UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS

Mauricio Garcia Di Mase

Controle via Aprendizado por Reforco

Control via Reinforcement Learning

Sao Carlos

2025

Mauricio Garcia Di Mase

Controle via Aprendizado por Reforco
Control via Reinforcement Learning

Monografia apresentada ao Curso de
Engenharia Elétrica com Enfase em
Eletronica, da Escola de Engenharia de Sao
Carlos da Universidade de Sao Paulo, como
parte dos requisitos para obtenc¢ao do titulo
de Engenheiro Eletricista.

Advisor: Prof. Dr. Marcos Rogério Fernandes

Sao Carlos
2025

Autorizo a reproducao e divulgacdo total ou parcial deste trabalho, por qualguer meio
convencional ou eletrénico, para fins de estudo e pesquisa, desde que citada a fonte.

Ficha catalografica elaborada pela Biblioteca Prof. Sergio Rodrigues Fontes
e pelo Servico de Comunicacdo e Marketing da EESC-USP,
com dados inserides pelo(a) autor(a).

Garclia DI Mase, Maurlcio
=Z lac
Controle via Aprendizado por Reforgo / Mauricio
Garcia Di Mase ; orientador Marcos Rogério Fernandes. —-

Sdoc Carlos, 2025,

70 p.
Monografia - Graduagdo em Engenharia Elétrica com
énfase em Eletrfnica —-- Escola de Engenharia de S3o

Carlos da Universidade de S3oc Paulo, Z025.

-

1. Aprendizado por Reforgo. Z. Engenharia de
Controle. 3. Aprendizado de Magquina. 4. Q-learning. 5.
Actor-Critic. I. Fernandes, Marcos Rogério, orient. IT.

Titulo.

Responsavels pela estrutura de catalogacdo da publicacdo sequndo a AACR2: Bibliotecarios da EESC/USP.

FOLHA DE APROVACAO

Nome: Mauricio Garcia Di Mase

Titulo: “Control via Reinforcement Learning”

Trabalho de Concluséo de Curso defendido e aprovado
em 9]/ /2 IDA5,

com NOTA_/0,0 (Jﬂs Y), pela Comissao
Julgadora:

Prof. Dr. Marcos Rogério Fernandes - Orientador - SEL/EESC/USP

Prof. Dr. Eduardo Fontoura Costa - Professor Associado ICMC/USP

Prof. Dr. Ricardo Augusto Souza Fernandes - SEL/EESC/USP

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Professor Associado José Carlos de Melo Vieira Junior

A Deus Pai todo poderoso, criador do céu e da terra

de todas as coisas visiveis e invisivels.

ACKNOWLEDGEMENTS

A realizacao deste trabalho s6 foi possivel gracas ao apoio de diversas pessoas.

Agradego, em primeiro lugar, ao meu professor orientador, Dr. Marcos Rogério

Fernandes, por me ter introduzido no assunto e por me guiar com paciéncia e empenho.

Agradeco ternamente aos meus pais, que muito insistiram para que eu cursasse

engenharia, disciplina que aprendi a amar.

Agradeco também a todos os meus professores, que contribuiram para minha

formacao académica, e aos colegas que tornaram todo o processo mais agradavel e frutifero.

Finalmente, reservo um agradecimento ao Centro Cultural Boa Vista, pela formagao

moral que tanto contribuiu para que eu pudesse levar este trabalho a cabo com diligéncia.

»Da steh’ ich nun, ich armer Tor!
Und bin so klug als wie zuvor.”

Johann Wolfgang von Goethe

ABSTRACT

DI MASE, M. G. Control via Reinforcement Learning. 2025. 68 p. Monograph
(Conclusion Course Paper) - Escola de Engenharia de Sao Carlos, Universidade de Sao
Paulo, Sao Carlos, 2025.

This work presents a comprehensive review and practical application of Reinforcement
Learning (RL) algorithms in control engineering. The theoretical groundwork of RL is
laid out, establishing its connection to Optimal Control and detailing various algorithms,
including Dynamic Programming (Value Iteration and Policy Iteration), Q-learning (Tab-
ular and Deep Q-Learning/DQN), and Actor-Critic methods (Deep Deterministic Policy
Gradient/DDPG and Twin Delayed Deep Deterministic Policy Gradient/TD3).

The algorithms are first validated by comparing Deep Q-Learning against Dynamic
Programming for a simple discrete Markov Decision Process (MDP) with a small state
space, demonstrating the capability of approximation methods to converge toward the
exact optimal policy, although this is not guaranteed in larger environments. Subsequently,
performance comparisons are conducted between the RL agents (DQN, DDPG, TD3)
and a Linear Quadratic Regulator (LQR) in simulated environments for classic control
systems: the simple pendulum, cart-pole, and rotary pendulum. Results show that while
the LQR is highly effective near the unstable equilibrium point, RL agents, particularly
TD3, demonstrate superior generality for initial conditions farther from the linearization
point. The study also examines learning stability, confirming TD3’s robustness against

Q-value overestimation, a problem observed in DDPG and DQN training.

Finally, a novel hybrid control scheme combining TD3 for non-linear tasks (swing-up) and
LQR for stabilization is proposed and implemented. This hybrid approach demonstrates
a sensible reduction in total cumulative cost, proving particularly effective in the more
complex, non-linear rotary pendulum system. The findings validate RL’s relevance and
potential as a robust alternative for designing controllers for complex, real-world non-linear

systems.

Keywords: Reinforcement Learning. Control Engineering. Machine Learning. Q-learning.

Actor-Critic. DQN. TD3. DDPG.

RESUMO

DI MASE, M. G. Controle via Aprendizado por Reforgo Aplicado. 2025. 68 p.
Monografia (Trabalho de Conclusdo de Curso) - Escola de Engenharia de Sao Carlos,
Universidade de Sao Paulo, Sao Carlos, 2025.

Este trabalho apresenta uma revisao abrangente e uma aplicagdo pratica de algoritmos de
Aprendizado por Refor¢o (Reinforcement Learning — RL) no dominio da engenharia de
controle. A base tedrica do RL é estabelecida, demonstrando sua conexao com o Controle
Otimo e detalhando diversos algoritmos, incluindo Programaciao Dindmica (Iteragao de
Valor e Iteracao de Politica), Q-learning (Tabular e Deep Q-Learning/DQN) e métodos Ator-
Critico (Deep Deterministic Policy Gradient/DDPG e Twin Delayed Deep Deterministic
Policy Gradient/TD3).

Os algoritmos sao inicialmente validados por meio da comparacao entre o Deep Q-Learning
e a Programagao Dindmica em um Processo de Decisao de Markov (MDP) discreto e
simples, com um pequeno espago de estados, o que demonstra a capacidade dos métodos
de aproximar a politica 6tima exata, embora isso nao seja algo garantido para ambientes
maiores. Em seguida, sdo realizadas comparagoes de desempenho entre os agentes de RL
(DQN, DDPG, TD3) e um Regulador Linear Quadratico (LQR) em ambientes simulados
de sistemas classicos de controle: o péndulo simples, o péndulo invertido em carrinho

(cart-pole) e o péndulo rotativo.

Os resultados mostram que, embora o LQR seja altamente eficaz proximo ao ponto
de equilibrio instavel, os agentes de RL, particularmente o TD3, demonstram maior
generalidade para condigoes iniciais distantes do ponto de linearizacao. O estudo também
examina questoes relacionadas a estabilidade do aprendizado, confirmando a robustez
do TD3 em relagao a superestimacgao dos valores-Q, um problema observado durante o
treinamento de DDPG e DQN.

Por fim, propoe-se e implementa-se uma nova estratégia de controle hibrido, combinando o
TD3 para tarefas nao lineares (como o balango ou o swing-up) e o LQR para a estabilizagao.
Essa abordagem hibrida demonstra uma redugao significativa no custo cumulativo total,
mostrando-se particularmente eficaz no sistema mais complexo e nao linear do péndulo
rotativo. Os resultados obtidos validam a relevancia e o potencial do RL como alternativa
robusta para o projeto de controladores aplicados a sistemas nao lineares complexos do

mundo real.

Palavras-chave: Aprendizado por Reforco. Engenharia de Controle. Aprendizado de
Maquina. Q-learning. Actor-Critic. DQN. TD3. DDPG.

Figure 1 —
Figure 2 —
Figure 3 —
Figure 4 —
Figure 5 —
Figure 6 —
Figure 7 —
Figure 8 —
Figure 9 —
Figure 10 —
Figure 11 —
Figure 12 —
Figure 13 —
Figure 14 —
Figure 15 —
Figure 16 —
Figure 17 —
Figure 18 —

Figure 19 —

Figure 20 —

LIST OF FIGURES

Agent-Environment Interaction 28
Categorization of Reinforcement Learning techniques 32
Diagram of a Neural Network 36
TD3 framework 41
Diagram of the simple pendulum system 47
Diagram of the cart pole system 48
Diagram of the rotary inverted pendulum system 50
Graph of the MDP with the optimal path traced (inred) 53
Return at each training episode in the training process of a DQN for a

small RL problem o 54

Mean error committed by the DQN over training episodes in the training
PTOCESS « .« v v v v i e e e e e 55
Instability comparison of DDPG and TD3. The y-axis represents the
log of the mean QQ-values, and the x-axis represents the training episode. 56
"Unlearning" behavior on a DQN for the stabilization problem of the
rotary pendulum 56

Mean Q-values of DQN for learning the stabilization problem of the

rotary pendulum over episodes L. 57
Total reward obtained after 100 time-steps by each RL agent and LQR
over different starting angles 6y in the simple pendulum environment . 58

Total reward obtained after 300 time-steps by TD3 and DQN agents
and LQR over different starting angles 6, in the cartpole environment . 59
Total reward obtained after 300 time-steps by DDPG agent in a limited

angle range oL 60
Total reward obtained after 300 time-steps by each RL agent and LQR
over different starting angles 0y in the rotary pendulum environment . 61

Evolution of the state variables in the swing-up task of the simple
pendulum system. Lo 63
Evolution of the state variables in the swing-up task of the cartpole
system. e 63
Evolution of the state variables in the swing-up task of the rotary

pendulum system. 63

LIST OF TABLES

Table 1 — Rotary pendulum’s parameters 61
Table 2 — Overall cumulative cost obtained from the simulated runs of the proposed

systems, using both the TD3 control law and the hybrid approach. . . . 64

AC
DDPG
DP
DQN
DRL
HJB
LQE
LQG
LQR
LTI

MDP
MPC

PID
PPO

RK4
RL

SAC

TD
TD3

USP

VIQL

LIST OF ABBREVIATIONS

Actor-Critic.

Deep Deterministic Policy Gradient.
Dynamic Programming (Programagao Dindmica).
Deep Q-Learning ou Deep Q-Network.

Deep Reinforcement Learning.

Hamilton-Jacobi-Bellman (implicito em Optimal Control & HJB).
Linear Quadratic Estimator.

Linear Quadratic Gaussian.

Linear Quadratic Regulator (Regulador Linear Quadratico).

Linear Time-Invariant.

Markov Decision Process (Processo de Decisao de Markov).
Model Predictive Control (implicito em Deep MPC).

Proportional-Integral-Derivative.

Proximal Policy Optimization.

Classic Runge-Kutta Method.

Reinforcement Learning (Aprendizado por Reforgo).
Soft Actor-Critic.

