem.

Ao se considerar que a area de gestdo da empresa que fara uso deste modelo carece de
pessoas especializadas no assunto de monitoramento estatistico de processos, é desejavel que
seja empregada a opcdo de mais fécil visualizacdo e interpretacdo dos dados. Assim, foi
decidido a aplicacdo de um grafico MMEP sobre a média da série estacionéria obtida ao final

do tratamento da série de indices de inadimpléncia.

Optou-se pela série estacionaria pela praticidade em calcular seus limites de controle.
Caso fosse escolhido o monitoramento da série original, seria necessario aplicar o inverso da
diferenciacéo e da transformacdo de Box-Cox aos limites de controle. Devido a natureza da
operacdo de diferenciacdo, realizar a operacdo inversa poderia distorcer os valores finais,

comprometendo a eficiéncia e confiabilidade do grafico de controle.
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5.6. Definigéo dos limites de controle

Através da aplicacdo do método da minima soma dos quadrados dos erros, foi definido
que o valor 6timo para o fator de suavizacdo € A = 0,7615. Assim, o calculo da estatistica z;,
do MMEP ¢ dada por:

Zt = 0,7615Xt + 0'23852t—1

Portanto, a estatistica calculada no periodo anterior possui um peso menor que valor
observado da série para o calculo da estatistica do periodo atual. De acordo com Hunter (1986),
na maioria dos casos hd uma certa subjetividade na escolha de A, sendo que dados
econométricos testados levam a sugestdo de A = 0,2 + 0,1. No entanto, considerando que
valores maiores de A diminuem a influéncia dos dados historicos, um valor mais alto de A esta
coerente com o modelo ARMA(4,5) identificado. Dessa forma, tanto o modelo quanto a

formula da estatistica sdo influenciados em maior parte pelas observacdes mais recentes.
5.6.1. Definicdo ARL sob Controle

Com o algoritmo apresentado na subsecdo 4.6.2. serd encontrado o valor da variavel L
necessaria para determinar os limites de controle. Para tal foram geradas séries de observacoes
a partir do modelo paramétrico ARIMA (4,1,5) reduzido encontrado nas etapas anteriores, a

partir de valore de a, simulados com a variancia amostral dos residuos o7 = 0,08900.

Tendo como alvo o0 ARL, pré-determinado igual a 36, o algoritmo retornou o valor de
L a ser usado como 1,82. Com esse valor, 0 ARL médio encontrado nas 5.000 simulacdes foi
igual a 36,4. Ou seja, € esperado que o haja um alarme falso aproximadamente a cada 36 meses,

préximo suficiente ao valor proposto inicialmente.

O valor de L encontrado é significativamente inferior ao valor padrao usado em graficos
de Shewhart, conhecido como trés sigma (L=3). Mas como os dados de inadimpléncia
apresentam uma frequéncia mensal, significativamente mais longa que as aplica¢cbes mais
tradicionais de graficos de controle, foi necessario adotar um ARL, mais baixo, e entdo faz

sentido que o valor de L seja menor.

Esse valor baixo também é resultado do fator de suavizacgdo aplicado ao célculo dos

limites de controle. Conforme estudo conduzido por Lucas e Saccucci (1990), uma reducéo no
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parametro A provoca uma reducdo do ARL,, mantidas as demais condi¢Ges. Ainda que o fator
de suavizagdo encontrado de 0,7615 possa ser considerado alto, é menor que 0 A =1

equivalente a um gréafico de Shewhart.

A Figura 23 mostra os valores do ARL, encontrados pelo algoritmo para cada valor de

L testado. Conforme esperado, h&d uma correlacdo positiva entre os valores de ARL € L.

Figura 23 - Valores do ARL em funcéo de L
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Fonte: Elaborado pelo autor

5.6.2. Definicdo ARL fora de Controle

Com o parametro L definido, o passo seguinte consiste em um estudo da variagdo da
média dos residuos da série temporal sobre o valor do ARL encontrado. Para isso, foram feitas

5.000 simulagbes para cada valor de ¢, que variou de 0 a 1,5 em incrementos de 0,1, de modo

que os residuos introduzidos no modelo forma calculados como a,~N(c * /03,+/02).

