
UNIVERSIDADE DE SÃO PAULO 
FACULDADE DE CIÊNCIAS FARMACÊUTICAS 

CURSO DE GRADUAÇÃO EM FARMÁCIA-BIOQUÍMICA 
 

 

 

 

 

Estudos de Relação Quantitativa entre Estrutura-
Atividade de uma série de aminas heterocíclicas com 

atividade antidepressiva in vitro 
 
 
 
 

Gustavo Henrique Marques Sousa 
 
 
 

Trabalho de Conclusão do Curso de 
Farmácia-Bioquímica da Faculdade de 
Ciências Farmacêuticas da Universidade 
de São Paulo. 
 
 
Orientador: Prof. Dr. Gustavo Henrique 
Goulart Trossini 
 
 
 
 
 
 
 
 
 

São Paulo 
 

2020



1 
 

SUMÁRIO 
LISTA DE ABREVIATURAS ................................................................2 

RESUMO ....................................................................................3 

1. INTRODUÇÃO ......................................................................... 4 

1.1 Epidemiologia da Depressão ...................................................... 4 

1.2 Fisiopatologia e Tratamento da Depressão ..................................... 5 

1.3 QSAR e Quimioinformática ........................................................ 6 

1.4 Conceitos iniciais de métodos não lineares ................................... 10 

1.4.1 Algoritmo Random Forest ........................................................ 11 

1.4.2 Algoritmo Support Vector Machine ............................................. 12 

2. OBJETIVOS .......................................................................... 13 

2.1. Geral ................................................................................. 13 

2.2. Específico ........................................................................... 13 

3. MATERIAL E MÉTODOS ............................................................. 13 

3.1. Softwares ............................................................................ 13 

3.2. Análise da estrutura dos dados .................................................. 14 

3.3. Análise e predição de propriedades farmacocinéticas ...................... 15 

3.4. Modelos preditivos ................................................................. 15 

3.4.1 Grupo teste e grupo treino ....................................................... 15 

3.4.2 Construção de modelos de QSAR ................................................ 16 

3.4.2.1 Modelos lineares ............................................................... 16 

3.4.2.2 Modelos não-lineares ......................................................... 16 

4. RESULTADOS ........................................................................ 17 

4.1 Estrutura dos dados ............................................................... 17 

4.2 Propriedades farmacocinéticas .................................................. 19 

4.3 Método dos Mínimos Quadrados Parciais ....................................... 24 

4.4 Random Forest – Modelo completo ............................................. 26 

4.5 Random Forest - descritores interpretáveis .................................. 29 

4.5.1 Support Vector Machine – com todos os descritores ........................ 31 

5. DISCUSSÃO .......................................................................... 32 

5.1 Escolha dos softwares ............................................................. 32 

5.2 Estrutura e análise inicial dos dados ........................................... 33 

5.3 Análise dos dados farmacocinéticos ............................................ 33 

5.4 Análise do Método Mínimos Quadrados Parciais .............................. 34 

5.5 Discussão de Resultados Modelo Completo .................................... 35 

5.6 Discussão do Modelo RF com descritores interpretáveis .................... 37 

6. CONCLUSÃO ......................................................................... 40 

7. REFERÊNCIAS ........................................................................ 42 

8. ANEXOS .............................................................................. 47 
 

 

 



2 
 

 

LISTA DE ABREVIATURAS 

 

OMS Organização Mundial de Saúde 

5-HT 5-Hidroxitriptamina 

MAOIs Monoamine Oxidase Inhibitor 

TRI Triple Reuptake Inhibitor 

SERT Serotonine Transporter 

DAT Dopamine Transporter 

NET Norepinefrine Transporter 

HTS High Througuput Screening 

QSAR Quantitative Structure Activity Relationship 

QSPR Quantitative Structure-Property Relationship 

ML Machine Learning 

ANN Artificial Neural Network 

PLS Partial Least Squares 

MLR Multiple Linear Regression 

SVM Support Vector Machine 

RF Random Forest 

RMSE Root Mean Square Error 

MAE Mean Square Error 

CCC Concordance Correlation Coeficient 
 

 

 

 

 

 

 

 

 

 

 



3 
 

RESUMO 

SOUSA, G. H. M. Estudos de Relação Quantitativa entre Estrutura-Atividade 

de uma série de aminas heterocíclicas com atividade antidepressiva in 

vitro. 2020. no. f. Trabalho de Conclusão de Curso de Farmácia-Bioquímica – 

Faculdade de Ciências Farmacêuticas – Universidade de São Paulo, São Paulo, 

2020. 

Palavras-chave: Planejamento de fármacos, Química Farmacêutica, Machine 

Learning, QSAR 

 

INTRODUÇÃO: A depressão é uma desordem do sistema nervoso central e que 
acomete indivíduos no mundo todo. O arsenal terapêutico atual possui 
características indesejadas, como a demora do tempo de ação além de diversos 
efeitos adversos. Nesse contexto, a quimioinformática é uma ciência que pode 
ser aplicada no descobrimento e otimização de moléculas promissoras no 
tratamento da depressão e de diversas outras doenças, se destacando 
metodologias como a Relação Quantitativa entre Estrutura e Atividade (QSAR). 
OBJETIVO: Explorar técnicas suportadas pela literatura e que visam a obtenção 

de modelos com capacidade de predição da atividade biológica, neste caso 
atividade antidepressiva observada in vitro, baseados na estrutura química dos 
compostos, assim como explorar suas respectivas vantagens e desvantagens. 
MATERIAL E MÉTODOS: A partir de compostos obtidos na literatura com 

atividade antidepressiva in vitro, utilizou-se um fluxograma típico de QSAR, com 
partição randômica da série teste e treino, validação interna e externa dos dados 
e métricas pertinentes nas avaliações das respectivas performances. Foram 
priorizados softwares gratuitos para a representação das estruturas químicas, 
cálculo de descritores para o todo processo de modelagem, garantindo fácil 
acesso à reprodutibilidade dos resultados. Para os modelos de predição de 
atividade, foram empregados métodos lineares e não-lineares, explorando 
alguns dos algoritmos utilizados na literatura como PLS, Random Forest e SVM, 
utilizando para tal finalidade a linguagem de programação R. Não obstante, os 
parâmetros farmacocinéticos foram explorados e preditos com auxílio da 
plataforma SwissADME. RESULTADOS: Os modelos não-lineares obtidos por 
Random Forest e SVM apresentaram performance bastante superior quando 
comparados aos modelos lineares, com destaque àqueles que foram 
construídos a partir de descritores mais simples e com significado químico de 
fácil interpretação. As métricas obtidas para os modelos relacionados à inibição 
dos transportadores de norepinefrina e dopamina se apresentaram adequadas 
para um estudo de QSAR. As propriedades farmacocinéticas preditas para as 
moléculas presentes nesse estudo se apresentaram promissoras no que diz 
respeito ao desenvolvimento de novos candidatos à fármacos. CONCLUSÃO: 
Entre os modelos não-lineares de dopamina e norepinefrina, aqueles obtidos por 
RF possuem descritores convergentes, sendo destaque descritores 
tridimensionais (RDF), tamanho de cadeia principal e estado eletrônico de 
nitrogênio presente na estrutura, além de apresentarem como característica uma 
baixa demanda computacional. Sugere-se que para atividade relacionada à 
serotonina, outras técnicas sejam empregadas, visto que neste estudo não foi 
possível obter um modelo adequado para predição da inibição deste receptor. 
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INTRODUÇÃO 

1.1  Epidemiologia da Depressão 

De acordo com a Manual Estatístico e Diagnóstico de Desordens Mentais 

(DSM–V; 5ª edição, American Psychiatric Association, 2013), o transtorno 

depressivo maior, conhecida popularmente como depressão, é caracterizado por 

uma série de sintomas dentre eles: perda de interesse em diversas atividades 

cotidianas; alterações no sono e em atividades psicomotoras; sentimento de 

culpa; dificuldade em se concentrar assim como na tomada de decisões; 

pensamentos recorrentes relacionados a morte e suicídio, entre outros sintomas 

correlatos (PEREZ-CABALERO et al, 2019). 

Dados da Organização Mundial de Saúde mostram que a depressão é 

responsável por 10% das doenças não fatais e é, do ponto de vista global, a 

maior responsável por anos perdidos de trabalho por invalidez, do que qualquer 

outra condição ou enfermidade, mostrando seu potencial incapacitante para com 

o indivíduo acometido. (OMS, 2016).  Estudos epidemiológicos apontam para 

uma diferença na prevalência, incidência e morbidade de depressão em 

mulheres, gênero que possui maiores taxas deste transtorno ao longo da vida 

adulta, ao contrário da taxa observada em homens que é mais preponderante 

durante a adolescência. Contudo, não há conclusões definitivas sobre as 

diferenças de gênero e incidência de depressão (PICCINELLI, WILKINSON, 

2000). Ainda que seja menos prevalente em períodos avançados, a doença ao 

acometer idosos pode representar graves consequências, uma vez que a taxa 

de suicídio é maior nesta faixa etária. Apesar de se apresentar em declínio, a 

taxa de suicídio é maior na população idosa quando comparada a população 

jovem. Sugere-se que esse fato pode estar relacionado à prevalência de 

depressão neste grupo (FISKE, WETHERRELL, 2009). 

Dada a relevância epidemiológica do transtorno depressivo, bem como o 

agravante fator incapacitante da doença, é preciso considerar veementemente a 

inclusão da depressão como uma prioridade na saúde pública mundial nos 

próximos anos (FERRARI et al, 2013).  
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1.2 Fisiopatologia e Tratamento da Depressão 

Estudos sobre a neurobiologia e origem deste transtorno foram iniciados 

em meados dos anos 50. Estes surgiram da observação de pacientes com 

tuberculose que ao serem tratados com iproniazida apresentavam melhora no 

humor, visto que alguns destes indivíduos também sofriam de depressão 

(LOOMER et al, 1957).  

Ao longo dos anos conseguintes, foi possível observar o efeito de alguns 

fármacos com propriedade de modificar a biodisponibilidade de catecolaminas 

(i.e., norepinefrina e dopamina) e que melhoravam os sintomas depressivos, e 

que por consequência deram origem a hipótese catecolaminérgica 

(SCHILDKRAUT, 1965).  

 

Figura 1 -  Estruturas químicas das monoaminas: norepinefrina, dopamina e serotonina. 

 

Fonte: PUBCHEM (CID - 439260, 681, 5202), acessado em 10 de setembro de 2020 

 

Alguns anos depois, reconheceu-se o papel da serotonina (5-HT) na 

regulação do transtorno depressivo, subsidiando a hipótese monoaminérgica, 

amplamente conhecida atualmente. Assim, a terapêutica antidepressiva foi 

suportada por meio de fármacos que possuíam como efeito resultante comum o 

aumento da disponibilidade das monoaminas na fenda sináptica, como os 

Antidepressivos Tricíclicos (TCAs) e Inibidores da enzima Monoamina Oxidase 

(MAOIs), sendo por muitos anos a linha de frente no tratamento deste transtorno 

(PEREZ-CABALERO et al, 2019). 
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Durante o desenvolvimento de terapias antidepressivas, moléculas com 

inibição específica de serotonina e norepinefrina tomaram a liderança por 

possuírem um perfil mais seguro que antidepressivos tricíclicos e inibidores de 

monoamina oxidase. Apesar da maior tolerabilidade, há possibilidades 

significativas de melhora no tempo de ação inicial desses fármacos, já que a 

redução dos sintomas e do quadro clínico da depressão se dá em um período 

aproximado de 2-4 semanas (MARKS et al., 2008). 