Temporal Difference.

Twin Delayed Deep Deterministic Policy Gradient.
University of Sao Paulo.

Value-Iteration-based Q-learning.

P I N3O vE S~

=

8 > 9.

S L a M o

)

LIST OF SYMBOLS

Moment of inertia.

Cost function in optimal control, Jy_, ..

Mass of the cart; also point mass on the pendulum tip.

State transition probability function, P(s,a,s’); also a weighting matrix
in LQR cost J.

Action-value function or Q-function, Q(s, a).

Reward signal.

Kinetic energy.

State-value function, V' (s); also potential energy.

Learning rate (Tabular Q-Learning); also a shorthand variable in rotary
pendulum dynamics.

Viscous friction coefficient; also a shorthand variable in rotary pendulum
dynamics.

Angular velocity (time derivative of ¢).

Angular velocity (time derivative of).

Velocity of the cart (time derivative of x).

Small value (convergence threshold); also used for exploration (e-greedy)
or noise (e ~ N).

Discount factor, 0 < v < 1.

Element of / Belongs to.

Action space (set of all possible actions).

Lagrangian of the system, L =T —V.

State space (set of all states).

Angle of the horizontal arm (Rotary Pendulum); also a potential function
in reward shaping.

Policy (control rule); often m(s) or (s, a).

Torque control signal (u); also the target-network soft-update rate,
0<7<1

Angle of the pendulum (vertical arm); also used for neural network
weights/parameters.

Action chosen by the agent (control signal).

Length of the pole/pendulum (e.g., [,, l,).

Mass of the pole/pendulum (e.g., m,, m,).

State of the system (current state).

Control signal (general notation).

x Position of the cart (Cart Pole); also a general state variable.

y Target Q-value used in loss computation.

1.1
1.2

2.1
2.2
2.3
2.4
2.5
25.1
25.2
2.6
2.6.1
2.6.2
2.7
2.7.1
2.7.1.1
2.7.1.2
2.7.2
2.8
2.9
2.10
2.10.1
2.10.2
2.10.3

3.1
3.2
3.3
331
3.3.2

CONTENTS

List of Abbreviations 000 17
Listof Symbols. 19
INTRODUCTION e e e e e e e e e e s 23
Problem Statement, Relevance and Objectives 24
Organization of the Work 25
METHODOLOGY o e e e e e e e e e e e e e s 27
Optimal Control and Bellman’s Equation 27
Elements of Reinforcement Learning 28
Markov Decision Processes 30
Overview of RL Techniques 31
Dynamic Programming oL 32
Value lteration 32
Policy lteration 33
Q-Learning 34
Tabular Q-Learning 34
Deep Q-Learning 35
Actor-Critic Algorithms oo 38
Deterministic Policy Gradient 38
Policy Gradient Theorem 38
DDPG algorithmo 39
Twin Delayed Deep Deterministic Policy Gradient 40
Choosing a Reward Signal 43
Hybrid Control with Reinforcement Learning 45
Systems Under Consideration 45
Simple Pendulum 46
Cart Pole 47
Rotary Pendulumo 49
COMPUTATIONAL EXPERIMENTS 53
Solving a simple discrete MDP with DP and Q-Learning 53
Learning Instabilityo o 55

Controlling classic control systems near unstable equilibrium points 56
Simple Pendulum 57
Cartpole e 58

3.33
3.4

341
342

Rotary Pendulum 59

Non-Linear tasks and Hybrid Control 60
Setup e 60
Reward and Evolution of the State Variables 62
CONCLUSIONS e e e e e e e e e e e e 65

REFERENCES et e 67

23

1 INTRODUCTION

Reinforcement Learning is a set of tools for solving problems involving search,
trial and error, and successive updates of the agent doing the searching, trying, and
making mistakes (hence, 'Learning") in order to maximize some sort of reward signal.
That is a very general description, and indeed this subject has a ranging from robotics to
gaming, finance, natural language processing, and of course control engineering. Sequential
Decision Making applications (training a model to play games) in particular gained a
lot of attention with the publication of the article "Human-level control through deep
reinforcement learning" [Mnih et al. 2015] in which the authors trained Deep Q-Networks
(DQN) to play classic Atari games using only raw pixel data as input; and another milestone
for RL was the introduction of AlphaGo [Silver et al. 2016], the first artificial intelligence

to beat the world champion of the game Go in a match.

Control applications have advanced significantly, with notable developments in
recent years. A model-free optimal tracking design for nonlinear systems has been proposed,
which learns control policies directly from measured data using a value-iteration-based Q-
learning (VIQL) scheme [Wang, Huang e Zhao 2024]. In robotics, a bionic learning algorithm
for a two-wheeled robot combines a growing cell structure network with Q-learning for
balance control in a continuous state system [Hongge et al. 2014]. Another approach to a
classic control problem is the swing-up control of a double inverted pendulum, achieved
by combining Q-learning algorithms with a classical PID control scheme [Zeynivand e
Moodi 2022]. The broader fields of robotic manipulation and fixed-wing aircraft control
have also seen significant progress. A review of RL for fixed-wing aircraft control examines

lvarious tasks such as attitude control, landing, and flocking, noting the widespread use of
algorithms like PPO, DDPG, and SAC [Richter, Calix e Kim 2024].

Despite the many other applications of these tools, the mathematical foundations
of the subject are deeply connected to Optimal Control. In Optimal Control, the controller
is designed offline by solving the Bellman’s equation associated with the system thereby
minimizing a given cost function. The solution is computed through dynamic programming,
the simplest form of which consists of making an exhaustive computation backward in
time. For Linear Time-Invariant systems, Bellman’s equation can be solved by solving
Riccati’s equation, which leads to a closed-form expression for the control rule. However,
for non-LTT systems, such as an inverted pendulum on a cart, a dc motor with friction or
a quadcopter drone, this is not the case, and dynamic programming could be usedneed
to be employed in order to get an exact solution, but it would need to explore the state
space of these systems exhaustively, since their dynamics cannot be described in terms of

linear control theory.

24

The problem with this is that the iterative dynamic programming algorithm
has a very high computational cost, suffering from what Bellman called the "curse of
dimensionality', i.e. DP’s computational requirement grows exponentially with the size
of the state space [Sutton e Barto 2018]. Reinforcement Leaning tools offer a way to
approximate the optimal policy (the equivalent of 'control rule’ in Control Engineering
terminology) instead of actually finding the exact optimal policy by solving Bellman’s

equation through DP.

Many such tools have been devised, e.g. tabular Q-Learning, Deep Q-Learning,
Actor Critic Algorithms among many others, and the present work seeks to explore some
of them, first comparing it with Dynamic Programming for a system with a small discrete
state space, then applying it to different plants inside a simulation environment. One thing
that was realized during the first semester of research is that there are many different ways
to define the reward signal in the simulation environment, and nowadays, that is more
of an art than a science. One of the goals of this research is to experiment with different

approaches and report what worked best.

1.1 Problem Statement, Relevance and Objectives

The main objectives of this — — such as Deep Q-Networks, Deep Deterministic
Policy Gradient and Twin Delayed Deep Deterministic Policy Gradientpresent work are to
review Reinforcement Learning theory by breaking down different RL algorithms, namely
Dynamic Programming, Q-learning, Deterministic Policy Gradient, and Soft Actor Critic,
as well as the Neural Network based implementations of them. Then, some important
observations are made about how to choose a reward signal based on seminal papers on
the subject, that touch on policy invariant reward transformations and reward hacking,

which were observed in practice in unexpected ways.

Once the theoretical remarks have been laid out, the algorithms are implemented
and tested in simulated control system environments, and then the performance of each
algorithm is compared against each other and against traditional control methods. The
algorithms can only be compared with conventional control methods, such as a linear
quadratic regulator in the linear regime, e.g., an inverted pendulum initialized near the
upright position. It is expected that the farther the initial conditions are from the point
about which the linearization was made to design the controller, the greater the advantage
of RL agents over traditional controllers will be. Performance will be measured number of

time-stepsthrough the total reward obtained by each agent in a set period of run .

Another goal of this work is to train RL agents to perform nonlinear control
tasks, namely the swing-up task in the simple pendulum, cart-pole, and rotary inverted

pendulum.

25

This work’s relevance is multifaceted, offering a comprehensive review and practical
application of the main Reinforcement Learning algorithms—from Dynamic Programming
and Q-learning to DDPG and TD3 with the latter two being very relevant Critic, considered
to be the state of the art — within the domain of control engineering applications. By
implementing and comparing these advanced RL techniques against each other and against
well-established traditional control methods, like the Linear Quadratic Regulator, the study
provides empirical evidence of RL’s potential, particularly demonstrating its superiority in
non-linear and challenging control tasks (like and in regimes far from the linearization point.
Furthermore, the practical investigation into reward signal design and the observation of
reward hacking provide novel insights for the practice of RL. Future efforts will involve
successfully demonstrating the application of trained RL agents on a physical system
(the rotary inverted pendulum plant). This is expected to validate RL as a robust and
promising alternative for designing controllers for complex, real-world non-linear systems,
ultimately bridging the gap between theoretical RL advancements and practical control

system implementation.

1.2 Organization of the Work

The work is divided into four main chapters: Methodology, Computational Experi-
ments and Conclusions. Methodology is subdivided into several sections covering Optimal
Control and Reinforcement Learning Theory, RL algorithms, how a reward signal is chosen
in order to avoid reward hacking and work well in control engineering applications, and
finally a section dedicated to describing the three systems that were tested: their dynamics,
reward signal and simulated environments. Computational Experiments is divided into
a section in which dynamic programming is compared against Deep Q-Learning for a
simple RL problem with small dimensions, in order to show that Q-learning is capable
of approximating the exact optimal value function found by DP; the second section in
this chapter deals with the computational experiments done in order to compare the total
reward gained with RL algorithms and with LQR; and the final third section compares the
performance of each algorithm for non-linear control tasks. The final chapter deals with
the main takeaways regarding the results in learning stability, performance evaluation and

future work that will build upon what has been done.

27

2 METHODOLOGY

2.1 Optimal Control and Bellman’s Equation

Optimal control is a branch of control theory based on an extension of variational
calculus that seeks to define the sequence of control signals for a given system in a way
that minimizes a cost function established by the problem (for example, equation 2.1 in
the LQR problem). The system itself is defined by a dynamics function F', which takes
the current state s, and chosen action a; and outputs the next state s;.1, as in equation
2.2. Within this paradigm, various approaches have been proposed for both control and
state prediction, such as the Linear Quadratic Regulator (LQR), the Kalman filter (LQE),

and their combination, the Linear Quadratic Gaussian (LQG) controller.

N-1

Joon = sy Pnsn + Y spQsk + aj Ray. (2.1)
k=0

Skr1 = F(sg, ar). (2.2)

The general method for solving these problems boils down to solving the Bellman
equation. Equation 2.3 is an example that emerges from the optimization problem of

equation 2.1.

Vie(sk) = n;in[sf@sk + ai Ray, + Vi1 (se1))- (2.3)

A possible interpretation of the Bellman equation is that it represents the minimum
cost to reach state sy from state s;. Because it is the minimum cost, it depends only on
the cost of the current stage (s} Qsy + at Ray) and the minimum cost from the next stage

onward (Vii1(sk+1)), also known as the cost-to-go.