Os resultados obtidos estdo apresentados na Figura 24. Como se pode notar, o grafico
se mostrou bastante sensivel a mudancgas na média para valores de c entre 0 e 1. De acordo com
os célculos realizados, se a média aumentar em um desvio padrdo, o ARL apresenta uma queda
de 36,5 para 4,66, reducdo de 87,2%. Para variacfes maiores ainda, de 1,5 vezes o desvio
padrdo, o ARL passa a ser 1,92, um curto tempo de resposta. Portanto o grafico MMEP

elaborado aparenta ser capaz de detectar variagcdes no processo com eficécia.
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Figura 24 - Valores de ARL em funcéo de ¢
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Fonte: Elaborado pelo autor

5.7. Avaliagdo dos resultados

A validacao do resultado alcancado comeca pela avaliacdo das previsdes elaboradas
pelo modelo paramétrico ARMA(4,5) reduzido. Para tal, foi usada a fungdo forecast() do
RStudio para projetar as observac6es dos periodos entre 155 e 174 (devido a diferenciacéo, a

série estacionaria possui um elemento a menos que a original). O resultado esta apresentado na

Figura 25. A linha vermelha da Figura 25 representa a série Axt(”) completa com todas as 174

observacdes. A linha azul a direita representa a média das projecoes. A area colorida com cinza
escuro representa o intervalo de confianca de 80% paras as projeces, e a area cinza claro o

intervalo de confianca de 90% para as mesmas.

Como pode ser visto, as médias das projecdes acompanham bem os valores da série
estacionaria, o que indica uma boa capacidade de previsdo do modelo. Ainda, ao se observar os
limites de confianca, entre os vinte valores previstos apenas 2 estdo fora do intervalo de
confianca de 80%, e nenhum valor ficou fora do intervalo de 95%. Na Figura 26 s&o mostrados
os valores previstos e observados apenas para o intervalo de t entre 155 e 174 para facilitar a

visualizagéo.
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Figura 26 - Comparacao entre previsdes e observacdes reais para série estacionaria
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Fonte: Elaborado pelo autor

Em seguida foram aplicados sobre as médias das previsdes 0S processos inversos a
primeira diferenciacdo e a transformacdo de Box-Cox (1964) para se obter os valores de
inadimpléncia previstos. A Figura 27 mostra o resultado final, no qual a linha vermelha
representa a série original e a linha preta os valores previstos. Na Figura 28 pode-se ver 0s
valores previstos e observados apenas para o intervalo de t entre 155 e 174. Fica claro ao
comparar os valores previstos e observados que ha uma aderéncia maior nas projecdes de curto

prazo.

Novamente, foi notada uma aderéncia satisfatoria entre os valores encontrados. Para
finalizar a anélise de previsdo, foram calculados os indices MSE e RMSE para diferentes
horizontes de projecdo, conforme Tabela 4, com o objetivo de confirmar se h4 uma diferenca
relevante entre previsdes de curto e médio prazo. Como pode ser observado pelos resultados da
Tabela 04, o aumento do horizonte de projecdo causa um aumento tanto no MSE quanto no

RMSE, o que mostra que o modelo é mais confiavel para projecdes de curto prazo.
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Figura 28 - Comparacdo entre previsdes e observagdes reais para série original
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Fonte: Elaborado pelo autor

Tabela 04 - Valores de MSE e RMSE versus horizonte de previséo

Horizonte de Previséo MSE RMSE
5 meses 0.002414 0.04914
10 meses 0.002989 0.05467
15 meses 0.003054 0.05527
20 meses 0,004972 0.07051

Fonte: Elaborado pelo autor

O proximo passo é verificar a eficiéncia do gréafico de controle desenvolvido.
Primeiramente foi calculada a série de estatisticas z;, usando os valores da série diferenciada
parat = 1,...,154 e os valores das previsdes do modelo para t = 155, ...,174. O objetivo aqui
é introduzir as previsdes no grafico de controle para comparar seus resultados com o que foi
verificado na realidade. Por Gltimo, foram calculados os limites de controle parat = 1, ...,174,

usando os parametros calculados na secdo 5.6. O grafico final é apresentado na Figura 29.

