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RESUMO

Helena, L. L. Método baseado em imagem para detecgao de eixos e classificagao
de caminhdes. . 2020. 84p. Monografia (Trabalho de Conclusao de Curso) - Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2020.

As redes neurais convolucionais tem sido empregadas com frequéncia cada vez maior para
deteccao e classificagao de imagens. Esse trabalho tem como objetivo empregar trés das
mais notaveis arquiteturas de deteccao baseadas em CNNs e aplica-las na deteccao de eixos
de caminhdes, comparando-as. Os resultados obtidos demonstram que as arquiteturas se
comportam de maneira mais que adequada, sendo possivel notar as diferentes filosofias de

uso e o trade-off entre FPS e acuracia para cada uma delas.

Palavras-chave: Deep Learning. YoloV3. Faster R-CNN. Single Shot Multibox Detector.
Python. Keras.






ABSTRACT

Helena, L. . Image based method for axis detection and truck classification.
2020. 84p. Monografia (Trabalho de Conclusao de Curso) - Escola de Engenharia de Sao
Carlos, Universidade de Sao Paulo, Sao Carlos, 2020.

Convolutional Neural Networks are being employed with increased frequency in the
detection and classification of images. This work objective is to assess the usability of
the three state-of-the-art detection architectures based on CNN’s and apply them o the
detection of trucks axis, comparing the results. The obtainded outcomes show that those
architectures behave more than appropriately, it is even possible to notice the different
usage philosophy of each network in teh trade-off between FPS and accuracy for each of
them.

Keywords: Deep Learning. YoloV3. Faster R-CNN. Single Shot Multibox Detector.
Python. Keras.
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1 INTRODUCAO

O transporte rodovidrio representa no Brasil 65% da movimentacao de cargas, ou
aproximadamente 1.548 bilhoes de toneladas quilometros tteis (TKU) (S.A., 2015), isso
representa 4,4% do PIB nacional( TRANSPORTE, 2001).

Apesar disso, quando comparado ao sistema de transporte dos EUA, a nossa
produtividade é de apenas 22% (TRANSPORTE, 2001), entao qualquer avango técnolégico
que melhore a produtividade dessa area é muito bem vindo, por isso este trabalho busca
entender e aplicar trés arquiteturas de redes convolucionais de modo a agilizar processos e

minimizar a burocracia envolvida, diminuindo a necessidade de interagdo humana.

As trés arquiteturas de deteccao utilizadas foram a Faster R-CNN, YOLOv3 e
SSD, que sdo as arquiteturas mais difundidas atualmente e consideradas como estado da

arte na detecgao de objetos.

1.1 Objetivos do trabalho

Este trabalho visa empregar as arquiteturas de detecgao de objetos na identificagao
de eixos de caminhoes, para que futuramente o mesmo possa ser implementado de maneira
a agilizar processos que atualmente sao demorados e burocraticos, como por exemplo na

pesagem de cargas e cobranca de tarifas em pragas pedagio.

1.2 Organizacao do texto

O trabalho esta dividido em 5 capitulos principais:
o No capitulo 2, denominado "Revisao Bibliogréafica', é apresentada uma breve contex-
tualizacao tedrica dos assuntos abordados neste trabalho;

o O capitulo 3, "Materiais e Métodos", descreve os materiais utilizados e a metodologia

adotada para treinar as redes neurais;

o O capitulo 4, "Resultados e Discussoes", apresenta todos os resultados obtidos no

capitulo anterior, compara-os e discute suas implicagoes;

o E por fim no capitulo 5, "Conclusoes", sao dispostas as consideragoes finais e estudadas

possibilidades de trabalhos futuros relacionados a este.
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2 REVISAO BIBLIOGRAFICA

2.1 Redes Neurais Artificiais

Redes Neurais Artificiais sao modelos matematicos que buscam simular o funci-
onamento de um cerébro para resolver problemas que outrora pareciam insolucionaveis.
A rede neural artificial é composta, assim como um cerébro, de varias unidades bésicas
conectadas entre si, os perceptrons (equivalente mateméatico ao neurdnio). As figuras 1 e 2

mostram a semelhanca entre ambos.

Figura 1 — Neurdnio Biologico
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Fonte: (CARVALHO, 2009)

Figura 2 — Neurénio Artificial (Perceptron)
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Fonte: Carvalho (2009)

O perceptron ¢ separado em trés partes distintas, os dendritos, a soma e o axdnio.

Nos dendritos o perceptron recebe a entrada e a multiplica por um peso W;, na soma
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todas as entradas sao somadas e no axonio o resultado da soma passara por uma funcao

de ativacao, gerando uma resposta as entradas originais.

2.1.1 Rede de Perceptron Multicamadas

Um tnico perceptron s6 consegue resolver problemas lineares, para problemas mais
complexos é necessario organizar varios perceptrons em camadas, onde a entrada de dados

de uma camada é a saida dos perceptrons da camada anterior, vide figura 3.

Figura 3 — Neur6nio Artificial (Perceptron)

e=f[Wae.a + Wheb + ..} | = fiweale + WA +...)

O
O
O
O

Fonte: Rocha (2015)

O treinamento dessa rede é baseado no algoritmo de back propagation, durante
o treino os valores de entrada sao inseridos na rede e a saida é comparada com a saida
esperada, entao é calculado o gradiente do erro e esse gradiente ¢ utilizado para ajustar os

parametros da rede, propagando da ultima camada até a primeira.

2.2 Redes Neurais Convolucionais (CNN)

Nas redes multicamadas todos os perceptrons da camada anterior estao conectados
em todos os perceptrons da camada seguinte. Para problemas variantes no tempo e
principalmente para problemas envolvendo imagens, onde as entradas do problema sao as
matrizes dos canais de cor da imagem, a posi¢ao de cada pizel de entrada com relagao aos
outros importa. Os pixels na vizinhanca do pizel sendo observado tem muito mais peso
para o perceptron do que um pizel do outro lado da imagem. Como o custo computacional
para calcular os pesos dos perceptrons totalmente conectados é gigantesco, as redes

convolucionais sao utilizadas para contabilizar apenas os pizels mais préximos.
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Cada camada de uma CNN tem diferentes fungoes. Cada uma delas serd explicada

com mais detalhes.

2.2.1 Camada de convolugao

Cada camada de convolugao é composta por um kernel(nticleo) que varre a imagem,
como pode ser visto na figura 4, e é convoluido com a vizinhanca do pixel atual, dando na

saida um feature map(mapa de caracteristicas).

O kernel é uma matriz nxn impar composta pelos pesos de entrada, a saida sera
uma outra matriz que contém o resultado da convolucao entre o kernel e a matriz n x n

derivada da imagem, centrada no pixel atual.

Figura 4 — Operagao de convolucao

Kernel 2011111
oj0|1 1
111|-1]0
21| -2 .

Fonte: Rocha (2015)

2.2.2 Camada de Pooling

A camada de Pooling reduz as dimensdes da matriz de entrada por um fator
constante, o que nao apenas diminui o peso computacional da rede neural,como também
reduz a sensibilidade da rede a pequenas varia¢oes na imagem(ROCHA, 2015), isso acontece
pois as diversas features de uma regiao proxima sao combinadas em uma tUnica feature, o

que diminui a redundancia da rede.

Atualmente os poolings mais utilizados sao o maz-pooling e o avg-pooling, o max-
pooling pega os valores da regiao do pooling e mantém o maior valor apenas (ver figura 5),

ja o avg-pooling mantém a média dos valores de entrada.

Neste trabalho sera utilizado apenas o maz-pooling.
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Figura 5 — Operacao de max-pooling

Fonte: Rocha (2015)

2.2.3 Camada Softmax

Apoés todas as operagoes de convolucao e pooling necessarias a rede passa por uma
camada softmaz, essa camada transforma a matriz em uma tUnica camada totalmente
conectada, a soma dos resultados da saida vao ser sempre igual a 1 e todas a saidas sao
positivas, por isso pode-se interpretar as saidas como uma distribui¢ao de probabilidade

discreta da entrada pertencer a cada uma das classes de interesse.

2.3 Faster R-CNN

O sistema Faster Region Based CNN(R-CNN) é composto basicamente por trés
modulos(REN et al., 2015),uma rede de backbone que extrai os mapas de caracteristicas,
uma CNN que propoe as regides nas quais os objetos poderao estar (RPN) e um mddulo
de deteccao(GIRSHICK, 2015).

As figuras 6 e 7 mostram o esquema béasico de funcionamento da Faster R-CNN.

2.3.1 Region Proposal Network (RPN)

A funcao da RPN é receber o mapa de caracteristicas como entrada e mostrar na
saida um conjunto de areas retangulares, cada uma com sua probabilidade de conter o

objeto.

Para cada janela no mapa de caracteristicas de entrada a RPN assume £ = 9

anchor boxes com 3 escalas e 3 aspect ratio diferentes, como mostra a figura 8, assim cada
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Figura 6 — Estrutura basica do Faster R-CNN
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Figura 7 — Arquitetura Faster R-CNN
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imagem gera um total de W.H.k regides de interesse(Rol), onde W e H sdo as dimensoes

do mapa de caracteristicas.

