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RESUMO

Oliveira, L. T. Sistema de detecção de pontos de emergência em campos agrícolas
com o robô TerraSentia. 2024. 72p. Monografia (Trabalho de Conclusão de Curso) - Escola
de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2024.

O crescimento da população mundial exige que os métodos e tecnologias empregados na produção
de alimentos sejam cada vez mais eficientes, produzindo mais com menos espaço. A robótica
autônoma é uma área cada vez mais pesquisada para auxiliar nesse problema. Nesse contexto, o
uso de algoritmos Localização e Mapeamento Simultâneos (LOMAS) é essencial para criar um
mapa e localizar um robô nele. Porém, para ambientes dinâmicos (como o agrícola), eles ainda
são um problema aberto na literatura. Este trabalho busca estudar a aplicação de algoritmos
LOMAS utilizando dados do robô TerraSentia, uma plataforma robótica desenvolvida pela
Universidade de São Paulo e a Universidade de Illinois (Urbana-Champaign). Além da aplicação
direta de algoritmos LOMAS, este trabalho também propõe módulos auxiliares para melhorar o
desempenho deles no ambiente agrícola. A aplicação direta de LOMAS com os dados obtidas
não se mostrou promissora. Dentre os módulos propostos, destaca-se os resultados promissores
obtidos com o detector de pontos de emergência das plantas, pontos nos quais elas emergem do
solo. Trabalhos futuros também são propostos para validar em mais profundidade os módulos
juntamente com os algoritmos LOMAS.

Palavras-chave: Agricultura, Percepção, Detecção, Robótica, LOMAS, Visão Computacional,
Deep Learning, Sistemas Embarcados





ABSTRACT

Oliveira, L. T. Emergency point detection system in agricultural fields with the
TerraSentia robot. 2024. 72p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2024.

The growth of the world population demands that the methods and technologies employed in
food production become increasingly efficient, producing more with less space. Autonomous
robotics is an area increasingly researched to assist with this problem. In this context, the use of
Simultaneous Localization and Mapping (SLAM) algorithms is essential for creating a map and
locating a robot within it. However, for dynamic environments (such as agriculture), they remain
an open problem in the literature. This work seeks to study the application of SLAM algorithms
using data from the TerraSentia robot, a robotic platform developed by the University of São
Paulo and the University of Illinois (Urbana-Champaign). In addition to the direct application of
SLAM algorithms, this work also proposes auxiliary modules to improve their performance in the
agricultural environment. The direct application of SLAM with the obtained data did not show
promising results. Among the proposed modules, the promising results obtained with the plant
emergence point detector stand out, identifying points where plants emerge from the soil. Future
work is also proposed to validate the modules and the SLAM algorithms in greater depth.

Keywords: Agriculture, Perception, Detection, Robotics, SLAM, Computer Vision, Deep Learn-
ing, Embedded Systems
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1 INTRODUÇÃO

Em 1798, Thomas Malthus, intelectual iluminista, publicou uma obra chamada “An Essay
on the Principle of Population”. Nesta obra, Malthus afirmou que o crescimento populacional
tinha o formato de uma progressão geométrica, enquanto que o crescimento na produção de
alimentos uma progressão aritmética (ou seja, mais lenta que a primeira). Segundo os malthusianos
modernos, essa é uma dificuldade que nunca poderá ser superada. Entretanto, de acordo com o
relatório econômico do grupo financeiro multinacional Goldman Sachs de 2016 (REVICH et al.,
2016), essa conclusão é precipitada, apesar da análise ser compatível com a realidade.

O documento considera que a humanidade enfrenta o problema de se sustentar no futuro,
diante da contínua expansão no número de indivíduos. Na Figura 1, pode-se verificar que, até
2015, a população mundial mostrou um crescimento mais acelerado que a quantidade de hectares
de terra cultivável. Contudo, de acordo com o estudo, a resposta para o futuro está no avanço
tecnológico, com o surgimento de veículos autônomos e sistemas administrativos inteligentes.

Nesse contexto de necessidade de implementações mais sofisticadas para sustento da
vida humana, a agricultura de precisão surgiu como um novo conceito a partir dos anos 80.
O paradigma objetiva o aumento na produtividade e na qualidade dos rendimentos agrícolas,
reduzindo os custos. A robótica, com sua versatilidade, é considerada uma ferramenta razoável
nessa conjuntura.

Entretanto, nem todas as tecnologias desenvolvidas para plataformas robóticas em ambi-

Figura 1 – Relação entre população mundial e a quantidade de terra cultivável (em hectares)

Fonte: adaptado de (REVICH et al., 2016)
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entes controlados são aplicáveis no meio agrícola (Gao et al., 2018). Algumas delas se baseiam
em condições específicas, que nem sempre são satisfeitas em campos e plantações. Além disso,
por se tratar de um ambiente consideravelmente mais complexo, uma aplicação pode utilizar
diversas tecnologias de forma concatenada para obter resultados minimamente interessantes.

1.1 Motivação

Uma das tecnologias para navegação autônoma que está em desenvolvimento nos últimos 40
anos é a chamada “Simultaneous Localization And Mapping” (SLAM), traduzida por “Localização
e Mapeamento Simultâneos” em português (SMITH; CHEESEMAN, 1986). Essa ferramenta
propõe a utilização de instrumentos para que o robô possa entender o ambiente que o circunda e
ser capaz de estimar sua posição de acordo com seus arredores. As informações do espaço no qual
o robô está inserido podem ser captadas principalmente por dispositivos como sensores acústicos
ou ópticos (como a tecnologia LiDAR, “Light Detection And Ranging”) e câmeras (monoculares
ou estéreo) (ZAFFAR et al., 2018). Quando se utilizam sensores visuais, a tecnologia é chamada
especificamente de Visual Simultaneous Localization and Mapping (VSLAM), traduzida por
“Localização e Mapeamento Simultâneos Visual” (Han; Xi, 2020a).

Os métodos tradicionais de SLAM levam em consideração que o ambiente não se modifica
durante a extração das características, o que não pode ser assumido na maioria dos ambientes
reais. Na implementação convencional, o sistema carece de um entendimento abstrato do meio
para diferenciar objetos fixos daqueles que se movem, resultando em erros grosseiros de trajetória
e podendo ocasionar o colapso do controle de navegação (Han; Xi, 2020a).

A aplicação dessa tecnologia em meios com objetos se movimentando começou em meados
de 2003 e é chamado de “SLAM in Dynamic Environments” (SLAMIDE), traduzido por “Locali-
zação e Mapeamento Simultâneos em Ambientes Dinâmicos”. Os principais desafios são: como
definir objetos como dinâmicos a partir de pixels planos e como identificar tais objetos. Com base
nos resultados favoráveis da implementação de Deep Learning no processamento de imagens, esta
foi incorporada por alguns pesquisadores na aplicação do SLAMIDE (XIAO et al., 2019).

A principal contribuição deste projeto é a aplicação do método descrito por Yuan et al.
(2021). O detector desenvolvido obteve resultados promissores na identificação dos pontos de
emergência das plantas, a partir da suposição de que sejam os pontos mais estáticos do cenário
agrícola. Os pontos de emergência são definidos como os pontos em que cada uma das plantas
emergem do solo e, portanto, não mudam com o tempo. Testes extensivos desse detector ainda
precisam ser realizados em conjunto com algoritmos SLAM.

1.2 Objetivos

Em sua concepção, este projeto teve como objetivo principal o estudo da aplicação de
SLAM em contextos agrícolas, utilizando os dados de uma plataforma robótica. Entretanto,
como é mostrado, a aplicação de SLAM de forma direta com dados reais não gerou resultados
satisfatórios. Nesse contexto, o objetivo final do projeto foi alterado para o desenvolvimento de
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algoritmos de percepção que, futuramente, pudessem ser úteis para complementar algoritmos
de SLAM. O contexto completo dessa pesquisa é descrita nesta monografia, com o intuito de
justificar as decisões tomadas.

Dessa forma, tendo em vista o contexto e objetivo central do projeto, os seguintes objetivos
secundários foram realizados:

• Aplicação de um algoritmo de SLAM com dados reais

• Discussão e análise dos resultados do algoritmo de SLAM

• Implementação de um detector de objetos usando Deep Learning

• Discussão e análise dos resultados do detector de objetos

• Implementação de uma pipeline de detecção com segmentação de máscaras usando Deep
Learning

• Discussão e análise final dos resultados da abordagem final

• Discussão comparativa entre métodos

• Proposição de melhorias e trabalhos futuros

1.3 Organização do documento

Este documento é organizado nos seguintes capítulos:

1. Introdução: introduz o contexto do problema, descreve o problema em si, apresenta o
fluxo de desenvolvimento e define os objetivos do projeto.

2. Plataforma robótica: descreve a plataforma robótica e os dados utilizados no projeto

3. Aplicação direta de SLAM: apresenta o desenvolvimento e os resultados da aplicação
direta de SLAM brevemente

4. Detector de objetos: apresenta, explica e justifica sua utilização agregado a SLAM.
Também apresenta brevemente os resultados obtidos.

5. Abordagem final: apresenta, explica e justifica sua utilização. Apresenta os resultados
finais obtidos.

6. Conclusão: reflete sobre o trabalho realizado, propõe melhorias e passos futuros.
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2 PLATAFORMA ROBÓTICA

O TerraSentia (mostrado na Fig. 2) é um robô de campo de baixo custo, leve e compacto.
Ele foi desenvolvido pelo Distributed Autonomous Systems Laboratory (DASLab), localizado
na Universidade de Illinois (Urbana-Champaign, EUA) e o Laboratório de Robótica Móvel
(LabRoM), localizado na Universidade de São Paulo (USP, Brasil). Ele foi descrito em Kayacan,
Zhang e Chowdhary (2018) e Higuti et al. (2018) e é projetado para se locomover abaixo do
dossel de uma plantação. A plataforma possui um minicomputador e pode ser equipada com
diversos sensores (como câmeras, sensores inerciais e LiDAR).

Figura 2 – Plataforma TerraSentia

Fonte: (EARTHSENSE, 2021)

2.1 Conjunto de dados utilizado

O autor entrou em contato com o DASLab para requisitar dados coletados pela equipe
utilizando o robô TerraSentia. O laboratório gentilmente cedeu um conjunto para fins de pesquisa,
que foram utilizados durante todo o projeto.