Uma outra alternativa, ainda considerando a hipótese monoaminérgica, é 

a utilização dos Inibidores de Recaptura Tripla ou TRIs (do inglês triple-reuptake-

inhibitors) que possuem a capacidade de inibir simultaneamente os 

transportadores de norepinefrina, dopamina e serotonina. A hipótese assume 

que o TRI estaria ligado a ativação sistema de recompensa dopaminérgico e 

possibilitaria reduzir efeitos colaterais que outras classes não são capazes, dada 

especificidade destas por apenas um alvo (LANE, 2014).  Entretanto, não há 

consenso na literatura se a inibição dos 3 principais transportadores 

responsáveis pela recaptura de monoaminas - Transportador de Serotonina 

(SERT), Transportador de Dopamina (DAT) e Transportador de Norepinefrina 

(NET) - levaria a uma resposta antidepressiva mais rápida e mais eficaz. É 

sabido, todavia, que as moléculas de inibição tripla possuem um potencial de 

atuar no tratamento da depressão por um espectro maior dos sintomas como por 

exemplo, a anedonia, reduzindo os efeitos colaterais resultantes dos tratamentos 

convencionais atualmente empregados. Ainda assim, é um desafio do ponto de 

vista de planejamento de fármacos obter uma molécula que apresente, 

concomitantemente, um perfil de inibição significativo para os três 

transportadores, com boa biodisponibilidade oral e não menos importante, 

poucos efeitos adversos (SHARMA et al, 2015). 

 

1.3 QSAR e Quimioinformática 

A quimioinformática é um campo da ciência que combina elementos da 

química, biologia e ciência da computação para transformar dados químicos e 

biológicos em conhecimentos úteis que suportam a tomada de decisão no 

planejamento e otimização de fármacos (CHEN et al, 2018). 
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Nesse contexto, a triagem de alto desempenho, do inglês high-throughput 

screening (HTS) é amplamente utilizada pela indústria farmacêutica na busca de 

novos compostos biologicamente ativos. É uma técnica robotizada e 

automatizada de ensaios experimentais em grande escala e que possui uma taxa 

relativamente baixa de descoberta de compostos líderes, quando comparada à 

triagem virtual. Esta, por sua vez, enquanto oferece boas taxas na descoberta 

de novos medicamentos gera uma imensa quantidade de dados químicos. Já 

triagem exclusivamente virtual de compostos, ou seja, sem o uso de reagentes 

e emprego de síntese em alta escala, possui usualmente taxa de descoberta de 

novos compostos biologicamente ativos variando de 1% a 40% num modelo 

robusto e bem validado. Seu custo é significativamente menor que o HTS, por 

se tratar de um método computacional e não experimental (NEVES et al, 2018).  

A quimioinformática é um ramo da química que tem como foco a 

transformação de dados químicos, muitas vezes obtidos por HTS, em 

informações úteis para o planejamento de novos fármacos, empregando 

técnicas computacionais, matemáticas e estatísticas. Suas aplicações mais 

práticas estão nas ciências ambientais, saúde, toxicologia e planejamento de 

fármacos. Entre as técnicas que auxiliaram no desenvolvimento e consolidação 

deste ramo da ciência, está a Análise Quantitativa da Relação Estrutura-

Atividade, do inglês Quantitative Structure-Activity Relationship (QSAR) que tem 

como objetivo estabelecer um modelo matemático, baseado em descritores 

físico-químicos de uma série de moléculas estruturalmente similares e com 

atividade biológica definida (ALVES, V. et al, 2017). É comum encontrar na 

literatura o uso dos prefixos “q” e “Q” no acrônimo SAR, indicando modelos que 

abordam problemas qualitativos e quantitativos, respectivamente (BURBIDGE et 

al., 2001). 

A técnica foi desenvolvida há mais de 50 anos, por HANSCH e FUJITA, 

(1964) e desde então, diferentes abordagens - QSAR-2D, QSAR-3D, Hologram-

QSAR, Fragment-QSAR - aliadas a uma gama de ferramentas computacionais, 

que utilizam Machine Learning em sua estrutura sistemática, podem ser 

utilizadas para se obter modelos preditivos no descobrimento de novas 

moléculas biologicamente ativas. Tal ferramenta é muito importante do ponto de 

vista acadêmico e industrial, visto que os modelos gerados podem fornecer 
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indicativos relevantes antes mesmo da síntese e avaliação biológica 

experimental, reduzindo o tempo no ciclo de desenvolvimento bem como os 

custos associado a descoberta de um novo fármaco (NEVES et al., 2018). 

Diversas abordagens de modelagem por meio da técnica de QSAR são 

suportadas por técnicas advindas da Estatística e Aprendizado de Máquina 

(Machine Learning). Entre alguns exemplos de algoritmos estão: Árvore de 

Decisão, Redes Neurais Artificiais, Quadrados Mínimos Parciais, k-Vizinho-Mais-

Próximo, Regressão Linear Múltipla, Análise Discriminante e Máquinas de 

Vetores de Suporte (SVETNIK et. al, 2003). Essas técnicas são capazes de 

modelar dados mais complexos e não-lineares utilizando para este fim 

algoritmos que detectam os padrões moleculares relacionados a atividade 

biológica (NEVES et al., 2020). 

Diversas publicações utilizando QSAR são caracterizadas pelo uso de 

uma pletora de descritores químicos, que são utilizados na construção de 

modelos lineares, como aqueles foram conduzidos na parte inicial deste 

trabalho, ou ainda de modelos que relacionem de forma não-linear os descritores 

e atividade biológica.  Esses modelos seguem metodologia rigorosa de validação 

interna e externa, visando-se obter resultados estatisticamente apropriados e 

significativamente preditivos (TROPSHA; GOLBRAIKH, 2007).  

A figura (2) apresenta um esquema adaptado que mostra de maneira 

simplificada o processo de obtenção de um modelo QSAR. 

Figura 2 -  Esquema geral do processo de QSAR 

 

Fonte: DAMALE et. al, 2014 (Adaptado). 
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Entre as métricas utilizadas para a avaliação de um modelo QSAR estão, 

entre outras, o Coeficiente de Correlação Linear (R²), a Raiz do Quadrado Médio 

do Erro (RMSE) e a Média Absoluta do Erro (MAE). O R² quantifica a 

preditividade do modelo, ou seja, o quanto ele se mostra eficaz em capturar e 

prever os dados experimentais e seu cálculo é feito a partir da equação (1). 

Quanto mais próximo de 1 o R² entre os dados experimentais e os dados 

previstos por um modelo, maior a capacidade do modelo em “explicar” estes 

respectivos dados experimentais. Já o RMSE disposto na equação (2), do inglês 

Root Mean Square Error está relacionado à comparação da performance em 

dados externos e internos, bem como entre modelos obtidos por diferentes 

metodologias. O RMSE também pode ser interpretado como o desvio padrão do 

resíduo, que é a diferença entre o valor experimental e o valor estimado. Por fim, 

a MAE do inglês Mean Absolute Error é bastante encontrada na literatura e 

representa a média absoluta do resíduo. Apresenta a vantagem de estar na 

mesma unidade de medida dos valores da variável resposta, calculado a partir 

da equação (3). Todas essas equações apresentam argumentos nos quais:  

𝑦𝑖𝑚𝑒𝑎𝑛  é a média correspondente; 𝑦𝑖𝑒𝑥𝑝 é o valor experimental correspondente; 

𝑦𝑖𝑝𝑟𝑒𝑑 é o valor predito correspondente e n o número de amostras utilizados no 

modelo (FERREIRA, 2002).  

 (1)  𝑅2 = 1 −  
∑( 𝑦𝑖𝑒𝑥𝑝−𝑦𝑖𝑝𝑟𝑒𝑑)²

∑( 𝑦𝑖𝑒𝑥𝑝−𝑦𝑖𝑚𝑒𝑎𝑛)²
 

(2)  𝑅𝑀𝑆𝐸 = √
∑( 𝑦𝑖𝑒𝑥𝑝−𝑦𝑖𝑝𝑟𝑒𝑑)²

𝑛
 

(3)  𝑀𝐴𝐸 = |
∑( 𝑦𝑖𝑒𝑥𝑝−𝑦𝑖𝑝𝑟𝑒𝑑)

𝑛
| 

O principal propósito da validação é fornecer um modelo estatisticamente 

significativo, como uma consequência adequada de causa e efeito e evitar uma 

relação numérica obtida ao acaso (KIRALJ e FERREIRA, 2009). Nesse sentido, 

a validação externa tem sido um extenso debate entre aqueles que utilizam 

QSAR já que alguns autores discutem que a capacidade preditiva “real” de um 

modelo só pode ser adequadamente estimada utilizando um grupo de teste 

externo, ou seja, compostos que nunca foram utilizados na construção dos 
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modelos. Ainda assim, a validação externa pode conter algumas desvantagens 

quando o grupo teste utilizado possui alguma distribuição em particular ou 

diferirem estruturalmente do grupo utilizado para treinar o modelo (GRAMATICA; 

SANGION, 2020). 

 

1.4 Conceitos iniciais de métodos não lineares 

Nos métodos de Aprendizado de Máquina, há uma situação de perda ou 

ganho de informações com relação a interpretabilidade do modelo em função de 

sua flexibilidade na explicação da resposta. Por exemplo, do ponto de vista de 

capacidade preditiva da resposta, um modelo linear que é muito menos flexível 

que um modelo de árvore de decisão, é mais interpretativo que o último, e por 

se tratar de um modelo linear é possível ainda comparar a influência e 

intensidade das diversas variáveis dependentes em relação a variável resposta. 

Portanto, podemos afirmar que para problemas inferenciais, na qual se deseja 

explicar a influência de determinados parâmetros em uma resposta, um modelo 

menos flexível é indicado. Porém, se o que se deseja é apenas prever a 

resposta, um modelo com alta flexibilidade pode ser a melhor opção (JAMES et. 

al, 2013). 

Figura 3 -  Uma representação visual da relação entre métodos flexíveis e sua capacidade 

de interpretação. 

 

Fonte: JAMES, et. al, 2013 (adaptado) 

 

Algumas metodologias utilizadas em quimioinformática são classificados 

como “métodos caixa preta”, derivados da nomenclatura em inglês “Black Box 
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Methods”. Apesar de sua excelente capacidade de predição, é incapaz de 

oferecer recursos de como e por que as variáveis independentes, nesse caso os 

descritores calculados, estão relacionadas com as respostas e este é o principal 

motivo de um método ser classificado como tal. No caso de modelos mais 

simples como regressões multilineares, a influência e contribuição de descritores 

é mais clara e abre espaço para a interpretação química ou mecanística. Outros 

métodos como a Floresta Aleatória, do inglês “Random Forest”, permitem que 

essa informação seja inferida por meio da importância atribuída a cada variável 

pelo próprio algoritmo (MITCHELL, 2014). Métodos de Aprendizagem de 

Máquina, mais especificamente os chamados de Conjunto de Árvores podem ser 

uma escolha adequada para modelagem QSAR, pois há uma combinação de 

propriedades desejáveis do método de Árvore de Decisão Simples aliado a uma 

alta performance na predição da variável resposta (SVETINIK et al., 2004). O 

algoritmo Random Forest, é um dos métodos contemplados neste trabalho 

(BREIMAN, 2001).  