For linear time-invariant systems, this has a closed-form solution: the optimal
state-feedback control gain, known as the LQR. One could, for example, use an LQR to
control an inverted pendulum near its unstable equilibrium. Still, this solution alone is
insufficient for implementing a control law for the pendulum’s swing-up task. In other
words, it cannot determine the sequence of control signals that brings the system to
the equilibrium position (inverted position). This is because, even though the system is
time-invariant (i.e., the differential equations governing its dynamics do not change), it is
nonlinear. One could linearize the system at various points in the state space, but doing

so would make it effectively time-variant.

28

In addition to the inherent difficulties in controlling nonlinear and time-variant
systems, there are optimization problems for which the cost function itself cannot be easily
defined. To solve these types of engineering problems, methodologies have been proposed
to estimate the cost function (or its dual, the reward signal) and thereby determine the
appropriate control policy. Reinforcement Learning-based control methods are currently
the state of the art for solving these problems. Some applications include humanoid
robots [Peters, Vijayakumar e Schaal 2003], robots with mimicking behavior [Peng et al.
2018], and control through visual feedback using RL [Wang et al. 2025].

2.2 Elements of Reinforcement Learning

Reinforcement Learning (RL) uses terminology that is slightly different from that
of other control paradigms. The two main elements of an RL-based control system are the
agent and the environment, which correspond respectively to the controller and the plant.
In addition to these two main elements, we can identify the control policy, the reward
signal, the value function, and, optionally, the environment model [Sutton e Barto 2018|.
The interaction between the agent and the environment is illustrated in Figure 1: at each
time-step ¢, the agent takes an action a; and the environment makes a state transition

that the agent sees as the new state s; and the reward r, at that time-step.

Figure 1 — Agent-Environment Interaction

state reward action

St R; a

P
Environment](7
A\

Source: Own elaboration (2025)

The control policy 7(s) is a function of the system’s current state s that determines
the action (i.e., control signal) to be taken. It is the core of the RL agent, as it dictates its
behavior entirely. Generally, the policy can be stochastic, in the sense that it determines
the probabilities of taking a specific action; or it can be deterministic, in which case m(s)

is the action to be taken.

The reward signal defines the objective in a reinforcement learning problem. At
each step, the environment returns a numerical value, known as the reward, to the agent.
The agent’s primary goal is to maximize the accumulated reward over time and in this
way, it determines what the agent considers to be better or worse. In biological terms, we

can associate rewards with experiences of pleasure or pain, which are the immediate and

29

determining manifestations of the agent’s situation in the environment. The reward signal
is fundamental for adjusting the agent’s policy; if a chosen action yields low reward, the
policy can be updated to select a different action in future situations. In general, reward
signals can vary stochastically, depending on the environment’s state and the actions

performed.

While the reward signal determines whether an action is good or bad in the
immediate moment, a given action may yield a higher immediate reward but lead the
system to states with lower reward, resulting in a lower overall return. The balance of
these two possibilities is what is referred to in the literature as the problem of exploration
versus exploitation, i.e., how much the agent should exploit its current knowledge of the
environment to obtain good short-term rewards and how much it should choose a different

action to possibly learn of better paths for maximizing its returns.

After a certain sequence of actions, the agent-environment interaction breaks down,
and the system is reset. These sequences are called episodes and can be thought of as,
e.g., the play of a game or the successful control of a plant for a fixed period of time.
After each episode, the agent is updated, i.e., trained, to better utilize the experience it
has gained. Tasks that have a natural terminal state are called episodic, like, for example,
a chess match, in which the terminal state is a win, a loss, or a tie; whereas tasks that
do not have a clear final state are called continuing tasks. Control tasks are generally of
the latter sort, and what is usually done to address this is to truncate each episode if it

exceeds a certain number of time-steps.

The final element of reinforcement learning that we should discuss is value functions.
Pretty much every Reinforcement Learning algorithm is based on estimating them, and
the mathematics that govern these algorithms are deeply connected to Optimal Control.
One of them is the state-value function V'(s), given by eq. 2.4, which for any given state s
returns the expected reward the agent will receive if it follows the optimal policy «. It is a
measure of how good it is to be in a particular state, considering the current reward and
expected future rewards, discounted by a positive discount factor v < 1. The smaller the

value of v, the more short-sighted, so to speak, the agent will be.

As a side note, the value function defined in equation 2.4 is called the state-value
function, but we can talk about a state-value function over a specific policy 7, usually
denoted with V,(s). However, when we say "value function" without a qualifier, we mean

the state-value function under the optimal policy.

V(S) =]Eﬂ—* Z ’}/th+k+1|St =S| . (24)

k=0

More importantly, one can easily get a relation between the value function at state

s and the value function at the next state s’ by simply putting the current reward in front

30

of the rest of the sum. This yields the famous Bellman Equation 2.5 for the state-value
function, which can be solved using dynamic programming, much like in Optimal Control.
In this context, however, there are two main DP algorithms: value iteration and policy
iteration, both of which are guaranteed to converge and yield the optimal policy and the

state-value function.

V(s) = maxE(R; + YV (). (2.5)

The other essential value function used exhaustively in RL is the action-value
function Q(s, a). Again, the notation Q.(s,a) refers to the action-value function under a
specific policy 7, whereas the (s, a) without any qualifier usually means the Q-function

under the optimal policy.

Instead of being only a function of the current state, it takes in a specific action a,
and its output is the expected return (discounted over time) starting at state s, taking
action a, and following policy 7 thereafter. This has the power to encapsulate both
the policy and the state-value function in a single mathematical object, as both can be
computed by finding the arg max and max of @, (s, a) over the action space, as shown in

equations 2.6a and 2.6b.

V(s) = max Q(s, a), (2.6a)
m(s) = arg max Q(s,a). (2.6b)

2.3 Markov Decision Processes

So far, the elements of RL have been explained here without much formalism,
but the mathematical model used to describe the environment in RL is called a Markov
Decision Process. It is a universal way to formalize any problem tackled with RL methods,
regardless of the application; therefore, it merits a brief section. A more complete definition
of MDPs can be found in any classic Reinforcement Learning textbook, such as [Sutton e
Barto 2018].

The formal definition of a Markov Decision Process M is the following 5-tuple:

M:< S,-A,P,R>7>a

where S is the state space, i.e. the set of all states the environment can be in; A is
the action space, the set of all actions the agent can take; P: S x § x A — [0, 1] is the
state transition probability function, that is, P(s,a,s’) is equal to the probability of going
from state s to state s’ when action a is taken; R : S x § x A — R is the reward function;

and ~ is the discount factor, which was explained in the previous section.

31

The name Markov in Markov Decision Process reflects the stochastic nature
of MDPs; however, the framework can still be used for describing systems that have
deterministic dynamics, as is the case in Control Engineering. The only difference is that
in such cases, the state transition probability function is degenerate; i.e., it is equal to a
Dirac delta function P(:|s,a) = 6f(sq)(-). However, the relevant theorems regarding MDPs
still hold for this type of MDP.

Finally, each time the agent interacts with the environment, it gets what is called
the transition tuple (s;, as, 7441, St1, dir1), which contains the previous state, the action
taken, the next state, and the done flag, which is used to indicate whether the terminal
state was reached or not. In applying RL algorithms to RL problems, this tuple is used to
store trajectory buffers in each episode for later training. The environment objects in the
standard Python package for RL environments, gymnasium [Brockman et al. 2016, Towers

et al. 2024], conveniently return the transition tuples for precisely that purpose.

2.4 Overview of RL Techniques

Reinforcement Learning Methods are roughly divided into two categories: model-
based RL and model-free RL [Brunton e Kutz 2022]. As the name suggests, model-based
methods exploit information about the system’s dynamics to find the optimal policy. The
aforementioned policy and value-iteration methods, as well as some actor-critic algorithms,
are included in this category and will be further discussed in the following sections. Model-
free techniques, on the other hand, allow the policy or value function to converge to an
optimized solution without informing the agent anything about the system itself. Among

these techniques, Q-learning will be used to tackle a handful of control problems.

Model-free methods can be further divided into gradient-free and gradient-based
categories, the latter of which includes Policy Gradient Optimization methods and Deep
Policy Networks. These methods use an estimate of the reward given the policy 7y
parameterized by 6 and apply gradient descent to improve the agent [Brunton e Kutz 2022].
Gradient-free techniques include Q-learning and Temporal Difference Learning; the former
of which does not evaluate the policy directly and is thus classified as off-policy, whereas
TD learning methods are on-policy. The distinction between the two lies in whether the
agent follows the policy learned during training episodes or uses a different, suboptimal

policy to better explore the state space.

Finally, neural networks have been shown to be powerful tools for implementing
approximate solution methods, and virtually every tool in each category has a version that
uses deep neural networks, such as Deep Q-Learning, Deep Policy Networks, Deep Model
Predictive Control, and Actor-Critic algorithms. A summary of this rough categorization

is illustrated in Figure 2.

32

Figure 2 — Categorization of Reinforcement Learning techniques

,
Model-based RL Model-free RL)
~
Markov Decision Process P(ss a) Gradient free
;) .
Policy Iteration (s, a) Actor Off Rolicy Q:Bolicy
Value Iteration V(s) Critic DQN TD(0)
5 ; 5 DDQN :
ynamic programming B
& Bellman optimality @(s,a) || TD(eo) =MC
! TD-A
Nonlinear Dynamics
1 Deep Q Learning SARSA
3% = f0x(t). u(0), 1) di MPC \ J
Optimal Control & HJB Gradient based
- 1 J Deep
Policy 6™ = 0% + aVsRsp
) R | INetworkl ey Gradient Optimizati
Learn a Model! 0. 1Cy radien p 1mization
Deep RL \ y

Source: Data Driven Science & Engineering [Brunton e Kutz 2022]

This overview of the techniques is far from complete, as Reinforcement Learning is
a rapidly growing field. Greater emphasis was placed on the set of methods to be employed

in this work, and the coming sections of this chapter are dedicated to explaining them.

2.5 Dynamic Programming

Dynamic Programming is an iterative process in which the Bellman equation is
solved starting from the terminal state and moving backwards to compute an estimate
of either the optimal value function or the optimal policy. The process iterates until
the value function or policy converges to the true optimal solution. It is strange that a
backward-oriented iterative process would have anything to do with Reinforcement Learning
techniques: methods that involve going forward along the state space and learning the
optimal policy from experience, but DP is indeed the foundation and inspiration of other
RL algorithms that have come about [Kaelbling, Littman e Moore 1996].

The two primary DP methods for reinforcement learning are value iteration and
policy iteration, and both rely on the fact that for any environment modeled by a Markov

Decision Process, there exists an optimal deterministic policy [Bellman 1957].

2.5.1 Value Iteration

Value iteration is a simple iterative process, described in pseudocode 2.1. First,
the value function V(s) and an auxiliary value function V'(s) are initialized appropriately.
Since its true value will be the discounted sum of the reward when following the optimal
policy 7'(s), it is convenient to start it as the lowest possible signed float value available,
and to start V'(s) as anything that allows the loop to start. Inside the loop, the action-value

function is computed for the states that come before the terminal state, and for every

33

available action, the value function is updated at that state by maximizing Q(s, a) over
the action space, and this is repeated for the previous state again and again until all of

them have been evaluated.

