
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

Lucas Locatelli Helena

Método baseado em imagem para detecção de eixos e
classificação de caminhões.

São Carlos

2020

Lucas Locatelli Helena

Método baseado em imagem para detecção de eixos e
classificação de caminhões.

Monografia apresentada ao Curso de Enge-
nharia Elétrica com Ênfase em Eletrônica,
da Escola de Engenharia de São Carlos da
Universidade de São Paulo, como parte dos
requisitos para obtenção do título de Enge-
nheiro Eletricista.

Orientador: Prof. Dr. Adilson Gonzaga

São Carlos
2020

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Helena, Lucas Locatelli

 H474m Método baseado em imagem para detecção de eixos
e classificação de caminhões. / Lucas Locatelli Helena;
orientador Adilson Gonzaga. São Carlos, 2020.

Monografia (Graduação em Engenharia Elétrica com

ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2020.

1. Deep Learning. 2. YoloV3. 3. Faster R-CNN. 4.

Single Shot Multibox Detector. 5. Python. 6. Keras. I.
Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

 1 / 1

FOLHA DE APROVAÇÃO

Nome: Lucas Locatelli Helena

Título: “Método baseado em imagem para detecção de eixos e
classificação de caminhões.”

Trabalho de Conclusão de Curso defendido e aprovado em
30/11/2020,

com NOTA 7,5 (Sete,Cinco), pela Comissão Julgadora:

Prof. Associado Adilson Gonzaga - Orientador/Professor Sênior -

SEL/EESC/USP

Prof. Dr. André Luiz Barbosa Nunes da Cunha - STT/EESC/USP

Dra. Carolina Toledo Ferraz - Pós-doutorado UNIFESP São Paulo

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Prof. Associado Rogério Andrade Flauzino

RESUMO

Helena, L. L. Método baseado em imagem para detecção de eixos e classificação
de caminhões. . 2020. 84p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2020.

As redes neurais convolucionais tem sido empregadas com frequência cada vez maior para
detecção e classificação de imagens. Esse trabalho tem como objetivo empregar três das
mais notáveis arquiteturas de detecção baseadas em CNNs e aplicá-las na detecção de eixos
de caminhões, comparando-as. Os resultados obtidos demonstram que as arquiteturas se
comportam de maneira mais que adequada, sendo possível notar as diferentes filosofias de
uso e o trade-off entre FPS e acurácia para cada uma delas.

Palavras-chave: Deep Learning. YoloV3. Faster R-CNN. Single Shot Multibox Detector.
Python. Keras.

ABSTRACT

Helena, L. L. Image based method for axis detection and truck classification.
2020. 84p. Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São
Carlos, Universidade de São Paulo, São Carlos, 2020.

Convolutional Neural Networks are being employed with increased frequency in the
detection and classification of images. This work objective is to assess the usability of
the three state-of-the-art detection architectures based on CNN’s and apply them o the
detection of trucks axis, comparing the results. The obtainded outcomes show that those
architectures behave more than appropriately, it is even possible to notice the different
usage philosophy of each network in teh trade-off between FPS and accuracy for each of
them.

Keywords: Deep Learning. YoloV3. Faster R-CNN. Single Shot Multibox Detector.
Python. Keras.

LISTA DE FIGURAS

Figura 1 – Neurônio Biológico . 19
Figura 2 – Neurônio Artificial (Perceptron) . 19
Figura 3 – Neurônio Artificial (Perceptron) . 20
Figura 4 – Operação de convolução . 21
Figura 5 – Operação de max-pooling . 22
Figura 6 – Estrutura básica do Faster R-CNN . 23
Figura 7 – Arquitetura Faster R-CNN . 23
Figura 8 – Anchor Boxes . 24
Figura 9 – Equação de IoU . 24
Figura 10 – Classificação e Regressão . 25
Figura 11 – Remoção de redundâncias utilizando NMS 25
Figura 12 – Arquitetura VGG16 . 26
Figura 13 – Múltiplas escalas de detecção . 27
Figura 14 – Arquitetura SSD . 27
Figura 15 – Funcionamento básico da arquitetura YOLO 28
Figura 16 – Predição das bounding boxes . 29
Figura 17 – Darknet-53 . 29
Figura 18 – Curva AP . 30
Figura 19 – Curva AP interpolada . 31
Figura 20 – Exemplo de imagem do banco de dados 33
Figura 21 – Imagem marcada no VoTT . 34
Figura 22 – Coordenadas do ground truth . 35
Figura 23 – Arquivo CSV . 35
Figura 24 – Exemplos de detecções YOLOv3 . 38
Figura 25 – Exemplos de detecções Faster R-CNN 39
Figura 26 – Exemplos de detecções SSD . 39
Figura 27 – Comparação dos graus de confiança das detecções; YOLO, Faster R-

CNN e SSD respectivamente. 40
Figura 28 – Exemplos de oclusão atrapalhando a detecção 40
Figura 29 – Exemplos de eixo no plano de fundo não localizado 41
Figura 30 – Comparação das arquiteturas . 41
Figura 31 – Gráfico Precision x Recall para YOLOv3 83
Figura 32 – Gráfico Precision x Recall para Faster R-CNN 84
Figura 33 – Gráfico Precision x Recall para SSD 84

LISTA DE TABELAS

Tabela 1 – Parâmetros de treinamento para YOLOv3 34
Tabela 2 – Parâmetros de treinamento para Faster R-CNN 36
Tabela 3 – Parâmetros de treinamento para SSD 36
Tabela 4 – Desempenho das arquiteturas em outros bancos de dados 37
Tabela 5 – Resumo de Treinamento . 37
Tabela 6 – Resultados de treinamento . 38

LISTA DE ABREVIATURAS E SIGLAS

AP Average Precision

CNN Convolutional Neural Network

CSV Comma Separated Values

FN False Negative

FP False Positive

FPS Frames Per Second

GT Ground Truth

IoU Intersection Over Union

NMS Non-Maximum Suppresion

RoI Region of Interest

RPN Region Proposal Network

R-CNN Region Based Convolutional Neural Network

SSD Single Shot MultiBox Detector

TP True Positive

VoTT Visual Object Tagging Tool

YOLO You Only Look Once

SUMÁRIO

1 INTRODUÇÃO . 17
1.1 Objetivos do trabalho . 17
1.2 Organização do texto . 17

2 REVISÃO BIBLIOGRÁFICA . 19
2.1 Redes Neurais Artificiais . 19
2.1.1 Rede de Perceptron Multicamadas . 20
2.2 Redes Neurais Convolucionais (CNN) 20
2.2.1 Camada de convolução . 21
2.2.2 Camada de Pooling . 21
2.2.3 Camada Softmax . 22
2.3 Faster R-CNN . 22
2.3.1 Region Proposal Network (RPN) . 22
2.3.2 Classificação e Regressão . 24
2.4 Single Shot MultiBox Detector(SSD) 25
2.4.1 Diferenciais . 26
2.4.1.1 Mapas de características multi-escala . 26
2.4.1.2 Preditores convolucionais . 26
2.4.1.3 Boxes e Aspect Ratios Padrões . 27
2.5 You Only Look Once(YOLO) . 27
2.5.1 Predição das bounding boxes . 28
2.5.2 Extração de características . 28
2.6 Average Precision (AP) . 29

3 MATERIAIS E MÉTODOS . 33
3.1 Banco de Imagens . 33
3.2 YOLOv3 . 33
3.3 Faster R-CNN . 35
3.4 SSD . 36

4 RESULTADOS E DISCUSSÕES . 37

5 CONCLUSÕES . 43
5.1 Trabalhos Futuros . 43

REFERÊNCIAS . 45

ANEXO A – CÓDIGO DE TREINAMENTO YOLOV3 47

ANEXO B – CÓDIGO DE TREINAMENTO FASTER R-CNN . . . 53

ANEXO C – CÓDIGO DE TREINAMENTO SSD 59

ANEXO D – CÓDIGO DE DETECÇÃO YOLOV3 65

ANEXO E – CÓDIGO DE DETECÇÃO FASTER R-CNN 69

ANEXO F – CÓDIGO DE DETECÇÃO SSD 75

ANEXO G – DETECÇÕES . 81

ANEXO H – RESULTADOS AP . 83

17

1 INTRODUÇÃO

O transporte rodoviário representa no Brasil 65% da movimentação de cargas, ou
aproximadamente 1.548 bilhões de toneladas quilômetros úteis (TKU) (S.A., 2015), isso
representa 4, 4% do PIB nacional(TRANSPORTE, 2001).

Apesar disso, quando comparado ao sistema de transporte dos EUA, a nossa
produtividade é de apenas 22% (TRANSPORTE, 2001), então qualquer avanço técnológico
que melhore a produtividade dessa área é muito bem vindo, por isso este trabalho busca
entender e aplicar três arquiteturas de redes convolucionais de modo a agilizar processos e
minimizar a burocracia envolvida, diminuindo a necessidade de interação humana.

As três arquiteturas de detecção utilizadas foram a Faster R-CNN, YOLOv3 e
SSD, que são as arquiteturas mais difundidas atualmente e consideradas como estado da
arte na detecção de objetos.

1.1 Objetivos do trabalho

Este trabalho visa empregar as arquiteturas de detecção de objetos na identificação
de eixos de caminhões, para que futuramente o mesmo possa ser implementado de maneira
a agilizar processos que atualmente são demorados e burocráticos, como por exemplo na
pesagem de cargas e cobrança de tarifas em praças pedágio.

1.2 Organização do texto

O trabalho está dividido em 5 capítulos principais:

• No capítulo 2, denominado "Revisão Bibliográfica", é apresentada uma breve contex-
tualização teórica dos assuntos abordados neste trabalho;

• O capítulo 3, "Materiais e Métodos", descreve os materiais utilizados e a metodologia
adotada para treinar as redes neurais;

• O capítulo 4, "Resultados e Discussões", apresenta todos os resultados obtidos no
capítulo anterior, compara-os e discute suas implicações;

• E por fim no capítulo 5, "Conclusões", são dispostas as considerações finais e estudadas
possibilidades de trabalhos futuros relacionados a este.

19

2 REVISÃO BIBLIOGRÁFICA

2.1 Redes Neurais Artificiais

Redes Neurais Artificiais são modelos matemáticos que buscam simular o funci-
onamento de um cerébro para resolver problemas que outrora pareciam insolucionáveis.
A rede neural artificial é composta, assim como um cerébro, de várias unidades básicas
conectadas entre si, os perceptrons (equivalente matemático ao neurônio). As figuras 1 e 2
mostram a semelhança entre ambos.

Figura 1 – Neurônio Biológico

Fonte: (CARVALHO, 2009)

Figura 2 – Neurônio Artificial (Perceptron)

Fonte: Carvalho (2009)

O perceptron é separado em três partes distintas, os dendritos, a soma e o axônio.
Nos dendritos o perceptron recebe a entrada e a multiplica por um peso Wi, na soma

20

todas as entradas são somadas e no axônio o resultado da soma passará por uma função
de ativação, gerando uma resposta às entradas originais.

2.1.1 Rede de Perceptron Multicamadas

Um único perceptron só consegue resolver problemas lineares, para problemas mais
complexos é necessário organizar vários perceptrons em camadas, onde a entrada de dados
de uma camada é a saída dos perceptrons da camada anterior, vide figura 3.

