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RESUMO 

 

Este trabalho de formatura propõe o desenvolvimento de uma metodologia para previsão e 

monitoramento de índices de inadimplência em carteiras de recebíveis imobiliários cedidas para 

operações de securitização, para fornecer informações quantitativas para embasar a tomada de 

decisão e diminuir os riscos de não pagamento durante a operação. Primeiro foi analisada e 

tratada uma série temporal de inadimplência para o ajuste de um modelo paramétrico de classe 

ARIMA. Em seguida, foi selecionado o gráfico de média móvel exponencialmente ponderada 

para o monitoramento desta série, com o objetivo de identificar um processo fora de controle. 

Para tal, foram desenvolvidos algoritmos usando a linguagem de programação R para definir 

seus parâmetros, de modo a atingir o 𝐴𝑅𝐿0 pré-estabelecido de 36 meses. Então foi simulado 

um processo fora de controle para estudar a sensibilidade do gráfico em relação a mudanças na 

média da série. A análise dos resultados consistiu de uma avaliação da capacidade de previsão 

do modelo ajustado, a partir da comparação dos valores previstos com as observações reais. 

Quanto ao gráfico de controle, este foi avaliado pela sua capacidade de identificar processos 

fora de controle e perceber pequenas variações na média da variável monitorada. Ao final do 

desenvolvimento, foi constatado que a solução proposta apresentou uma capacidade de previsão 

adequada para o curto prazo e uma sensibilidade satisfatória a variações na média da 

inadimplência. 

 

Palavras-chave: Inadimplência. Séries temporais. Modelos ARIMA. Controle estatístico de 

processos. Gráficos de controle.  



  



ABSTRACT 

 

This paper proposes the development of a methodology for the forecasting and monitoring of 

default rates in real estate credit portfolios granted for a securitization operation, in order to 

provide quantitative information to support the decision-making process and mitigate the risks 

of payment default throughout the operation. First, the default rate time series was analyzed and 

treated for the adjustment of an ARIMA-class parametric model. Then the exponentially 

weighted moving average chart was chosen for the series monitoring, for the purpose of 

identifying an out-of-control process. To this end, several algorithms were developed using the 

R programming language to define the chart’s parameters, in order to achieve the pre-

established 𝐴𝑅𝐿0 of 36 months. The next step consisted of simulating an out-of-control process 

to determine the chart’s sensibility to changes in the process average. The result analysis began 

with the evaluation of the adjusted model forecasting capacity, by comparing the forecasts with 

the actual values observed in the process. Regarding the control chart, it was evaluated on its 

ability to identify an out-of-control process and to detect small variations in the monitored 

variable. Having concluded the result analysis, it was verified that the proposed solution 

presented an appropriate forecasting ability in the short-term and a satisfactory sensitivity in its 

monitoring capacity. 

 

Keywords: Default ratios. Time series. ARIMA models. Statistical process control. Control 

charts.  
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1. INTRODUÇÃO 

Este trabalho de formatura foi desenvolvido junto à Forte Securitizadora S.A. 

(Fortesec), instituição financeira na qual o autor está realizando estágio supervisionado na área 

comercial. A empresa foi escolhida para servir de alvo para o trabalho pela proximidade do 

autor com ela, que permitiu a identificação do problema e uma grande disponibilidade de 

informações. Neste primeiro capítulo serão apresentados o contexto em que se elaborou o 

trabalho, o problema levantado e sua relevância e, finalmente, a abordagem proposta para 

solução deste problema. 

1.1. Contexto 

A securitização é uma operação de estruturação e emissão de títulos de dívida lastreados 

em direitos creditórios, com o intuito de captar recursos para empreendedores via investidores 

do mercado de capitais. Apenas empresas especializadas, chamadas de securitizadoras, tem a 

permissão da Comissão de Valores Mobiliários (CVM) para emitir esses títulos. Os direitos 

creditórios envolvidos podem ser de diversas naturezas, mas neste trabalho será abordado o 

caso específico de créditos oriundos de empreendimentos imobiliários. 

Normalmente, durante a venda de unidades de um empreendimento imobiliário, os 

compradores assinam contratos com pagamento parcelado por um longo período. O conjunto 

de todas as parcelas a receber de todos os contratos de um empreendimento constitui o que é 

chamado de carteira de recebíveis. No entanto, em diversas situações, é interessante para o 

empreendedor antecipar o recebimento dessas parcelas para poder usá-lo no presente, para 

financiar obras, aplicar em outros projetos, ou diversas outras finalidades. E é essa necessidade 

que a securitização busca satisfazer. Empresas com interesse em antecipar recebíveis contatam 

a securitizadora, e esta analisa o valor da carteira de recebíveis oferecida. Uma vez feita a 

precificação, a securitizadora contata potenciais investidores, e oferece a eles o direito aos 

recebíveis da carteira por um prazo determinado. Caso haja interesse, é feito um acordo e os 

investidores oferecem um certo valor em troca dos direitos aos recebíveis. A securitizadora atua 

então como intermediária, que repassa o recurso dos investidores ao empreendedor, e faz a 

gestão da carteira por toda duração da operação, acompanha e garante os pagamentos aos 

investidores. A transferência dos recursos pelos direitos creditórios é formalizada pela emissão 

de um título de dívida chamado de Certificado de Recebíveis Imobiliários (CRI).  



20 
 

Esse processo ganhou espaço no mercado como uma alternativa às linhas mais 

tradicionais de financiamento, como o financiamento bancário, devido a seu formato mais 

flexível e customizável de acordo com as necessidades dos clientes.  Algumas das vantagens 

da securitização que podem ser citadas em relação às linhas tradicionais são um maior prazo de 

financiamento, transferência de risco para os investidores, menores impactos no balanço 

patrimonial e desintermediação bancária. 

O mercado de securitização brasileiro ainda é pouco desenvolvido, especialmente se 

comparado aos mercados em países europeus ou nos Estados Unidos, o que sugere que ainda 

há um enorme potencial a ser aproveitado pelas empresas do setor. Nos últimos anos já foi 

registrado um crescimento relevante, sinal de que existem cada vez mais empresas buscando 

captar recursos por esta modalidade. 

A Fortesec faz um mapeamento constante das novas operações de CRI para monitorar 

as condições de mercado e acompanhar novas tendências. Os dados consolidados em uma base 

anual estão apresentados na Figura 01. Em 2019, foi calculado um volume recorde de recursos 

captados via CRI, um total de R$ 21,8 bilhões. Fica clara a tendência de crescimento desse 

mercado observando os últimos 5 anos, tanto em relação ao volume quanto ao número de 

operações de securitização. Importante ressaltar que a Figura 01 apresenta dados relativos 

apenas às operações nas quais as cedentes dos créditos não são os próprios investidores da 

operação e não é usada a Taxa Referencial como indexador. 

Figura 01 - Evolução de emissões de CRI 

 
Fonte: Elaborado pelo autor baseado em dados passados pela Fortesec 
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1.2. A empresa 

A Fortesec foi fundada em 2015 com o objetivo de conectar empreendedores que 

buscam recursos com investidores que procuram investimentos rentáveis. Atua na securitização 

de recebíveis dos setores de agronegócio e imobiliário, sendo este último seu foco e 

especialidade, que corresponde a 98,7% de suas operações. Atende empresas de diversos portes 

em todas as regiões do país. Tem como diferenciais a modelagem customizada de cada estrutura 

de dívida, para atender as necessidades especificas de cada cliente, e um foco maior na gestão 

do CRI, ao manter um contato próximo com empresas e investidores, o que proporciona maior 

êxito e segurança a todas suas operações. 

Segue uma breve explicação do processo interno de securitização. Inicia-se na área 

comercial, na qual o autor deste trabalho estagia. A área comercial faz um primeiro contato com 

a empresa interessada em securitizar recebíveis e solicita todos documentos necessários à 

análise. É feita uma avaliação detalhada das características do empreendimento e do valor da 

carteira de recebíveis, através de critérios como número de contratos, desempenho das vendas, 

valor presente dos recebíveis e comportamento de pagamentos da carteira, que é analisado 

através de índices de inadimplência. Em seguida, realiza-se uma modelagem financeira inicial 

da operação, que determina características como o volume de captação, a taxa de juros, o prazo, 

a forma de pagamento, entre outros diversos aspectos. Essa primeira estrutura é então 

apresentada a potenciais investidores, e é negociada uma estrutura final para a operação que 

seja financeiramente interessante para eles. Essas condições são então apresentadas em forma 

de proposta de emissão de CRI para a empresa.                                                                                                                                                                                                    

Uma vez que a proposta é assinada, a área de estruturação assume a operação. Ela irá 

elaborar todos os documentos necessários, registrar a emissão junto às instituições reguladoras 

do mercado, supervisionar o processo de auditoria da carteira de recebíveis e do 

empreendimento e finalmente contratar todos os prestadores de serviço que irão atuar junto à 

securitizadora. Assim que todos requisitos legais e operacionais forem cumpridos, ocorre a 

liquidação, ou seja, recebimento de capital dos investidores que é repassado para a empresa 

cedente dos créditos. 

A partir da liquidação até o vencimento da operação, a área de gestão assume. Ela fará 

um acompanhamento e monitoramento do empreendimento junto a todos os prestadores de 

serviços, que avalia o progresso de obras, o recebimento dos créditos e os índices de 
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inadimplência. E a partir desse acompanhamento irá prover tanto os empreendedores quanto os 

investidores de todas informações que necessitam para garantir transparência por todo processo. 

1.3. Problema a ser abordado 

Este trabalho tem como foco a análise dos índices de inadimplência dos recebíveis 

imobiliários, que como explicado anteriormente, impactam tanto a etapa de modelagem 

financeira quanto de gestão da operação. Atualmente, em ambas as etapas, analisa-se o histórico 

de pagamentos da carteira e calculam-se as quantidades de pagamentos em dia, atrasados, 

antecipados e inadimplentes, e então toma-se as decisões com base no comportamento passado 

da carteira. 

No entanto, a empresa carece de projeções desses índices para períodos futuros para 

apoiá-la na tomada de decisões. Essas projeções serão de grande auxílio, principalmente ao 

levar em consideração a longa duração dessas operações, que necessariamente exige um 

planejamento de longo prazo desde as primeiras etapas da securitização.  

O índice a ser estudado é a inadimplência mensal bruta. Este pode ser calculado através 

de dados fornecidos por um prestador de serviços contratado para auditar mensalmente a 

carteira de recebíveis. 

Para resolver o problema será empregado um modelo de séries temporais e estatística 

para se desenvolver projeções do índice de inadimplência e uso de métodos de controle de 

processos para se elaborar critérios de decisões através de limites de controle, que possibilitem 

a tomada de decisões com um maior embasamento quantitativo. 

A relevância do problema abordado se justifica pela utilidade da solução proposta para 

as áreas comercial e de gestão. A começar pela área comercial, a possibilidade de prever um 

comportamento futuro dos pagamentos de uma carteira dará uma visão muito mais precisa sobre 

os riscos da securitização, e esses riscos serão levados em conta na modelagem, onde serão 

aplicados mecanismos para mitigá-los, como ajustes no volume de emissão ou estabelecimento 

de garantias adicionais. Além disso, levar essas informações para a negociação com os 

investidores disponibilizará uma base mais rica para suportar uma decisão de investimento, o 

que aumentará a atratividade dos produtos ofertados pela Fortesec. 
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Em relação ao departamento de gestão, atualmente ao notar um aumento na 

inadimplência, eles alertam a empresa dona do empreendimento e auxiliam no planejamento e 

implantação de medidas para corrigir a situação, como, por exemplo, a contratação de agentes 

de cobrança. Mas dado que é analisado o comportamento atual e passado, esses sinais surgem 

apenas quando o problema se apresenta, o que possibilita apenas a tomada de medidas 

corretivas. Projeções bem fundamentadas possibilitariam medidas preventivas, fornecendo uma 

maior segurança aos investidores e agregando um maior valor para seus clientes, através de 

informações que permitem uma administração mais eficiente. 

1.4. Estrutura do trabalho 

Este trabalho foi iniciado através do presente capítulo “Introdução”, que fornece ao 

leitor todo o contexto necessário para se entender o problema que será abordado e qual a sua 

relevância para a empresa alvo deste trabalho. 

Em seguida, nos capítulos “Revisão Bibliográfica- Séries Temporais” e “Revisão 

Bibliográfica – Controle Estatístico de Processos” será feito um relato de todo conhecimento 

teórico necessário para abordagem do problema proposto. Serão apresentados conceitos sobre 

modelos paramétricos para séries temporais e ferramentas de controle estatísticos de processo, 

com foco em gráficos de controle. 

No capítulo “Metodologia” será estruturado um processo para desenvolvimento de um 

modelo paramétrico de previsão e monitoramento por gráficos de controle, utilizando dos 

conceitos abordados na revisão bibliográfica. 

Tendo sido apresentada toda base conceitual e teórica, será feita a “Aplicação sobre o 

problema proposto”, no qual os métodos levantados são utilizados para uma base de dados 

especifica fornecida pela Fortesec. Após o término do desenvolvimento da solução será feita 

uma análise dos resultados. 

Por último, o capítulo “Conclusão” trará um resumo deste trabalho de formatura, uma 

avaliação geral da solução encontrada, suas limitações e o quanto ela pode conseguir solucionar 

o problema levantado, além de prover alternativas de estudos futuros para aprimorar essa 

solução. 
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Para se realizar todas as análises necessárias e desenvolver o modelo proposto, serão 

usados os softwares Microsoft Excel, para tratamento de dados e elaboração de gráficos para 

apresentar os resultados de forma mais visual, e o RStudio, ambiente de desenvolvimento em 

linguagem R, usado para a construção do modelo de previsão e determinação dos limites do 

gráfico de controle. 
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2. REVISÃO BIBLIOGRÁFICA – SÉRIES TEMPORAIS 

Neste capítulo serão apresentados os principais conceitos e metodologias empregados 

no estudo da série de dados de inadimplência, e que servirão de base para a construção do 

modelo de projeção de valores futuros. 

De acordo com Morettin e Toloi (2006), séries temporais podem ser definidas como 

“qualquer conjunto de observações ordenadas no tempo”. Segundo esta definição, pode-se 

afirmar que uma série de observações mensais de índices de inadimplência configura uma série 

temporal. Morettin e Toloi (2006) também enumeram alguns dos principais objetivos 

associados à aplicação deste conceito: 

a) investigar o mecanismo gerador da série temporal; 

b) fazer previsões de valores futuros da série; 

c) descrever apenas o comportamento da série; 

d) procurar periodicidades relevantes nos dados. 

A partir desses possíveis usos é possível justificar o uso de séries temporais em diversas 

áreas do conhecimento. Apesar de suas aplicações mais tradicionais estarem relacionadas aos 

campos da economia ou física, por exemplo, seu uso também é bem justificado neste trabalho, 

uma vez que o objetivo é obter projeções de valores futuros de índices de inadimplência a partir 

de comportamento passado da série. 

A análise por séries temporais pode ser abordada por duas perspectivas diferentes. Uma 

delas é a análise no domínio temporal, que seria a observação dos diversos valores de Z(t) ao 

longo de um período de observação. Neste caso, são construídos os chamados modelos 

paramétricos, que são aqueles definidos por um número finito de parâmetros. Esta é a 

perspectiva que será adotada neste trabalho. A segunda perspectiva é a análise da série no 

domínio das frequências, onde é feita uma análise espectral que resulta em um modelo não 

paramétrico. 

Nas seções seguintes serão explicados alguns conceitos fundamentais para a aplicação 

de séries temporais. 
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2.1. Processos estocásticos 

Morettin e Toloi (2006) definiram processos estocásticos como: 

Definição: Seja Ʈ um conjunto arbitrário. Um processo estocástico é uma família 𝑍 =

{𝑍(𝑡), 𝑡 ϵ Ʈ}, tal que, para cada 𝑡 ϵ Ʈ, 𝑍(𝑡) é uma variável aleatória. 

Assim, definido um espaço de probabilidades (𝛺, 𝐴, Ƥ), pode-se considerar processos 

estocásticos como uma família de variáveis aleatórias definidas neste espaço. Esses processos 

são regularmente usados como forma de descrever séries temporais. 

Ainda segundo Morettin e Toloi (2006), é possível classificar os processos estocásticos 

de acordo com três categorias: 

a) processos estacionários ou não estacionários, de acordo com a independência ou 

não relativamente à origem dos tempos;  

b) processos normais (Gaussianos) ou não normais, de acordo com as funções 

densidade de probabilidade que caracterizam os processos; 

c) processos Markovianos ou não Markovianos, de acordo com a independência dos 

valores do processo, em dados instante, de seus valores de instantes precedentes. 

2.2. Estacionariedade 

A estacionariedade é a existência de um comportamento constante no desenvolvimento 

da série ao longo do tempo, sempre mantendo sua média e variância para todas as observações. 