 

1.4.1 Algoritmo Random Forest 

Random Forest é um algoritmo utilizado em problemas de classificação 

ou regressão, baseado em árvores de decisão. Cada árvore de decisão é criada 

utilizando bootsrap (um método de amostragem randômica) das amostras dos 

dados de treinamento e seleção aleatória de variáveis na construção de cada 

árvore de decisão. As predições são feitas pela maioria absoluta dos votos em 

determinada classe, no caso de uma classificação, ou na média das estimativas 

no caso de uma regressão. A capacidade preditiva e informativa deste método 

já foi bem estabelecida em QSAR, visto sua capacidade em lidar com a alta 

dimensionalidade dos dados, aliada à sua robustez a variáveis irrelevantes na 

resposta e também por oferecer possível interpretação do modelo construído. O 

treino do algoritmo se dá pelo método de bootstrap das amostras, ou seja, retira-

se aleatoriamente do grupo treino um subconjunto de n amostras. Para cada 

grupo de amostras retirada, uma Árvore de Decisão é gerada, e em cada nó de 

decisão seleciona-se aleatoriamente um grupo de descritores definido pelo 

argumento “Mtry”, que se traduz como o subconjunto de descritores que serão 

testados em cada nó de decisão. Quando “Mtry” é numericamente igual ao 
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número de descritores totais, tem-se um caso especial em que o algoritmo 

Random Forest é igual ao algoritmo Bagging. As Árvores de Decisão são 

geradas até atingir seu tamanho máximo. As etapas anteriores são repetidas e, 

no caso de uma regressão, a estimativa para a variável dependente (neste caso 

a atividade biológica) é uma média de todas as árvores de decisão geradas. 

(SVETNIK et. al., 2003).  

A importância de uma variável num modelo obtido por Random Forest é 

calculada mediante ao “Erro Fora da Bolsa”, do inglês “Out of The Bag Error.” O 

subconjunto de amostras retiradas do grupo treino é utilizado para a construção 

da árvore em si e o subconjunto do grupo treino restante é utilizado para estimar 

o erro de predição, algo semelhante a validação interna, porém a um custo 

computacional menor. Primeiro é calculada a taxa de Erro Fora da Bolsa para 

cada árvore e em seguida computa-se a mesma taxa de erro, porém com uma 

variável permutada. A diferença entre os erros na presença e ausência de uma 

determinada variável (ou descritor), nos fornece a importância da variável na 

estimativa da atividade biológica no modelo QSAR. Essa importância atribuida 

pode ser usada para selecionar e filtrar inicialmente os descritores mais 

importantes, uma vez que é muito comum em QSAR trabalhar com um número 

de descritores maior que o número de amostras/estruturas, técnica conhecida 

como “Wrapper”, empregada na redução do número de descritores utilizados na 

obtenção dos modelos (SVETNIK et al., 2004). 

Sabendo da moderada ou ainda fraca relação linear entre as variáveis 

resposta e os descritores, lançou-se mão desta técnica na obtenção de um 

modelo que fosse adequadamente preditivo e que, dada a natureza da mesma, 

permita maior interpretabilidade química e ou mecanística. 

 

1.4.2 Algoritmo Support Vector Machine 

SVM, do inglês “Support Vector Machine” é um algoritmo utilizado em 

diversas aplicações na predição ou classificação de dados, projetando-os num 

sistema multidimensional, obtido a partir uma função “Kernel” que é, 

essencialmente, uma função não-linear (ENGEL; GASTEIGER, 2018). O uso de 

SVM na descoberta de fármacos tem sido cada vez mais frequente, dada sua 

robustez e capacidade de aplicação para problemas de regressão, classificação 
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e até triagem/busca de compostos que apresentam diferença estrutural, porém 

atividades biológicas semelhantes. Conforme descrito anteriormente, num 

problema de classificação, por exemplo, a ideia central desse algoritmo é a 

obtenção de uma “regra” de separação para duas ou mais classes de objetos 

em um espaço multi-dimensional, gerando um hiperplano que é capaz de 

distinguir os objetos das diferentes classes. Modelos obtidos a partir desse 

algoritmo são geralmente muito complexos, porém possuem um grande 

potencial de generalização em dados externos (HEIKAMP; BAJORATH, 2013). 

 

1. OBJETIVOS 

2.1. Geral 

Este trabalho tem como objetivo explorar técnicas empregadas na 

literatura que visam a obtenção de modelos com capacidade de predição da 

atividade biológica baseados na estrutura química dos compostos (QSAR), bem 

como explorar suas diferenças e vantagens. 

 

2.2. Específico 

Aplicar as técnicas exploradas em uma série de aminas heterocíclicas 

com capacidade antidepressiva observadas in vitro, a fim de se obter modelos 

validados e com capacidade de predição da atividade biológica, levando em 

consideração vantagens e desvantagens específicas de cada método aplicado. 

 

2. MATERIAL E MÉTODOS 

3.1. Softwares 

O software KNIME foi utilizado para a conversão das moléculas em 

formatos “SMILES” e “MOLFile”, e apresenta vantagem em sua característica 

visual e intuitiva para o usuário. Os modelos e gráficos foram obtidos utilizando 

a linguagem de programação R. 

Os compostos utilizados nos estudos de QSAR foram extraídos da 

literatura, formando um dataset final de 77 compostos, retirados de publicações 

realizadas entre os anos de 2009 e 2010. É importante ressaltar que tais artigos 
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foram desenvolvidos pelo mesmo grupo de pesquisa da empresa Roche de Palo 

Alto - USA, garantindo homogeneidade metodológica. Os dados biológicos 

disponíveis para estes compostos foram obtidos da mesma forma e nas mesmas 

condições, corroborando com os requisitos para estudos de QSAR. Para estas 

moléculas, a atividade antidepressiva in vitro foi avaliada contra os 

transportadores de dopamina, noreprinefrina e serotonina (LUCAS et al., 2009; 

CARTER et. al 2010; LUCAS et al., 2010). 

 

Figura 4 -  Formas estruturais gerais das moléculas com atividade antidepressiva, 

totalizando 77 moléculas;  

 

Legenda: X e Y são átomos diferentes de carbono e oxigênio; A representa um sistema 

aromático com n átomos. Fonte: Elaborado pelo autor com base nas estruturas presentes em 

LUCAS et al., 2009; CARTER et. al 2010; LUCAS et al., 2010. 

 

As estruturas foram desenhadas pelo software MarvinSketch®, e salvas 

em formato “.mol”, compatível com softwares que calculam descritores físico-

químicos (MARVIN, 2020). 

Para o cálculo dos descritores, utilizou-se o software gratuito Padel-

Descriptor, que atualmente é capaz de calcular 1875 descritores (1D, 2D e 3D) 

e fingerprints (FP). Dentre os descritores calculados pelo software estão 

descritores topológicos, eletrônicos, estéricos e quânticos (YAP, 2010). 

 

3.2. Análise da estrutura dos dados 

Inicialmente, os dados da atividade biológica e sua correlação linear com 

a matriz de descritores foram analisados, visando uma compreensão adequada 
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sobre a estrutura dos dados obtidos e possíveis relações entre si. Os gráficos, 

assim como os modelos lineares e não-lineares, foram obtidos utilizando scripts 

em R. Os pacotes em R utilizados foram: 

 Readxl: Leitura dos dados em .xlsx (MS Excel®); 

 pls: Obtenção dos modelos lineares por mínimos quadrados 

parciais; 

 Tidyverse: Manipulação dos dados e gráficos; 

 Tidymodels: Obtenção dos modelos não-lineares; 

 

3.3. Análise e predição de propriedades farmacocinéticas 

As moléculas foram avaliadas do ponto de vista farmacocinético utilizando 

a ferramenta gratuita SwissADME, disponível em: <http://www.swissadme.ch>. 

Esta plataforma possibilita o cálculo e predição de parâmetros-chave na 

avaliação farmacocinética (absorção, distribuição, metabolismo e excreção) de 

um composto, além de parâmetros como facilidade sintética, e classe 

biofarmacêutica (DAINA et al., 2017).   

 

3.4. Modelos preditivos 

3.4.1 Grupo teste e grupo treino 

A série de 77 compostos foi dividida na razão de 80% (63 estruturas) para 

o grupo treino e 20% (14 estruturas) para o grupo teste, com a composição dos 

respectivos grupos realizada de forma aleatória. A fim de se obter 

reprodutibilidade dos resultados, a linguagem R permite o uso de “seeds”, que 

são iniciadores do sistema pseudo-randômico incorporado na linguagem. Foram 

mantidas as mesmas seeds para os modelos lineares e não-lineares relativo a 

cada transportador, com o objetivo de se comparar a capacidade preditiva obtida 

utilizando técnicas diferentes, porém utilizando as mesmas estruturas do grupo 

treino/teste. 

 

 

 

http://www.swissadme.ch/
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3.4.2 Construção de modelos de QSAR 

3.4.2.1 Modelos lineares  

Para os modelos lineares, utilizou-se o método estatístico de correlação 

dos mínimos quadrados parciais, do inglês “Partial Least Squares” (PLS), na qual 

foi assumida uma relação linear entre a matriz de descritores e a atividade 

biológica para cada transportador. 

Primeiramente, os descritores foram selecionados com base em sua 

variância e aqueles que apresentavam um valor próximo a 0 foram descartados, 

uma vez que não representam nenhuma variação concomitante à resposta 

biológica, e portanto, nenhuma informação possivelmente ligada à variável 

dependente. Os descritores que restaram foram selecionados com base em sua 

correlação linear com as respectivas atividades biológicas, a partir de uma matriz 

de correlação de Pearson. Pode-se afirmar que modelos com menos descritores 

são mais facilmente interpretáveis, providenciam melhor performance em 

amostras que não foram utilizadas para o treinamento e diminuem o risco de 

overfit, uma condição na qual o modelo é incapaz de performar em um grupo 

externo (GOODARZI et. al, 2012). Para a construção do modelo objetivou-se 

manter no máximo 10-15 descritores tendo em vista o número de compostos (63)  

no grupo treino (TOPLISS e COSTELlO, 1972). Dada suas diferenças de 

dimensionalidade e ordem de grandeza, os descritores foram normalizados, isto 

é, centrados na média e recalculados para se obter uma variância igual a 1.  

 

3.4.2.2  Modelos não-lineares 

Usando a mesma matriz de descritores empregada nos modelos lineares, 

utilizou-se o algoritmo Random Forest na construção de modelos de predição da 

atividade biológica de inibição dos transportadores de dopamina, norepinefrina 

e serotonina. Todos os modelos foram ajustados perante validação interna e 

confirmados utilizando validação externa. 

Inicialmente, os descritores foram filtrados e aqueles que apresentavam 

variância próxima de 0 foram automaticamente retirados da matriz de dados. 

Nesta etapa, restaram 711 descritores. Todos os descritores foram 

normalizados, isto é, centrados na média e com variância 1. Com objetivo de 



17 
 

evitar multicolinearidade, descritores com alta correlação linear entre si foram 

descartados. 

Uma vez obtido um modelo com todos os descritores, prosseguiu-se para 

a construção de um modelo utilizando apenas descritores facilmente 

interpretáveis. 164 descritores foram calculados utilizando o software Padel e a 

estes descritores foram adicionados outros parâmetros físico-químicos 

calculados pela plataforma SwissADME, totalizando 180 descritores iniciais e 

que foram normalizados, centrados na média e recalculados com variância 1. 

Descritores com correlação linear acima de 0.9 foram eliminados da matriz dos 

dados, restando nesta etapa 67 descritores.  

Os modelos não-lineares foram obtidos empregando os algoritmos RF e 

SVM, este último para efeito de comparação com os resultados obtidos com o 

RF, dada sua robustez para respostas não-lineares. 

 

3. RESULTADOS 

4.1 Estrutura dos dados 

A distribuição dos dados relacionados a atividade biológica foi analisada, 

separados pelos respectivos alvos biológicos: Transportador de Dopamina 

(DAT), Transportador de Norepinefrina (NET) e Transportador de Serotonina 

(SERT). A figura 5 representa a distribuição dos valores para a inibição in vitro 

dos transportadores monoaminérgicos. O gráfico indica que os dados de inibição 

de dopamina são aparentemente simétricos, indicando uma distribuição próxima 

a normalidade. Na tabela 1, é possível observar que, para um intervalo de 

confiança de 90% não rejeitamos a hipótese nula de normalidade para os dados 

relacionados a este receptor. No entanto, com relação aos demais receptores, 

não podemos afirmar se a distribuição assume normalidade para um α = 10%.  
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Figura 5 -  Distribuição dos valores da atividade inibitória das moléculas utilizadas. Legenda: DAT: 

Transportador de dopamina; NET: Transportador de norepinefrina; SERT: Transportador de 

serotonina; as regiões sombreadas correspondem a densidade de distribuição dos pontos e a 

região central é mostrado o gráfico boxplot correspondente. 