This update loop is itself repeated until the difference between two successive value
functions is close enough, and it has been shown [Williams e Baird 1993] that when this
difference is less than a given €, the computed value function differs from the value function

of the optimal policy by 2ey/(1 — 7).

initialize V/(s) and V/(s)
loop until |V(s)—V'(s)| <e
V> (s) := V(s)
loop for s€S
loop for a€ A

Q(s,a) == R(s,a) +v> geg P(s,a,s)V(s)

end loop
V(s) := max, Q(s,a)
end loop

end loop

Algorithm 2.1 — Value Iteration Pseudocode

In the equation for the action-value function, P(s,a,s’) is a transition probability
of going from state s to state s’ when action a is taken. If the system under consideration
is deterministic, the argument s’ in V(') would just need to be substituted by the state

to which the system is brought when it is in the state s and the agent takes action a.

As a final note, the complexity of each loop over all states is O(|S||.A|), where |S|
and |A| are the sizes of the state space and action space, respectively. Still, the overall

time complexity of the algorithm depends on how quickly the value function converges.

2.5.2 Policy Iteration

Instead of computing the value function to then find the optimal policy, Policy
Iteration manipulates the policy function directly. The pseudocode for policy iteration is

given by pseudocode 2.2.

First, a policy n’ is initialized randomly, then, in the loop, a copy of the policy is
made, and its value function is computed by solving the Bellman equation of the value
function. Then, at each state, the policy is updated to the action with the highest expected
value. At each step, the performance of n’ strictly improves, and when the policy no longer

changes, it is guaranteed to be optimal [Kaelbling, Littman e Moore 1996].

34

choose a random policy 7’
loop
mi=m
compute value function of policy =
solve the linear equations:
Va(s) = R(s,7(5)) + 7 Lwes Pls,w(s), s)Va(s)
update the policy at each state:
m'(s) == argmax,(R(s,a) + 7> yecg P(s,m(s),s)Vz(s)

end loop when 7=7'

Algorithm 2.2 — Policy Iteration Pseudocode

2.6 Q-Learning

As previously mentioned in section 2.2, the action-value function Q. (s,a), also
known as the action-value function, represents the value of being in state s, taking action
a, and following policy 7 thereafter. Much like the value function, the Q-function can also

be written in recursive form, as shown in equation 2.7.

Q(s.a) = R(s,a) + Y P(s,a, ') max Q(s', a). (2.7)
s'eS a
If the system is deterministic, the sum over all possible next states can be dropped,

and the equation simplifies to:

Q(s,a) = R(s,a) + max Q(s',a’).

2.6.1 Tabular Q-Learning

Watkins’ Q-learning algorithm, proposed in a paper of the same name [Watkins e
Dayan 1992], uses a learning rule very similar to temporal difference learning. The learning
rule is given by equation 2.8, where r is the reward received in the current time, « is the
discount factor, a < 1 is the learning rate, and the term multiplied by « is called the

temporal difference error.

Qx(s,a) := Q(s,a) + a(r+ 7 max Qr(s',ad") — Qr(s,a)). (2.8)

If the learning rate were to be set to 1, Q(s,a) and —aQ,(s,a) would cancel out,
and the agent would consider the current reward along with the quality of the next state.
With lower learning rates, it updates the current value more slowly, which is essential for

ensuring convergence and stability. (), is guaranteed to converge to (), the action-value

35

function of the optimal policy, if the learning rule is run an infinite number of times over

an infinite run, as long as a decays appropriately [Watkins e Dayan 1992].

This simplest form of Q-learning and other methods are called tabular in the sense
that one can make a table over all states and all possible actions and fill in the value of
Q(s, a) for each tuple. For a large state space, or worse, a continuous state space, this would
require significant memory. When implementing Q-learning for control in a context where
the state space is continuous, other function approximation methods must be employed.
For example, defining the action value function as the inner product between a vector of
trainable weights w and a feature map of the state variables and action signal. For the swing-
up task of a pendulum, where the action a was the torque applied to the shaft, 6 is the angle
of the pendulum relative to the y-axis, and 6 is the angular velocity, it was found through
trial and error that the feature map x = [1 1 62 0 6> 6 (ah)®> af (ab)? aé} was
sufficient to enable the agent to find a satisfactory policy for this non-linear control
problem [Ghio e Ramos 2019].

Furthermore, Q-learning is said to be exploration-intensive, in that as long as all
action-state pairs are sufficiently explored, it will converge to an optimized Q-function. In
other words, it does not matter how the agent behaves, as long as a representative amount

of training data is collected throughout the episodes [Kaelbling, Littman e Moore 1996].

One way to achieve this is to use an e-greedy approach. At any given state, a
random action is taken with probability € and the best action according to the current
values of the Q-function is taken with the remaining probability 1 — e [Sutton e Barto
2018]. € can be set to a high probability in the first few episodes and decay over time,
ensuring exploration and later exploiting the agent’s knowledge to access states that would
not be accessible otherwise. This approach is not unique to Q-learning; it is just an ad

hoc technique that can be used with several different RL methods.

2.6.2 Deep Q-Learning

As stated in section 2.4, neural networks have been proven to be excellent tools for
approximating value functions and policies in Reinforcement Learning. That is because
multilayer perceptrons, i.e., neural networks, are universal function approximators [Hornik,
Stinchcombe e White 1989], serving as the Q-function or policy function of nonlinear
systems or systems with highly nonlinear reward signals. Figure 5 shows the diagram of a

multilayer perceptron.

36

Figure 3 — Diagram of a Neural Network

Input layer Hidden layer Hidden layer Output layer

Source: Own elaboration (2025)

To use neural networks for value-based Reinforcement Learning, one must choose
an architecture (i.e., the number of convolutional and fully connected layers), define a loss
function, set learning hyper-parameters such as the learning rate and optimizer (all options
of which are, of course, based on backpropagation), and specify the network’s training
environment. In the case of Deep Q-Learning, it is essential to set a replay memory buffer
for a number of episodes from which samples are taken for training, be it randomly or
uniformly; this allows the DQN to be trained in an off-policy manner, improving data
efficiency [Wang et al. 2022].

In "Human-level control through deep reinforcement learning" [Mnih et al. 2015],
the authors introduced a setup to reduce training instability: having two neural networks
with the same number of trainable parameters; the main network () and the target network
@'. The main network is updated in every training step and is used to determine the
policy of the agent in each episode, whereas the target network is kept unchanged, but
every certain number of training steps, it is updated to match the main network. The
target network gives stability to the training process by introducing a delay in the feedback
that inherently exists in Q-Learning, since the expected return needs a Q-function to be
evaluated and since this expected return goes into the loss function, as given in equation

2.9. The Deep Q-Learning method described here can be summarized in pseudocode 2.3.

y = R+ymaxQ'(si1,a). (2.9)

37

Initialize experience replay buffer D;
Initialize () network with random weights 6 and
target network Q' with weights 60 =0;
for episode=1, 2...N do
Reset environment and initial state ¢(so);
for t=0, 1, 2...T do
Use ¢(s;) as input of () network and get () value of each
action;
Choose action a; =€ — greedy(s:);
Take action a; under s;, observe reward R and new state
P(s141) 5
Push (¢(st),at, R, ¢(s¢+1)) into D
Randomly take m samples (¢(sj),aj, Rj,#(sj+1)) from D;
Compute approximate value:
R; ¢(sj+1) is terminal
! Ynt #(Sj+1) is nonterminal
where
Ynt = Rj +ymax, Q'(¢(sj+1),a;0")
Update () network by executing gradient descent
on loss function:
Lo = ;5 X7 (y; — Q(o(s5), a5:0))”
Set # =60 every C steps;
end

end

Algorithm 2.3 — Deep Q-Learning Algorithm

A more sophisticated way to update the target network is to use a soft update,
first proposed in a work on Deep Deterministic Policy Gradient [Lillicrap et al. 2015], an
actor-critic algorithm discussed in the next sections. Instead of copying the main network
every C' number of steps, the target network parameters 6’ are always slowly updated

according to equation 2.10, where 0 < 7 < 1 is the update rate.

0 =710+ (1—1)0. (2.10)

Usually, the DQN’s input layer takes a state-characterizing input, whereas the
output layer has as many outputs as the action space. One could make it so that the action
signal goes into the input layer, but then the network would have a single neuron on the
output, and there would still be the problem with having to compute a set number of

actions for each state in order to find arg max, Q(s, a). For this reason, Deep Q-Learning

38

has significant problems with continuous action spaces, and that is something that can be

avoided by choosing an actor-critic algorithm instead.

2.7 Actor-Critic Algorithms

Actor-Critic refers to a set of different algorithms that have one thing in common,
namely, that inside the agent there exists a function that chooses the action to be taken
and another function that evaluates how good this action is. They are a combination of
value-based RL and policy-based RL and at first glance this appears to be an unnecessary
added complexity; however, the Critic in Actor-Critic Algorithms tends to improve the
variance and speed the learning process [Sutton e Barto 2018] while having a function
approximator for the policy itself enables finding a policy over a continuous action space,

as will be discussed in the DPG section.

2.7.1 Deterministic Policy Gradient

The Deterministic Policy Gradient Algorithm is a type of actor-critic algorithm
that approximates a policy over a continuous action space without discretization, unlike
Q-learning or DQNs, which require it to handle non-discrete action spaces. For a problem
in which the action space has 7 degrees of freedom, like in a robotic arm for example, a
very course discretization, say, three possible values for each control variable, the discrete
action space would have a cardinality of 37 = 2187 [Lillicrap et al. 2015], which would
require a considerable amount of exploration for a value function to be learned. DPG and
DDPG (Deep Deterministic Policy Gradient) algorithms solve that problem by using a
separate function approximator for the policy, which is updated using the gradient of the
policy with respect to its parameters, which is proportional to the Q(s,a) function. This
result is called the Policy Gradient Theorem [Sutton et al. 1999], and it is more clearly

stated in the following subsection.

2.7.1.1 Policy Gradient Theorem

Given a policy 7 (s, a,), where 6 is a parameter vector that characterizes the policy,
that acts on a Markov Decision Process with state transition probability P(s,a,s’) and
expected reward R(s,a), the objective of the MDP can be written as in equation 2.11,
where d.(s) is the discounted stationary state distribution under policy 7, i.e., it is the
fraction of time the environment is at state s when the agent follows policy 7 discounted
by the discount factor v: dr(s) = (1 —) 37207 Pr(s; = s | 7).

V(s)=F {iytlmso,w} = di(s)>_m(s,a)R(s,a). (2.11)

a

Given this objective, the state-action value function is.

39

Qr(s,a) =F {Z Yl sy = 5,00 = a, 71‘}) (2.12)
k=1

The Policy Gradient Theorem states that the objective’s derivative with respect to

the policy’s parameter is as given in equation 2.13.

ov
55 = ES: d(s) TQW(S’ a). (2.13)

a

The proof for this theorem can be found in [Sutton e Barto 2018] chapter 13.2 and
in the original paper [Sutton et al. 1999]. The relevance of the theorem lies in the fact that
the gradient of the objective with respect to the policy parameters is directly proportional
to the average of the Q-function. Therefore, it can be used as a loss to improve the policy

progressively. In that sense, the Q-function is a critic of the policy function, or an actor.