Para remover as redundancias é aplicado o método de Non-Maximum Suppre-
ston(NMS) que consiste em pegar a Rol com maior probabilidade e computar a Inter-
section over Union(loU)(figura 9) com todas as outras regioes, excluindo-as quando o

IoU for superior ao limiar pré-definido, repetindo o processo até nao existirem regioes
redundantes(KIM, 2018).
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Figura 8 — Anchor Bozes
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Figura 9 — Equacao de IoU
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Fonte: Rosebrock (2016)

Area of Overlap

loU =
Area of Union

2.3.2 Classificacao e Regressao

Para classificacao e regressao a Faster R-CNN utiliza a mesma rede de sua ante-
cessora( GIRSHICK, 2015), primeiro as Rol’s e o mapa de caracteristicas passam por uma
camada de pooling e interpolacdo, em seguida elas passam por uma cada de fully-connected
layers que nos da a probabilidade de cada classe em cada Rol, depois as Rol’s com
probabilidades abaixo do limiar ou classificadas como plano de fundo sdo excluidas, e

por ultimo é aplicado mais uma vez o método NMS para excluir as redundancias, este
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procedimento pode ser visualizado nas figuras 10 e 11

Figura 10 — Classificacdo e Regressao
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Figura 11 — Remocao de redundancias utilizando NMS
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2.4 Single Shot MultiBox Detector(SSD)

O método SSD(LIU et al., 2016) é baseado em uma rede convolucional de feed-

forward que produz uma colecdo de bounding boxes e probabilidades de presenca das
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classes de objetos nessas caixas, em sequéncia é aplicado um NMS, ja discutida na secao do
Faster R-CNN, para gerar a saida. O backbone da rede é baseado na arquitetura VGG16
contendo todas as camadas até a ultima camada de convolucao para extrair o mapa de

caracteristicas, conforme a figura 12.

Figura 12 — Arquitetura VGG16

convl

conv4 {
Oy
£ fcts fe7 el
— — 1 =
1% 143 512 T 1x1x4096 1x1x 1000
38 % 28 x 512 T
T &1
56 x 56 % 256 Erl ol
112 x 128
@ convolution4 Rel.1J
. Iax ]:l(il:ilil”.‘:
—r] fully connected4+Rel.U
| L

224 % 224 % 64

Fonte: Ferguson et al. (2017)

2.4.1 Diferenciais

2.4.1.1 Mapas de caracteristicas multi-escala

Sao adicionadas camadas de caracteristicas ao final da rede de backbone. Essas
camadas reduzem de tamanho progressivamente e permitem a detec¢ao em diversas escalas,

conforme mostra a figura 13.

2.4.1.2 Preditores convolucionais

Para cada camada de caracteristicas é produzido um conjunto de predi¢oes de

deteccao usando uma série de filtros convolucionais, isso pode ser visto na figura 14.

Para uma layer de caracteristicas de tamanho m X n com p canais, o elemento basico
para predizer os parametros de uma potencial detecgdo é um pequeno kernel que produz
ou uma probabilidade para uma classe, ou um offset na forma, relativo as coordenadas

padroes da bounding boxr. Em cada uma das man posi¢oes onde o kernel é aplicado é
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Figura 13 — Multiplas escalas de deteccao
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Figura 14 — Arquitetura SSD
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gerado um valor de saida. Os valores de saida para offset das bounding boxes sao medidos

em relacao a posicao padrao relativa a cada posicao do mapa de caracteristicas.

2.4.1.3 Bozes e Aspect Ratios Padroes

Para cada célula do mapa de caracteristicas ¢ associado um conjunto de bounding
boxes padrao. As bozres padroes cobrem o mapa de caracteristicas de uma maneira convolu-
cional, de modo que a posicao de cada boxr em relacao a célula correspondente é fixa. Para
cada box entre as k boxes sdo computadas ¢ probabilidades de classe e 4 offsets relativas a
box padrao, com isso tem-se um total de (¢ + 4)kmn filtros que sao aplicados a um mapa
de caracteristicas man. Aplicar as bores a diversos mapas de caracteristicas de diferentes

resolucdes permite um discretizacao eficiente do espago.

2.5 You Only Look Once(YOLO)

YOLO é um método de deteccao de objetos que alcanca processamento em tempo
real transformando a deteccao de objetos em um simples problema de regressao (REDMON

et al., 2015). Para isso a imagem de entrada em uma malha de S x S quadrados, se o
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centro de um objeto cai em uma célula da malha, essa célula unitaria é responsavel por
detectar aquele objeto. Cada célula prediz B bounding boxres e uma probabilidade da

boundig box conter um objeto, conforme mostra a figura 15.

Figura 15 — Funcionamento bésico da arquitetura YOLO

S x § grid on input

Class probability map

Fonte: Redmon et al. (2015)

2.5.1 Predicao das bounding bozes

A rede prediz 4 coordenadas para cada bounding bozx, tx, ty, tw, th (REDMON;
FARHADI, 2018) se a célula estiver deslocada do canto superior esquerdo da imagem por
(Cy, Cy) e a box anterior tiver largura e altura p,, e py, respectivamente, entao as predi¢oes

sao:

by = 0o(t:) + Cu,
by = o(ty) + Cy,
by = puwe'™,
by, = pre™.

A figura 16 exemplifica a predicao das bounding boxes

2.5.2 Extracao de caracteristicas

Para extracao de caracteristicas é utilizada a rede Darknet — 53, figura 17, uma
rede neural residual que com 53 camadas convolucionais que é composta de sucessivas

camadas de tamanho 1 x 1 e 3 x 3.
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Figura 16 — Predicao das bounding boxes

CX
Pu
S Cininiuiek bebebeleieleh b
: b, :
o(t)||: be=olt)+c
Prz | D, ._.I gl b =0(t )+c
a(t) : b=p e
: : b=p,e*

Fonte: Redmon e Farhadi (2018)

Figura 17 — Darknet-53

Type Filters Size Qutput
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x 128
Convolutional 32 1x1

1x| Convolutional 64 3x3
Residual 128 x 128
Convolutional 128 3x3/2 64 x64
Convolutional 64 1x1

2x| Convolutional 128 3x3
Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 1 x1

8x| Convolutional 256 3x3
Residual 32 x32
Convolutional 512 3x3/2 16x 16
Convolutional 256 1 x 1

8x| Convolutional 512 3x3
Residual 16 x 16
Convolutional 1024 3x3/2 8 x8
Convolutional 512 1 x1

4x| Convolutional 1024 3 x 3
Residual 8x8
Avgpool Gilobal
Connected 1000
Softmax

Fonte: Redmon e Farhadi (2018)

2.6 Average Precision (AP)

Para classificar as diferentes arquiteturas é preciso encontrar uma boa métrica para

comparacao. Atualmente uma das métricas mais utilizadas para classificar detectores de

objeto é a Average Precision (ou AP).

A métrica se baseia em 3 parametros:
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o True Positive (TP) - Quando o objeto detectado estd presente no ground truth;
e Fualse Positive (FP) - Quando o objeto detectado nao esté presente no ground truth;

o Fualse Negative (FN) - Quando o objeto estd presente no groun truth e nao foi
detectado.

Com estes parametros podemos calcula-se a precision, que mede a precisao das
predigoes da rede e o recall, que mede a capacidade da rede de encontrar todos os objetos

relevantes Amorim (2019), as equagoes de precision e recall sdo mostradas em 2.1 e 2.2

TP

Precision — i 2.1

recision = o (2.1)
TP

e — 2.2

Recall TP FP (2.2)

Para calcular o AP, basta calcular a area abaixo da curva de Precision x Recall,
porém como mostra a figura 18 conforme diminuimos o threshold de confianca da rede,
o valor do recall aumenta, pois hd uma diminui¢do no nimero de FN, porém a precisao
diminui, ja que o numero de FP aumenta. Entretanto essa relacao nao ¢ linear, pois a
diminui¢ao do threshhold pode tambem gerar um aumento nos casos de TP, formando

zigue—zagues nla curva.

Figura 18 — Curva AP
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0.6
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03

Recall

Fonte: Hui (2018)

Para evitar o erro de comparacao entre datasets devido a esse padrao é necessario

suavizar a curva, para isso deve-se interpolar pontos na curva tais que,
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Pinterp('r) = mamp(f) V7r>r

Assim obtem-se a curva mostrada na figura 19, agora basta calcular a integral

abaixo da curva para se obter o AP da rede.

Figura 19 — Curva AP interpolada
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Fonte: Hui (2018)
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3 MATERIAIS E METODOS

3.1 Banco de Imagens

Para treinar as redes foram utilizadas 399 imagens laterais de caminhéo, figura 20,
obtidas no banco de dados do LabITS do departamento de engenharia de transportes da
EESC. Dessas imagens foram separadas 346 para treino, que foram divididas em 90% para

o treino e 10% para a validacgdo, e 53 para testar a rede apos os treinamentos.

Figura 20 — Exemplo de imagem do banco de dados

Fonte: Cunha e Marcomini (2018)

Como o aprendizado das redes sera supervisionado se faz necessario anotar nas
imagens todos os ground truths, para isso foi utilizada a ferramenta da Microsoft, VoTT
(Visual Object Tagging Tool, (VOTT, 2020). Ela é uma ferramenta visual open source
que permite marcar os ground truths nas imagens, figura 21, e os converte para os mais
diversos tipos de dados utilizados pelas principais arquiteturas de deteccao, como .CSV,
XML e .JSON. Para este projeto sera utilizado o formato .CSV (Comma Separated Values
ou Valores separados por virgula), que dard uma listagem de todos os ground truths com

as seguintes informagdes:

Imagem, xmin, xmax, ymin, ymax, Classe.

A figura 22 mostra o significado pratico de xmin, rmazx, ymin, ymaz e a figura

23 mostra um exemplo do arquivo arquivo .CSV gerado pelo VoT'T.

3.2 YOLOv3

Para treinar a rede na arquitetura YOLOvV3 foi utilizada uma versao adaptada
da biblioteca obtida em (KERAS-YOLO3, 2018), todos os c6digos usados neste projeto
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Figura 21 — Imagem marcada no VoT'T

Fonte: VoT'T (2020)

podem ser encontrados no anexo A.

