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RESUMO

Oliveira, L. T. Sistema de deteccao de pontos de emergéncia em campos agricolas
com o rob6 TerraSentia. 2024. 72p. Monografia (Trabalho de Conclusao de Curso) - Escola
de Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2024.

O crescimento da populagdo mundial exige que os métodos e tecnologias empregados na produgao
de alimentos sejam cada vez mais eficientes, produzindo mais com menos espago. A robdtica
autonoma é uma area cada vez mais pesquisada para auxiliar nesse problema. Nesse contexto, o
uso de algoritmos Localizagdo e Mapeamento Simultdneos (LOMAS) ¢ essencial para criar um
mapa e localizar um robd nele. Porém, para ambientes dindmicos (como o agricola), eles ainda
sao um problema aberto na literatura. Este trabalho busca estudar a aplicagao de algoritmos
LOMAS utilizando dados do robo TerraSentia, uma plataforma robdtica desenvolvida pela
Universidade de Sao Paulo e a Universidade de Illinois (Urbana-Champaign). Além da aplicagao
direta de algoritmos LOMAS, este trabalho também propoe médulos auxiliares para melhorar o
desempenho deles no ambiente agricola. A aplicagao direta de LOMAS com os dados obtidas
nao se mostrou promissora. Dentre os médulos propostos, destaca-se os resultados promissores
obtidos com o detector de pontos de emergéncia das plantas, pontos nos quais elas emergem do
solo. Trabalhos futuros também sao propostos para validar em mais profundidade os modulos

juntamente com os algoritmos LOMAS.

Palavras-chave: Agricultura, Percepcao, Deteccao, Robdtica, LOMAS, Visao Computacional,

Deep Learning, Sistemas Embarcados






ABSTRACT

Oliveira, L. T. Emergency point detection system in agricultural fields with the
TerraSentia robot. 2024. 72p. Monografia (Trabalho de Conclusao de Curso) - Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2024.

The growth of the world population demands that the methods and technologies employed in
food production become increasingly efficient, producing more with less space. Autonomous
robotics is an area increasingly researched to assist with this problem. In this context, the use of
Simultaneous Localization and Mapping (SLAM) algorithms is essential for creating a map and
locating a robot within it. However, for dynamic environments (such as agriculture), they remain
an open problem in the literature. This work seeks to study the application of SLAM algorithms
using data from the TerraSentia robot, a robotic platform developed by the University of Sao
Paulo and the University of Illinois (Urbana-Champaign). In addition to the direct application of
SLAM algorithms, this work also proposes auxiliary modules to improve their performance in the
agricultural environment. The direct application of SLAM with the obtained data did not show
promising results. Among the proposed modules, the promising results obtained with the plant
emergence point detector stand out, identifying points where plants emerge from the soil. Future

work is also proposed to validate the modules and the SLAM algorithms in greater depth.

Keywords: Agriculture, Perception, Detection, Robotics, SLAM, Computer Vision, Deep Learn-
ing, Embedded Systems
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1 INTRODUCAO

Em 1798, Thomas Malthus, intelectual iluminista, publicou uma obra chamada “An Essay
on the Principle of Population”. Nesta obra, Malthus afirmou que o crescimento populacional
tinha o formato de uma progressao geométrica, enquanto que o crescimento na producao de
alimentos uma progressao aritmética (ou seja, mais lenta que a primeira). Segundo os malthusianos
modernos, essa é uma dificuldade que nunca podera ser superada. Entretanto, de acordo com o
relatério econdmico do grupo financeiro multinacional Goldman Sachs de 2016 (REVICH et al.,

2016), essa conclusao é precipitada, apesar da andlise ser compativel com a realidade.

O documento considera que a humanidade enfrenta o problema de se sustentar no futuro,
diante da continua expansao no nimero de individuos. Na Figura 1, pode-se verificar que, até
2015, a populagao mundial mostrou um crescimento mais acelerado que a quantidade de hectares
de terra cultivavel. Contudo, de acordo com o estudo, a resposta para o futuro esta no avango

tecnoldgico, com o surgimento de veiculos autonomos e sistemas administrativos inteligentes.

Nesse contexto de necessidade de implementacoes mais sofisticadas para sustento da
vida humana, a agricultura de precisao surgiu como um novo conceito a partir dos anos 80.
O paradigma objetiva o aumento na produtividade e na qualidade dos rendimentos agricolas,
reduzindo os custos. A robética, com sua versatilidade, é considerada uma ferramenta razoavel

nessa conjuntura.

Entretanto, nem todas as tecnologias desenvolvidas para plataformas robéticas em ambi-

Figura 1 — Relacao entre populagdo mundial e a quantidade de terra cultivavel (em hectares)
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entes controlados sao aplicaveis no meio agricola (Gao et al., 2018). Algumas delas se baseiam
em condigOes especificas, que nem sempre sdo satisfeitas em campos e plantacoes. Além disso,
por se tratar de um ambiente consideravelmente mais complexo, uma aplicagao pode utilizar

diversas tecnologias de forma concatenada para obter resultados minimamente interessantes.

1.1 Motivacao

Uma das tecnologias para navegacao autonoma que esta em desenvolvimento nos tultimos 40
anos é a chamada “Simultaneous Localization And Mapping” (SLAM), traduzida por “Localizagao
e Mapeamento Simultaneos” em portugués (SMITH; CHEESEMAN, 1986). Essa ferramenta
propoe a utilizacao de instrumentos para que o rob6 possa entender o ambiente que o circunda e
ser capaz de estimar sua posi¢ao de acordo com seus arredores. As informacgoes do espaco no qual
o robo estd inserido podem ser captadas principalmente por dispositivos como sensores acusticos
ou épticos (como a tecnologia LiDAR, “Light Detection And Ranging”) e cameras (monoculares
ou estéreo) (ZAFFAR et al., 2018). Quando se utilizam sensores visuais, a tecnologia é chamada
especificamente de Visual Simultaneous Localization and Mapping (VSLAM), traduzida por

“Localizagao e Mapeamento Simultineos Visual” (Han; Xi, 2020a).

Os métodos tradicionais de SLAM levam em consideracdo que o ambiente nao se modifica
durante a extracao das caracteristicas, o que nao pode ser assumido na maioria dos ambientes
reais. Na implementacao convencional, o sistema carece de um entendimento abstrato do meio
para diferenciar objetos fixos daqueles que se movem, resultando em erros grosseiros de trajetéria

e podendo ocasionar o colapso do controle de navegagao (Han; Xi, 2020a).

A aplicacao dessa tecnologia em meios com objetos se movimentando comecou em meados
de 2003 e é chamado de “SLAM in Dynamic Environments” (SLAMIDE), traduzido por “Locali-
zacao e Mapeamento Simultaneos em Ambientes Dinamicos”. Os principais desafios sdo: como
definir objetos como dinamicos a partir de pizels planos e como identificar tais objetos. Com base
nos resultados favoraveis da implementacao de Deep Learning no processamento de imagens, esta

foi incorporada por alguns pesquisadores na aplicagdo do SLAMIDE (XTAO et al., 2019).

A principal contribuicao deste projeto é a aplicacao do método descrito por Yuan et al.
(2021). O detector desenvolvido obteve resultados promissores na identificagdo dos pontos de
emergéncia das plantas, a partir da suposi¢ao de que sejam os pontos mais estaticos do cenario
agricola. Os pontos de emergéncia sao definidos como os pontos em que cada uma das plantas
emergem do solo e, portanto, nao mudam com o tempo. Testes extensivos desse detector ainda

precisam ser realizados em conjunto com algoritmos SLAM.

1.2 Objetivos

Em sua concepgao, este projeto teve como objetivo principal o estudo da aplicacao de
SLAM em contextos agricolas, utilizando os dados de uma plataforma robotica. Entretanto,
como é mostrado, a aplicacao de SLAM de forma direta com dados reais nao gerou resultados

satisfatorios. Nesse contexto, o objetivo final do projeto foi alterado para o desenvolvimento de
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algoritmos de percepcao que, futuramente, pudessem ser tteis para complementar algoritmos
de SLAM. O contexto completo dessa pesquisa é descrita nesta monografia, com o intuito de

justificar as decisdes tomadas.

Dessa forma, tendo em vista o contexto e objetivo central do projeto, os seguintes objetivos

secundarios foram realizados:

o Aplicacao de um algoritmo de SLAM com dados reais

» Discussao e analise dos resultados do algoritmo de SLAM

o Implementacao de um detector de objetos usando Deep Learning
« Discussao e andlise dos resultados do detector de objetos

o Implementagdao de uma pipeline de detecgao com segmentagdo de mascaras usando Deep

Learning
o Discussao e andlise final dos resultados da abordagem final
o Discussao comparativa entre métodos

o Proposicao de melhorias e trabalhos futuros

1.3 Organizacao do documento

Este documento é organizado nos seguintes capitulos:
1. Introducgao: introduz o contexto do problema, descreve o problema em si, apresenta o
fluxo de desenvolvimento e define os objetivos do projeto.
2. Plataforma robdtica: descreve a plataforma robética e os dados utilizados no projeto

3. Aplicacao direta de SLAM: apresenta o desenvolvimento e os resultados da aplicagao
direta de SLAM brevemente

4. Detector de objetos: apresenta, explica e justifica sua utilizacao agregado a SLAM.

Também apresenta brevemente os resultados obtidos.

5. Abordagem final: apresenta, explica e justifica sua utilizagdo. Apresenta os resultados

finais obtidos.

6. Conclusao: reflete sobre o trabalho realizado, propoe melhorias e passos futuros.
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2 PLATAFORMA ROBOTICA

O TerraSentia (mostrado na Fig. 2) é um robd de campo de baixo custo, leve e compacto.
Ele foi desenvolvido pelo Distributed Autonomous Systems Laboratory (DASLab), localizado
na Universidade de Illinois (Urbana-Champaign, EUA) e o Laboratério de Robdtica Mdvel
(LabRoM), localizado na Universidade de Sao Paulo (USP, Brasil). Ele foi descrito em Kayacan,
Zhang e Chowdhary (2018) e Higuti et al. (2018) e é projetado para se locomover abaixo do
dossel de uma plantacao. A plataforma possui um minicomputador e pode ser equipada com

diversos sensores (como cdmeras, sensores inerciais e LIDAR).

Figura 2 — Plataforma TerraSentia

Fonte: (EARTHSENSE, 2021)

2.1 Conjunto de dados utilizado

O autor entrou em contato com o DASLab para requisitar dados coletados pela equipe
utilizando o robo TerraSentia. O laboratério gentilmente cedeu um conjunto para fins de pesquisa,

que foram utilizados durante todo o projeto.

Os membros do DASLab coletaram dados durante varios meses no verao de 2022. Eles
customizaram o robd (mostrado na Figura 3) com uma camera ZED2 (STEREOLABS, 2023) e
um receptor GPS RTK. Além disso, mantiveram presente a Inertial Measurement Unit (IMU),
Unidade de Medicao Inercial em tradugao livre. Entre outros tipos de dados, as sequéncias
gravadas continham imagens RGB, imagens de profundidade e a posi¢ao do robd estimada com
um Extended Kalman Filter (EKF) (MEEUSSEN, 2023).