A andlise do grafico mostra que houve 10 periodos em que foram verificados pontos
fora dos limites de controle. Observando a série mostrada na Figura 27, existem trés ocasioes
de inadimpléncia significativamente acima da média do periodo, que serdo comentados a

sequir:
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a) meses 30 a 43: o periodo mais duradouro de alta na inadimpléncia. Analisando o
MMEP, percebe-se que hd um alerta de processo fora de controle logo no més 30.
Como foi visto, o grafico possui uma alta sensibilidade para varia¢es na média do
processo, entdo era esperado que uma variacdo dessa magnitude provocasse um
alerta. Neste periodo, houve um total de 4 pontos fora do limite de controle. E
importante citar aqui a primeira vantagem percebida da solucdo proposta. Na
operacdo atual esse primeiro pico poderia ser interpretado como um aumento
pontual, mas o0 MMEP ja aponta como uma instabilidade no processo desde o

primeiro més de aumento de ndo-pagamentos;

b) meses 147 e 151. Mais uma vez 0o MMEP apontou o processo como fora de controle
ja no primeiro més deste periodo, acusando um crescimento na média de

inadimpléncia e a necessidade de corre¢éo;

c) més 94: também foi identificado no proprio més 94 pelo MMEP, mas pode ser
considerado um outlier, pois é possivel perceber que ja no periodo seguinte a série
retoma a média que vinha apresentando, se tratando, portanto, de um evento

pontual.

Uma caracteristica importante do grafico é identificada a partir de seu desempenho
durante periodos de crescimento acelerado da inadimpléncia, nos quais pode-se ver que nao
houve ocasiGes em que o0 inicio desses picos nao foi detectado. Assim, conforme mostrado na
subsecdo 5.6.2., 0 para casos de aumento na média maior ou igual a 1,5 desvios padrbes o

MMEP possui um tempo de resposta de aproximadamente 1 més.

Percebe-se também que o grafico possui uma incidéncia erro tipo Il muito baixa. Essa
concluséo é coerente com o que foi proposto durante seu desenvolvimento, uma vez que dentre

0S erros, o pior para o investidor da operacdo € uma queda inesperada nos valores a receber.

Importante também verificar que na passagem entre os meses 69 e 70 houve a detec¢do
de ponto fora do limite de controle. Diferente dos primeiros casos comentados, aqui ndo ha um
pico chamativo na inadimpléncia, mas a média passa de 16,0% entre os meses 60 e 69 para
24,0% entre os meses 70 e 79. Novamente esse aumento foi identificado logo no inicio do
periodo. Aqui, por exemplo, o analista da Fortesec poderia ter antecipado essa tendéncia de

crescimento que duraria 3 trimestres e se preparado de acordo ja a partir do més 69.
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Todos resultados acima corroboram a sensibilidade do gréfico para variagdes
consideraveis na média, e reforgcam esta como um requisito fundamental do gréfico para atender
seu proposito. Apesar do grafico apresentar um tempo de resposta néo tao rapido para pequenas
variacOes, a série apresentada mostrou que em periodos de instabilidade sua inadimpléncia
apresenta variagOes significativamente superiores a um desvio padréo, e, portanto, o uso do

MMEP teria sido benéfico a empresa.