Dessa forma, caso o processo seja estacionário, a origem dos tempos não tem impacto na 

análise, uma vez que as mesmas características seriam encontradas independente do ponto de 

partida. Segundo Morettin e Toloi (2006), as séries podem ter estacionariedade fraca ou forte, 

de acordo com as definições apresentadas a seguir: 

Definição: Um processo estocástico 𝑍 =  {𝑍(𝑡), 𝑡 𝜖 Ʈ } diz-se estritamente estacionário 

se todas as distribuições finito-dimensionais permanecem as mesmas sob translações no tempo, 

ou seja, 

𝐹(𝑧1, … , 𝑧𝑛; 𝑡1 +  𝜏, … , 𝑡𝑛 +  𝜏) =  𝐹(𝑧1, … , 𝑧𝑛; 𝑡1, … , 𝑡𝑛) 
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para quaisquer  𝑡1, … , 𝑡𝑛, 𝜏 𝜖  Ʈ. Isso significa que, para qualquer 𝑡 ϵ Ʈ tem-se que: 

a) 𝜇(𝑡) =  𝜇; 

b) 𝑉(𝑡) =  𝜎2. 

Definição: Um processo estocástico 𝑍 =  {𝑍(𝑡), 𝑡 𝜖 Ʈ} diz-se fracamente estacionário 

ou estacionário de segunda ordem (ou em sentido amplo) se e somente se: 

a) 𝐸{𝑍(𝑡)} =  𝜇(𝑡)  =  𝜇, constante para todo 𝑡 ϵ Ʈ; 

b) 𝐸{𝑍(𝑡)} < ∞, para todo 𝑡 ϵ Ʈ; 

c) 𝛾(𝑡1, 𝑡2) = 𝐶𝑜𝑣{𝑍(𝑡1), 𝑍(𝑡2)} é uma função de | 𝑡1 −  𝑡2|, onde 𝛾(𝑡1, 𝑡2) é a função 

de autocovariância, que é apresentada em detalhes na subseção 2.4.1. deste 

trabalho. 

Existem diversas alternativas de testes estatísticos disponíveis para verificar se uma 

série é ou não estacionária. Aqui será abordado o caso do teste desenvolvido por Dickey e Fuller 

(1979), que leva o nome dos autores. Este método busca determinar se o polinômio 

autorregressivo de uma série temporal possui raízes sobre o círculo unitário. Caso possua, 

conclui-se que o processo estocástico não apresenta estacionariedade, e é necessário o 

tratamento da série original através das suas diferenças (esse conceito é apresentado em detalhe 

na subseção 2.5.4). 

Para exemplificar a aplicação do teste, é considerado o seguinte modelo de média zero: 

𝑍𝑡 = ϕ𝑍𝑡−1 +  𝑎𝑡, 𝑎𝑡~𝑅𝐵Ɲ (0, 𝜎2) 

sendo 𝑎𝑡 um ruído branco de média zero e desvio variância igual a 𝜎2, com distribuição 

aproximada pela distribuição normal. Ruído branco foi definido por Morettin e Toloi (2006) 

como: 

Definição: Dizemos que {𝜀𝑡, 𝑡 𝜖 ℤ} é um ruído branco discreto se as variáveis aleatórias 

𝜀𝑡 não são correlacionadas, isto é 𝐶𝑜𝑣{𝜀𝑡, 𝜀𝑠} = 0, 𝑡 ≠ 𝑠. 

Já ϕ é o operador translação para o futuro, definido por Morettin e Toloi (2006) como 

ϕ𝑍𝑡 = 𝑍𝑡+1. 
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Para ajustar o modelo proposto, é necessário subtrair 𝑍𝑡−1 de ambos lados da equação, 

que resulta em: 

∆𝑍𝑡 = ϕ∗𝑍𝑡−1 +  𝑎𝑡,   

onde ϕ∗ = ϕ − 1. A partir do resultado desta equação, será aplicado o seguinte teste de 

hipótese: 

𝐻0: ϕ∗ =  0 

𝐻1: ϕ∗ <  0 

A hipótese 𝐻0 representa o caso em que existe ao menos uma raiz unitária para o 

polinômio autorregressivo. Caso seja verificado como verdadeira, implica na não 

estacionaridade da série. Por outro lado, caso 𝐻0 seja falsa, e então 𝐻1 considerada verdadeira, 

assume-se que não existem raízes unitárias e que a série é estacionária. 

Para realizar o teste, é utilizada a seguinte estatística: 

τ̂𝐷𝐹  =  
𝑁−1 ∑ 𝑍𝑡−1𝑎𝑡

𝑆(𝑁−2 ∑ 𝑍𝑡−1
2 )

1/2
 

na qual 𝑁 corresponde tamanho = da amostra e 𝑆² representa o estimador da variância 𝜎2, dado 

por: 

𝑆2 =  
1

𝑁 − 2
∑(

𝑁

𝑡=2

∆𝑍𝑡 − 𝜙̂𝑀𝑄
∗ 𝑍𝑡−1)²  

no qual 𝜙̂𝑀𝑄
∗  é o estimador considerado de mínimos quadrados de ϕ∗ por meio da regressão de 

∆𝑍𝑡 sobre 𝑍𝑡−1. 

Uma limitação do teste Dickey-Fuller é que ele opera sobre a premissa de que o processo 

estocástico analisado tenha dependência apenas em relação ao valor imediatamente anterior, ou 

seja, a 𝑍𝑡−1. Dessa forma, um método mais robusto criado a partir do teste Dickey-Fuller é 

conhecido como Dickey-Fuller aumentado, que conta com as mesmas hipóteses, mas com uma 

nova forma de cálculo da estatística: 



29 
 

τ̂𝐴𝐷𝐹 =
𝑁−1 ∑ 𝑍𝑡−1𝑎𝑡

𝑆(𝑁−2 ∑(𝑍𝑡−1 − 𝑍̅)²)
1/2

 

Serão definidos valores críticos para cada tabulação da estatística em função de 𝑁. Caso 

a estatística para um determinado 𝑁 seja menor que o valor crítico, toma-se 𝐻0 como falso, e 

considera-se a série como estacionária. 

Um problema comum ao se analisar séries temporais é a não apresentação de um 

comportamento estacionário em sua variância devido a grandes variações no decorrer do tempo. 

Dessa forma, para que se obtenha estacionariedade é necessário manipular esta série para 

estabilizar sua variância. Existem diversas categorias de transformações para este fim, como as 

exponencias e as logarítmicas. Neste caso, será considerada a transformação proposta por Box 

e Cox (1964), da forma: 

𝑍𝑡
(𝛾)

=  {

𝑍𝑡
𝛾

− 𝑐

𝛾
, 𝑠𝑒 𝛾 ≠ 0

𝑙𝑜𝑔 𝑍𝑡, 𝑠𝑒 𝛾 = 0

 

sendo 𝛾 e c parâmetros a serem estimados de forma a se obter uma variância constante e uma 

série com distribuição aproximadamente normal. 

2.3. Normalidade 

Segundo Morettin e Toloi (2006) um processo é definido como gaussiano se: 

Definição: um processo estocástico 𝑍 =  {𝑍(𝑡), 𝑡 𝜖 Ʈ } diz-se Gaussiano se, para 

qualquer conjunto 𝑡1, 𝑡2, ..., 𝑡𝑛 de Ʈ, as variáveis aleatórias 𝑍(𝑡1), . . . , 𝑍(𝑡𝑛) tem distribuição 

normal n-variada.  

Sendo o processo estocástico identificado como normal, ou gaussiano, ele pode ser 

determinado pelas suas médias e covariâncias. Um caso particular é aquele no qual a série seja 

gaussiana e estacionária de segunda ordem, que implica necessariamente que ele seja 

estritamente estacionário. 

Para processos gaussianos, a função de densidade de probabilidade a ser usada é aquela 

da distribuição normal, tal como mostrado na Figura 02, dada por: 
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𝑓(𝑥) =  
1

𝜎√2𝜋
𝑒− 

1
2

 (
𝑥−𝜇

𝜎
)

2

, 𝑝𝑎𝑟𝑎 − ∞ ≤  𝑥 ≤  ∞ 

Figura 02- Exemplo de distribuição normal 

 
Fonte: Elaborado pelo autor 

Devido à complexidade dos cálculos, muitas vezes não estão disponíveis valores da 

esperança 𝜇 e desvio padrão 𝜎. Assim, uma aproximação aceitável são os estimadores 𝑋̅ 𝑒 𝑆 

para esperança e desvio padrão, respectivamente, que são dados por: 

𝑋̅  =  ∑
𝑋𝑖

𝑛

𝑛

𝑖=1

 

𝑆 =  √
∑ (𝑋𝑖 − 𝑋̅)2𝑛

𝑖=1

𝑛 − 1
 

sendo n o tamanho da amostra e 𝑋𝑖 os valores de cada uma das observações da amostra. 

Para determinar se uma série apresenta distribuição próxima à normal, pode-se aplicar 

um teste não paramétrico. Uma opção popularmente utilizada nesses casos é aquele proposto 

por Shapiro e Wilk (1965), que leva o nome dos autores. Ele se baseia em um teste de hipótese 

para verificar se uma série pode ser considerada Gaussiana, a partir das seguintes hipóteses: 

𝐻0 : 𝑜𝑠 𝑑𝑎𝑑𝑜𝑠 𝑎𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑚 𝑑𝑖𝑠𝑢𝑡𝑟𝑖𝑏𝑢𝑖çã𝑜 𝑛𝑜𝑟𝑚𝑎𝑙 𝑁(𝜇, 𝜎2) 

𝐻1 : 𝑜𝑠 𝑑𝑎𝑑𝑜𝑠 𝑛ã𝑜 𝑎𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑖çã𝑜 𝑛𝑜𝑟𝑚𝑎𝑙             
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A reprovação, ou não, da hipótese nula é feita a partir do cálculo da estatística W, 

calculada da seguinte forma: 

𝑊 =  
𝑏²

∑ (𝑥𝑖 − 𝑥̅)²𝑛
𝑖=1

 

sendo 𝑥𝑖 os valores das observações, 𝑥̅ a média desses valores, 𝑛 o tamanho da amostra e 𝑏 uma 

constante obtida em função de n. Como critério de avaliação da hipótese nula, a estatística W é 

comparada com valores críticos de estatística 𝑊𝛼, obtidos através de 𝑛 e do nível de 

significância 𝛼 adotado. Caso W < 𝑊𝛼, a rejeita-se 𝐻0 e conclui-se que a série não possui 

distribuição normal. 

Importante citar que este teste é indicado para amostras com um número relativamente 

baixo de observações. Dado que a série de percentual de inadimplência a ser analisada 

posteriormente possui menos de 200 amostras, esta metodologia se mostra apropriada para o 

estudo proposto. 

Para analisar visualmente a distribuição de uma série, um dispositivo gráfico muito 

usado é o Q-Q Plot, que se baseia na comparação entre os quantis de uma distribuição teórica 

e da série estudada, na qual se deseja verificar se há ou não normalidade. Conforme mostrado 

na Figura 03, a distribuição normal é representada pela reta teórica, e os pontos distribuídos ao 

seu redor simbolizam a distribuição que se deseja testar. Quando mais aderência houver, ou 

seja, mais próximos da reta os pontos estiverem, mais próximo de uma distribuição normal a 

distribuição testada está. 

Figura 03 – Exemplo de gráfico Q-Q 

 
Fonte: Elaborado pelo autor 
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2.4. Independência 

Aqui serão apresentadas as funções de autocovariância, autocorrelação e autocorrelação 

parcial, que são utilizadas na análise de séries temporais com o intuito de classificá-las como 

Markovianas ou não. 

2.4.1. Função de autocovariância 

A função de autocovariância (facv) mede o grau de variação de segundo momento, ou 

segunda ordem, entre dois elementos situados em diferentes espaços de tempo. Morettin e Toloi 

(2006) definem esta função como: 

Definição: Seja {𝑋𝑡, 𝑡 𝜖 ℤ} um processo estacionário real com tempo discreto, de média 

zero e 𝑓𝑎𝑐𝑣 𝛾𝑡  =  𝐸 {𝑋𝑡, 𝑋𝑡 + 𝜏}. 

A facv 𝛾𝑡 satisfaz as seguintes propriedades: 

a) 𝛾0  >  0; 

b)  𝛾𝑡−𝑇 = 𝛾𝑡; 

c) |𝛾𝑡| ≤ 𝛾0; 

d) 𝛾𝑡 é não negativa definida, no sentido que: 

∑ ∑ 𝑎𝑗𝑎𝑘ϒ𝜏𝑗− 𝜏𝑘  ≥ 0,

𝑛

𝑘=1

𝑛

𝑗=1

 

para quaisquer números reais 𝑎1, ..., 𝑎𝑛 e 𝜏1, ..., 𝜏𝑛 de ℤ. 

Como seu cálculo pode se provar muito complexo, muitas vezes a função é 

desconhecida. Assim, pode ser usada a estimativa 𝑐𝑗 dada por: 

𝑐𝑗 =
1

𝑁
∑[(𝑋𝑡 − 𝑋̅)(𝑋𝑡+𝑗 − 𝑋̅)], 𝑗 = 0, 1, … , 𝑁 − 1,

𝑁−𝑗

𝑡=1

 

sendo 𝑋̅ =  ∑ 𝑋𝑡
𝑁
𝑡=1  a média amostral, e com 𝑐𝑗 = 𝑐−𝑗. 
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2.4.2. Função de autocorrelação 

A função de autocorrelação (fac) mede o efeito de uma observação 𝑋𝑡 sobre as demais 

observações da série, levando em consideração um intervalo de tempo τ entre as duas. Morettin 

e Toloi (2006) definem esta função como: 

𝜌τ =
𝛾𝑡 
𝛾0

, τϵ ℤ  

São mantidas as propriedades de 𝛾𝑡, exceto que agora 𝜌0 = 1. Quando 𝜌j = 1, temos 

uma correlação perfeita e 𝜌j = −1 indica uma correlação perfeita em sentidos opostos entre 

duas variáveis. 𝜌j = 0 indica a ausência de correlação elas. A partir da definição da estimativa 

da facv, é possível obter uma estimativa da função de autocorrelação 𝑟𝑗 dada por: 

𝑟𝑗 =
𝑐𝑗 
𝑐0

, j = 0, 1, … , n − 1 

A fac é utilizada para avaliar se o processo de identificação de um modelo está adequado 

à serie proposta. 

2.4.3. Função de autocorrelação parcial 

Box, Jenkins e Reinsel (1994) sugerem o conceito de função de autocorrelação parcial 

(facp) como ferramenta adicional no processo de identificação de modelos para simplifica-lo. 

A facp mede a correlação pura entre duas variáveis 𝑋𝑡e 𝑋𝑡+𝑗, excluindo efeitos de quaisquer 

outras variáveis sobre elas. Morettin e Toloi (2006) definem a facp da seguinte forma: 

Definição: Vamos denotar por ф𝑘𝑗 o j-ésimo coeficiente de um modelo AR(k) (o 

modelo AR(k) será definido posteriormente na subseção 2.5.1), de tal modo que ф𝑘𝑘 seja o 

último coeficiente. Sabemos que: 

𝜌𝑗 = ф𝑘1𝜌1 + ф𝑘2𝜌2 + ⋯ +  ф𝑘𝑘𝜌𝑗−𝑘 , 𝑗 = 1, … , 𝑘,   

A partir das quais obtemos as equações de Yule-Walker: 

[

1 𝜌1 𝜌2 … 𝜌𝑘−1

𝜌1 1 𝜌1 … 𝜌𝑘−2

⋮    ⋮
𝜌𝑘−1 𝜌𝑘−2 𝜌𝑘−3 … 1

] [

ф𝑘1

ф𝑘2

⋯
ф𝑘𝑘

] = [

𝜌1

𝜌2

⋯
𝜌𝑘

] 
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Resolvendo estas equações sucessivamente para 𝑘 = 1, 2, 3, ... obtemos: 

ф11 = 𝜌1 

ф22 =
|

1 𝜌1

𝜌1 𝜌2
|

|
1 𝜌1

𝜌1 1
|

=
𝜌2 −  𝜌1

2

1 − 𝜌1
2  

ф33 =

|
1 𝜌1 𝜌1

𝜌1 1 𝜌2

𝜌2 𝜌1 𝜌3

|

|

1 𝜌1 𝜌2

𝜌1 1 𝜌1

𝜌2 𝜌1 1
|

 

Em geral, 

ф𝑘𝑘 =
|𝑃𝑘

∗|

|𝑃𝑘|
 

onde  𝑃𝑘 é a matriz de autocorrelações e 𝑃𝑘
∗ é a matriz 𝑃𝑘 com a última coluna substituída pelo 

vetor de autocorrelações. 

2.5. Modelos Paramétricos 

Conforme dito anteriormente, a série alvo de estudo deste trabalho será analisada sobre 

o escopo do domínio temporal, e para isso são construídos modelos paramétricos. Nesta 

subseção serão estudadas quatro variedades de modelos: autorregressivos, de médias móveis, 

autorregressivos de médias móveis e, finalmente, autorregressivos integrados de médias 

móveis. 

2.5.1. Modelos Autorregressivos 

Os modelos autorregressivos são representados pela notação AR(p), no qual p 

representa a ordem. Modelos desta natureza assumem que o valor de um elemento 𝑍𝑡 de uma 

série temporal é definido pelos valores das p observações passadas, acrescido de um erro, 

representado por um ruído branco. 