A Figura 3 também mostra o posicionamento dos sensores em relagdo ao robo. Cada um
deles esta representado de acordo com um sistema de coordenadas 3D, contendo uma origem

(representada por um ponto preto com contorno branco) e os eixos x, y e z, representados
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Figura 3 — O robo TerraSentia customizado
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pelas cores vermelha, verde e azul, respectivamente. Vale ressaltar que a IMU esta posicionada
aproximadamente no centro de massa do rob6. Dessa forma, pode-se considerar o centro de

coordenadas do robo como coincidente com o desse sensor.

As sequéncias estavam armazenadas em arquivos SVO (para compressao de alta resolugao)
(STEREOLABS, 2023b), um formato proprietario da empresa StereoLabs (STEREOLABS,
2023). Para descompactar os dados e obté-los como tépicos do Robot Operating System (ROS),
foi utilizado o pacote zed-ros-wrapper (STEREOLABS, 2023a). Para a utilizagao do pacote, é
necessario uma Graphics Processing Unit (GPU) configurada. Para tanto, utilizou-se um notebook
com uma NVIDIA GeForce GTX 1650 (NVIDIA, 2023b) e a API NVIDIA CUDA, na versao
12.2 (NVIDIA, 2023a).

2.2 Robot Operating System (ROS)

Robot Operating System (ROS, traduzido para “Sistema Operacional Robédtico”) (ROBO-
TICS, 2021) é um conjunto de frameworks que auxilia o desenvolvimento de sistemas robéticos.
Ele é utilizado no funcionamento da plataforma TerraSentia e também foi utilizado no desenvol-

vimento deste projeto em diferentes etapas.

Uma das caracteristicas mais notaveis dessa ferramenta é sua capacidade de concretizar a
modularizacao de um sistema. ROS possui um sistema de “nds”, arquivos executaveis que podem
estar desenvolvidos em linguagens distintas. Cada né é responsavel por uma funcao diferente do
robd, facilitando a execucao de tarefas de forma paralela. Uma estrutura de programas chamada
de roscore é responsavel por gerenciar os diferentes nés de um mesmo sistema, além de armazenar

parametros globais, que podem ser consultados por qualquer parte da organizacao.
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Para trocarem dados, os nés utilizam uma estrutura chamada de Tépico ROS. Ele é um
canal de comunicacao entre diferentes partes do robd. Exemplificando, um né responsavel por
fazer a leitura de sensores se inscreve no papel de publicador de um tépico, enquanto que outro,
responsavel pelo tratamento desses dados, se torna assinante do topico, recebendo os dados.
A inscrigdo ou subscricdo a um tépico é informada e gerenciada pelo roscore. Vale ressaltar
que as informagoes sao estruturadas em Mensagens ROS. Assim, uma mensagem pode conter
informacoes como translagao e rotacao do rob6é em varios eixos, que sao enviadas de uma so vez.

Esse processo pode ser visualizado na Figura 4.

Figura 4 — Esquema de comunicagao entre nos utilizando ROS
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Fonte: (ROBERT, 2020) (adaptado pelo autor)

Nesse contexto, um no, responsavel pela recepcao de dados de uma camera, pode publicar
as imagens capturadas através de um topico para um outro, cuja fungao é de realizar algum tipo

de processamento.
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3 APLICACAO DIRETA DE SLAM

A primeira etapa deste projeto consistiu na aplicagdo de um algoritmo de VSLAM
diretamente com as imagens do rob6 TerraSentia. O sistema escolhido para aplicacao foi o
ORB-SLAM 2 (Mur-Artal; Tardés, 2017) para cameras monoculares, por se tratar de um sistema
completo e representativo. Vale ressaltar que esta tecnologia é open-source (Mur-Artal et al.,
2022a), além de também ja ser amplamente utilizada pela comunidade ROS (Mur-Artal et al.,
2022b).

3.1 ORB-SLAM2

O sistema ORB-SLAM2 (Mur-Artal; Tardés, 2017) se trata de uma ferramenta completa
para cameras monocular e stereo. Em relagao ao uso desse sistema para cameras monoculares, seu
predecessor ORB-SLAM (MUR-ARTAL; MONTIEL; TARDOS, 2015) utiliza quase os mesmos
principios e técnicas. Com o objetivo de obter um entendimento de algoritmos SLAM adequado
ao nivel de estudo proposto, o sistema ORB-SLAM foi alvo de uma andlise mais detalhada. Ele é
dividido em cinco etapas diferentes: detecgao, localizacao, mapeamento, relocalizacao e

fechamento de loops. A seguir, cada uma dessas etapas sera descrita brevemente.

3.1.1 Detecgao

A etapa de detecgao é capaz de extrair caracteristicas do ambiente através de descritores
de imagem. Eles procuram identificar atributos de uma imagem, possibilitando a comparacao
com outras imagens. Um exemplo de caracteristica sao os “cantos” presentes no cenario. Compu-
tacionalmente, eles podem ser identificados através da andlise de regides que possuem variacoes

abruptas em relagao as regioes subjacentes (OPENCV, 2022d).

O descritor de imagem utilizado pelo ORB-SLAM é chamado de ORB. Este, por sua vez,
é uma juncao do detector FAST (Features from Accelerated Segment Test) e do descritor BRIEF
(Binary Robust Independent Elementary Features) (OPENCV, 2022¢). O detector FAST realiza a
identificacao de cantos através da analise da intensidade de alguns pixels localizados em uma
circunferéncia em torno de cada ponto da imagem, como mostrado na Figura 5. Além disso, se

utiliza de uma arvore de decisao e supressao dos cantos com menor pontuacao para melhores
resultados (OPENCYV, 2022b).

O descritor BRIEF elege alguns pares de caracteristicas obtidos da imagem e realiza
comparacgoes de intensidade entre eles. Os resultados dessas comparacoes geram vetores de valores
binarios. Dessa forma, duas imagens podem ser comparadas utilizando a distdncia Hamming.
Esta, por sua vez, se trata do nimero de valores diferentes entre dois vetores binarios (OPENCV,
2022a).
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Figura 5 — Funcionamento do descritor FAST
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Figura 6 — Modelo de camera “pinhole”
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3.1.2 Localizacao

A etapa de localizagao consiste na identificacdo da posicao e orientagao da camera em
relacdo as caracteristicas extraidas do cenario. Para isso, o primeiro passo é utilizar um modelo
de projecao dos pontos 3D do mundo real em relagao ao plano da imagem 2D. Para isso, obtém-se
as transformagoes entre eixos de coordenadas do mundo real, da imagem, do sistema adotado
para os pixels e da prépria cAmera (mostrado na Figura 6). Essa relagao é obtida através de
semelhanca de tridngulos, transformagoes de corpo rigido (considerando coordenadas homogéneas)
e corregoes para distor¢oes de cameras (CHEN; CHEN; WANG, 2019).

Um rob6é com um sistema de VSLAM possui um sistema de aquisicao de imagens que
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Figura 7 — Funcionamento do algoritmo de Bundle Adjustment

Xz
® Xs
X /N ;
/,-' 1 f/ [JII’\
5 / I‘I 7" ! \\
YA A
P LY *\: \\\\“ I'\ 5 X ;H \\
Fa - e :
4 4 N - I[i
i I = Pl 2N 4 W
4 \\"\\\ //Zj,r} \/\ ] T 3 \
IO T E: T~ \
4 - /}K\ o \ i \ ;.
7 X I'l S “ =N
Ugy L Wb | b % . \
; 27 5.1 . Frl Ny -
/ /,ﬁ;g/ 1t W \ / »Q:\\@g‘\?éza Wl
VAl \“Eé? el T 1 “Uite B,
Vs> A Usy % o 4 o T
%ﬁ’/’ Ugq Uih %f s S,
: S0

S\ U | 3
G I \"1_6'.},1#{32 e '

Legenda: u;; representa observagoes 2D, X; os pontos no sistema 3D, C; o centro da camera
em diferentes momentos e u;j as re-projecoes em pontos 2D. As linhas cheias representam o
procedimento de projecao e as pontilhadas o de re-projegao. Fonte: (CHEN; CHEN; WANG,
2019)

funciona a uma determinada taxa. Assim, muitos pontos sao obtidos, cada um sendo descritos
pelo sistema ORB, mencionado anteriormente. O processo de relacionar os pontos em diferentes
imagens é chamado de Bundle Adjustment (BA). Ele é responsavel por minimizar o erro entre
as observacoes 2D feitas na imagem capturada e a re-projecao em 2D dos pontos 3D de outras

imagens capturadas anteriormente (mostrado na Figura 7).

Neste algoritmo também é considerada a distdncia Hamming entre os descritores dos

pontos - quanto menor, mais provavel os dois pontos 2D se referem a um mesmo ponto 3D.

3.1.3 Mapeamento

A etapa de mapeamento utiliza de algumas estruturas para seu bom funcionamento. A
primeira delas é a eleigao de frames especificos da camera para serem keyframes (“quadros chave”,
em tradugao livre). Estes sdo os frames que possuem pontos que sustentam o mapa criado - a
utilizacao de todos os disponiveis impossibilitaria o mapeamento de grandes areas por problemas

de memoria. As condigoes para crid-lo exigem que:
1. Mais que 20 frames se passaram desde a tltima relocaliza¢ao (algoritmo executado quando
nao se consegue encontrar a posicao da cdmera a partir dos pontos extraidos);
2. Mais que 20 frames se passaram desde a tltima insercao de um keyframe;
3. O frame candidato precisa ter ao menos 50 pontos detectados;

4. O frame candidato precisa ter 90% menos pontos do que um frame de referéncia.

Para relacionar os keyframes, utiliza-se um grafo chamado de Covisibility Graph (“grafo

de co-visibilidade”, em tradugao livre). Cada né dele simboliza um keyframe e cada aresta é
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ponderada com o nimero de observagoes que sao compartilhadas entre dois keyframes (no minimo
15). Como o Couwisibility Graph pode se tornar muito denso e dificultar a execugdo de outros
algoritmos, utiliza-se também um segundo grafo chamado de Essential Graph (“grafo essencial”,
em tradugao livre). Ele possui o mesmo conceito do primeiro, porém retém nés que sdo conectados

por arestas com peso muito maior que o anterior (em torno de 100 observagoes compartilhadas).

3.1.4 Relocalizacao

A etapa de relocalizagao é realizada transformando o frame atual em uma bag of
words (“bolsa de palavras”, em tradugdo livre) com implementagdo baseada na ferramenta
DBoW2 (GALVEZ-L6PEZ; TARDOS, 2012). As “palavras visuais” sdo uma discretizacao do
espago de descritores (ou seja, exemplos deste), conhecido como vocabulario visual. Ele é criado
previamente ao funcionamento do SLAM ( “off-line”) e pode ser usado em diferentes ambientes, se
o vocabulario criado é geral o suficiente. Para a relocalizagao, é feito um histograma das palavras
visuais nas imagens atuais, buscando identificar qual distribuicao é semelhante para keyframes
ja armazenados. Por escolha dos autores, sao retornados todos os keyframes que possuem uma

pontuacao maior que 75% da melhor encontrada.