Figura 3 – Neurônio Artificial (Perceptron)

Fonte: Rocha (2015)

O treinamento dessa rede é baseado no algoritmo de back propagation, durante
o treino os valores de entrada são inseridos na rede e a saída é comparada com a saída
esperada, então é calculado o gradiente do erro e esse gradiente é utilizado para ajustar os
parâmetros da rede, propagando da última camada até a primeira.

2.2 Redes Neurais Convolucionais (CNN)

Nas redes multicamadas todos os perceptrons da camada anterior estão conectados
em todos os perceptrons da camada seguinte. Para problemas variantes no tempo e
principalmente para problemas envolvendo imagens, onde as entradas do problema são as
matrizes dos canais de cor da imagem, a posição de cada pixel de entrada com relação aos
outros importa. Os pixels na vizinhança do pixel sendo observado tem muito mais peso
para o perceptron do que um pixel do outro lado da imagem. Como o custo computacional
para calcular os pesos dos perceptrons totalmente conectados é gigantesco, as redes
convolucionais são utilizadas para contabilizar apenas os pixels mais próximos.

21

Cada camada de uma CNN tem diferentes funções. Cada uma delas será explicada
com mais detalhes.

2.2.1 Camada de convolução

Cada camada de convolução é composta por um kernel(núcleo) que varre a imagem,
como pode ser visto na figura 4, e é convoluído com a vizinhança do pixel atual, dando na
saída um feature map(mapa de características).

O kernel é uma matriz nxn ímpar composta pelos pesos de entrada, a saída será
uma outra matriz que contém o resultado da convolução entre o kernel e a matriz n x n
derivada da imagem, centrada no pixel atual.

Figura 4 – Operação de convolução

Fonte: Rocha (2015)

2.2.2 Camada de Pooling

A camada de Pooling reduz as dimensões da matriz de entrada por um fator
constante, o que não apenas diminui o peso computacional da rede neural,como também
reduz a sensibilidade da rede a pequenas variações na imagem(ROCHA, 2015), isso acontece
pois as diversas features de uma região próxima são combinadas em uma única feature, o
que diminui a redundância da rede.

Atualmente os poolings mais utilizados são o max-pooling e o avg-pooling, o max-
pooling pega os valores da região do pooling e mantém o maior valor apenas (ver figura 5),
já o avg-pooling mantém a média dos valores de entrada.

Neste trabalho será utilizado apenas o max-pooling.

22

Figura 5 – Operação de max-pooling

Fonte: Rocha (2015)

2.2.3 Camada Softmax

Após todas as operações de convolução e pooling necessárias a rede passa por uma
camada softmax, essa camada transforma a matriz em uma única camada totalmente
conectada, a soma dos resultados da saída vão ser sempre igual a 1 e todas a saídas são
positivas, por isso pode-se interpretar as saídas como uma distribuição de probabilidade
discreta da entrada pertencer a cada uma das classes de interesse.

2.3 Faster R-CNN

O sistema Faster Region Based CNN (R-CNN) é composto basicamente por três
módulos(REN et al., 2015),uma rede de backbone que extrai os mapas de características,
uma CNN que propõe as regiões nas quais os objetos poderão estar (RPN) e um módulo
de detecção(GIRSHICK, 2015).

As figuras 6 e 7 mostram o esquema básico de funcionamento da Faster R-CNN.

2.3.1 Region Proposal Network (RPN)

A função da RPN é receber o mapa de características como entrada e mostrar na
saída um conjunto de áreas retangulares, cada uma com sua probabilidade de conter o
objeto.

Para cada janela no mapa de características de entrada a RPN assume k = 9
anchor boxes com 3 escalas e 3 aspect ratio diferentes, como mostra a figura 8, assim cada

23

Figura 6 – Estrutura básica do Faster R-CNN

Fonte: Ren et al. (2015)

Figura 7 – Arquitetura Faster R-CNN

Fonte: Deng et al. (2018)

imagem gera um total de W.H.k regiões de interesse(RoI), onde W e H são as dimensões
do mapa de características.

Para remover as redundâncias é aplicado o método de Non-Maximum Suppre-
sion(NMS) que consiste em pegar a RoI com maior probabilidade e computar a Inter-
section over Union(IoU)(figura 9) com todas as outras regiões, excluindo-as quando o
IoU for superior ao limiar pré-definido, repetindo o processo até não existirem regiões
redundantes(KIM, 2018).

24

Figura 8 – Anchor Boxes

Adaptado de: Ren et al. (2015)

Figura 9 – Equação de IoU

Fonte: Rosebrock (2016)

2.3.2 Classificação e Regressão

Para classificação e regressão a Faster R-CNN utiliza a mesma rede de sua ante-
cessora(GIRSHICK, 2015), primeiro as RoI’s e o mapa de características passam por uma
camada de pooling e interpolação, em seguida elas passam por uma cada de fully-connected
layers que nos dá a probabilidade de cada classe em cada RoI, depois as RoI’s com
probabilidades abaixo do limiar ou classificadas como plano de fundo são excluídas, e
por último é aplicado mais uma vez o método NMS para excluir as redundâncias, este

25

procedimento pode ser visualizado nas figuras 10 e 11

Figura 10 – Classificação e Regressão

Fonte: Kim (2018)

Figura 11 – Remoção de redundâncias utilizando NMS

Fonte: Kim (2018)

2.4 Single Shot MultiBox Detector(SSD)

O método SSD(LIU et al., 2016) é baseado em uma rede convolucional de feed-
forward que produz uma coleção de bounding boxes e probabilidades de presença das

26

classes de objetos nessas caixas, em sequência é aplicado um NMS, já discutida na seção do
Faster R-CNN, para gerar a saída. O backbone da rede é baseado na arquitetura VGG16
contendo todas as camadas até a última camada de convolução para extrair o mapa de
características, conforme a figura 12.

Figura 12 – Arquitetura VGG16

Fonte: Ferguson et al. (2017)

2.4.1 Diferenciais

2.4.1.1 Mapas de características multi-escala

São adicionadas camadas de características ao final da rede de backbone. Essas
camadas reduzem de tamanho progressivamente e permitem a detecção em diversas escalas,
conforme mostra a figura 13.

2.4.1.2 Preditores convolucionais

Para cada camada de características é produzido um conjunto de predições de
detecção usando uma série de filtros convolucionais, isso pode ser visto na figura 14.

Para uma layer de características de tamanhom×n com p canais, o elemento básico
para predizer os parâmetros de uma potencial detecção é um pequeno kernel que produz
ou uma probabilidade para uma classe, ou um offset na forma, relativo as coordenadas
padrões da bounding box. Em cada uma das mxn posições onde o kernel é aplicado é

27

Figura 13 – Múltiplas escalas de detecção

Fonte: Liu et al. (2016)

Figura 14 – Arquitetura SSD

Fonte: Liu et al. (2016)

gerado um valor de saída. Os valores de saída para offset das bounding boxes são medidos
em relação à posição padrão relativa a cada posição do mapa de características.

2.4.1.3 Boxes e Aspect Ratios Padrões

Para cada célula do mapa de características é associado um conjunto de bounding
boxes padrão. As boxes padrões cobrem o mapa de características de uma maneira convolu-
cional, de modo que a posição de cada box em relação à célula correspondente é fixa. Para
cada box entre as k boxes são computadas c probabilidades de classe e 4 offsets relativas a
box padrão, com isso tem-se um total de (c+ 4)kmn filtros que são aplicados a um mapa
de características mxn. Aplicar as boxes a diversos mapas de características de diferentes
resoluções permite um discretização eficiente do espaço.

2.5 You Only Look Once(YOLO)

YOLO é um método de detecção de objetos que alcança processamento em tempo
real transformando a detecção de objetos em um simples problema de regressão (REDMON
et al., 2015). Para isso a imagem de entrada em uma malha de S × S quadrados, se o

28

centro de um objeto cai em uma célula da malha, essa célula unitária é responsável por
detectar aquele objeto. Cada célula prediz B bounding boxes e uma probabilidade da
boundig box conter um objeto, conforme mostra a figura 15.

Figura 15 – Funcionamento básico da arquitetura YOLO

Fonte: Redmon et al. (2015)

2.5.1 Predição das bounding boxes

A rede prediz 4 coordenadas para cada bounding box, tx, ty, tw, th (REDMON;
FARHADI, 2018) se a célula estiver deslocada do canto superior esquerdo da imagem por
(Cx, Cy) e a box anterior tiver largura e altura pw e ph, respectivamente, então as predições
são:

bx = σ(tx) + Cx,

by = σ(ty) + Cy,

bw = pwe
tw ,

bh = phe
th .

A figura 16 exemplifica a predição das bounding boxes

2.5.2 Extração de características

Para extração de características é utilizada a rede Darknet− 53, figura 17, uma
rede neural residual que com 53 camadas convolucionais que é composta de sucessivas
camadas de tamanho 1× 1 e 3× 3.

29

Figura 16 – Predição das bounding boxes

Fonte: Redmon e Farhadi (2018)

Figura 17 – Darknet-53

Fonte: Redmon e Farhadi (2018)

2.6 Average Precision (AP)

Para classificar as diferentes arquiteturas é preciso encontrar uma boa métrica para
comparação. Atualmente uma das métricas mais utilizadas para classificar detectores de
objeto é a Average Precision (ou AP).

A métrica se baseia em 3 parâmetros:

30

• True Positive (TP) - Quando o objeto detectado está presente no ground truth;

• False Positive (FP) - Quando o objeto detectado não está presente no ground truth;

• False Negative (FN) - Quando o objeto está presente no groun truth e não foi
detectado.

Com estes parâmetros podemos calcula-se a precision, que mede a precisão das
predições da rede e o recall, que mede a capacidade da rede de encontrar todos os objetos
relevantes Amorim (2019), as equações de precision e recall são mostradas em 2.1 e 2.2

Precision = TP

TP + FN
(2.1)

Recall = TP

TP + FP
(2.2)

Para calcular o AP, basta calcular a área abaixo da curva de Precision x Recall,
porém como mostra a figura 18 conforme diminuimos o threshold de confiança da rede,
o valor do recall aumenta, pois há uma diminuição no número de FN, porém a precisão
diminui, já que o numero de FP aumenta. Entretanto essa relação não é linear, pois a
diminuição do threshhold pode tambem gerar um aumento nos casos de TP, formando
zigue-zagues na curva.

Figura 18 – Curva AP

Fonte: Hui (2018)

Para evitar o erro de comparação entre datasets devido a esse padrão é necessário
suavizar a curva, para isso deve-se interpolar pontos na curva tais que,

31

Pinterp(r) = max p(r̃) ∀ r̃ ≥ r

Assim obtem-se a curva mostrada na figura 19, agora basta calcular a integral
abaixo da curva para se obter o AP da rede.

Figura 19 – Curva AP interpolada

Fonte: Hui (2018)

33

3 MATERIAIS E MÉTODOS

3.1 Banco de Imagens

Para treinar as redes foram utilizadas 399 imagens laterais de caminhão, figura 20,
obtidas no banco de dados do LabITS do departamento de engenharia de transportes da
EESC. Dessas imagens foram separadas 346 para treino, que foram divididas em 90% para
o treino e 10% para a validação, e 53 para testar a rede após os treinamentos.