A forma genérica de um modelo AR(p) é definida por Morettin e Toloi (2006) como: 
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𝑍̃𝑡  =  𝜙1𝑍̃𝑡−1 + 𝜙2𝑍̃𝑡−2 + ⋯ + 𝜙𝑝𝑍̃𝑝 + 𝑎𝑡  

onde 𝑍̃𝑡 = 𝑍𝑡 −  𝜇, sendo 𝜇 a média das observações, 𝜙𝑝  o peso atribuído a observação passada 

𝑍̃𝑡−𝑖, 𝑖 = 1, … , 𝑝 e 𝑎𝑡 um ruído branco RB(0, 𝜎2). Segundo Morettin e Toloi (2006) outra forma 

de representar modelos AR(p) é através de um operador autorregressivo de ordem p, definido 

por eles como: 

𝜙(𝐵) = 1 − 𝜙1𝐵 −  𝜙2𝐵2 − ⋯ −   𝜙𝑝𝐵𝑝 

sendo B o operador translação para o passado, definido por Morettin e Toloi (2006) como: 

𝐵𝑍𝑡 =  𝑍𝑡−1, 𝐵𝑚𝑍𝑡 = 𝑍𝑡−𝑚 

Assim, podemos representar modelos AR(p) por: 

𝜙(𝐵)𝑍̃𝑡 = 𝑎𝑡 

2.5.2. Modelos de Medias Móveis 

Os modelos de médias móveis são representados pela notação MA(q), sendo q a ordem. 

Diferente dos modelos AR(p), neste caso o modelo assume que os valores de  𝑍𝑡 são obtidos 

através de um sistema linear, nos quais as entradas são os ruídos brancos verificados nas q 

observações passadas. Morettin e Toloi (2006) apresentaram a seguinte equação genérica para 

representar modelos MA(q):  

𝑍̃𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞 

sendo 𝜃𝑗  o peso atribuído ao ruído 𝑎𝑡−𝑗, 𝑗 = 1, … , 𝑞 e 𝑎𝑡, … , 𝑎𝑡−𝑞 ruídos brancos RB(0, 𝜎2). 

Analogamente, é possível representar essa equação através do operador de médias móveis 

apresentado por Moretin e Toloi (2006): 

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃1𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞 

Dessa forma, o modelo MA(q) é representado por: 

𝑍̃𝑡 = 𝜃(𝐵)𝑎𝑡 

2.5.3. Modelos Autorregressivos de Médias Móveis 
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Modelos autorregressivos de média móveis, denotados ARMA(p,q), são resultados da 

aplicação simultânea dos modelos AR(p) e MA(q), para se analisar a progressão das 

observações 𝑍𝑡 sob um escopo mais amplo. Na prática, modelos ARMA(p,q) são uma 

alternativa eficiente a modelos puramente de autorregressão ou de médias móveis, por 

possibilitar uma análise com um número menor de parâmetros. Segundo Morettin e Toloi 

(2006), modelos ARMA(p,q) podem ser descritos através da seguinte equação: 

𝑍̃𝑡 = 𝜙1𝑍̃𝑡−1 + 𝜙2𝑍̃𝑡−2 + ⋯ + 𝜙𝑝𝑍̃𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞 

sendo 𝑎𝑡, … , 𝑎𝑡−𝑞  ruído branco RB(0, 𝜎2). Usando o operador autorregressivo de ordem p e o 

operador de médias móveis de ordem q, é possível reescrever a equação para modelos 

ARMA(p,q) da seguinte forma:  

𝜙(𝐵)𝑍̃𝑡 = 𝜃(𝐵)𝑎𝑡 

2.5.4. Modelos Autorregressivos Integrados de Médias Móveis 

É comum ao se analisar uma série temporal que ela não apresente o comportamento 

estacionário necessário à aplicação dos modelos ARMA(p,q). Uma ferramenta útil para usar na 

série de forma que o resultado seja estacionário é o operador diferença, definido por Morettin e 

Toloi (2006) como: 

∆𝑍𝑡 =  𝑍𝑡 − 𝑍𝑡−1 

Ou, considerando a n-ésima diferença, tem-se: 

∆𝑛𝑍𝑡 =  ∆[∆𝑛−1𝑍𝑡] 

Na maior parte dos casos, uma ou duas diferenças são suficientes para se obter a 

estacionariedade. Este operador é combinado aos modelos ARMA(p,q) para se obter modelos 

ARIMA(p,d,q), sendo d o número de diferenças aplicadas sobre a série original. Morettin e 

Toloi (2006) apresentam a seguinte equação genérica para modelos ARIMA(p,d,q): 

𝜙(𝐵)∆𝑑𝑍̃𝑡 = 𝜃(𝐵)𝑎𝑡  
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3. REVISÃO BIBLIOGRÁFICA – CONTROLE ESTATÍSTICO DE PROCESSOS 

Neste capítulo serão apresentados os conceitos e ferramentas de controle estatístico de 

processos (CEP) necessários para a concepção de um modelo de monitoramento da série de 

índices de inadimplência para auxiliar a tomada de decisões no cotidiano da empresa. 

CEP é um conjunto de ferramentas estatísticas de controle de qualidade, aplicadas para 

se avaliar um determinado processo visando aumentar sua estabilidade e previsibilidade, e 

assim otimizá-lo através da redução da variabilidade. 

Esse conjunto é composto por sete ferramentas diferentes. Elas serão brevemente 

apresentadas a seguir, e ao final será determinada qual é a mais apropriada para os fins propostos 

neste trabalho. 

a) gráfico de Pareto: é usado para se analisar a distribuição de defeitos em um processo, 

que possibilita a identificação dos problemas mais recorrentes e uma abordagem mais 

focada nas causas de maior impacto (vide Figura 04); 

Figura 04 – Gráfico de Pareto 

 
Fonte: Kume (1993) 

b) diagrama de causa-e-efeito: desenvolvido em 1953 por Kaoru Ishikawa, consiste em 

um diagrama que determina diversas causas, primárias e secundarias, que levam à 

ocorrência de um determinado efeito ou evento (vide Figura 05); 
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Figura 05 – Diagram de causa e efeito 

 

 

Fonte: Kume (1993) 

c) histograma: uma forma gráfica de apresentar a distribuição de frequências em uma 

amostra. Permite uma análise visual rápida para avaliar a média e dispersão dos dados 

(vide Figura 06); 

Figura 06 - Histograma 

 
 

Fonte: Kume (1993) 
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d) folha de verificação: um formulário impresso elaborado de forma a facilitar a coleta de 

dados durante a observação de um processo, e permitir sua organização de maneira 

simples (vide Figura 07); 

Figura 07 – Folha de verificação 

 
Fonte: Kume (1993) 

e) gráfico de controle: esta ferramenta busca classificar um processo como dentro ou fora 

de controle com base em seu comportamento ao longo do tempo e o estabelecimento 

de limites de controle (vide Figura 08); 

Figura 08 - Gráfico de controle 

 
Fonte: Montgomery (2004) 
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f) diagrama de dispersão: ideal para estudar a relação entre duas variáveis, que podem ser 

características de qualidade ou fatores que as afetam. Seu objetivo é constatar se existe 

correlação entre os dados, e se houver, classificar esta correlação (vide Figura 09); 

Figura 09 - Diagrama de dispersão 

 
Fonte: Kume (1993) 

g) diagrama de concentração de defeito: representação plana de um determinado objeto, 

sobre a qual são marcados os locais onde há incidência de defeitos. A partir de sua 

análise, é possível reconhecer pontos de concentração levantar informações sobre 

possíveis causas (vide Figura 10). 

Figura 10 - Diagrama de concentração de defeito 

 
Fonte: Kume (1993) 

Essas ferramentas normalmente são citadas em contexto de análise de processos 

industriais. Porém, segundo Montgomery (2004), “aplicações não industriais não diferem 
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substancialmente das aplicações industriais, mais usuais”. Portanto, neste trabalho de 

formatura, a série de inadimplência será considerada com um processo, a ser avaliado a partir 

da aplicação de ferramentas de controle da qualidade. 

Dentre todas as ferramentas apresentadas, o gráfico de controle é aquele que apresenta 

a maior utilidade na abordagem do problema proposto, por ser a mais adequada para analisar a 

variação no decorrer do tempo. Esta ferramenta será apresentada em detalhe nas subseções a 

seguir. 

3.1. Gráficos de controle 

Kume (1993) apresenta a seguinte definição para gráficos de controle: 

Definição: Um gráfico de controle consiste em uma linha central, um par de limites de 

controle, um dos quais localiza-se abaixo e outro acima da linha central, e valores característicos 

marcados no gráfico representando o estado do processo.  

O limite abaixo da linha central (LC) é conhecido como limite inferior de controle (LIC), 

e o limite acima é chamado de limite superior de controle (LSC). Um processo pode ser 

considerado sob controle se os valores observados para o processo estiverem contidos entre os 

dois limites, sem apresentar tendências. Caso contrário, o processo pode ser considerado fora 

de controle, e é, portanto, passível de ações corretivas para melhorar seus resultados. 

É inerente a qualquer processo a existência de variações nas características observadas. 

Segundo Kume (1993), existem dois tipos de causas para tais variações, as aleatórias, que são 

aquelas que inevitavelmente acontecerão e são de difícil prevenção, e as assinaláveis, que 

sinalizam a existência de fatores relevantes que podem ser analisados para buscar a otimização 

de um processo. Classificar um processo como fora de controle através da aplicação do gráfico 

de controle é equivalente a dizer que existem uma ou mais causas assinaláveis fora de controle. 

Montgomery (2004) apresenta um modelo geral para gráficos de controle. Sendo 𝑢𝑤 

uma estatística, 𝜇𝑤 sua média e 𝜎𝑤 seu desvio padrão, os limites de controle e a linha central 

são dados pelas seguintes equações: 

𝐿𝑆𝐶 = 𝜇𝑤 + 𝐿 𝜎𝑤 

𝐿𝐶 =  𝜇𝑤 

𝐿𝐼𝐶 = 𝜇𝑤 − 𝐿 𝜎𝑤 
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nas quais 𝐿 representa a distância entre a linha central e os limites de controle, expressa em 

unidades de desvios padrões. Normalmente seu valor é encontrado a partir de processos 

iterativos que buscam atender um critério de desempenho pré-determinado de acordo com as 

especificidades do processo analisado. 

  Montgomery (2004) afirma que “há uma relação muito próxima entre gráficos de 

controle e testes de hipótese”. De fato, analisar um processo a partir dos limites de controle do 

gráfico pode ser análogo a aplicar um teste de hipótese repetidamente para cada período de 

tempo, com as seguintes hipóteses:  

𝐻0: 𝑂 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜 𝑒𝑠𝑡á 𝑠𝑜𝑏 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑒 

𝐻1: 𝑂 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜 𝑒𝑠𝑡á 𝑓𝑜𝑟𝑎 𝑑𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑒 

 Dessa forma, a hipótese nula é rejeitada caso a estatística calculada esteja fora dos 

limites de controle, ou apresente algum tipo de tendência em seu comportamento. No entanto, 

pode-se notar que o tamanho do intervalo entre os limites de controle depende do 𝐿 usado no 

modelo. Assim, o valor de 𝐿 é fundamental na decisão do processo como dentro ou fora de 

controle. Mas como todo processo de decisão, pode ocorrer dois tipos de erros. São eles: 

a) erro tipo I: rejeitar a hipótese nula, enquanto esta é verdadeira. Significa que o 

modelo aponta a existência de um processo fora de controle, sem que de fato esteja. 

É conhecido como alarme falso. Montgomery (2004) apresenta a probabilidade de 

ocorrência 𝛼 dada por: 

𝛼 = 𝑃{𝑒𝑟𝑟𝑜 𝑡𝑖𝑝𝑜 𝐼} = 𝑃{𝑟𝑒𝑗𝑒𝑖𝑡𝑎𝑟 𝐻𝑜|𝐻𝑜 é 𝑣𝑒𝑟𝑑𝑎𝑑𝑒𝑖𝑟𝑎}; 

b) erro tipo II: não rejeitar a hipótese nula, sendo que esta é falsa. O modelo deixa de 

detectar um processo fora de controle. De acordo com Montgomery (2004), a 

probabilidade de ocorrência 𝛽 é dada por: 

𝛽 = 𝑃{𝑒𝑟𝑟𝑜 𝑡𝑖𝑝𝑜 𝐼𝐼} = 𝑃{𝑑𝑒𝑖𝑥𝑎𝑟 𝑑𝑒 𝑟𝑒𝑗𝑒𝑖𝑡𝑎𝑟 𝐻𝑜|𝐻𝑜 é 𝑓𝑎𝑙𝑠𝑎}. 

Uma métrica muito usada para avaliar a eficiência um gráfico de controle quanto a 

ocorrência de erros é o comprimento médio de sequência (ARL, do termo inglês “Average Run 

Length”). Segundo Montgomery (2004), o ARL é a quantidade média de observações dentro 

dos limites de controle até a ocorrência de uma observação fora dos limites de controle.   
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Existem duas medidas de ARL, o 𝐴𝑅𝐿0, usado para processos sob controle, e o 𝐴𝑅𝐿1, 

para processos fora de controle, que são dados por: 

𝐴𝑅𝐿0 =
1

𝛼
 

𝐴𝑅𝐿1 =
1

1 − 𝛽
 

Como o objetivo é obter o máximo de observações dentro do limite de controle (para 

um processo sob controle), a situação ideal é aquela em que o 𝐴𝑅𝐿0 é maximizado e o 𝐴𝑅𝐿1 

minimizado. No entanto, para se aumentar 𝐴𝑅𝐿0 e obter mais pontos dentro dos limites, é 

necessário aumentar a distância entre os limites de controle e a linha central. Ao fazer isso, o 

modelo perde uma parte de sua capacidade de detectar pontos fora de controle, ou seja, aumenta 

a incidência de erro tipo II. Dessa forma, ao se tentar aumentar o 𝐴𝑅𝐿0, consequentemente há 

um aumento do 𝐴𝑅𝐿1 também. É preciso então encontrar valores satisfatórios para ambos. 

Existem diferentes categorias de gráficos de controle que podem ser utilizadas, cada 

uma com características próprias que a tornam adequada a um certo tipo de processo. Nas 

subseções a seguir serão exploradas algumas variedades que podem ser úteis ao monitoramento 

de índices de inadimplência em carteiras de recebíveis. 

3.1.1. Gráficos de Controle Shewhart 

Os gráficos de Shewhart são amplamente utilizados para controle estatístico de 

processos, principalmente por ser uma ferramenta de fácil implantação e interpretação, e buscar 

avaliar a estabilidade de uma determinada variável com a evolução do tempo. 

Os gráficos são classificados de acordo com a estatística que está sendo monitorada. A 

seguir serão apresentados os gráficos de controle mais usados para monitoramento de média e 

variabilidade do processo. 

I. Gráfico de controle 𝑥̅ 

Este tipo de gráfico de controle é usado para o monitoramento da média dos valores 

observados em determinada amostra 𝑚, denotada por 𝑥̅ e dada por:  
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𝑥̅𝑚 =
𝑥𝑚,1 + 𝑥𝑚,2 + ⋯ + 𝑥𝑚,𝑖

𝑡
 

com 𝑖 = 1, … , 𝑡, sendo 𝑡 o número de observações na amostra 𝑚. 

Montgomery (2004) apresenta os limites de controle como: 

𝐿𝑆𝐶 = 𝑥̅̅ + 𝐴2𝑅̅ 

𝐿𝐶 =  𝑥̅̅ 

𝐿𝐼𝐶 = 𝑥̅̅ −  𝐴2𝑅̅ 

onde 𝐴2 é uma constante tabulada para diversos tamanhos de amostra, 𝑥̿ é a média das 

observações das m amostras e 𝑅̅ a média das amplitudes das m amostras, que são dadas por, 

respectivamente: 

𝑥̿ =
𝑥̅1 + 𝑥̅2 + ⋯ + 𝑥̅𝑚

𝑚
 

𝑅̅ =
𝑅1 + 𝑅2 + ⋯ + 𝑅𝑚

𝑚
 

onde 𝑅𝑗 , 𝑗 = 1, … , 𝑚 amplitude calculada para a a amostra 𝑗, dada por: 

𝑅𝑗 = 𝑚á𝑥(𝑥𝑗,𝑖) − min (𝑥𝑗,𝑖) 

II. Gráfico da amplitude (R) 

Este gráfico usa a amplitude de um processo como estatística a ser controlada, com o 

intuito de monitorar, e controlar, a variabilidade de um processo. Neste caso, os parâmetros 

para o gráfico R apresentados por Montgomery (2004) são: 

𝐿𝑆𝐶 = 𝐷4𝑅 

𝐿𝐶 =  𝑅̅ 

𝐿𝐼𝐶 = 𝐷3𝑅 

onde 𝐷4 e 𝐷3 são constantes tabuladas de acordo com o número de observações da amostra. 
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III. Gráfico para desvio-padrão 

Também conhecido como gráfico S, o gráfico para desvio padrão é utilizado para 

controlar a variabilidade do processo, assim como os gráficos R, mas a partir do monitoramento 

do desvio padrão, que pode ser calculado da seguinte forma: 

𝑆 = √
∑ (𝑥𝑖 − 𝑥̅)²𝑛

𝑖=1

𝑛 − 1
 

Para elaborar os gráficos de controle, são usados os seguintes limites definidos por 

Montgomery (2004): 

𝐿𝑆𝐶 = 𝐵4𝑆̅ 

𝐿𝐶 = 𝑆̅  

𝐿𝐼𝐶 = 𝐵3𝑆̅ 

onde 𝐵3 e 𝐵4 são constantes tabuladas para diversos tamanhos de amostras e 𝑆̅ é o desvio padrão 

médio das m amostras. 