Para agilizar o processo de aprendizado da rede foram usados pesos pré-treinados,
obtidos em (YOLOVS3..., 2018).

A tabela 1 mostra os pardmetros de treino utilizados neste projeto.

Tabela 1 — Parametros de treinamento para

YOLOv3
Parametro de treinamento Valor utilizado

Epocas 102

Imagens 346

Validacao 10%
Otimizador Adam

Learning Rate le-3

Batch Size 100

Fonte: Elaborada pelo autor.

Para as primeiras 51 épocas de treinamento todas as camadas da rede menos as
quatro tultimas foram congeladas. Para agilizar o treinamento e para estabilizar as perdas
da rede, para as tltimas 51 épocas todas as camadas foram descongeladas, o batch size e o
Learning Rate para 32 e le — 4 respectivamente, permitindo um ajuste fino final para a

rede.
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Figura 22 — Coordenadas do ground truth

»

Fonte: Elaborado pelo autor.
Figura 23 — Arquivo CSV
A | B £ D E F G H | J K L M

.imagé,"xmin","ymin“,“xmax","ymax","label“

20160927110318-550_color-%5BROI-1%50-12.jpg, 990.7949790794978,627.8980719237435,1109.958158995816, 741.6242417677643, "Eixo"
20160927110318-550_color-%5BROI-1%5D-12.jpg, 1600,622.5462521663778,1720.5020920502093,737.61037694974, "Eixo"
20160927110318-550_color-%5BROI-1%50-12.jpg, 1296.0665456066944,490.0887131715771,1404.5188284518827,585.0835138648181, "Eixo'
20160927110318-550_color-%5BROI-1%50-12.jpg,954.6443514644351,488.75075823223574,1055.062761506276,581.0696490467938, "Eixo"

WM

Fonte: Elaborado pelo autor.

3.3 Faster R-CNN

O segundo método utilizado foi o Faster R-CNN, assim como na arquitetura anterior
foram utilizados pesos pré treinados, no database ImageNet, para a rede ResNet50, obtidos
na biblioteca Keras(RESNET50. .., 2020), para agilizar o processo de treino, a biblioteca
bésica para treinar a rede pode ser encontrada em (KERAS-FRCNN;, 2020).

A tabela 2 mostra os parametros de treino utilizados.



36

Tabela 2 — Parametros de treinamento para
Faster R-CNN

Parametro de treinamento Valor utilizado

Epocas 100
Imagens 346
Validacao 10%
Regides de interesse 32
Otimizador Adam
Learning Rate le-5
Batch Size 100

Fonte: Elaborada pelo autor.

3.4 SSD

Para treinar a rede na arquitetura SSD foi usada uma versao modificada da
biblioteca obtida em (SSD-KERAS, 2018) . Os pesos pré-treinados no database ImageNet

também podem ser encontrados na biblioteca.

A tabela 3 contém os parametros de treinamento utilizados.

Tabela 3 — Parametros de treinamento para

SSD
Parametro de treinamento Valor utilizado

Epocas 100

Imagens 346

Validacao 10%
Otimizador Adam

Learning Rate le-3

Batch Size 100

Fonte: Elaborada pelo autor.

Apods 80 épocas a Learning Rate foi diminuida para le-4 para ajustes mais finos na

rede.



37

4 RESULTADOS E DISCUSSOES

Foram obtidos para as trés redes, resultados acima da média esperada, tabela 4
com detecgoes precisas e com graus de confianca altos, figuras 24, 25, 26 e 27, apesar disso
nenhuma das redes obteve cem por cento de acerto, seja por oclusoes dos objetos (figura

28) ou eixos no background (figura 29).

Tabela 4 — Desempenho das arquiteturas
em outros bancos de dados

Arquitetura dataset mAP

YOLOv3 COCO 33%
Faster R-CNN COCO+07+12 78,8%
SSD COCO+07+12  79,6%

Fonte: Adaptada de (REDMON; FARHADI,
2018), (REN et al., 2015) e (LIU et
al., 2016)

Os met6dos selecionados para verificar a eficicia da rede foram: o de AP (Average
Precision) para avaliar a precisao das detecgoes e o FPS (Frames Per Second) para avaliar
a velocidade. Para encontrar o AP, foi utilizado o c6digo encontrado em (MAP, 2020) e o

FPS foi medido nas imagens de teste pela equacao 4.1.

Number of Images

FPS = (4.1)

Processing Time '

A tabela 5 mostra o resumo das detecgoes de teste e a tabela 6 apresentam o AP e

FPS de cada rede.

Tabela 5 — Resumo de Treinamento

Arquitetura GT TP FP FN

YOLOv3 173 154 2 19
Faster R-CNN 173 169 3 4
SSD 173 167 0 6

Fonte: Elaborada pelo autor.

Com os valores de AP e FPS traga-se o grafico da figura 30. Nele percebe-se que
apesar de ser a arquitetura mais precisa, a faster R-CNN ¢ a mais lenta, sendo 11 vezes

mais lenta que a SSD e 5 vezes mais lenta que a YOLO, com uma pequena perda na
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Tabela 6 — Resultados de trei-
namento

Arquitetura AP FPS

YOLOv3  8857% 0.5
Faster R-CNN 97,68% 0,1
SSD 96,53% 1,1

Fonte: Elaborada pelo autor.

acuracia percebe-se que a melhor arquitetura, combinando acuracia e velocidade foi a SSD,
enquanto para esta aplicacao a arquitetura YOLOv3 foi mais lenta e menos precisa que a
SSD.

Figura 24 — Exemplos de detecgoes YOLOv3

inhio con 3 eiro(s)

Fonte: Elaborado pelo autor.
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Figura 25 — Exemplos de detecgoes Faster R-CNN

Fonte: Elaborado pelo autor.

Figura 26 — Exemplos de deteccoes SSD

Fonte: Elaborado pelo autor.
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Figura 27 — Comparacao dos graus de confianca das detecgoes; YOLO, Faster R-CNN e
SSD respectivamente.

Fonte: Elaborado pelo autor.

Figura 28 — Exemplos de oclusao atrapalhando a detecgao

Fonte: Elaborado pelo autor.
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Figura 29 — Exemplos de eixo no plano de fundo nao localizado

Fonte: Elaborado pelo autor.

Figura 30 — Comparacao das arquiteturas

100

%8 T 97 68%

A 95,53%

o6

a4

AP

=+—Y0OLOv3
= Faster R-CNN

a2
—lir—530

ad

88 +—F—+—+——+—

FP5

Fonte: Elaborado pelo autor.
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5 CONCLUSOES

O objetivo deste trabalho é utilizar as trés arquiteturas de CNNs mais populares
de deteccao de objetos, YOLOv3, Faster R-CNN e SSD, na detec¢ao de eixos de rodagem

de caminhoes.

De forma geral os resultados demonstraram bom desempenho, mostrando uma
eficacia nas detecgoes acima das porcentagens obtidas para as mesmas redes em outros ban-
cos de dados. As arquiteturas se mostraram robustas mesmo com as dificuldades técnicas,
como poucas épocas de treinamento e pouca quantidade de imagens para treinamento(346
imagens). As CNNs em geral necessitam de um nimero bem maior de imagens para que a

rede nao se especialize em apenas um grupo de imagens (overffiting).

O tempo de processamento para cada imagem foi adequado até para maquinas
menos potentes e treinando apenas na CPU, sem usar a GPU, mostrando a portabilidade

e replicabilidade do trabalho.

5.1 Trabalhos Futuros

Para trabalhos futuros com base neste projeto, sao propostos:

o Aplicagao das redes treinadas em videos ou feeds ao vivo para deteccdo em tempo

real;

o Modificacao dos parametros de treinamento para classificar os caminhdes detectados
baseado na quantidade e tipo de eixo detectado (eixo simples, duplo, duplo em

tandem, triplo ou triplo em tandem);

o Implementacdo de um sistema de feedback para re-treinar a rede a partir de novas

imagens detectadas.
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ANEXO A - CODIGO DE TREINAMENTO YOLOV3

impo
impo
impo
from
from
from

from

from

from

from

def

def

rt os

rt numpy as np

rt keras.backend as K

keras.layers import Input, Lambda
keras.models import Model
keras.optimizers import Adam

keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping

yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss
yolo3.utils import get_random_data

time import time

get_parent_dir(n=1):
" returns the n-th parent dicrectory of the current
working directory """
current_path = os.path.dirname(os.path.abspath(__file__))
for k in range(n):

current_path = os.path.dirname(current_path)
return current_path

_main():

#Caminhos para 0s arquivos

Data_Path = os.path.join(get_parent_dir(0), "Data")
Image_Folder = os.path.join(Data_Path, "Source_Images", "Training_ Images")

annotation_path = os.path.join(Image_Folder, "data_train.txt")

Model_Folder = os.path.join(Data_Path, "Model_Weights")
log_dir = Model_Folder

classes_path os.path.join(Model_Folder, "data_classes.txt")

anchors_path = os.path.join("utils","model_data", "yolo_anchors.txt")

weights_path = os.path.join("utils", "yolo.h5")
class_names = get_classes(classes_path)
num_classes = len(class_names)

anchors = get_anchors(anchors_path)
input_shape = (416,416) # multiplo de 32, altura z largura
#quantidade de epocas por periodo de treinamento

epochl, epoch2 = 51, 51

model = create_model (input_shape, anchors, num_classes,
freeze_body=2, weights_path=weights_path)
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log_dir_time = os.path.join(log_dir, "{}".format(int(time())))
logging = TensorBoard(log_dir=log_dir)

#checkpoint

checkpoint = ModelCheckpoint (
os.path.join(log_dir, "checkpoint.h5"),
monitor="val_loss",
save_weights_only=True,
save_best_only=True,

period=5,

reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1)

early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)

val_split = 0.1
with open(annotation_path) as f:

lines = f.readlines()

#separa as tmagens de treino e validac¢do
np.random.seed(10101)
np.random.shuffle(lines)
np.random. seed (None)

num_val = int(len(lines)*val_split)
num_train = len(lines) - num_val

# Train with frozen layers first, to get a stable loss.
# Adjust num epochs to your dataset. This step ts enough to obtain a mot bad model.
if True:
model . compile (optimizer=Adam(lr=1e-3), loss={
# use custom yolo_loss Lambda layer.