Figura 20 – Exemplo de imagem do banco de dados

Fonte: Cunha e Marcomini (2018)

Como o aprendizado das redes será supervisionado se faz necessário anotar nas
imagens todos os ground truths, para isso foi utilizada a ferramenta da Microsoft, VoTT
(Visual Object Tagging Tool, (VOTT, 2020). Ela é uma ferramenta visual open source
que permite marcar os ground truths nas imagens, figura 21, e os converte para os mais
diversos tipos de dados utilizados pelas principais arquiteturas de detecção, como .CSV,
.XML e .JSON. Para este projeto sera utilizado o formato .CSV (Comma Separated Values
ou Valores separados por vírgula), que dará uma listagem de todos os ground truths com
as seguintes informações:

Imagem, xmin, xmax, ymin, ymax,Classe.

A figura 22 mostra o significado prático de xmin, xmax, ymin, ymax e a figura
23 mostra um exemplo do arquivo arquivo .CSV gerado pelo VoTT.

3.2 YOLOv3

Para treinar a rede na arquitetura YOLOv3 foi utilizada uma versão adaptada
da biblioteca obtida em (KERAS-YOLO3, 2018), todos os códigos usados neste projeto

34

Figura 21 – Imagem marcada no VoTT

Fonte: VoTT (2020)

podem ser encontrados no anexo A.

Para agilizar o processo de aprendizado da rede foram usados pesos pré-treinados,
obtidos em (YOLOV3. . . , 2018).

A tabela 1 mostra os parâmetros de treino utilizados neste projeto.

Tabela 1 – Parâmetros de treinamento para
YOLOv3

Parâmetro de treinamento Valor utilizado

Épocas 102

Imagens 346

Validação 10%

Otimizador Adam

Learning Rate 1e-3

Batch Size 100

Fonte: Elaborada pelo autor.

Para as primeiras 51 épocas de treinamento todas as camadas da rede menos as
quatro últimas foram congeladas. Para agilizar o treinamento e para estabilizar as perdas
da rede, para as últimas 51 épocas todas as camadas foram descongeladas, o batch size e o
Learning Rate para 32 e 1e− 4 respectivamente, permitindo um ajuste fino final para a
rede.

35

Figura 22 – Coordenadas do ground truth

Fonte: Elaborado pelo autor.

Figura 23 – Arquivo CSV

Fonte: Elaborado pelo autor.

3.3 Faster R-CNN

O segundo método utilizado foi o Faster R-CNN, assim como na arquitetura anterior
foram utilizados pesos pré treinados, no database ImageNet, para a rede ResNet50, obtidos
na biblioteca Keras(RESNET50. . . , 2020), para agilizar o processo de treino, a biblioteca
básica para treinar a rede pode ser encontrada em (KERAS-FRCNN, 2020).

A tabela 2 mostra os parâmetros de treino utilizados.

36

Tabela 2 – Parâmetros de treinamento para
Faster R-CNN

Parâmetro de treinamento Valor utilizado

Épocas 100

Imagens 346

Validação 10%

Regiões de interesse 32

Otimizador Adam

Learning Rate 1e-5

Batch Size 100

Fonte: Elaborada pelo autor.

3.4 SSD

Para treinar a rede na arquitetura SSD foi usada uma versão modificada da
biblioteca obtida em (SSD-KERAS, 2018) . Os pesos pré-treinados no database ImageNet
também podem ser encontrados na biblioteca.

A tabela 3 contém os parâmetros de treinamento utilizados.

Tabela 3 – Parâmetros de treinamento para
SSD

Parâmetro de treinamento Valor utilizado

Épocas 100

Imagens 346

Validação 10%

Otimizador Adam

Learning Rate 1e-3

Batch Size 100

Fonte: Elaborada pelo autor.

Após 80 épocas a Learning Rate foi diminuida para 1e-4 para ajustes mais finos na
rede.

37

4 RESULTADOS E DISCUSSÕES

Foram obtidos para as três redes, resultados acima da média esperada, tabela 4
com detecções precisas e com graus de confiança altos, figuras 24, 25, 26 e 27, apesar disso
nenhuma das redes obteve cem por cento de acerto, seja por oclusões dos objetos (figura
28) ou eixos no background (figura 29).

Tabela 4 – Desempenho das arquiteturas
em outros bancos de dados

Arquitetura dataset mAP

YOLOv3 COCO 33%

Faster R-CNN COCO+07+12 78,8%

SSD COCO+07+12 79,6%

Fonte: Adaptada de (REDMON; FARHADI,
2018), (REN et al., 2015) e (LIU et
al., 2016)

Os metódos selecionados para verificar a eficácia da rede foram: o de AP (Average
Precision) para avaliar a precisão das detecções e o FPS (Frames Per Second) para avaliar
a velocidade. Para encontrar o AP, foi utilizado o código encontrado em (MAP, 2020) e o
FPS foi medido nas imagens de teste pela equação 4.1.

FPS = Number of Images

Processing T ime
; (4.1)

A tabela 5 mostra o resumo das detecções de teste e a tabela 6 apresentam o AP e
FPS de cada rede.

Tabela 5 – Resumo de Treinamento

Arquitetura GT TP FP FN

YOLOv3 173 154 2 19

Faster R-CNN 173 169 3 4

SSD 173 167 0 6

Fonte: Elaborada pelo autor.

Com os valores de AP e FPS traça-se o gráfico da figura 30. Nele percebe-se que
apesar de ser a arquitetura mais precisa, a faster R-CNN é a mais lenta, sendo 11 vezes
mais lenta que a SSD e 5 vezes mais lenta que a YOLO, com uma pequena perda na

38

Tabela 6 – Resultados de trei-
namento

Arquitetura AP FPS

YOLOv3 88,57% 0,5

Faster R-CNN 97,68% 0,1

SSD 96,53% 1,1

Fonte: Elaborada pelo autor.

acurácia percebe-se que a melhor arquitetura, combinando acurácia e velocidade foi a SSD,
enquanto para esta aplicação a arquitetura YOLOv3 foi mais lenta e menos precisa que a
SSD.

Figura 24 – Exemplos de detecções YOLOv3

Fonte: Elaborado pelo autor.

39

Figura 25 – Exemplos de detecções Faster R-CNN

Fonte: Elaborado pelo autor.

Figura 26 – Exemplos de detecções SSD

Fonte: Elaborado pelo autor.

40

Figura 27 – Comparação dos graus de confiança das detecções; YOLO, Faster R-CNN e
SSD respectivamente.

Fonte: Elaborado pelo autor.

Figura 28 – Exemplos de oclusão atrapalhando a detecção

Fonte: Elaborado pelo autor.

41

Figura 29 – Exemplos de eixo no plano de fundo não localizado

Fonte: Elaborado pelo autor.

Figura 30 – Comparação das arquiteturas

Fonte: Elaborado pelo autor.

43

5 CONCLUSÕES

O objetivo deste trabalho é utilizar as três arquiteturas de CNNs mais populares
de detecção de objetos, YOLOv3, Faster R-CNN e SSD, na detecção de eixos de rodagem
de caminhões.

De forma geral os resultados demonstraram bom desempenho, mostrando uma
eficácia nas detecções acima das porcentagens obtidas para as mesmas redes em outros ban-
cos de dados. As arquiteturas se mostraram robustas mesmo com as dificuldades técnicas,
como poucas épocas de treinamento e pouca quantidade de imagens para treinamento(346
imagens). As CNNs em geral necessitam de um número bem maior de imagens para que a
rede não se especialize em apenas um grupo de imagens (overffiting).

O tempo de processamento para cada imagem foi adequado até para máquinas
menos potentes e treinando apenas na CPU, sem usar a GPU, mostrando a portabilidade
e replicabilidade do trabalho.

5.1 Trabalhos Futuros

Para trabalhos futuros com base neste projeto, são propostos:

• Aplicação das redes treinadas em vídeos ou feeds ao vivo para detecção em tempo
real;

• Modificação dos parâmetros de treinamento para classificar os caminhões detectados
baseado na quantidade e tipo de eixo detectado (eixo simples, duplo, duplo em
tandem, triplo ou triplo em tandem);

• Implementação de um sistema de feedback para re-treinar a rede a partir de novas
imagens detectadas.

45

REFERÊNCIAS

AMORIM, J. G. A. Mean Average Precision. 2019. Disponível em:
<http://www.lapix.ufsc.br/ensino/visao/visao-computacionaldeep-learning/
visao-computacionalmetricasmean-average-precision/>.

CARVALHO, A. P. de Leon F. de. Redes Neurais Artificiais. 2009. Disponível em:
<https://sites.icmc.usp.br/andre/research/neural/>.

CUNHA, A. L. B. N. da; MARCOMINI, L. A. A Comparison between Background
Modelling Methods for Vehicle Segmentation in Highway Traffic Videos. 2018.
Disponível em: <https://doi.org/10.5281/zenodo.3612131>.

DENG, Z. et al. Multi-scale object detection in remote sensing imagery with convolutional
neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 2018.

FERGUSON, M. et al. Automatic localization of casting defects with convolutional neural
networks. In: . [S.l.: s.n.], 2017. p. 1726–1735.

GIRSHICK, R. Fast R-CNN. 2015.

HUI, J. mAP (mean Average Precision) for Object Detec-
tion. 2018. Disponível em: <https://medium.com/@jonathan_hui/
map-mean-average-precision-for-object-detection-45c121a31173#:~:text=mAP\
%20(mean\%20average\%20precision)\%20is,difference\%20between\%20AP\%20and\
%20mAP>.

KERAS-FRCNN. 2020. Disponível em: <https://github.com/kbardool/keras-frcnn>.

KERAS-YOLO3. 2018. Disponível em: <https://github.com/qqwweee/keras-yolo3>.

KIM, H. P. Faster R-CNN Object Detection: Localization & Classification.
2018. Disponível em: <https://www.slideshare.net/hpkim0512/tutorial-of-faster-rcnn>.

LIU, W. et al. Ssd: Single shot multibox detector. Lecture Notes in Computer
Science, Springer International Publishing, p. 21–37, 2016. ISSN 1611-3349. Disponível
em: <http://dx.doi.org/10.1007/978-3-319-46448-0_2>.

MAP. 2020. Disponível em: <https://github.com/Cartucho/mAP>.

REDMON, J. et al. You Only Look Once: Unified, Real-Time Object Detection.
2015.

REDMON, J.; FARHADI, A. YOLOv3: An Incremental Improvement. 2018.

REN, S. et al. Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. 2015.

RESNET50 Weights. 2020. Disponível em: <https://keras.rstudio.com/reference/
application_resnet50.html>.