Os membros do DASLab coletaram dados durante vários meses no verão de 2022. Eles
customizaram o robô (mostrado na Figura 3) com uma câmera ZED2 (STEREOLABS, 2023) e
um receptor GPS RTK. Além disso, mantiveram presente a Inertial Measurement Unit (IMU),
Unidade de Medição Inercial em tradução livre. Entre outros tipos de dados, as sequências
gravadas continham imagens RGB, imagens de profundidade e a posição do robô estimada com
um Extended Kalman Filter (EKF) (MEEUSSEN, 2023).

A Figura 3 também mostra o posicionamento dos sensores em relação ao robô. Cada um
deles está representado de acordo com um sistema de coordenadas 3D, contendo uma origem
(representada por um ponto preto com contorno branco) e os eixos x, y e z, representados
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Figura 3 – O robô TerraSentia customizado

Fonte: DASLab

pelas cores vermelha, verde e azul, respectivamente. Vale ressaltar que a IMU está posicionada
aproximadamente no centro de massa do robô. Dessa forma, pode-se considerar o centro de
coordenadas do robô como coincidente com o desse sensor.

As sequências estavam armazenadas em arquivos SVO (para compressão de alta resolução)
(STEREOLABS, 2023b), um formato proprietário da empresa StereoLabs (STEREOLABS,
2023). Para descompactar os dados e obtê-los como tópicos do Robot Operating System (ROS),
foi utilizado o pacote zed-ros-wrapper (STEREOLABS, 2023a). Para a utilização do pacote, é
necessário uma Graphics Processing Unit (GPU) configurada. Para tanto, utilizou-se um notebook
com uma NVIDIA GeForce GTX 1650 (NVIDIA, 2023b) e a API NVIDIA CUDA, na versão
12.2 (NVIDIA, 2023a).

2.2 Robot Operating System (ROS)

Robot Operating System (ROS, traduzido para “Sistema Operacional Robótico”) (ROBO-
TICS, 2021) é um conjunto de frameworks que auxilia o desenvolvimento de sistemas robóticos.
Ele é utilizado no funcionamento da plataforma TerraSentia e também foi utilizado no desenvol-
vimento deste projeto em diferentes etapas.

Uma das características mais notáveis dessa ferramenta é sua capacidade de concretizar a
modularização de um sistema. ROS possui um sistema de “nós”, arquivos executáveis que podem
estar desenvolvidos em linguagens distintas. Cada nó é responsável por uma função diferente do
robô, facilitando a execução de tarefas de forma paralela. Uma estrutura de programas chamada
de roscore é responsável por gerenciar os diferentes nós de um mesmo sistema, além de armazenar
parâmetros globais, que podem ser consultados por qualquer parte da organização.
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Para trocarem dados, os nós utilizam uma estrutura chamada de Tópico ROS. Ele é um
canal de comunicação entre diferentes partes do robô. Exemplificando, um nó responsável por
fazer a leitura de sensores se inscreve no papel de publicador de um tópico, enquanto que outro,
responsável pelo tratamento desses dados, se torna assinante do tópico, recebendo os dados.
A inscrição ou subscrição a um tópico é informada e gerenciada pelo roscore. Vale ressaltar
que as informações são estruturadas em Mensagens ROS. Assim, uma mensagem pode conter
informações como translação e rotação do robô em vários eixos, que são enviadas de uma só vez.
Esse processo pode ser visualizado na Figura 4.

Figura 4 – Esquema de comunicação entre nós utilizando ROS

Fonte: (ROBERT, 2020) (adaptado pelo autor)

Nesse contexto, um nó, responsável pela recepção de dados de uma câmera, pode publicar
as imagens capturadas através de um tópico para um outro, cuja função é de realizar algum tipo
de processamento.
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3 APLICAÇÃO DIRETA DE SLAM

A primeira etapa deste projeto consistiu na aplicação de um algoritmo de VSLAM
diretamente com as imagens do robô TerraSentia. O sistema escolhido para aplicação foi o
ORB-SLAM 2 (Mur-Artal; Tardós, 2017) para câmeras monoculares, por se tratar de um sistema
completo e representativo. Vale ressaltar que esta tecnologia é open-source (Mur-Artal et al.,
2022a), além de também já ser amplamente utilizada pela comunidade ROS (Mur-Artal et al.,
2022b).

3.1 ORB-SLAM2

O sistema ORB-SLAM2 (Mur-Artal; Tardós, 2017) se trata de uma ferramenta completa
para câmeras monocular e stereo. Em relação ao uso desse sistema para câmeras monoculares, seu
predecessor ORB-SLAM (MUR-ARTAL; MONTIEL; TARDÓS, 2015) utiliza quase os mesmos
princípios e técnicas. Com o objetivo de obter um entendimento de algoritmos SLAM adequado
ao nível de estudo proposto, o sistema ORB-SLAM foi alvo de uma análise mais detalhada. Ele é
dividido em cinco etapas diferentes: detecção, localização, mapeamento, relocalização e
fechamento de loops. A seguir, cada uma dessas etapas será descrita brevemente.

3.1.1 Detecção

A etapa de detecção é capaz de extrair características do ambiente através de descritores
de imagem. Eles procuram identificar atributos de uma imagem, possibilitando a comparação
com outras imagens. Um exemplo de característica são os “cantos” presentes no cenário. Compu-
tacionalmente, eles podem ser identificados através da análise de regiões que possuem variações
abruptas em relação às regiões subjacentes (OPENCV, 2022d).

O descritor de imagem utilizado pelo ORB-SLAM é chamado de ORB. Este, por sua vez,
é uma junção do detector FAST (Features from Accelerated Segment Test) e do descritor BRIEF
(Binary Robust Independent Elementary Features) (OPENCV, 2022c). O detector FAST realiza a
identificação de cantos através da análise da intensidade de alguns pixels localizados em uma
circunferência em torno de cada ponto da imagem, como mostrado na Figura 5. Além disso, se
utiliza de uma árvore de decisão e supressão dos cantos com menor pontuação para melhores
resultados (OPENCV, 2022b).

O descritor BRIEF elege alguns pares de características obtidos da imagem e realiza
comparações de intensidade entre eles. Os resultados dessas comparações geram vetores de valores
binários. Dessa forma, duas imagens podem ser comparadas utilizando a distância Hamming.
Esta, por sua vez, se trata do número de valores diferentes entre dois vetores binários (OPENCV,
2022a).
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Figura 5 – Funcionamento do descritor FAST

Para um pixel p, 16 valores dispostos circularmente ao redor de p são considerados no cálculo do
descritor. Fonte: (OPENCV, 2022b)

Figura 6 – Modelo de câmera “pinhole”

Fonte: (ORTIZ; GONçALVES; CABRERA, 2017) - tradução livre

3.1.2 Localização

A etapa de localização consiste na identificação da posição e orientação da câmera em
relação às características extraídas do cenário. Para isso, o primeiro passo é utilizar um modelo
de projeção dos pontos 3D do mundo real em relação ao plano da imagem 2D. Para isso, obtém-se
as transformações entre eixos de coordenadas do mundo real, da imagem, do sistema adotado
para os pixels e da própria câmera (mostrado na Figura 6). Essa relação é obtida através de
semelhança de triângulos, transformações de corpo rígido (considerando coordenadas homogêneas)
e correções para distorções de câmeras (CHEN; CHEN; WANG, 2019).

Um robô com um sistema de VSLAM possui um sistema de aquisição de imagens que
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Figura 7 – Funcionamento do algoritmo de Bundle Adjustment

Legenda: uij representa observações 2D, Xi os pontos no sistema 3D, Cj o centro da câmera
em diferentes momentos e u′

ij as re-projeções em pontos 2D. As linhas cheias representam o
procedimento de projeção e as pontilhadas o de re-projeção. Fonte: (CHEN; CHEN; WANG,
2019)

funciona a uma determinada taxa. Assim, muitos pontos são obtidos, cada um sendo descritos
pelo sistema ORB, mencionado anteriormente. O processo de relacionar os pontos em diferentes
imagens é chamado de Bundle Adjustment (BA). Ele é responsável por minimizar o erro entre
as observações 2D feitas na imagem capturada e a re-projeção em 2D dos pontos 3D de outras
imagens capturadas anteriormente (mostrado na Figura 7).

Neste algoritmo também é considerada a distância Hamming entre os descritores dos
pontos - quanto menor, mais provável os dois pontos 2D se referem a um mesmo ponto 3D.

3.1.3 Mapeamento

A etapa de mapeamento utiliza de algumas estruturas para seu bom funcionamento. A
primeira delas é a eleição de frames específicos da câmera para serem keyframes (“quadros chave”,
em tradução livre). Estes são os frames que possuem pontos que sustentam o mapa criado - a
utilização de todos os disponíveis impossibilitaria o mapeamento de grandes áreas por problemas
de memória. As condições para criá-lo exigem que:

1. Mais que 20 frames se passaram desde a última relocalização (algoritmo executado quando
não se consegue encontrar a posição da câmera a partir dos pontos extraídos);

2. Mais que 20 frames se passaram desde a última inserção de um keyframe;

3. O frame candidato precisa ter ao menos 50 pontos detectados;

4. O frame candidato precisa ter 90% menos pontos do que um frame de referência.

Para relacionar os keyframes, utiliza-se um grafo chamado de Covisibility Graph (“grafo
de co-visibilidade”, em tradução livre). Cada nó dele simboliza um keyframe e cada aresta é
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ponderada com o número de observações que são compartilhadas entre dois keyframes (no mínimo
15). Como o Covisibility Graph pode se tornar muito denso e dificultar a execução de outros
algoritmos, utiliza-se também um segundo grafo chamado de Essential Graph (“grafo essencial”,
em tradução livre). Ele possui o mesmo conceito do primeiro, porém retém nós que são conectados
por arestas com peso muito maior que o anterior (em torno de 100 observações compartilhadas).

3.1.4 Relocalização

A etapa de relocalização é realizada transformando o frame atual em uma bag of
words (“bolsa de palavras”, em tradução livre) com implementação baseada na ferramenta
DBoW2 (GALVEZ-LóPEZ; TARDOS, 2012). As “palavras visuais” são uma discretização do
espaço de descritores (ou seja, exemplos deste), conhecido como vocabulário visual. Ele é criado
previamente ao funcionamento do SLAM (“off-line”) e pode ser usado em diferentes ambientes, se
o vocabulário criado é geral o suficiente. Para a relocalização, é feito um histograma das palavras
visuais nas imagens atuais, buscando identificar qual distribuição é semelhante para keyframes
já armazenados. Por escolha dos autores, são retornados todos os keyframes que possuem uma
pontuação maior que 75% da melhor encontrada.