3.1.5  Fechamento de loop

A etapa de fechamento de loop é essencial para manter a consisténcia do mapa. O
primeiro passo é detectar keyframes candidatos para este processo. Para isso, é calculado a
similaridade entre a bag of words do keyframe em questdo e de seus vizinhos presentes no
Covisibility Graph. Para aceitar um keyframe candidato, é necessario que sejam encontrados trés
keyframes candidatos conectados no grafo. Dessa forma, é possivel ter varios candidatos a loop se
existem muitos lugares com aparéncia similar ao keyframe analisado. Ao realizar o fechamento de
loop, os nds envolvidos sdo substituidos por arestas. Os pontos do mapa coincidentes sao fundidos
ap0s serem reconhecidos pelo mesmo algoritmo de BA. Por fim, a posi¢do da cadmera é otimizada

através do Essential Graph, distribuindo o erro de fechamento de loop ao longo do grafo.

3.2 Sequéncias utilizadas

Os dados coletados continham imagens de planta¢oes de milho em diferentes estagios de
crescimento. As sequéncias escolhidas para os testes foram obtidas em intervalos entre uma e
duas semanas, localizadas no mesmo campo e na mesma fileira de uma plantagdo de milho. Uma

visualizacao das sequéncias esta mostrada na Figura 8, ordenadas cronologicamente.

E possivel identificar algumas caracteristicas dindmicas do ambiente agricola ao comparar
as sequéncias da Figura 8. A primeira delas é a diferenca de iluminagao, dependendo do clima no
dia da coleta das imagens. Também nota-se a variagdo na presenca de folhas que se estendem em
frente ao robo (tapando parcialmente o campo de visao da cdmera) e que se estendem no chao.
Além disso, a orientagdo da camera se mostra diferente ao longo de uma sequéncia e entre elas,

decorréncia do controle manual utilizado no rob6 para captura dos dados e do terreno irregular.
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Figura 8 — Sequéncias obtidas em uma tunica fileira de milho em crescimento ao longo de 3 meses
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Espera-se que, em estagios mais avancados de crescimento, os algoritmos de mapeamento e
navegacao simultaneos tenham pior desempenho. Isso se deve a maior probabilidade de existéncia
de objetos (como folhas, por exemplo) se deslocando e, portanto, a violagdo a suposicao de
ambientes estaticos se daria em maior grau (como argumentado na Secao 1.1). Para tanto,
foram extraidos resultados para as nove sequéncias apresentadas na Figura 8, com o objetivo de

comparar e verificar essa hipotese.

3.3 Aplicacao do ORB-SLAM 2

Durante as pesquisas, foram encontradas duas diferentes implementagoes para o algoritmo
ORB-SLAM 2. A primeira delas é uma versao standalone (RAULMUR, 2023), desenvolvida pelos
autores do método. A segunda esta integrada como um pacote ROS, chamado de orb_slam2 ros,
e ja inclui alguns exemplos de utilizagdo com diferentes modelos de cAmera (Mur-Artal et al.,
2022b). Esta ultima foi escolhida, ja que facilitou a integragao entre o sistema de descompressao
de dados (citado na Segdo 2.1) e o algoritmo ORB-SLAM 2.

Para a utilizacao do pacote, algumas configuragoes sao necessarias. Elas sdo definidas em
um arquivo XML chamado launch (OPENROBOTICS, 2023b), uma estrutura genérica do ROS
para inicializar diferentes nés com determinados parametros de forma facilitada. Nele, os tépicos
de entrada das imagens do pacote foram remapeados para aqueles que sdo publicados durante a

descompressao do arquivo SVO.

Além disso, habilitou-se o recebimento dos pardmetros intrinsecos da camera pelo pacote

com uma mensagem especializada para isso, a sensor_msgs/Cameralnfo (OPENROBOTICS,
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Figura 9 — Arvore de transformacdes do robé durante a coleta de dados
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2023a). Ela especifica os comprimentos focais e centros principais da cadmera, além do tamanho
em pixels da imagem. Para isso, também foi remapeado o tépico relevante para aquele fornecido

durante a descompressao do arquivo SVO.

Outra informacao necessaria é a localizacdao da caAmera em relagao ao centro do robd -
isso permite obter a posi¢cao do robd com dados obtidos a partir da camera. Para isso, ROS
conta com uma arvore de transformagoes, atualizada a partir de um tépico especifico (“/tf”)
(OPENROBOTICS, 2023d). Assim, é possivel manter registro da relacao entre todos os sistemas
de coordenada do robo e externos a ele (como a origem da odometria ou de um mapa). Essa
informagao também foi gravada durante a coleta de dados (como mostrado na Figura 9) e foi

reproduzida em tempo real durante os testes.

A Figura 9 mostra os principais sistemas de coordenada do sistema. O sistema “base_ link”
estd fixo no robo e representa seu centro; o sistema “zed2 camera__center” representa o centro
da camera ZED?2 e é passada como parametro para o pacote do ORB-SLAM 2. Além disso, o
sistema “map” indica o centro do mapa gerado (a ser atualizado pelo algoritmo de localizagao) e

o sistema “odom” indica a origem da odometria do robd.

3.4 Obtencao de métricas

Para medir o desempenho do algoritmo ORB-SLAM 2, utilizou-se a distancia percorrida
pelo robd até a falha do sistema de localizagao. Para identifica-la, utilizou-se de dois métodos
principais. O primeiro método é a utilizacao da imagem de debug fornecida pelo pacote através
do tépico /slam/debug_image. Esta imagem contém as caracteristicas identificadas a cada frame
da cadmera e também informa visualmente quando o sistema falha. Ambas as situacgoes estao

mostradas nas Figuras 10 e 11.
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Figura 10 — Imagem de debug durante o funcionamento do algortimo
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O segundo método é a verificagao da atualizacao da posicao do robd pelo algoritmo
ORB-SLAM 2 através do tépico /slam/pose (versao stereo) ou do tépico /orb_slam2_mono/pose
(versao monocular). Quando ha falha do sistema de localizacao, a posi¢do do robd nao é mais

atualizada.

Assim, o ponto de inicio para o registro da distancia percorrida acontece assim que o robd
inicia seu movimento e inicializa as primeiras features, como mostrado na Figura 10. O ponto de
finalizacao da medigao ocorre quando a posi¢ao do robo nao ¢ mais atualizada ao ocorrer falha

no sistema de navegagao.

Na avaliacao das sequéncias, trés distancias foram utilizadas. As duas primeiras delas
sdo as distancias percorridas pelo rob6 de acordo com o sistema SLAM monocular e stereo. A
terceira é obtida de acordo com o algoritmo de odometria visual nativo da camera ZED2. Elas
sao calculadas a partir da soma da distancia euclidiana entre as posi¢oes consecutivas do robo
obtidas por ambos os algoritmos (SLAM e Odometria Visual). Para cada sequéncia, 6 medigoes
foram realizadas, exceto no caso onde uma oclusao foi observada logo no inicio da fileira, caso
em que apenas 3 medi¢oes foram realizadas. A média das medi¢oes para cada tipo de sistema e

tecnologia também foi calculada.

Além disso, também utilizou-se a ferramenta RViz (OPENROBOTICS, 2023c) para
realizar uma visualizagdo qualitativa da trajetéria do robo informada pelo sistema SLAM e
pela Odometria Visual da camera ZED2. Ela também esta disponivel como um pacote ROS e é

amplamente utilizada para observacao dos dados de um sistema robético.

3.5 Resultados e discussoes

Ao executar o sistema SLAM com os dados da sequéncia do dia 08 de setembro, os dados

foram visualizados na ferramenta RViz, obtendo a Figura 12.

Em uma analise qualitativa inicial, pode-se perceber pela Figura 12 que a trajetéria
indicada pela odometria visual difere em direcdo do que aquela gerada pelo sistema SLAM.
Apesar disso, ambas sao retilineas e aparentemente coerentes. Supoe-se que o sistema SLAM
gera uma trajetoria que nao esta alinhada em relacao ao eixo de coordenadas fixo na ferramenta
RViz. Entretanto, como as distancias sao calculadas usando a distancia euclidiana entre posi-
¢Oes consecutivas do robd gerada por cada algoritmo, a inclinacdo nao deve afetar os dados

quantitativos.

Ao realizar as medigoes de distdncia de acordo com os métodos descritos nas segoes
anteriores, obteve-se os dados mostrados na Tabela 1. A primeira observacao que ela sugere é que
algumas sequéncias tem distdncias muito curtas (como aquelas indicadas com data em vermelho).
Através de inspecao das sequéncias, observou-se que, nesses casos, a visao da cidmera do robd foi
bloqueada logo no inicio da fileira, impedindo a extracao de features e consequentemente, levando
a falha do sistema SLAM. Além disso, as demais sequéncias eventualmente também falharam

devido a oclusoes, oscilagdoes do robo ou por choque do rob6 com a cultura.
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Figura 12 — Ferramenta RViz durante a execugao do SLAM. O ntimero 1 indica a posi¢ao do
robo (seta vermelha) segundo a Odometria Visual e a pointcloud da cAmera ZED2; o

niumero 2 indica a posigdo do robd (seta rosa) e features (pontos brancos) segundo o
algoritmo SLAM
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Tabela 1 — Distancia média percorrida pelo rob6 até a falha do sistema SLAM. Datas indicadas
em colorido simbolizam oclusoes no inicio da sequéncia

[ZED] [SLAM] [ZED] [SLAM]
Stereo (m) | Stereo (m) | Mono (m) | Mono (m)
20/09 4,74 11,50 0,83 2.24
08/09 10,95 26,06 25,09 22,20
01/09 0,66 1,55 0,50 0,42
15/08 827 19,46 0,79 0,60
04,/08 1,17 2.77 1,43 0,96
21/07 3,36 8,16 2,33 1,16
14/07 2,49 6,11 2,00 1,38
05/07 3,20 7,67 0,98 0,95
29/06 7,15 17,28 4,96 3,37
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E também possivel verificar que o sistema SLAM Stereo possui maior robustez que o
sistema SLAM Monocular. Isso era esperado, j4 que o sistema stereo possui mais informagoes
para obter features, em comparac¢ao com o sistema monocular. Em média, excluindo as sequéncias
com oclusoes logo no inicio, o sistema SLAM Stereo funcionou durante 7,71m (ZED)/18,37m
(SLAM). Em contrapartida, o sistema SLAM Monocular funcionou durante 2,89m (ZED)/2,81m
(SLAM).

Ademais, pode-se verificar que a distancia calculada para o sistema de Odometria Visual
da camera ZED?2 e aquela para o sistema SLAM diferem de forma significativa. Entende-se que o
sistema SLAM nao é preciso no ambiente em questao, ja que as features identificadas em um

frame mudam de posicao no frame seguinte.