3.1.2. Gráficos de Controle de Soma Cumulativa (CUSUM) 

Os gráficos CUSUM foram introduzidos por Page (1954), e são classificados como 

gráficos com memória. Isso significa que, diferente dos gráficos de Shewhart, ele considera 

informações fornecidas por toda a sequência de observações, não apenas a mais recente. Esta 

característica permite que gráficos com memória sejam mais sensíveis a pequenas variações. 

O processo de soma cumulativa pode ser aplicado a diversas variáveis, mas nesta 

subseção será abordado apenas o caso do CUSUM tabular para monitoramento de média de 

processos. Basicamente, considerando a média do processo 𝜇0 como valor alvo, é calculado a 

soma total de todos os desvios acima deste valor, o que resulta na estatística CUSUM unilateral 

superior 𝐶+. Analogamente, para os desvios abaixo do valor alvo é calculada a estatística 

CUSUM unilateral inferior 𝐶+. Montgomery (2004) apresenta a seguinte forma de cálculo 

destas estatísticas: 

𝐶𝑖
+ = 𝑚á𝑥[0, 𝑥𝑖 − (𝜇𝑜 + 𝐾) +  𝐶𝑖−1

+ ] 
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𝐶𝑖
− = 𝑚á𝑥[0, (𝜇𝑜 + 𝐾) − 𝑥𝑖 +  𝐶𝑖−1

− ] 

onde 𝐶𝑖
+ 𝑒 𝐶𝑖

− são os valores da estatística acumulados até a observação 𝑖, sendo que 𝐶𝑜
+ =

𝐶0
− = 0, e 𝐾 é o valor de referência, ou valor de folga. Seu valor é calculado como a metade da 

distância entre 𝜇0 e o valor da média fora de controle 𝜇1: 

𝐾 =  
𝛿

2
𝜎 =  

|𝜇1 − 𝜇0|

2
 

Para que seja classificado como fora de controle, as estatísticas 𝐶𝑖
+ 𝑒 𝐶𝑖

− devem exceder 

o intervalo de decisão 𝐻. Este intervalo é definido a partir do valor de ARL que se deseja obter, 

através da testagem de diversos cenários. 

3.1.3. Gráficos de Controle de Média Móvel Exponencialmente Ponderada (MMEP) 

O gráfico MMEP apresentado por Roberts (1959), assim como o modelo CUSUM, é 

classificado como gráfico com memória. É normalmente aplicado aos casos em que as 

observações feitas são individuais e é regularmente lembrado por ser de fácil aplicação. 

Segundo Montgomery, Jennings e Kulachi (2008), este tipo de gráfico é muito utilizado para 

previsões e modelos de séries temporais. 

O primeiro passo da construção da estatística 𝑧𝑖, para a qual Samohyl (2009) apresenta 

a seguinte equação: 

𝑧𝑖 = 𝜆𝑥𝑖 + (1 − 𝜆)𝑧𝑖−1 

onde 𝑖 representa o período de tempo, 𝑥𝑖 é o valor da série observado em 𝑖 e 𝜆 é uma constante, 

sendo que 0 < 𝜆 ≤ 1. Para 𝑖 = 0, é considerado 𝑧0 = 𝜇𝑜, a média dos valores observados.  

 Samohyl (2009) aponta que como 𝑧𝑖 é calculado em função de 𝑥𝑖 e 𝑧𝑖−1, a partir de uma 

série de substituições sequenciais para valores passados é possível observar que o MMEP 

calcula o valor atual da estatística com base em todos valores passados, com as observações 

mais recentes tendo um peso maior no cálculo da média. 

A partir do cálculo da estatística 𝑧𝑖 para todos valores de i do processo analisado, 

Montgomery (2004) apresenta as seguintes formas de cálculo dos parâmetros LC, LSC e LIC 

do gráfico de controle: 
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𝐿𝑆𝐶 = 𝜇𝑜 + 𝐿𝜎√
𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑖] 

𝐿𝐶 =  𝜇𝑜 

𝐿𝐼𝐶 = 𝜇𝑜 − 𝐿𝜎√
𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑖] 

Sendo 𝜎 o desvio padrão dos valores observados e 𝜇𝑜 o valor alvo do processo. Tanto 

os valores de 𝜆 quanto 𝐿 devem ser selecionados de acordo com o ARL que se deseja alcançar. 

Vale ressaltar aqui, que a partir da equação da estatística 𝑧𝑖 percebe-se que um 𝜆 menor significa 

um maior peso atribuído aos dados históricos do processo, o que possibilita uma detecção mais 

eficaz de pequenas variações. Se for usado 𝜆 = 1, o gráfico MMEP é equivalente a um gráfico 

de Shewhart. 
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4. METODOLOGIA 

Neste capítulo será explicada detalhadamente a metodologia aplicada para se obter um 

modelo de previsão da série e como será feito seu monitoramento a partir de controle estatístico 

de processos e gráficos de controle. 

4.1.  Obtenção dos dados 

O primeiro passo do trabalho será a coleta de dados para os quais se busca construir o 

modelo de monitoramento. Um ponto importante a ser considerado é a confiabilidade das 

informações. Para o modelo se provar útil e cumprir seu propósito, é necessário que ele seja 

alimentado com informações que realmente reflitam a situação real. Esse ponto se torna ainda 

mais importante considerando a complexidade de se realizar o controle de uma carteira de 

recebíveis. Para se calcular a inadimplência, é necessário possuir, para todas as parcelas de 

todos os devedores, as seguintes informações: 

a) data de Vencimento; 

b) valor da parcela; 

c) data de pagamento; 

d) valor pago. 

Uma operação de securitização pode envolver diversos empreendimentos, que podem 

totalizar milhares de devedores, cada um com dezenas de parcelas a pagar. Para se calcular o 

índice de inadimplência, é necessário apurar todos pagamentos recebidos, associar cada um 

desses pagamentos a um devedor específico e comparar o valor pago com o valor da parcela, e 

a data de pagamento com a data de vencimento. 

Para realizar esse controle, normalmente a securitizadora contrata um prestador de 

serviço denominado Servicer, que realiza um monitoramento mensal dos pagamentos 

recebidos. O Servicer então condensa todas essas informações em uma planilha de uma forma 

apropriada para tratamento dos dados e análise. Dessa forma, ao se utilizar este relatório pode-

se contar com informações confiáveis e de fácil uso. 
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No entanto, este relatório apresenta apenas uma relação dos pagamentos devidos e 

recebidos, não contemplando o índice de inadimplência em si, que deverá ser calculado pela 

seguinte fórmula:  

𝐼𝑛𝑎𝑑𝑖𝑚𝑝𝑙ê𝑛𝑐𝑖𝑎 𝑛𝑜 𝑀ê𝑠 = 1 −
𝑃𝑎𝑔𝑎𝑚𝑒𝑛𝑡𝑜𝑠 𝑅𝑒𝑐𝑒𝑏𝑖𝑑𝑜𝑠 𝑒𝑚 𝐷𝑖𝑎

𝑃𝑎𝑔𝑎𝑚𝑒𝑛𝑡𝑜𝑠 𝐸𝑠𝑝𝑒𝑟𝑎𝑑𝑜𝑠 − 𝑃𝑎𝑔𝑎𝑚𝑒𝑛𝑡𝑜𝑠 𝐴𝑛𝑡𝑒𝑐𝑖𝑝𝑎𝑑𝑜𝑠
 

sendo os pagamentos expressos em seu valor em reais. 

Assim, ao final desta etapa, deve-se estar em posse de uma planilha com o cálculo deste 

índice para cada mês desde o início das vendas do empreendimento, para poder contemplar a 

evolução dessa métrica ao longo do tempo, obtendo assim uma série temporal. 

4.2.  Análise e ajuste da série 

O objetivo desta seção é aplicar métodos e conceitos para que a série analisada possua 

as características necessárias ao uso de modelos paramétricos lineares. Os códigos 

desenvolvidos para esta subseção, bem como para as seções 4.3 e 4.4, estão apresentados no 

Apêndice A. Foram considerados os seguintes passos: 

Passo 1: uma análise visual da série. Caso seja observada instabilidade na variância ao 

longo do tempo, será aplicada a transformação proposta por Box e Cox (1964), introduzida na 

seção 2.2 deste trabalho, para que se estabilize a variância. Conforme explicado, para aplicar 

esse método é necessário estimar os parâmetros 𝛾 e c. Estes serão definidos a partir da função 

𝑏𝑜𝑥𝑐𝑜𝑥. 𝑙𝑎𝑚𝑏𝑑𝑎() do RStudio, que fornece os valores que minimizam a variação da variância. 

Passo 2: avaliar a estacionariedade da série. Para isso, será aplicado o teste Dickey-

Fuller aumentado. Como output, o programa retorna um valor 𝑝 − 𝑣𝑎𝑙𝑢𝑒, e caso ele seja menor 

que 0,05, pode-se rejeitar a hipótese nula e assumir estacionariedade. Caso seja verificada a não 

estacionariedade da série, serão tomadas quantas diferenças forem necessárias até ela se torne 

estacionária. No entanto, Morettin e Toloi (2006) defendem que na maioria dos casos 1 ou 2 

diferenças costumam ser suficientes para obter uma série estacionaria. 

Passo 3: é avaliado se a série possui uma distribuição aproximadamente igual a normal 

com a aplicação do teste de Shapiro-Wilk, através da função 𝑠ℎ𝑎𝑝𝑖𝑟𝑜. 𝑡𝑒𝑠𝑡() do RStudio, que 

já calcula a variável 𝑏 adequada. Esta função retorna o valor 𝑝 − 𝑣𝑎𝑙𝑢𝑒, e caso este seja superior 

a 0,05, pode-se aceitar a hipótese nula e concluir que a série é gaussiana. Ainda para analisar a 
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normalidade, será elaborado o gráfico Q-Q Plot com os pontos da série, e será feita uma análise 

visual deste. Se os pontos estiverem próximos da reta que representa a distribuição normal, 

pode-se assumir normalidade. Caso não haja normalidade, deverão ser aplicadas 

transformações adicionais para corrigir a série. 

Passo 4: finalmente será avaliada a independência da série, através da análise das 

autocorrelações e autocorrelações parciais, usando as funções 𝑓𝑎𝑐() e 𝑓𝑎𝑐𝑝() do RStudio, 

respectivamente. Essas funções serão aplicadas até o lag 50, para se avaliar um intervalo 

suficientemente longo e perceber a existência de todas autocorrelações relevantes. O intervalo 

limite que divide as autocorrelações relevantes das demais já é calculado pelo programa, e 

mostrado visualmente junto aos valores encontrados para facilitar a análise. 

4.3.  Identificação do modelo 

Uma vez analisadas as características da série e aplicados os devidos ajustes, parte-se 

então para a etapa de identificação do modelo paramétrico que se adequa melhor a ela. Uma 

metodologia que serve de referência neste campo é a abordagem iterativa em 4 estágios de Box 

e Jenkins (1976): 

a) especificação: uma classe geral de modelos é considerada para análise; 

b) identificação: com base nas autocorrelações, nas autocorrelações parciais e outros 

critérios, identificar um candidato de modelo; 

c) estimação: determinar os parâmetros para o modelo candidato; 

d) diagnóstico/verificação: análise de resíduos para determinar se o modelo ajustado é 

adequado para os fins que se procura atingir. 

Durante as etapas de estimação ou diagnóstico, caso os resultados obtidos não sejam 

satisfatórios, volta-se para a etapa de identificação, seguindo desta forma até se achar um 

modelo adequado. Nesta subseção serão abordados os três primeiros passos. 

Em relação à especificação, aqui serão utilizados modelos autorregressivos integrados 

de média móveis ARIMA(p,d,q), por ser uma classe mais ampla que engloba tanto os casos de 

modelos AR(p), MA(q) e ARMA(p,q). 
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A etapa de identificação é uma das mais trabalhosas e importantes de todo o processo. 

Morettin e Toloi (2006) citam as seguintes características da autocorrelação de uma série que 

auxiliam na identificação de um modelo adequado: 

a) um processo AR(p) tem fac que decai de acordo com exponenciais e/ou senóides 

amortecidas, infinita em extensão; 

b) um processo MA(q) tem fac finita, no sentido em que ela apresenta um corte após 

o “lag” q; 

c) um processo ARMA(p,q) tem fac infinita em extensão, a qual decai de acordo com 

exponenciais e/ou senóides amortecidas após o “lag” p-q. 

Da mesma forma, Morettin e Toloi (2006) apresentam as características das 

autocorrelações parciais para cada classe de modelos: 

a) Um processo AR(p) tem facp ф𝑘𝑘 ≠ 0, para 𝑘 ≤ 𝑝 e ф𝑘𝑘 = 0 para 𝑘 > 𝑝; 

b) Um processo MA(q) tem facp que se comporta de maneira similar à fac de um 

processo AR(p): é denominada por exponenciais e/ou senóides amortecidas; 

c) Um processo ARMA(p,q) tem facp que se comporta como a facp de um processo 

MA puro. 

Devido à sua maior complexidade, a identificação de modelos ARMA pode ser difícil 

através da análise de sua fac e facp. Assim, neste caso, é recomendado o teste de uma variedade 

de modelos, preferencialmente com número reduzido de parâmetros, e comparação deles 

através de métodos pré-estabelecidos. Akaike (1973) indica como mais adequado o modelo 

ARIMA(k,i,l), onde 𝑘, 𝑖 e 𝑙 são as ordens com as quais o seguinte critério apresenta seu valor 

mínimo: 

𝐴𝐼𝐶(𝑘, 𝑑, 𝑙) = 𝑁 ln 𝜎̂𝑎
2 +

𝑁

𝑁 − 𝑑
2(𝑘 + 𝑙 + 1 + 𝛿𝑑0) 

em que: 

𝛿𝑑0 = {
1, 𝑑 = 0
0;         𝑑 ≠ 0
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sendo N o número de observações na amostra e  𝜎̂𝑎
2 o estimador da máxima verossimilhança de 

𝜎𝑎
2, definido por: 

𝜎̂𝑎
2 =

∑ (𝑥𝑖 − 𝑧𝑖)²𝑛
𝑖=1

𝑛
 

sendo 𝑥𝑖 os valores das observações da série e 𝑧𝑖 os valores obtidos através do modelo. Assim, 

o melhor modelo deverá ter o menor valor do AIC. 

Importante ressaltar que até agora foi abordado apenas o caso dos modelos cheios, que 

são os modelos de ordem p e q que possuem 𝑝 + 𝑞 + 1 parâmetros diferentes de zero. O caso 

ideal é aquele em que se acha um modelo com um número mínimo de parâmetros. Assim, é 

interessante estudar também os chamados modelos reduzidos, que são aqueles de ordem p e q, 

mas em que apenas uma fração dos 𝑝 + 𝑞 + 1 parâmetros são diferentes de zero. Para se validar 

o uso do modelo reduzido ao invés do completo, utiliza-se o seguinte teste de hipótese: 

𝐻0: 𝑜 𝑚𝑜𝑑𝑒𝑙𝑜 𝑟𝑒𝑑𝑢𝑧𝑖𝑑𝑜 é 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑒 𝑎𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑜 

𝐻1: 𝑜 𝑚𝑜𝑑𝑒𝑙𝑜 𝑟𝑒𝑑𝑢𝑧𝑖𝑑𝑜 𝑛ã𝑜 é 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑒 𝑎𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑜 

Para tal, são comparados o valor ∆𝐴𝐼𝐶, diferença entre o critério de Akaike dos modelos 

completo e reduzido, e o valor de 𝜒2, que é o valor atribuído para a distribuição qui-quadrado 

para um grau de liberdade igual a diferença entre o número de parâmetros nos modelos cheio e 

reduzido, e um 𝛼 =  0,05. Caso ∆𝐴𝐼𝐶 <  𝜒2, a hipótese nula é tomada como verdadeira e 

segue-se a análise com o modelo reduzido. 

Outro critério importante para avaliação dos modelos é a precisão de suas projeções. 

Para tal avaliação, é usada apenas uma porção da série de dados para definição do modelo 

paramétrico. Por exemplo, em uma série de 1.000 observações, a modelagem seria feita a partir 

dos 900 primeiros. Uma vez que o modelo é encontrado e todos seus parâmetros são calculados, 

é feita uma projeção dos valores futuros da série. Estas são então comparadas aos valores reais 

para determinar a sua precisão. 

Sendo 𝛾𝑡 a observação medida em 𝑡 e 𝐹𝑡 a previsão para 𝛾𝑡, o erro da previsão é dado 

por 𝑒𝑡 = 𝛾𝑡 − 𝐹𝑡. Hyndman e Koehler (2005) apresentam critérios de avaliação amplamente 

utilizados, calculados a partir dessas variáveis: a média do erro ao quadrado MSE (do inglês 

Mean Square Error) e a raiz da média do erro ao quadrado RMSE (do inglês Root Mean Square 

Error), que são dados por: 
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𝑀𝑆𝐸 =
𝑒1

2 + 𝑒2
2 + ⋯ + 𝑒𝑓

2

𝑓
 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 

sendo 𝑓 o número de projeções a serem comparadas com a série original. Os modelos mais 

apropriados serão aqueles que minimizem os resultados de MSE e RMSE, dada a série de 

inadimplência utilizada. 