3.1.5 Fechamento de loop

A etapa de fechamento de loop é essencial para manter a consistência do mapa. O
primeiro passo é detectar keyframes candidatos para este processo. Para isso, é calculado a
similaridade entre a bag of words do keyframe em questão e de seus vizinhos presentes no
Covisibility Graph. Para aceitar um keyframe candidato, é necessário que sejam encontrados três
keyframes candidatos conectados no grafo. Dessa forma, é possível ter vários candidatos a loop se
existem muitos lugares com aparência similar ao keyframe analisado. Ao realizar o fechamento de
loop, os nós envolvidos são substituídos por arestas. Os pontos do mapa coincidentes são fundidos
após serem reconhecidos pelo mesmo algoritmo de BA. Por fim, a posição da câmera é otimizada
através do Essential Graph, distribuindo o erro de fechamento de loop ao longo do grafo.

3.2 Sequências utilizadas

Os dados coletados continham imagens de plantações de milho em diferentes estágios de
crescimento. As sequências escolhidas para os testes foram obtidas em intervalos entre uma e
duas semanas, localizadas no mesmo campo e na mesma fileira de uma plantação de milho. Uma
visualização das sequências está mostrada na Figura 8, ordenadas cronologicamente.

É possível identificar algumas características dinâmicas do ambiente agrícola ao comparar
as sequências da Figura 8. A primeira delas é a diferença de iluminação, dependendo do clima no
dia da coleta das imagens. Também nota-se a variação na presença de folhas que se estendem em
frente ao robô (tapando parcialmente o campo de visão da câmera) e que se estendem no chão.
Além disso, a orientação da câmera se mostra diferente ao longo de uma sequência e entre elas,
decorrência do controle manual utilizado no robô para captura dos dados e do terreno irregular.
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Figura 8 – Sequências obtidas em uma única fileira de milho em crescimento ao longo de 3 meses

Fonte: DASLab

Espera-se que, em estágios mais avançados de crescimento, os algoritmos de mapeamento e
navegação simultâneos tenham pior desempenho. Isso se deve à maior probabilidade de existência
de objetos (como folhas, por exemplo) se deslocando e, portanto, a violação a suposição de
ambientes estáticos se daria em maior grau (como argumentado na Seção 1.1). Para tanto,
foram extraídos resultados para as nove sequências apresentadas na Figura 8, com o objetivo de
comparar e verificar essa hipótese.

3.3 Aplicação do ORB-SLAM 2

Durante as pesquisas, foram encontradas duas diferentes implementações para o algoritmo
ORB-SLAM 2. A primeira delas é uma versão standalone (RAULMUR, 2023), desenvolvida pelos
autores do método. A segunda está integrada como um pacote ROS, chamado de orb_slam2_ros,
e já inclui alguns exemplos de utilização com diferentes modelos de câmera (Mur-Artal et al.,
2022b). Esta última foi escolhida, já que facilitou a integração entre o sistema de descompressão
de dados (citado na Seção 2.1) e o algoritmo ORB-SLAM 2.

Para a utilização do pacote, algumas configurações são necessárias. Elas são definidas em
um arquivo XML chamado launch (OPENROBOTICS, 2023b), uma estrutura genérica do ROS
para inicializar diferentes nós com determinados parâmetros de forma facilitada. Nele, os tópicos
de entrada das imagens do pacote foram remapeados para aqueles que são publicados durante a
descompressão do arquivo SVO.

Além disso, habilitou-se o recebimento dos parâmetros intrínsecos da câmera pelo pacote
com uma mensagem especializada para isso, a sensor_msgs/CameraInfo (OPENROBOTICS,
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Figura 9 – Árvore de transformações do robô durante a coleta de dados

2023a). Ela especifica os comprimentos focais e centros principais da câmera, além do tamanho
em pixels da imagem. Para isso, também foi remapeado o tópico relevante para aquele fornecido
durante a descompressão do arquivo SVO.

Outra informação necessária é a localização da câmera em relação ao centro do robô -
isso permite obter a posição do robô com dados obtidos a partir da câmera. Para isso, ROS
conta com uma árvore de transformações, atualizada a partir de um tópico específico (“/tf”)
(OPENROBOTICS, 2023d). Assim, é possível manter registro da relação entre todos os sistemas
de coordenada do robô e externos a ele (como a origem da odometria ou de um mapa). Essa
informação também foi gravada durante a coleta de dados (como mostrado na Figura 9) e foi
reproduzida em tempo real durante os testes.

A Figura 9 mostra os principais sistemas de coordenada do sistema. O sistema “base_link”
está fixo no robô e representa seu centro; o sistema “zed2_camera_center” representa o centro
da câmera ZED2 e é passada como parâmetro para o pacote do ORB-SLAM 2. Além disso, o
sistema “map” indica o centro do mapa gerado (a ser atualizado pelo algoritmo de localização) e
o sistema “odom” indica a origem da odometria do robô.

3.4 Obtenção de métricas

Para medir o desempenho do algoritmo ORB-SLAM 2, utilizou-se a distância percorrida
pelo robô até a falha do sistema de localização. Para identificá-la, utilizou-se de dois métodos
principais. O primeiro método é a utilização da imagem de debug fornecida pelo pacote através
do tópico /slam/debug_image. Esta imagem contém as características identificadas a cada frame
da câmera e também informa visualmente quando o sistema falha. Ambas as situações estão
mostradas nas Figuras 10 e 11.
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Figura 10 – Imagem de debug durante o funcionamento do algortimo

Figura 11 – Imagem de debug quando há falha do algoritmo. Nesse caso, há colisão do robô com
a plantação
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O segundo método é a verificação da atualização da posição do robô pelo algoritmo
ORB-SLAM 2 através do tópico /slam/pose (versão stereo) ou do tópico /orb_slam2_mono/pose
(versão monocular). Quando há falha do sistema de localização, a posição do robô não é mais
atualizada.

Assim, o ponto de início para o registro da distância percorrida acontece assim que o robô
inicia seu movimento e inicializa as primeiras features, como mostrado na Figura 10. O ponto de
finalização da medição ocorre quando a posição do robô não é mais atualizada ao ocorrer falha
no sistema de navegação.

Na avaliação das sequências, três distâncias foram utilizadas. As duas primeiras delas
são as distâncias percorridas pelo robô de acordo com o sistema SLAM monocular e stereo. A
terceira é obtida de acordo com o algoritmo de odometria visual nativo da câmera ZED2. Elas
são calculadas a partir da soma da distância euclidiana entre as posições consecutivas do robô
obtidas por ambos os algoritmos (SLAM e Odometria Visual). Para cada sequência, 6 medições
foram realizadas, exceto no caso onde uma oclusão foi observada logo no início da fileira, caso
em que apenas 3 medições foram realizadas. A média das medições para cada tipo de sistema e
tecnologia também foi calculada.

Além disso, também utilizou-se a ferramenta RViz (OPENROBOTICS, 2023c) para
realizar uma visualização qualitativa da trajetória do robô informada pelo sistema SLAM e
pela Odometria Visual da câmera ZED2. Ela também está disponível como um pacote ROS e é
amplamente utilizada para observação dos dados de um sistema robótico.

3.5 Resultados e discussões

Ao executar o sistema SLAM com os dados da sequência do dia 08 de setembro, os dados
foram visualizados na ferramenta RViz, obtendo a Figura 12.

Em uma análise qualitativa inicial, pode-se perceber pela Figura 12 que a trajetória
indicada pela odometria visual difere em direção do que aquela gerada pelo sistema SLAM.
Apesar disso, ambas são retilíneas e aparentemente coerentes. Supõe-se que o sistema SLAM
gera uma trajetória que não está alinhada em relação ao eixo de coordenadas fixo na ferramenta
RViz. Entretanto, como as distâncias são calculadas usando a distância euclidiana entre posi-
ções consecutivas do robô gerada por cada algoritmo, a inclinação não deve afetar os dados
quantitativos.

Ao realizar as medições de distância de acordo com os métodos descritos nas seções
anteriores, obteve-se os dados mostrados na Tabela 1. A primeira observação que ela sugere é que
algumas sequências tem distâncias muito curtas (como aquelas indicadas com data em vermelho).
Através de inspeção das sequências, observou-se que, nesses casos, a visão da câmera do robô foi
bloqueada logo no início da fileira, impedindo a extração de features e consequentemente, levando
à falha do sistema SLAM. Além disso, as demais sequências eventualmente também falharam
devido a oclusões, oscilações do robô ou por choque do robô com a cultura.
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Figura 12 – Ferramenta RViz durante a execução do SLAM. O número 1 indica a posição do
robô (seta vermelha) segundo a Odometria Visual e a pointcloud da câmera ZED2; o
número 2 indica a posição do robô (seta rosa) e features (pontos brancos) segundo o
algoritmo SLAM

Tabela 1 – Distância média percorrida pelo robô até a falha do sistema SLAM. Datas indicadas
em colorido simbolizam oclusões no início da sequência

[ZED]
Stereo (m)

[SLAM]
Stereo (m)

[ZED]
Mono (m)

[SLAM]
Mono (m)

20/09 4,74 11,50 0,83 2,24
08/09 10,95 26,06 25,09 22,20
01/09 0,66 1,55 0,50 0,42
15/08 8,27 19,46 0,79 0,60
04/08 1,17 2,77 1,43 0,96
21/07 3,36 8,16 2,33 1,16
14/07 2,49 6,11 2,00 1,38
05/07 3,20 7,67 0,98 0,95
29/06 7,15 17,28 4,96 3,37
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É também possível verificar que o sistema SLAM Stereo possui maior robustez que o
sistema SLAM Monocular. Isso era esperado, já que o sistema stereo possui mais informações
para obter features, em comparação com o sistema monocular. Em média, excluindo as sequências
com oclusões logo no início, o sistema SLAM Stereo funcionou durante 7,71m (ZED)/18,37m
(SLAM). Em contrapartida, o sistema SLAM Monocular funcionou durante 2,89m (ZED)/2,81m
(SLAM).

Ademais, pode-se verificar que a distância calculada para o sistema de Odometria Visual
da câmera ZED2 e aquela para o sistema SLAM diferem de forma significativa. Entende-se que o
sistema SLAM não é preciso no ambiente em questão, já que as features identificadas em um
frame mudam de posição no frame seguinte.