'yolo_loss': lambda y_true, y_pred: y_pred})

batch_size = 100
print('Train on {} samples, val on {} samples, with batch size

«— {}.'.format(num_train, num_val, batch_size))

history = model.fit_generator(

data_generator_wrapper (

lines[:num_train], batch_size, input_shape, anchors, num_classes
),
steps_per_epoch=max (1, num_train // batch_size),
validation_data=data_generator_wrapper (

lines[num_train:], batch_size, input_shape, anchors, num_classes
),

validation_steps=max(1l, num_val // batch_size),
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epochs=epochl,

initial_epoch=0,

callbacks=[logging, checkpoint],
)

model.save_weights(os.path.join(log_dir, "trained_weights_stage_1.h5"))

stepl_train_loss = history.history["loss"]

file = open(os.path.join(log_dir_time, "stepl_loss.npy"),

Ilwll)

with open(os.path.join(log_dir_time, "stepl_loss.npy"), "w") as f:

for item in stepl_train_loss:
f.write("%s\n" % item)
file.close()

stepl_val_loss = np.array(history.history["val_loss"])

file = open(os.path.join(log_dir_time, "stepl_val_loss.npy"), "w"

with open(os.path.join(log_dir_time, "stepl_val_loss.npy"), "w") as f:

for item in stepl_val_loss:
f.write("%s\n" % item)
file.close()

# Unfreeze and continue training, to fine-tune.
# Train longer if the result is not good.
if True:

for i in range(len(model.layers)):

model.layers[i] .trainable = True

model.compile (optimizer=Adam(lr=1e-4), loss={'yolo_loss':

— y_pred}) # recompile to apply the change
print('Unfreeze all of the layers.')

batch_size = 2 # note that more GPU memory ts required after unfreezing the body

lambda y_true, y_pred:

print('Train on {} samples, val on {} samples, with batch size

< {}.'.format(num_train, num_val, batch_size))

history = model.fit_generator(
data_generator_wrapper (

lines[:num_train], batch_size, input_shape, anchors, num_classes

)5
steps_per_epoch=max (1, num_train // batch_size),
validation_data=data_generator_wrapper (

lines[num_train:], batch_size, input_shape, anchors, num_classes

)5

validation_steps=max(l, num_val // batch_size),
epochs=epochl + epoch2,

initial_epoch=epochl,

callbacks=[logging, checkpoint, reduce_lr, early_stopping],

)

model .save_weights(os.path. join(log_dir, "trained_weights_final.h5"))

step2_train_loss = history.history["loss"]

file = open(os.path.join(log_dir_time, "step2_loss.npy")
with open(os.path.join(log_dir_time, "step2_loss.npy"),
for item in step2_train_loss:

f.wurite("%s\n" % item)

s Ilwll)

"w") as f:
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def

def

def

file.close()
step2_val_loss = np.array(history.history["val_loss"])

file = open(os.path.join(log_dir_time, "step2_val_loss.npy"), "w")
with open(os.path.join(log_dir_time, "step2_val_loss.npy"), "w") as f:
for item in step2_val_loss:
f.write("%s\n" % item)
file.close()

get_classes(classes_path):
"'"'"loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]

return class_names

get_anchors (anchors_path):
"'"'"loads the anchors from a file'''
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]

return np.array(anchors) .reshape(-1, 2)

create_model (input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
weights_path='model_data/yolo_weights.h5'):

"!"'create the training model'''

K.clear_session() # get a new session

image_input = Input(shape=(None, None, 3))

h, w = input_shape

num_anchors = len(anchors)

y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[1], w//{0:32, 1:16, 2:8}[1], \
num_anchors//3, num_classes+5)) for 1 in range(3)]

model_body = yolo_body(image_input, num_anchors//3, num_classes)
print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors,
< num_classes))

if load_pretrained:

model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)

print('Load weights {}.'.format(weights_path))

if freeze_body in [1, 2]:
# Freeze darknetb3 body or freeze all but 3 output layers.
num = (185, len(model_body.layers)-3) [freeze_body-1]
for i in range(num): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format (num,
< len(model_body.layers)))

model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.53})(
[*model_body.output, *y_truel)

model = Model([model_body.input, *y_true], model_loss)
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def

def

def

return model

create_tiny_model (input_shape, anchors, num_classes, load_pretrained=True,
freeze_body=2,
weights_path='model_data/tiny_yolo_weights.h5'):
"!"'"create the training model, for Tiny YOLOv3'''
K.clear_session() # get a new session
image_input = Input(shape=(None, None, 3))
h, w = input_shape

num_anchors = len(anchors)

y_true = [Input(shape=(h//{0:32, 1:16}[1], w//{0:32, 1:16}[1], \
num_anchors//2, num_classes+5)) for 1 in range(2)]

model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors,

< num_classes))

if load_pretrained:

model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)

print('Load weights {}.'.format(weights_path))

if freeze_body in [1, 2]:
# Freeze the darknet body or freeze all but 2 output layers.
num = (20, len(model_body.layers)-2) [freeze_body-1]
for i in range(num): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(num,
< len(model_body.layers)))

model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.73})(
[*model_body.output, *y_truel)

model = Model([model_body.input, *y_true], model_loss)

return model

data_generator (annotation_lines, batch_size, input_shape, anchors, num_classes):
""'data generator for fit_generator'''
n = len(annotation_lines)
i=0
while True:
image_data = []
box_data = []
for b in range(batch_size):
if i==0:
np.random. shuffle(annotation_lines)
image, box = get_random_data(annotation_lines[i], input_shape, random=True)
image_data.append (image)
box_data.append (box)
i=(i+1) % n
image_data = np.array(image_data)
box_data = np.array(box_data)
y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)

yield [image_data, *y_true], np.zeros(batch_size)

data_generator_wrapper (annotation_lines, batch_size, input_shape, anchors, num_classes):
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268 n = len(annotation_lines)

269 if n==0 or batch_size<=0: return None

270 return data_generator (annotation_lines, batch_size, input_shape, anchors, num_classes)
271

272 if __name__ == '__main__':

273 _main()
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from __future_

_ _ import division
import random

import pprint

import sys

import time

import numpy as np

import pickle

from keras import backend as K

from keras.optimizers import Adam

from keras.layers import Input

from keras.models import Model

from keras_frcnn import config, data_generators
from keras_frcnn import losses as losses

import keras_frcnn.roi_helpers as roi_helpers

from keras.utils import generic_utils

sys.setrecursionlimit (40000)

from keras_frcnn.simple_parser import get_data

# pass the settings from the command line, and persist them in the config object

C = config.Config()

C.use_horizontal_flips = False

Q

.use_vertical_flips = False
C.rot_90 = False

C.model_path = './model_frcnn.hdf5'

C.num_rois = 32

from keras_frcnn import resnet as nn
C.network = 'resnet50'
# check if weight path was passed via command line

C.base_net_weights = './model_frcnn.hdf5'

all_imgs, classes_count, class_mapping = get_data("annotate.txt")

if 'bg' not in classes_count:
classes_count['bg'] = 0
class_mapping['bg'] = len(class_mapping)
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52 C.class_mapping = class_mapping

53

54 inv_map = {v: k for k, v in class_mapping.items()}

55

56 print('Training images per class:')

57 pprint.pprint(classes_count)

58 print('Num classes (including bg) = {}'.format(len(classes_count)))

59

60 config_output_filename = "config.pickle"

61

62 with open(config_output_filename, 'wb') as config f:

63 pickle.dump(C,config_£)

64 print('Config has been written to {}, and can be loaded when testing to ensure

< correct results'.format(config_output_filename))

65

66 random.shuffle(all_imgs)

67

68 num_imgs = len(all_imgs)

69

70 train_imgs = [s for s in all_imgs if s['imageset'] == 'trainval'l]
71 val_imgs = [s for s in all_imgs if s['imageset'] == 'test']

72

73  print('Num train samples {}'.format(len(train_imgs)))

74 print('Num val samples {}'.format(len(val_imgs)))

75

76

77 data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, C,
< nn.get_img_output_length, K.image_dim_ordering(), mode='train')

78 data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, C,
<+ nn.get_img_output_length,K.image_dim_ordering(), mode='val')

79

80 if K.image_dim_ordering() == 'th':

81 input_shape_img = (3, None, None)
82 else:

83 input_shape_img = (None, None, 3)
84

85 img_input = Input(shape=input_shape_img)

86 roi_input = Input(shape=(None, 4))

87

88 # define the base network (resnet here, can be VGG, Inception, etc)

89 shared_layers = nn.nn_base(img_input, trainable=True)

90

91 # define the RPN, built on the base layers

92 num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios)

93 rpn = nn.rpn(shared_layers, num_anchors)

94

95 classifier = nn.classifier(shared_layers, roi_input, C.num_rois,
— mnb_classes=len(classes_count), trainable=True)