Uma vez descobertas a classe e as ordens do modelo, o próximo passo é estimar seus 

parâmetros. Para isso será utilizada a função 𝑎𝑟𝑖𝑚𝑎() do RStudio. Eles são obtidos através do 

método dos mínimos quadrados. Em suma, este método consiste em buscar os parâmetros que 

registrem os menores erros entre os valores encontrados pelo modelo e os valores 

experimentais. 

4.4.  Diagnóstico do modelo 

Neste momento será aplicado o quarto passo do método de Box e Jenkins (1976), o 

diagnóstico do modelo. Aqui serão realizados uma série de testes para verificar se ele é 

adequado para prever os valores futuros da série. Mais especificamente, são analisados os 

resíduos da série, que é a diferença entre os valores experimentais e aqueles encontrados pelo 

modelo. Sendo 𝑍𝑡uma série temporal, e 𝑊𝑡 = ∆𝑍𝑡, suponha o modelo: 

𝜙(𝐵)𝑊𝑡 = 𝜃(𝐵)𝑎𝑡 

Morettin e Toloi (2006) definem o erro verdadeiro desse modelo como: 

𝑎𝑡 = 𝜃−1(𝐵)𝜙(𝐵)𝑊𝑡 

Segundo os autores, caso o modelo seja adequado, esses erros irão se comportar como 

ruídos brancos. Isso portanto servirá de critério para sua aprovação. Caso este se prove 

inadequado, volta-se para a etapa de identificação do modelo. 

O primeiro teste a ser aplicado é o de Ljung e Box (1978). Esse método se baseia em 

um teste de hipótese, onde: 

𝐻0: os resíduos são independentes e identicamente distribuídos        

𝐻1: os resíduos não são independentes e identicamente distribuídos 
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Para isso, é calculada a seguinte estatística: 

𝑄(𝐾) = 𝑛(𝑛 + 2) ∑
𝑟̂𝑗

2

(𝑛 − 𝑗)

𝐾

𝑗=1

 

na qual 𝐾 é o valor do lag analisado, 𝑛 é igual o número de observações menos o número de 

diferenças tomadas, e 𝑟̂𝑗 é a autocorrelação do resíduo 𝑎̂𝑡, dada por: 

𝑟̂𝑗 =
∑ 𝑎̂𝑡𝑎̂𝑡−𝑘

𝑛
𝑡=𝑘+1

∑ 𝑎̂𝑡²𝑛
𝑡=1

 

Considerando um nível de confiança α, a hipótese nula 𝐻0 é rejeitada se o valor de 𝑄(𝐾) 

for superior ao valor atribuído a distribuição qui-quadrado para 𝛼 e grau de liberdade igual a 

𝐾 –  𝑝 –  𝑞. Assim, o modelo será aprovado no diagnóstico caso a hipótese nula não seja 

rejeitada.  

Mesmo que haja resultados positivos na aplicação do teste de Ljung e Box (1978), serão 

aplicados testes adicionais para se garantir que o modelo é apropriado com maior rigor. O 

segundo teste então será o de Shapiro-Wilk, para verificar se os resíduos apresentam 

distribuição próxima da normal. Novamente, será assumida normalidade caso o programa 

retorne um 𝑝 − 𝑣𝑎𝑙𝑢𝑒 superior a 0,05. 

Por último serão avaliadas a fac e facp dos resíduos. Uma característica de ruídos 

brancos é que as observações em diferentes momentos não estão correlacionadas. Assim, para 

aprovar o modelo, é preciso que a análise das duas funções não mostre autocorrelações fora dos 

intervalos de confiança estabelecidos. Caso mostre, significa que há informação relevante 

contida nos resíduos que não está sendo captada pelo modelo. 

Tendo resultados favoráveis nos três testes, pode-se assumir que o modelo encontrado 

é adequado e avançar para a próxima etapa. Caso qualquer um dos três tenha resultado negativo, 

não se pode assumir que os resíduos se comportam como ruídos brancos e deve-se selecionar 

outro modelo encontrado na fase de identificação, e submetê-lo ao diagnóstico aqui explicado. 

4.5. Escolha do gráfico de controle 



56 
 

Nesta etapa, será selecionada a melhor opção de gráfico de controle dentre as 

alternativas apresentadas na subseção 3.1, tendo em mente o propósito deste trabalho e o 

modelo paramétrico encontrado durante a análise da série de inadimplência. 

Para esta escolha, será utilizado o fluxograma apresentado na Figura 11, proposto por 

Montgomery (2004). 

Figura 11 - Fluxograma de seleção de gráfico de controle 

 
Fonte: Montgomery (2004) 

 Logo, o primeiro passo será avaliar a função de autocorrelação, conforme indicado na 

seção 4.2, e a partir dela serão avaliados os demais ramos do fluxograma até se encontrar a 

alternativa mais adequada.  

4.6. Definição dos limites de controle 

Como será relatado em detalhes na seção 5.5, o gráfico de controle escolhido através de 

fluxograma foi o de média móvel exponencialmente ponderada. Portanto, nesta seção serão 

apresentados os procedimentos a serem adotados para definição de todos parâmetro necessários 

à aplicação do MMEP. 

O ponto de partida para definição dos limites de controle é definir um valor alvo para o 

𝐴𝑅𝐿0. Esta variável indica o intervalo médio de observações entre alarmes falsos em um 
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processo sob controle, e, portanto, deve ser adequada ao contexto em que se busca aplicar o 

gráfico de controle. 

Para servir de referência, será apresentado o caso do gráfico 𝑥̅ com limite de três sigmas 

(desvio padrão da estatística), apresentado por Montgomery (2004). Neste caso, o 𝐴𝑅𝐿0 é 

calculado como o inverso do da probabilidade 𝑝 de um ponto estar fora dos limites de controle. 

Para este modelo de limite de três sigmas, tem-se que 𝑝 = 0,0027, logo: 

𝐴𝑅𝐿0 =
1

𝑝
≅ 370 

Esse é o valor considerado padrão e serve como ponto de partida para outras análises. 

No entanto, considerando que os dados de inadimplência são obtidos em uma frequência 

mensal, um 𝐴𝑅𝐿0 igual a 370 significaria um alarme falso a cada 30 anos, um período muito 

longo considerando o horizonte de observação da amostra usada. E como foi explorado na seção 

3.1., ao se aumentar demais o 𝐴𝑅𝐿0 há uma redução do 𝐴𝑅𝐿1, o que prejudica a capacidade do 

gráfico de detectar observações fora de controle. 

Assim, conclui-se que devido às características da série é necessário adotar um 𝐴𝑅𝐿0 

significativamente menor. Será adotado então 𝐴𝑅𝐿0 igual a 36 meses, ou 3 anos. Dado o 

contexto em que aumentos na inadimplência podem gerar perdas para investidores, e como elas 

podem se manifestar em curtos espaços de tempo, é preferível que seja considerado um 

intervalo menor entre alarmes falsos em prol de uma maior capacidade de detecção de pontos 

fora de controle. 

Os próximos passos então consistem na determinação do fator de suavização 𝜆 e, 

finalmente, a definição dos limites de controle, através de um processo iterativo de simulações 

que será explicado em detalhes nas próximas subseções. 

4.6.1. Cálculo do Fator de Suavização λ 

Conforme explicado na subseção 3.1.3, os gráficos da classe MMEP são definidos por: 

𝑧𝑖 = 𝜆𝑥𝑖 + (1 − 𝜆)𝑧𝑖−1 

Os valores de 𝑥𝑖 são as observações da série de inadimplência, faltando assim definir 

apenas o parâmetro 𝜆 para que se possa calcular as estatísticas 𝑧𝑖. 
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Hunter (1986) sugere o método de mínima soma dos quadrados dos erros para 

determinar 𝜆. Primeiramente, é adotado 𝑥̂𝑖+1 como a predição feita no final do período 𝑖 para a 

observação que será verificada no período 𝑖 + 1. Define-se então: 

𝑥̂𝑖+1 = 𝑧𝑖 

Ou seja, a estatística 𝑧𝑖 é equivalente à predição feita no período 𝑖 para a observação que 

ocorrerá em 𝑖 + 1. Pode-se então calcular o erro do modelo através da diferença entre a predição 

da observação para o período 𝑖 e o valor de fato observado: 

𝑒𝑖 = 𝑥𝑖 − 𝑥̂𝑖 

que também pode ser descrita como: 

𝑒𝑖 = 𝑥𝑖 − 𝑧𝑖−1 

Portanto, através da ferramenta RStudio, será desenvolvido um processo iterativo para 

definir um 𝜆 ótimo, cujo código está apresentado no Apêndice B. Inicialmente serão calculados 

os valores de 𝑧𝑖 da série e seus respectivos erros para um determinado valor de 𝜆, e então será 

obtida a soma dos quadrados dos erros. Esse processo será repetido para diversos valores de 𝜆, 

e o valor da soma dos quadrados dos erros anotado. Aquele 𝜆 que minimizar esta soma será o 

valor ótimo adotado para o MMEP. Para testar uma variedade significativa de valores, será 

usado um valor inicial de 𝜆 de 0,01 e um passo de 0,005, que resulta em 198 iterações.  

4.6.2. Definição ARL sob Controle 

Após a definição do parâmetro 𝜆 e do valor de 𝐴𝑅𝐿0, o último passo para implementação 

do gráfico é definir seus limites de controle. Como apresentado na subseção 3.1.3., os limites 

de controle e a linha central do MMEP são calculados por: 

𝐿𝑆𝐶 = 𝜇𝑜 + 𝐿𝜎√
𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑖] 

𝐿𝐶 =  𝜇𝑜 

𝐿𝐼𝐶 = 𝜇𝑜 − 𝐿𝜎√
𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑖] 
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 Em relação a linha central, o valor alvo do processo 𝜇𝑜 é específico para cada operação 

de securitização. Durante a análise, são verificados os níveis atuais de inadimplência e a 

modelagem é feita a partir deles. Dessa forma, o valor de 𝜇𝑜 normalmente corresponde a média 

do processo observada até então. 

A partir da análise da série temporal será determinado seu desvio padrão, de modo que 

a última variável a ser definida é o 𝐿. Para tal será aplicado um algoritmo desenvolvido com a 

ferramenta RStudio, apresentado no Apêndice C.  

O primeiro passo consiste em obter valores da série simulada 𝑥𝑡. Para isso será usado o 

modelo paramétrico a ser encontrado pelo procedimento descrito na seção 4.3. A partir deste 

modelo, serão introduzidos valores de resíduos 𝑎𝑡 para se obter uma simulação de 𝑥𝑡. Segundo 

a bibliografia apresentada, 𝑎𝑡 precisa se comportar como ruído branco em processo sob 

controle. Para adaptar o modelo à série de inadimplência estudada, os valores de 𝑎𝑡 usados 

serão gerados a partir da variância amostral dos resíduos 𝜎𝑅
2 do modelo paramétrico ajustado, 

ou seja, 𝑎𝑡~𝑁(0, √𝜎𝑅
2). Em seguida, com os valores da série, serão calculados os valores da 

estatística 𝑧𝑡 do MMEP. 

Tendo definido os valores de 𝑧𝑡, serão calculados os limites de controle para cada 

período 𝑡 analisado. O programa irá seguir comparando os valores de 𝑧𝑡 com os limites de 

controle, com o intuito de obter o intervalo de observações entre a primeira observação e a 

primeira ocorrência de uma observação fora dos limites. Quando esse valor para o comprimento 

de sequência (o número de observações até que haja um ponto fora de controle) for obtido, ele 

é anotado e se inicia uma nova simulação com os mesmos parâmetros. Serão obtidos 𝑁 = 2.000 

comprimentos de sequência para cada iteração. Ao fim das simulações, são somados todos os 

comprimentos de sequência, e essa soma é dividida pelo número de simulações, resultando no 

valor de ARL médio para estas condições. 

O processo citado acima é então iterado para diferentes valores de 𝐿, até que o ARL 

encontrado seja menor que o 𝐴𝑅𝐿0 pré-definido. Para apresentar o processo de uma forma mais 

estruturada, foi elaborado o fluxograma apresentado na Figura 12. Segue um breve resumo das 

variáveis envolvidas para orientar a leitura do fluxograma: 

a) 𝐴𝑅𝐿0: valor alvo do ARL, é usado como referência para definir o fim das 

simulações; 
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b) 𝑁: número de simulações a serem feitas para cada valor de 𝐿; 

c) 𝑋𝑡: lista contendo os valores simulados da série, obtida através do modelo ARIMA 

ajustado e dos valores de 𝑎𝑡~𝑁(0, √𝜎𝑅
2); 

d) 𝑍𝑡: valor da estatística para cálculo do MMEP. Utiliza o parâmetro 𝜆 calculado na 

subseção 4.6.1. Será usado 𝑧0 igual a média dos valores de 𝑋𝑡; 

e) 𝐿𝑆𝐶: valor para o limite superior de controle, calculado a partir da equação 

apresentada no início desta subseção; 

f) 𝐿𝐼𝐶: valor para o limite inferior de controle, calculado a partir da equação 

apresentada no início desta subseção; 

g) 𝐿: parâmetro usado para cálculo dos limites de controle e valor que se deseja 

encontrar. Começa como 1 e vai sendo incrementado em 0,01 por iteração; 

h) 𝐶𝑜𝑛𝑡: variável para acompanhar o número de simulações feitas para cada valor de 

L, varia de 1 a 2.000; 

i) 𝑡: variável que acompanha o número de observações analisadas; 

j) 𝑆𝑜𝑚𝑎: soma dos valores de até uma ocorrência fora dos limites de controle nas N 

simulações;  

k) 𝐴𝑅𝐿_𝑠𝑖𝑚: ARL encontrado para a simulação atual pela divisão de Soma por N. 
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Figura 12 - Fluxograma do algoritmo de definição do ARL em processo sob controle 

 
Fonte: Elaborado pelo autor 

 

4.6.3. Determinação ARL Fora de Controle 

Com os limites de controle definidos, será calculado o 𝐴𝑅𝐿1 do gráfico de controle 

elaborado, através da simulação de um processo fora de controle. Retomando a bibliografia, o 

𝐴𝑅𝐿1 representa o número médio de observações até que seja verificada uma observação fora 

dos limites, para processos fora de controle. 

Para isso, foi novamente desenvolvido um algoritmo iterativo, muito semelhante ao 

apresentado na subseção 4.6.2. Em suma, o algoritmo irá simular uma série temporal a partir 
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do modelo paramétrico ajustado durante a etapa de identificação do modelo. Serão simulados 

diversos valores de 𝑥𝑡 a partir de resíduos 𝑎𝑡, e nesse ponto há uma diferença relevante em 

relação ao cálculo do 𝐴𝑅𝐿0. Para simular um processo fora de controle, a média dos resíduos 

será incrementada por 10% do desvio padrão por vez, isto é, 𝑎𝑡~𝑁(𝑐. √𝜎𝑅
2, √𝜎𝑅

2), com 𝑐 =

0, … , 1,5.  

Com esses dados, serão calculadas as estatísticas 𝑧𝑡 (com o fator de suavização ótimo 

encontrado) e os limites de controle para cada período 𝑡. Os dois serão comparados para cada 

período 𝑡 até que um ponto seja detectado fora do limite de controle. Será então anotado o 

número de ocorrências até que haja um alarme, e o processo será repetido para estes parâmetros 

𝑁 = 2.000 vezes. Ao fim das simulações, o 𝐴𝑅𝐿1 é calculado como a média desses valores. 

Esse processo então é iterado até que 𝑐 = 1.5, a partir de incrementos de 0,1 por iteração. 

Diferente do algoritmo para definição do 𝐴𝑅𝐿0, o objetivo deste não é encontrar um 

valor fixo para a variável a ser iterada, neste caso o fator 𝑐, mas sim realizar um estudo de 

sensibilidade sobre o efeito de um crescimento na média dos resíduos sobre a habilidade do 

gráfico de detectar pontos fora de controle em processos que não estão sob controle. 