Segundo os dados quantitativos, a hipótese de que sequências com plantio em estágio
menos avançados de crescimento teriam melhor desempenho não pôde ser exatamente confirmada.
Devido ao dinamicismo do ambiente agrícola, desde que existam folhas na frente do robô, oclusões
serão frequentes e o sistema de SLAM provavelmente falhará, independente do estágio. Assim,
supõe-se que sistemas SLAM podem funcionar melhor em cenários agrícolas onde não há presença
de longas folhas nas plantas.
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4 DETECTOR DE OBJETOS

A partir dos resultados pouco promissores com a aplicação direta de SLAM, buscou-se
desenvolver algoritmos que pudessem auxiliar na sua aplicação para o ambiente agrícola.

Como argumentado na Seção 3.2, sistemas dinâmicos violam o princípio de ambientes
estáticos, que é a base de sistemas SLAM. Com o objetivo de mitigar esse problema, decidiu-se
por construir um detector de objetos utilizando Deep Learning, aderindo a direção apontada pela
literatura (XIAO et al., 2019).

Um detector de objetos consiste em um modelo capaz de predizer caixas ao redor dos
objetos alvo. Para esta tarefa, definiu-se o objeto alvo como a parte superior das plantas, supondo
que elas sejam a parte mais dinâmica capturada pela câmera. Assim, posteriormente, poderia-se
remover os pontos da etapa descrita na Seção 3.1.1 que estivessem dentro das detecções do
modelo.

4.1 Deep Learning

O primeiro passo para desenvolver esse detector foi buscar um entendimento básico sobre
redes neurais. Para isso, utilizou-se de alguns cursos de Deep Learning oferecidos na plataforma
online Coursera (COURSERA, 2021) pela organização DeepLearning.AI (DEEPLEARNING.AI,
2021a).

Realizou-se três cursos teóricos pertencentes ao “Programa de Cursos Integrados sobre
Aprendizagem Profunda”, sendo eles: “Neural Networks and Deep Learning”, “Improving Deep
Neural Networks: Hyperparameter Tuning, Regularization and Optimization” e “Convolutional
Neural Networks” (DEEPLEARNING.AI, 2021c). A seguir, parte dos conhecimentos obtidos são
explicados.

4.1.1 Conhecimentos básicos

Na construção de algoritmos tradicionais, informações de entrada e o estabelecimento de
regras são essenciais para obter os resultados esperados. No entanto, os programas que envolvem
aprendizado de máquina se baseiam em um outro paradigma: as regras que regem o conjunto
de dados em questão não é conhecido. Nessa abordagem, o programa recebe informações de
entrada e aquelas esperadas como saída e é responsável por entender como esses dois conjuntos
se relacionam (Figura 13). Além disso, busca generalizar as relações encontradas para possibilitar
a análise futura de dados desconhecidos.

A unidade básica de processamento em uma rede neural é chamada de neurônio (também
chamado de “perceptron”), cujo nome é proveniente da inspiração biológica para a técnica de
aprendizado aqui descrita. Todo neurônio é ligado a um conjunto de dados de entrada. No
treinamento da rede, cada exemplo desse grupo de informações já está associado a uma resposta
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Figura 13 – Diferenças entre programação tradicional e aprendizado de máquina

Fonte: Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep
Learning (DEEPLEARNING.AI, 2021b) (adaptado pelo autor)

esperada. Em uma aplicação de classificação de imagens, por exemplo, o conjunto de dados é
composto por várias figuras diferentes, com suas respectivas classes já anotadas separadamente.

Seja A[0] a matriz de dados de entrada de dimensões n0 × m, onde n0 é o número de
informações por exemplo e m é o número de exemplos do conjunto de dados em questão. A ela,
é aplicada uma operação linear através das matrizes de parâmetros treináveis W [1] (dimensões
n1 × n0) e B[1] (dimensões n1 × 1), onde n1 é o número de neurônios da primeira camada. A
Equação 4.1 mostra a expressão para Z [1], resultado da operação descrita. Vale ressaltar que,
da forma apresentada, está implícita uma técnica chamada de broadcasting, na qual a soma
da matriz B[1] é feita coluna a coluna. Apesar da notação não ser matematicamente precisa,
é frequentemente utilizada na sintaxe de linguagens de programação e por isso, será utilizada
durante esta seção.

Z
[1]
n1×m = W

[1]
n1×n0A

[0]
n0×m +B

[1]
n1×1 (4.1)

Em seguida, o resultado da Equação 4.1 é aplicado em uma função de ativação, não linear
(representada por g(z)). Esse passo é muito importante, já que permite que a rede neural aprenda
padrões complicados presentes no relacionamento entre os dados de entrada e saída. Existem
vários tipos como Sigmoid, Tanh, ReLU e Leaky ReLU. Uma das mais utilizadas é a função
ReLU, cuja expressão é dada pela Equação 4.2 (aplicada em cada elemento da matriz Z). Em um
modelo de rede, pode-se adotar diferentes funções de ativação para diferentes camadas.

g(z) = max(0, z) (4.2)

A aplicação da função de ativação em todos os elementos da matriz Z [1] produz a matriz
A[1], que é efetivamente a saída da primeira camada da rede. Em uma Rede Completamente
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Conectada (FNC, “Fully Connected Layer”), a saída de cada neurônio de uma camada anterior
está ligada à subsequente. Dessa forma, pode-se generalizar as Equações 4.1 e 4.2 de forma a
obter as Equações 4.3 e 4.4, para toda camada L.

Z
[L]
nL×m = W

[L]
nL×n(L−1)A

[L−1]
n(L−1)×m +B

[L]
nL×1 (4.3)

A[L] = g(Z [L]) = maxZ(0, z) (4.4)

Os resultados de uma rede são comparados às informações presentes no dataset de treino
para uma determinada tarefa. Para medir o quanto os dados estão condizentes com aqueles
esperados, é utilizada uma função de erro específica. Para realizar a classificação de dados em
apenas duas conjuntos (também chamado de Logistic Regression, “Regressão Logística” em
tradução livre), pode-se utilizar a função de erro E(ŷ, y) descrita na Equação 4.5. A variável ŷ
representa o resultado da rede, enquanto que a variável y o valor esperado. Quanto mais ŷ se
aproxima de y (que pode assumir os valores 0 ou 1), menor é o valor da função E. Vale ressaltar
que a Equação 4.5 é específica para a tarefa em questão e pode variar para cada problema.

E(ŷ, y) = −(ylog(ŷ) + (1 − y)log(1 − ŷ)) (4.5)

Através das Equações 4.3 e 4.4, pode-se deduzir analiticamente (através do cálculo de
derivadas) qual é o impacto de cada parâmetro na função de custo para cada exemplo do dataset.
Esse processo é chamado de backpropagation (“propagação reversa”, em tradução livre) e é aliado
a uma técnica de otimização global. Uma representação hipotética da função de erro (onde os
eixos x e y seriam possíveis parâmetros) está retratada na Figura 14, onde é possível identificar
visualmente vários mínimos locais. O objetivo é encontrar os valores de parâmetros em um espaço
vetorial com muitas dimensões, que geram o menor erro médio global possível da rede.

Um dos métodos de otimização de parâmetros é chamado de Stochastic gradient descent
(“Descida gradiente estocástica”, em tradução livre). Seja dwp e dbp as derivadas da função E
em relação aos respectivos p-ésimos parâmetros. A atualização dos parâmetros em questão é
realizada de acordo com as Equações 4.6, onde α é a taxa de aprendizado, um hiperparâmetro
ajustado manualmente.

wp = wp − αdwp

bp = bp − αdbp

(4.6)

Um outro algoritmo de otimização é chamado de Gradient descent with momentum
(“Descida gradiente com momento”, em tradução livre). A intenção desse método é de diminuir as
possíveis oscilações no treinamento dos parâmetros em busca do mínimo custo global e procurar
aumentar o impulso nessa direção. Para isso, duas novas variáveis são computadas, dadas pelas
Equações 4.7, onde β1 é um hiperparâmetro definido manualmente.
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Figura 14 – Função de erro hipotética

Fonte: Everything You Need to Know about Gradient Descent Applied to Neural Networks (DURáN,
2019)

Vdw = β1Vdw + (1 − β1)dw

Vdb = β1Vdb + (1 − β1)db

(4.7)

A atualização iterativa dos parâmetros é feito de forma diferente, segundo as Equações
4.8.

wp = wp − αVdw

bp = bp − αVdb

(4.8)

Um dos métodos de otimização mais utilizados em diversas aplicações diferentes de redes
neurais é chamado de Adam. Nele, o conjunto de Equações 4.7 é utilizado juntamente com outras
duas variáveis, definidas nas Equações 4.9, onde β2 é outro hiperparâmetro escolhido.

Sdw = β2Sdw + (1 − β2)d2
w

Sdb = β2Sdb + (1 − β2)d2
b

(4.9)

Os parâmetros são atualizados a cada iteração t de acordo com o conjunto de Equações
4.10.
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wp = wp − α
Vdw√
Sdw

√
(1 − βt

2)
(1 − βt

1)

bp = bp − α
Vdw√
Sdw

√
(1 − βt

2)
(1 − βt

1)

(4.10)

4.1.2 Redes Neurais Convolucionais

Durante o desenvolvimento das arquiteturas de Deep Learning, percebeu-se que, no
trabalho com imagens, a utilização exclusiva de FNC (“Fully Connected Layers” - “Camadas
Completamente Conectadas” em tradução livre) se mostra menos eficiente para o processamento
de figuras tanto analisando os resultados quanto o esforço computacional necessário.

A alternativa foi utilizar uma nova operação: a convolução, que é baseada na utilização de
filtros (também chamados de kernel). Estes são matrizes com dimensões bem menores que as da
imagem, desenvolvidos para ressaltar alguma característica. Dessa forma, exemplos clássicos de
filtros são aqueles capazes de detectar linhas verticais ou linhas horizontais, utilizados em métodos
de Visão Computacional. No contexto da aplicação de redes neurais, o conteúdo das matrizes
não é desenvolvido manualmente, mas é aprendido automaticamente através do treinamento da
rede. Ou seja, o algoritmo é quem “decide” quais são as características relevantes para que o seu
resultado seja compatível com aquele esperado.

4.1.2.1 Operação de convolução

A convolução é um processo que se utiliza de várias multiplicações entre os valores da
imagem e do kernel. Suponha que exista uma imagem de dimensões 5x5 e pretende-se aplicar
um filtro de dimensões 3x3. Os valores das células do filtro são multiplicados um a um com seus
correspondentes da imagem e somados, gerando uma nova matriz que, se interpretada como
outra imagem, tem características importantes ressaltadas. Esse processo está retratado de forma
simplificada na Figura 15.