96

97 model_rpn = Model(img_input, rpn[:2])

98 model_classifier = Model([img_input, roi_input], classifier)

99

100 # this is a model that holds both the RPN and the classifier, used to load/save wetights for
— the models

101 model_all = Model([img_input, roi_input], rpn[:2] + classifier)

102
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103 try:

104 print ('loading weights from {}'.format(C.base_net_weights))

105 model_rpn.load_weights(C.base_net_weights, by_name=True)

106 model_classifier.load_weights(C.base_net_weights, by_name=True)

107 except:

108 print ('Could not load pretrained model weights. Weights can be found in the keras
<+ application folder \

109 https://github.com/fchollet/keras/tree/master/keras/applications')

110

111  optimizer = Adam(lr=1e-5)

112 optimizer_classifier = Adam(lr=1e-5)

113 model_rpn.compile(optimizer=optimizer, loss=[losses.rpn_loss_cls(num_anchors),
<> losses.rpn_loss_regr(num_anchors)])

114 model_classifier.compile(optimizer=optimizer_classifier, loss=[losses.class_loss_cls,
< losses.class_loss_regr(len(classes_count)-1)],
< metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'})

115 model_all.compile(optimizer='sgd', loss='mae')

116

117  epoch_length = 100

118 num_epochs = 50

119 iter_num = 0O

120

121 losses = np.zeros((epoch_length, 5))

122 rpn_accuracy_rpn_monitor = []

123  rpn_accuracy_for_epoch = []

124 start_time = time.time()

125

126 best_loss = np.Inf

127

128 class_mapping_inv = {v: k for k, v in class_mapping.items()}

129 print('Starting training')

130
131 vis = True
132
133  for epoch_num in range(num_epochs):
134
135 progbar = generic_utils.Progbar(epoch_length)
136 print ('Epoch {}/{}'.format(epoch_num + 1, num_epochs))
137
138 while True:
139 try:
140
141 if len(rpn_accuracy_rpn_monitor) == epoch_length and C.verbose:
142 mean_overlapping_bboxes =
— float(sum(rpn_accuracy_rpn_monitor))/len(rpn_accuracy_rpn_monitor)
143 rpn_accuracy_rpn_monitor = []
144 print ('Average number of overlapping bounding boxes from RPN
— = {} for {} previous
< iterations'.format(mean_overlapping_bboxes,
< epoch_length))
145 if mean_overlapping_bboxes ==
146 print ('RPN is not producing bounding boxes that
— overlap the ground truth boxes. Check RPN
< settings or keep training.')
147

148 X, Y, img_data = next(data_gen_train)
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loss_rpn = model_rpn.train_on_batch(X, Y)
P_rpn = model_rpn.predict_on_batch(X)

R = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], C,

— K.image_dim_ordering(), use_regr=True, overlap_thresh=0.7,
<~ max_boxes=300)

# note: calc_iou converts from (zl1,yl,z2,y2) to (z,y,w,h) format
X2, Y1, Y2, IouS = roi_helpers.calc_iou(R, img_data, C,

— class_mapping)

if X2 is None:
rpn_accuracy_rpn_monitor.append(0)

rpn_accuracy_for_epoch.append(0)

continue
neg_samples = np.where(Y1[0, :, -1] == 1)
pos_samples = np.where(Y1[0, :, -1] == 0)

if len(neg_samples) > O:
neg_samples = neg_samples[0]
else:

neg_samples = []

if len(pos_samples) > O:
pos_samples = pos_samples[0]
else:

(]

pos_samples

rpn_accuracy_rpn_monitor.append(len(pos_samples))
rpn_accuracy_for_epoch.append((len(pos_samples)))

if C.num_rois > 1:
if len(pos_samples) < C.num_rois//2:
selected_pos_samples = pos_samples.tolist()

else:
selected_pos_samples = np.random.choice(pos_samples,
< C.num_rois//2, replace=False).tolist()

try:
selected_neg_samples = np.random.choice(neg_samples,
< C.num_rois - len(selected_pos_samples),
< replace=False).tolist()

except:

selected_neg_samples = np.random.choice(neg_samples,
< C.num_rois - len(selected_pos_samples),

< replace=True) .tolist()

sel_samples = selected_pos_samples + selected_neg_samples
else:

# in the extreme case where num_rots = 1, we pick a Tandom

— pos or neg sample

selected_pos_samples = pos_samples.tolist()

selected_neg_samples = neg_samples.tolist()

if np.random.randint(0, 2):

sel_samples = random.choice(neg_samples)
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else:
sel_samples = random.choice(pos_samples)

loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples,

—

losses[iter_num, 0]

[Y1[:, sel_samples, :], Y2[:, sel_samples, :]1])

loss_rpn[1]

losses[iter_num, 1] = loss_rpn[2]

losses[iter_num, 2]
losses[iter_num, 3]

losses[iter_num, 4]

loss_class[1]

loss_class[2]

loss_class[3]

progbar .update(iter_num+1l, [('rpn_cls', losses[iter_num, 0]),

—

('rpn_regr', losses[iter_num, 1]),

('detector_cls',
losses[iter_num,
2D,
('detector_regr',
losses[iter_num,

3D

N

iter_num += 1

if iter_num == epoch_length:

loss_rpn_cls = np.mean(losses[:, 0])
loss_rpn_regr = np.mean(losses[:, 1])
loss_class_cls = np.mean(losses[:, 2])
loss_class_regr = np.mean(losses[:, 3])
class_acc = np.mean(losses[:, 4])

mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch))
— / len(rpn_accuracy_for_epoch)
rpn_accuracy_for_epoch = []

if C.verbose:
print('Mean number of bounding boxes from RPN
— overlapping ground truth boxes:
— {}'.format(mean_overlapping_bboxes))
print('Classifier accuracy for bounding boxes from
< RPN: {}'.format(class_acc))
print('Loss RPN classifier:
— {}'.format(loss_rpn_cls))
print('Loss RPN regression:
— {}'.format(loss_rpn_regr))
print('Loss Detector classifier:
— {}'.format(loss_class_cls))
print('Loss Detector regression:
— {}'.format(loss_class_regr))
print ('Elapsed time: {}'.format(time.time() -
— start_time))

curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls +
— loss_class_regr
iter_num = 0O

start_time = time.time()
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if curr_loss < best_loss:
if C.verbose:
print('Total loss decreased from {} to {7},
— saving
— weights'.format(best_loss,curr_loss))
best_loss = curr_loss
model_all.save_weights(C.model_path)

break
except Exception as e:
print ('Exception: {}'.format(e))

continue

print('Training complete, exiting.')
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from keras.optimizers import Adam

from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TerminateOnNaN,
— CSVLogger

from keras import backend as K

from math import ceil

from models.keras_ssd300 import ssd_300
from keras_loss_function.keras_ssd_loss import SSDLoss

from ssd_encoder_decoder.ssd_input_encoder import SSDInputEncoder

from data_generator.object_detection_2d_data_generator import DataGenerator

from data_generator.object_detection_2d_geometric_ops import Resize

from data_generator.object_detection_2d_photometric_ops import ConvertTo3Channels
from data_generator.data_augmentation_chain_original_ssd import SSDDataAugmentation

img_height = 300 # Height of the model input images

img_width = 300 # Width of the model input images

img_channels = 3 # Number of color channels of the model input images

mean_color = [123, 117, 104] # The per-channel mean of the images in the dataset. Do mot
— change this wvalue if you're using any of the pre-trained weights.

swap_channels = [2, 1, 0] # The color channel order in the original SSD %s BGR, so we'll
— have the model reverse the color channel order of the input images.

n_classes = 1 # Number of positive classes, e.g. 20 for Pascal VOC, 80 for MS COCO
scales_pascal = [0.1, 0.2, 0.37, 0.54, 0.71, 0.88, 1.05] # The anchor boz scaling factors
— used in the original SSD300 for the Pascal VOC datasets

scales_coco = [0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05] # The anchor boz scaling factors
— used in the original SSD300 for the MS COCO datasets

scales = scales_pascal

aspect_ratios = [[1.0, 2.0, 0.5],
[t.0, 2.0, 0.5, 3.0, 1.0/3.0],
[t.0, 2.0, 0.5, 3.0, 1.0/3.0],
[1.0, 2.0, 0.5, 3.0, 1.0/3.0],
[1.0, 2.0, 0.5],
[1.0, 2.0, 0.5]1] # The anchor boz aspect ratios used in the original

— SSD300; the order matters

two_boxes_for_arl = True

steps = [8, 16, 32, 64, 100, 300] # The space between two adjacent anchor box center points

— for each predictor layer.

offsets = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5] # The offsets of the first anchor box center points

— from the top and left borders of the image as a fraction of the step size for each

— predictor layer.
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clip_boxes = False # Whether or not to clip the anchor boxzes to lie entirely within the

— 1mage boundaries
variances = [0.1, 0.1, 0.2, 0.2] # The variances by which the encoded target
— divided as in the original implementation

normalize_coords = True

K.clear_session()

model = ssd_300(image_size=(img_height, img_width, img_channels),
n_classes=n_classes,
mode='training',
12_regularization=0.0005,
scales=scales,
aspect_ratios_per_layer=aspect_ratios,
two_boxes_for_arl=two_boxes_for_aril,
steps=steps,
offsets=offsets,
clip_boxes=clip_boxes,
variances=variances,
normalize_coords=normalize_coords,
subtract_mean=mean_color,

swap_channels=swap_channels)
weights_path = 'ssd300_pascal_07+12_epoch-16_loss-2.0669_val_loss-2.5514.h5"'
model.load_weights(weights_path, by_name=True)
adam = Adam(1lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
ssd_loss = SSDLoss(neg_pos_ratio=3, alpha=1.0)

model . compile (optimizer=adam, loss=ssd_loss.compute_loss)

coordinates are

train_dataset = DataGenerator(load_images_into_memory=False, hdf5_dataset_path=None)

val_dataset = DataGenerator(load_images_into_memory=False, hdf5_dataset_path=None)

images_dir = 'Data\JPEGImages'

train_labels_filename = 'Train_csv.csv'

val_labels_filename = 'val_csv.csv'

train_dataset.parse_csv(images_dir=images_dir,

labels_filename=train_labels_filename,
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96 input_format=['image_name', 'xmin', 'ymin', 'xmax', 'ymax',
— 'class_id'], # This is the order of the first siz columns in the
— CSV file that contains the labels for your dataset. If your
— labels are in XML format, maybe the XML parser will be helpful,

<~ check the documentation.