Segundo os dados quantitativos, a hipotese de que sequéncias com plantio em estagio
menos avangados de crescimento teriam melhor desempenho nao pdde ser exatamente confirmada.
Devido ao dinamicismo do ambiente agricola, desde que existam folhas na frente do robd, oclusoes
serao frequentes e o sistema de SLAM provavelmente falhara, independente do estagio. Assim,
supde-se que sistemas SLAM podem funcionar melhor em cenarios agricolas onde nao ha presenga

de longas folhas nas plantas.
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4 DETECTOR DE OBJETOS

A partir dos resultados pouco promissores com a aplicagao direta de SLAM, buscou-se

desenvolver algoritmos que pudessem auxiliar na sua aplicacao para o ambiente agricola.

Como argumentado na Sec¢ao 3.2, sistemas dinamicos violam o principio de ambientes
estaticos, que é a base de sistemas SLAM. Com o objetivo de mitigar esse problema, decidiu-se
por construir um detector de objetos utilizando Deep Learning, aderindo a direcao apontada pela
literatura (XIAO et al., 2019).

Um detector de objetos consiste em um modelo capaz de predizer caixas ao redor dos
objetos alvo. Para esta tarefa, definiu-se o objeto alvo como a parte superior das plantas, supondo
que elas sejam a parte mais dindmica capturada pela cAmera. Assim, posteriormente, poderia-se
remover os pontos da etapa descrita na Secao 3.1.1 que estivessem dentro das detecc¢oes do

modelo.

4.1 Deep Learning

O primeiro passo para desenvolver esse detector foi buscar um entendimento bésico sobre
redes neurais. Para isso, utilizou-se de alguns cursos de Deep Learning oferecidos na plataforma
online Coursera (COURSERA, 2021) pela organizacdo DeepLearning. Al (DEEPLEARNING.AT,
2021a).

Realizou-se trés cursos tedricos pertencentes ao “Programa de Cursos Integrados sobre
Aprendizagem Profunda”, sendo eles: “Neural Networks and Deep Learning”, “Improving Deep
Neural Networks: Hyperparameter Tuning, Regularization and Optimization” e “Convolutional
Neural Networks” (DEEPLEARNING.AI 2021c). A seguir, parte dos conhecimentos obtidos sao

explicados.

4.1.1 Conhecimentos bésicos

Na construcao de algoritmos tradicionais, informacoes de entrada e o estabelecimento de
regras sao essenciais para obter os resultados esperados. No entanto, os programas que envolvem
aprendizado de maquina se baseiam em um outro paradigma: as regras que regem o conjunto
de dados em questao nao é conhecido. Nessa abordagem, o programa recebe informacoes de
entrada e aquelas esperadas como saida e é responsavel por entender como esses dois conjuntos
se relacionam (Figura 13). Além disso, busca generalizar as relagoes encontradas para possibilitar

a andlise futura de dados desconhecidos.

A unidade bésica de processamento em uma rede neural é chamada de neurdnio (também
chamado de “perceptron”), cujo nome é proveniente da inspiragao biolégica para a técnica de
aprendizado aqui descrita. Todo neurénio é ligado a um conjunto de dados de entrada. No

treinamento da rede, cada exemplo desse grupo de informagoes ja esta associado a uma resposta
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Figura 13 — Diferencas entre programacao tradicional e aprendizado de maquina

Reg ras .
Programacao
Dados . Tradicional

Respostas

Respostas .
Aprendizado de
Dados . Maquina

Fonte: Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep
Learning (DEEPLEARNING.AI, 2021b) (adaptado pelo autor)

esperada. Em uma aplicacao de classificacdo de imagens, por exemplo, o conjunto de dados é

composto por varias figuras diferentes, com suas respectivas classes ja anotadas separadamente.

Seja Al a matriz de dados de entrada de dimensées ng x m, onde ny é o nimero de
informagoes por exemplo e m é o niimero de exemplos do conjunto de dados em questao. A ela,
é aplicada uma operacdo linear através das matrizes de pardmetros treindveis W (dimensoes
ny x ng) e B (dimensées n; x 1), onde n; é o niimero de neurdnios da primeira camada. A
Equacio 4.1 mostra a expressao para Z, resultado da operacdo descrita. Vale ressaltar que,
da forma apresentada, esta implicita uma técnica chamada de broadcasting, na qual a soma
da matriz BIY é feita coluna a coluna. Apesar da notacdo nao ser matematicamente precisa,
é frequentemente utilizada na sintaxe de linguagens de programacao e por isso, serd utilizada

durante esta secao.

1 1
Z7[11]><m = W7[11]><n0

AL(,)(])Xm + B7[111}><1 (4‘1)

Em seguida, o resultado da Equacgao 4.1 é aplicado em uma funcao de ativagao, nao linear
(representada por g(z)). Esse passo é muito importante, ji que permite que a rede neural aprenda
padroes complicados presentes no relacionamento entre os dados de entrada e saida. Existem
varios tipos como Sigmoid, Tanh, ReLLU e Leaky ReLU. Uma das mais utilizadas é a funcao
ReLU, cuja expressao é dada pela Equagao 4.2 (aplicada em cada elemento da matriz Z). Em um

modelo de rede, pode-se adotar diferentes fungoes de ativacao para diferentes camadas.

g(z) = max(0, 2) (4.2)

1]

A aplicacdo da funcio de ativacdo em todos os elementos da matriz Z! produz a matriz

AN que é efetivamente a saida da primeira camada da rede. Em uma Rede Completamente
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Conectada (FNC, “Fully Connected Layer”), a saida de cada neurdnio de uma camada anterior
esta ligada a subsequente. Dessa forma, pode-se generalizar as Equacoes 4.1 e 4.2 de forma a

obter as Equacoes 4.3 e 4.4, para toda camada L.

L _ [L—1] (L]
ZnLXm - WnLXn(L,l)An@,l)Xm + BnL><1 (43)
Al = g(ZIY = max (0, 2) (4.4)

Os resultados de uma rede sdo comparados as informagoes presentes no dataset de treino
para uma determinada tarefa. Para medir o quanto os dados estdao condizentes com aqueles
esperados, ¢ utilizada uma funcao de erro especifica. Para realizar a classificacdo de dados em
apenas duas conjuntos (também chamado de Logistic Regression, “Regressdo Logistica” em
tradugao livre), pode-se utilizar a fungao de erro E(y,y) descrita na Equagao 4.5. A varidvel ¢
representa o resultado da rede, enquanto que a variavel y o valor esperado. Quanto mais ¢ se
aproxima de y (que pode assumir os valores 0 ou 1), menor é o valor da funcao E. Vale ressaltar

que a Equacao 4.5 é especifica para a tarefa em questao e pode variar para cada problema.

E(9,y) = —(ylog(9) + (1 — y)log(1 — 9)) (4.5)

Através das Equagoes 4.3 e 4.4, pode-se deduzir analiticamente (através do calculo de
derivadas) qual é o impacto de cada parametro na fungao de custo para cada exemplo do dataset.
Esse processo é chamado de backpropagation (“propagagao reversa”, em tradugao livre) e é aliado
a uma técnica de otimizagao global. Uma representagao hipotética da fungao de erro (onde os
eixos X e y seriam possiveis pardmetros) esta retratada na Figura 14, onde é possivel identificar
visualmente varios minimos locais. O objetivo é encontrar os valores de parametros em um espago

vetorial com muitas dimensoes, que geram o menor erro médio global possivel da rede.

Um dos métodos de otimizacao de parametros é chamado de Stochastic gradient descent
(“Descida gradiente estocastica”, em traducao livre). Seja dw, e db, as derivadas da funcao E
em relagdo aos respectivos p-ésimos parametros. A atualizacao dos pardmetros em questao é
realizada de acordo com as Equagoes 4.6, onde « é a taxa de aprendizado, um hiperparametro

ajustado manualmente.

w, = w, — adw,

(4.6)
b, = b, — adb,

Um outro algoritmo de otimizagdo é chamado de Gradient descent with momentum
(“Descida gradiente com momento”; em tradugao livre). A intencao desse método é de diminuir as
possiveis oscilagdes no treinamento dos parametros em busca do minimo custo global e procurar
aumentar o impulso nessa direcdo. Para isso, duas novas variaveis sdo computadas, dadas pelas

Equacgoes 4.7, onde ; é um hiperparametro definido manualmente.
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Figura 14 — Fungao de erro hipotética
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Fonte: Everything You Need to Know about Gradient Descent Applied to Neural Networks (DURAN,
2019)

‘/dw = ﬁl‘/dw + (1 - Bl)dw

(4.7)
Vb = BV + (1 — B1)ds

A atualizacao iterativa dos parametros é feito de forma diferente, segundo as Equacgoes
4.8.

wy = Wy — aVgy (48)
bp = bp — Oé‘/db

Um dos métodos de otimizagao mais utilizados em diversas aplica¢oes diferentes de redes
neurais é chamado de Adam. Nele, o conjunto de Equagoes 4.7 é utilizado juntamente com outras

duas variaveis, definidas nas Equacoes 4.9, onde (5 é outro hiperparametro escolhido.

de - 62de + (1 - 62)6130

(4.9)
Say = BaSap + (1 — Bo)d;

Os parametros sao atualizados a cada iteragao ¢ de acordo com o conjunto de Equagoes
4.10.
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(4.10)

4.1.2 Redes Neurais Convolucionais

Durante o desenvolvimento das arquiteturas de Deep Learning, percebeu-se que, no
trabalho com imagens, a utilizacao exclusiva de FNC (“Fully Connected Layers” - “Camadas
Completamente Conectadas” em tradugao livre) se mostra menos eficiente para o processamento

de figuras tanto analisando os resultados quanto o esfor¢co computacional necessario.

A alternativa foi utilizar uma nova operacao: a convolucao, que é baseada na utilizacao de
filtros (também chamados de kernel). Estes sao matrizes com dimensoes bem menores que as da
imagem, desenvolvidos para ressaltar alguma caracteristica. Dessa forma, exemplos classicos de
filtros sao aqueles capazes de detectar linhas verticais ou linhas horizontais, utilizados em métodos
de Visao Computacional. No contexto da aplicacdo de redes neurais, o contetido das matrizes
nao ¢ desenvolvido manualmente, mas é aprendido automaticamente através do treinamento da
rede. Ou seja, o algoritmo ¢ quem “decide” quais sdo as caracteristicas relevantes para que o seu

resultado seja compativel com aquele esperado.

4.1.2.1 Operacao de convolugao

A convolucao é um processo que se utiliza de varias multiplica¢oes entre os valores da
imagem e do kernel. Suponha que exista uma imagem de dimensoes 5x5 e pretende-se aplicar
um filtro de dimensoes 3x3. Os valores das células do filtro sao multiplicados um a um com seus
correspondentes da imagem e somados, gerando uma nova matriz que, se interpretada como
outra imagem, tem caracteristicas importantes ressaltadas. Esse processo esta retratado de forma

simplificada na Figura 15.