Nela, pode-se perceber quatro das etapas da convolução. Na matriz “Imagem”, os números
maiores representam a intensidade dos pixels, enquanto que os menores (localizados no canto
inferior direito), representam os valores do kernel. A soma de todas as multiplicações em cada
etapa geram os números retratados na matriz “Resultado”. Vale ressaltar que os números utilizados
não representam uma imagem real e foram escolhidos apenas para demonstração.

Essa operação, apesar de extrair características relevantes da imagem, tem o efeito colateral
de a diminuir, impedindo sua utilização consecutiva. Esse problema pode ser resolvido utilizando
uma técnica adicional, chamada de padding (“preenchimento”, em tradução livre). A ideia é
preencher as bordas da imagem com valores nulos de forma que o processo de convolução não
diminua os mapas de características em redes profundas.
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Figura 15 – Demonstração de quatro passos da operação de convolução

Fonte: A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way (SAHA,
2018) (adaptado pelo autor)

Duas formas são comumente utilizadas para se referir à aplicação de padding. A primeira
é chamada de “valid”, que significa que nenhum preenchimento será realizado e algumas células
do mapa de característica podem ser ignoradas. A segunda é chamada de “same”, que busca
realizar o preenchimento de forma igual em todos os lados da imagem. Se alguma das dimensões é
ímpar, mais uma dimensão de valores nulos é criada, para o aproveitamento de toda a informação
disponível durante a passagem do filtro.

A aplicação de same padding está mostrada na Figura 16, na qual o preenchimento está
representado pelos quadrados pontilhados, a imagem pelos quadrados em azul, o resultado da
operação, em verde, e a sombra mostra onde o kernel está sendo utilizado a cada passo. No caso,
é aplicado um filtro 3x3 em uma imagem 5x5 e o resultado também é um mapa de características
com dimensões 5x5.

Por fim, há também a possibilidade de aplicar filtros utilizando padrões diferentes de
espaçamento. A essa característica se dá o nome de stride (traduzido para “passo largo”). Nas
Figuras 15 e 16, o valor do stride é 1, já que o filtro se desloca apenas uma célula em uma
dimensão a cada passo. Na Figura 17, são apresentados três passos de uma convolução com stride
igual a 2 e padding igual a 1. De fato, entre consecutivos passos, o kernel se movimenta duas
células da imagem. Vale ressaltar que o resultado da operação é menor do que a imagem, já que
a passagem do filtro é “menos detalhista”.
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Figura 16 – Operação de convolução com utilização de padding

Fonte: A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way (SAHA,
2018) (adaptado pelo autor)

Figura 17 – Operação de convolução com utilização de stride e padding

Fonte: A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way (SAHA,
2018) (adaptado pelo autor)

O processo de convolução pode ser realizado com (ou sem) a inclusão das técnicas de
padding e stride, se tornando uma escolha de modelagem durante o projeto da rede. É possível
prever, no entanto, qual será o tamanho da resposta de uma convolução conhecendo os parâmetros
desejados.

Seja n × n as dimensões da imagem na qual será a aplicada a convolução e f × f as
dimensões do filtro. Além disso, seja p o valor de padding e s o valor de stride aplicados, o mapa
de características resultante da operação terá dimensões r × r, onde r é dado pela Equação 4.11.

r = n+ 2p− f

s
+ 1 (4.11)

Por fim, a convolução é uma operação que pode ser aplicada em volumes. Isso é útil
principalmente ao considerar imagens coloridas, que possuem canais registrando a intensidade
dos pixels para cada cor. No caso de imagens RGB, existem três canais distintos para cores:
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Figura 18 – Demonstração de três passos da operação pooling

Fonte: A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way (SAHA,
2018) (adaptado pelo autor)

vermelho, verde e azul e, portanto, sua “terceira dimensão” é igual a 3.

A aplicação de um filtro em uma camada de convolução deve satisfazer uma regra: a
terceira dimensão do kernel aplicado deve ser ser igual ao da camada anterior, seja ela uma
imagem ou um mapa de características resultante de outra convolução. A terceira dimensão da
saída de uma camada deste tipo é o número de filtros aplicados. Ou seja, se forem aplicados 5
filtros, a camada resultante terá dimensões r × r × 5.

4.1.2.2 Operação de pooling

Uma operação importante no desenvolvimento de Redes Neurais Convolucionais é cha-
mada de pooling (“junção”, em tradução livre). Na produção de um modelo de Deep Learning,
frequentemente é necessário diminuir as camadas para tornar a extração de características mais
robusta e também para acelerar o processo computacional. Para implementar essa ideia são
utilizados filtros, assim como para a operação de convolução e, portanto, a técnica de stride
(explicada na Seção 4.1.2.1) é muito utilizada.

Existem dois tipos de pooling comumente utilizados: max pooling e average pooling. O
primeiro (mostrado na Figura 18) consiste no cálculo do maior valor (máximo) das células
abordadas pelo filtro. O segundo se utiliza da mesma ideia, mas o cálculo feito é de média dos
valores das células incluídas pelo kernel.

Para comparação, seja um mapa de características de dimensões 4 × 4 e um filtro pooling
de tamanho 2 × 2. Utilizando stride igual a 2, obtém-se diferentes resultados com os diferentes
tipos de pooling, como mostrado na Figura 19. Há uma preferência geral dos pesquisadores em
utilizar a versão na qual há o cálculo do máximo valor, ao invés da média.

Vale ressaltar que, no caso da operação de pooling, a aplicação dos filtros não requer treino
de nenhum parâmetro. Isso se deve ao fato de que a aplicação dos mesmos se dá pela obtenção
dos valores máximos ou médios dos dados da camada em questão, sem necessidade de ter algum
aprendizado.
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Figura 19 – Diferenças entre max pooling e average pooling

Fonte: A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way (SAHA,
2018) - tradução livre

4.1.3 Métricas para classificação e detecção

Em uma tarefa de classificação, espera-se que um algoritmo de Deep Learning seja
capaz de avaliar, dentre um conjunto pré-determinado, a qual classe a imagem em questão
predominantemente pertence. A primeira dificuldade é a de transformar os mapas de características
(frequentemente dispostos de forma 2D ou até mesmo 3D) em números que simbolizem as classes de
interesse. Para resolver esse problema, duas ferramentas são utilizadas: “flatten layer” (“camada
de achatamento”, em tradução livre) e softmax layer (“camada softmax”, em tradução livre).

A primeira deles é, na prática, apenas o “enfileiramento” das células de um mapa de
características. Ou seja, os valores armazenados em uma matriz 2D ou 3D são achatadas em um
vetor de uma dimensão. Dessa forma, esses valores podem ou não ser alimentados em camadas
completamente conectadas, gerando processamento adicional que é adotado em alguns modelos.
O essencial é que essa mudança de formato permite que seja utilizada como entrada da camada
softmax, cujo número de neurônios é igual ao número de classes pré-determinadas que se deseja
realizar a classificação.

Softmax é o nome dado para uma função de ativação que é comumente utilizada para
transformar os valores dos mapas de características em probabilidades. Seja n o número de classes
pré-determinadas e z o valor resultante da propagação da rede para cada neurônio da camada
softmax, então o valor de saída ϕ do j-ésimo neurônio é dado pela expressão da Equação 4.12.

ϕj = exp(zj)∑n
i=1 exp(zi)

(4.12)

Através do processo descrito, o processamento convolucional de uma imagem pode ser
traduzido em valores que simbolizam a probabilidade daquela imagem pertencer a certa classe.
Sabendo que uma imagem de entrada faz parte da c-ésima classe, então espera-se que o c-ésimo
neurônio da camada softmax se aproxime o máximo possível de 1, enquanto que os demais fiquem
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Figura 20 – Representação visual do cálculo do índice IoU

Fonte: Intersection over Union (IoU) for object detection (ROSEBROCK, 2016) - tradução livre

Figura 21 – Análise da detecção com base no índice IoU

Fonte: Intersection over Union (IoU) for object detection (ROSEBROCK, 2016) - tradução livre

próximos a 0. A diferença entre o valor resultante e o esperado é contabilizado pela rede neural
para realizar o aprendizado de parâmetros.

Em uma tarefa de detecção de objetos, é necessária uma abordagem diferente. A rede
neural deve ser capaz de elaborar caixas em volta dos objetos da imagem e compará-las com
aquelas disponíveis no dataset de treino. Para realizar essa comparação, é utilizado o índice
IoU - Intersection over Union (“Intersecção sobre União”, em tradução livre), também chamado
de Índice de Jaccard. Como mostrado na Figura 20, ele é dado pela divisão entre a área de
intersecção pela área de união de duas caixas.

Se a área de intersecção for igual a de união, o índice IoU é igual a 1, que indica um
encaixe perfeito entre duas caixas. Se a área de intersecção é nula, significa que o índice também
o é, de forma que as caixas estão completamente isoladas uma da outra. Vale ressaltar que a área
de união nunca é nula, já que só faz sentido aplicar essa métrica com caixas de áreas não nulas.

Um exemplo de análise do índice de Jaccard está retratado na Figura 21. Seja a caixa
verde aquela representada no dataset e a vermelha aquela gerada pela rede neural. Da esquerda
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Figura 22 – Interface da ferramenta CVAT

para direita, existem exemplos cada vez melhores de encaixe e os respectivos valores de IoU. As
caixas com melhores IoU são as escolhidas como resultados da tarefa de detecção de objetos.

4.2 Imagens e construção de dataset

Para o treinamento de um modelo detector de objetos, é necessária a construção de um
dataset rotulado. Nele, deve-se ter imagens (do domínio de aplicação) com anotações indicando
os objetos-alvo. Para esse processo, utilizou-se a ferramenta CVAT (Computer Vision Annotation
Tool, “Ferramenta de Anotação para Visão Computacional”, em tradução livre) (SEKACHEV et
al., 2020). Uma imagem do uso da interface da ferramenta está mostrada na Figura 22.

O dataset final conta com mil imagens rotuladas manualmente a partir dos dados do
robô TerraSentia. Dividiu-se o dataset em duas partes: a primeira possui 750 imagens e foi
utilizada para o treinamento da rede; a segunda possui 250 imagens e foi utilizada para validar
os resultados obtidos.

Vale ressaltar que as 1000 imagens fazem parte de um único vídeo completo gravado pelo
robô TerraSentia. Uma possível melhoria deste projeto é a inclusão de outras situações em que o
robô possa estar exposto como curvas, entradas e saídas de fileiras da cultura. Outra sugestão
é a expansão do dataset para diferentes tipos de plantação, de forma a verificar se apenas um
modelo é necessário para identificar diferentes espécies de plantas.