 

Fonte: Elaborado pelo autor. 

 

 

Tabela 1 - Testes para normalidade dos dados, com α = 0.1. A normalidade é averiguada 

para os valores relacionados à inibição de recaptura de dopamina. 

Teste Valor p - SERT Valor p - DAT Valor p - NET 

Shapiro-Wilk 0.063 0.278 0.083 

Anderson-Darling 0.096 0.325 0.023 

Fonte: Dados compilados baseados nos valores de LUCAS et al., 2009; CARTER et. al 

2010; LUCAS et al., 2010 

 

Para o cálculo dos descritores 2D e 3D, as estruturas em formato “.mol” 

foram carregadas no software Padel. Utilizando o arquivo em “.csv” obtido com 

a matriz de descritores calculados, retirou-se aqueles que apresentavam 

variância próxima de 0 utilizando software KNIME. Com estes dados foi 

elaborado um heatmap (figura 6) dos descritores que apresentaram as maiores 

correlações com as três respostas biológicas individualmente. Descritores com 

correlação linear de Pearson acima de 0,5 com as respostas para NET e DAT, e 

acima de 0,4 no caso de SERT foram mantidos, totalizando 66 descritores.  
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Figura 6 -  Heatmap dos descritores com as maiores correlações lineares com as 3 

atividades biológicas, simultaneamente. 

 

Legenda: quanto mais próxima do vermelho é a cor da célula correspondente ao par de 

descritores, mais próxima de 1 é a correlação. YDAT: Resposta biológica para o transportador 

de dopamina; YNET: Resposta biológica para o transportador de norepinefrina; YSERT: 

resposta biológica para o transportador de serotonina. Fonte: Elaborado pelo autor. 

 

4.2 Propriedades farmacocinéticas 

A plataforma SwissADME é munida de diversos métodos para a predição 

da solubilidade de um composto em sistema aquoso: ESOL (Estimated 

SOLubility), ALI e Silicos IT. O primeiro é um método utilizado para estimar a 

solubilidade aquosa de um composto derivado diretamente de sua estrutura 

bidimensinal. ALI é uma modificação da chamada “General Solubility Equation”, 

que por sua vez é um modelo quantitativo baseado no logP e ponto de fusão de 

uma substância para estimar a solubilidade de compostos não ionizáveis. Dada 

a limitação particularmente do ponto de fusão do composto, Ali et al., propuseram 

a substituição do parâmetro físico-químico ponto de fusão e substituíram pelo 

parâmetro Área Superficial Polar Topográfica (ALI et al., 2012).  

Abaixo, juntamente com a estrutura bidimensional, o gráfico de radar 

revela propriedades e parâmetros relevantes do ponto de vista farmacocinético. 
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Entre os parâmetros calculados estão propriedades físico-químicas como 

lipofilicidade (calculada a partir de diversas metodologias pela plataforma), 

solubilidade e classe de solubilidade da molécula, classe farmacocinética, 

potencialidade de ser um candidato a fármaco (leadlikeness) e alertas do ponto 

de vista de facilidade sintética e de química farmacêutica. 

 

Figura 7 -  Exemplo de saída dos resultados individuais das moléculas, nesse caso a 

Duloxetina, inserida na plataforma SwissADME. A área sombreada de rosa representa os 

valores limites ideais do respectivo parâmetro farmacocinético.  

 

Legenda: LIPO (Lipofilicidade): XLOGP3 = entre -0.7 e 5; SIZE: entre 150 e 500g/mol; 

POLAR (Polarizabilidade): TPSA = entre 20 e 130A²; INSOLU (Solubilidade): logS = 

não maior que 6; INSATU(Saturação): fração de carbonos sp³ na molécula não menor 

que 0.25; FLEX(Flexibilidade): não mais que 9 ligações rotacionáveis.  

Fonte: DAINA et al., 2017. 

 

Tabela 2 - Classificação dos compostos em relação a solubilidade em diferentes métodos 

utilizados pela plataforma SwissADME 

Método Classe N 

ESOL  Moderadamente Solúvel 43 

ESOL  Solúvel 34 

Ali Moderadamente Solúvel 40 

Ali  Pouco solúvel 02 

Ali  Solúvel 34 

Silicos IT Moderadamente Solúvel 22 

Silicos IT Pouco solúvel 54 

Silicos IT Solúvel 01 

Fonte: Dados do autor obtidos pela plataforma SwissADME (DIANA et al., 2017) 

 

É possível observar, na tabela, que boa parte das moléculas presentes no 

dataset foram consideradas “moderadamente solúvel” pela maioria dos métodos 
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empregados, com exceção do método Silicos IT, no qual a maioria dos 

compostos é classificada como “pouco solúvel”. Isso significa que é possível que 

boa parte das moléculas presentes no estudo apresentem boa disponibilidade 

oral, uma condição extremamente favorável no início desenvolvimento de um 

novo medicamento. Segundo o parâmetro “leadlikeness”, que reflete a 

capacidade de uma estrutura possuir características essenciais a um fármaco, 

32 estruturas apresentaram nenhuma violação e 45 estruturas com apenas uma 

violação. Essas informações demonstram que nosso conjunto de dados é, em 

linhas gerais, adequado para o planejamento de novos candidatos à fármaco. 

Foi investigado se moléculas que foram alocadas em diferentes classes 

de solubilidade possuíam logP médio significativamente diferentes. A média do 

grupo classificado como moderadamente solúvel é diferente do grupo 

classificado como solúvel num intervalo de confiança de 99%, conforme é 

possível observar na figura 8. 

 

Figura 8 -  Faixa dos valores de logP e classe de solubilidade pelo método ESOL 

 

Fonte: Elaborado pelo autor. 
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Figura 9 -  Predição da inibição de CYPs com base nas estruturas das moléculas, 

calculado pela plataforma SwissADME. 

 

 

Fonte: Elaborado pelo autor. 

 

SwissADME permite a estimativa de um determinado composto ser ou 

não substrato da proteína de efluxo P-gp, bem como se possui capacidade de 

inibição de diversas isoenzimas da família CYP. O algoritmo utilizado pelo 

programa para esta classificação binária (substrato/não substrato) é o Support 

Vector Machine, uma técnica de aprendizado de máquina amplamente utilizada 

na literatura em QSAR. Essa metodologia de predição foi validada por meio da 

classificação de banco de moléculas com 14348 estruturas, entre elas substratos 

e não-substratos já conhecidos dessas enzimas (DAINA et al., 2017). 

BOILED-Egg do inglês “Brain Or IntestinaL EstimateD Permeation 

Predictive Model”, é um método de predição (que também pode ser visualizado 

de forma direta e intuitiva) da capacidade de uma determinada molécula em ser 

absorvida pelo trato gastrointestinal e passar a barreira hematoencefálica. A 

partir de dois parâmetros físico-químicos calculados, nomeadamente 

lipofilicidade (logP) e superfície de área polar (PSA) de um determinado 

composto, é possível inferir sua capacidade de ser absorvido no trato 

gastrointestinal ou ainda atravessar a barreira hemato-encefálica. Na realidade, 

é possível identificar de uma maneira visual a região ótima dos valores de logP 
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e PSA na qual esses critérios são atendidos. Essas regiões, quando coloridas e 

combinadas de forma visual aparentam um ovo cozido (DAINA et al., 2016). 

É possível averiguar na figura 10 de que maneira as estruturas presentes 

no estudo estão inseridas nas regiões que sugerem a possibilidade de absorção 

gastrointestinal e capacidade de atravessarem a barreira hematoencefálica, 

correspondendo respectivamente às regiões branca e amarela. Esse resultado 

é importante para o presente estudo, uma vez que compostos com atividade 

antidepressiva devem atravessar a BHM para que possam exercer sua função 

biológica. 

 

Figura 10 -  BOILED-Egg, representação gráfica das moléculas que potencialmente 

passam a barreira hemato-encefálica e/ou são absorvidas no trato gastrointestinal.  

 

 

Legenda: A forma em amarelo delimita a região que estruturas possuem potencialmente 

capacidade de atravessar a barreira hematoencefálica. A figura branca delimita a região 

na qual estruturas potencialmente possuem capacidade de serem absorvidas pelo trato 

gastrointestinal; Pontos em vermelho dizem respeito à alta possibilidade de serem 

substrato da P-gp, e os pontos em azul as estruturas com alta possibilidade de não serem 

substrato. Fonte: DAINA et. al, 2016 (Adaptado para os dados do autor) 
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4.3 Método dos Mínimos Quadrados Parciais 

O método dos Mínimos Quadrados Parciais (PLS), do inglês “Partial Least 

Squares” foi utilizado na construção de modelos lineares de QSAR. É baseado 

na redução de dimensionalidade na matriz de dados, no qual se obtém as 

chamadas componentes principais, satisfazendo duas condições 

simultâneamente: as componentes são correlacionáveis com as atividades 

biológicas ou variável resposta em questão; as componentes retêm o máximo da 

variância da matriz de descritores possível. Cada componente, que é uma 

combinação linear dos descritores, agora é uma dimensão e, portanto, a redução 

da dimensionalidade dos dados se torna possível mantendo o máximo de 

variância possível (HASEGAWA; FUNATSU, 2000). 

 

Tabela 3 - Resultados dos modelos lineares obtidos por PLS 

Transportador Grupo 
# 

Componentes 
Variância 

X% 
R² RMSE MAE 

Dopamina Treino 1 84.09 0,449 0,649 0,528 

Dopamina Teste 1 84.09 0,740 0,541 0,430 

Norepinefrina Treino 1 84.20 0,397 0,698 0,585 

Norepinefrina Teste 1 84.20 0,213 0,636 0,540 

Serotonina Treino 1 60.89 0,238 0,630 0,503 

Serotonina Teste 1 60.89 0,350 0,733 0,585 

Fonte: Dados do autor. 

 

O número de componentes foi selecionado com base na diminuição do 

valor de RMSE, ou seja, quando não se observa diferença significativa na 

diminuição do desvio padrão do resíduo, mantém-se o número de componentes. 

A variância em X diz respeito a porcentagem total de variância (leia-se 

informação) que é mantida em relação à matriz de descritores ou de variáveis 

independentes. Pode ser entendida como a quantidade de “informação” mantida, 

utilizando no caso do PLS a variância como parâmetro para tal medida. 
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Figura 11 -  Valores preditos utilizando o método dos mínimos quadrados parciais. 

 

Fonte: Elaborado pelo autor. 

 

A tabela 3 apresenta métricas inadequadas para um modelo de QSAR, 

com R² menores que 0.5 (com excessão do grupo teste no modelo para o 

transportador de dopamina), assim como RMSE na faixa de 0.5-0.7 para todos 

os modelos. Esses valores observados estão abaixo do necessário para que um 

modelo seja considerado apropriado (KIRALJ; FERREIRA, 2009). 

Tendo em vista a condição de não-linearidade da resposta, alternativas 

foram empregadas visando obter respostas mais fidedignas à realidade do nosso 

conjunto de dados. Desta forma, foram adotadas estratégias robustas a não-

linearidade e para isso utilizou-se, inicialmente, o algoritmo Random Forest na 

construção de um modelo QSAR com capacidade preditiva adequada. 
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4.4 Random Forest – Modelo completo 

Uma pré-seleção de descritores foi realizada utilizando um modelo inicial, 

contendo os 264 descritores revelando uma performance indicativa de alta 

capacidade de predição. Porém, do ponto de vista de interpretabilidade se torna 

inviável, uma vez que os descritores presentes não oferecem uma relação de 

causa e efeito clara. Além disso observou-se o risco a um possível overfit dos 

dados, pois o número de variáveis é muito maior que o número de amostras. 