ROCHA, R. H. S. Reconhecimento de Objetos por Redes Neurais Convolutivas.
2015.

http://www.lapix.ufsc.br/ensino/visao/visao-computacionaldeep-learning/visao-computacionalmetricasmean-average-precision/
http://www.lapix.ufsc.br/ensino/visao/visao-computacionaldeep-learning/visao-computacionalmetricasmean-average-precision/
https://sites.icmc.usp.br/andre/research/neural/
https://doi.org/10.5281/zenodo.3612131
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173#:~:text=mAP\%20(mean\%20average\%20precision)\%20is,difference\%20between\%20AP\%20and\%20mAP
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173#:~:text=mAP\%20(mean\%20average\%20precision)\%20is,difference\%20between\%20AP\%20and\%20mAP
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173#:~:text=mAP\%20(mean\%20average\%20precision)\%20is,difference\%20between\%20AP\%20and\%20mAP
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173#:~:text=mAP\%20(mean\%20average\%20precision)\%20is,difference\%20between\%20AP\%20and\%20mAP
https://github.com/kbardool/keras-frcnn
https://github.com/qqwweee/keras-yolo3
https://www.slideshare.net/hpkim0512/tutorial-of-faster-rcnn
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://github.com/Cartucho/mAP
https://keras.rstudio.com/reference/application_resnet50.html
https://keras.rstudio.com/reference/application_resnet50.html

46

ROSEBROCK, A. Intersection over Union (IoU) for object detec-
tion. 2016. Disponível em: <https://www.pyimagesearch.com/2016/11/07/
intersection-over-union-iou-for-object-detection/>.

S.A., E. de Planejamento e L. Plano Nacional de Logística. 2015.

SSD-KERAS. 2018. Disponível em: <https://github.com/pierluigiferrari/ssd_keras>.

TRANSPORTE, C. N. do. Transporte de cargas no Brasil: Ameaças e
Oportunidades para o Desenvolvimento do País. 2001.

VOTT. 2020. Disponível em: <https://github.com/microsoft/VoTT>.

YOLOV3 Weights. 2018. Disponível em: <https://pjreddie.com/media/files/yolov3-tiny.
weights>.

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://github.com/pierluigiferrari/ssd_keras
https://github.com/microsoft/VoTT
https://pjreddie.com/media/files/yolov3-tiny.weights
https://pjreddie.com/media/files/yolov3-tiny.weights

47

ANEXO A – CÓDIGO DE TREINAMENTO YOLOV3

1 import os
2 import numpy as np
3 import keras.backend as K
4 from keras.layers import Input, Lambda
5 from keras.models import Model
6 from keras.optimizers import Adam
7 from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
8
9 from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss

10 from yolo3.utils import get_random_data
11
12
13 from time import time
14
15
16 def get_parent_dir(n=1):
17 """ returns the n-th parent dicrectory of the current
18 working directory """
19 current_path = os.path.dirname(os.path.abspath(__file__))
20 for k in range(n):
21 current_path = os.path.dirname(current_path)
22 return current_path
23
24
25 def _main():
26
27 #Caminhos para os arquivos
28
29 Data_Path = os.path.join(get_parent_dir(0), "Data")
30 Image_Folder = os.path.join(Data_Path, "Source_Images", "Training_Images")
31 annotation_path = os.path.join(Image_Folder, "data_train.txt")
32
33 Model_Folder = os.path.join(Data_Path, "Model_Weights")
34 log_dir = Model_Folder
35
36 classes_path = os.path.join(Model_Folder, "data_classes.txt")
37 anchors_path = os.path.join("utils","model_data", "yolo_anchors.txt")
38 weights_path = os.path.join("utils", "yolo.h5")
39 class_names = get_classes(classes_path)
40 num_classes = len(class_names)
41 anchors = get_anchors(anchors_path)
42
43 input_shape = (416,416) # multiplo de 32, altura x largura
44
45 #quantidade de epocas por periodo de treinamento
46 epoch1, epoch2 = 51, 51
47
48
49 model = create_model(input_shape, anchors, num_classes,
50 freeze_body=2, weights_path=weights_path)
51

48

52
53 log_dir_time = os.path.join(log_dir, "{}".format(int(time())))
54 logging = TensorBoard(log_dir=log_dir)
55
56
57 #checkpoint
58 checkpoint = ModelCheckpoint(
59 os.path.join(log_dir, "checkpoint.h5"),
60 monitor="val_loss",
61 save_weights_only=True,
62 save_best_only=True,
63 period=5,
64)
65
66
67 reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1)
68 early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)
69
70 val_split = 0.1
71 with open(annotation_path) as f:
72 lines = f.readlines()
73
74
75
76
77
78 #separa as imagens de treino e validação
79 np.random.seed(10101)
80 np.random.shuffle(lines)
81 np.random.seed(None)
82 num_val = int(len(lines)*val_split)
83 num_train = len(lines) - num_val
84
85 # Train with frozen layers first, to get a stable loss.
86 # Adjust num epochs to your dataset. This step is enough to obtain a not bad model.
87 if True:
88 model.compile(optimizer=Adam(lr=1e-3), loss={
89 # use custom yolo_loss Lambda layer.
90 'yolo_loss': lambda y_true, y_pred: y_pred})
91
92 batch_size = 100
93 print('Train on {} samples, val on {} samples, with batch size

{}.'.format(num_train, num_val, batch_size))↪→
94
95
96
97
98 history = model.fit_generator(
99 data_generator_wrapper(

100 lines[:num_train], batch_size, input_shape, anchors, num_classes
101),
102 steps_per_epoch=max(1, num_train // batch_size),
103 validation_data=data_generator_wrapper(
104 lines[num_train:], batch_size, input_shape, anchors, num_classes
105),
106 validation_steps=max(1, num_val // batch_size),

49

107 epochs=epoch1,
108 initial_epoch=0,
109 callbacks=[logging, checkpoint],
110)
111 model.save_weights(os.path.join(log_dir, "trained_weights_stage_1.h5"))
112
113 step1_train_loss = history.history["loss"]
114
115 file = open(os.path.join(log_dir_time, "step1_loss.npy"), "w")
116 with open(os.path.join(log_dir_time, "step1_loss.npy"), "w") as f:
117 for item in step1_train_loss:
118 f.write("%s\n" % item)
119 file.close()
120
121 step1_val_loss = np.array(history.history["val_loss"])
122
123 file = open(os.path.join(log_dir_time, "step1_val_loss.npy"), "w")
124 with open(os.path.join(log_dir_time, "step1_val_loss.npy"), "w") as f:
125 for item in step1_val_loss:
126 f.write("%s\n" % item)
127 file.close()
128
129 # Unfreeze and continue training, to fine-tune.
130 # Train longer if the result is not good.
131 if True:
132 for i in range(len(model.layers)):
133 model.layers[i].trainable = True
134 model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred:

y_pred}) # recompile to apply the change↪→
135 print('Unfreeze all of the layers.')
136
137 batch_size = 2 # note that more GPU memory is required after unfreezing the body
138 print('Train on {} samples, val on {} samples, with batch size

{}.'.format(num_train, num_val, batch_size))↪→
139
140
141 history = model.fit_generator(
142 data_generator_wrapper(
143 lines[:num_train], batch_size, input_shape, anchors, num_classes
144),
145 steps_per_epoch=max(1, num_train // batch_size),
146 validation_data=data_generator_wrapper(
147 lines[num_train:], batch_size, input_shape, anchors, num_classes
148),
149 validation_steps=max(1, num_val // batch_size),
150 epochs=epoch1 + epoch2,
151 initial_epoch=epoch1,
152 callbacks=[logging, checkpoint, reduce_lr, early_stopping],
153)
154 model.save_weights(os.path.join(log_dir, "trained_weights_final.h5"))
155 step2_train_loss = history.history["loss"]
156
157 file = open(os.path.join(log_dir_time, "step2_loss.npy"), "w")
158 with open(os.path.join(log_dir_time, "step2_loss.npy"), "w") as f:
159 for item in step2_train_loss:
160 f.write("%s\n" % item)

50

161 file.close()
162
163 step2_val_loss = np.array(history.history["val_loss"])
164
165 file = open(os.path.join(log_dir_time, "step2_val_loss.npy"), "w")
166 with open(os.path.join(log_dir_time, "step2_val_loss.npy"), "w") as f:
167 for item in step2_val_loss:
168 f.write("%s\n" % item)
169 file.close()
170
171
172
173 def get_classes(classes_path):
174 '''loads the classes'''
175 with open(classes_path) as f:
176 class_names = f.readlines()
177 class_names = [c.strip() for c in class_names]
178 return class_names
179
180 def get_anchors(anchors_path):
181 '''loads the anchors from a file'''
182 with open(anchors_path) as f:
183 anchors = f.readline()
184 anchors = [float(x) for x in anchors.split(',')]
185 return np.array(anchors).reshape(-1, 2)
186
187
188 def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
189 weights_path='model_data/yolo_weights.h5'):
190 '''create the training model'''
191 K.clear_session() # get a new session
192 image_input = Input(shape=(None, None, 3))
193 h, w = input_shape
194 num_anchors = len(anchors)
195
196 y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
197 num_anchors//3, num_classes+5)) for l in range(3)]
198
199 model_body = yolo_body(image_input, num_anchors//3, num_classes)
200 print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors,

num_classes))↪→
201
202 if load_pretrained:
203 model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
204 print('Load weights {}.'.format(weights_path))
205 if freeze_body in [1, 2]:
206 # Freeze darknet53 body or freeze all but 3 output layers.
207 num = (185, len(model_body.layers)-3)[freeze_body-1]
208 for i in range(num): model_body.layers[i].trainable = False
209 print('Freeze the first {} layers of total {} layers.'.format(num,

len(model_body.layers)))↪→
210
211 model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
212 arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
213 [*model_body.output, *y_true])
214 model = Model([model_body.input, *y_true], model_loss)

51

215
216 return model
217
218 def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True,

freeze_body=2,↪→
219 weights_path='model_data/tiny_yolo_weights.h5'):
220 '''create the training model, for Tiny YOLOv3'''
221 K.clear_session() # get a new session
222 image_input = Input(shape=(None, None, 3))
223 h, w = input_shape
224 num_anchors = len(anchors)
225
226 y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \
227 num_anchors//2, num_classes+5)) for l in range(2)]
228
229 model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
230 print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors,

num_classes))↪→
231
232 if load_pretrained:
233 model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
234 print('Load weights {}.'.format(weights_path))
235 if freeze_body in [1, 2]:
236 # Freeze the darknet body or freeze all but 2 output layers.
237 num = (20, len(model_body.layers)-2)[freeze_body-1]
238 for i in range(num): model_body.layers[i].trainable = False
239 print('Freeze the first {} layers of total {} layers.'.format(num,

len(model_body.layers)))↪→
240
241 model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
242 arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})(
243 [*model_body.output, *y_true])
244 model = Model([model_body.input, *y_true], model_loss)
245
246 return model
247
248 def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
249 '''data generator for fit_generator'''
250 n = len(annotation_lines)
251 i = 0
252 while True:
253 image_data = []
254 box_data = []
255 for b in range(batch_size):
256 if i==0:
257 np.random.shuffle(annotation_lines)
258 image, box = get_random_data(annotation_lines[i], input_shape, random=True)
259 image_data.append(image)
260 box_data.append(box)
261 i = (i+1) % n
262 image_data = np.array(image_data)
263 box_data = np.array(box_data)
264 y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
265 yield [image_data, *y_true], np.zeros(batch_size)
266
267 def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes):