Na Figura 23, é possível observar uma amostra de algumas imagens da porção de validação
do dataset. Nela, os resultados esperados do projeto estão explicitados com as caixas rosas e
é possível entender o que o termo “porção superior” significa: se refere à região acima da raiz,
próxima do caule principal. A última linha de imagens mostra alguns exemplos da dinamicidade
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Figura 23 – Resultado esperado do detector de objetos

As predições esperadas estão marcadas em rosa

do ambiente agrícola, onde folhas tapam parcialmente a visão da câmera do robô.

4.3 Revisão Bibliográfica de técnicas de Deep Learning para SLAMIDE

Com o dataset desenvolvido, o próximo passo foi definir uma arquitetura para treinar o
detector de objetos. Para isso, realizou-se uma revisão bibliográfica com métodos para SLAMIDE
que utilizam Deep Learning. A seguir, alguns desses métodos serão descritos brevemente.

4.3.1 Dynamic-SLAM

O primeiro método apresentado é chamado de Dynamic-SLAM (XIAO et al., 2019). Para
realização da detecção de objetos, é utilizada a rede neural Single Shot Detector (SSD) (LIU
et al., 2016), cujo modelo está representado na Figura 24. Ele consiste na utilização de duas
operações básicas: convolução e pooling (descritas nas seções 4.1.2.1 e 4.1.2.2, respectivamente).

As primeiras camadas da rede fazem parte uma rede neural pré-treinada, chamada de
VGG-16 (SIMONYAN; ZISSERMAN, 2015). Acima dela, são colocadas mais camadas cujos
resultados são agregados como predições finais da rede - essa estrutura permite que sejam
detectadas características de diferentes tamanhos em relação à imagem. O formato dos objetos é
estabelecido manualmente a partir da definição de proporções para k caixas padrão baseadas nos
objetos que se quer fazer a identificação.

De forma convolucional, os objetos são referenciados pela rede a partir da posição de
seu centro em relação à cada uma das células da imagem. Para cada célula de uma camada
de classificação de tamanho m × n, as k caixas padrões geram pontuações para as c classes
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Figura 24 – Modelo da rede SSD

Fonte: SSD: Single shot multibox detector (LIU et al., 2016) - tradução livre

pré-determinadas mais quatro números que representam o offset da caixa em relação ao centro
do quadrante. Logo, para cada célula, são geradas (c+ 4)kmn saídas.

Em uma rede com tarefas de localização e classificação, ambas são levadas em consideração
para descrever o seu desempenho. Para a primeira, as caixas geradas são comparadas àquelas do
dataset através do índice IoU (Intersection over Union, também chamado de índice de Jaccard).
Para a segunda, o resultado da camada de classificação (softmax) para cada caixa padrão é a
probabilidade do objeto fazer parte de certa classe. O tratamento da saída dessa rede neural está
explicitado na Seção 4.1.3.

Para apenas uma imagem, o método descrito acima realiza a geração de muitas predições
de classificação e localização. Para obter a melhor possível como saída da rede, é realizado um
processo chamado de Non-Maximum Suppresion, no qual apenas as caixas com os maiores índices
(citados anteriormente) são mantidas e as demais, removidas.

4.3.2 Semantic SLAM

O segundo método é chamado de Semantic SLAM. Com esse nome, foram encontrados
dois artigos diferentes que, apesar de apresentarem estratégias diferentes para aplicação de SLAM,
utilizam técnicas parecidas para realização da detecção de objetos. Assim, Zhang et al. (2018)
utiliza a rede neural YOLO, enquanto que Han e Xi (2020a) utiliza uma evolução da mesma,
YOLOv3.

YOLO, descrita por Redmon et al. (2016), é uma sigla para You Only Look Once, “Você
olha apenas uma vez”, em tradução livre. Nessa rede, a imagem é dividida (de forma convolucional)
e, a partir da definição de caixas padrão, os objetos são identificados com apenas uma passada
da imagem pela rede. Seu modelo está representado na Figura 25.

Sua evolução, YOLOv3 (REDMON; FARHADI, 2018), trabalha com detecção de objetos
em múltiplas escalas (assim como a SSD), conectando algumas camadas anteriores da rede a sua
saída. Como mostrado na Figura 26, ela é baseada na rede Darknet53, cuja principal função é de
realizar convoluções e adiar conexões para extrair características da rede. Após a concatenação
de camadas de diferentes tamanhos (19x19, 38x38 e 76x76), as saídas da rede consistem em
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Figura 25 – Modelo da rede YOLO

Fonte: You Only Look Once: Unified, Real-Time Object Detection (Redmon et al., 2016) -
tradução livre

Figura 26 – Modelo da rede YOLOv3

Fonte: YOLOv3: An Incremental Improvement (REDMON; FARHADI, 2018) - tradução livre

resultados de offset das caixas, tamanho das caixas, pontuação para se existe um objeto para
aquela caixa e pontuação para a classificação do objeto em questão.

4.3.3 PSPNet-SLAM

O terceiro método é chamado de PSPNet-SLAM (Han; Xi, 2020b). Ele usa a rede PSPNet
(ZHAO et al., 2017) para realizar uma tarefa um pouco diferente da detecção de objetos. A
PSPNet se propõe a fazer a segmentação semântica das imagens, classificando cada um de seus
pixels em diferentes classes - o modelo está representado na Figura 27. Segundo os autores da
rede, esse método é mais eficiente do que a utilização de uma rede completamente conectada
(FCN, Fully Connected Network).

Ele é baseado em um conjunto de camadas chamado de Pyramid Pooling Module (Módulo
de Pooling Piramidal, em tradução livre). A imagem de entrada é, inicialmente, passada por
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Figura 27 – Modelo da rede PSPNet

Fonte: Pyramid Scene Parsing Network (ZHAO et al., 2017) - tradução livre

uma rede neural convolucional para a extração das caraterísticas mais úteis para classificação
(os autores usam a rede ResNet descrita por He et al. (2016)). Depois, a operação de pooling
é realizada em diferentes padrões, gerando representações de diferentes porções da imagem,
que também passam por operações de convolução para seleção de características. Esse formato
permite a interpretação da imagem em contextos distintos em relação ao seu entorno de forma a
obter melhores resultados.

Em seguida, cada uma das camadas passa por um processo de upsampling utilizando
interpolação bilinear, de forma que a saída da rede tenha as mesmas dimensões que sua entrada.
Os autores ressaltam que o módulo piramidal pode ser alterado (em formato e tamanho) para
obtenção de resultados diferentes. No caso da implementação original, foram utilizadas camadas
de 1x1, 2x2, 3x3 e 6x6.

4.4 Resultados da rede YOLOv3

A partir do trabalho de pesquisa, foi possível iniciar o treinamento de um dos modelos
apresentados na Revisão Bibliográfica. Escolheu-se a arquitetura YOLOv3 por seus resultados
satisfatórios em outros casos de uso e pela facilidade de encontrar implementações prontas.

As Figuras 28 e 29 descrevem o treinamento para o modelo YOLOv3 (REDMON;
FARHADI, 2018). O gráfico da Figura 28 mostra o erro de treinamento, enquanto que o gráfico
da Figura 29 mostra o erro de validação de treinamento. Como esperado, o erro da rede diminuiu
ao longo do processo, convergindo depois de um total de 87 gerações levando à interrupção do
treinamento (“early stopping”).

Passando as imagens do dataset de validação pelo modelo treinado da rede YOLOv3,
obteve-se algumas amostras, compiladas na Figura 30. As caixas rosas representam os rótulos
previamente feitos no dataset e as caixas amarelas representam predições da rede. Estas últimas
apresentam também o resultado de identificação de objetos (pela palavra “Plant”) e um valor,
que representa a confiança em cada predição.

Analisando a Figura 30, duas observações podem ser realizadas. Nos casos (a) e (b), a
rede foi capaz de encontrar bons resultados que não foram manualmente marcados nas caixas
padrões do dataset. Por outro lado, nos casos (c) e (d), a rede não conseguiu encontrar algumas
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Figura 28 – Erro de treinamento para a rede YOLOv3.

Figura 29 – Erro de validação durante o treinamento da rede YOLOv3.



53

Figura 30 – Amostras de saída do modelo treinado

Legenda: (a) e (b) representam boas predições que não marcadas no dataset; (c) e (d) representam
falhas da rede em identificar predições do dataset.

das plantas que foram manualmente marcadas no dataset.

A primeira observação pode ser explicada pelo método de construção do dataset: as
imagens foram manualmente rotuladas por um humano. Ou seja, elas foram subjetivamente
escolhidas - algumas vezes identificando aquelas que estavam mais explícitas e por outras marcando
aquelas que estavam menos explícitas. Portanto, as omissões do dataset são justificadas pelo
próprio método de rotulamento. Surpreendentemente, isso não impediu a rede de generalizar a
informação dos pixels das imagens, ainda gerando bons resultados. Dessa forma, uma possível
melhoria deste projeto é incorporar as predições da rede como rótulos do dataset e retreinar o
modelo, buscando uma melhor otimização.

A segunda observação pode ser explicada pela própria natureza do funcionamento de
uma rede neural. Apesar do treinamento ser capaz de realizar um processo de generalização dos
pesos da rede, não é possível garantir perfeita precisão em imagens que foram apresentadas ao
algoritmo posteriormente. Diferentemente da primeira observação, esse era um resultado esperado
pelo autor e será discutido quantitativamente a seguir.

4.5 Métricas e resultados quantitativos

Usualmente, em uma tarefa de detecção de objetos, a métrica mAP (Mean Average
Precision) é utilizada (YOHANANDAN, 2021). Ela mede o quanto o modelo treinado foi capaz
de ajustar suas predições aos rótulos presentes no dataset. O valor calculado para essa métrica
foi de 65, 70%, um resultado que não descreve o desempenho real da rede, já que nem todas as
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plantas foram explicitadas na rotulagem do dataset.

4.6 Parâmetros obtidos

Assim, para medir a precisão da rede, novas métricas foram desenvolvidas. Em cada uma
das 250 imagens da porção de validação do dataset, o número de caixas padrão (ngt) e o número
de predições da rede (npred) foram medidas manualmente. Além disso, contou-se o número de
“boas predições” (ngpred) e a quantidade destas que coincidiram com as caixas padrões (ngtpred).
O termo “boas predições” tem como fundamento a questão: “essa predição delimita a maioria
dos pixels de uma planta?”.