2.7.1.2 DDPG algorithm

The Deep Deterministic Policy Gradient algorithm, as the name suggests, is an
implementation of DPG using Deep Neural Networks, largely inspired by the success
achieved with DQNs [Lillicrap et al. 2015]. The architecture of the value function neural
network has a total number of input neurons equal to the dimension of the observation
space plus the degrees of freedom of the policy (i.e., the dimension of the action space).
In contrast, it has only a single output neuron, since the value function is a scalar. The
policy network, on the other hand, has as many input neurons as there are dimensions in
the observation space and as many output neurons as there are dimensions in the action

space.

As in Deep Q-Learning Algorithms, there are target networks in addition to the
main networks used for action selection. As stated previously, the target networks are used
to compute the loss functions for the actor and critic networks, and their parameters are
updated via soft updates, which stabilize learning. The soft update given by equation 2.10
is essentially a weighted average and can be thought of as a low-pass filtering of the main
network’s parameters. Since the learning rule includes feedback, it becomes clear why this

filtering improves training stability.

Finally, the learning rule of the Critic Network is a gradient descent in the Bellman
Loss (i.e., the Mean Squared Error of the value of @) given by the main network with
respect to the discounted return computed by the target network), and the learning rule
of the Actor Network is a gradient ascent of the objective, which has been shown to be

proportional to the action-value function. pseudocode 2.4 summarizes the entire algorithm.

40

Initialize the Critic Network Q(s,alf?) and actor Network u(s|0*)
with parameters 0Y and 6*
Initialize the target networks with the same parameters
Initialize the Replay Memory R
for episode =1, ... M do
Initialize a random process N for action exploration
Receive initial observation state sl
for t = 1, ... T do
Select action at = p(s|0")+N; according to the current
policy and exploration noise
Execute action at and observe reward 7; and observe new
state s
Store transition (s a7, S41) in R
Sample a random minibatch of N transitions (&,@,n,&+ﬁ
from R
Set y; =1 +’YQ'(&:H»M(8i+1|9“/)|9Q/)
Update critic by minimizing the Bellman loss:
L= iy — Q(si, a:]69))?
Update the actor policy using the sampled policy

gradient:
Voud ~ 5 325 Q(s, 1u(s]6")16°)

Perform soft update on the target networks
0" — 70" + (1 — 7)o"
09 — 769 + (1 — 7)6<

end

end

Algorithm 2.4 — Deep Deterministic Policy Gradient Algorithm

2.7.2 Twin Delayed Deep Deterministic Policy Gradient

Twin Delayed Deep Deterministic Policy Gradient [Fujimoto, Hoof e Meger 2018|

is a variant of DDPG with an architecture very similar to the original scheme. There is a

target actor-critic that is updated more slowly according to the update rule in equation 2.10,

which is used to compute the actor gradient loss and the critic Bellman loss. Additionally,

there is a main actor critic, which is actually responsible for choosing the policy throughout

the training process. DDPG alone works well for many systems; however, it still suffers

from stability problems during training, which were observed in some test cases and are

included in the results (section 3.2).

41

TD3 was developed to address precisely these instability problems, and it differs
from DDPG in three main aspects:

o Clipped Double-Q Learning. The TD3 agent learns two Q-functions and uses the
least of the values computed by them in the target critic network to update the main

one.

e Delayed Policy Update. The policy is only updated once every two or three value

function updates.

o Target Policy Smoothing: TD3 introduces noise to the target policy’s action to
smooth the Q-function. This regularization makes it harder for the policy to exploit

errors in the value estimation.
These differences are nicely summarized in figure 4, and the detailed description of
the algorithm is in pseudocode 2.5.

Figure 4 — TD3 framework

-

Local-network =" " "Minimize "= =~o

’_--~\:---\\
Critic- l A & peepmemmpen 1]

— 1,—{-’1 TD-errorl |
nEtworkl \Q-’ l ‘ ------- ‘ :
1
deisie Critic- o e il
+»{q2) 1 1

network2 ‘\0;2,’ H _TP'_e"f:z_'
vt st

~~oMinimize,_ ..o

Target-network

Actor-target
-network

Min
Critic-target
-networkl
Critic-target
-network2

Source: A-td3: An adaptive asynchronous twin delayed deep deterministic for continuous
action spaces [Wu et al. 2022]

The source of instability in DDPG is the accumulation of error in the temporal
difference estimate. Although one can expect minor errors in the TD estimate during
a single update of the agent, these errors can accumulate over time, leading to large

overestimations of the value and suboptimal policies [Fujimoto, Hoof e Meger 2018].

42

Initialize critic networks Qi(s,al0?'), Qa(s,al0%?) and actor network
p(s|0*) with parameters 6%, A9, and O*

Initialize target networks @), @), ¢/ with parameters

091 — 991,
0% + 092,
0" < o1
Initialize replay buffer R
for episode =1, ..., M do
Initialize a random process N for action exploration
Receive initial state s;
for t =1, ..., T do
Select action with exploration noise:
a; = p(s¢|0*) + €, where e~ N(0,0)
Execute action a;, observe reward r;, and new state S;4i
Store transition (s, a¢ 7, 8:41) in R
if ready to update then
Sample minibatch of N transitions (s;,a; 7, Si+1) from R
Target policy smoothing
Gis1 = clip(p/(si41|0") + clip(€', ¢, €), tiow Ahigh) »
where € ~ N(0,07)
Compute target (Q-value using the smaller of the
two target critics
yi =i +yminj= 2 Q% (sit1, di+1!9Q;’)
Update both critics by minimizing the MSE 1loss
L(09) = 5 24(Q (51, ail099) —yi)*, for j = 1, 2
Update 69" and 69> using gradient descent
Delayed policy updates
if t mod d == 0 then
Update actor policy by gradient ascent:
Voud = 5 35 VaQi(8, a9)| azpu(s) Von 11(s]6")
Soft update target networks
OF — 701 + (1 —7)0" , 091 709 4 (1 — 7)0%
09 « 7092 4 (1 — 1)0%
end
end

Algorithm 2.5 — Twin Delayed Deep Deterministic Policy Gradient (TD3) Algorithm

One way to compare the stability of DDPG and TD3 is to compute the mean Q-
values of each network during training. A clear sign of instability and Q-value overestimation

is when the Q-values suddenly jump from one training episode to another. One instance of

43

this problem was observed during training a DDPG agent to stabilize the cartpole system:
the Q-value jumped from 81.6 to 306.3 (well above the maximum possible return in an
episode for that environment), and then it started oscillating erratically. The Q-values of
the TD3 agent, on the other hand, were stable.

2.8 Choosing a Reward Signal

One of the most challenging things in reinforcement learning is designing a reward
signal that encourages the agent to learn to do what you want it to do. In episodic tasks,
in which the terminal state is, so to speak, the objective state, one could give a reward of
1 for reaching the terminal state and a reward of 0 in every other state. Because of the
discount factor, the agent will eventually learn which actions lead to achieving the terminal
state after a certain number of successful episodes, allowing it to determine whether it
is going in the right direction throughout each episode. The problem is that it has to
reach the terminal state to get any feedback on whether its actions were good. This is an

extreme example of what the literature calls a sparse reward.

Sparse rewards are suboptimal because they generally do not provide enough
feedback for the agent to learn quickly what it needs to do. Luckily, in the context of
RL applied to control engineering, it is easiest to define the reward as minus the step
cost function L(s,u) (the same one that constitutes the cost that is minimized in optimal

control: J =Y L(s¢,u)), and this is a non-sparse reward signal since it is a continuous
t

function of the state variables and the control signal (see equation 2.1).

Still, one might want to give the agent a reward bonus when it does something right
to incentivize certain actions and converge to the optimal policy more quickly; however,
this needs to be done with caution. Sometimes, when certain bonuses are added, the agent
can reward hack its way into maximizing the total shaped reward without actually solving
the original, intended MDP. While training a robot to ride a bicycle, an RL agent was
given a bonus whenever it moved closer to the goal [Randlgv e Alstrgm 1998]. The robot
then learned to ride in circles since no punishment was given when it moved away from the
goal. Another such case involved a soccer-playing robot that was given a positive reward
for touching the ball. What it then learned to do was to trap the ball in a corner and

vibrate near it to get as many bonuses as possible [Ng, Harada e Russell 1999].

Similar reward-hacking bugs were also encountered throughout the production of
this work. When training a DDPG to learn the swing-up and balance task for an inverted
pendulum, the reward was —L, i.e., the cost from optimal control theory but with the sign
flipped; because the reward was always negative and an episode would end whenever the
cart went out of bounds, the agent learned a policy whereby it would swing the pendulum
up, start balancing it, and then go as fast as possible to the closest wall to end the episode.

It seemed that when an agent only receives negative rewards while having the possibility

44

of ending the run, it would try to kill itself. Indeed, when a constant offset was added
to the reward to ensure it was positive most of the time, the agent did not learn this

behavior, and we had successfully implemented suicide prevention (for RL agents).

The same thing happened during the training process of the rotary pendulum. At
first, there wasn’t a condition to stop the run; however, with the reward set to —L and
the horizontal arm’s state variable being wrapped between —m and 7, the agent found a
sub-optimal local maxima whose policy consisted of rotating very fast in one direction to
keep the vertical angle close to § and its derivative at 0. A stop condition was added, but
then the self-destruction reward hacking issue occurred again. However, once more, it was

only a matter of adding a positive offset to the reward.

Given the potential negative implications of changing a reward signal that we
know works, is there a way to give bonuses to the agent without it leading to reward
hacking? It turns out there is, and it was laid out in the 1999 paper Policy Invariance
under reward transformations [Ng, Harada e Russell 1999]. The trivial policy-invariant
transformations are scaling the reward signal and adding a constant to it. If a function
has a global maximum, scaling or adding a constant to it will only change the value of the
function at that maximum point, but it will not change the point in the domain at which
the maximum occurs. The authors showed that any reward bonus in the form given in
equation 2.14 will also keep the optimal policy unchanged relative to the original MDP’s
optimal policy. F(s,a, s’) is the reward bonus, 7 is the same discount factor of the original
MDP, ¢(x) is a potential function, and s, a, and s’ are the current state, the action taken,

and the next state, respectively.

F(s,a, 5/) = 'Wb(sl) — ¢(s). (2.14)

The proof of this property is actually quite simple. The agent is attempting to
learn a policy whereby each action taken maximizes the discounted expected return. The
discounted return going from state s; of the original MDP is J(s1) = 302, 7' 'ry. In the
transformed MDP, the reward will have a bonus F(s;, a, s;11), and so the return will be
J*(s1) = T2 VT ey d(see1) = D(s0)) = o2y VT e+ 2 Y o (s041) =7 d(se). When
the return is broken down into two series, the second series can be recognized as a telescopic
series that converges to —¢(s;) (this holds as long as v'¢(s;11) — 0, since we usually
choose a bounded potential function ¢, this will be satisfied). As the transformation only

amounts to a constant being added to the return, it is a policy-invariant transformation.

This shaping reward was tested in this work; however, because the standard reward
function —L in equation 2.1 is already a continuous function, adding a shaping reward
was not particularly beneficial. The most relevant heuristics for setting the cost/reward

function were 1) giving higher weights for the angle variables in swing-up tasks, 2) ensuring

45

the reward was mostly positive in environments in which the agent can terminate an
episode (Cartpole and Rotary Pendulum), and 3) properly scaling the cost term to ensure
learning; i.e., if one scales L by a very low scalar, the reward function will be too flat for

the agent to notice a gradient.