52

268 n = len(annotation_lines)
269 if n==0 or batch_size<=0: return None
270 return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)
271
272 if __name__ == '__main__':
273 _main()

53

ANEXO B – CÓDIGO DE TREINAMENTO FASTER R-CNN

1 from __future__ import division
2 import random
3 import pprint
4 import sys
5 import time
6 import numpy as np
7
8 import pickle
9

10 from keras import backend as K
11 from keras.optimizers import Adam
12 from keras.layers import Input
13 from keras.models import Model
14 from keras_frcnn import config, data_generators
15 from keras_frcnn import losses as losses
16 import keras_frcnn.roi_helpers as roi_helpers
17 from keras.utils import generic_utils
18
19 sys.setrecursionlimit(40000)
20
21
22
23 from keras_frcnn.simple_parser import get_data
24
25 # pass the settings from the command line, and persist them in the config object
26 C = config.Config()
27
28 C.use_horizontal_flips = False
29 C.use_vertical_flips = False
30 C.rot_90 = False
31
32 C.model_path = './model_frcnn.hdf5'
33 C.num_rois = 32
34
35
36
37 from keras_frcnn import resnet as nn
38 C.network = 'resnet50'
39
40
41 # check if weight path was passed via command line
42
43 C.base_net_weights = './model_frcnn.hdf5'
44
45
46 all_imgs, classes_count, class_mapping = get_data("annotate.txt")
47
48 if 'bg' not in classes_count:
49 classes_count['bg'] = 0
50 class_mapping['bg'] = len(class_mapping)
51

54

52 C.class_mapping = class_mapping
53
54 inv_map = {v: k for k, v in class_mapping.items()}
55
56 print('Training images per class:')
57 pprint.pprint(classes_count)
58 print('Num classes (including bg) = {}'.format(len(classes_count)))
59
60 config_output_filename = "config.pickle"
61
62 with open(config_output_filename, 'wb') as config_f:
63 pickle.dump(C,config_f)
64 print('Config has been written to {}, and can be loaded when testing to ensure

correct results'.format(config_output_filename))↪→
65
66 random.shuffle(all_imgs)
67
68 num_imgs = len(all_imgs)
69
70 train_imgs = [s for s in all_imgs if s['imageset'] == 'trainval']
71 val_imgs = [s for s in all_imgs if s['imageset'] == 'test']
72
73 print('Num train samples {}'.format(len(train_imgs)))
74 print('Num val samples {}'.format(len(val_imgs)))
75
76
77 data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, C,

nn.get_img_output_length, K.image_dim_ordering(), mode='train')↪→
78 data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, C,

nn.get_img_output_length,K.image_dim_ordering(), mode='val')↪→
79
80 if K.image_dim_ordering() == 'th':
81 input_shape_img = (3, None, None)
82 else:
83 input_shape_img = (None, None, 3)
84
85 img_input = Input(shape=input_shape_img)
86 roi_input = Input(shape=(None, 4))
87
88 # define the base network (resnet here, can be VGG, Inception, etc)
89 shared_layers = nn.nn_base(img_input, trainable=True)
90
91 # define the RPN, built on the base layers
92 num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios)
93 rpn = nn.rpn(shared_layers, num_anchors)
94
95 classifier = nn.classifier(shared_layers, roi_input, C.num_rois,

nb_classes=len(classes_count), trainable=True)↪→
96
97 model_rpn = Model(img_input, rpn[:2])
98 model_classifier = Model([img_input, roi_input], classifier)
99

100 # this is a model that holds both the RPN and the classifier, used to load/save weights for
the models↪→

101 model_all = Model([img_input, roi_input], rpn[:2] + classifier)
102

55

103 try:
104 print('loading weights from {}'.format(C.base_net_weights))
105 model_rpn.load_weights(C.base_net_weights, by_name=True)
106 model_classifier.load_weights(C.base_net_weights, by_name=True)
107 except:
108 print('Could not load pretrained model weights. Weights can be found in the keras

application folder \↪→
109 https://github.com/fchollet/keras/tree/master/keras/applications')
110
111 optimizer = Adam(lr=1e-5)
112 optimizer_classifier = Adam(lr=1e-5)
113 model_rpn.compile(optimizer=optimizer, loss=[losses.rpn_loss_cls(num_anchors),

losses.rpn_loss_regr(num_anchors)])↪→
114 model_classifier.compile(optimizer=optimizer_classifier, loss=[losses.class_loss_cls,

losses.class_loss_regr(len(classes_count)-1)],
metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'})

↪→
↪→

115 model_all.compile(optimizer='sgd', loss='mae')
116
117 epoch_length = 100
118 num_epochs = 50
119 iter_num = 0
120
121 losses = np.zeros((epoch_length, 5))
122 rpn_accuracy_rpn_monitor = []
123 rpn_accuracy_for_epoch = []
124 start_time = time.time()
125
126 best_loss = np.Inf
127
128 class_mapping_inv = {v: k for k, v in class_mapping.items()}
129 print('Starting training')
130
131 vis = True
132
133 for epoch_num in range(num_epochs):
134
135 progbar = generic_utils.Progbar(epoch_length)
136 print('Epoch {}/{}'.format(epoch_num + 1, num_epochs))
137
138 while True:
139 try:
140
141 if len(rpn_accuracy_rpn_monitor) == epoch_length and C.verbose:
142 mean_overlapping_bboxes =

float(sum(rpn_accuracy_rpn_monitor))/len(rpn_accuracy_rpn_monitor)↪→
143 rpn_accuracy_rpn_monitor = []
144 print('Average number of overlapping bounding boxes from RPN

= {} for {} previous
iterations'.format(mean_overlapping_bboxes,
epoch_length))

↪→
↪→
↪→

145 if mean_overlapping_bboxes == 0:
146 print('RPN is not producing bounding boxes that

overlap the ground truth boxes. Check RPN
settings or keep training.')

↪→
↪→

147
148 X, Y, img_data = next(data_gen_train)

56

149
150 loss_rpn = model_rpn.train_on_batch(X, Y)
151
152 P_rpn = model_rpn.predict_on_batch(X)
153
154 R = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], C,

K.image_dim_ordering(), use_regr=True, overlap_thresh=0.7,
max_boxes=300)

↪→
↪→

155 # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format
156 X2, Y1, Y2, IouS = roi_helpers.calc_iou(R, img_data, C,

class_mapping)↪→
157
158 if X2 is None:
159 rpn_accuracy_rpn_monitor.append(0)
160 rpn_accuracy_for_epoch.append(0)
161 continue
162
163 neg_samples = np.where(Y1[0, :, -1] == 1)
164 pos_samples = np.where(Y1[0, :, -1] == 0)
165
166 if len(neg_samples) > 0:
167 neg_samples = neg_samples[0]
168 else:
169 neg_samples = []
170
171 if len(pos_samples) > 0:
172 pos_samples = pos_samples[0]
173 else:
174 pos_samples = []
175
176 rpn_accuracy_rpn_monitor.append(len(pos_samples))
177 rpn_accuracy_for_epoch.append((len(pos_samples)))
178
179 if C.num_rois > 1:
180 if len(pos_samples) < C.num_rois//2:
181 selected_pos_samples = pos_samples.tolist()
182 else:
183 selected_pos_samples = np.random.choice(pos_samples,

C.num_rois//2, replace=False).tolist()↪→
184 try:
185 selected_neg_samples = np.random.choice(neg_samples,

C.num_rois - len(selected_pos_samples),
replace=False).tolist()

↪→
↪→

186 except:
187 selected_neg_samples = np.random.choice(neg_samples,

C.num_rois - len(selected_pos_samples),
replace=True).tolist()

↪→
↪→

188
189 sel_samples = selected_pos_samples + selected_neg_samples
190 else:
191 # in the extreme case where num_rois = 1, we pick a random

pos or neg sample↪→
192 selected_pos_samples = pos_samples.tolist()
193 selected_neg_samples = neg_samples.tolist()
194 if np.random.randint(0, 2):
195 sel_samples = random.choice(neg_samples)

57

196 else:
197 sel_samples = random.choice(pos_samples)
198
199 loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples,

:]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]])↪→
200
201 losses[iter_num, 0] = loss_rpn[1]
202 losses[iter_num, 1] = loss_rpn[2]
203
204 losses[iter_num, 2] = loss_class[1]
205 losses[iter_num, 3] = loss_class[2]
206 losses[iter_num, 4] = loss_class[3]
207
208 progbar.update(iter_num+1, [('rpn_cls', losses[iter_num, 0]),

('rpn_regr', losses[iter_num, 1]),↪→
209 ('detector_cls',

losses[iter_num,
2]),
('detector_regr',
losses[iter_num,
3])])

↪→
↪→
↪→
↪→
↪→

210
211 iter_num += 1
212
213 if iter_num == epoch_length:
214 loss_rpn_cls = np.mean(losses[:, 0])
215 loss_rpn_regr = np.mean(losses[:, 1])
216 loss_class_cls = np.mean(losses[:, 2])
217 loss_class_regr = np.mean(losses[:, 3])
218 class_acc = np.mean(losses[:, 4])
219
220 mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch))

/ len(rpn_accuracy_for_epoch)↪→
221 rpn_accuracy_for_epoch = []
222
223 if C.verbose:
224 print('Mean number of bounding boxes from RPN

overlapping ground truth boxes:
{}'.format(mean_overlapping_bboxes))

↪→
↪→

225 print('Classifier accuracy for bounding boxes from
RPN: {}'.format(class_acc))↪→

226 print('Loss RPN classifier:
{}'.format(loss_rpn_cls))↪→

227 print('Loss RPN regression:
{}'.format(loss_rpn_regr))↪→

228 print('Loss Detector classifier:
{}'.format(loss_class_cls))↪→

229 print('Loss Detector regression:
{}'.format(loss_class_regr))↪→

230 print('Elapsed time: {}'.format(time.time() -
start_time))↪→

231
232 curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls +

loss_class_regr↪→
233 iter_num = 0
234 start_time = time.time()

58

235
236 if curr_loss < best_loss:
237 if C.verbose:
238 print('Total loss decreased from {} to {},

saving
weights'.format(best_loss,curr_loss))

↪→
↪→

239 best_loss = curr_loss
240 model_all.save_weights(C.model_path)
241
242 break
243
244 except Exception as e:
245 print('Exception: {}'.format(e))
246 continue
247
248 print('Training complete, exiting.')