Nela, pode-se perceber quatro das etapas da convolu¢ao. Na matriz “Imagem”, os niimeros
maiores representam a intensidade dos pixels, enquanto que os menores (localizados no canto
inferior direito), representam os valores do kernel. A soma de todas as multiplicagdes em cada
etapa geram os numeros retratados na matriz “Resultado”. Vale ressaltar que os niimeros utilizados

nao representam uma imagem real e foram escolhidos apenas para demonstragao.

Essa operacgao, apesar de extrair caracteristicas relevantes da imagem, tem o efeito colateral
de a diminuir, impedindo sua utilizagdo consecutiva. Esse problema pode ser resolvido utilizando
uma técnica adicional, chamada de padding (“preenchimento”; em tradugao livre). A ideia é
preencher as bordas da imagem com valores nulos de forma que o processo de convolucao nao

diminua os mapas de caracteristicas em redes profundas.
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Figura 15 — Demonstragao de quatro passos da operacao de convolucao
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Fonte: A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way (SAHA,
2018) (adaptado pelo autor)

Duas formas sao comumente utilizadas para se referir a aplicacao de padding. A primeira
é chamada de “valid”, que significa que nenhum preenchimento sera realizado e algumas células
do mapa de caracteristica podem ser ignoradas. A segunda é chamada de “same”, que busca
realizar o preenchimento de forma igual em todos os lados da imagem. Se alguma das dimensdes é
impar, mais uma dimensao de valores nulos ¢ criada, para o aproveitamento de toda a informacao

disponivel durante a passagem do filtro.

A aplicacao de same padding estd mostrada na Figura 16, na qual o preenchimento esta
representado pelos quadrados pontilhados, a imagem pelos quadrados em azul, o resultado da
operacao, em verde, e a sombra mostra onde o kernel estd sendo utilizado a cada passo. No caso,
¢é aplicado um filtro 3x3 em uma imagem 5x5 e o resultado também é um mapa de caracteristicas

com dimensoes H5x5.

Por fim, ha também a possibilidade de aplicar filtros utilizando padroes diferentes de
espagamento. A essa caracteristica se dd o nome de stride (traduzido para “passo largo”). Nas
Figuras 15 e 16, o valor do stride é 1, ja que o filtro se desloca apenas uma célula em uma
dimensao a cada passo. Na Figura 17, sdo apresentados trés passos de uma convolucao com stride
igual a 2 e padding igual a 1. De fato, entre consecutivos passos, o kernel se movimenta duas
células da imagem. Vale ressaltar que o resultado da operacao é menor do que a imagem, ja que

a passagem do filtro é “menos detalhista”.
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Figura 16 — Operacao de convolugdo com utilizacao de padding

Fonte: A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way (SAHA,
2018) (adaptado pelo autor)

Figura 17 — Operacao de convolucao com utilizagao de stride e padding

Fonte: A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way (SAHA,
2018) (adaptado pelo autor)

O processo de convolugao pode ser realizado com (ou sem) a inclusdo das técnicas de
padding e stride, se tornando uma escolha de modelagem durante o projeto da rede. E possivel
prever, no entanto, qual sera o tamanho da resposta de uma convolucao conhecendo os parametros

desejados.

Seja n x n as dimensbes da imagem na qual serd a aplicada a convolucao e f x f as
dimensoes do filtro. Além disso, seja p o valor de padding e s o valor de stride aplicados, o mapa

de caracteristicas resultante da operacao tera dimensoes r x r, onde r é dado pela Equagao 4.11.

o —
r:m+1 (4.11)
s

Por fim, a convolucao é uma operacao que pode ser aplicada em volumes. Isso é tutil
principalmente ao considerar imagens coloridas, que possuem canais registrando a intensidade

dos pizels para cada cor. No caso de imagens RGB, existem trés canais distintos para cores:
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Figura 18 — Demonstragao de trés passos da operacao pooling
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Fonte: A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way (SAHA,
2018) (adaptado pelo autor)

a.0]2.0(3.0

vermelho, verde e azul e, portanto, sua “terceira dimensao” ¢ igual a 3.

A aplicagdo de um filtro em uma camada de convolugao deve satisfazer uma regra: a
terceira dimensao do kernel aplicado deve ser ser igual ao da camada anterior, seja ela uma
imagem ou um mapa de caracteristicas resultante de outra convolucao. A terceira dimensao da
saida de uma camada deste tipo é o niimero de filtros aplicados. Ou seja, se forem aplicados 5

filtros, a camada resultante tera dimensoes r X r X 5.

4.1.2.2 Operacao de pooling

Uma operagao importante no desenvolvimento de Redes Neurais Convolucionais é cha-
mada de pooling (“jungao”, em traducao livre). Na producao de um modelo de Deep Learning,
frequentemente é necessario diminuir as camadas para tornar a extracao de caracteristicas mais
robusta e também para acelerar o processo computacional. Para implementar essa ideia sao
utilizados filtros, assim como para a operacao de convolugao e, portanto, a técnica de stride

(explicada na Secao 4.1.2.1) é muito utilizada.

Existem dois tipos de pooling comumente utilizados: max pooling e average pooling. O
primeiro (mostrado na Figura 18) consiste no célculo do maior valor (méximo) das células
abordadas pelo filtro. O segundo se utiliza da mesma ideia, mas o calculo feito é de média dos

valores das células incluidas pelo kernel.

Para comparagao, seja um mapa de caracteristicas de dimensoes 4 x 4 e um filtro pooling
de tamanho 2 x 2. Utilizando stride igual a 2, obtém-se diferentes resultados com os diferentes
tipos de pooling, como mostrado na Figura 19. H4 uma preferéncia geral dos pesquisadores em

utilizar a versao na qual hé o calculo do maximo valor, ao invés da média.

Vale ressaltar que, no caso da operagao de pooling, a aplicagao dos filtros nao requer treino
de nenhum parametro. Isso se deve ao fato de que a aplicacdo dos mesmos se da pela obtencao
dos valores maximos ou médios dos dados da camada em questdo, sem necessidade de ter algum

aprendizado.
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Figura 19 — Diferencas entre max pooling e average pooling
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Fonte: A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way (SAHA,
2018) - tradugao livre

4.1.3 Meétricas para classificacdo e deteccao

Em uma tarefa de classificagdo, espera-se que um algoritmo de Deep Learning seja
capaz de avaliar, dentre um conjunto pré-determinado, a qual classe a imagem em questao
predominantemente pertence. A primeira dificuldade é a de transformar os mapas de caracteristicas
(frequentemente dispostos de forma 2D ou até mesmo 3D) em ntimeros que simbolizem as classes de
interesse. Para resolver esse problema, duas ferramentas sao utilizadas: “flatten layer” (“camada

de achatamento”, em traducao livre) e softmaz layer (“camada softmax”, em tradugao livre).

A primeira deles é, na pratica, apenas o “enfileiramento” das células de um mapa de
caracteristicas. Ou seja, os valores armazenados em uma matriz 2D ou 3D sdo achatadas em um
vetor de uma dimensao. Dessa forma, esses valores podem ou nao ser alimentados em camadas
completamente conectadas, gerando processamento adicional que é adotado em alguns modelos.
O essencial é que essa mudanca de formato permite que seja utilizada como entrada da camada
softmaz, cujo nimero de neurénios € igual ao niimero de classes pré-determinadas que se deseja

realizar a classificacao.

Softmaz é o nome dado para uma funcao de ativacdo que é comumente utilizada para
transformar os valores dos mapas de caracteristicas em probabilidades. Seja n o niimero de classes
pré-determinadas e z o valor resultante da propagacao da rede para cada neurdnio da camada

softmaz, entao o valor de saida ¢ do j-ésimo neurénio ¢ dado pela expressao da Equacgao 4.12.

exp(z;)

=" 4.12
S exp(=) )

;

Através do processo descrito, o processamento convolucional de uma imagem pode ser
traduzido em valores que simbolizam a probabilidade daquela imagem pertencer a certa classe.
Sabendo que uma imagem de entrada faz parte da c-ésima classe, entao espera-se que o c-ésimo

neurdnio da camada softmaz se aproxime o maximo possivel de 1, enquanto que os demais fiquem
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Figura 20 — Representacao visual do calculo do indice ToU
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Fonte: Intersection over Union (IoU) for object detection (ROSEBROCK, 2016) - tradugdo livre

Figura 21 — Analise da deteccao com base no indice loU

loU: 0.4034 loU: 0.7330 loU: 0.9264
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Fonte: Intersection over Union (IoU) for object detection (ROSEBROCK, 2016) - tradugao livre

proximos a 0. A diferenga entre o valor resultante e o esperado é contabilizado pela rede neural

para realizar o aprendizado de parametros.

Em uma tarefa de deteccao de objetos, é necessaria uma abordagem diferente. A rede
neural deve ser capaz de elaborar caixas em volta dos objetos da imagem e compara-las com
aquelas disponiveis no dataset de treino. Para realizar essa comparacao, ¢ utilizado o indice
IoU - Intersection over Union (“Interseccao sobre Unidao”, em tradugao livre), também chamado
de Indice de Jaccard. Como mostrado na Figura 20, ele é dado pela divisdo entre a drea de

interseccao pela area de uniao de duas caixas.

Se a area de intersec¢ao for igual a de unido, o indice IoU ¢ igual a 1, que indica um
encaixe perfeito entre duas caixas. Se a area de intersecgao é nula, significa que o indice também
o0 é, de forma que as caixas estao completamente isoladas uma da outra. Vale ressaltar que a area

de uniao nunca ¢é nula, ja que s6 faz sentido aplicar essa métrica com caixas de areas nao nulas.

Um exemplo de andlise do indice de Jaccard estd retratado na Figura 21. Seja a caixa

verde aquela representada no dataset e a vermelha aquela gerada pela rede neural. Da esquerda
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Figura 22 — Interface da ferramenta CVAT
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para direita, existem exemplos cada vez melhores de encaixe e os respectivos valores de IoU. As

caixas com melhores IoU sao as escolhidas como resultados da tarefa de deteccao de objetos.

4.2 Imagens e construcdo de dataset

Para o treinamento de um modelo detector de objetos, é necessaria a construgao de um
dataset rotulado. Nele, deve-se ter imagens (do dominio de aplicagdo) com anotagoes indicando
os objetos-alvo. Para esse processo, utilizou-se a ferramenta CVAT (Computer Vision Annotation
Tool, “Ferramenta de Anotacao para Visao Computacional”, em traducao livre) (SEKACHEV et

al., 2020). Uma imagem do uso da interface da ferramenta est4 mostrada na Figura 22.

O dataset final conta com mil imagens rotuladas manualmente a partir dos dados do
robd TerraSentia. Dividiu-se o dataset em duas partes: a primeira possui 750 imagens e foi
utilizada para o treinamento da rede; a segunda possui 250 imagens e foi utilizada para validar

os resultados obtidos.