2.9 Hybrid Control with Reinforcement Learning

Since established control strategies work well in equilibrium positions where linear
approximations are valid, an interesting approach is to use a hybrid control law that
combines an LQR with a reinforcement learning agent, with the latter handling the
nonlinear tasks while the former addresses stabilization problems. For the plants considered
in section 2.10, the most sensitive state variable was the angle 6 in the simple pendulum,
the cartpole, and also in the rotary pendulum system. By ‘sensitive’, it is meant that as
this variable moves away from the linearization point, the linearized dynamics change

more rapidly.

The approach we propose consists in making a weighted sum of the LQR control
law and the RL agent’s output, in which the weights are a linearity factor LF(s) and its

complement, as stated in equation 2.15.

u = upqr - LF(s) + ugry, - (1 — LF(s)). (2.15)

The linearity factor is a function of the state that is close to 1 in the equilibrium
point and virtually 0 when it is away from it. To ensure a smooth transition, we used
the continuous function given in equation 2.16, which transitions from 1 to 0 at about
0.8rad = 45°.

LR(0) = 2. (2.16)

Another critical point is that the RL agents themselves are trained without the
aid of this hybrid approach, since any action near the equilibrium point yields the same

reward, potentially hindering the training process.

2.10 Systems Under Consideration

As mentioned before, the RL environments considered in this work were classic
control problems. Namely, the simple pendulum, the pendulum on a cart (Cart Pole)
and the rotary pendulum. In the following subsections, only the system descriptions and
dynamics are given, while the basic reward signal is borrowed from optimal control theory.
The specific weights of each quadratic term in the cost function are mentioned only in the

results section, as they varied depending on the agent’s goal.

46

The derivation of the dynamics of each system was computed using the Euler-
Lagrange equation, given in equation 2.17, where ¢; is a generalized coordinate, L =T —V
is the Lagrangian of the system, and (), is a generalized force that accounts for external
forces along the direction of the coordinate ¢;. These can include viscous friction forces
and, more importantly, the force from an actuator. Once the dynamics of the systems are
computed, it is important to isolate the second derivative of each state variable, which is
useful for implementing the simulated environment and for computing the LQR gain for
the Hybrid RL problems.

d (0L oL
— (=) -===0.. 2.17
dt (aq) dq Z (2.17)

The complete derivation of the system’s dynamics was performed only for the
cart-pole, while the Lagrangian was explicitly computed for the pendulum system. For the

rotary pendulum, a reference paper was cited for the derivation, and only the resulting

Lagrangian expression was presented.

Finally, all simulated environments used to test the RL algorithms were implemented
as Gymnasium environments [Towers et al. 2024] and used adaptive RK4 for numerical
integration with a base time step of At = 0.025s. That means that each time-step the
agent sees lasts 0.025s in the simulation; however, the adaptive algorithm can take more

numerous, smaller time-steps if the time derivative is too high.

Another important note is the fact that the observation that the agent has access
to is not directly the state vector of the system, e.g. ¥ = [x z 0 (9'}, but rather
T = {x * sin€@ cosd 9} Passing the sine and cosine of angle state variables rather
than the angles themselves avoids a discontinuity at § = 27 while at the same time fully
informing the agent of the current state of the system. The same was made for the angle

¢ in the rotary pendulum system.

2.10.1 Simple Pendulum

The simple pendulum has a single degree of freedom and thus two state variables:
the angle 6 the pendulum makes with the vertical axis, such that a clockwise rotation

translates to a positive @ and the angular velocity 6, as in equation 5.

The agent interacts with the pendulum by sending a one-dimensional action signal

u that is equal to the torque applied to the axis of rotation.

The pendulum has a point mass m at its tip and a length [. The height —[cos # of
the mass determines the gravitational potential energy U = —mgl cos 8 of the pendulum,
and the kinetic energy is purely rotational and equal to 7' = 1mi26%. Thus, the Lagrangian

of the system is:

47

Figure 5 — Diagram of the simple pendulum system

Source: Q-learning-based Model-free Swing Up Control of an Inverted Pendulum [Ghio e
Ramos 2019]

1 .
L=T-V= imZQQQ + mgl cos 6. (2.18)

By plugging this expression in equation 2.17 and noting that the external torques
are Qp =7 — 30 (where 7 = u is the control torque and f3 is a viscous friction coefficient),

we get the dynamics of the pendulum in equation 2.19.

T—B0 g .
5~ sin 6. (2.19)

0 =

2.10.2 Cart Pole

The state variables of this system are the position x of the cart, the angle 6 the
pole makes with the vertical axis, and their respective derivatives. For 6, a clockwise
rotation has a positive sign, as shown in figure 6. These are sufficient to define the system’s

potential and kinetic energy at any moment.

If we consider the pole to be a uniformly distributed mass m over a section [and
consider the cart to be a point mass M, the kinetic energy can be computed by calculating
the energy due to the linear movement of the center of mass of the pole, due to the linear
movement of the cart and due to the rotational movement of the pole about its center
of mass, as in equation 2.20, where v, is the speed of the center of mass of the pole and
I is the moment of inertia about the center, which for a uniform distribution of mass is
1= 1—12le.

1 1 1.
5M:i:2 + §mvf + 5192. (2.20)

48

Figure 6 — Diagram of the cart pole system

XL
Source: Own elaboration (2025)

Let x. and . be the center of mass of the pole. Since the axis of the pole is located
in the origin, . = = + ésin@ and y. = %cos 0. Taking the derivative of z. and y. with

respect to time, we get the velocity of the center of mass of the pole:
)2 oy 2 2 7.0 P o
() = (¢ + 59 cos)® = &* + [0 cos§ + ZG cos” 0,

. 2 .
(1.) = (—é@ sin0)? = %92 sin? 0,

e =

. 2.
vl =32+t =i 4 120 cos O + 192.

Inserting this result in equation 2.20 and knowing that the potential energy is

V= mg% cos#, we can compute the Lagrangian of the system, given in 2.21.

: !
0% — mg cos 6. (2.21)

1 .. 12
L‘:T—Vzé(m—i-M)a’cQ—l—m?:wcosQ—l—m?

We can now compute the partial derivatives of this expression to obtain the

differential equations governing the system’s dynamics.

oL ml
p— y .
9% (M +m)x + 5 6 cos b,

d <6£

- %) = (M +m)i + m?l(éCOSQ— 928in9),

49

oc

%—0.

The generalized force in the x direction is the viscous force —bx plus the control

signal wu.

[. l.
(M +m)i + %9 cosf = %02 sin 6 + u — b (2.22)

Now we do the same for the generalized coordinate 6:

%—ﬁlj:cose%—m—Pé
06 2 3

. 2--
Ll <8£> = ﬁl(cos @ — 20sin) + @0,

dt \ 06 2 3
oL) mi ., - .
0= mg§ sinf — 7%9 sin 6.

Since the only external force is the viscous friction torque — 36, we can plug these

results into the Euler-Lagrange equation to get 2.23

l 1 . [.
m? T+ ngQG =mgg sinf — 6. (2.23)
Equations 2.22 and 2.23 can then be combined in compact vector form, given by

eq. 2.24.

(2.24)

M4+ m 7310089] {x
i

F 4 ™62sin 6 — bx’]

cosf gmi? mgk sinf — 50

2.10.3 Rotary Pendulum

There is an excellent paper on deriving the dynamics of the rotary pendulum
[Gafvert 1998]. The pendulum consists of a point mass M held at the tip of the vertical
arm, with length [, and uniformly distributed mass m, that is attached to the horizontal
arm of length [, and mass m,. This horizontal arm is driven by a control torque 7 = u
that drives a central pillar with a moment of inertia I. The same sign convention is used
in this work: the angle ¢ that the horizontal arm makes with the x-axis is positive in the
counter-clockwise direction (when viewed from above). The angle 6 that the vertical arm
makes with the z-axis is positive when it goes in the anti-clockwise direction, as in the

diagram of figure 7.

50

Figure 7 — Diagram of the rotary inverted pendulum system

M

X

Source: Modelling the Furuta Pendulum [Géfvert 1998]

The Lagrangian of the pendulum can be found by dividing the potential and kinetic
energies into four parts, each of which is due to the center pillar’s moment of inertia I, the
point mass M or the distributed masses m, and m,. The total potential energy is given in

equation 2.25, and the kinetic energy is described in equation 2.26.

V=Vt Vot Vp+ Vi
=0+ 0+ 3mypgl, cos 0 + Mgl, cos 0 (2.25)

= (M + %mp) gl,cos 0.

T=T,+T,+T,+T,
= 116" + tm,I2¢” + im, [(zg + 225in%0)¢? + Ly, cos 0§ + %z;éﬂ (2.26)
+ EM [(12 + 25in? 0)¢” + 21, cos 0 §0 + 1267 .

Plugging these terms into the Euler-Lagrange equation for both degrees of freedom

and setting QQy = 7 = w and @y = 0 we get the dynamics of the system in matrix form:

0

¢

j +C(6,0,6,0)

D(¢,0)

+9(6,0) = [g] , (2.27)

Where the matrices D(¢,6) and C(¢,8,$,0) and the vector g(¢,6) are defined

below:

51

D(¢,0) = - cos B 5

a + [sin 02 70080]

C(6.0.6.0) 2 Bcosfsinff 3 cosbsinbhp — sin Hh
AR — B cosfsin ¢ 0 ’

9(9.0) = [—52111 9] |

And the shorthand variables o, £, v and ¢ are:

o =T+ (M+me+m,)l2,
B=(M+ "),

= (M + %),

5= (M +"%2)gl,.

In choosing the system’s parameters (or designing a real controllable plant), it is
essential that the determinant of the mass matrix D(¢, 6) be non-zero at the linearization
point, since when it is zero, the two state variables are decoupled. One cannot reliably

control # by applying a torque in ¢. Indeed, when o« = § = v = d = 1 is chosen, the system
is unstable [Gafvert 1998|.

53

3 COMPUTATIONAL EXPERIMENTS

3.1 Solving a simple discrete MDP with DP and Q-Learning

A straightforward way to compare dynamic programming to QQ-learning is to use
a very small deterministic MDP, which can be represented as a graph or an adjacency
matrix. In the graph representation, each node represents a state, and each link represents
a possible transition; the number on the link indicates the reward obtained by taking that
transition. The graph can be described by an adjacency matrix M, where each entry my;
is the reward for transitioning from state ¢ to state j, and if the entry is 0, then there is
no connection between node ¢ and node j. The matrix description was used to parse the
MDP for the agent. The graph of the particular MDP used in this test is given in Figure
8, where a is the node of the starting state, b is the node of the terminal state, and each

action is a simple binary choice between going up or down in the graph.

Figure 8 — Graph of the MDP with the optimal path traced (in red)

Source: Own elaboration (2025)

One can check that the optimal path yields a reward of 27. Using Value iteration,
the value function table was computed, and the optimal path (also in figure 8) was

obtained.

A Q-network with two hidden layers (each containing 32 neurons) was trained to

learn the optimal policy’s value function. Each state was represented as a 16-entry array,

o4

with each entry set to 0 except for the one corresponding to the current state, which was
set to 1. Thus, the network’s input layer has 16 neurons. Finally, the output layer has
two neurons: one for moving up and the other for moving down through the graph. The

training process was the Deep Q-learning algorithm described in section 2.6.2.