 

Tabela 4 - Resumo das métricas dos modelos sem o filtro de descritores, utilizando 

algoritmo Random Forest 

Transportador Grupo #Descritores R² RMSE MAE 

Dopamina Treino 267 0,944 0,287 0,231 

Dopamina Teste 267 0,854 0,419 0,379 

Norepinefrina Treino 267 0,941 0,297 0,235 

Norepinefrina Teste 267 0,629 0,468 0,393 

Serotonina Treino 267 0,925 0,301 0,219 

Serotonina Teste 267 0,120 0,605 0,496 

Fonte: Dados do autor. 

 

Após a obtenção do modelo inicial, as variáveis foram avaliadas conforme 

sua ordem de importância e posteriormente selecionadas aquelas que 

apresentavam alto grau de pureza/importância para predição de atividade no 

modelo. No modelo final, considerou-se apenas as primeiras variáveis para cada 

transportador, em ordem de importância atribuídas pelo próprio algoritmo. Dessa 

forma, o modelo não-linear obtido por esta técnica foi resultado de duas 

iterações: a primeira para a seleção dos melhores descritores, e a segunda, já 

com estes filtrados. Esse último, foi considerado o mais adequado, dada a 

redução significativa e concomitante preservação do RMSE do grupo teste e pela 

significativa redução do número de variáveis. 
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Tabela 5 - Resumo das métricas dos modelos com descritores já filtrados, utilizando 

algoritmo Random Forest 

Transportador Grupo #Descritores R² RMSE MAE 

Dopamina Treino 12 0,894 0,324 0,257 

Dopamina Teste 12 0,834 0,388 0,360 

Norepinefrina Treino 11 0,913 0,310 0,241 

Norepinefrina Teste 11 0,737 0,398 0,349 

Serotonina Treino 12 0,907 0,299 0,226 

Serotonina Teste 12 0,126 0,644 0,508 

Fonte: Dados do autor. 

 

Para uma análise mais detalhada e visual da performance do grupo treino 

e teste obteve-se os gráficos de valores preditos versus experimentais para os 

modelos finais. É importante destacar que os respectivos R² de cada grupo não 

representam isoladamente uma boa métrica para avaliação do modelo e, 

portanto, o ângulo da reta formada no gráfico da relação predito e experimental 

também deve ser levado em consideração.  

Os argumentos do algoritmo, nomeadamente o “número de árvores” e o 

“mtry” (relacionado ao número de descritores testado em cada nodo da Árvore 

de Decisão) foram previamente ajustados de maneira automática pelo próprio 

algoritmo. Os resultados estão dispostos na tabela 6. 

 

Tabela 6 - Argumentos do método Random Forest utilizado para obter os modelos 

completos iniciais (antes da etapa de seleção dos descritores) e finais  

Modelo #Descritores Mtry Número de Árvores 

Dopamina(pré-filtro) 267 83 1175 

Dopamina(final) 12 02 116 

Norepinefrina(pré-filtro) 267 19 915 

Norepinefrina(final) 11 02 915 

Serotonina(pré-filtro) 267 18 915 

Serotonina(final) 12 02 915 

Fonte: Dados do autor 
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Figura 12 -  Relação entre valores preditos e experimentais para a atividade inibitória de 

recaptura de dopamina, norepinefrina e serotonina. 

 

Fonte: Elaborado pelo autor. 

 

Também se mostrou necessário, para a confirmação da seleção dos 

descritores, a análise posterior se aqueles considerados no modelo final 

apresentavam multicolinearidade. Para tanto, obteve-se o gráfico de relação 

linear, do tipo “network-plot”, no qual as relações lineares entre as variáveis estão 

dispostas de maneira visual.  
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Figura 13 -  Relação linear entre os descritores obtidos no modelo para atividade de inibição do 

transportador de dopamina. 

 

Legenda: descritores com relações lineares (positivas e negativas) estão mais próximos. 

Relação linear positiva é azul enquanto relação linear negativa é representada vermelha, 

sendo a intensidade e opacidade da cor proporcional a intensidade da relação.  

Fonte: Elaborado pelo autor. 

 

4.5 Random Forest - descritores interpretáveis 

Um modelo inicial foi obtido, utilizando os 67 descritores com alguma 

interpretabilidade química, como: número de carbonos presentes, ligações 

duplas, ligações rotacionáveis, estado eletrônico de heteroátomos e entre outros. 

Destes considerados, foram filtrados os mais relevantes para a predição da 

atividade, relevância atribuída conforme método de impureza do próprio 

algoritmo para, finalmente, se obter o modelo final. 

A tabela 7 dispõe as métricas utilizando todos os descritores iniciais para 

a construção de um modelo inicial. Este, por sua vez, foi utilizado para filtrar os 

principais descritores em ordem de importância atribuídas por RF, e a partir de 

então reduzir a dimensionalidade da matriz de descritores. 
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Tabela 7 - Resumo das métricas obtidas no modelo inicial 

Transportador Grupo #Descritores R² RMSE MAE 

Dopamina Treino 67 0,898 0,335 0,264 

Dopamina Teste 67 0,832 0,436 0,374 

Norepinefrina Treino 67 0.935 0.293 0.230 

Norepinefrina Teste 67 0.712 0.406 0.350 

Serotonina Treino 67 0,89 0,339 0,261 

Serotonina Teste 67 0,075 0,593 0,44 

Fonte: Dados do autor 

 

Figura 14 -  Relação entre valores preditos e experimentais para a atividade inibitória de recaptura 

de dopamina.  

 

Legenda: À esquerda está a relação entre os valores experimentais e preditos referentes às 

estruturas utilizadas na construção do modelo, ou grupo treino. À direita está a relação entre os 

valores experimentais e preditos referentes às estruturas não utilizadas na construção do 

modelo, ou grupo teste. Fonte: elaborado pelo autor. 
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 Obteve-se finalmente, um modelo utilizando os descritores filtrados 

anteriormente e as respectivas métricas estão dispostas na tabela 8. 

 

Tabela 8 - Resumo das métricas obtidas no modelo final, com os descritores filtrados 

Transportador Grupo #Descritores R² RMSE MAE 

DOPAMINA TREINO 10 0,863 0,362 0,277 

DOPAMINA TESTE 10 0,817 0,398 0,304 

NOREPINEFRINA TREINO 15 0,922 0,301 0,239 

NOREPINEFRINA TESTE 15 0,737 0,388 0,337 

SEROTONINA TREINO 9 0,847 0,365 0,285 

SEROTONINA TESTE 9 0,104 0,586 0,437 

Fonte: Dados do autor 

 

4.5.1 Support Vector Machine – com todos os descritores 

Com o propóstio de explorar a técnica, bem como comparar diferentes 

métodos para abordagem do problema, foram elaborados modelos a partir do 

método de SVM do tipo radial, com 267 descritores iniciais, os mesmos utilizados 

no modelo RF completo. As métricas de performance podem ser observadas na 

tabela 9. 

 

Tabela 9 - Métricas obtidas utilizando Support Vector Machine 

Modelo Grupo R² RMSE MAE 

Dopamina Treino 0,811 0,395 0,224 

Dopamina Teste 0,799 0,418 0,355 

Norepinefrina Treino 0,784 0,458 0,355 

Norepinefrina Teste 0,601 0,487 0,406 

Serotonina Teste 0,024 0,613 0,503 

Serotonina Treino 0,845 0,486 0,388 

Fonte: Dados do autor 
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4. DISCUSSÃO 

5.1 Escolha dos softwares 

KNIME, do inglês “Konstanz Information Miner” é um software que possui 

ambiente modular e visual, utilizado na elaboração de fluxos de processamento, 

manipulação e visualização de dados. Este software integra diversos algoritmos 

e ferramentas utilizadas para problemas de regressão/predição ou classificação 

de dados. Opera a partir de “nós” ou ”nodos” que representam etapas unitárias 

e modulares, as quais possuem funções específicas na manipulação e 

processamento dos dados e que podem ser configurados conforme o objetivo do 

usuário. Um nó é interligado a diversos outros nós e é possível, dessa maneira, 

automatizar longos processos. Uma de suas principais vantagens, além de se 

tratar de um software open-source (i.e., uso gratuito) é a sua característica visual 

e intuitiva, sem necessitar de conhecimentos aprofundados e específicos de 

programação. Utilizando o KNIME é possível realizar, por exemplo, de maneira 

muito simples e automatizada, a conversão entre os diversos formatos de 

arquivos para representação estrutural de moléculas como SMILES ou MOLFile. 

(BERTHOLD, 2009). Este software foi utilizado para a transformação entre os 

diversos formatos das estruturas (SMILES, MOLFile) bem como utilizado no filtro 

inicial dos descritores com variância próxima de (0) zero.  

Para o cálculo dos descritores foi utilizado o software Padel, que por sua 

vez, também é um gratuito e oferece uma interface em Java bastante simples e 

amigável para o usuário. 

A linguagem de programação R possui grande relevância no contexto de 

quimiometria, devido à sua ampla gama de funcionalidades e ferramentas 

presentes nos diversos pacotes presentes. Estes pacotes ou bibliotecas, do 

inglês “library” são geralmente criados pela própria comunidade usuária da 

linguagem, bem como também é gratuito e totalmente acessível em diferentes 

sistemas operacionais (WEHRENS, 2010). Todos os modelos para predição e 

gráficos utilizados neste trabalho foram obtidos utilizando a linguagem R.  
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5.2 Estrutura e análise inicial dos dados 

É possível observar na figura 5 que a distribuição dos valores está de 

acordo com as boas práticas de desenvolvimento de modelos QSAR, 

abrangendo valores na faixa de, pelo menos, 3 unidades logarítmicas. O boxplot 

dos valores de inibição também nos permite chegar à mesma conclusão e ele 

nos dá ainda mais uma informação relevante, de que é possível que existam 

outliers com relação aos valores obtidos de pKi e que são um alerta na condução 

do estudo.  

Observa-se no heatmap (figura 6) que as maiores correlações lineares 

estão presentes para a resposta biológica ligada ao transportador de dopamina 

uma vez que visualmente as cores estão mais próximas de tons de vermelho nas 

células. Essa informação é de grande relevância na construção de um modelo 

assumindo-se relação linear entre os descritores e a variável dependente, visto 

que é possível visualizar no próprio heatmap que as relações lineares entre os 

descritores e as respostas biológicas não são tão intensas. É importante 

destacar que correlação, nesse caso estritamente linear, não significa 

necessariamente causalidade, porém nos dá uma ideia de como os descritores 

presentes estão relacionados entre si. Dadas essas informações iniciais, é 

esperado um modelo linear mais robusto utilizando a resposta dopaminérgica, o 

que realmente foi confirmado ao longo do desenvolvimento do estudo, dadas as 

maiores métricas utilizadas na validação dos modelos obtidos – R², RMSE e 

MAE (tabela – para os grupos teste e treino no modelo linear para este 

transportador. 

Dada a condição de não-linearidade, que não é incomum na literatura, 

empregou-se, posteriormente, técnicas adequadas com o objetivo de construir 

um modelo robusto a relações não-lineares entre a variável dependente 

(atividade antidepressiva in vitro) e variáveis independentes/matriz de 

descritores (MICHIELAN; MORO, 2010). 

 

5.3 Análise dos dados farmacocinéticos 

Todas as moléculas presentes nesse estudo apresentaram alta absorção 

gastrointestinal, classificados como “High” no parâmetro “GI Absorption”, além 
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de alta permeação da barreira hematoencefálica, ou seja, 73 das 77 moléculas 

foram classificadas como “BBB permeant”. Tal parâmetro farmacocinético é de 

grande valia para um potencial candidato a fármaco com atividade 

antidepressiva, visto que seu mecanismo de ação se dá no sistema nervoso 

central. Por se tratar de uma classe de compostos com atividade antidepressiva 

in vitro, as possíveis capacidades de absorção no trato gastrointestinal bem 

como permeabilidade da barreira hematoencefálica mostram-se inicialmente 

promissoras. 