59

ANEXO C – CÓDIGO DE TREINAMENTO SSD

1 from keras.optimizers import Adam
2 from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TerminateOnNaN,

CSVLogger↪→
3 from keras import backend as K
4
5 from math import ceil
6
7
8 from models.keras_ssd300 import ssd_300
9 from keras_loss_function.keras_ssd_loss import SSDLoss

10
11
12
13 from ssd_encoder_decoder.ssd_input_encoder import SSDInputEncoder
14
15
16 from data_generator.object_detection_2d_data_generator import DataGenerator
17 from data_generator.object_detection_2d_geometric_ops import Resize
18 from data_generator.object_detection_2d_photometric_ops import ConvertTo3Channels
19 from data_generator.data_augmentation_chain_original_ssd import SSDDataAugmentation
20
21
22
23
24 img_height = 300 # Height of the model input images
25 img_width = 300 # Width of the model input images
26 img_channels = 3 # Number of color channels of the model input images
27 mean_color = [123, 117, 104] # The per-channel mean of the images in the dataset. Do not

change this value if you're using any of the pre-trained weights.↪→
28 swap_channels = [2, 1, 0] # The color channel order in the original SSD is BGR, so we'll

have the model reverse the color channel order of the input images.↪→
29 n_classes = 1 # Number of positive classes, e.g. 20 for Pascal VOC, 80 for MS COCO
30 scales_pascal = [0.1, 0.2, 0.37, 0.54, 0.71, 0.88, 1.05] # The anchor box scaling factors

used in the original SSD300 for the Pascal VOC datasets↪→
31 scales_coco = [0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05] # The anchor box scaling factors

used in the original SSD300 for the MS COCO datasets↪→
32 scales = scales_pascal
33 aspect_ratios = [[1.0, 2.0, 0.5],
34 [1.0, 2.0, 0.5, 3.0, 1.0/3.0],
35 [1.0, 2.0, 0.5, 3.0, 1.0/3.0],
36 [1.0, 2.0, 0.5, 3.0, 1.0/3.0],
37 [1.0, 2.0, 0.5],
38 [1.0, 2.0, 0.5]] # The anchor box aspect ratios used in the original

SSD300; the order matters↪→
39 two_boxes_for_ar1 = True
40 steps = [8, 16, 32, 64, 100, 300] # The space between two adjacent anchor box center points

for each predictor layer.↪→
41 offsets = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5] # The offsets of the first anchor box center points

from the top and left borders of the image as a fraction of the step size for each
predictor layer.

↪→
↪→

60

42 clip_boxes = False # Whether or not to clip the anchor boxes to lie entirely within the
image boundaries↪→

43 variances = [0.1, 0.1, 0.2, 0.2] # The variances by which the encoded target coordinates are
divided as in the original implementation↪→

44 normalize_coords = True
45
46
47
48
49
50
51 K.clear_session()
52
53 model = ssd_300(image_size=(img_height, img_width, img_channels),
54 n_classes=n_classes,
55 mode='training',
56 l2_regularization=0.0005,
57 scales=scales,
58 aspect_ratios_per_layer=aspect_ratios,
59 two_boxes_for_ar1=two_boxes_for_ar1,
60 steps=steps,
61 offsets=offsets,
62 clip_boxes=clip_boxes,
63 variances=variances,
64 normalize_coords=normalize_coords,
65 subtract_mean=mean_color,
66 swap_channels=swap_channels)
67
68 weights_path = 'ssd300_pascal_07+12_epoch-16_loss-2.0669_val_loss-2.5514.h5'
69
70 model.load_weights(weights_path, by_name=True)
71
72 adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
73
74 ssd_loss = SSDLoss(neg_pos_ratio=3, alpha=1.0)
75
76 model.compile(optimizer=adam, loss=ssd_loss.compute_loss)
77
78
79
80
81
82 train_dataset = DataGenerator(load_images_into_memory=False, hdf5_dataset_path=None)
83 val_dataset = DataGenerator(load_images_into_memory=False, hdf5_dataset_path=None)
84
85
86
87
88
89 images_dir = 'Data\JPEGImages'
90
91 train_labels_filename = 'Train_csv.csv'
92 val_labels_filename = 'val_csv.csv'
93
94 train_dataset.parse_csv(images_dir=images_dir,
95 labels_filename=train_labels_filename,

61

96 input_format=['image_name', 'xmin', 'ymin', 'xmax', 'ymax',
'class_id'], # This is the order of the first six columns in the
CSV file that contains the labels for your dataset. If your
labels are in XML format, maybe the XML parser will be helpful,
check the documentation.

↪→
↪→
↪→
↪→

97 include_classes='all')
98
99 val_dataset.parse_csv(images_dir=images_dir,

100 labels_filename=val_labels_filename,
101 input_format=['image_name', 'xmin', 'ymin', 'xmax', 'ymax',

'class_id'],↪→
102 include_classes='all')
103
104 train_dataset.create_hdf5_dataset(file_path='dataset_pascal_voc_07+12_trainval_1.h5',
105 resize=False,
106 variable_image_size=True,
107 verbose=True)
108
109 val_dataset.create_hdf5_dataset(file_path='dataset_pascal_voc_07_test_1.h5',
110 resize=False,
111 variable_image_size=True,
112 verbose=True)
113
114
115
116
117
118 batch_size = 16
119
120
121
122
123
124 ssd_data_augmentation = SSDDataAugmentation(img_height=img_height,
125 img_width=img_width,
126 background=mean_color)
127
128
129 convert_to_3_channels = ConvertTo3Channels()
130 resize = Resize(height=img_height, width=img_width)
131
132
133 predictor_sizes = [model.get_layer('conv4_3_norm_mbox_conf').output_shape[1:3],
134 model.get_layer('fc7_mbox_conf').output_shape[1:3],
135 model.get_layer('conv6_2_mbox_conf').output_shape[1:3],
136 model.get_layer('conv7_2_mbox_conf').output_shape[1:3],
137 model.get_layer('conv8_2_mbox_conf').output_shape[1:3],
138 model.get_layer('conv9_2_mbox_conf').output_shape[1:3]]
139
140 ssd_input_encoder = SSDInputEncoder(img_height=img_height,
141 img_width=img_width,
142 n_classes=n_classes,
143 predictor_sizes=predictor_sizes,
144 scales=scales,
145 aspect_ratios_per_layer=aspect_ratios,
146 two_boxes_for_ar1=two_boxes_for_ar1,

62

147 steps=steps,
148 offsets=offsets,
149 clip_boxes=clip_boxes,
150 variances=variances,
151 matching_type='multi',
152 pos_iou_threshold=0.5,
153 neg_iou_limit=0.5,
154 normalize_coords=normalize_coords)
155
156
157
158 train_generator = train_dataset.generate(batch_size=batch_size,
159 shuffle=True,
160 transformations=[ssd_data_augmentation],
161 label_encoder=ssd_input_encoder,
162 returns={'processed_images',
163 'encoded_labels'},
164 keep_images_without_gt=False)
165
166 val_generator = val_dataset.generate(batch_size=batch_size,
167 shuffle=False,
168 transformations=[convert_to_3_channels,
169 resize],
170 label_encoder=ssd_input_encoder,
171 returns={'processed_images',
172 'encoded_labels'},
173 keep_images_without_gt=False)
174
175
176 train_dataset_size = train_dataset.get_dataset_size()
177 val_dataset_size = val_dataset.get_dataset_size()
178
179 print("Number of images in the training dataset:\t{:>6}".format(train_dataset_size))
180 print("Number of images in the validation dataset:\t{:>6}".format(val_dataset_size))
181
182
183
184 def lr_schedule(epoch):
185 if epoch < 80:
186 return 0.001
187 elif epoch < 100:
188 return 0.0001
189 else:
190 return 0.00001
191
192
193
194 model_checkpoint =

ModelCheckpoint(filepath='ssd300_pascal_07+12_epoch-{epoch:02d}_loss-{loss:.4f}_val_loss-{val_loss:.4f}.h5',↪→
195 monitor='val_loss',
196 verbose=1,
197 save_best_only=True,
198 save_weights_only=False,
199 mode='auto',
200 period=1)
201

63

202
203 csv_logger = CSVLogger(filename='ssd300_pascal_07+12_training_log.csv',
204 separator=',',
205 append=True)
206
207 learning_rate_scheduler = LearningRateScheduler(schedule=lr_schedule,
208 verbose=1)
209
210 terminate_on_nan = TerminateOnNaN()
211
212 callbacks = [model_checkpoint,
213 csv_logger,
214 learning_rate_scheduler,
215 terminate_on_nan]
216
217
218
219 initial_epoch = 25
220 final_epoch = 100
221 steps_per_epoch = 200
222
223 history = model.fit_generator(generator=train_generator,
224 steps_per_epoch=steps_per_epoch,
225 epochs=final_epoch,
226 callbacks=callbacks,
227 validation_data=val_generator,
228 validation_steps=ceil(val_dataset_size/batch_size),
229 initial_epoch=initial_epoch)

65

ANEXO D – CÓDIGO DE DETECÇÃO YOLOV3

1 import os
2
3
4
5 def detect_object(yolo, img, save_img=True, save_img_path="output"):
6 try:
7 image = Image.open(img)
8 if image.mode != "RGB":
9 image = image.convert("RGB")

10 image_array = np.array(image)
11 except:
12 print("File Open Error! Try again!")
13 return None, None
14
15 prediction, r_image = yolo.detect_image(image)
16
17 if save_img:
18 r_image.save(os.path.join(save_img_path, os.path.basename(img)))
19
20 return prediction, image_array
21
22 def get_parent_dir(n=1):
23 #retorna o caminho para o diretório de trabalho
24 current_path = os.path.dirname(os.path.abspath(__file__))
25 for k in range(n):
26 current_path = os.path.dirname(current_path)
27 return current_path
28
29
30 def GetFileList(dirName, endings=[".jpg", ".jpeg", ".png", ".mp4"]):
31 # cria uma lista de todos os arquivos no diretório
32 listOfFile = os.listdir(dirName)
33 allFiles = list()
34
35
36 # garante que todos os finais começam com .
37
38 for i, ending in enumerate(endings):
39 if ending[0] != ".":
40 endings[i] = "." + ending
41
42
43 for entry in listOfFile:
44 # Create full path
45 fullPath = os.path.join(dirName, entry)
46 # If entry is a directory then get the list of files in this directory
47 if os.path.isdir(fullPath):
48 allFiles = allFiles + GetFileList(fullPath, endings)
49 else:
50 for ending in endings:
51 if entry.endswith(ending):

66

52 allFiles.append(fullPath)
53 return allFiles
54
55 from utils.yolo import YOLO, detect_video
56 from PIL import Image
57 from timeit import default_timer as timer
58
59 import pandas as pd
60 import numpy as np
61
62
63 os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
64
65 # Diretórios de trabalho
66 data_folder = os.path.join(get_parent_dir(0), "Data")
67
68 image_folder = os.path.join(data_folder, "Source_Images")
69
70 input_path = os.path.join(image_folder, "Test_Images")
71
72 output_path = os.path.join(image_folder, "Test_Image_Detection_Results")
73 detection_results_file = os.path.join(output_path, "Detection_Results.csv")
74
75 model_folder = os.path.join(data_folder, "Model_Weights")
76
77 model_weights = os.path.join(model_folder, "trained_weights_final.h5")
78 model_classes = os.path.join(model_folder, "data_classes.txt")
79
80 anchors_path = os.path.join("utils", "model_data", "yolo_anchors.txt")
81
82
83
84 save_img = True
85
86 #grau de confiança
87 score = 0.5
88
89 input_paths = GetFileList(input_path)
90
91
92
93 # separa imagens de videos
94 img_endings = (".jpg", ".jpeg", ".png", ".JPG", ".JPEG")
95 vid_endings = (".mp4", ".mpeg", ".mpg", ".avi")
96
97 input_image_paths = []
98 input_video_paths = []
99 for item in input_paths:

100 if item.endswith(img_endings):
101 input_image_paths.append(item)
102 elif item.endswith(vid_endings):
103 input_video_paths.append(item)
104
105 if not os.path.exists(output_path):
106 os.makedirs(output_path)
107

67

108
109 yolo = YOLO(
110 **{
111 "model_path": model_weights,
112 "anchors_path": anchors_path,
113 "classes_path": model_classes,
114 "score": score,
115 "gpu_num": 1,
116 "model_image_size": (416, 416),
117 }
118)
119
120 # Cria um dataframe para os resultados
121 out_df = pd.DataFrame(
122 columns=[
123 "image",
124 "image_path",
125 "xmin",
126 "ymin",
127 "xmax",
128 "ymax",
129 "label",
130 "confidence",
131 "x_size",
132 "y_size",
133]
134)
135
136
137 class_file = open(model_classes, "r")
138 input_labels = [line.rstrip("\n") for line in class_file.readlines()]
139 print("Found {} input labels: {} ...".format(len(input_labels), input_labels))
140
141 if input_image_paths:
142 print(
143 "Found {} input images: {} ...".format(
144 len(input_image_paths),
145 [os.path.basename(f) for f in input_image_paths[:5]],
146)
147)
148 start = timer()
149 text_out = ""
150
151
152 for i, img_path in enumerate(input_image_paths):
153 print(img_path)
154 prediction, image = detect_object(
155 yolo,
156 img_path,
157 save_img=save_img,
158 save_img_path=output_path,
159)
160 y_size, x_size, _ = np.array(image).shape
161 for single_prediction in prediction:
162 out_df = out_df.append(
163 pd.DataFrame(

68

164 [
165 [
166 os.path.basename(img_path.rstrip("\n")),
167 img_path.rstrip("\n"),
168]
169 + single_prediction
170 + [x_size, y_size]
171],
172 columns=[
173 "image",
174 "image_path",
175 "xmin",
176 "ymin",
177 "xmax",
178 "ymax",
179 "label",
180 "confidence",
181 "x_size",
182 "y_size",
183],
184)
185)
186 end = timer()
187 print(
188 "Processed {} images in {:.1f}sec - {:.1f}FPS".format(
189 len(input_image_paths),
190 end - start,
191 len(input_image_paths) / (end - start),
192)
193)
194 out_df.to_csv(detection_results_file, index=False)
195
196
197 if input_video_paths:
198 print(
199 "Found {} input videos: {} ...".format(
200 len(input_video_paths),
201 [os.path.basename(f) for f in input_video_paths[:5]],
202)
203)
204 start = timer()
205 for i, vid_path in enumerate(input_video_paths):
206 detect_video(yolo, vid_path, output_path=output_path)
207 end = timer()
208 print(
209 "Processed {} videos in {:.1f}sec".format(
210 len(input_video_paths), end - start
211)
212)
213
214 yolo.close_session()

69

ANEXO E – CÓDIGO DE DETECÇÃO FASTER R-CNN

1 from __future__ import division
2 import os
3 import cv2
4 import numpy as np
5 import sys
6 import pickle
7 from optparse import OptionParser
8 import time
9 from keras_frcnn import config

10 from keras import backend as K
11 from keras.layers import Input
12 from keras.models import Model
13 from keras_frcnn import roi_helpers
14
15
16 from PIL import Image, ImageFont, ImageDraw
17 from timeit import default_timer as timer
18
19
20
21 sys.setrecursionlimit(40000)
22
23 parser = OptionParser()
24
25 parser.add_option("-p", "--path", dest="test_path", help="Path to test data.",

default="Test_Images")↪→
26 parser.add_option("-n", "--num_rois", type="int", dest="num_rois",
27 help="Number of ROIs per iteration. Higher means more memory

use.", default=32)↪→
28 parser.add_option("--config_filename", dest="config_filename", help=
29 "Location to read the metadata related to the training

(generated when training).",↪→
30 default="config.pickle")
31 parser.add_option("--network", dest="network", help="Base network to use. Supports vgg or

resnet50.", default='resnet50')↪→
32
33 (options, args) = parser.parse_args()
34
35 if not options.test_path: # if filename is not given
36 parser.error('Error: path to test data must be specified. Pass --path to command

line')↪→
37
38
39 config_output_filename = options.config_filename
40
41 with open(config_output_filename, 'rb') as f_in:
42 C = pickle.load(f_in)
43
44 if C.network == 'resnet50':
45 import keras_frcnn.resnet as nn
46 elif C.network == 'vgg':

70

47 import keras_frcnn.vgg as nn
48
49 # turn off any data augmentation at test time
50 C.use_horizontal_flips = False
51 C.use_vertical_flips = False
52 C.rot_90 = False
53
54 img_path = options.test_path
55
56 def format_img_size(img, C):
57 """ formats the image size based on config """
58 img_min_side = float(C.im_size)
59 (height,width,_) = img.shape
60
61 if width <= height:
62 ratio = img_min_side/width
63 new_height = int(ratio * height)
64 new_width = int(img_min_side)
65 else:
66 ratio = img_min_side/height
67 new_width = int(ratio * width)
68 new_height = int(img_min_side)
69 img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC)
70 return img, ratio
71
72 def format_img_channels(img, C):
73 """ formats the image channels based on config """
74 img = img[:, :, (2, 1, 0)]
75 img = img.astype(np.float32)
76 img[:, :, 0] -= C.img_channel_mean[0]
77 img[:, :, 1] -= C.img_channel_mean[1]
78 img[:, :, 2] -= C.img_channel_mean[2]
79 img /= C.img_scaling_factor
80 img = np.transpose(img, (2, 0, 1))
81 img = np.expand_dims(img, axis=0)
82 return img
83
84 def format_img(img, C):
85 """ formats an image for model prediction based on config """
86 img, ratio = format_img_size(img, C)
87 img = format_img_channels(img, C)
88 return img, ratio
89
90 # Method to transform the coordinates of the bounding box to its original size
91 def get_real_coordinates(ratio, x1, y1, x2, y2):
92
93 real_x1 = int(round(x1 // ratio))
94 real_y1 = int(round(y1 // ratio))
95 real_x2 = int(round(x2 // ratio))
96 real_y2 = int(round(y2 // ratio))
97
98 return (real_x1, real_y1, real_x2 ,real_y2)
99

100 class_mapping = C.class_mapping
101
102 if 'bg' not in class_mapping:

71

103 class_mapping['bg'] = len(class_mapping)
104
105 class_mapping = {v: k for k, v in class_mapping.items()}
106 print(class_mapping)
107 class_to_color = {class_mapping[v]: np.random.randint(0, 255, 3) for v in class_mapping}
108 C.num_rois = int(options.num_rois)
109
110 if C.network == 'resnet50':
111 num_features = 1024
112 elif C.network == 'vgg':
113 num_features = 512
114
115 if K.image_dim_ordering() == 'th':
116 input_shape_img = (3, None, None)
117 input_shape_features = (num_features, None, None)
118 else:
119 input_shape_img = (None, None, 3)
120 input_shape_features = (None, None, num_features)
121
122
123 img_input = Input(shape=input_shape_img)
124 roi_input = Input(shape=(C.num_rois, 4))
125 feature_map_input = Input(shape=input_shape_features)
126
127 # define the base network (resnet here, can be VGG, Inception, etc)
128 shared_layers = nn.nn_base(img_input, trainable=True)
129
130 # define the RPN, built on the base layers
131 num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios)
132 rpn_layers = nn.rpn(shared_layers, num_anchors)
133
134 classifier = nn.classifier(feature_map_input, roi_input, C.num_rois,

nb_classes=len(class_mapping), trainable=True)↪→
135
136 model_rpn = Model(img_input, rpn_layers)
137 model_classifier_only = Model([feature_map_input, roi_input], classifier)
138
139 model_classifier = Model([feature_map_input, roi_input], classifier)
140
141 print('Loading weights from {}'.format(C.model_path))
142 model_rpn.load_weights(C.model_path, by_name=True)
143 model_classifier.load_weights(C.model_path, by_name=True)
144
145 model_rpn.compile(optimizer='sgd', loss='mse')
146 model_classifier.compile(optimizer='sgd', loss='mse')
147
148 all_imgs = []
149
150 classes = {}
151
152 bbox_threshold = 0.8
153
154 visualise = True
155
156 save_path = "Result_Images"
157

72

158 start_t = timer()
159
160 for idx, img_name in enumerate(sorted(os.listdir(img_path))):
161 start = timer()
162 if not img_name.lower().endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')):
163 continue
164 filepath = os.path.join(img_path,img_name)
165 img = cv2.imread(filepath)
166 img2 = Image.open(filepath)
167
168 X, ratio = format_img(img, C)
169
170 if K.image_dim_ordering() == 'tf':
171 X = np.transpose(X, (0, 2, 3, 1))
172
173 # get the feature maps and output from the RPN
174 [Y1, Y2, F] = model_rpn.predict(X)
175
176
177 R = roi_helpers.rpn_to_roi(Y1, Y2, C, K.image_dim_ordering(), overlap_thresh=0.7)
178
179 # convert from (x1,y1,x2,y2) to (x,y,w,h)
180 R[:, 2] -= R[:, 0]
181 R[:, 3] -= R[:, 1]
182
183 # apply the spatial pyramid pooling to the proposed regions
184 bboxes = {}
185 probs = {}
186
187 for jk in range(R.shape[0]//C.num_rois + 1):
188 ROIs = np.expand_dims(R[C.num_rois*jk:C.num_rois*(jk+1), :], axis=0)
189 if ROIs.shape[1] == 0:
190 break
191
192 if jk == R.shape[0]//C.num_rois:
193 #pad R
194 curr_shape = ROIs.shape
195 target_shape = (curr_shape[0],C.num_rois,curr_shape[2])
196 ROIs_padded = np.zeros(target_shape).astype(ROIs.dtype)
197 ROIs_padded[:, :curr_shape[1], :] = ROIs
198 ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, 0, :]
199 ROIs = ROIs_padded
200
201 [P_cls, P_regr] = model_classifier_only.predict([F, ROIs])
202
203 for ii in range(P_cls.shape[1]):
204
205 if np.max(P_cls[0, ii, :]) < bbox_threshold or np.argmax(P_cls[0, ii, :]) ==

(P_cls.shape[2] - 1):↪→
206 continue
207
208 cls_name = class_mapping[np.argmax(P_cls[0, ii, :])]
209
210 if cls_name not in bboxes:
211 bboxes[cls_name] = []
212 probs[cls_name] = []

73

213
214 (x, y, w, h) = ROIs[0, ii, :]
215
216 cls_num = np.argmax(P_cls[0, ii, :])
217 try:
218 (tx, ty, tw, th) = P_regr[0, ii, 4*cls_num:4*(cls_num+1)]
219 tx /= C.classifier_regr_std[0]
220 ty /= C.classifier_regr_std[1]
221 tw /= C.classifier_regr_std[2]
222 th /= C.classifier_regr_std[3]
223 x, y, w, h = roi_helpers.apply_regr(x, y, w, h, tx, ty, tw, th)
224 except:
225 pass
226 bboxes[cls_name].append([C.rpn_stride*x, C.rpn_stride*y, C.rpn_stride*(x+w),