By the end of the training process, the value function can be obtained by maximizing
the Q-network’s output, and the optimal action at each state can be found by taking the
argmax. Figure 9 shows the rewards gained at each episode, and figure 10 shows the mean
difference between the QQ network’s highest output and the value function found through
DP (i.e. &+ |max, Qy(s) — V(s)]). This error was less than 1 by the end of the training
process, ands since all rewards are integer-valued, maximizing the Q-function at each state

indeed yields the highest possible return of 27.

Figure 9 — Return at each training episode in the training process of a DQN for a small
RL problem

Result

27 A

26

25 A

24

231

Total Reward

22 A

21 A

201

19 A

T T T T T
0 100 200 300 400 500 600 700 800
Episode

Source: Own elaboration (2025)

This goes to show that a simple Q-learning algorithm is capable of approximating
the Q function of the optimal policy in such a way that the true optimal path can be
found. For this MDP with very small action and state spaces, this is clearly overkill, as
value iteration can compute the optimal policy much more quickly; but as stated before,
RL problems suffer from the "curse of dimensionality", in such a way that Q-learning and
other approximate solution methods converge to a satisfactory result in a reasonable time,
while the exact solution achieved through policy or value iteration takes way too long
for RL problems with large state spaces and unimaginably long for continuous non-linear

ones.

55

Figure 10 — Mean error committed by the DQN over training episodes in the training
process

Mean error in the Value Function estimated by the Q-Network
4.0

3.5 A

g
(=]
1

|max Q-V|/n
[%]
n
1

o8]
(=]
1

154

10+

T T T T T T T T
0 100 200 300 400 500 600 700 800
Episodes (x1)

Source: Own elaboration (2025)

3.2 Learning Instability

In section 2.7.2, it was stated that the TD3 algorithm was made for addressing
Q-value overestimation and learning instability problems. During the training loops for
the cartpole system, such issues were encountered, and the way this was diagnosed was
by monitoring the mean of the Q-values used for training (which, as reminder are chosen
randomly from the memory buffer). TD3, however, was capable of learning high-performing
policy without facing these instability issues, as can be seen in figure 11 (the logarithm of

the Q values is plotted to illustrate better that the TD3 mean Q values were also growing).

This issue was first noticed by monitoring total rewards over episodes: the agent
would seem to learn a better policy, then start getting worse rewards than before, as
though it were "unlearning" what to do. Figure 12 shows this behavior occurring when
a DQN was used to learn the stabilizing problem of the rotary pendulum, and figure 13
shows the mean Q-values computed by the DQN.

In the case of this DQN for the rotary pendulum, the issue was solved by lowering
the target network’s update rate 7 from 0.005 to 0.001. Another way of avoiding this
shortcoming is stopping the learning process when the agent is able to accumulate a certain
threshold value of total rewards in a single run. This was done to obtain a sufficiently

good policy for the comparisons in the following sections.

56

Figure 11 — Instability comparison of DDPG and TD3. The y-axis represents the log of
the mean Q-values, and the x-axis represents the training episode.

Log{Mean Q-value)

] 7
& B
@ _'====--- ?
- —e—DDPG
2 —8—TD3 | -

| | I | I | |
1] 200 400 600 800 1000 1200 1400 1600
Episode

Source: Own elaboration (2025)

Figure 12 — "Unlearning" behavior on a DQN for the stabilization problem of the rotary
pendulum

Training...

—20 4

reward

=40 4

—60 4

_80 4

—100 -

T T T T T T
0 2000 4000 6000 8000 10000 12000
Episode

Source: Own elaboration (2025)

3.3 Controlling classic control systems near unstable equilibrium points

As stated in section 2.10, the three systems studied in this work are the simple
pendulum, the cartpole, and the rotary pendulum, all of which are non-linear systems that,
near any equilibrium point, can be controlled by a Linear Quadratic Regulator. Three

LQRs were solved for the unstable equilibrium point of each of the three plants, and it was

o7

Figure 13 — Mean Q-values of DQN for learning the stabilization problem of the rotary
pendulum over episodes

12 %107
10+
S -
u
=
m
3
O 6
c
m
[}
=
4
2 -
6000 7000 8000 9000 10000 11000 12000

Episode

Source: Own elaboration (2025)

observed that even if the initial conditions are not exactly Z = 0, the pendulum, cartpole,

and rotary pendulum could be balanced by the LQR.

Since RL methods are capable of learning non-linear policies, it is expected that the
farther away from the origin the initial conditions are, the better the RL agents will fare
in comparison to the LQR solution. To test this, a DQN, a DDPG, and a TD3 agent were
trained to balance each plant, each with two hidden layers containing 128 neurons. The
test consists of running deterministic simulations with the LQR and the trained networks,

varying the starting angle ¢, and computing the total reward obtained across runs.

The following subsections detail the parameters of each system, the cost function
that was chosen (which was, of course, the same for all agents and for computing the
LQR’s gain), and the results that were obtained.

3.3.1 Simple Pendulum

The parameters of the pendulum described in section 2.10.1 are as follows: m =
1.0kg, I = 1.0m, and b = 0.01 Nsm™"! and the cost function is given in equation 3.1. The
LQR’s gain computed using an infinite horizon in MATLAB was K = [—19.3141, 6.2241].

L(0,0,u) = 0%+ 0.26* + 0.1u>. (3.1)

The maximum torque 7 = u allowed for the control was the same 5N m, which
was experimentally tested to be sufficient for the LQR. Regarding the quantization of
the action space made for the DQN, the step was 0.5 N m, such that the action space of

58

the Q-learning agent was {—5.0,—4.5...,0,...4.5,5.0}, and therefore the DQN had 21
output neurons. The starting angle was swept from —45° to +45° in steps of 0.5°, and the

results are given in figure 14.

Figure 14 — Total reward obtained after 100 time-steps by each RL agent and LQR over
different starting angles 6 in the simple pendulum environment

Pendulum Control Performance Comparison

0 - — LOR
— DON
DDPG
— TD3
200
<]
=
o
A
[=%
W 400
€
o
b=l
=
@
& -600
I
8
-800
-1000
-40 -20 0 20 40

Initial Angle (degrees)

Source: Own elaboration (2025)

As can be seen in the figure, no RL agent was capable of outperforming the LQR.
DDPG was surprisingly more general and effective than DQN and TD3, but still could not
control the pendulum for starting angles above 25°. The torque limitation likely played a
significant role in this result, and the simplicity of the control problem explains the LQR’s

effectiveness.

3.3.2 Cartpole

The system’s parameters were the following: m = 1.0kg, M = 2.0kg, [= 1.0m,
and the viscous friction b was set to zero. The maximum action signal was set to F' =
u = TON, which is more than sufficient to stabilize the pendulum using an LQR (it
was tested that starting at a 40° angle, the maximum force required was a bit bellow
65N) and the quantization made for the DQN was in steps of 5N, and therefore the
output layer of the network had 27 neurons. Finally, the cost function of the problem
is given in equation 3.2, which led to the following gain matrix for the LQR: K =
[—15.1744, —18.2369, —134.4547, —36.9102].

L(x,#,0,0,u) = 3.022 + 0.1 + 2.06% + 0.26% + 0.01u>. (3.2)

59

A positive offset was given to the cost function, which is why the total reward is
positive in the plot; however, as stated in section 2.8, this constitutes a policy invariant

transformation.

Figure 15 — Total reward obtained after 300 time-steps by TD3 and DQN agents and LQR
over different starting angles 6y in the cartpole environment

CartPole Control Performance Comparison

500 — LOR
DON
— D3
290
4]
=
2 480
‘B
Ll
2
= 470
g
@
& 60
et
°
450
440
—40 -20 0 20 40

Initial Pole Angle (degrees)

Source: Own elaboration (2025)

DDPG’s performance on this task was disappointing. The agent suffered from the
instability issues mentioned in section 3.2 even with a very low target network update rate
(1) and low learning rates. A suboptimal policy (capable of stabilizing the system with
small initial angles) was saved to compare it with the TD3 and DQN agents; however, the
rewards were still too low to fit neatly on the graph. For this reason, it is plotted separately
in figure 16, with a more limited starting angle range (from —5° to +5°), beyond which
the reward went all the way down to -700000.

TD3, however, proved to have a very broad capability of successfully stabilizing
the system with high starting angles at the cost of having a lower performance in the
22 — 39° range.

3.3.3 Rotary Pendulum

The rotary pendulum’s physical parameters were the following: m, = 0.2kg,
m, = 0.01kg, M = 1.0kg, I, = 1.0m, [, = 0.5m, and I = 1.21 x 10~ *kgm?. The
maximum actuation signal allowed was 7 = u = 20 N m, which again is sufficient for the

LQR to stabilize the pendulum, and the quantization made for the DQN was in steps of

60

Figure 16 — Total reward obtained after 300 time-steps by DDPG agent in a limited angle
range

CartPole Control DDPG Performance

1475 N—‘_’_’r_\

1450

1425

1400

1375

Total Reward per Episode

1350

1325

—4 -2 0 2 4
Initial Pole Angle (degrees)

Source: Own elaboration (2025)

0.5 N m, such that the output layer had 21 neurons. The LQR’s gain for the cost function
in equation 3.3 was K = [—1.0739, —1.3304, —18.5823, —4.1347].

L(¢,9,0,0,u) = 0.3¢> + 0.03¢% + 3.06> + 1.06 + 0.1u>. (3.3)

In this test case, all RL agents converged without instability, and TD3 achieved
the best performance, matching LQR’s rewards in the linear region and outperforming the
other agents there. Furthermore, all RL agents had better performances than the LQR

from about 18° onwards. The plot of the rewards can be seen in figure 17.

It appears that there is some trade-off between generality for non-linear control
and performance in the linear region among the RL agents, as it is clear that the TD3,
which outperforms the other agents in the linear region, had a narrower angle range in
which it could balance the pendulum well. In contrast, the DDPG and DQN agents had
inferior performances in the linear region and a broader range in which they could balance

the pendulum.

3.4 Non-Linear tasks and Hybrid Control
3.4.1 Setup

As proposed in section 2.9, a hybrid control approach for the swing-up and stabi-

lization tasks of all the aforementioned plants was utilized. This section compares the bare

61

Figure 17 — Total reward obtained after 300 time-steps by each RL agent and LQR over

Total Reward per Episode

300

250

200

150

100

different starting angles 6y in the rotary pendulum environment

Rotary Pendulum Control Performance Comparison

— LOR
T W%’\- . orc
k\
\\C

Initial Pole Angle (degrees)

Source: Own elaboration (2025)

TD3 RL agents against the hybrid of LQR and TD3, using the control law of equation

The physical parameters of the plants are all the same as in the other systems, except

det D(0,0) = 0.429kg?m* and its parameters are given in table 1

Table 1 — Rotary pendulum’s parameters

Parameter Value
my 0.2kg
My 0.01kg
M 1.2kg
L 2.0m
l, 1.2m
1 1.21 x 103 kg m?