Naturalmente, ao se discutir a inadimpléncia ha uma preocupagdo maior em monitorar
aumentos nela, porém também existe beneficios em se identificar periodos de potencial
reducdo. E uma préatica comum a renegociacdo de dividas, e se for possivel perceber que a
inadimpléncia estd tendendo para abaixo dos limites estipulados, e suportar isso com base no
modelo estatistico, é possivel detectar os periodos ideias para clientes tentarem uma
renegociacdo com os investidores. Nesse sentido, podem ser ressaltados dois periodos em que

o grafico de controle apontou para uma reducao na média da operacéo:

a) més 10: neste periodo o grafico indicou uma variacdo negativa na media das
observacOes a partir dos valores dos meses anteriores. No entanto, foi observado

que na ocasido do alarme ja havia sido verificado um novo crescimento na média;

b) més 118: assim que houve uma reducdo da inadimpléncia de 15,1% para 3,4% entre
0s meses 117 e 118, o MMEP ja identificou isso como uma alteracdo na média do
processo, que pode ser comprovada pelo comportamento nos proximos 26 meses
onde a maxima da inadimpléncia foi 25,8%, perto da média global. E interessante
notar que a série neste periodo adota um comportamento semelhante ao de uma
parébola, e que 0 MMEP apontou outra observacgdo fora dos limites de controle
perto do centro da pardbola, andlogo a um ponto de inflexdo, quando a

inadimpléncia volta a apresentar um crescimento.

Analisando as previsdes introduzidas no MMEP, nota-se que se trata de um periodo sem
grandes variacdes no processo, € 0 MMEP se comportou de acordo na maior parte dele, sem
acusar nenhuma necessidade de corre¢do. No entanto, um aumento na inadimpléncia no més
175 ndo foi detectado pelo grafico. Isso pode ser justificado pela caracteristica do modelo
paramétrico de ser mais preciso para horizontes menores de tempo. Por isso, sugere-se que 0

modelo seja usado para projecGes em um horizonte de 12 meses.
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Em suma, em diversas ocasides 0 MMEP demonstrou um tempo de resposta rapido para
deteccdo de processo fora de controle, o que providenciara a empresa com um maior tempo de

resposta para lidar com crescimentos da inadimpléncia.



86



87

6. CONCLUSAO

Neste capitulo serd retomado tudo aquilo que foi abordado até agora neste trabalho e
seus principais resultados, bem como uma avaliacdo geral da solucdo encontrada, suas

limitacOes e sugestdes de estudos futuros que possam aprimorar a solucéo elaborada.

A motivacdo deste trabalho de formatura foi a percepcao de um problema na empresa
em que o autor realiza seu estadgio. O acompanhamento de indices de inadimpléncia nas
carteiras de recebiveis imobiliarios que possuem em gestdo € uma atividade vital para as
operacOes de securitizacdo. Apesar disso, a empresa ndo conta com nenhum método de projecéo
desses indices. Na configuracao atual, em caso de problemas de instabilidade da inadimpléncia,
h& margem apenas para acOes corretivas, que podem ser tomadas tarde demais. Foi proposto
entdo a criagdo de uma metodologia para desenvolver ferramentas de previsdao e

monitoramento.

O trabalho se inicia com o levantamento da bibliografia relevante ao tema proposto.
Decidiu-se pelo desenvolvimento de um modelo de previsdo a partir de séries temporais e
modelos paramétricos. Para o monitoramento, foram pesquisadas ferramentas de controle
estatistico de processos, dentre as quais optou-se pelo uso de graficos de controle para o
monitoramento da série estudada. A partir desta base teorica, foi estruturada uma metodologia

para o desenvolvimento da solucéo final.

O desenvolvimento pratico comecgou pelo estudo da série temporal em questdo, sob 0s
aspectos de estacionariedade, normalidade e dependéncia, bem como a realizacdo de ajustes
para torna-la compativel com modelos paramétricos. Conhecendo suas caracteristicas, foram
estudados diversos modelos para selecionar o mais adequado, que acabou sendo uma versdo
reduzida de um ARMA (4,5).