Com os valores descritos, também é possível definir o “total virtual” de plantas que são
identificáveis em cada frame (nvtotal), considerando o critério humano (rótulos do dataset) e a
generalização alcançada pela rede. Este valor é dado pela Equação 4.13.

nvtotal = ngt + (ngpred − ngtpred) (4.13)

4.7 Definição de métricas

A primeira métrica a ser calculada é a precisão da rede (P), definida como na Equação
4.14. A expressão mede a razão entre o número de boas predições da rede em relação ao total de
predições.

P = ngpred

npred

(4.14)

A segunda métrica é a coincidência da rede (C), definida como na Equação 4.15. A
expressão mede a razão entre o número de predições que coincidem com as caixas padrão com o
total de predições.

C = ngtpred

npred

(4.15)

A terceira métrica é a incoincidência da rede (NC), definida como na Equação 4.16. A
expressão mede a razão entre o número de predições da rede que não coincidem com as caixas
padrão com o total de caixas padrão.

NC = ngt − ngtpred

ngt

(4.16)

A quarta métrica mede a quantidade de predições extras da rede (EB), definida como na
Equação 4.17. A expressão mede a razão entre o número de predições “extras” da rede (ou seja,
que não tinham sido rotuladas no dataset) em relação ao total de predições.

EB = ngpred − ngtpred

npred

(4.17)
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A quinta métrica mede a quantidade de predições extras da rede em relação ao “total
virtual” de plantas (EBOT), definida como na Equação 4.18. A expressão mede a razão entre o
número de predições “extras” da rede em relação ao “total virtual” mencionado.

EBOT = ngpred − ngtpred

nvtotal

(4.18)

4.8 Cálculo das métricas

Calculando a média dos cinco parâmetros para cada imagem do dataset de validação,
obteve-se o resultado das métricas como mostrado na Tabela 2. O prefixo “m” indica a média
dos valores ao longo de todo o dataset de validação.

mAP mP mC mNC mEB mEBOT
65,70% 93,88% 62,61% 25,71% 31,48% 26,18%

Tabela 2 – Valores médios das métricas da rede YOLOv3.

Observando a Tabela 2, é possível observar que a média da precisão do modelo (mP) é
relativamente boa (93, 88%). Mesmo que 62, 61% (mC) das predições coincidam com as caixas
padrão, 31, 48% (mEB) das predições foram boas e não coincidiram com os rótulos do dataset.
Em relação ao “total virtual” de plantas em cada imagem, 26, 18% (mEBOT) das predições não
possuem alguma referência no dataset. No entanto, 25, 71% (mNC) das caixas padrão não foram
identificadas pelo modelo.
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5 ABORDAGEM FINAL

Como explicado na Seção 4, os sistemas dinâmicos violam o princípio de ambientes
estáticos. Ou seja, durante a extração de características, pontos que deveriam pertencer ao
cenário estático se confundem com o movimento de objetos da cena. Após o desenvolvimento do
detector de objetos, outras ideias foram levadas em consideração.

A mais promissora entre elas foi a de melhorar a estratégia de extração de pontos do
ambiente. Ao invés de tentar filtrar a extração de pontos descritores, percebeu-se que poderia-se
extrair a característica mais estável no cenário em questão: os pontos de emergência das plantas. O
ponto de emergência é definido neste projeto como o ponto onde a planta se estende verticalmente
a partir do solo. Na prática, o contato da planta com o solo se dá por uma superfície; o ponto
aqui descrito simplifica essa superfície como um único ponto, por questões práticas.

Mesmo com o movimento das plantas pela ação do vento ou o crescimento ao longo da
safra, o ponto de emergência de cada planta não deve se alterar ao longo do tempo. Vale ressaltar,
porém, que oclusões da câmera devido às folhas (como observado na Seção 3.5) ainda são um
problema persistente, mesmo com essa nova abordagem.

O sistema descrito neste trabalho é parecido àquele desenvolvido para o algoritmo ROW
SLAM (YUAN et al., 2021) e foi inspirado por este. Um diagrama contendo uma visão geral
do detector de pontos de emergência está mostrado na Figura 31. Ele está disponível como um
pacote do framework Robot Operating System (ROS) em um repositório do Github (TOSCHI,
2023).

5.1 Modelo de segmentação

A estratégia básica deste sistema é detectar o solo e os caules das plantas, encontrar
suas representações geométricas e o ponto onde essas representações se intersectam. Assim, a
orientação dos caules é de extrema importância.

Nesse contexto, o detector de objetos apresentado na Seção 4 pode ser melhorado para
uma tarefa diferente: a segmentação semântica (como no modelo PSPNet, apresentado apenas
de forma representativa na Seção 4.3.3). Dessa forma, para encontrar o ponto de emergência,
buscou-se treinar um modelo que classificasse cada um dos pixels da imagem.

5.1.1 Dataset do modelo de segmentação

Algumas sequências de imagens foram divididas em lotes para facilitar a rotulagem
de forma modular. Cada conjunto contém duzentas imagens extraídas de pontos aleatórios e
apresenta características distintas, como estágio de crescimento, situação (entrada, durante ou
saída de uma fileira de cultivo), presença de plantas daninhas e condições de iluminação.

Para rotular os dados, foi utilizada a ferramenta CVAT (Computer Vision Annotation
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Figura 31 – Resumo do sistema

Figura 32 – Uma imagem RGB e sua respectiva máscara de caules. Imagem RGB (esquerda),
máscara de caules (direita)

Tool) (SEKACHEV et al., 2020) também utilizada na Seção 4. O rotulamento foi feito por três
pessoas diferentes: o autor deste trabalho e mais dois membros do DASLab. Ao final do processo,
os rótulos foram revisados para garantir consistência.

Em cada imagem, as instâncias das plantas cultivadas foram anotadas usando polígonos.
A Figura 32 mostra um exemplo de uma imagem RGB anotada e sua máscara correspondente,
onde cada instância de planta cultivada possui uma cor diferente.
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Figura 33 – Treinamento do modelo de segmentação e métricas de validação

5.1.2 Treinamento do modelo de segmentação

O modelo de detecção utiliza a Mask-RCNN (HE et al., 2018), uma arquitetura de
segmentação de máscara de ponta. Ele foi escolhido devido à sua boa precisão e disponibilidade
de implementação usando a biblioteca torchvision (PYTORCH, 2023). O modelo foi treinado
usando pesos de backbone pré-treinados com o conjunto de dados COCO (LIN et al., 2015) e
alcançou 46,7% no conjunto de dados de validação usando a biblioteca de avaliação COCO em
Python (COCODATASET, 2023).

Devido ao processo de rotulagem ser muito demorado, o modelo de segmentação foi
treinado iterativamente com diferentes quantidades de dados até que alcançasse resultados
satisfatórios. O modelo final utilizou 533 imagens, divididas em conjunto de dados de treinamento
(85%) e conjunto de dados de validação (15%).

A Figura 33 mostra a evolução das métricas de treinamento e validação ao longo das
épocas. A biblioteca de avaliação COCO em Python utiliza principalmente duas métricas para
avaliar o detector: a precisão média (AP) e o recall médio (AR). A primeira mede a precisão
das previsões, enquanto a segunda mede o quanto o modelo consegue encontrar os alvos (SHAH,
2023).

5.2 Carregando dados para a pipeline

Para carregar os dados na pipeline, as poses do robô, as imagens RGB e as imagens de
profundidade devem ser sincronizadas. A sincronização é feita iterando sobre os dados menos
frequentes e obtendo os outros dois componentes que têm o carimbo de tempo mais próximo do
primeiro. Os dados são carregados uma vez a cada ciclo da pipeline usando uma estrutura de
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gerador em Python (STRATIS, 2023), evitando problemas de memória.

5.3 Calculando os pontos 3D no eixo de coordenadas da câmera

Existem algumas etapas para realizar a projeção inversa dos caules no espaço tridimensional
do frame global. A primeira etapa é encontrar onde eles estão em cada imagem individual. Se
houver caules na imagem (sem oclusão total), os parâmetros intrínsecos da câmera (fornecidos
pela equipe DASLab) e a imagem de profundidade são usados em conjunto para encontrar os
respectivos pontos 3D no eixo da câmera.

O modelo de segmentação recebe a imagem RGB devidamente carregada e produz máscaras
para cada caule detectado. O modelo também fornece pontuações que representam a confiança
em cada previsão. Depois disso, as máscaras são filtradas pelas suas pontuações, suprimindo as
detecções com pontuações baixas.

Ainda há um problema: algumas detecções representam a mesma instância de caule,
gerando redundância indesejada. Para resolver isso, uma curva média é obtida pela média das
coordenadas X da máscara para cada coordenada Y. Uma linha é ajustada usando os dados da
curva média, aplicando o algoritmo Random Sample Consensus (RANSAC) (INTERNATIONAL,
1981) implementado na biblioteca Sklearn (LEARN, 2023c). A linha é então extrapolada até a
parte inferior da imagem, resultando em um ponto. A coordenada X desse ponto é comparada
com a mesma coordenada das outras máscaras. Se elas estiverem suficientemente próximas, as
detecções são mescladas.

O próximo passo é encontrar o chão na imagem usando limiarização de cores com a
biblioteca OpenCV (OPENCV, 2023a). Primeiro, a imagem RGB é convertida para o espaço de
cores HSV. Depois disso, limites inferiores e superiores são definidos manualmente para cada
canal HSV para corresponder à cor do chão. A imagem é então binarizada, resultando em uma
máscara. Um filtro gaussiano (OPENCV, 2023b) também é aplicado à máscara, removendo
pontos desconectados indesejados.

Com as máscaras para cada caule e o chão, é possível projetar os pontos de volta
para o espaço tridimensional usando informações de profundidade coletadas da câmera estéreo.
Infelizmente, os dados de profundidade possuem ruído que afeta a estimativa do caule. Para
resolver esse problema, é implementado um filtro de profundidade. Para cada máscara de caule,
os dados de profundidade correspondentes são usados para avaliar um histograma com 500 seções.
A distância mais frequente e um número determinado de vizinhos são usados como limites inferior
e superior para recortar as informações de profundidade para essa máscara.

Finalmente, a Equação 5.1 foi usada para realizar a projeção inversa dos pontos, onde z
é a informação de profundidade para um único ponto (em metros) e K é a matriz de câmera
intrínseca. O vetor 2D é escrito em coordenadas homogêneas.
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= z ·K−1 ×


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y

1


2D

(5.1)

Aplicando a Equação 5.1 a cada ponto da máscara 2D, obtemos uma nuvem de pontos
3D para cada caule e para o chão. O próximo passo é construir representações geométricas para
ambos. Para as plantas cultivadas, é necessário um ponto e um vetor para representar a posição
e a orientação do caule, respectivamente. Para o chão, é necessário um ponto e dois vetores para
descrever um plano.