A Figura 13 mostra o fluxograma que explica a lógica do algoritmo, cujo código está 

apresentado no Apêndice D. Em adição as variáveis apresentadas no algoritmo do 𝐴𝑅𝐿0, serão 

usadas neste caso: 

a) 𝑐: fator de incremento da média dos resíduos. Irá variar entre 0 e 1,5; 

b) 𝐿𝑖𝑠𝑡𝑎: lista que registra o 𝐴𝑅𝐿  encontrado para cada valor de 𝑐. 
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Figura 13 - Fluxograma do algoritmo de definição do ARL em processo fora de controle 

 
Fonte: Elaborado pelo autor 

4.7. Avaliação dos Resultados 

O objetivo final desse trabalho é o desenvolvimento de um modelo paramétrico que 

possa projetar valores de séries de inadimplência com base em seu histórico, e a aplicação de 

um gráfico de controle para que se a avalie o comportamento dessa série, que aqui será vista 

como um processo, e aponte a necessidade de intervenção quando estiver fora de controle. Com 

esses objetivos em mente, a avaliação dos resultados obtidos será dividida em três etapas: 

a) Modelo Paramétrico: a série de inadimplência que será utilizada neste trabalho tem 

um total de 175 observações, correspondente a um período de 15,4 anos, lembrando 

que a frequência de observações é mensal. No entanto, para o desenvolvimento do 
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modelo, serão usadas apenas as 155 primeiras observações. Portanto, haverá 20 

observações que não foram introduzidas no modelo, mas deverão ser previstas por 

ele. A primeira avaliação será feita pelo cálculo do erro médio entre as projeções e 

os valores reais. Com essas 20 observações será possível avaliar a capacidade de 

projeção em um horizonte de 1 anos e 8 meses, que já seria de grande utilidade à 

empresa; 

b) Gráfico de controle: a eficiência do gráfico desenvolvido será julgada através da 

capacidade de detectar um processo fora de controle, com base no histórico 

conhecido dessa série em particular. É importante que a partir dele seja possível 

diferenciar variações aleatórias das assinaláveis, que são aquelas passíveis de 

medidas preventivas ou corretivas. Como os recebíveis de carteira imobiliária 

geralmente representam quantias elevadas de capital, é interessante que o gráfico 

seja capaz de detectar pequenas variações na inadimplência, pois estas podem 

representar variações relevantes no montante de dinheiro a ser recebido. Serão 

analisadas as observações fora dos limites de controle e comparado com o histórico 

de inadimplência para constatar se correspondem a períodos em que a série 

apresentou um comportamento atípico; 

c) Após ser constatado que ambas as etapas acima atendem o seu propósito, será feita 

uma comparação da aplicação da metodologia desenvolvida em relação à situação 

atual da empresa. Esta última etapa, de caráter mais qualitativo, visa esclarecer 

quais benefícios a Fortesec obteria com a uso de séries temporais e gráficos de 

controle em suas operações e validar a adoção da solução proposta. 
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5. APLICAÇÃO SOBRE O PROBLEMA PROPOSTO 

Neste capitulo será apresentada a aplicação da metodologia desenvolvida no capítulo 

anterior para o caso da Fortesec. A partir de uma série temporal de dados de inadimplência, será 

ajustado um modelo paramétrico para previsão dos valores futuros, e na sequência serão 

definidos os parâmetros necessários para desenvolvimento do MMEP que será usado para o 

monitoramento desta série. Por último, os resultados serão avaliados para determinar se a 

solução foi capaz de atender o propósito proposto neste trabalho.  

5.1. Coleta dos dados 

Os dados foram extraídos de um relatório fornecido por um agente de monitoramento 

contratado pela Fortesec para acompanhar os pagamentos em uma de suas operações de 

securitização. O empreendimento em questão se trata de um loteamento no estado de São Paulo, 

voltado ao público de classe B e C.  

Foi escolhida uma série com um histórico grande de pagamentos para obter uma amostra 

com uma quantidade significativa de observações que permitisse a aplicação de modelos 

paramétricos. Neste caso, a amostra é composta por 175 observações, equivalente a quase 15 

anos de monitoramento. Mas para fins de validação posterior do modelo, apenas os 155 

primeiros meses serão usados nas próximas etapas. 

Uma vez obtidos os dados, eles serviram de base para o cálculo da inadimplência 

mensal, a partir do uso do Excel. Os valores são apresentados no Anexo A. Como se pode notar, 

a série é composta por números positivos, entre 0 e 1. 

5.2. Análise e ajustes na série 

A série original 𝑥𝑡 então foi introduzida ao RStudio, no qual foi gerado sua 

representação gráfica, mostrada na Figura 14. 

  



66 
 

Figura 14 - Série de índices de inadimplência 

 
Fonte: Elaborado pelo autor 

Fica claro ao observar a imagem de que é necessário estabilizar a variância da série. 

Principalmente no início nota-se uma variação alta de um mês para o outro. Para corrigir a série, 

foi aplicada a transformação de Box e Cox (1964). O parâmetro 𝛾 utilizado foi definido pelo 

RStudio, com valor igual a 0,26487. A série 𝑥𝑡
(𝛾)

 após a aplicação da transformação é mostrada 

na Figura 15. 

Figura 15 - Série transformada 

 
Fonte: Elaborado pelo autor 

Visualmente, nota-se que há uma estabilização da variância, apesar de sugerir que ainda 

é necessário estabilizar a média da série. Foi então aplicado o teste de Dickey-Fuller aumentado. 
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O programa retornou um 𝑝 − 𝑣𝑎𝑙𝑢𝑒 igual a 0,3102. Assim, não se pode rejeitar a hipótese nula 

de não estacionariedade.  Para tentar estabilizar a média, foi utilizada a primeira diferença da 

série 𝑥𝑡
(𝛾)

. A Figura 16 mostra o resultado desta operação. 

Figura 16 - Série estacionária 

 
Fonte: Elaborado pelo autor 

Realizando novamente o teste de Dickey-Fuller aumentado, obteve-se um 𝑝 − 𝑣𝑎𝑙𝑢𝑒 

menor que 0,01. Dessa forma, a hipótese nula é rejeitada e pode-se assumir a estacionariedade 

da série ∆𝑥𝑡
(𝛾)

. 

Para se analisar ∆𝑥𝑡
(𝛾)

 quanto a sua distribuição, foi elaborado o gráfico Q-Q plot 

segundo uma distribuição normal, conforme mostrado na figura 17. 

  



68 
 

Figura 17 - Q-Q Plot da série estacionária 

 
Fonte: Elaborado pelo autor 

Apesar de nas extremidades os pontos da série se afastarem da reta normal, levando em 

consideração o comportamento médio da série, o teste sugere que há normalidade. Para 

confirmar, foi aplicado o teste não paramétrico de Shapiro-Wilk. Para a série estacionária, o 

programa retornou um 𝑝 − 𝑣𝑎𝑙𝑢𝑒 igual a 0,4311. Como é maior do que 0,05, pode-se tomar a 

hipótese nula como verdadeira e assumir que a série segue uma distribuição gaussiana. 

Por último, a série será analisada sob o ponto de vista da independência. Os valores 

encontrados para as autocorrelações e autocorrelações parciais estão apresentados nas Figuras 

18 e 19, respectivamente. 

Figura 18 - Valores de autocorrelação 

 
Fonte: Elaborado pelo autor 
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Figura 19 - Valores de autocorrelação parcial 

 
Fonte: Elaborado pelo autor 

Como se pode observar, ambas as funções apresentam um comportamento que lembra 

uma senóide amortecida, o que sugere que o modelo adequado seja da classe ARMA(p,q). Ao 

analisar as autocorrelações, nota-se que valores significativos ocorrem apenas para os lags 1, 2 

e 19. Em relação à autocorrelação parcial, os lags relevantes são o 1, 2, 3 e 9. 

5.3. Identificação do modelo 

A partir da análise da função de autocorrelação e autocorrelação parcial, a etapa de 

identificação começou com o teste de diversos modelos ARMA(p,q). Foi considerada esta 

classe de modelos, pois já está sendo usada a primeira diferença da série transformada, e foi 

constatado que esta é estacionária, o que dispensa a necessidade de diferenças adicionais. 

Portanto serão avaliados modelos ARMA(p,q), equivalentes ao ARIMA(p,0,q). 

Pela análise da autocorrelação, não é possível definir 𝑝 e 𝑞. Assim, para se encontrar o 

modelo apropriado, foram testadas alternativas para diferentes combinações de 𝑝 e 𝑞, ambos 

variando de 1 a 12. A partir de dados empíricos, foi adotada a premissa de que apenas as 

observações ocorridas no último ano podem ter efeito sobre a inadimplência em um dado 

período, portanto o limite para as ordens p e q escolhido foi 12. 

Para cada modelo analisado, foi calculado o valor de seu AIC como critério de seleção. 

Por se tratar de um número muito grande de alternativas, foi aplicado um teste preliminar de 

diagnóstico do modelo, através da geração um gráfico de autocorrelação dos resíduos. Aqueles 
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que possuíam autocorrelações relevantes foram eliminados. Dessa forma pôde-se realizar uma 

seleção preliminar mais rápida que o diagnóstico completo, e assim avançar apenas com os 

modelos mais promissores. A Tabela 01 mostra os 10 modelos com os menores valores de AIC 

encontrados. 

Tabela 01 - Valores de AIC para os modelos testados 

Modelo AIC 

ARMA (4,5) 85,107 

ARMA (5,5) 86,915 

ARMA (6,4) 87,069 

ARMA (3,6) 87,664 

ARMA (6,6) 87,817 

ARMA (6,5) 87,919 

ARMA (7,4) 88,600 

ARMA (5,8) 88,887 

ARMA (8,2) 88,916 

ARMA (7,4) 89,150 

Fonte: Elaborado pelo autor 

Dentre as possibilidades, a melhor escolha é o modelo ARMA(4,5) pelo critério de 

Akaike. Como pode ser notado ao visualizar a Tabela 01, a avaliação pelo AIC privilegia os 

modelos de menor ordem. 

Em seguida foi analisada a possibilidade de se utilizar um modelo reduzido, com o 

intuito de simplificar o modelo através de uma menor quantidade de parâmetros. A Tabela 02 

mostra as estimativas dos elementos do modelo completo, bem como o 𝑝 − 𝑣𝑎𝑙𝑢𝑒 associado à 

hipótese nula: se o 𝑝 − 𝑣𝑎𝑙𝑢𝑒 associado ao componente do modelo apresentar um valor inferior 

a 0,05, ele é considerado relevante. O modelo completo encontrado é então dado por: 

𝑍𝑡 = −0,5033𝑍𝑡−1 − 0,3322𝑍𝑡−2 + 0,42211𝑍𝑡−3 + 0,7202𝑍𝑡−4 + 𝑎𝑡 + 0,0205𝑎𝑡−1

+ 0,0598𝑎𝑡−2 + 0,6751𝑎𝑡−3 + 0,4858𝑎𝑡−4 − 0,5106𝑎𝑡−5 + 0,0034 
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Tabela 02 - Estimativa dos coeficientes do modelo ARMA(4,5) 

Parâmetro Estimativa P-value 

AR1 -0,5033 0,0001* 

AR2 -0,3322 0,0001 

AR3 0,4221 0,0001* 

AR4 0,7202 0,0001* 

MA1 -0,0205 0,8201 

MA2 -0,0598 0,4933 

MA3 -0,6751 0,0001* 

MA4 -0,4858 0,0001* 

MA5 0,5106 0,0001* 

Intercept 0,0034 0,7262 

*valores menores do que 0,0001 

Fonte: Elaborado pelo autor 

. Como pode ser observado, os parâmetros considerados significativos pela análise do 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 foram 𝐴𝑅1, 𝐴𝑅2, 𝐴𝑅3, 𝐴𝑅4,  𝑀𝐴3, 𝑀𝐴4 e 𝑀𝐴5. Foi então ajustado um modelo 

reduzido considerando apenas estes parâmetros, conforme Tabela 03. 

Tabela 03 - Estimativa dos coeficientes do modelo ARMA(4,5) reduzido 

Parâmetro Estimativa P-value 

AR1 -0,5152 0,0001* 

AR2 -0,4340 0,0001* 

AR3 0,3771 0,0001* 

AR4 0,4638 0,0001* 

MA3 -0,6933 0,0001* 

MA4 -0,2930 0,0001* 

MA5 0,3532 0,0001* 

*valores menores do que 0,0001 

Fonte: Elaborado pelo autor 

Por último, foi verificado se o modelo reduzido é equivalente ao cheio. A variação entre 

o AIC do modelo cheio e do reduzido é igual a 1,997. O valor encontrado na tabela qui-quadrado 

foi 7,815, para 𝛼 = 5% e um número de graus de liberdade igual a diferença entre o número de 

parâmetros nos dois modelos, igual a 3. Assim, conclui-se que não se pode rejeitar a hipótese 

nula, então o modelo reduzido foi considerado equivalente ao cheio. 
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Dessa forma, a versão reduzida é dada por: 

𝑍𝑡 = −0,5152𝑍𝑡−1 − 0,4340𝑍𝑡−2 + 0,3771𝑍𝑡−3 + 0,4638𝑍𝑡−4 + 𝑎𝑡 + 0,6933𝑎𝑡−3

+ 0,930𝑎𝑡−4 − 0,3532𝑎𝑡−5 

Ao analisar os parâmetros autorregressivos encontrados, é possível notar que o valor 

observado nos dois meses anteriores afeta inversamente 𝑍𝑡, apesar do mês 𝑡 − 1 ter uma 

influência um pouco maior. Assim, um aumento em 𝑍𝑡−1 e 𝑍𝑡−2 resulta em uma redução de 𝑍𝑡. 

Dados que os coeficientes 𝐴𝑅1 e 𝐴𝑅2 são próximos de 0,5, pode-se dizer que o valor de 𝑍𝑡 varia 

em função de uma aproximação da média aritmética de 𝑍𝑡−1 e 𝑍𝑡−2. 

Por outro lado, o modelo leva à conclusão de que aumentos em 𝑍𝑡−3 e 𝑍𝑡−4 geram 

aumentos no valor observado no período atual.  

Interessante notar que de acordo com o modelo identificado, o valor do índice só é 

afetado por eventos em um horizonte de 5 meses. Por se tratar de um estudo sobre percentual 

de pagamentos não cumpridos em uma base mensal, faz sentido o modelo depender 

principalmente de observações no curto prazo.  

5.4. Diagnóstico do modelo 

Para validar o modelo, o primeiro teste aplicado foi o de Ljung e Box (1978). Para o 

modelo reduzido, o programa retornou um valor 𝑝 − 𝑣𝑎𝑙𝑢𝑒 igual a 0,9641. Dessa forma, não 

se pode rejeitar a hipótese nula e se considera que os resíduos são independentes e identicamente 

distribuídos. 

O segundo teste aplicado sobre os resíduos do modelo foi o de Shapiro-Wilk. O valor 

de 𝑝 − 𝑣𝑎𝑙𝑢𝑒 encontrado foi 0,825. Assim, não se pode rejeitar a hipótese nula e conclui-se que 

os resíduos apresentam distribuição normal. Para apresentar esse resultado de forma visual, foi 

gerado o gráfico Q-Q Plot, mostrado na Figura 20. A proximidade dos valores retirados da série 

com a reta normal corrobora o resultado do teste de Shapiro-Wilk. 
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Figura 20 - Q-Q Plot dos resíduos 

 
Fonte: Elaborado pelo autor 

Por último, foi analisada a existência de autocorrelações e autocorrelações parciais 

significantes dentre os resíduos. O resultado obtido está demonstrado nas Figuras 21 e 22. Como 

pode ser observado, não existem autocorrelações fora do critério utilizado, o que leva à 

conclusão de que não há autocorrelação relevante entre os resíduos. 

A partir dos resultados favoráveis obtidos em todos os estágios da etapa de diagnóstico, 

conclui-se que o modelo obtido é adequado para a previsão da série de inadimplência. 

Figura 21 – Valores de autocorrelação nos resíduos 

 
Fonte: Elaborado pelo autor 
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Figura 22 - Valores das autocorrelações parciais nos resíduos 

 
Fonte: Elaborado pelo autor 

5.5. Escolha do gráfico de controle  

Conforme visto durante a etapa de análise da série temporal, existe uma correlação entre 

os dados analisados. Dessa forma, segundo a metodologia representada na Figura 11, o próximo 

passo para a definição do tipo de gráfico de controle mais adequado é verificar a existência de 

uma variável de ajuste, que não faz parte da série analisada. 

Portanto, de acordo com o fluxograma de Montgomery (2004), para este caso são 

escolhas adequadas tanto os modelos MMEP, CUSUM, x e MR (aplicados ou aos resíduos ou 

à série original), quanto um MMEP com linha central móvel ou um modelo livre de abordagem.  

Ao se considerar que a área de gestão da empresa que fará uso deste modelo carece de 

pessoas especializadas no assunto de monitoramento estatístico de processos, é desejável que 

seja empregada a opção de mais fácil visualização e interpretação dos dados. Assim, foi 

decidido a aplicação de um gráfico MMEP sobre a média da série estacionária obtida ao final 

do tratamento da série de índices de inadimplência. 

Optou-se pela série estacionária pela praticidade em calcular seus limites de controle. 

Caso fosse escolhido o monitoramento da série original, seria necessário aplicar o inverso da 

diferenciação e da transformação de Box-Cox aos limites de controle. Devido à natureza da 

operação de diferenciação, realizar a operação inversa poderia distorcer os valores finais, 

comprometendo a eficiência e confiabilidade do gráfico de controle. 
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5.6. Definição dos limites de controle 

Através da aplicação do método da mínima soma dos quadrados dos erros, foi definido 

que o valor ótimo para o fator de suavização é 𝜆 =  0,7615. Assim, o cálculo da estatística 𝑧𝑡 

do MMEP é dada por: 

𝑧𝑡 = 0,7615𝑥𝑡 + 0,2385𝑧𝑡−1 

Portanto, a estatística calculada no período anterior possui um peso menor que valor 

observado da série para o cálculo da estatística do período atual. De acordo com Hunter (1986), 

na maioria dos casos há uma certa subjetividade na escolha de 𝜆, sendo que dados 

econométricos testados levam a sugestão de 𝜆 = 0,2 ± 0,1. No entanto, considerando que 

valores maiores de λ diminuem a influência dos dados históricos, um valor mais alto de λ está 

coerente com o modelo ARMA(4,5) identificado. Dessa forma, tanto o modelo quanto a 

fórmula da estatística são influenciados em maior parte pelas observações mais recentes.  