Para o monitoramento da série, foi escolhido o grafico de média movel
exponencialmente ponderada (MMEP), por sua facilidade de desenvolvimento e aplicacéo e
por ser ideal par detectar pequenas mudancas no processo. Colocou-se como meta um gréfico
com um ARL, igual a 36 meses. Para o seu uso foi necessario definir seus parametros. O fator
de suavizacéo A foi encontrado a partir do método do minimo erro dos quadrados, enquanto 0s
limites de controle foram definidos a partir do uso de algoritmos iterativos que testaram diversas

possibilidades até encontrar valores correspondentes ao ARL pre-definido.
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A solucdo desenvolvida foi entdo submetida a uma avaliagcdo para se determinar se
cumpre seu propdésito com eficacia. Em relacdo as projecdes, foram deixadas de fora 20
elementos da série original para servir de base de comparacao para as previsdes do modelo.
Analisando o0 modelo ARMA(4,5) foi possivel verificar que ha um aderéncia satisfatoria entre
os valores reais e suas projecdes. Conforme abordado na andlise, ficou claro que quanto maior
0 horizonte de previsdo maior o erro de previsdo registrado, entdo o modelo é melhor utilizado
com o foco em previsdes de curto prazo, apesar de ter apresentado uma margem adequada para

previsdes de até 15 meses no futuro.

Quanto ao grafico de controle desenvolvido, foi observado que ele apresenta uma
sensibilidade adequada a variagbes na média dos residuos, com um tempo de resposta muito
baixo para variacdes na média maiores que 1 desvio-padrdo. Cabe citar aqui uma limitacdo do
MMEP, que serviria melhor seu propdsito caso demonstrasse um ARL; menor para pequenas
variacdes. Porém, como foi discutido durante a avaliagdo dos resultados, as grandes variacdes

na inadimpléncia monitorada fizeram com que na pratica os resultados fossem favoraveis.

A partir de um paralelo com aquilo que foi de fato registrado ao decorrer da evolugéo
da série, pode-se concluir que caso 0 modelo fosse adotado no més 155 e servisse de base para
a tomada de decisdo nos préximos 20 meses o resultado teria sido positivo uma vez que a
inadimpléncia ficou muito proxima ao previsto. Ainda, com base no historico, foi mostrado que
o MMEP foi capaz de detectar variagfes importantes em diferentes periodos, o que corrobora
sua utilidade. Em luz desses resultados, conclui-se que a ferramenta desenvolvida cumpre seu

objetivo e pode ser de grande valor para a Fortesec.

Este trabalho serviu para mostrar a utilidade e os beneficios do uso de séries temporais
e graficos de controle no monitoramento em indices de inadimpléncia, mas naturalmente ainda
é passiva de aprofundamento e melhorias. Uma proposta para aprimoramento desta solugédo
seria a andlise da adogdo de modelos Beta ARMA. Modelos Beta ARMA séo utilizados nos
casos especificos em que as observacdes da série entdo entre 0 e 1, como é o caso de um indice
de inadimpléncia. Este se trata de uma classe de modelos menos conhecida que 0 ARIMA,
possivelmente por ser mais recente e ndo ter sido tdo amplamente estudada quanto o ARIMA.
Seu uso é mais complexo que o dos modelos apresentados neste trabalho e exigiria um grande
volume de estudo, porém se tratando de uma ferramenta mais direcionada as caracteristicas da
série de inadimpléncia, € possivel sua utilizagdo possibilite obter ganhos interessantes em

termos de capacidade de previséo.



89

Outro possivel estudo futuro para aprofundamento e refinamento da solucdo seria a
abordagem do uso de séries temporais nao apenas para fins de previsdo. Como foi explorado na
bibliografia, estas seéries podem ser aplicadas para diversos propdsitos, dentre eles a
investigacdo do mecanismo responsavel por sua geracdo. Esta analise seria de grande utilidade,
uma vez que conhecer os mecanismos por tras da inadimpléncia criaria a possibilidade de tomar
acOes mais direcionadas para mitiga-la, assim como pode fornecer informac@es que poderiam
ser incorporadas ao modelo de projecdo. Outra sugestdo seria 0 estudo detalhado de um
processo de implantacdo dessa solucdo na empresa, uma vez que sdo dezenas de operacoes

ocorrendo simultaneamente e teria um impacto muito alto no operacional da Fortesec.

Por dltimo, é sugerido um estudo de uma metodologia que possibilite inverter a
transformacdo de Box-Cox e a diferenciacdo sobre os limites de controle do MMEP, para

possibilitar o monitoramento a partir da série original, que facilitaria muito sua interpretacao.