97 include_classes='all')

98

99 val_dataset.parse_csv(images_dir=images_dir,

100 labels_filename=val_labels_filename,

101 input_format=['image_name', 'xmin', 'ymin', 'xmax', 'ymax',

< 'class_id'],
102 include_classes='all"')
103
104 train_dataset.create_hdf5_dataset(file_path='dataset_pascal_voc_07+12_trainval_1.h5',
105 resize=False,
106 variable_image_size=True,
107 verbose=True)
108
109 val_dataset.create_hdf5_dataset(file_path='dataset_pascal_voc_07_test_1.h5',
110 resize=False,
111 variable_image_size=True,
112 verbose=True)
113
114
115
116
117
118 batch_size = 16
119
120
121
122
123
124 ssd_data_augmentation = SSDDataAugmentation(img_height=img_height,
125 img_width=img_width,
126 background=mean_color)
127
128
129 convert_to_3_channels = ConvertTo3Channels()
130 resize = Resize(height=img_height, width=img_width)

131

132

133 predictor_sizes = [model.get_layer('conv4_3_norm_mbox_conf') .output_shape[1:3],
134 model.get_layer('fc7_mbox_conf').output_shape[1:3],

135 model.get_layer('conv6_2_mbox_conf').output_shape[1:3],
136 model.get_layer('conv7_2_mbox_conf').output_shape[1:3],
137 model.get_layer('conv8_2_mbox_conf').output_shape[1:3],
138 model.get_layer('conv9_2_mbox_conf') .output_shape[1:3]]
139

140 ssd_input_encoder = SSDInputEncoder (img_height=img_height,

141 img_width=img_width,

142 n_classes=n_classes,

143 predictor_sizes=predictor_sizes,

144 scales=scales,

145 aspect_ratios_per_layer=aspect_ratios,

146 two_boxes_for_arl=two_boxes_for_aril,
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147 steps=steps,

148 offsets=offsets,

149 clip_boxes=clip_boxes,

150 variances=variances,

151 matching_type='multi',

152 pos_iou_threshold=0.5,

153 neg_iou_limit=0.5,

154 normalize_coords=normalize_coords)
155

156

157

158 train_generator = train_dataset.generate(batch_size=batch_size,

159 shuffle=True,

160 transformations=[ssd_data_augmentation],
161 label_encoder=ssd_input_encoder,
162 returns={'processed_images',
163 'encoded_labels'},
164 keep_images_without_gt=False)
165

166 val_generator = val_dataset.generate(batch_size=batch_size,

167 shuffle=False,

168 transformations=[convert_to_3_channels,
169 resize],

170 label_encoder=ssd_input_encoder,
171 returns={'processed_images',

172 'encoded_labels'},

173 keep_images_without_gt=False)

174

175

176 train_dataset_size = train_dataset.get_dataset_size()

177 val_dataset_size = val_dataset.get_dataset_size()

178

179 print("Number of images in the training dataset:\t{:>6}".format(train_dataset_size))
180 print("Number of images in the validation dataset:\t{:>6}".format(val_dataset_size))
181

182

183

184 def lr_schedule(epoch):
185 if epoch < 80:

186 return 0.001
187 elif epoch < 100:
188 return 0.0001
189 else:

190 return 0.00001
191

192

193

194 model_checkpoint =
<+ ModelCheckpoint (filepath="'ssd300_pascal_07+12_epoch-{epoch:02d}_loss-{loss:.4f}_val_loss-{val_loss:.4f}.h5',

195 monitor='val_loss',

196 verbose=1,

197 save_best_only=True,

198 save_weights_only=False,
199 mode="auto',

200 period=1)

201
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csv_logger = CSVLogger(filename='ssd300_pascal_07+12_training log.csv',

separator=', "',

append=True)

learning_rate_scheduler = LearningRateScheduler (schedule=1r_schedule,

verbose=1)

terminate_on_nan = TerminateOnNaN()

callbacks = [model_checkpoint,

csv_logger,

learning_rate_scheduler,

terminate_on_nan]

initial_epoch
final_epoch

steps_per_epoch

history = model.

= 25
= 100
= 200

fit_generator(generator=train_generator,
steps_per_epoch=steps_per_epoch,
epochs=final_epoch,
callbacks=callbacks,
validation_data=val_generator,
validation_steps=ceil(val_dataset_size/batch_size),

initial_epoch=initial_epoch)
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import os

def

def

def

detect_object(yolo, img, save_img=True, save_img_path="output"):
try:

image = Image.open(img)

if image.mode != "RGB":

image = image.convert("RGB")

image_array = np.array(image)
except:

print("File Open Error! Try again!")

return None, None
prediction, r_image = yolo.detect_image(image)

if save_img:

r_image.save(os.path. join(save_img_path, os.path.basename(img)))
return prediction, image_array

get_parent_dir(n=1):
#retorna o caminho para o diretorio de trabalho
current_path = os.path.dirname(os.path.abspath(__file__))
for k in range(n):

current_path = os.path.dirname(current_path)

return current_path

GetFileList(dirName, endings=[".jpg", ".jpeg", ".png", ".mp4"]):
# cria uma lista de todos os arquivos no diretoério

listOfFile = os.listdir(dirName)

allFiles = list()

# garante que todos os finais comegam com .

for i, ending in enumerate(endings):
if ending[0] != ".":

endings[i] = "." + ending

for entry in listOfFile:

# Create full path
fullPath = os.path.join(dirName, entry)
# If entry is a directory then get the list of files in this directory
if os.path.isdir(fullPath):

allFiles = allFiles + GetFileList(fullPath, endings)
else:

for ending in endings:

if entry.endswith(ending):
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allFiles.append(fullPath)
return allFiles

from utils.yolo import YOLO, detect_video
from PIL import Image

from timeit import default_timer as timer
import pandas as pd

import numpy as np

os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

# Diretorios de trabalho
data_folder = os.path.join(get_parent_dir(0), "Data")

image_folder = os.path.join(data_folder, "Source_Images")
input_path = os.path.join(image_folder, "Test_Images")

output_path = os.path.join(image_folder, "Test_Image_Detection_Results")
detection_results_file = os.path.join(output_path, "Detection_Results.csv")

model_folder = os.path.join(data_folder, "Model_Weights")

model_weights = os.path.join(model_folder, "trained_weights_final.h5")

model_classes = os.path.join(model_folder, "data_classes.txt")

anchors_path = os.path.join( "utils", "model_data", "yolo_anchors.txt")

save_img = True

#grau de confianca

score = 0.5

input_paths = GetFileList (input_path)

# separa tmagens de videos

img_endings = (".jpg", ".jpeg", ".png", ".JPG", ".JPEG")
vid_endings = (".mp4", ".mpeg", ".mpg", ".avi")
input_image_paths = []

input_video_paths = []

for item in input_paths:
if item.endswith(img_endings):
input_image_paths.append (item)
elif item.endswith(vid_endings):
input_video_paths.append(item)

if not os.path.exists(output_path):
os.makedirs (output_path)
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yolo = YOLO(
sk
"model_path": model_weights,
"anchors_path": anchors_path,
"classes_path": model_classes,
"score": score,
"gpu_num": 1,
"model_image_size": (416, 416),
}
)

# Cria um dataframe para os resultados
out_df = pd.DataFrame(
columns=[

”image",
"image_path",
”Xmin",
|Iymin|l s
"xmax",
llymaXH s
"label",
"confidence",
"x_size",