Após o cálculo e processamento de todas as moléculas, é possível 

visualizar de forma interativa os resultados que dizem respeito à predição da 

capacidade de atravessar a barreira hematoencefálica e facilidade de absorção 

gastrointestinal, contemplados neste trabalho (DAINA et al., 2017). 

 Alguns compostos presentes no estudo foram classificados pelo método 

ESOL da plataforma SwissADME como moderadamente solúvel com valores de 

logP calculados que entram na faixa de 3 a 5, e o restante classificados como 

solúveis, com valores que vão de 1 a aproximadamente 3,5 (p = 1-10 para o teste-

t de Welch com intervalo de confiança de 95% e hipótese nula da diferença das 

médias ser zero). 

Em relação à possível inibição de enzimas da família CYP, foi observado 

que a maior parte dos compostos possui potencial perfil inibitório para CYP1A2, 

CYP2D6 e CYP3A4, o que representaria um risco de interação entre diversos 

medicamentos que são extensivamente metabolizados por estas vias. Não 

obstante, o conhecimento sobre os compostos serem substratos ou não 

substratos da glicoproteína P é fundamental para entender se há a possibilidade 

de efluxo ativo da parede gastrointestinal para o lúmen ou, também, pelo ativo 

do sistema nervoso central, comprometendo diretamente o acesso do fármaco 

ao alvo molecular e seu mecanismo de ação (VAN WATERSCHOOT et al., 

2011). 

 

5.4 Análise do Método Mínimos Quadrados Parciais 

É possível observar pelos valores de R², RMSE e MAE dos modelos 

obtidos que todos performaram de maneira insatisfatória, assumindo-se relações 



35 
 

lineares entre a variável biológica e os descritores. Tanto para o grupo treino 

quanto para o grupo teste os modelos não são preditivos e, portanto, não é 

possível inferir nenhuma informação relevante do ponto de vista químico e/ou 

estrutural. Pode se dizer que, por se tratar de R² < 0.5 e os altos valores de 

RMSE, correlações são espúrias entre os descritores selecionados e a atividade 

predita . 

Como exemplo da aplicação de QSAR na predição de toxicidade 

VOTANO (2004), dada a grande variedade de mecanismos e interações, a 

resposta biológica nem sempre será próxima da linear. Com a finalidade de 

estabelecer modelos não-lineares, o autor empregou técnicas alternativas como 

Redes Neurais Artificiais e k-Vizinho-Mais-Próximo, sendo pioneiro no emprego 

de técnicas não-lineares na predição de toxicidade. Neste trabalho utilizou-se a 

metodologia Random Forest e SVM para abordar o problema. 

 

5.5 Discussão de Resultados Modelo Completo 

No modelo construído em relação à dopamina (figura 12)  observa-se que 

a linha de tendência azul está levemente deslocada em relação a linha cinza (a 

qual representa se obtivéssemos um modelo teórico perfeito) no grupo treino, 

porém significativamente semelhante no grupo teste.  Um ângulo muito agudo, 

por exemplo, pode representar uma superestimação de valores mais altos e 

subestimação de valores experimentais mais baixos e mesmo assim estar ligado 

a um R² alto. Uma métrica informativa e que contorna esse problema é o CCC, 

do inglês “Concordance Correlation Coeficient” (CHIRICO, GRAMATICA, 2011). 

Podemos observar os três descritores mais importantes em cada modelo 

e seu respectivo significado físico-químico na tabela abaixo (tabela 10) para 

compreender quais descritores influenciam na atividade, bem como se há uma 

convergência de descritores em comum e simultaneamente relevantes na 

predição de atividade em diferentes transportadores.  
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Tabela 10 - Resumo das métricas obtidas no modelo final, com os descritores filtrados. 

Descritores que aparecem em mais de um modelo estão assinalados 

Transportador Descritor Significado 

Dopamina RDF20I 
Função de distribuição radial – 020 / ponderado pelo 

potencial relativo de primeira ionização 

Dopamina RDF20S 
Função de distribuição radial – 020/ ponderada pelo I-

Estado relativo 

Dopamina ATSC6S 
Autocorrelação de Broto-Moreau centrada – lag 6/ 

ponderada pelo I-Estado 

Norepinefrina RDF20I 
Função de distribuição radial – 020/ ponderada pelo 

primeiro potencial de ionização relativo 

Norepinefrina RDF20S 
Função de distribuição radial – 020/ ponderada pelo I-

Estado relative. 

Norepinefrina VE3_DT 
Coeficiente logarítmico da soma do último eigenvector 

da matriz de desvio 

Serotonina RDF40E 
Função de distribuição radial - 040/ ponderado pela 

Eletronegatividade relativa de Sanderson 

Serotonina RDF40V 
Função de distribuição radial - 040/ ponderada pelo 

volume relativo de van der Waals 

Serotonina RDF20S 
Função de distribuição radial - 020 / ponderada pelo I-

Estado relativo 

Fonte: TODESCHINI; CONSONNI, (2009) 

As métricas obtidas diferem de maneira significativa entre o grupo teste e 

treino, e é possível afirmar que o modelo de serotonina não obteve performance 

esperada e trata-se de um overfitting. À medida que se aumenta a complexidade 

do modelo e dos algoritmos utilizados é possível que ocorra um fenômeno 

conhecido como overfit dos dados. Isso acontece pois o modelo essencialmente 

se adequa aos erros ou ruídos associados aos dados o que resulta, em última 

instância, numa baixa performance na predição de dados externos que não 

fazem parte da série treino (JAMES et. al, 2017). 

Podemos destacar dois descritores importantes que apresentam 

importância em ambos os modelos, sendo tanto para a predição de atividade 

frente aos receptores de dopamina e norepinefrina. Destacam-se os descritores 

RDF20S presentes em todos os modelos obtidos e o descritor RDF20I, presente 

nos modelos obtidos para Dopamina e Serotonina, apesar deste último não 

possuir valores adequados na predição de dados externos. Formalmente, a 

função de distribuição radial pode ser interpretada como a distribuição de 

probabilidade em encontrar um átomo num volume esférico de raio R 

(TODESCHINI; CONSONNI, 2009). Do ponto de vista químico sua interpretação 
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se torna bem inacessível e portanto, na tentativa de gerar modelos com 

descritores mais interpretáveis, prosseguiu-se com a eliminação de descritores 

com significados químicos mais objetivos.  

Em relação aos resultados apresentados pelo modelo para o 

transportador de serotonina há claramente um overfitting dos dados treino e não 

há aplicabilidade nos dados externos, tendo em vista a diferença na performance 

externa (KIRALJ; FERREIRA, 2009). 

No que se refere à complexidade das informações contidas nos 

descritores, a interpretação do modelo se torna demasiadamente complicada. 

Por exemplo, os descritores presentes no modelo para dopamina como 

ATSC6S, AATSC3V, ATSC7I, ATSC1l são bidimensionais e relacionados a 

autocorrelação, baseados em teoria dos grafos, por sua vez resultantes da 

estrutura das moléculas presentes, o que torna a interpretação do modelo muito 

difícil do ponto de vista químico ou mecanístico.  

Apesar de atingir os objetivos de capacidade de predição dos dados 

externos para os transportadores de dopamina e norepinefrina, em vista da 

complexidade da intepretação adequada do modelo, optou-se pela construção 

de um segundo modelo, lançando mão da mesma técnica, porém utilizando 

apenas descritores que sejam mais simples e interpretáveis,  mantendo-se ainda 

boa qualidade preditiva. 

Com o objetivo de comparar diferentes métodos, o modelo SVM obtido 

com os 267 descritores iniciais, não foi superior em performance quando 

comparado ao modelo obtido por RF. 

 

5.6 Discussão do Modelo RF com descritores interpretáveis 

Foi possível averiguar que as métricas de performance (R², RMSE) não 

apresentaram mudanças drásticas entre o modelo com 67 descritores e o 

modelo com apenas os mais importantes do modelo anterior e, portanto, pelo 

princípio da parcimônia ou “navalha de Ockham”, o qual estabelece que um 

número menor de descritores que fornece uma melhor interpretabilidade e 

capacidade de generalização (HOFFMAN, et. al, 1996),  optamos pelo modelo 

com um número menor de descritores. 
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Tabela 11 - Resumo das métricas obtidas no modelo final, com os descritores filtrados 

Transportador Descritor Significado 

Dopamina N_ATOM_LAC Número de átomos na maior cadeia 
alifática 

Dopamina GMIN E-Estado mínimo 

Dopamina MDEC_14 Distância molecular entre todos os 
carbonos primários e quaternários 

Dopamina SSSS_N Soma do E-Estado para: >N- 

Dopamina SH_BA Soma de estados-E para aceptores de 
ligação de hidrogênio 

Norepinefrina SSSS_N Soma do E-Estado para: >N- 

Norepinefrina N_ROT_BT Número de ligações rotacionáveis, 
incluindo ligações terminais 

Norepinefrina X_LOG_P Lipofilicidade Calculada 

Norepinefrina MDEC_14 Distância molecular entre carbonos 
primários e quaternários 

Norepinefrina MAX_H_BA E-Estado máximo para receptores de 
ligação de hidrogênio 

Serotonina ETA_ETA Composite index Eta 

Serotonina N_ATOM_P Número de átomos no maior Sistema pi 
aromático 

Serotonina ALI_SOLUBILITY Solubilidade calculada pelo método ALI 

Fonte: TODESCHINI; CONSONNI, (2009) 

 

Na tabela acima destaca-se o descritor “N_ATOM_LAC” que se refere ao 

número de átomos cadeia alifática principal, indicando possivelmente um 

tamanho ótimo na cadeia para a interação com o transportador de dopamina. 

“GMIN” descreve o E-Estado mínimo da molécula, e é uma medida relacionada 

ao átomo mais eletrofílico na estrutura. Esses dois descritores físico-químicos 

possuem alta relevância para a predição de atividade biológica da molécula. O 

descritor “SH_BA” que está relacionado a fortes aceptores da ligação de 

hidrogênio presentes na estrutura e também possui importância na predição da 

atividade biológica. 

Para o modelo obtido para atividade no transportador de norepinefrina, 

destaca-se ainda o descritor “N_ROT_BT” que diz respeito ao número de 

ligações rotacionáveis presentes na estrutura incluindo ligações terminais, e o 

“XLOGP” que é uma medida de lipofilicidade calculada. 
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“MDEC_14” e “SSSS_N”, que aparecem em ambos os modelos para 

dopamina e norepinefrina, estão relacionados à distância entre os carbonos 

primários e quaternários e o estado eletrônico dos átomos de nitrogênio 

presentes na estrutura, respectivamente. Para efeito de ilustração do significado, 

o “E-Estado” calculado para um átomo de carbono aromático é menor quando 

este está adjacente a um carbono substituído com um grupamento hidroxila e 

ainda menor quando o grupo hidroxila está diretamente ligado ao átomo de 

carbono, ou seja, o “E-Estado” de um átomo depende diretamente de grupos 

eletrofílicos próximos (VOTANO, 2004). 

 

Figura 15 -  Representação do descritor “ssssN” 

 

 Fonte: VOTANO, 2004 (Adaptado) 

Não é possível realizar uma intepretação para o modelo de serotonina 

uma vez que suas métricas de performance, tanto para o grupo treino quanto 

para o grupo teste foram insatisfatórias, e, portanto, não é um modelo 

adequadamente validado. 
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5. CONCLUSÃO 

Pela técnica utilizada, observou-se que modelos que empregavam 

Machine Learning em sua composição, relacionando a estrutura química e 

atividade biológica de forma não-linear, obtiveram performances muito 

superiores a técnicas lineares. No entanto, não foi possível construir um modelo 

adequado que relacionasse as características físico-químicas deste grupo de 

moléculas e atividade biológica para o transportador de serotonina. É possível 

que, diante da técnica empregada, não houve a captura dos mecanismos 

relevantes para a atividade biológica neste transportador e metodologias mais 

robustas de QSAR, a citar CoMFA/CoMSIA podem ser alternativas adequadas 

nesse caso, assim como a necessidade de mais estruturas químicas presentes 

na elaboração do modelo. 