Source: Own elaboration (2025)

for the rotary pendulum, which proved itself to be very difficult for the RL algorithms
to learn a way to swing the vertical arm upwards. That is because the determinant of
the inertia matrix in 2.27 was low (det(D(0,0)) = 0.0197kg?m*). Since it is still non-
singular, the system is theoretically controllable and learning the task is feasible; however,
it was decided to tweak the parameters in order to make the learning process, which still

lasted 4000 episodes, somewhat shorter. The new inertia matrix had a determinant of

Furthermore, the rotary pendulum’s cost function was also modified to L(s,u) =

62

0.3¢2 4 0.03¢% + 10.00% + 1.062 4 0.0001u2, so as to incentivize the agent to seek to lower 6
while not worrying too terribly much about the torque it would need to apply in order to
do it and the LQR gain matrix that solves the control problem in the upright position for
the new parameters and cost function was K = [—3.33, —5.24, —43.40, —13.00]. Finally,
the TD3 agents employed to learn the task were always composed of neural networks with
two hidden layers, each with 128 neurons, and a number of input and output neurons

concordant to the the dimension of the observation and action space.

3.4.2 Reward and Evolution of the State Variables

As shown in figures 1820, the TD3 agent learned the swing-up task across all
proposed systems. The total cost of all hybrid runs was lower than that of agents performing
the swing-up and stabilization tasks on their own. However, the advantage was only
marginal in the cartpole and simple pendulum systems. For the rotary pendulum, however,
the hybrid approach was very effective, since the RL agent by itself had a very noisy
control signal near the upright position. At the same time, that issue is eliminated when

the LQR feedback gain takes control, as can be seen in figure 20b.

A quantitative comparison of hybrid control and pure RL is summarized in Table 2.
There, the total cost accumulated in each run is displayed, and the relative improvement
f—ri is computed as a figure of merit for how much the hybrid control provides an advantage.
It is notable that, even though the LQR control law contributes only to stabilization after
the swing-up task is completed, there was a noticeable improvement in the performance
metric. That improvement was most pronounced in the rotary pendulum system, which,
as mentioned before, had a noticeable oscillation in the control signal when both tasks

were left to the actor-critic.

63

Figure 18 — Evolution of the state variables in the swing-up task of the simple pendulum

State Variables Over Time State Variables Over Time
al— 0 =N al—o A
— [\ — ed /1 \

3 [\ 3 (AR
.) . [N
ERES S ElE / S
@ @ /
g \\ g / ANg

0 T~ 0 / —

NNV
-1 \ 7/ -t /
\ \Y
—=u —<=u

4 4

2 2
g o g o
e &

-2 -2

-4 -4

0 150 150 250 300 30 400 EY 150 1350 250 30 350 400

Time step

(a) TD3 RL agent.

Time step

(b) Hybrid control.

Source: Own elaboration (2025)

Figure 19 — Evolution of the state variables in the swing-up task of the cartpole system.

State Variables Over Time

°

State value

100 150 200
Time step

(a) TD3 RL agent.

State value

State Variables Over Time

150
Time step

(b) Hybrid control.

Source: Own elaboration (2025)

Figure 20 — Evolution of the state variables in the swing-up task of the rotary pendulum

State value

Torque
°

system.

State Variables Over Time

100 150 200 250
Time step

(a) TD3 RL agent.

300

350

400

State value

State Variables Over Time

100 150 200 250
Time step

(b) Hybrid control.

Source: Own elaboration (2025)

300

350

64

Table 2 — Overall cumulative cost obtained from the simulated runs of the proposed
systems, using both the TD3 control law and the hybrid approach.

Systems Pendulum Cartpole Rotary Pendulum
Methods pure RL | hybrid | pure RL | hybrid | pure RL | hybrid
Total Cost (a.u.) 744.82 | 734.66 | 1054.31 | 1038.36 | 4720.66 | 4605.70
Relative cost reduction (%) 1.36 1.51 2,44

Source: Own elaboration (2025)

65

4 CONCLUSIONS

After laying the theoretical groundwork of RL and its connection to optimal
control theory, breaking down each algorithm that was tested, and proposing a novel
yet straightforward hybrid control method, we demonstrated the capability of Q-learning
algorithms to learn the actual optimal policy in problems with small state spaces that can
be solved through value iteration, even while the exact values computed by the network
are not the same as those found through DP. This preliminary validation shows the extent
to which approximate solution methods can match the exact solutions found through value

iteration in an environment where they can be compared.

The RL algorithms implemented in this work were evaluated both for their per-
formance in control tasks near equilibrium points and for their susceptibility to learning
instability problems. Monitoring the mean Q-value computed by the critic networks was a
handy tool for identifying Q-value overestimation and learning instability. TD3 and DQN
proved to be the most stable alternatives compared to DDPG; the latter was satisfactory
for problems with one-dimensional continuous action spaces, provided that the quantization
step was sufficiently small. In contrast, the former was the most flexible and capable of

finding a highly optimized policy, albeit at the cost of a longer training time.

Finally, the hybrid control scheme implemented proved very effective, particularly
in the rotary pendulum system, which has non-linear dynamics stemming from both state
variables. The method’s advantage was very marginal in the other two systems; however,
the results obtained still demonstrate the utility of this paradigm in control engineering,

particularly for complex tasks with stabilization subtasks.

In summary, the results and contributions of this work demonstrate the relevance
of reinforcement learning (RL) in control engineering, proving its viability in simulated
environments. Planned future research in this field includes the design of a physical rotary
pendulum with a DC motor, 3D-printed components, and an ESP32 controller, and the

implementation of these tools for near-linear and non-linear control of this plant.

67

REFERENCES

BELLMAN, R. A markovian decision process. Journal of mathematics and
mechanics, JSTOR, p. 679-684, 1957.

BROCKMAN, G. et al. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

BRUNTON, S. L.; KUTZ, J. N. Data-driven science and engineering: Machine
learning, dynamical systems, and control. [S.l.: s.n.]: Cambridge University Press,
2022.

FUJIMOTO, S.; HOOF, H.; MEGER, D. Addressing function approximation error in
actor-critic methods. In: PMLR. International conference on machine learning.
[S.1.: s.n.], 2018. p. 1587-1596.

GAFVERT, M. Modelling the furuta pendulum. Department of Automatic Control, Lund
Institute of Technology (LTH), 1998.

GHIO, A.; RAMOS, O. E. Q-learning-based model-free swing up control of an inverted
pendulum. In: IEEE. 2019 IEEE XXVI International Conference on Electronics,
Electrical Engineering and Computing (INTERCON). [S.l.: s.n.], 2019. p. 1-4.

HONGGE, R. et al. The balance control of two-wheeled robot based on bionic learning
algorithm. In: IEEE. The 26th Chinese Control and Decision Conference (2014
CCDQ). [S.l.: s.n.], 2014. p. 4166-4170.

HORNIK, K.; STINCHCOMBE, M.; WHITE, H. Multilayer feedforward networks are
universal approximators. Neural networks, Elsevier, v. 2, n. 5, p. 359-366, 1989.

KAELBLING, L. P.; LITTMAN, M. L.; MOORE, A. W. Reinforcement learning: A
survey. Journal of artificial intelligence research, v. 4, p. 237-285, 1996.

LILLICRAP, T. P. et al. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

MNIH, V. et al. Human-level control through deep reinforcement learning. nature,
Nature Publishing Group, v. 518, n. 7540, p. 529-533, 2015.

NG, A. Y.; HARADA, D.; RUSSELL, S. Policy invariance under reward transformations:
Theory and application to reward shaping. In: CITESEER. Iecml. [S.l.: s.n.], 1999. v. 99,
p. 278-287.

PENG, X. B. et al. Deepmimic: Example-guided deep reinforcement learning of
physics-based character skills. ACM Transactions On Graphics (TOG), ACM New
York, NY, USA, v. 37, n. 4, p. 1-14, 2018.

PETERS, J.; VIJAYAKUMAR, S.; SCHAAL, S. Reinforcement learning for humanoid
robotics. In: Proceedings of the third IEEE-RAS international conference on
humanoid robots. [S.l.: s.n.], 2003. p. 1-20.

RANDLOV, J.; ALSTROM, P. Learning to drive a bicycle using reinforcement learning
and shaping. In: ICML. [S.l.: s.n.], 1998. v. 98, p. 463-471.

68

RICHTER, D. J.; CALIX, R. A.; KIM, K. A review of reinforcement learning for
fixed-wing aircraft control tasks. IEEE Access, IEEE, 2024.

SILVER, D. et al. Mastering the game of go with deep neural networks and tree search.
nature, Nature Publishing Group, v. 529, n. 7587, p. 484-489, 2016.

SUTTON, R. S.; BARTO, A. G. Reinforcement Learning: An Introduction. [S.[.:
s.n.]: The MIT Press, 2018.

SUTTON, R. S. et al. Policy gradient methods for reinforcement learning with function
approximation. Advances in neural information processing systems, v. 12, 1999.

TOWERS, M. et al. Gymnasium: A standard interface for reinforcement learning
environments. arXiv preprint arXiv:2407.17032, 2024.

WANG, C. et al. Robust visuomotor control for humanoid loco-manipulation using hybrid
reinforcement learning. Biomimetics, MDPI, v. 10, n. 7, p. 469, 2025.

WANG, D.; HUANG, H.; ZHAO, M. Model-free optimal tracking design with evolving
control strategies via g-learning. IEEE Transactions on Circuits and Systems II:
Express Briefs, I[EEE, v. 71, n. 7, p. 3373-3377, 2024.

WANG, X. et al. Deep reinforcement learning: A survey. IEEE Transactions on Neural
Networks and Learning Systems, [EEE, v. 35, n. 4, p. 5064-5078, 2022.

WATKINS, C. J.; DAYAN, P. Q-learning. Machine learning, Springer, v. 8 n. 3, p.
279-292, 1992.

WILLIAMS, R. J.; BAIRD, L. C. Tight performance bounds on greedy policies based on
imperfect value functions. In: In Proceedings of the Tenth Yale Workshop on
Adaptive and Learning Systems. [S.l.: s.n.], 1993.

WU, J. et al. A-td3: An adaptive asynchronous twin delayed deep deterministic for
continuous action spaces. IEEE Access, IEEE, v. 10, p. 128077-128089, 2022.

ZEYNIVAND, A.; MOODI, H. Swing-up control of a double inverted pendulum by
combination of g-learning and pid algorithms. In: IEEE. 2022 8th International
Conference on Control, Instrumentation and Automation (ICCIA). [S.l.: s.n.],
2022. p. 1-5.

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of frames
	List of Abbreviations
	List of Symbols
	Contents
	Introduction
	Problem Statement, Relevance and Objectives
	Organization of the Work

	Methodology
	Optimal Control and Bellman's Equation
	Elements of Reinforcement Learning
	Markov Decision Processes
	Overview of RL Techniques
	Dynamic Programming
	Value Iteration
	Policy Iteration

	Q-Learning
	Tabular Q-Learning
	Deep Q-Learning

	Actor-Critic Algorithms
	Deterministic Policy Gradient
	Policy Gradient Theorem
	DDPG algorithm

	Twin Delayed Deep Deterministic Policy Gradient

	Choosing a Reward Signal
	Hybrid Control with Reinforcement Learning
	Systems Under Consideration
	Simple Pendulum
	Cart Pole
	Rotary Pendulum

	Computational Experiments
	Solving a simple discrete MDP with DP and Q-Learning
	Learning Instability
	Controlling classic control systems near unstable equilibrium points
	Simple Pendulum
	Cartpole
	Rotary Pendulum

	Non-Linear tasks and Hybrid Control
	Setup
	Reward and Evolution of the State Variables

	Conclusions
	References