"y_size",

class_file = open(model_classes, "r"
input_labels = [line.rstrip("\n") for line in class_file.readlines()]
print("Found {} input labels: {} ...".format(len(input_labels), input_labels))

if input_image_paths:

print(
"Found {} input images: {} ...".format(
len(input_image_paths),
[os.path.basename(f) for f in input_image_paths[:5]],
)
)

start = timer()
text_out = ""

for i, img_path in enumerate(input_image_paths):
print (img_path)
prediction, image = detect_object(
yolo,
img_path,
save_img=save_img,
save_img_path=output_path,
)
y_size, x_size, _ = np.array(image) .shape
for single_prediction in prediction:
out_df = out_df.append(
pd.DataFrame (
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[
[
os.path.basename (img_path.rstrip("\n")),
img_path.rstrip("\n"),
]
+ single_prediction
+ [x_size, y_size]
1,
columns=[
"image",
"image_path",
"xmin",
"ymin",
"xmax",
"ymax",
"label",
"confidence",
"x_size",
"y_size",
1,
)
)
end = timer()
print(
"Processed {} images in {:.1fl}sec - {:.1f}FPS".format(
len(input_image_paths),
end - start,
len(input_image_paths) / (end - start),
)
)

out_df.to_csv(detection_results_file, index=False)

if input_video_paths:

print(
"Found {} input videos: {} ...".format(
len(input_video_paths),
[os.path.basename(f) for f in input_video_paths[:5]],
)
)

start = timer()
for i, vid_path in enumerate(input_video_paths):
detect_video(yolo, vid_path, output_path=output_path)
end = timer()
print(
"Processed {} videos in {:.1f}sec".format(

len(input_video_paths), end - start

yolo.close_session()
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ANEXO E - CODIGO DE DETECCAO FASTER R-CNN

from __future__ import division
import os

import cv2

import numpy as np

import sys

import pickle

from optparse import OptionParser
import time

from keras_frcnn import config
from keras import backend as K
from keras.layers import Input
from keras.models import Model
from keras_frcnn import roi_helpers

from PIL import Image, ImageFont, ImageDraw

from timeit import default_timer as timer

sys.setrecursionlimit (40000)
parser = OptionParser()

parser.add_option("-p", "--path", dest="test_path", help="Path to test data.",
— default="Test_Images")
parser.add_option("-n", "--num_rois", type="int", dest="num_rois",
help="Number of ROIs per iteration. Higher means more memory
— use.", default=32)
parser.add_option("--config_filename", dest="config_filename", help=
"Location to read the metadata related to the training
— (generated when training).",
default="config.pickle")
parser.add_option("--network", dest="network", help="Base network to use. Supports vgg or
< resnet50.", default='resnet50')

(options, args) = parser.parse_args()

if not options.test_path: # if filename 7s not given
parser.error('Error: path to test data must be specified. Pass --path to command
< line')

config_output_filename = options.config_filename

with open(config_output_filename, 'rb') as f_in:
C = pickle.load(f_in)

if C.network == 'resnet50':
import keras_frcnn.resnet as nn
elif C.network == 'vgg':
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47 import keras_frcnn.vgg as nn

48

49 # turn off any data augmentation at test time
50 C.use_horizontal_flips = False

51 C.use_vertical_flips = False

52 C.rot_90 = False

53

54 img_path = options.test_path

55

56 def format_img_size(img, C):

57 """ formats the image size based on config """
58 img_min_side = float(C.im_size)

59 (height,width,_) = img.shape

60

61 if width <= height:

62 ratio = img_min_side/width

63 new_height = int(ratio * height)

64 new_width = int(img_min_side)

65 else:

66 ratio = img_min_side/height

67 new_width = int(ratio * width)

68 new_height = int(img_min_side)

69 img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC)
70 return img, ratio

71

72 def format_img_channels(img, C):

73 """ formats the image channels based on config """
74 img = imgl[:, :, (2, 1, 0)]

75 img = img.astype(np.float32)

76 img[:, :, 0] -= C.img_channel_mean[0]

77 img[:, :, 1] -= C.img_channel_mean[1]

78 img[:, :, 2] -= C.img_channel_mean[2]

79 img /= C.img_scaling_factor

80 img = np.transpose(img, (2, 0, 1))

81 img = np.expand_dims(img, axis=0)

82 return img

83

84 def format_img(img, C):

85 " formats an image for model prediction based on config """
86 img, ratio = format_img_size(img, C)

87 img = format_img_channels(img, C)

88 return img, ratio

89

90 # Method to transform the coordinates of the bounding box to its original size

91 def get_real_coordinates(ratio, x1, y1, x2, y2):

92

93 real_x1 = int(round(xl // ratio))

94 real_yl = int(round(yl // ratio))

95 real_x2 = int(round(x2 // ratio))

96 real_y2 = int(round(y2 // ratio))

97

98 return (real_x1, real_yl, real_x2 ,real_y2)
99

100 class_mapping = C.class_mapping

101

102 if 'bg' not in class_mapping:
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class_mapping['bg'] = len(class_mapping)

class_mapping = {v: k for k, v in class_mapping.items()}
print(class_mapping)
class_to_color = {class_mapping[v]: np.random.randint(0, 255, 3) for v in class_mapping}

C.num_rois = int(options.num_rois)

if C.network == 'resnetb0':
num_features = 1024
elif C.network == 'vgg':

num_features = 512

if K.image_dim_ordering() == 'th':
input_shape_img = (3, None, None)
input_shape_features = (num_features, None, None)
else:
input_shape_img = (None, None, 3)

input_shape_features = (None, None, num_features)

img_input = Input(shape=input_shape_img)
roi_input = Input(shape=(C.num_rois, 4))

feature_map_input = Input(shape=input_shape_features)

# define the base network (resnet here, can be VGG, Inception, etc)

shared_layers = nn.nn_base(img_input, trainable=True)
# define the RPN, built on the base layers
num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios)

rpn_layers = nn.rpn(shared_layers, num_anchors)

classifier = nn.classifier(feature_map_input, roi_input, C.num_rois,
< nb_classes=len(class_mapping), trainable=True)

model_rpn = Model(img_input, rpn_layers)
model_classifier_only = Model([feature_map_input, roi_input], classifier)

model_classifier = Model([feature_map_input, roi_input], classifier)
print('Loading weights from {}'.format(C.model_path))
model_rpn.load_weights(C.model_path, by_name=True)

model_classifier.load_weights(C.model_path, by_name=True)

model_rpn.compile(optimizer='sgd', loss='mse')

model_classifier.compile(optimizer='sgd', loss='mse')
all_imgs = []
classes = {}

bbox_threshold = 0.8

visualise = True

save_path = "Result_Images"
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158 start_t = timer()

159

160 for idx, img_name in enumerate(sorted(os.listdir(img_path))):

161 start = timer()

162 if not img_name.lower().endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')):

163 continue

164 filepath = os.path.join(img_path, img_name)

165 img = cv2.imread(filepath)

166 img2 = Image.open(filepath)

167

168 X, ratio = format_img(img, C)

169

170 if K.image_dim_ordering() == 'tf':

171 X = np.transpose(X, (0, 2, 3, 1))

172

173 # get the feature maps and output from the RPN

174 [Y1, Y2, F] = model_rpn.predict(X)

175

176

177 R = roi_helpers.rpn_to_roi(Y1l, Y2, C, K.image_dim_ordering(), overlap_thresh=0.7)

178

179 # convert from (z1,yl,z2,y2) to (z,y,w,h)

180 R[:, 2] -= R[:, 0]

181 R[:, 3] —=RI[:, 1]

182

183 # apply the spatial pyramid pooling to the proposed Tegions

184 bboxes = {}

185 probs = {}

186

187 for jk in range(R.shape[0]//C.num_rois + 1):

188 ROIs = np.expand_dims(R[C.num_rois*jk:C.num_rois*(jk+1), :], axis=0)

189 if ROIs.shape[1] == O:

190 break

191

192 if jk == R.shape[0]//C.num_rois:

193 #pad R

194 curr_shape = ROIs.shape

195 target_shape = (curr_shape[0],C.num_rois,curr_shape[2])

196 ROIs_padded = np.zeros(target_shape) .astype(ROIs.dtype)

197 ROIs_padded[:, :curr_shape[1], :] = ROIs

198 ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, O, :]

199 ROIs = ROIs_padded

200

201 [P_cls, P_regr] = model_classifier_only.predict([F, ROIs])

202

203 for ii in range(P_cls.shape[1]):

204

205 if np.max(P_cls[0, ii, :]) < bbox_threshold or np.argmax(P_cls[0, ii, :]) ==
< (P_cls.shape[2] - 1):

206 continue

207

208 cls_name = class_mapping[np.argmax(P_cls[0, ii, :]1)]

209

210 if cls_name not in bboxes:

211 bboxes[cls_name] = []

212 probs[cls_name] = []
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(x, y, w, h) = ROIs[0, ii, :]

cls_num = np.argmax(P_cls[0, ii, :])

try:

(tx, ty, tw, th) = P_regr[0, ii, 4xcls_num:4*(cls_num+1)]

tx /= C.classifier_regr_std[0]

ty /= C.classifier_regr_std[1]

tw /= C.classifier_regr_std[2]

th /= C.classifier_regr_std[3]

X, ¥, W, h = roi_helpers.apply_regr(x, y, w, h, tx, ty, tw, th)
except:

pass
bboxes [cls_name] .append([C.rpn_stride*x, C.rpn_stridexy, C.rpn_stride*(x+w),
— C.rpn_stride*(y+h)1)

probs[cls_name] .append(np.max(P_cls[0, ii, :]))

all_dets = []

for key in bboxes:

bbox = np.array(bboxes[key])

new_boxes, new_probs = roi_helpers.non_max_suppression_fast(bbox,

<+ np.array(probs[key]), overlap_thresh=0.5)

total = "Caminh8o com {} eixo(s)".format(len(range(new_boxes.shape[0])))
font_path = os.path.join(os.path.dirname(__file__), "font/FiraMono-Medium.otf")
font = ImageFont.truetype(

font=font_path, size=np.floor(3e-2 * img2.size[1] + 0.5).astype("int32")
)
thickness = (img2.size[0] + img2.size[1]) // 300

for jk in range(new_boxes.shape[0]):
(x1, y1, x2, y2) = new_boxes[jk,:]

(real_x1, real_yl, real_x2, real_y2) = get_real_coordinates(ratio, x1, y1, x2,
— y2)

draw = ImageDraw.Draw(img2)

total_size = draw.textsize(total, font)

label = "Eixo : {:.2f}".format(new_probs[jk])
label_size = draw.textsize(label, font)

if real_y1 - label_size[1] >= O:
text_origin = np.array([real_x1, real_yl - label_size[1]])
else:

text_origin = np.array([real_xl, real_y2])

for i in range(thickness):
draw.rectangle(

[real_x1 + i, real_yl + i, real_x2 - i,real_y2 - i], outline="#FFA500"