O ponto escolhido para as plantas cultivadas e para o chão é o ponto médio, calculado
pela média de todos os pontos das respectivas nuvens de pontos. Os vetores são obtidos usando
a Análise de Componentes Principais (PCA) (JOLLIFFE; CADIMA, 2016) implementada na
biblioteca Sklearn (LEARN, 2023b). Para as plantas cultivadas, o primeiro componente principal
é o vetor de orientação. Para o plano do chão, os dois primeiros componentes principais são
usados para calcular o vetor normal do plano por meio do produto cruzado entre eles.

Por fim, os pontos emergentes são calculados encontrando a interseção entre as linhas das
plantas cultivadas e o plano do chão usando as Equações 5.2 e 5.3.

d = (p0 − l0) · n
l · n

(5.2)

pem = p0 + d · l (5.3)

Na Equação 5.2, d é o escalar de linha que representa o ponto de interseção, p0 é um
ponto do plano, l0 é um ponto da linha, n é o vetor normal do plano e l é o vetor da linha. Na
Equação 5.3, pem é o vetor do ponto emergente desejado.

Para melhorar o desempenho, a biblioteca Open3D (OPEN3D, 2019) foi utilizada para
realizar o downsampling com voxels. Isso funciona agrupando pontos próximos em voxels e
calculando a média dos pontos dentro de cada voxel ocupado. Para as nuvens de pontos dos
caules e do chão, usou-se uma grade de voxel com tamanhos 5 cm e 1 cm, respectivamente.

5.4 Adicionando informação extrínseca

Uma vez que os pontos emergentes são calculados no sistema de coordenadas da câmera, as
representações geométricas são transformadas para o sistema de coordenadas global adicionando
duas transformações. A primeira é a transformação entre o sistema de coordenadas da câmera e
o sistema de coordenadas do robô - ela é sempre a mesma, dada pela tradução e rotação entre a
câmera e o centro do robô. A segunda é a transformação entre o sistema de coordenadas global e
o sistema de coordenadas do robô, dada pelos dados de pose do EKF.

A Equação 5.4 mostra a expressão usada para transformar um ponto 3D (coordenadas
homogêneas) do sistema de coordenadas da câmera para o sistema de coordenadas global. O t3x1
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é a matriz de translação e R3x3 é a matriz de rotação (calculada com os valores de yaw (ψ), pitch
(θ) e roll (φ) conforme mostrado na Equação 5.5).

w


x/w

y/w

z/w

1


W

=
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01x3 1
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x
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z

1
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C

(5.4)

R3x3 =


cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1



cos(θ) 0 sin(θ)

0 1 0
−sin(θ) 0 cos(θ)



1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

 (5.5)

5.5 Agrupando observações

O processo descrito produz observações 3D dos pontos emergentes, mas não a correlação
entre eles. Esta seção descreve duas abordagens para agrupar as detecções em diferentes instâncias
de caules. A primeira utiliza o algoritmo Simple Online and Realtime Tracking (SORT) (BEWLEY
et al., 2016) e a segunda utiliza um método de agrupamento não supervisionado chamado Density-
based Clustering Algorithm (DBSCAN) (DENG, 2020).

O primeiro método foi testado usando uma implementação em Python desenvolvido por
Bewley (2022). O algoritmo SORT consiste no rastreamento de caixas delimitadoras em diferentes
sistemas de coordenada. Ele utiliza um Filtro de Kalman para cada rastreador, assumindo um
modelo de velocidade constante. No entanto, devido a oclusões, à baixa taxa de quadros da
câmera e à violação do modelo de velocidade constante, este método não obteve bom desempenho
e não foi utilizado na versão final.

O segundo método foi testado utilizando a implementação da biblioteca Sklearn (LEARN,
2023a). Este método agrupa as coordenadas dos pontos emergentes com base em sua proximidade
espacial e requer dois parâmetros para funcionar de forma eficaz. O primeiro parâmetro determina
o número mínimo de pontos necessários para que um grupo seja considerado um cluster válido,
enquanto o segundo parâmetro, denotado por ϵ, especifica a distância máxima que um ponto pode
estar de outros e ainda ser considerado parte do mesmo cluster. Após experimentação, verificou-se
que o uso de um mínimo de 3 pontos e um valor de ϵ de 5 cm produziu melhores resultados. Ao
contrário do primeiro método, a abordagem DBSCAN também é capaz de identificar e remover
outliers.

5.6 Resultados

Em uma pequena sequência, os resultados do método descrito podem ser observados nas
Figuras 34 e 35.
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Figura 34 – Visualização 3D de uma sequência pequena

Figura 35 – Visualização 2D de uma sequência pequena

A Figura 34 mostra a visualização em 3D de uma seção das plantações, onde a cor preta
simboliza outliers, e a Figura 35 mostra uma vista superior de toda a sequência. Em ambas as
figuras, cores não pretas representam instâncias de caules individuais.

Para uma sequência grande, a Figura 36 mostra a vista superior. Nessa figura, é possível
observar que algumas instâncias de caules aparecem dentro da linha de cultivo (retângulo
vermelho), o que não faz sentido na estrutura da cultura. Ao analisar os dados, foi descoberto
que o robô ficou preso por vários segundos na linha de baixo olhando na direção da primeira,
tornando os dados visuais pouco confiáveis.

A Figura 37 mostra os tempos de execução para as partes mais custosas do pipeline
ao obter os resultados mostrados na Figura 36. Os testes foram realizados em uma máquina
equipada com um processador Intel Core i7 e uma GPU GeForce RTX 2070 Mobile.
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Figura 36 – Visualização 2D de uma sequência grande

Legenda: Retângulo vermelho mostra resultados incompatíveis.

Figura 37 – Medidas de tempo para uma sequência grande.

Atualmente, a tarefa mais custosa é a retroprojeção dos caules de milho (rótulo corn_crop_
group), seguida da retroprojeção do plano do solo (rótulo ground_plane). Em média, a abordagem
leva 1,5 segundos para executar uma única iteração de todo o pipeline.

5.7 Possíveis melhorias

Essa abordagem possui algumas dependências críticas nos dados de entrada. Para que
funcione adequadamente, a coleta de dados precisa seguir alguns requisitos. O primeiro é ter
uma estimativa confiável de pose pelo EKF. Algumas sequências de dados fornecidas tiveram
problemas com a convergência do EKF, reduzindo os dados disponíveis para trabalhar. Além
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disso, o problema descrito na Figura 36 pode ser resolvido com um melhor controle do robô
durante a extração de dados. A equipe DASLab planeja obter mais dados levando em consideração
esses detalhes em uma nova oportunidade.

A estimativa dos pontos emergentes pode ser aprimorada melhorando a estimativa do
plano do solo. A segmentação baseada em limiar de cor depende muito de valores arbitrários e
não é geral o suficiente para diferentes casos. Rotulagem de mais imagens pode ser feita para
melhorar o conjunto de dados do modelo de segmentação e encontrar máscaras para o solo. Isso
não prejudicaria o desempenho, pois o modelo já precisa ser executado para a segmentação dos
caules.

O desempenho de tempo também pode ser melhorado abordando a seção de retroprojeção
de maneira diferente. Como descrito aqui, todos os pontos nas máscaras detectadas são calculados
no espaço 3D para gerar uma nuvem de pontos. Utilizar um método de amostragem para selecionar
pontos para a projeção pode ser mais eficaz e requer mais testes. Além disso, algumas partes do
código podem ser refatoradas para usar abordagens vetorizadas, possivelmente alcançando um
tempo de execução mais rápido.





67

6 CONCLUSÃO

Neste trabalho, foi proposto um estudo da aplicação de sistemas SLAM para o meio
agrícola utilizando o robô TerraSentia. A aplicação dessa tecnologia em ambientes dinâmicos
(como o agrícola) ainda é um problema aberto na literatura.

Em um primeiro momento, buscou-se realizar a aplicação direta de um algoritmo SLAM
chamado ORB-SLAM2 em sequências de dados capturadas pelo TerraSentia. Esperava-se que, em
estágios mais avançados de desenvolvimento das plantas, o volume de objetos móveis atrapalhasse
o desempenho do sistema. Essa hipótese não pôde ser confirmada completamente, já que a oclusão
da câmera por esses mesmos objetos (principalmente folhas) forçava a quebra do sistema SLAM.
De toda forma, a autonomia do algoritmo para câmeras monoculares e estéreo foi apenas de
alguns metros para as duas métricas utilizadas, indicando que a aplicação de algoritmos SLAM
de forma direta não parece viável.

Dessa forma, o objetivo trabalho foi transicionado para o desenvolvimento de módulos
auxiliares para SLAM. Partindo do princípio que algoritmos SLAM consideram que o ambiente
está estático durante sua operação, a primeira ideia foi encontrar as regiões da imagem que
provavelmente conteriam os pontos mais dinâmicos: a parte superior das plantas; posteriormente,
esses pontos dinâmicos podem ser removidos para melhorar a consistência do sistema SLAM.
Assim, foi desenvolvido um detector de objetos utilizando técnicas de Deep Learning. O detector
obteve bons resultados nas métricas apresentadas, se tornando satisfatório para uma futura
aplicação juntamente com um algoritmo SLAM.

Por fim, um novo sistema foi desenvolvido com o objetivo de testar mais uma abordagem.
Ao invés de filtrar os pontos detectados pelo algoritmo SLAM, o sistema de percepção poderia
identificar diretamente os pontos mais estáticos da cena: os pontos de emergência das plantas.
Eles são invariáveis com o tempo, já que não mudam com o crescimento das plantas e nem
devem ser suscetíveis à ação do vento. Esse novo sistema contém uma pipeline mais complexa,
envolvendo a projeção de pontos 3D e um modelo de segmentação semântica para a identificação
dos caules com mais precisão.

Entre as futuros trabalhos possíveis para complementar este trabalho, estão:

• Coleta de mais dados com o robô TerraSentia tomando mais cuidados em relação à trajetória

• Rotulagem do solo do ambiente no dataset do detector de pontos de emergência

• Otimização do detector de pontos de emergência para melhorar seu tempo de execução

• Aplicação dos métodos apresentados em conjunto com algoritmos de SLAM

Por fim, pode-se concluir que o objetivo primário deste trabalho foi alcançado através da
finalização de cada um dos objetivos secundários descritos no início deste documento.
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