As moléculas presentes no estudo apresentaram parâmetros 

farmacocinéticos preditos que se mostram adequados no desenvolvimento de 

um novo candidato a fármaco.  

Para os diferentes algoritmos e técnicas usadas, RF se mostrou adequado 

mesmo quando comparado a outra técnica, neste caso SVM, seja modelagem 

ou na predição dos dados. Os modelos RF não-lineares para dopamina e 

norepinefrina concordam do ponto de vista de descritores relevantes para a 

predição de atividade biológica, tanto no modelo utilizando a matriz completa de 

descritores quanto no simplificado, com destaque a descritores que aparecem 

em ambos os modelos:  

 Função de Distribuição Radial “20I” e “20S” nos modelos com todos 

os descritores calculados, sugerindo uma grande importância da 

estrutura tridimensional na atividade biológica; 

 Estado eletrônico do(s) nitrogênio(s) presente(s) na molécula;  

 Distância entre carbonos primários e quaternários (quando presente) 

apontando para um tamanho ótimo da estrutura nos modelos com 

descritores facilmente interpretáveis; 

 Do ponto de vista de capacidade de predição, foi possível atingir os 

objetivos propostos na construção de modelos preditivos e com métricas de 

performance adequadas quanto à atividade inibitória dos transportadores de 
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dopamina e norepinefrina, com destaque aos modelos referentes ao primeiro e 

com descritores convergentes, ou seja, que aparecem em ambos os modelos. O 

modelo não-linear construído a partir descritores interpretáveis para o 

transportador de dopamina performou tão bem quanto o modelo com todos os 

descritores calculados e, portanto, é preferível devido a sua maior simplicidade 

e redução de demanda computacional. 

  



42 
 

6. REFERÊNCIAS 

ALI, J. et al. Revisiting the General Solubility Equation: In Silico Prediction of 
Aqueous Solubility Incorporating the Effect of Topographical Polar Surface 
Area. Journal of Chemical Information and Modeling, v. 52, n. 2, p. 420–428, 13 
jan. 2012. Disponível em: <http://dx.doi.org/10.1021/ci200387c>. 
 
ALVES, V. et al. QUIMIOINFORMÁTICA: UMA INTRODUÇÃO. Química Nova, 
2017. Disponível em: <http://dx.doi.org/10.21577/0100-4042.20170145>. 

 

BERTHOLD, M. R. et al. KNIME - the Konstanz Information Miner. ACM 
SIGKDD Explorations Newsletter, v. 11, n. 1, p. 26–31, 16 nov. 2009. 
Disponível em: <http://dx.doi.org/10.1145/1656274.1656280>. 

 

BREIMAN, L. Machine Learning, v. 45, n. 1, p. 5–32, 2001. Disponível em: 
<http://dx.doi.org/10.1023/A:1010933404324>. 

 

BURBIDGE, R. et al. Drug Design by Machine Learning: Support Vector 
Machines for Pharmaceutical Data Analysis. Computers & Chemistry, v. 26, n. 
1, p. 5–14, dez. 2001. Disponível em: <http://dx.doi.org/10.1016/s0097-
8485(01)00094-8>. 

 

CARTER, D. S. et al. 2-Substituted N-Aryl Piperazines as Novel Triple 
Reuptake Inhibitors for the Treatment of Depression. Bioorganic & Medicinal 
Chemistry Letters, v. 20, n. 13, p. 3941–3945, 2010.  

 

CHIRICO, N.; GRAMATICA, P. Real External Predictivity of QSAR Models: 
How To Evaluate It? Comparison of Different Validation Criteria and Proposal of 
Using the Concordance Correlation Coefficient. Journal of Chemical Information 
and Modeling, v. 51, n. 9, p. 2320–2335, 12 ago. 2011. Disponível em: 
<http://dx.doi.org/10.1021/ci200211n>. 

 

DAINA, A.; MICHIELIN, O.; ZOETE, V. SwissADME: A Free Web Tool to 
Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry 
Friendliness of Small Molecules. Scientific Reports, v. 7, n. 1, 3 mar. 2017. 
Disponível em: <http://dx.doi.org/10.1038/srep42717>. 

 

DAINA, A.; ZOETE, V. A BOILED-Egg To Predict Gastrointestinal Absorption 
and Brain Penetration of Small Molecules. ChemMedChem, v. 11, n. 11, p. 
1117–1121, 24 maio 2016. Disponível em: 
<http://dx.doi.org/10.1002/cmdc.201600182>. 
 
DAMALE, M. et al. Recent Advances in Multidimensional QSAR (4D-6D): A 
Critical Review. Mini-Reviews in Medicinal Chemistry, v. 14, n. 1, p. 35–55, 31 



43 
 

jan. 2014. Disponível em: <http://dx.doi.org/10.2174/13895575113136660104>. 

 

FERRARI, A. J. et al. Burden of Depressive Disorders by Country, Sex, Age, 
and Year: Findings from the Global Burden of Disease Study 2010. PLoS 
Medicine, v. 10, n. 11, p. e1001547, 5 nov. 2013. Disponível em: 
<http://dx.doi.org/10.1371/journal.pmed.1001547>. 

 

FERREIRA, M. M. C. Multivariate QSAR. Journal of the Brazilian Chemical 
Society, v. 13, n. 6, nov. 2002. Disponível em: 
<http://dx.doi.org/10.1590/S0103-50532002000600004>. 

 

FISKE, A.; WETHERELL, J. L.; GATZ, M. Depression in Older Adults. Annual 
Review of Clinical Psychology, [s. l.], v. 5, n. 1, p. 363–389, 2009. Disponível 
em: <http://dx.doi.org/10.1146/annurev.clinpsy.032408.153621>  
 
GRAMATICA, P.; SANGION, A. A Historical Excursus on the Statistical 
Validation Parameters for QSAR Models: A Clarification Concerning Metrics 
and Terminology. Journal of Chemical Information and Modeling, v. 56, n. 6, p. 
1127–1131, 3 jun. 2016. Disponível em: 
<http://dx.doi.org/10.1021/acs.jcim.6b00088>. 

 

HASEGAWA, K.; FUNATSU, K. Partial Least Squares Modeling and Genetic 
Algorithm Optimization in Quantitative Structure-Activity Relationships. SAR and 
QSAR in Environmental Research, v. 11, n. 3–4, p. 189–209, ago. 2000. 
Disponível em: <http://dx.doi.org/10.1080/10629360008033231>. 

 

HOFFMANN, ROALD & MINKIN, VLADIMIR & CARPENTER, BARRY. (1996). 
Ockham's Razor and Chemistry. Bulletin de la Societe Chimique de France. 
133. 

 

LANE, R. M. Antidepressant Drug Development: Focus on Triple Monoamine 
Reuptake Inhibition. Journal of Psychopharmacology, v. 29, n. 5, p. 526–544, 
14 out. 2014. Disponível em: <http://dx.doi.org/10.1177/0269881114553252>. 

 

LOOMER, H P et al. “A clinical and pharmacodynamic evaluation of iproniazid 
as a psychic energizer.” Psychiatric research reports vol. 8 (1957): 129-41. 

 

LUCAS, M. C. et al. Design, Synthesis, and Biological Evaluation of New 
Monoamine Reuptake Inhibitors with Potential Therapeutic Utility in Depression 
and Pain. Bioorganic & Medicinal Chemistry Letters, v. 20, n. 18, p. 5559–5566, 
2010.  

 



44 
 

LUCAS, M. C. et al. Novel, Achiral Aminoheterocycles as Selective Monoamine 
Reuptake Inhibitors. Bioorganic & Medicinal Chemistry Letters, v. 19, n. 16, p. 
4630–4633, 2009.  

 

MARKS, D. M.; PAE, C.-U.; PATKAR, A. A. Triple Reuptake Inhibitors: A 
Premise and Promise. Psychiatry Investigation, v. 5, n. 3, p. 142, 2008. 
Disponível em: <http://dx.doi.org/10.4306/pi.2008.5.3.142>. 

 

MarvinSketch, versão 20.16.0, 2020 ChemAxon disponível em: 
<http://www.chemaxon.com>. Data de acesso: 08 agosto 2020. 

 

MITCHELL, J. B. O. Machine Learning Methods in Chemoinformatics. Wiley 
Interdisciplinary Reviews: Computational Molecular Science, v. 4, n. 5, p. 468–
481, 24 fev. 2014. Disponível em: <http://dx.doi.org/10.1002/wcms.1183>. 

 

NEVES, B. J. et al. QSAR-Based Virtual Screening: Advances and Applications 
in Drug Discovery. Frontiers in Pharmacology, v. 9, 13 nov. 2018. Disponível 
em: <http://dx.doi.org/10.3389/fphar.2018.01275>. 

 

NEVES, B. J. et al. QSAR-Based Virtual Screening: Advances and Applications 
in Drug Discovery. Frontiers in Pharmacology, v. 9, 13 nov. 2018. Disponível 
em: <http://dx.doi.org/10.3389/fphar.2018.01275>. 

 

PEREZ-CABALLERO, L. et al. Monoaminergic system and depression. Cell and 
Tissue Research, v. 377, n. 1, p. 107–113, 10 jan. 2019. DOI 10.1007/s00441-
018-2978-8. Disponível em: http://dx.doi.org/10.1007/s00441-018-2978-8 

 

PEREZ-CABALLERO, L. et al. Monoaminergic System and Depression. Cell 
and Tissue Research, v. 377, n. 1, p. 107–113, 10 jan. 2019. Disponível em: 
<http://dx.doi.org/10.1007/s00441-018-2978-8>. 

 

PICCINELLI, M.; WILKINSON, G. Gender Differences in Depression. British 
Journal of Psychiatry, v. 177, n. 6, p. 486–492, dez. 2000. Disponível em: 
<http://dx.doi.org/10.1192/bjp.177.6.486>. 

 

SCHILDKRAUT, J. J. THE CATECHOLAMINE HYPOTHESIS OF AFFECTIVE 
DISORDERS: A REVIEW OF SUPPORTING EVIDENCE. American Journal of 
Psychiatry, v. 122, n. 5, p. 509–522, nov. 1965. Disponível em: 
<http://dx.doi.org/10.1176/ajp.122.5.509>. 

 

 

http://www.chemaxon.com/
http://dx.doi.org/10.1007/s00441-018-2978-8


45 
 

SHARMA, H.; SANTRA, S.; DUTTA, A. Triple Reuptake Inhibitors as Potential 
next-Generation Antidepressants: A New Hope? Future Medicinal Chemistry, v. 
7, n. 17, p. 2385–2406, nov. 2015. Disponível em: 
<http://dx.doi.org/10.4155/fmc.15.134>.  
 
SVETNIK, V. et al. Application of Breiman’s Random Forest to Modeling 
Structure-Activity Relationships of Pharmaceutical Molecules. In: Multiple 
Classifier Systems. [s.l.] Springer Berlin Heidelberg, 2004. p. 334–343 

. 

SVETNIK, V. et al. Application of Breiman’s Random Forest to Modeling 
Structure-Activity Relationships of Pharmaceutical Molecules. In: Multiple 
Classifier Systems. [s.l.] Springer Berlin Heidelberg, 2004. p. 334–343. 

 

SVETNIK, V. et al. Random Forest:  A Classification and Regression Tool for 
Compound Classification and QSAR Modeling. Journal of Chemical Information 
and Computer Sciences, v. 43, n. 6, p. 1947–1958, nov. 2003. Disponível em: 
<http://dx.doi.org/10.1021/ci034160g>. 