Quanto as dificuldades enfrentadas, para este trabalho de formatura foi necessario o
aprendizado de séries temporais e modelos paramétricos, visto que o autor ndo havia tido
contato com esses conceitos anteriormente, e que, portanto, exigiu diversas horas de estudo. A
etapa de identificacdo do modelo se provou especificamente desafiadora, uma vez que foi
necessario o teste de dezenas de modelos diferentes, tanto versdes cheias quanto reduzidas, para
que se obtivesse uma versao final que fosse aprovada tanto na etapa de diagndstico quanto na
avaliagdo dos resultados da previséo.
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APENDICE A - Codigo para analise da série temporal e ajuste do modelo ARMA

library(ggplot2)
library(ggfortify)

library(forecast)

library(tseries)

setwd("C:/Users/mathe/Rstudio")

base <- read.csv2("Inad_G100 v2.csv", sep =";")

serie_completa <- ts(base$Inad)

serie_original <- ts(serie_completa[1:155])

#Transformacéo Estabilizar a Variancia
Ibd <- BoxCox.lambda(serie_original)

serie_transformada <- BoxCox(serie_original, Ibd)

#Teste estacionariedade
adf.test(serie_transformada, alternative="stationary")
serie_estacionaria <- ts(diff(serie_transformada))

adf.test(serie_estacionaria, alternative="stationary")

#Teste Normalidade
ggnorm(serie_estacionaria)
gqline(serie_estacionaria)

shapiro.test(serie_estacionaria)
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#Teste Independéncia
estimador_acf <- acf(serie_estacionaria, lag=50, plot=TRUE)

estimador_pacf <- pacf(serie_estacionaria, lag=50, plot = TRUE)

#Estimacdo Modelo ARIMA
modelo_cheio <- arima(serie_estacionaria, order=c(4,0,5))
acf(modelo_cheio$residuals, lag=50)

coeftest(modelo_cheio)

#Estimacdo Modelo ARIMA Reduzido

modelo_reduzido  <-  arima(serie_estacionaria, ,order=c(4,0,5),transform.pars
F,fixed=c(NA,NA,NA,NA,0,0,NA,NA,NA),include.mean = F)

modelo_reduzido$aic

coeftest(modelo_reduzido)

#Teste Residuos

acf(modelo_reduzido$residuals, lag=50)
pacf(modelo_reduzido$residuals, lag=50)
shapiro.test(modelo_reduzido$residuals)
Box.test(modelo_reduzido$residuals, type="Ljung-Box")
ggnorm(modelo_reduzido$residuals)

qgline(modelo_reduzido$residuals)



APENDICE B — Cdédigo para determinac&o do fator de suavizacio do MMEP

#lmportar dados
Z0 <- mean(serie_original)

Xt <- serie_original[1:155]

lambda <- 0.01
lambda_otimo <-0

erro_min <- 50

while (lambda<=1) {
Z <-c(Zo)
i<-1
j<1

E < ¢

# célculo da estatistica Z

while (i<=length(Xt)) {
zt <- lambda*Xt[i]+(1-lambda)*Z[i]
Z <- append(Z,zt)
i<-i+1

¥

#Calculo Erro

while (j<=length(Xt)) {
erro <- Xt[j]-Z[j]
E <- append(E,erro)

j<j+1
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#Calculo Erro Quadrado

erro_quadrado <- E*2

#Soma dos Erros

soma_erros <- sum(erro_quadrado)

if (soma_erros<erro_min){
erro_min <- soma_erros
lambda_otimo <- lambda

lambda <- lambda + 0.0005
}
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APENDICE C - C6digo para determinacio ARL para processo sob controle