Vale ressaltar que as 1000 imagens fazem parte de um tnico video completo gravado pelo
robd TerraSentia. Uma possivel melhoria deste projeto é a inclusao de outras situagdes em que o
rob6 possa estar exposto como curvas, entradas e saidas de fileiras da cultura. Outra sugestao
¢é a expansao do dataset para diferentes tipos de plantagao, de forma a verificar se apenas um

modelo é necessario para identificar diferentes espécies de plantas.

Na Figura 23, é possivel observar uma amostra de algumas imagens da porcao de validacao
do dataset. Nela, os resultados esperados do projeto estao explicitados com as caixas rosas e
é possivel entender o que o termo “porgdo superior” significa: se refere a regiao acima da raiz,

préxima do caule principal. A ltima linha de imagens mostra alguns exemplos da dinamicidade
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Figura 23 — Resultado esperado do detector de objetos

As predigbes esperadas estdo marcadas em rosa

do ambiente agricola, onde folhas tapam parcialmente a visdo da cdmera do robd.

4.3 Revisao Bibliografica de técnicas de Deep Learning para SLAMIDE

Com o dataset desenvolvido, o proximo passo foi definir uma arquitetura para treinar o
detector de objetos. Para isso, realizou-se uma revisao bibliografica com métodos para SLAMIDE

que utilizam Deep Learning. A seguir, alguns desses métodos serao descritos brevemente.

4.3.1  Dynamic-SLAM

O primeiro método apresentado é chamado de Dynamic-SLAM (XIAO et al., 2019). Para
realizagdo da deteccao de objetos, ¢ utilizada a rede neural Single Shot Detector (SSD) (LIU
et al., 2016), cujo modelo esté representado na Figura 24. Ele consiste na utilizagao de duas

operagoes bésicas: convolugao e pooling (descritas nas segoes 4.1.2.1 e 4.1.2.2, respectivamente).

As primeiras camadas da rede fazem parte uma rede neural pré-treinada, chamada de
VGG-16 (SIMONYAN; ZISSERMAN, 2015). Acima dela, sdo colocadas mais camadas cujos
resultados sao agregados como predi¢oes finais da rede - essa estrutura permite que sejam
detectadas caracteristicas de diferentes tamanhos em relacao a imagem. O formato dos objetos é
estabelecido manualmente a partir da definicdo de proporgoes para k caixas padrao baseadas nos

objetos que se quer fazer a identificacao.

De forma convolucional, os objetos sdo referenciados pela rede a partir da posi¢ao de
seu centro em relagdo a cada uma das células da imagem. Para cada célula de uma camada

de classificacao de tamanho m X n, as k caixas padroes geram pontuagoes para as ¢ classes



49

Figura 24 — Modelo da rede SSD
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Fonte: SSD: Single shot multibox detector (LIU et al., 2016) - traducao livre

pré-determinadas mais quatro niimeros que representam o offset da caixa em relacao ao centro

do quadrante. Logo, para cada célula, sdo geradas (c 4+ 4)kmn saidas.

Em uma rede com tarefas de localizacao e classificacdo, ambas sao levadas em consideragao
para descrever o seu desempenho. Para a primeira, as caixas geradas sao comparadas aquelas do
dataset através do indice loU (Intersection over Union, também chamado de indice de Jaccard).
Para a segunda, o resultado da camada de classificacao (softmaz) para cada caixa padrao é a
probabilidade do objeto fazer parte de certa classe. O tratamento da saida dessa rede neural esta

explicitado na Se¢ao 4.1.3.

Para apenas uma imagem, o método descrito acima realiza a geragdo de muitas predi¢oes
de classificagao e localizacdo. Para obter a melhor possivel como saida da rede, é realizado um
processo chamado de Non-Mazximum Suppresion, no qual apenas as caixas com os maiores indices

(citados anteriormente) sdo mantidas e as demais, removidas.

4.3.2 Semantic SLAM

O segundo método é chamado de Semantic SLAM. Com esse nome, foram encontrados
dois artigos diferentes que, apesar de apresentarem estratégias diferentes para aplicagdo de SLAM,
utilizam técnicas parecidas para realizagdo da detecgao de objetos. Assim, Zhang et al. (2018)
utiliza a rede neural YOLO, enquanto que Han e Xi (2020a) utiliza uma evolu¢ao da mesma,
YOLOvS3.

YOLO, descrita por Redmon et al. (2016), é uma sigla para You Only Look Once, “Vocé
olha apenas uma vez”, em tradugao livre. Nessa rede, a imagem ¢é dividida (de forma convolucional)
e, a partir da definicao de caixas padrao, os objetos sao identificados com apenas uma passada

da imagem pela rede. Seu modelo esté representado na Figura 25.

Sua evolucao, YOLOv3 (REDMON; FARHADI, 2018), trabalha com detecgao de objetos
em miultiplas escalas (assim como a SSD), conectando algumas camadas anteriores da rede a sua
saida. Como mostrado na Figura 26, ela é baseada na rede Darknet53, cuja principal funcao é de
realizar convolugoes e adiar conexoes para extrair caracteristicas da rede. Apods a concatenacao

de camadas de diferentes tamanhos (19x19, 38x38 e 76x76), as saidas da rede consistem em
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Figura 25 — Modelo da rede YOLO
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Figura 26 — Modelo da rede YOLOv3
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Fonte: YOLOwv3: An Incremental Improvement (REDMON; FARHADI, 2018) - tradugao livre

resultados de offset das caixas, tamanho das caixas, pontuagdo para se existe um objeto para

aquela caixa e pontuacao para a classificacdo do objeto em questao.

4.3.3 PSPNet-SLAM

O terceiro método é chamado de PSPNet-SLAM (Han; Xi, 2020b). Ele usa a rede PSPNet
(ZHAO et al., 2017) para realizar uma tarefa um pouco diferente da detecgao de objetos. A
PSPNet se propoe a fazer a segmentacao semantica das imagens, classificando cada um de seus
pizels em diferentes classes - o modelo esta representado na Figura 27. Segundo os autores da

rede, esse método é mais eficiente do que a utilizacdo de uma rede completamente conectada
(FCN, Fully Connected Network).

Ele é baseado em um conjunto de camadas chamado de Pyramid Pooling Module (M6dulo

de Pooling Piramidal, em tradugao livre). A imagem de entrada é, inicialmente, passada por
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Figura 27 — Modelo da rede PSPNet
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uma rede neural convolucional para a extracao das carateristicas mais uteis para classificacao
(os autores usam a rede ResNet descrita por He et al. (2016)). Depois, a operagao de pooling
é realizada em diferentes padroes, gerando representagoes de diferentes porcoes da imagem,
que também passam por operagoes de convolucao para selecao de caracteristicas. Esse formato
permite a interpretacao da imagem em contextos distintos em relagao ao seu entorno de forma a

obter melhores resultados.

Em seguida, cada uma das camadas passa por um processo de upsampling utilizando
interpolacao bilinear, de forma que a saida da rede tenha as mesmas dimensdes que sua entrada.
Os autores ressaltam que o médulo piramidal pode ser alterado (em formato e tamanho) para
obtencao de resultados diferentes. No caso da implementacao original, foram utilizadas camadas
de 1x1, 2x2, 3x3 e 6x6.

4.4 Resultados da rede YOLOv3

A partir do trabalho de pesquisa, foi possivel iniciar o treinamento de um dos modelos
apresentados na Revisao Bibliografica. Escolheu-se a arquitetura YOLOv3 por seus resultados

satisfatorios em outros casos de uso e pela facilidade de encontrar implementagoes prontas.

As Figuras 28 e 29 descrevem o treinamento para o modelo YOLOv3 (REDMON;
FARHADI, 2018). O gréfico da Figura 28 mostra o erro de treinamento, enquanto que o grafico
da Figura 29 mostra o erro de validacao de treinamento. Como esperado, o erro da rede diminuiu
ao longo do processo, convergindo depois de um total de 87 geracoes levando a interrupg¢ao do

treinamento ( “early stopping”).

Passando as imagens do dataset de validagao pelo modelo treinado da rede YOLOvV3,
obteve-se algumas amostras, compiladas na Figura 30. As caixas rosas representam os rotulos
previamente feitos no dataset e as caixas amarelas representam predicoes da rede. Estas tltimas
apresentam também o resultado de identificacdo de objetos (pela palavra “Plant”) e um valor,

que representa a confianga em cada predicao.

Analisando a Figura 30, duas observagoes podem ser realizadas. Nos casos (a) e (b), a
rede foi capaz de encontrar bons resultados que nao foram manualmente marcados nas caixas

padroes do dataset. Por outro lado, nos casos (c) e (d), a rede nao conseguiu encontrar algumas
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Figura 28 — Erro de treinamento para a rede YOLOvV3.
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Figura 30 — Amostras de saida do modelo treinado

e

Legnda: (a) e (b) representam boas predigoes que ndo marcadas no dataset; (c¢) e (d) representam
falhas da rede em identificar predigoes do dataset.

das plantas que foram manualmente marcadas no dataset.

A primeira observacao pode ser explicada pelo método de construcao do dataset: as
imagens foram manualmente rotuladas por um humano. Ou seja, elas foram subjetivamente
escolhidas - algumas vezes identificando aquelas que estavam mais explicitas e por outras marcando
aquelas que estavam menos explicitas. Portanto, as omissoes do dataset sao justificadas pelo
proprio método de rotulamento. Surpreendentemente, isso ndo impediu a rede de generalizar a
informagao dos pizels das imagens, ainda gerando bons resultados. Dessa forma, uma possivel
melhoria deste projeto é incorporar as predigoes da rede como rotulos do dataset e retreinar o

modelo, buscando uma melhor otimizacao.

A segunda observacao pode ser explicada pela prépria natureza do funcionamento de
uma rede neural. Apesar do treinamento ser capaz de realizar um processo de generalizacao dos
pesos da rede, nao é possivel garantir perfeita precisao em imagens que foram apresentadas ao
algoritmo posteriormente. Diferentemente da primeira observacao, esse era um resultado esperado

pelo autor e serd discutido quantitativamente a seguir.

4.5 Meétricas e resultados quantitativos

Usualmente, em uma tarefa de deteccao de objetos, a métrica mAP (Mean Average
Precision) é utilizada (YOHANANDAN;, 2021). Ela mede o quanto o modelo treinado foi capaz
de ajustar suas predi¢oes aos rétulos presentes no dataset. O valor calculado para essa métrica

foi de 65, 70%, um resultado que nao descreve o desempenho real da rede, j4 que nem todas as
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plantas foram explicitadas na rotulagem do dataset.

4.6 Parametros obtidos

Assim, para medir a precisao da rede, novas métricas foram desenvolvidas. Em cada uma
das 250 imagens da porcao de validacao do dataset, o ntimero de caixas padrao (ng) e o nimero
de predicoes da rede (ny.eq) foram medidas manualmente. Além disso, contou-se o niimero de
“boas predigoes” (ngyreq) € a quantidade destas que coincidiram com as caixas padroes (Ngpred)-
O termo “boas predigoes” tem como fundamento a questao: “essa predicao delimita a maioria

dos pixels de uma planta?”.