74

266 draw.rectangle(

267 [tuple(text_origin), tuple(text_origin + label_size)],

268 fill="#FFA500",

269 )

270

271 all_dets.append((key,100*new_probs[jk]))

272

273

274

275 draw.rectangle(

276 [(0,0), tuple(total_size)],

277 fil1="#FFA500",

278 )

279 draw.text(text_origin, label, f£ill=(0, 0, 0), font=font)

280 draw.text((0,0), total, fill=(0, 0, 0), font=font)

281 del draw

282

283

284

285 txt = os.path.join("txt", os.path.splitext(img_name) [0])

286 file_name = "{}.txt".format (txt)

287

288 line = "Eixo " + " " + str(new_probs[jk]) + " " + str(int(round(real_x1))) + " "
— + str(int(round(real_y1))) + " " + str(int(round(real_x2))) + " " +
— str(int(round(real_y2))) + '\n'

289 with open(file_name, 'a') as output:

290 output.write(line)

291

292

293

294 end = timer()

295 print("Time spent: {:.3f}sec".format(end - start))

296 img2.save(os.path. join(save_path, os.path.basename(img_name)))

297 print(all_dets)

298

299

300 end_t = timer()

301

302

303 print(

304 "Processed {} images in {:.1f}sec - {:.1f}FPS".format(

305 len(os.listdir(img_path)),

306 end_t - start_t,

307 len(os.listdir(img_path)) / (end_t - start_t),

308 )

309 )
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import os
from PIL import Image, ImageFont, ImageDraw

from timeit import default_timer as timer

def get_parent_dir(n=1):

#retorna o caminho para o diretéorio de trabalho

current_path = os.path.dirname(os.path.abspath(__file__))

for k in range(n):
current_path = os.path.dirname(current_path)

return current_path

def GetFileList(dirName, endings=[".jpg", ".jpeg", ".png", ".mp4"]):

# cria uma lista de todos os arquivos nmo diretério
list0fFile = os.listdir(dirName)
allFiles = 1list()

# garante que todos os finais comegcam com .

for i, ending in enumerate(endings):
if ending[0] != ".":
endings[i] = "." + ending

for entry in listOfFile:
# Create full path
fullPath = os.path.join(dirName, entry)

# If entry ts a directory then get the list of files in this directory

if os.path.isdir(fullPath):

allFiles = allFiles + GetFileList(fullPath, endings)

else:
for ending in endings:
if entry.endswith(ending):
allFiles.append(fullPath)
return allFiles

from keras import backend as K

from keras.preprocessing import image
from keras.optimizers import Adam
from imageio import imread

import numpy as np

from models.keras_ssd300 import ssd_300
from keras_loss_function.keras_ssd_loss import SSDLoss
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img_height = 300
img_width = 300

K.clear_session()

model = ssd_300(image_size=(img_height, img_width, 3),
n_classes=1,
mode='inference',

12_regularization=0.0005,

scales=[0.1, 0.2, 0.37, 0.54, 0.71, 0.88, 1.05],
aspect_ratios_per_layer=[[1.0, 2.0, 0.5],
[1.0, 2.0, 0.5, 3.0, 1.0/3.0],
[1.0, 2.0, 0.5, 3.0, 1.0/3.0],
[t.0, 2.0, 0.5, 3.0, 1.0/3.0],
[1.0, 2.0, 0.5],
[1.0, 2.0, 0.5]],

two_boxes_for_arl=True,
steps=[8, 16, 32, 64, 100, 300],
offsets=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5],
clip_boxes=False,
variances=[0.1, 0.1, 0.2, 0.2],
normalize_coords=True,
subtract_mean=[123, 117, 104],
swap_channels=[2, 1, 0],
confidence_thresh=0.5,
iou_threshold=0.45,

top_k=200,
nms_max_output_size=400)

weights_path = 'ssd300_pascal_07+12_epoch-29_loss-1.7706_val_loss-2.0828.h5"'

model.load_weights(weights_path, by_name=False)

adam = Adam(1lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
ssd_loss = SSDLoss(neg_pos_ratio=3, alpha=1.0)

model.compile(optimizer=adam, loss=ssd_loss.compute_loss)

input_images = []

orig_images = []



108 data_folder = os.path.join(get_parent_dir(0), "Data")
109

110  input_path = os.path.join(data_folder, "Test_Images")
111 save_path = os.path.join(data_folder, "Result_Images")
112  txt_path = os.path.join(data_folder, "TXT")

113

114

115 input_paths = GetFileList(input_path)

116

117

118 start_t = timer()

119

120 for item in input_paths:

121 start = timer()

122

123 input_images = []

124 orig_images = []

125

126 orig_images.append(imread(item))

127 img = image.load_img(item, target_size=(img_height, img_width))

128 img = image.img_to_array(img)

129 input_images.append (img)

130 input_images = np.array(input_images)

131

132

133

134

135

136 y_pred = model.predict(input_images)

137

138 confidence_threshold = 0.5

139

140 y_pred_thresh = [y_pred[k] [y_pred[k,:,1] > confidence_threshold] for k in
— range(y_pred.shape[0])]

141

142 y_pred_txt = y_pred_thresh[0]

143

144

145 image2 = Image.open(item)

146 width, height = image2.size

147

148 ratio_y = height/img_height

149 ratio_x = width/img_width

150 a=0

151

152 txt = os.path.join(txt_path, os.path.splitext(os.path.basename(item)) [0])

153 file_name = "{}.txt".format(txt)

154 for row in y_pred_txt:

155 a = atl

156 line = "Eixo " + " " + str(row[1]) + " " + str(int(round(row[2]*ratio_x))) + " " +

— str(int(round(row[3]*ratio_y))) + " " + str(int(round(row[4]*ratio_x))) + " " +
— str(int(round(row[5]*ratio_y))) + '\n'

157 with open(file_name, 'a') as output:

158 output.write(line)

159

160 font_path = os.path.join(os.path.dirname(__file__), "font/FiraMono-Medium.otf")
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161 font = ImageFont.truetype(

162 font=font_path, size=np.floor(3e-2 * image2.size[1] + 0.5).astype("int32")
163 )

164 thickness = (image2.size[0] + image2.size[1]) // 300

165

166 np.set_printoptions(precision=2, suppress=True, linewidth=90)

167 print ("Predicted boxes:\n")

168 print (' class conf xmin ymin xmax ymax')

169 print (y_pred_thresh[0])

170

171 total = "Caminh&o com {} eixo(s)".format(a)

172

173 for box in y_pred_thresh[0]:

174 draw = ImageDraw.Draw(image2)

175 total_size = draw.textsize(total, font)

176 label = "Eixo : {:.2f}".format(box[1])

177 label_size = draw.textsize(label, font)

178

179 if box[3]*ratio_y - label_size[1] >= 0:

180 text_origin = np.array([box[2]*ratio_x, box[3]*ratio_y - label_size[1]])
181 else:

182 text_origin = np.array([box[2]*ratio_x, box[5]*ratio_y])

183

184

185 for i in range(thickness):

186 draw.rectangle(

187 [box[2]*ratio_x + i, box[3]*ratio_y + i, box[4]*ratio_x - i,

< box[5]*ratio_y - i], outline="#800080"
188 )
189 draw.rectangle(
190 [tuple(text_origin), tuple(text_origin + label_size)],
191 £i11="#800080",
192 )
193
194 draw.rectangle(
195 [(0,0), tuple(total_size)],
196 £i11="#800080",
197 )
198 draw.text(text_origin, label, £ill=(0, 0, 0), font=font)
199 draw.text((0,0), total, fill=(0, 0, 0), font=font)
200 del draw
201
202
203 end = timer()
204 print("Time spent: {:.3f}sec".format(end - start))
205
206
207 image2.save(os.path. join(save_path, os.path.basename(item)))
208
209 end_t = timer()
210
211
212  print(
213 "Processed {} images in {:.1fl}sec - {:.1f}FPS".format(
214 len(input_paths),
215 end_t - start_t,



216
217
218
219
220
221
222
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len(input_paths) / (end_t - start_t),







ANEXO G - DETECCOES

Todas as detecgoes podem ser encontradas em:
-YOLOv3

Deteccoes

-Faster R-CNN

Deteccoes

-3SD

Deteccoes
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https://drive.google.com/drive/folders/1isKjF7Z3NpDKWJ7bFtaJNK5A-hx5p8Z1?usp=sharing
https://drive.google.com/drive/folders/1lY0ghg6IQX1r3uddUeBqa-CLDbaUahTb?usp=sharing
https://drive.google.com/drive/folders/1IHkGVhbS5p1-xyJaniKJvks2iuxyvSp9?usp=sharing
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ANEXO H - RESULTADOS AP

Os resultados dos testes de AP podem ser encontrados em:
Resultados

As figuras 31, 32 e 33 mostram as curvas de Precision © Recall de cada arquitetura.

Figura 31 — Grafico Precision x Recall para YOLOvS3

class: 88.57% = Eixo AP
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Fonte: Elaborado pelo autor.


https://drive.google.com/drive/folders/1HWnkxpEwzEcbDV6sTqZi7aWfIEDPLlug?usp=sharing
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Precision

Precision

Figura 32 — Grafico Precision x Recall para Faster R-CNN

class: 97.68% = Eixo AP
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Fonte: Elaborado pelo autor.

Figura 33 — Grafico Precision x Recall para SSD

class: 96.53% = Eixo AP
R ==

(8 -

06 -

04 -

02 -

00 T T T T
00 02 0.4 06 0.3 10

Recall

Fonte: Elaborado pelo autor.
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