ARLoO <- 36
L<-1

N <- 2000

arl <-modelo_reduzido$coef[["ar1"]]
ar2 <-modelo_reduzido$coef[["ar2"]]
ar3 <-modelo_reduzido$coef[["ar3"]]
ard <-modelo_reduzido$coef[["ar4"]]
ma3 <-modelo_reduzido$coef[["'ma3"]]
ma4 <-modelo_reduzido$coef[["'ma4"]]

ma5 <-modelo_reduzido$coef[["ma5"]]

dp_residuos <- sd(modelo_reduzido$residuals)
check ARL <-F

Lista_ARL <-c()

while (check_ ARL==F){
cont<-1

soma<-0

while (cont<N){
t<-1

fora_limite <- F

sim_Xt <- arimasim(n = 1005, list(order=c(4,1,5), ar=c(arl,ar2,ar3,ard),
ma=c(0,0,ma3,ma4,ma5)), sd=dp_residuos)
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sim_Zo <- mean(sim_Xt)
sim_Zt <- ¢(sim_Zo0)

valor_alvo <- mean(sim_Xt)

#Comparar limites de controle

while (fora_limite==F){
zt <- lambda_otimo*sim_Xt[t]+(1-lambda_otimo)*sim_Zt[t]
sim_Zt <- append(sim_Zt,zt)

LSC <-valor_alvo + L*sd(sim_Xt)*sqrt(lambda_otimo*(1/(2-Lambda_otimo))*(1-(1-
lambda_otimo)”*(2*t)))

LIC <-valor_alvo - L*sd(sim_Xt)*sqrt(lambda_otimo*(1/(2-lambda_otimo))*(1-(1-
lambda_otimo)”*(2*t)))

if (zt>LSC | zt<LIC) {
soma <- soma + t
cont<-cont+1
fora_limite<-T

}else {
t<-t+1

}

}

cont<-cont+1

¥

ARL_sim <- soma/N

Lista_ ARL <- append(Lista_ ARL,ARL_sim)

if (ARL_sim >= ARLo0){



check ARL<-T

} else{
L<-L+0.01

}
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APENDICE D - C6digo para determinagio ARL para processo fora de controle

c<-0

N <- 2000

arl <-modelo_reduzido$coef[["ar1"]]
ar2 <-modelo_reduzido$coef[["ar2"]]
ar3 <-modelo_reduzido$coef[["ar3"]]
ar4 <-modelo_reduzido$coef[["ar4"]]
ma3 <-modelo_reduzido$coef[["ma3"]]
ma4 <-modelo_reduzido$coef[["ma4"]]

ma5 <-modelo_reduzido$coef[["'ma5"]]

dp_residuos <- sd(modelo_reduzido$residuals)
check_ ARL <-F

Lista ARL <-¢()

while (c<=1.5){
cont<-1

soma<-0

while (cont<N){
t<-1

fora_limite <- F

sim_Xt <- arimasim(n = 1005, list(order=c(4,1,5), ar=c(arl,ar2,ar3,ard),
ma=c(0,0,ma3,ma4,ma5)),mean=(c*dp_residuos), sd=dp_residuos)
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sim_Zo <- mean(sim_Xt)
sim_Zt <- ¢(sim_Zo)

valor_alvo <- mean(sim_Xt)

#Comparar limites de controle

while (fora_limite==F){
zt <- lambda_otimo*sim_Xt[t]+(1-lambda_otimo)*sim_Zt[t]
sim_Zt <- append(sim_Zt,zt)

LSC <- wvalor_alvo + L*sd(sim_Xt)*sqgrt(lambda_otimo*(1/(2-lambda_otimo))*(1-(1-
lambda_otimo)”*(2*t)))

LIC <- wvalor_alvo - L*sd(sim_Xt)*sgrt(lambda_otimo*(1/(2-lambda_otimo))*(1-(1-
lambda_otimo)”*(2*t)))

if (zt>LSC | zt<LIC) {
soma <- soma +t
cont<-cont + 1
fora_limite<-T

}else {
t<-t+1

}

}

cont<-cont+1

¥

ARL_sim <- soma/N

Lista_ARL <- append(Lista_ARL,ARL_sim)