Com os valores descritos, também ¢é possivel definir o “total virtual” de plantas que sao
identificdveis em cada frame (nytorar), considerando o critério humano (rétulos do dataset) e a

generalizagao alcancada pela rede. Este valor é dado pela Equacao 4.13.

Noytotal = Mgt + (ngpred - ngtpred) (413)
4.7 Definicao de métricas

A primeira métrica a ser calculada é a precisdo da rede (P), definida como na Equacao
4.14. A expressao mede a razao entre o numero de boas predicoes da rede em relagdo ao total de

predicoes.

p = Mopred (4.14)

Npred

A segunda métrica é a coincidéncia da rede (C), definida como na Equagdo 4.15. A
expressao mede a razao entre o nimero de predi¢des que coincidem com as caixas padrao com o

total de predigoes.

¢ = lotwred (4.15)
Npred

A terceira métrica é a incoincidéncia da rede (NC), definida como na Equagao 4.16. A
expressao mede a razao entre o niumero de predi¢oes da rede que nao coincidem com as caixas

padrao com o total de caixas padrao.

NC = ot~ Tgtpred (4.16)
Ngt

A quarta métrica mede a quantidade de predigoes extras da rede (EB), definida como na
Equagao 4.17. A expressdo mede a razao entre o nimero de predigoes “extras” da rede (ou seja,

que nao tinham sido rotuladas no dataset) em relagao ao total de predigdes.

EB — Ngpred — Ngtpred (417)

Npred
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A quinta métrica mede a quantidade de predi¢oes extras da rede em relagao ao “total
virtual” de plantas (EBOT), definida como na Equagao 4.18. A expressdo mede a razao entre o

numero de predi¢oes “extras” da rede em relacdo ao “total virtual” mencionado.

EBOT = “avred — Natpred (4.18)

Nytotal

4.8 Calculo das métricas

Calculando a média dos cinco parametros para cada imagem do dataset de validacao,
obteve-se o resultado das métricas como mostrado na Tabela 2. O prefixo “m” indica a média

dos valores ao longo de todo o dataset de validacgao.

mAP mP mC mNC mEB | mEBOT
65,70% | 93,88% | 62,61% | 25,71% | 31,48% | 26,18%

Tabela 2 — Valores médios das métricas da rede YOLOv3.

Observando a Tabela 2, é possivel observar que a média da precisao do modelo (mP) é
relativamente boa (93, 88%). Mesmo que 62,61% (mC) das predigoes coincidam com as caixas
padrao, 31,48% (mEB) das predi¢oes foram boas e nao coincidiram com os rétulos do dataset.
Em relagdo ao “total virtual” de plantas em cada imagem, 26, 18% (mEBOT) das predigoes nao
possuem alguma referéncia no dataset. No entanto, 25, 71% (mNC) das caixas padrao nao foram

identificadas pelo modelo.
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5 ABORDAGEM FINAL

Como explicado na Secao 4, os sistemas dindmicos violam o principio de ambientes
estaticos. Ou seja, durante a extracao de caracteristicas, pontos que deveriam pertencer ao
cenario estatico se confundem com o movimento de objetos da cena. Apds o desenvolvimento do

detector de objetos, outras ideias foram levadas em consideracao.

A mais promissora entre elas foi a de melhorar a estratégia de extracao de pontos do
ambiente. Ao invés de tentar filtrar a extracao de pontos descritores, percebeu-se que poderia-se
extrair a caracteristica mais estavel no cenario em questao: os pontos de emergéncia das plantas. O
ponto de emergéncia é definido neste projeto como o ponto onde a planta se estende verticalmente
a partir do solo. Na pratica, o contato da planta com o solo se d&4 por uma superficie; o ponto

aqui descrito simplifica essa superficie como um tnico ponto, por questoes praticas.

Mesmo com o movimento das plantas pela agao do vento ou o crescimento ao longo da
safra, o ponto de emergéncia de cada planta nao deve se alterar ao longo do tempo. Vale ressaltar,
porém, que oclusoes da cadmera devido as folhas (como observado na Se¢ao 3.5) ainda sdo um

problema persistente, mesmo com essa nova abordagem.

O sistema descrito neste trabalho é parecido aquele desenvolvido para o algoritmo ROW
SLAM (YUAN et al., 2021) e foi inspirado por este. Um diagrama contendo uma visdo geral
do detector de pontos de emergéncia esta mostrado na Figura 31. Ele esta disponivel como um
pacote do framework Robot Operating System (ROS) em um repositério do Github (TOSCHI,
2023).

5.1 Modelo de segmentacao

A estratégia basica deste sistema é detectar o solo e os caules das plantas, encontrar
suas representacoes geométricas e o ponto onde essas representagoes se intersectam. Assim, a

orientacao dos caules ¢ de extrema importancia.

Nesse contexto, o detector de objetos apresentado na Secao 4 pode ser melhorado para
uma tarefa diferente: a segmentacao semantica (como no modelo PSPNet, apresentado apenas
de forma representativa na Segdo 4.3.3). Dessa forma, para encontrar o ponto de emergéncia,

buscou-se treinar um modelo que classificasse cada um dos pixels da imagem.

5.1.1 Dataset do modelo de segmentacao

Algumas sequéncias de imagens foram divididas em lotes para facilitar a rotulagem
de forma modular. Cada conjunto contém duzentas imagens extraidas de pontos aleatorios e
apresenta caracteristicas distintas, como estagio de crescimento, situagao (entrada, durante ou

saida de uma fileira de cultivo), presenca de plantas daninhas e condiges de iluminagao.

Para rotular os dados, foi utilizada a ferramenta CVAT (Computer Vision Annotation
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Figura 31 — Resumo do sistema
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Figura 32 — Uma imagem RGB e sua respectiva mascara de caules. Imagem RGB (esquerda),
méascara de caules (direita)

Tool) (SEKACHEV et al., 2020) também utilizada na Secao 4. O rotulamento foi feito por trés
pessoas diferentes: o autor deste trabalho e mais dois membros do DASLab. Ao final do processo,

os rotulos foram revisados para garantir consisténcia.

Em cada imagem, as instancias das plantas cultivadas foram anotadas usando poligonos.
A Figura 32 mostra um exemplo de uma imagem RGB anotada e sua méascara correspondente,

onde cada instancia de planta cultivada possui uma cor diferente.
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Figura 33 — Treinamento do modelo de segmentacao e métricas de validagao
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5.1.2  Treinamento do modelo de segmentacao

O modelo de deteccao utiliza a Mask-RCNN (HE et al., 2018), uma arquitetura de
segmentacao de mascara de ponta. Ele foi escolhido devido a sua boa precisao e disponibilidade
de implementacao usando a biblioteca torchvision (PYTORCH, 2023). O modelo foi treinado
usando pesos de backbone pré-treinados com o conjunto de dados COCO (LIN et al., 2015) e
alcancou 46,7% no conjunto de dados de validacido usando a biblioteca de avaliacaio COCO em
Python (COCODATASET, 2023).

Devido ao processo de rotulagem ser muito demorado, o modelo de segmentacgao foi
treinado iterativamente com diferentes quantidades de dados até que alcancasse resultados
satisfatorios. O modelo final utilizou 533 imagens, divididas em conjunto de dados de treinamento
(85%) e conjunto de dados de validagao (15%).

A Figura 33 mostra a evolugao das métricas de treinamento e validagao ao longo das
épocas. A biblioteca de avaliagago COCO em Python utiliza principalmente duas métricas para
avaliar o detector: a precisao média (AP) e o recall médio (AR). A primeira mede a precisao
das previsoes, enquanto a segunda mede o quanto o modelo consegue encontrar os alvos (SHAH,
2023).

5.2 Carregando dados para a pipeline

Para carregar os dados na pipeline, as poses do robo, as imagens RGB e as imagens de
profundidade devem ser sincronizadas. A sincronizagao é feita iterando sobre os dados menos
frequentes e obtendo os outros dois componentes que tém o carimbo de tempo mais préximo do

primeiro. Os dados sao carregados uma vez a cada ciclo da pipeline usando uma estrutura de
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gerador em Python (STRATIS, 2023), evitando problemas de meméria.

5.3 Calculando os pontos 3D no eixo de coordenadas da camera

Existem algumas etapas para realizar a projecao inversa dos caules no espaco tridimensional
do frame global. A primeira etapa é encontrar onde eles estao em cada imagem individual. Se
houver caules na imagem (sem oclusao total), os pardmetros intrinsecos da cdmera (fornecidos
pela equipe DASLab) e a imagem de profundidade sdo usados em conjunto para encontrar os

respectivos pontos 3D no eixo da camera.

O modelo de segmentacao recebe a imagem RGB devidamente carregada e produz mascaras
para cada caule detectado. O modelo também fornece pontuacodes que representam a confianca
em cada previsao. Depois disso, as mascaras sao filtradas pelas suas pontuagoes, suprimindo as

detecgdes com pontuacoes baixas.

Ainda ha um problema: algumas detecgbes representam a mesma instancia de caule,
gerando redundancia indesejada. Para resolver isso, uma curva média é obtida pela média das
coordenadas X da méscara para cada coordenada Y. Uma linha é ajustada usando os dados da
curva média, aplicando o algoritmo Random Sample Consensus (RANSAC) (INTERNATIONAL,
1981) implementado na biblioteca Sklearn (LEARN, 2023c). A linha é entdo extrapolada até a
parte inferior da imagem, resultando em um ponto. A coordenada X desse ponto é comparada
com a mesma coordenada das outras méscaras. Se elas estiverem suficientemente proximas, as

detecgoes sao mescladas.

O proximo passo é encontrar o chao na imagem usando limiarizacao de cores com a
biblioteca OpenCV (OPENCYV, 2023a). Primeiro, a imagem RGB é convertida para o espago de
cores HSV. Depois disso, limites inferiores e superiores sado definidos manualmente para cada
canal HSV para corresponder a cor do chao. A imagem é entao binarizada, resultando em uma
mascara. Um filtro gaussiano (OPENCYV, 2023b) também ¢é aplicado & méscara, removendo

pontos desconectados indesejados.

Com as mascaras para cada caule e o chao, é possivel projetar os pontos de volta
para o espaco tridimensional usando informacoes de profundidade coletadas da camera estéreo.
Infelizmente, os dados de profundidade possuem ruido que afeta a estimativa do caule. Para
resolver esse problema, ¢ implementado um filtro de profundidade. Para cada méscara de caule,
os dados de profundidade correspondentes sao usados para avaliar um histograma com 500 segoes.
A distancia mais frequente e um nimero determinado de vizinhos sdo usados como limites inferior

e superior para recortar as informacoes de profundidade para essa mascara.

Finalmente, a Equagao 5.1 foi usada para realizar a projecao inversa dos pontos, onde z
é a informacao de profundidade para um tnico ponto (em metros) e K é a matriz de camera

intrinseca. O vetor 2D ¢é escrito em coordenadas homogéneas.
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x
=z- K 'x |y (5.1)
1

3D 2D

Aplicando a Equacao 5.1 a cada ponto da mascara 2D, obtemos uma nuvem de pontos

3D para cada caule e para o chao. O préximo passo é construir representagoes geométricas para
ambos. Para as plantas cultivadas, é necessario um ponto e um vetor para representar a posicao
e a orientacao do caule, respectivamente. Para o chao, é necessario um ponto e dois vetores para

descrever um plano.