5.6.1. Definição ARL sob Controle 

Com o algoritmo apresentado na subseção 4.6.2. será encontrado o valor da variável 𝐿 

necessária para determinar os limites de controle. Para tal foram geradas séries de observações 

a partir do modelo paramétrico ARIMA (4,1,5) reduzido encontrado nas etapas anteriores, a 

partir de valore de 𝑎𝑡 simulados com a variância amostral dos resíduos 𝜎𝑅
2 = 0,08900. 

Tendo como alvo o 𝐴𝑅𝐿0 pré-determinado igual a 36, o algoritmo retornou o valor de 

𝐿 a ser usado como 1,82. Com esse valor, o ARL médio encontrado nas 5.000 simulações foi 

igual a 36,4. Ou seja, é esperado que o haja um alarme falso aproximadamente a cada 36 meses, 

próximo suficiente ao valor proposto inicialmente. 

O valor de L encontrado é significativamente inferior ao valor padrão usado em gráficos 

de Shewhart, conhecido como três sigma (L=3). Mas como os dados de inadimplência 

apresentam uma frequência mensal, significativamente mais longa que as aplicações mais 

tradicionais de gráficos de controle, foi necessário adotar um 𝐴𝑅𝐿0 mais baixo, e então faz 

sentido que o valor de L seja menor.  

Esse valor baixo também é resultado do fator de suavização aplicado ao cálculo dos 

limites de controle. Conforme estudo conduzido por Lucas e Saccucci (1990), uma redução no 
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parâmetro 𝜆 provoca uma redução do 𝐴𝑅𝐿0, mantidas as demais condições. Ainda que o fator 

de suavização encontrado de 0,7615 possa ser considerado alto, é menor que o 𝜆 = 1 

equivalente a um gráfico de Shewhart. 

A Figura 23 mostra os valores do 𝐴𝑅𝐿0 encontrados pelo algoritmo para cada valor de 

𝐿 testado. Conforme esperado, há uma correlação positiva entre os valores de 𝐴𝑅𝐿0 e 𝐿. 

Figura 23 - Valores do ARL em função de L 

 
Fonte: Elaborado pelo autor 

5.6.2. Definição ARL fora de Controle 

Com o parâmetro L definido, o passo seguinte consiste em um estudo da variação da 

média dos resíduos da série temporal sobre o valor do ARL encontrado. Para isso, foram feitas 

5.000 simulações para cada valor de 𝑐, que variou de 0 a 1,5 em incrementos de 0,1, de modo 

que os resíduos introduzidos no modelo forma calculados como 𝑎𝑡~𝑁(𝑐 ∗ √𝜎𝑅
2, √𝜎𝑅

2).  

Os resultados obtidos estão apresentados na Figura 24. Como se pode notar, o gráfico 

se mostrou bastante sensível a mudanças na média para valores de 𝑐 entre 0 e 1. De acordo com 

os cálculos realizados, se a média aumentar em um desvio padrão, o ARL apresenta uma queda 

de 36,5 para 4,66, redução de 87,2%. Para variações maiores ainda, de 1,5 vezes o desvio 

padrão, o ARL passa a ser 1,92, um curto tempo de resposta. Portanto o gráfico MMEP 

elaborado aparenta ser capaz de detectar variações no processo com eficácia. 
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Figura 24 - Valores de ARL em função de c 

 
Fonte: Elaborado pelo autor 

5.7. Avaliação dos resultados 

A validação do resultado alcançado começa pela avaliação das previsões elaboradas 

pelo modelo paramétrico ARMA(4,5) reduzido. Para tal, foi usada a função 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡() do 

RStudio para projetar as observações dos períodos entre 155 e 174 (devido à diferenciação, a 

série estacionária possui um elemento a menos que a original). O resultado está apresentado na 

Figura 25. A linha vermelha da Figura 25 representa a série ∆𝑥𝑡
(𝛾)

 completa com todas as 174 

observações. A linha azul à direita representa a média das projeções. A área colorida com cinza 

escuro representa o intervalo de confiança de 80% paras as projeções, e a área cinza claro o 

intervalo de confiança de 90% para as mesmas. 

Como pode ser visto, as médias das projeções acompanham bem os valores da série 

estacionaria, o que indica uma boa capacidade de previsão do modelo. Ainda, ao se observar os 

limites de confiança, entre os vinte valores previstos apenas 2 estão fora do intervalo de 

confiança de 80%, e nenhum valor ficou fora do intervalo de 95%. Na Figura 26 são mostrados 

os valores previstos e observados apenas para o intervalo de 𝑡 entre 155 e 174 para facilitar a 

visualização. 
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Figura 26 - Comparação entre previsões e observações reais para série estacionária 

 
Fonte: Elaborado pelo autor 

Em seguida foram aplicados sobre as médias das previsões os processos inversos à 

primeira diferenciação e à transformação de Box-Cox (1964) para se obter os valores de 

inadimplência previstos. A Figura 27 mostra o resultado final, no qual a linha vermelha 

representa a série original e a linha preta os valores previstos. Na Figura 28 pode-se ver os 

valores previstos e observados apenas para o intervalo de 𝑡 entre 155 e 174. Fica claro ao 

comparar os valores previstos e observados que há uma aderência maior nas projeções de curto 

prazo. 

Novamente, foi notada uma aderência satisfatória entre os valores encontrados. Para 

finalizar a análise de previsão, foram calculados os índices MSE e RMSE para diferentes 

horizontes de projeção, conforme Tabela 4, com o objetivo de confirmar se há uma diferença 

relevante entre previsões de curto e médio prazo. Como pode ser observado pelos resultados da 

Tabela 04, o aumento do horizonte de projeção causa um aumento tanto no MSE quanto no 

RMSE, o que mostra que o modelo é mais confiável para projeções de curto prazo.  
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Figura 28 - Comparação entre previsões e observações reais para série original 

 

Fonte: Elaborado pelo autor 

Tabela 04 - Valores de MSE e RMSE versus horizonte de previsão 

Horizonte de Previsão MSE RMSE 

5 meses 0.002414 0.04914 

10 meses 0.002989 0.05467 

15 meses 0.003054 0.05527 

20 meses 0,004972 0.07051 

Fonte: Elaborado pelo autor 

O próximo passo é verificar a eficiência do gráfico de controle desenvolvido. 

Primeiramente foi calculada a série de estatísticas 𝑧𝑡, usando os valores da série diferenciada 

para 𝑡 = 1, … ,154 e os valores das previsões do modelo para 𝑡 = 155, … ,174. O objetivo aqui 

é introduzir as previsões no gráfico de controle para comparar seus resultados com o que foi 

verificado na realidade. Por último, foram calculados os limites de controle para 𝑡 = 1, … ,174, 

usando os parâmetros calculados na seção 5.6. O gráfico final é apresentado na Figura 29. 

A análise do gráfico mostra que houve 10 períodos em que foram verificados pontos 

fora dos limites de controle. Observando a série mostrada na Figura 27, existem três ocasiões 

de inadimplência significativamente acima da média do período, que serão comentados a 

seguir: 
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a) meses 30 a 43: o período mais duradouro de alta na inadimplência. Analisando o 

MMEP, percebe-se que há um alerta de processo fora de controle logo no mês 30. 

Como foi visto, o gráfico possui uma alta sensibilidade para variações na média do 

processo, então era esperado que uma variação dessa magnitude provocasse um 

alerta. Neste período, houve um total de 4 pontos fora do limite de controle. É 

importante citar aqui a primeira vantagem percebida da solução proposta. Na 

operação atual esse primeiro pico poderia ser interpretado como um aumento 

pontual, mas o MMEP já aponta como uma instabilidade no processo desde o 

primeiro mês de aumento de não-pagamentos; 

b) meses 147 e 151. Mais uma vez o MMEP apontou o processo como fora de controle 

já no primeiro mês deste período, acusando um crescimento na média de 

inadimplência e a necessidade de correção; 

c) mês 94: também foi identificado no próprio mês 94 pelo MMEP, mas pode ser 

considerado um outlier, pois é possível perceber que já no período seguinte a série 

retoma a média que vinha apresentando, se tratando, portanto, de um evento 

pontual. 

Uma característica importante do gráfico é identificada a partir de seu desempenho 

durante períodos de crescimento acelerado da inadimplência, nos quais pode-se ver que não 

houve ocasiões em que o início desses picos não foi detectado. Assim, conforme mostrado na 

subseção 5.6.2., o para casos de aumento na média maior ou igual a 1,5 desvios padrões o 

MMEP possui um tempo de resposta de aproximadamente 1 mês. 

Percebe-se também que o gráfico possui uma incidência erro tipo II muito baixa. Essa 

conclusão é coerente com o que foi proposto durante seu desenvolvimento, uma vez que dentre 

os erros, o pior para o investidor da operação é uma queda inesperada nos valores a receber. 

Importante também verificar que na passagem entre os meses 69 e 70 houve a detecção 

de ponto fora do limite de controle. Diferente dos primeiros casos comentados, aqui não há um 

pico chamativo na inadimplência, mas a média passa de 16,0% entre os meses 60 e 69 para 

24,0% entre os meses 70 e 79. Novamente esse aumento foi identificado logo no início do 

período. Aqui, por exemplo, o analista da Fortesec poderia ter antecipado essa tendência de 

crescimento que duraria 3 trimestres e se preparado de acordo já a partir do mês 69. 
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Todos resultados acima corroboram a sensibilidade do gráfico para variações 

consideráveis na média, e reforçam esta como um requisito fundamental do gráfico para atender 

seu propósito. Apesar do gráfico apresentar um tempo de resposta não tão rápido para pequenas 

variações, a série apresentada mostrou que em períodos de instabilidade sua inadimplência 

apresenta variações significativamente superiores a um desvio padrão, e, portanto, o uso do 

MMEP teria sido benéfico à empresa. 

Naturalmente, ao se discutir a inadimplência há uma preocupação maior em monitorar 

aumentos nela, porém também existe benefícios em se identificar períodos de potencial 

redução. É uma prática comum a renegociação de dívidas, e se for possível perceber que a 

inadimplência está tendendo para abaixo dos limites estipulados, e suportar isso com base no 

modelo estatístico, é possível detectar os períodos ideias para clientes tentarem uma 

renegociação com os investidores. Nesse sentido, podem ser ressaltados dois períodos em que 

o gráfico de controle apontou para uma redução na média da operação: 

a) mês 10: neste período o gráfico indicou uma variação negativa na média das 

observações a partir dos valores dos meses anteriores. No entanto, foi observado 

que na ocasião do alarme já havia sido verificado um novo crescimento na média; 

b) mês 118: assim que houve uma redução da inadimplência de 15,1% para 3,4% entre 

os meses 117 e 118, o MMEP já identificou isso como uma alteração na média do 

processo, que pode ser comprovada pelo comportamento nos próximos 26 meses 

onde a máxima da inadimplência foi 25,8%, perto da média global. É interessante 

notar que a série neste período adota um comportamento semelhante ao de uma 

parábola, e que o MMEP apontou outra observação fora dos limites de controle 

perto do centro da parábola, análogo a um ponto de inflexão, quando a 

inadimplência volta a apresentar um crescimento. 

Analisando as previsões introduzidas no MMEP, nota-se que se trata de um período sem 

grandes variações no processo, e o MMEP se comportou de acordo na maior parte dele, sem 

acusar nenhuma necessidade de correção. No entanto, um aumento na inadimplência no mês 

175 não foi detectado pelo gráfico. Isso pode ser justificado pela característica do modelo 

paramétrico de ser mais preciso para horizontes menores de tempo. Por isso, sugere-se que o 

modelo seja usado para projeções em um horizonte de 12 meses. 
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Em suma, em diversas ocasiões o MMEP demonstrou um tempo de resposta rápido para 

detecção de processo fora de controle, o que providenciará a empresa com um maior tempo de 

resposta para lidar com crescimentos da inadimplência. 
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6. CONCLUSÃO 

Neste capítulo será retomado tudo aquilo que foi abordado até agora neste trabalho e 

seus principais resultados, bem como uma avaliação geral da solução encontrada, suas 

limitações e sugestões de estudos futuros que possam aprimorar a solução elaborada. 

A motivação deste trabalho de formatura foi a percepção de um problema na empresa 

em que o autor realiza seu estágio. O acompanhamento de índices de inadimplência nas 

carteiras de recebíveis imobiliários que possuem em gestão é uma atividade vital para as 

operações de securitização. Apesar disso, a empresa não conta com nenhum método de projeção 

desses índices. Na configuração atual, em caso de problemas de instabilidade da inadimplência, 

há margem apenas para ações corretivas, que podem ser tomadas tarde demais. Foi proposto 

então a criação de uma metodologia para desenvolver ferramentas de previsão e 

monitoramento. 

O trabalho se inicia com o levantamento da bibliografia relevante ao tema proposto. 

Decidiu-se pelo desenvolvimento de um modelo de previsão a partir de séries temporais e 

modelos paramétricos. Para o monitoramento, foram pesquisadas ferramentas de controle 

estatístico de processos, dentre as quais optou-se pelo uso de gráficos de controle para o 

monitoramento da série estudada. A partir desta base teórica, foi estruturada uma metodologia 

para o desenvolvimento da solução final. 

O desenvolvimento prático começou pelo estudo da série temporal em questão, sob os 

aspectos de estacionariedade, normalidade e dependência, bem como a realização de ajustes 

para torná-la compatível com modelos paramétricos. Conhecendo suas características, foram 

estudados diversos modelos para selecionar o mais adequado, que acabou sendo uma versão 

reduzida de um ARMA (4,5). 

Para o monitoramento da série, foi escolhido o gráfico de média móvel 

exponencialmente ponderada (MMEP), por sua facilidade de desenvolvimento e aplicação e 

por ser ideal par detectar pequenas mudanças no processo. Colocou-se como meta um gráfico 

com um 𝐴𝑅𝐿0 igual a 36 meses. Para o seu uso foi necessário definir seus parâmetros. O fator 

de suavização 𝜆 foi encontrado a partir do método do mínimo erro dos quadrados, enquanto os 

limites de controle foram definidos a partir do uso de algoritmos iterativos que testaram diversas 

possibilidades até encontrar valores correspondentes ao 𝐴𝑅𝐿0 pré-definido. 
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A solução desenvolvida foi então submetida a uma avaliação para se determinar se 

cumpre seu propósito com eficácia. Em relação às projeções, foram deixadas de fora 20 

elementos da série original para servir de base de comparação para as previsões do modelo.  

Analisando o modelo ARMA(4,5) foi possível verificar que há um aderência satisfatória entre 

os valores reais e suas projeções. Conforme abordado na análise, ficou claro que quanto maior 

o horizonte de previsão maior o erro de previsão registrado, então o modelo é melhor utilizado 

com o foco em previsões de curto prazo, apesar de ter apresentado uma margem adequada para 

previsões de até 15 meses no futuro. 

Quanto ao gráfico de controle desenvolvido, foi observado que ele apresenta uma 

sensibilidade adequada a variações na média dos resíduos, com um tempo de resposta muito 

baixo para variações na média maiores que 1 desvio-padrão. Cabe citar aqui uma limitação do 

MMEP, que serviria melhor seu propósito caso demonstrasse um 𝐴𝑅𝐿1 menor para pequenas 

variações. Porém, como foi discutido durante a avaliação dos resultados, as grandes variações 

na inadimplência monitorada fizeram com que na prática os resultados fossem favoráveis. 

A partir de um paralelo com aquilo que foi de fato registrado ao decorrer da evolução 

da série, pode-se concluir que caso o modelo fosse adotado no mês 155 e servisse de base para 

a tomada de decisão nos próximos 20 meses o resultado teria sido positivo uma vez que a 

inadimplência ficou muito próxima ao previsto. Ainda, com base no histórico, foi mostrado que 

o MMEP foi capaz de detectar variações importantes em diferentes períodos, o que corrobora 

sua utilidade. Em luz desses resultados, conclui-se que a ferramenta desenvolvida cumpre seu 

objetivo e pode ser de grande valor para a Fortesec. 

Este trabalho serviu para mostrar a utilidade e os benefícios do uso de séries temporais 

e gráficos de controle no monitoramento em índices de inadimplência, mas naturalmente ainda 

é passiva de aprofundamento e melhorias. Uma proposta para aprimoramento desta solução 

seria a análise da adoção de modelos Beta ARMA. Modelos Beta ARMA são utilizados nos 

casos específicos em que as observações da série então entre 0 e 1, como é o caso de um índice 

de inadimplência. Este se trata de uma classe de modelos menos conhecida que o ARIMA, 

possivelmente por ser mais recente e não ter sido tão amplamente estudada quanto o ARIMA. 