 

TODESCHINI, R; CONSONI, V. (2009). Molecular descriptors for 
chemoinformatics, (Weinheim: Wiley VCH)  

 

TROPSHA, A.; GOLBRAIKH, A. Predictive QSAR Modeling Workflow, Model 
Applicability Domains, and Virtual Screening. Current Pharmaceutical Design, v. 
13, n. 34, p. 3494–3504, 1 dez. 2007. Disponível em: 
<http://dx.doi.org/10.2174/138161207782794257>. 

 

VAN WATERSCHOOT, R. A. B.; SCHINKEL, A. H. A Critical Analysis of the 
Interplay between Cytochrome P450 3A and P-Glycoprotein: Recent Insights 
from Knockout and Transgenic Mice. Pharmacological Reviews, v. 63, n. 2, p. 
390–410, 13 abr. 2011. Disponível em: 
<http://dx.doi.org/10.1124/pr.110.002584> 
 
 
VOTANO, J. R. Three New Consensus QSAR Models for the Prediction of 
Ames Genotoxicity. Mutagenesis, v. 19, n. 5, p. 365–377, 1 set. 2004. 
Disponível em: <http://dx.doi.org/10.1093/mutage/geh043>. 

 

WEHRENS, R. Data. In: Chemometrics with R., Springer Berlin Heidelberg, 
2010. p. 7–12.  

 

WORLD HEALTH ORGANIZATION (2016) Out of the shadows: making 
mentalhealth a global development priority. World Health 
Organization,Washington 

 

http://dx.doi.org/10.1124/pr.110.002584


46 
 

YAP, C. W. PaDEL-Descriptor: An Open Source Software to Calculate 
Molecular Descriptors and Fingerprints. Journal of Computational Chemistry, v. 
32, n. 7, p. 1466–1474, 17 dez. 2010. Disponível em: 
<http://dx.doi.org/10.1002/jcc.21707>.   



47 
 

7. ANEXOS 

 

Anexo I. Tabela com atividade biológica in vitro e SMILE da estrutura correspondente 

SMILE correspondente 
pKi 

SERT 
pKi 
NET 

pKi 
DAT 

CNCC[C@H](Oc1cccc2ccccc12)c3cccs3 9,30 8,10 6,60 

CNCCC(c1ccccc1)c2ccc3[nH]ccc3c2 7,50 8,00 6,70 

CNCCN(c1ccccc1)c2ccc3[nH]ccc3c2 6,40 6,70 6,30 

C1CC(CCN1)N(c2ccccc2)c3ccc4[nH]ccc4c3 6,00 5,90 5,80 

C(N(C1CCNCC1)c2ccc3[nH]ccc3c2)c4ccccc4 9,10 8,10 7,30 

C(N(C1CCCNC1)c2ccc3[nH]ccc3c2)c4ccccc4 8,20 7,20 7,40 

C(N(C1CCNC1)c2ccc3[nH]ccc3c2)c4ccccc4 7,70 8,00 7,50 

C(N(C1CCNCC1)c2ccc3[nH]ncc3c2)c4ccccc4 8,90 7,80 7,30 

C(N(C1CCNCC1)c2ccc3sccc3c2)c4ccccc4 7,90 6,70 6,70 

Cn1ccc2cc(ccc12)N(Cc3ccccc3)C4CCNCC4 8,40 7,60 7,10 

CC(N(C1CCNCC1)c2ccc3[nH]ccc3c2)c4ccccc4 7,40 5,80 5,80 

O=C(N(C1CCNCC1)c2ccc3[nH]ccc3c2)c4ccccc4 7,60 6,10 5,40 

C(Cc1ccccc1)N(C2CCNCC2)c3ccc4[nH]ccc4c3 8,20 7,30 6,80 

C(C1CCOCC1)N(C2CCNCC2)c3ccc4[nH]ccc4c3 7,40 7,40 6,30 

Fc1ccccc1CN(C2CCNCC2)c3ccc4[nH]ccc4c3 8,40 7,90 6,90 

Fc1cc(CN(C2CCNCC2)c3ccc4[nH]ccc4c3)ccc1 8,90 7,90 7,10 

Fc1ccc(CN(C2CCNCC2)c3ccc4[nH]ccc4c3)cc1 8,70 6,60 6,60 

N#Cc1ccccc1CN(C2CCNCC2)c3ccc4[nH]ccc4c3 8,40 8,20 6,30 

N#Cc1cc(CN(C2CCNCC2)c3ccc4[nH]ccc4c3)ccc1 9,60 8,00 7,50 

N#Cc1ccc(CN(C2CCNCC2)c3ccc4[nH]ccc4c3)cc1 8,60 6,00 6,10 

NS(=O)(=O)c1cc(CN(C2CCNCC2)c3ccc4[nH]ccc4c3)ccc1 8,20 7,10 7,60 

COc1cc(CN(C2CCNCC2)c3ccc4[nH]ccc4c3)ccc1 8,80 8,40 7,10 

C(C1CNCCN1c2ccc3[nH]ccc3c2)c4ccccc4 7,90 8,10 8,20 

C(C1CNCCN1c2ccccc2)c3ccccc3 7,80 6,40 6,30 

CNc1ccc(cc1)N2CCNCC2Cc3ccccc3 7,10 6,30 6,40 

Clc1ccc(cc1Cl)N2CCNCC2Cc3ccccc3 7,80 7,80 7,10 

Cn1ccc2cc(ccc12)N3CCNCC3Cc4ccccc4 8,10 7,30 6,90 

NC(=O)c1c[nH]c2ccc(cc12)N3CCNCC3Cc4ccccc4 7,00 5,30 6,80 

NC(=O)c1cc2cc(ccc2[nH]1)N3CCNCC3Cc4ccccc4 8,10 6,30 8,50 

COc1c2[nH]ccc2cc(c1)N3CCNCC3Cc4ccccc4 7,30 7,30 5,80 

Clc1c2[nH]ccc2cc(c1)N3CCNCC3Cc4ccccc4 8,50 7,90 7,00 

Fc1c2[nH]ccc2cc(c1)N3CCNCC3Cc4ccccc4 7,80 8,20 7,80 

C(C1CNCCN1c2cnc3[nH]ccc3c2)c4ccccc4 7,20 6,60 6,30 

C(C1CNCCN1c2ccc3[nH]ncc3c2)c4ccccc4 8,90 7,60 7,80 

C1CN(C(CN1)c2ccccc2)c3ccc4[nH]ncc4c3 7,70 6,70 6,70 

C(Cc1ccccc1)C2CNCCN2c3ccc4[nH]ncc4c3 8,40 7,10 7,50 

CCCC1CNCCN1c2ccc3[nH]ncc3c2 7,80 7,40 7,20 

CCC[C@H]1CNCCN1c2ccc3[nH]ncc3c2 8,20 6,80 6,10 

CCC[C@@H]1CNCCN1c2ccc3[nH]ncc3c2 7,50 7,50 7,60 

CCCCC1CNCCN1c2ccc3[nH]ncc3c2 8,40 7,10 7,50 
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CC(C)CC1CNCCN1c2ccc3[nH]ncc3c2 8,30 7,70 7,80 

C(C1CCCCC1)C2CNCCN2c3ccc4[nH]ncc4c3 7,40 5,80 6,50 

COCC1CNCCN1c2ccc3[nH]ncc3c2 6,80 6,50 6,30 

CCOCC1CNCCN1c2ccc3[nH]ncc3c2 7,80 6,50 6,50 

COCCC1CNCCN1c2ccc3[nH]ncc3c2 8,70 6,60 6,80 

C(C1CCOCC1)C2CNCCN2c3ccc4[nH]ncc4c3 8,40 6,50 7,40 

C(C1CCOCC1)[C@H]2CNCCN2c3ccc4[nH]ncc4c3 9,00 6,50 6,00 

C(C1CCOCC1)[C@@H]2CNCCN2c3ccc4[nH]ncc4c3 7,10 7,00 7,30 

Fc1c2[nH]ccc2cc(c1)C(=O)C3(Cc4ccccc4)CCNC3 8,20 8,00 7,90 

CCCC1(CCNC1)C(=O)c2cc(F)c3[nH]ccc3c2 8,50 8,20 7,80 

CC(C)CC1(CCNC1)C(=O)c2cc(F)c3[nH]ccc3c2 9,00 8,60 8,10 

CCOCC1(CCNC1)C(=O)c2cc(F)c3[nH]ccc3c2 8,50 7,70 7,10 

CCCCC1(CCNC1)C(=O)c2cc(F)c3[nH]ccc3c2 8,90 8,60 8,20 

CC(C)CCC1(CCNC1)C(=O)c2cc(F)c3[nH]ccc3c2 9,10 9,10 8,80 

CC(C)(C)CCC1(CCNC1)C(=O)c2cc(F)c3[nH]ccc3c2 9,10 8,90 9,10 

O=C(c1ccc2[nH]ccc2c1)C3(Cc4ccccc4)CCNC3 8,20 7,70 8,10 

Cc1ccc(cc1Cl)C(=O)C2(CCC(C)(C)C)CCNC2 9,00 8,40 7,90 

CC(C)(C)CCC1(CCNC1)C(=O)c2ccc(Cl)c(Cl)c2 8,60 8,20 8,20 

CC(C)(C)CCC1(CCNC1)C(=O)c2cc(F)c(Cl)c(Cl)c2 8,50 8,00 8,00 

CC(C)(C)CCC1(CCNC1)C(=O)c2cc(Cl)c(Cl)s2 8,30 8,10 8,70 

CC(C)(C)CCC1(CCNC1)C(=O)c2ccc(Cl)c(Cl)n2 7,90 8,00 8,00 

CC(C)(C)CCC1(CCNC1)C(=O)c2ccc(N)c(Cl)c2 9,00 8,30 8,50 

CC(C)(C)CCC1(CCNC1)C(=O)c2cnc(N)c(Cl)c2 7,50 7,30 7,20 

CC(C)(C)CCC1(CCNC1)C(=O)c2ccc3[nH]ncc3c2 9,20 8,20 8,10 

CC(C)(C)CCC1(CCNC1)C(=O)c2cc3c(s2)cccc3 9,00 8,60 8,90 

CC(C)(C)CCC1(CCNC1)C(=O)c2cc3c([nH]2)cccc3 8,20 8,60 8,60 

CC(C)(C)CCC1(CCNC1)C(=O)c2ccc3ccccc3n2 8,70 8,50 8,40 

Cc1cccc2nc(ccc12)C(=O)C3(CCC(C)(C)C)CCNC3 9,70 9,20 9,00 

O=C(c1ccc2[nH]ccc2c1)C3(Cc4ccccc4)CCNCC3 8,10 7,00 8,00 

O=C(c1ccc2[nH]ccc2c1)C3(Cc4ccccc4)CNC3 6,10 6,80 6,10 

O=C(c1ccc2[nH]ccc2c1)C3(Cc4ccccc4)CCCNC3 7,90 7,60 7,20 

O=C(c1ccc2[nH]ccc2c1)C3(Cc4ccccc4)CCCCNC3 7,10 6,60 6,60 

CCCCC1(CCCN1)C(=O)c2ccc3[nH]ccc3c2 8,70 8,50 8,60 

CCCCC1(CCCN1)C(=O)c2cc(F)c3[nH]ccc3c2 8,20 8,70 8,40 

CCCCC1(CCCN1)C(=O)c2ccc(Cl)c(Cl)c2 8,60 7,70 7,80 

CCCCC1(CCCN1)C(=O)c2ccc(N)c(Cl)c2 8,70 8,10 8,20 

CC(C)(C)CCCC1(CCCN1)C(=O)c2cc3c([nH]nc3)cc2 8,30 8,10 8,50 
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