O ponto escolhido para as plantas cultivadas e para o chao é o ponto médio, calculado
pela média de todos os pontos das respectivas nuvens de pontos. Os vetores sao obtidos usando
a Andlise de Componentes Principais (PCA) (JOLLIFFE; CADIMA, 2016) implementada na
biblioteca Sklearn (LEARN, 2023b). Para as plantas cultivadas, o primeiro componente principal
¢é o vetor de orientacao. Para o plano do chao, os dois primeiros componentes principais sao

usados para calcular o vetor normal do plano por meio do produto cruzado entre eles.

Por fim, os pontos emergentes sao calculados encontrando a intersecao entre as linhas das

plantas cultivadas e o plano do chao usando as Equagoes 5.2 e 5.3.

B
d = w (5.2)
Pem =Po+d-1 (5-3)

Na Equagao 5.2, d é o escalar de linha que representa o ponto de interse¢ao, p, é um
ponto do plano, 1y é um ponto da linha, n é o vetor normal do plano e 1 é o vetor da linha. Na

Equacao 5.3, p,,, ¢ o vetor do ponto emergente desejado.

Para melhorar o desempenho, a biblioteca Open3D (OPEN3D, 2019) foi utilizada para
realizar o downsampling com voxels. Isso funciona agrupando pontos préximos em voxels e
calculando a média dos pontos dentro de cada voxel ocupado. Para as nuvens de pontos dos

caules e do chao, usou-se uma grade de voxel com tamanhos 5 cm e 1 cm, respectivamente.

5.4 Adicionando informacao extrinseca

Uma vez que os pontos emergentes sao calculados no sistema de coordenadas da camera, as
representacoes geométricas sao transformadas para o sistema de coordenadas global adicionando
duas transformagoes. A primeira é a transformacgao entre o sistema de coordenadas da camera e
o sistema de coordenadas do robo - ela é sempre a mesma, dada pela tradugao e rotagao entre a
camera e o centro do robo. A segunda é a transformacao entre o sistema de coordenadas global e

o sistema de coordenadas do robd, dada pelos dados de pose do EKF.

A Equagao 5.4 mostra a expressao usada para transformar um ponto 3D (coordenadas

homogéneas) do sistema de coordenadas da camera para o sistema de coordenadas global. O ¢z,
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¢é a matriz de translagdo e R3,3 é a matriz de rotacao (calculada com os valores de yaw (1)), pitch

(0) e roll () conforme mostrado na Equagio 5.5).

x/w x
y/w _ [Pz e Rses tan Yy (5.4)
z/w leg 1 WB leg 1 BC z
1 1
W c
cos(v) —sin(yp) 0O | cos(f) 0 sin(f)| |1 0 0
Rsy3 = |sin(v)  cos(vp) 0 0 1 0 0 cos(p) —sin(p) (5.5)
0 0 1| [=sin(0) 0 cos(@)| |0 sin(p) cos(p)

5.5 Agrupando observacoes

O processo descrito produz observagoes 3D dos pontos emergentes, mas nao a correlagao
entre eles. Esta se¢ao descreve duas abordagens para agrupar as detecgoes em diferentes instancias
de caules. A primeira utiliza o algoritmo Simple Online and Realtime Tracking (SORT) (BEWLEY
et al., 2016) e a segunda utiliza um método de agrupamento nao supervisionado chamado Density-
based Clustering Algorithm (DBSCAN) (DENG, 2020).

O primeiro método foi testado usando uma implementagdo em Python desenvolvido por
Bewley (2022). O algoritmo SORT consiste no rastreamento de caixas delimitadoras em diferentes
sistemas de coordenada. Ele utiliza um Filtro de Kalman para cada rastreador, assumindo um
modelo de velocidade constante. No entanto, devido a oclusoes, a baixa taxa de quadros da
camera e a violagdo do modelo de velocidade constante, este método nao obteve bom desempenho

e nao foi utilizado na versao final.

O segundo método foi testado utilizando a implementacao da biblioteca Sklearn (LEARN,
2023a). Este método agrupa as coordenadas dos pontos emergentes com base em sua proximidade
espacial e requer dois parametros para funcionar de forma eficaz. O primeiro parametro determina
o nimero minimo de pontos necessarios para que um grupo seja considerado um cluster valido,
enquanto o segundo parametro, denotado por €, especifica a distancia maxima que um ponto pode
estar de outros e ainda ser considerado parte do mesmo cluster. Apds experimentacao, verificou-se
que o uso de um minimo de 3 pontos e um valor de € de 5 cm produziu melhores resultados. Ao
contrario do primeiro método, a abordagem DBSCAN também é capaz de identificar e remover

outliers.

5.6 Resultados

Em uma pequena sequéncia, os resultados do método descrito podem ser observados nas
Figuras 34 e 35.
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Figura 34 — Visualizagao 3D de uma sequéncia pequena

Figura 35 — Visualizagdao 2D de uma sequéncia pequena
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A Figura 34 mostra a visualizagdo em 3D de uma se¢ao das plantagoes, onde a cor preta
simboliza outliers, e a Figura 35 mostra uma vista superior de toda a sequéncia. Em ambas as

figuras, cores nao pretas representam instancias de caules individuais.

Para uma sequéncia grande, a Figura 36 mostra a vista superior. Nessa figura, é possivel
observar que algumas instancias de caules aparecem dentro da linha de cultivo (retdngulo
vermelho), o que ndo faz sentido na estrutura da cultura. Ao analisar os dados, foi descoberto
que o robo ficou preso por varios segundos na linha de baixo olhando na dire¢cao da primeira,

tornando os dados visuais pouco confidveis.

A Figura 37 mostra os tempos de execugdo para as partes mais custosas do pipeline
ao obter os resultados mostrados na Figura 36. Os testes foram realizados em uma maquina
equipada com um processador Intel Core i7 e uma GPU GeForce RTX 2070 Mobile.
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Figura 36 — Visualizacao 2D de uma sequéncia grande
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Exemplos

Atualmente, a tarefa mais custosa é a retroprojecao dos caules de milho (rétulo corn__crop_
group), seguida da retroprojegao do plano do solo (rétulo ground_plane). Em média, a abordagem

leva 1,5 segundos para executar uma tnica iteracao de todo o pipeline.

5.7 Possiveis melhorias

Essa abordagem possui algumas dependéncias criticas nos dados de entrada. Para que
funcione adequadamente, a coleta de dados precisa seguir alguns requisitos. O primeiro é ter
uma estimativa confidvel de pose pelo EKF. Algumas sequéncias de dados fornecidas tiveram

problemas com a convergéncia do EKF, reduzindo os dados disponiveis para trabalhar. Além
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disso, o problema descrito na Figura 36 pode ser resolvido com um melhor controle do robd
durante a extragao de dados. A equipe DASLab planeja obter mais dados levando em consideragao

esses detalhes em uma nova oportunidade.

A estimativa dos pontos emergentes pode ser aprimorada melhorando a estimativa do
plano do solo. A segmentacao baseada em limiar de cor depende muito de valores arbitrarios e
nao é geral o suficiente para diferentes casos. Rotulagem de mais imagens pode ser feita para
melhorar o conjunto de dados do modelo de segmentagao e encontrar mascaras para o solo. Isso
nao prejudicaria o desempenho, pois o modelo ja precisa ser executado para a segmentacao dos

caules.

O desempenho de tempo também pode ser melhorado abordando a se¢ao de retroprojecao
de maneira diferente. Como descrito aqui, todos os pontos nas mascaras detectadas sao calculados
no espaco 3D para gerar uma nuvem de pontos. Utilizar um método de amostragem para selecionar
pontos para a projecdo pode ser mais eficaz e requer mais testes. Além disso, algumas partes do
cbddigo podem ser refatoradas para usar abordagens vetorizadas, possivelmente alcangando um

tempo de execug¢ao mais rapido.
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6 CONCLUSAO

Neste trabalho, foi proposto um estudo da aplicacao de sistemas SLAM para o meio
agricola utilizando o robd TerraSentia. A aplicagao dessa tecnologia em ambientes dindmicos

(como o agricola) ainda é um problema aberto na literatura.

Em um primeiro momento, buscou-se realizar a aplicagdo direta de um algoritmo SLAM
chamado ORB-SLAM?2 em sequéncias de dados capturadas pelo TerraSentia. Esperava-se que, em
estdgios mais avancados de desenvolvimento das plantas, o volume de objetos méveis atrapalhasse
o desempenho do sistema. Essa hipotese nao pdde ser confirmada completamente, ja que a oclusao
da cAmera por esses mesmos objetos (principalmente folhas) for¢ava a quebra do sistema SLAM.
De toda forma, a autonomia do algoritmo para cameras monoculares e estéreo foi apenas de
alguns metros para as duas métricas utilizadas, indicando que a aplicacao de algoritmos SLAM

de forma direta nao parece viavel.

Dessa forma, o objetivo trabalho foi transicionado para o desenvolvimento de moédulos
auxiliares para SLAM. Partindo do principio que algoritmos SLAM consideram que o ambiente
esta estatico durante sua operacao, a primeira ideia foi encontrar as regioes da imagem que
provavelmente conteriam os pontos mais dinamicos: a parte superior das plantas; posteriormente,
esses pontos dindmicos podem ser removidos para melhorar a consisténcia do sistema SLAM.
Assim, foi desenvolvido um detector de objetos utilizando técnicas de Deep Learning. O detector
obteve bons resultados nas métricas apresentadas, se tornando satisfatério para uma futura

aplicacao juntamente com um algoritmo SLAM.

Por fim, um novo sistema foi desenvolvido com o objetivo de testar mais uma abordagem.
Ao invés de filtrar os pontos detectados pelo algoritmo SLAM, o sistema de percepcao poderia
identificar diretamente os pontos mais estaticos da cena: os pontos de emergéncia das plantas.
Eles sao invaridaveis com o tempo, ja que nao mudam com o crescimento das plantas e nem
devem ser suscetiveis a acdo do vento. Esse novo sistema contém uma pipeline mais complexa,
envolvendo a projegao de pontos 3D e um modelo de segmentagdo semantica para a identificacao

dos caules com mais precisao.

Entre as futuros trabalhos possiveis para complementar este trabalho, estao:

Coleta de mais dados com o rob6 TerraSentia tomando mais cuidados em relagao a trajetoria

Rotulagem do solo do ambiente no dataset do detector de pontos de emergéncia

Otimizacao do detector de pontos de emergéncia para melhorar seu tempo de execugao

Aplicacao dos métodos apresentados em conjunto com algoritmos de SLAM

Por fim, pode-se concluir que o objetivo primario deste trabalho foi alcancado através da

finalizacao de cada um dos objetivos secundarios descritos no inicio deste documento.
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