c<-c+0.1



ANEXO A — Séries de indices de inadimpléncia
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Data Inadimpléncia Data Inadimpléncia Data Inadimpléncia
Més 1 29,57% Més 41 32,31% Més 81 14,52%
Més 2 14,58% Més 42 77,43% Més 82 32,64%
Més 3 17,14% Més 43 62,15% Més 83 22,66%
Més 4 14,12% Més 44 26,78% Més 84 27,82%
Més 5 13,16% Més 45 25,10% Més 85 15,18%
Més 6 12,28% Més 46 36,11% Més 86 25,55%
Més 7 20,81% Més 47 26,67% Més 87 24,57%
Més 8 25,86% Més 48 55,13% Més 88 33,07%
Més 9 18,15% Més 49 26,98% Més 89 21,44%
Més 10 6,70% Més 50 20,51% Més 90 22,16%
Més 11 16,42% Més 51 23,34% Més 91 22,06%
Més 12 12,26% Més 52 24,08% Més 92 25,23%
Més 13 2,50% Més 53 24,15% Més 93 18,49%
Més 14 11,54% Més 54 25,33% Més 94 57,86%
Més 15 19,68% Més 55 25,81% Més 95 26,90%
Més 16 18,42% Més 56 23,39% Més 96 20,11%
Més 17 14,31% Més 57 28,65% Més 97 22,25%
Més 18 18,66% Més 58 26,23% Més 98 18,39%
Més 19 30,07% Més 59 24,58% Més 99 24,38%
Més 20 19,99% Més 60 14,72% Més 100 22,74%
Més 21 21,02% Més 61 11,39% Més 101 8,21%
Més 22 36,33% Més 62 16,60% Més 102 21,92%
Més 23 21,31% Més 63 20,56% Més 103 9,89%
Més 24 22,09% Més 64 20,82% Més 104 15,15%
Més 25 22,07% Més 65 17,77% Més 105 16,31%
Més 26 29,55% Més 66 21,36% Més 106 11,19%
Més 27 32,94% Més 67 14,26% Més 107 16,92%
Més 28 25,80% Més 68 14,25% Més 108 11,17%
Més 29 21,55% Més 69 8,94% Més 109 13,89%
Més 30 62,42% Més 70 34,73% Més 110 13,83%
Més 31 77,64% Més 71 21,24% Més 111 16,71%
Més 32 68,17% Més 72 18,36% Més 112 20,07%
Més 33 72,05% Més 73 25,91% Més 113 13,82%
Més 34 81,83% Més 74 25,19% Més 114 6,73%
Més 35 43,32% Més 75 28,42% Més 115 7,29%
Més 36 58,78% Més 76 16,30% Més 116 6,31%
Més 37 55,19% Més 77 30,32% Més 117 15,15%
Més 38 30,05% Més 78 14,64% Més 118 3,45%
Més 39 11,80% Més 79 39,03% Més 119 2,71%
Més 40 16,72% Més 80 15,41% Més 120 2,31%
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Data Inadimpléncia Data Inadimpléncia
Més 121 2,80% Més 165 15,26%
Més 122 6,23% Més 166 24,49%
Més 123 6,26% Més 167 26,39%
Més 124 3,88% Més 168 29,52%
Més 125 4,41% Més 169 25,50%
Més 126 14,16% Més 170 29,89%
Més 127 25,87% Més 171 28,05%
Més 128 3,40% Més 172 28,24%
Més 129 11,79% Més 173 21,79%
Més 130 22,16% Més 174 26,92%
Més 131 7,44% Més 175 42,82%
Més 132 4,89%

Més 133 8,82%
Més 134 8,48%
Més 135 7,96%
Més 136 13,04%
Més 137 17,01%
Més 138 18,82%
Més 139 6,58%
Més 140 20,35%
Més 141 13,11%
Més 142 11,49%
Més 143 21,17%
Més 144 26,19%
Més 145 12,90%
Més 146 17,68%
Més 147 42,83%
Més 148 31,20%
Més 149 24,12%
Més 150 29,38%
Més 151 51,26%
Més 152 20,30%
Més 153 25,34%
Més 154 14,01%
Més 155 22,67%
Més 156 16,36%
Més 157 15,85%
Més 158 30,48%
Més 159 17,91%
Més 160 22,06%