Seu uso é mais complexo que o dos modelos apresentados neste trabalho e exigiria um grande 

volume de estudo, porém se tratando de uma ferramenta mais direcionada às características da 

série de inadimplência, é possível sua utilização possibilite obter ganhos interessantes em 

termos de capacidade de previsão. 
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Outro possível estudo futuro para aprofundamento e refinamento da solução seria a 

abordagem do uso de séries temporais não apenas para fins de previsão. Como foi explorado na 

bibliografia, estas séries podem ser aplicadas para diversos propósitos, dentre eles a 

investigação do mecanismo responsável por sua geração. Esta análise seria de grande utilidade, 

uma vez que conhecer os mecanismos por trás da inadimplência criaria a possibilidade de tomar 

ações mais direcionadas para mitigá-la, assim como pode fornecer informações que poderiam 

ser incorporadas ao modelo de projeção. Outra sugestão seria o estudo detalhado de um 

processo de implantação dessa solução na empresa, uma vez que são dezenas de operações 

ocorrendo simultaneamente e teria um impacto muito alto no operacional da Fortesec. 

Por último, é sugerido um estudo de uma metodologia que possibilite inverter a 

transformação de Box-Cox e a diferenciação sobre os limites de controle do MMEP, para 

possibilitar o monitoramento a partir da série original, que facilitaria muito sua interpretação. 

Quanto às dificuldades enfrentadas, para este trabalho de formatura foi necessário o 

aprendizado de séries temporais e modelos paramétricos, visto que o autor não havia tido 

contato com esses conceitos anteriormente, e que, portanto, exigiu diversas horas de estudo. A 

etapa de identificação do modelo se provou especificamente desafiadora, uma vez que foi 

necessário o teste de dezenas de modelos diferentes, tanto versões cheias quanto reduzidas, para 

que se obtivesse uma versão final que fosse aprovada tanto na etapa de diagnóstico quanto na 

avaliação dos resultados da previsão.  

 

  



90 
 

  



91 
 

REFERÊNCIAS BIBLIOGRÁFICAS 

 

AKAIKE, H. Maximum likelihood identification of Gaussian autoregressive moving 

average models. Biometrika, Oxford University Press, v.60, n. 2, pp. 255-265, 1973. 

BOX G. E. P.; COX D. R. An analysis of transformations. Journal of the Royal Statistical 

Society, Series B (methodological), Wiley Online Library, v. 26, n. 2, pp. 211-243, 1964. 

BOX G. E. P.; JENKINS, G. M. Time Series Analysis: Forecasting and Control. San 

Francisco: Holden-Day, revisited edition,1976. 

BOX, G. E. P.; JENKINS, G. M.; REINSEL, G. Time Series Analysis: Forecasting and 

Control. Englewood Cliffs: Prentice hall, 3ª ed. 1994. 

DICKEY, D. A.; FULLER, W.A. Distribution of the estimators for autoregressive time 

series with a unit root. Journal of the American Statistical Association, v. 74, pp. 427-431, 

1979. 

HUNTER, J. S. The Exponentially Weighted Moving Average. Journal of Quality 

Technology, v.18, n. 4, pp. 203-210, 1986.  

HYNDMAN, R. J.; KOEHLER, A. B. Another look at measures of forecast accuracy. 

International Journal of Forecasting, v. 22, n. 4, pp. 679-688, 2006. 

KUME, H. Métodos Estatísticos para Melhoria da Qualidade.  São Paulo: Editora Gente, 

1993. 

LJUNG, G. M.; BOX, G. E. P. On a measure of lack of fit in time series models. Biometrika, 

Oxford University Press, v. 65, pp. 297 – 303, 1978. 

LUCAS, J. M.; SACUCCI, M. S. Exponentially Weighted Moving Average Control 

Schemes: Properties and Enhancements. Technometrics, v. 32, n. 1, pp. 1 – 12, 1990. 

MONTGOMERY, D. C. Introdução ao Controle Estatístico da Qualidade. 4ª ed. Rio de 

Janeiro: Editora LTC, 2004.  

MONTGOMERY, D. C.; JENNINGS, C. L.; KULACHI, M. Introduction to Time Series 

Analysis and Forecasting. Nova Jersey: John Wiley e Sons, 2008. 



92 
 

MORETTIN, P. A.; TOLOI, C. M. C. Análise de Séries Temporais. 2ª ed. São Paulo: Editora 

Blucher, 2006.  

PAGE, E.S. Continuous Inspection Schemes. Biometrics, v. 41, n. 1, pp. 100-115, 1954. 

ROBERTS, S.W. Control Chart Tests Based on Geometric Moving Averages. 

Technometrics, v. 42, n. 1, pp. 97-102, 1959. 

SAMOHYL, R. W. Controle Estatístico de Qualidade. 1ª ed. Rio de Janeiro: Elsevier, 2009.  

SHAPIRO, S. S.; WILK, M. B. An analysis of variance test for normality (complete 

samples). Biometrika, v. 52, pp. 591-611, 1965. 

  



93 
 

APÊNDICE A – Código para análise da série temporal e ajuste do modelo ARMA 

 

library(ggplot2) 

library(ggfortify) 

library(forecast) 

library(tseries) 

 

setwd("C:/Users/mathe/Rstudio") 

base <- read.csv2("Inad_G100_v2.csv", sep =";") 

 

serie_completa <- ts(base$Inad) 

serie_original <- ts(serie_completa[1:155]) 

 

#Transformação Estabilizar a Variância 

lbd <- BoxCox.lambda(serie_original) 

serie_transformada <- BoxCox(serie_original, lbd)  

 

#Teste estacionariedade 

adf.test(serie_transformada, alternative="stationary") 

serie_estacionaria <- ts(diff(serie_transformada)) 

adf.test(serie_estacionaria, alternative="stationary") 

 

#Teste Normalidade 

qqnorm(serie_estacionaria) 

qqline(serie_estacionaria) 

shapiro.test(serie_estacionaria) 

 



94 
 

#Teste Independência 

estimador_acf <- acf(serie_estacionaria, lag=50, plot=TRUE) 

estimador_pacf <- pacf(serie_estacionaria, lag=50, plot = TRUE) 

 

#Estimação Modelo ARIMA 

modelo_cheio <- arima(serie_estacionaria, order=c(4,0,5)) 

acf(modelo_cheio$residuals, lag=50) 

coeftest(modelo_cheio) 

 

#Estimação Modelo ARIMA Reduzido 

modelo_reduzido <- arima(serie_estacionaria, ,order=c(4,0,5),transform.pars = 

F,fixed=c(NA,NA,NA,NA,0,0,NA,NA,NA),include.mean = F) 

modelo_reduzido$aic 

coeftest(modelo_reduzido) 

 

#Teste Resíduos 

acf(modelo_reduzido$residuals, lag=50) 

pacf(modelo_reduzido$residuals, lag=50) 

shapiro.test(modelo_reduzido$residuals) 

Box.test(modelo_reduzido$residuals, type="Ljung-Box") 

qqnorm(modelo_reduzido$residuals) 

qqline(modelo_reduzido$residuals) 
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APÊNDICE B – Código para determinação do fator de suavização do MMEP 

#Importar dados 

Zo <- mean(serie_original) 

Xt <- serie_original[1:155] 

 

lambda <- 0.01 

lambda_otimo <-0 

erro_min <- 50 

 

while (lambda<=1) { 

  Z <- c(Zo) 

  i <- 1 

  j <- 1 

  E <- c() 

   

  # cálculo da estatística Z  

  while (i<=length(Xt)) { 

    zt <- lambda*Xt[i]+(1-lambda)*Z[i] 

    Z <- append(Z,zt) 

    i <- i + 1 

  } 

 

  #Cálculo Erro 

  while (j<=length(Xt)) { 

    erro <- Xt[j]-Z[j] 

    E <- append(E,erro) 

    j <- j + 1 
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  } 

   

  #Cálculo Erro Quadrado 

  erro_quadrado <- E^2 

   

  #Soma dos Erros 

  soma_erros <- sum(erro_quadrado) 

 

  if (soma_erros<erro_min){ 

    erro_min <- soma_erros 

    lambda_otimo <- lambda 

  }  

  lambda <- lambda + 0.0005 

} 

  



97 
 

APÊNDICE C – Código para determinação ARL para processo sob controle 

ARLo <- 36 

L <- 1 

N <- 2000 

 

ar1 <-modelo_reduzido$coef[["ar1"]] 

ar2 <-modelo_reduzido$coef[["ar2"]] 

ar3 <-modelo_reduzido$coef[["ar3"]] 

ar4 <-modelo_reduzido$coef[["ar4"]] 

ma3 <-modelo_reduzido$coef[["ma3"]] 

ma4 <-modelo_reduzido$coef[["ma4"]] 

ma5 <-modelo_reduzido$coef[["ma5"]] 

 

dp_residuos <- sd(modelo_reduzido$residuals) 

check_ARL <- F 

Lista_ARL <- c() 

 

while (check_ARL==F){ 

  cont <- 1 

  soma <- 0 

   

  while (cont<N){ 

    t <- 1 

    fora_limite <- F 

     

    sim_Xt <- arima.sim(n = 1005, list(order=c(4,1,5), ar=c(ar1,ar2,ar3,ar4), 

ma=c(0,0,ma3,ma4,ma5)), sd=dp_residuos) 
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    sim_Zo <- mean(sim_Xt) 

    sim_Zt <- c(sim_Zo) 

    valor_alvo <- mean(sim_Xt) 

     

    #Comparar limites de controle 

    while (fora_limite==F){ 

      zt <- lambda_otimo*sim_Xt[t]+(1-lambda_otimo)*sim_Zt[t] 

      sim_Zt <- append(sim_Zt,zt) 

      LSC <- valor_alvo + L*sd(sim_Xt)*sqrt(lambda_otimo*(1/(2-Lambda_otimo))*(1-(1-

lambda_otimo)^(2*t))) 

      LIC <- valor_alvo - L*sd(sim_Xt)*sqrt(lambda_otimo*(1/(2-lambda_otimo))*(1-(1-

lambda_otimo)^(2*t))) 

      if (zt>LSC | zt<LIC) { 

        soma <- soma + t 

        cont <- cont + 1 

        fora_limite <- T 

      } else { 

        t <- t + 1 

      } 

    } 

    cont <- cont + 1 

  } 

   

  ARL_sim <- soma/N 

  Lista_ARL <- append(Lista_ARL,ARL_sim) 

   

  if (ARL_sim >= ARLo){ 
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    check_ARL <- T 

  } else{ 

    L <- L + 0.01 

  } 

} 
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APÊNDICE D – Código para determinação ARL para processo fora de controle 

c <- 0 

N <- 2000 

 

ar1 <-modelo_reduzido$coef[["ar1"]] 

ar2 <-modelo_reduzido$coef[["ar2"]] 

ar3 <-modelo_reduzido$coef[["ar3"]] 

ar4 <-modelo_reduzido$coef[["ar4"]] 

ma3 <-modelo_reduzido$coef[["ma3"]] 

ma4 <-modelo_reduzido$coef[["ma4"]] 

ma5 <-modelo_reduzido$coef[["ma5"]] 

 

dp_residuos <- sd(modelo_reduzido$residuals) 

check_ARL <- F 

Lista_ARL <- c() 

 

while (c<=1.5){ 

  cont <- 1 

  soma <- 0 

   

   while (cont<N){ 

    t <- 1 

    fora_limite <- F 

     

        sim_Xt <- arima.sim(n = 1005, list(order=c(4,1,5), ar=c(ar1,ar2,ar3,ar4), 

ma=c(0,0,ma3,ma4,ma5)),mean=(c*dp_residuos), sd=dp_residuos) 
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    sim_Zo <- mean(sim_Xt) 

    sim_Zt <- c(sim_Zo) 

    valor_alvo <- mean(sim_Xt) 

     

    #Comparar limites de controle 

    while (fora_limite==F){ 

      zt <- lambda_otimo*sim_Xt[t]+(1-lambda_otimo)*sim_Zt[t] 

      sim_Zt <- append(sim_Zt,zt) 

      LSC <- valor_alvo + L*sd(sim_Xt)*sqrt(lambda_otimo*(1/(2-lambda_otimo))*(1-(1-

lambda_otimo)^(2*t))) 

      LIC <- valor_alvo - L*sd(sim_Xt)*sqrt(lambda_otimo*(1/(2-lambda_otimo))*(1-(1-

lambda_otimo)^(2*t))) 

      if (zt>LSC | zt<LIC) { 

        soma <- soma + t 

        cont <- cont + 1 

        fora_limite <- T 

      } else { 

        t <- t + 1 

      } 

    } 

    cont <- cont + 1 

  } 

   

  ARL_sim <- soma/N 

  Lista_ARL <- append(Lista_ARL,ARL_sim) 

 

  c <- c + 0.1 

 } 
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ANEXO A – Séries de índices de inadimplência 

Data Inadimplência Data Inadimplência Data Inadimplência 

Mês 1 29,57% Mês 41 32,31% Mês 81 14,52% 

Mês 2 14,58% Mês 42 77,43% Mês 82 32,64% 

Mês 3 17,14% Mês 43 62,15% Mês 83 22,66% 

Mês  4 14,12% Mês 44 26,78% Mês 84 27,82% 

Mês 5 13,16% Mês 45 25,10% Mês 85 15,18% 

Mês 6 12,28% Mês 46 36,11% Mês 86 25,55% 

Mês 7 20,81% Mês 47 26,67% Mês 87 24,57% 

Mês 8 25,86% Mês 48 55,13% Mês 88 33,07% 

Mês 9 18,15% Mês 49 26,98% Mês 89 21,44% 

Mês 10 6,70% Mês 50 20,51% Mês 90 22,16% 

Mês 11 16,42% Mês 51 23,34% Mês 91 22,06% 

Mês 12 12,26% Mês 52 24,08% Mês 92 25,23% 

Mês 13 2,50% Mês 53 24,15% Mês 93 18,49% 

Mês 14 11,54% Mês 54 25,33% Mês 94 57,86% 

Mês 15 19,68% Mês 55 25,81% Mês 95 26,90% 

Mês 16 18,42% Mês 56 23,39% Mês 96 20,11% 

Mês 17 14,31% Mês 57 28,65% Mês 97 22,25% 

Mês 18 18,66% Mês 58 26,23% Mês 98 18,39% 

Mês 19 30,07% Mês 59 24,58% Mês 99 24,38% 

Mês 20 19,99% Mês 60 14,72% Mês 100 22,74% 

Mês 21 21,02% Mês 61 11,39% Mês 101 8,21% 

Mês 22 36,33% Mês 62 16,60% Mês 102 21,92% 

Mês 23 21,31% Mês 63 20,56% Mês 103 9,89% 

Mês 24 22,09% Mês 64 20,82% Mês 104 15,15% 

Mês 25 22,07% Mês 65 17,77% Mês 105 16,31% 

Mês 26 29,55% Mês 66 21,36% Mês 106 11,19% 

Mês 27 32,94% Mês 67 14,26% Mês 107 16,92% 

Mês 28 25,80% Mês 68 14,25% Mês 108 11,17% 

Mês 29 21,55% Mês 69 8,94% Mês 109 13,89% 

Mês 30 62,42% Mês 70 34,73% Mês 110 13,83% 

Mês 31 77,64% Mês 71 21,24% Mês 111 16,71% 

Mês 32 68,17% Mês 72 18,36% Mês 112 20,07% 

Mês 33 72,05% Mês 73 25,91% Mês 113 13,82% 

Mês 34 81,83% Mês 74 25,19% Mês 114 6,73% 

Mês 35 43,32% Mês 75 28,42% Mês 115 7,29% 

Mês 36 58,78% Mês 76 16,30% Mês 116 6,31% 

Mês 37 55,19% Mês 77 30,32% Mês 117 15,15% 

Mês 38 30,05% Mês 78 14,64% Mês 118 3,45% 

Mês 39 11,80% Mês 79 39,03% Mês 119 2,71% 

Mês 40 16,72% Mês 80 15,41% Mês 120 2,31% 
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Data Inadimplência Data Inadimplência 

Mês 121 2,80% Mês 165 15,26% 

Mês 122 6,23% Mês 166 24,49% 

Mês 123 6,26% Mês 167 26,39% 

Mês 124 3,88% Mês 168 29,52% 

Mês 125 4,41% Mês 169 25,50% 

Mês 126 14,16% Mês 170 29,89% 

Mês 127 25,87% Mês 171 28,05% 

Mês 128 3,40% Mês 172 28,24% 

Mês 129 11,79% Mês 173 21,79% 

Mês 130 22,16% Mês 174 26,92% 

Mês 131 7,44% Mês 175 42,82% 

Mês 132 4,89%   

Mês 133 8,82%   

Mês 134 8,48%   

Mês 135 7,96%   

Mês 136 13,04%   

Mês 137 17,01%   

Mês 138 18,82%   

Mês 139 6,58%   

Mês 140 20,35%   

Mês 141 13,11%   

Mês 142 11,49%   

Mês 143 21,17%   

Mês 144 26,19%   

Mês 145 12,90%   

Mês 146 17,68%   

Mês 147 42,83%   

Mês 148 31,20%   

Mês 149 24,12%   

Mês 150 29,38%   

Mês 151 51,26%   

Mês 152 20,30%   

Mês 153 25,34%   

Mês 154 14,01%   

Mês 155 22,67%   

Mês 156 16,36%   

Mês 157 15,85%   

Mês 158 30,48%   

Mês 159 17,91%   

Mês 160 22,06%   

 

 