C.rpn_stride*(y+h)])↪→
227 probs[cls_name].append(np.max(P_cls[0, ii, :]))
228
229 all_dets = []
230
231
232
233 for key in bboxes:
234 bbox = np.array(bboxes[key])
235
236 new_boxes, new_probs = roi_helpers.non_max_suppression_fast(bbox,

np.array(probs[key]), overlap_thresh=0.5)↪→
237
238
239 total = "Caminhão com {} eixo(s)".format(len(range(new_boxes.shape[0])))
240 font_path = os.path.join(os.path.dirname(__file__), "font/FiraMono-Medium.otf")
241 font = ImageFont.truetype(
242 font=font_path, size=np.floor(3e-2 * img2.size[1] + 0.5).astype("int32")
243)
244 thickness = (img2.size[0] + img2.size[1]) // 300
245
246 for jk in range(new_boxes.shape[0]):
247 (x1, y1, x2, y2) = new_boxes[jk,:]
248
249 (real_x1, real_y1, real_x2, real_y2) = get_real_coordinates(ratio, x1, y1, x2,

y2)↪→
250
251 draw = ImageDraw.Draw(img2)
252 total_size = draw.textsize(total, font)
253 label = "Eixo : {:.2f}".format(new_probs[jk])
254 label_size = draw.textsize(label, font)
255
256
257 if real_y1 - label_size[1] >= 0:
258 text_origin = np.array([real_x1, real_y1 - label_size[1]])
259 else:
260 text_origin = np.array([real_x1, real_y2])
261
262 for i in range(thickness):
263 draw.rectangle(
264 [real_x1 + i, real_y1 + i, real_x2 - i,real_y2 - i], outline="#FFA500"
265)

74

266 draw.rectangle(
267 [tuple(text_origin), tuple(text_origin + label_size)],
268 fill="#FFA500",
269)
270
271 all_dets.append((key,100*new_probs[jk]))
272
273
274
275 draw.rectangle(
276 [(0,0), tuple(total_size)],
277 fill="#FFA500",
278)
279 draw.text(text_origin, label, fill=(0, 0, 0), font=font)
280 draw.text((0,0), total, fill=(0, 0, 0), font=font)
281 del draw
282
283
284
285 txt = os.path.join("txt", os.path.splitext(img_name)[0])
286 file_name = "{}.txt".format(txt)
287
288 line = "Eixo " + " " + str(new_probs[jk]) + " " + str(int(round(real_x1))) + " "

+ str(int(round(real_y1))) + " " + str(int(round(real_x2))) + " " +
str(int(round(real_y2))) + '\n'

↪→
↪→

289 with open(file_name, 'a') as output:
290 output.write(line)
291
292
293
294 end = timer()
295 print("Time spent: {:.3f}sec".format(end - start))
296 img2.save(os.path.join(save_path, os.path.basename(img_name)))
297 print(all_dets)
298
299
300 end_t = timer()
301
302
303 print(
304 "Processed {} images in {:.1f}sec - {:.1f}FPS".format(
305 len(os.listdir(img_path)),
306 end_t - start_t,
307 len(os.listdir(img_path)) / (end_t - start_t),
308)
309)

75

ANEXO F – CÓDIGO DE DETECÇÃO SSD

1 import os
2 from PIL import Image, ImageFont, ImageDraw
3 from timeit import default_timer as timer
4
5
6
7 def get_parent_dir(n=1):
8 #retorna o caminho para o diretório de trabalho
9 current_path = os.path.dirname(os.path.abspath(__file__))

10 for k in range(n):
11 current_path = os.path.dirname(current_path)
12 return current_path
13
14
15 def GetFileList(dirName, endings=[".jpg", ".jpeg", ".png", ".mp4"]):
16 # cria uma lista de todos os arquivos no diretório
17 listOfFile = os.listdir(dirName)
18 allFiles = list()
19
20
21 # garante que todos os finais começam com .
22
23 for i, ending in enumerate(endings):
24 if ending[0] != ".":
25 endings[i] = "." + ending
26
27
28 for entry in listOfFile:
29 # Create full path
30 fullPath = os.path.join(dirName, entry)
31 # If entry is a directory then get the list of files in this directory
32 if os.path.isdir(fullPath):
33 allFiles = allFiles + GetFileList(fullPath, endings)
34 else:
35 for ending in endings:
36 if entry.endswith(ending):
37 allFiles.append(fullPath)
38 return allFiles
39
40
41 from keras import backend as K
42
43 from keras.preprocessing import image
44 from keras.optimizers import Adam
45 from imageio import imread
46 import numpy as np
47
48
49 from models.keras_ssd300 import ssd_300
50 from keras_loss_function.keras_ssd_loss import SSDLoss
51

76

52
53
54
55
56 img_height = 300
57 img_width = 300
58
59
60
61 K.clear_session()
62
63 model = ssd_300(image_size=(img_height, img_width, 3),
64 n_classes=1,
65 mode='inference',
66 l2_regularization=0.0005,
67 scales=[0.1, 0.2, 0.37, 0.54, 0.71, 0.88, 1.05],
68 aspect_ratios_per_layer=[[1.0, 2.0, 0.5],
69 [1.0, 2.0, 0.5, 3.0, 1.0/3.0],
70 [1.0, 2.0, 0.5, 3.0, 1.0/3.0],
71 [1.0, 2.0, 0.5, 3.0, 1.0/3.0],
72 [1.0, 2.0, 0.5],
73 [1.0, 2.0, 0.5]],
74 two_boxes_for_ar1=True,
75 steps=[8, 16, 32, 64, 100, 300],
76 offsets=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5],
77 clip_boxes=False,
78 variances=[0.1, 0.1, 0.2, 0.2],
79 normalize_coords=True,
80 subtract_mean=[123, 117, 104],
81 swap_channels=[2, 1, 0],
82 confidence_thresh=0.5,
83 iou_threshold=0.45,
84 top_k=200,
85 nms_max_output_size=400)
86
87
88 weights_path = 'ssd300_pascal_07+12_epoch-29_loss-1.7706_val_loss-2.0828.h5'
89
90 model.load_weights(weights_path, by_name=False)
91
92
93 adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
94
95 ssd_loss = SSDLoss(neg_pos_ratio=3, alpha=1.0)
96
97 model.compile(optimizer=adam, loss=ssd_loss.compute_loss)
98
99

100
101
102
103
104 input_images = []
105 orig_images = []
106
107

77

108 data_folder = os.path.join(get_parent_dir(0), "Data")
109
110 input_path = os.path.join(data_folder, "Test_Images")
111 save_path = os.path.join(data_folder, "Result_Images")
112 txt_path = os.path.join(data_folder, "TXT")
113
114
115 input_paths = GetFileList(input_path)
116
117
118 start_t = timer()
119
120 for item in input_paths:
121 start = timer()
122
123 input_images = []
124 orig_images = []
125
126 orig_images.append(imread(item))
127 img = image.load_img(item, target_size=(img_height, img_width))
128 img = image.img_to_array(img)
129 input_images.append(img)
130 input_images = np.array(input_images)
131
132
133
134
135
136 y_pred = model.predict(input_images)
137
138 confidence_threshold = 0.5
139
140 y_pred_thresh = [y_pred[k][y_pred[k,:,1] > confidence_threshold] for k in

range(y_pred.shape[0])]↪→
141
142 y_pred_txt = y_pred_thresh[0]
143
144
145 image2 = Image.open(item)
146 width, height = image2.size
147
148 ratio_y = height/img_height
149 ratio_x = width/img_width
150 a=0
151
152 txt = os.path.join(txt_path, os.path.splitext(os.path.basename(item))[0])
153 file_name = "{}.txt".format(txt)
154 for row in y_pred_txt:
155 a = a+1
156 line = "Eixo " + " " + str(row[1]) + " " + str(int(round(row[2]*ratio_x))) + " " +

str(int(round(row[3]*ratio_y))) + " " + str(int(round(row[4]*ratio_x))) + " " +
str(int(round(row[5]*ratio_y))) + '\n'

↪→
↪→

157 with open(file_name, 'a') as output:
158 output.write(line)
159
160 font_path = os.path.join(os.path.dirname(__file__), "font/FiraMono-Medium.otf")

78

161 font = ImageFont.truetype(
162 font=font_path, size=np.floor(3e-2 * image2.size[1] + 0.5).astype("int32")
163)
164 thickness = (image2.size[0] + image2.size[1]) // 300
165
166 np.set_printoptions(precision=2, suppress=True, linewidth=90)
167 print("Predicted boxes:\n")
168 print(' class conf xmin ymin xmax ymax')
169 print(y_pred_thresh[0])
170
171 total = "Caminhão com {} eixo(s)".format(a)
172
173 for box in y_pred_thresh[0]:
174 draw = ImageDraw.Draw(image2)
175 total_size = draw.textsize(total, font)
176 label = "Eixo : {:.2f}".format(box[1])
177 label_size = draw.textsize(label, font)
178
179 if box[3]*ratio_y - label_size[1] >= 0:
180 text_origin = np.array([box[2]*ratio_x, box[3]*ratio_y - label_size[1]])
181 else:
182 text_origin = np.array([box[2]*ratio_x, box[5]*ratio_y])
183
184
185 for i in range(thickness):
186 draw.rectangle(
187 [box[2]*ratio_x + i, box[3]*ratio_y + i, box[4]*ratio_x - i,

box[5]*ratio_y - i], outline="#800080"↪→
188)
189 draw.rectangle(
190 [tuple(text_origin), tuple(text_origin + label_size)],
191 fill="#800080",
192)
193
194 draw.rectangle(
195 [(0,0), tuple(total_size)],
196 fill="#800080",
197)
198 draw.text(text_origin, label, fill=(0, 0, 0), font=font)
199 draw.text((0,0), total, fill=(0, 0, 0), font=font)
200 del draw
201
202
203 end = timer()
204 print("Time spent: {:.3f}sec".format(end - start))
205
206
207 image2.save(os.path.join(save_path, os.path.basename(item)))
208
209 end_t = timer()
210
211
212 print(
213 "Processed {} images in {:.1f}sec - {:.1f}FPS".format(
214 len(input_paths),
215 end_t - start_t,

79

216 len(input_paths) / (end_t - start_t),
217)
218)
219
220
221
222

81

ANEXO G – DETECÇÕES

Todas as detecções podem ser encontradas em:

-YOLOv3

Detecções

-Faster R-CNN

Detecções

-SSD

Detecções

https://drive.google.com/drive/folders/1isKjF7Z3NpDKWJ7bFtaJNK5A-hx5p8Z1?usp=sharing
https://drive.google.com/drive/folders/1lY0ghg6IQX1r3uddUeBqa-CLDbaUahTb?usp=sharing
https://drive.google.com/drive/folders/1IHkGVhbS5p1-xyJaniKJvks2iuxyvSp9?usp=sharing

83

ANEXO H – RESULTADOS AP

Os resultados dos testes de AP podem ser encontrados em:

Resultados

As figuras 31, 32 e 33 mostram as curvas de Precision x Recall de cada arquitetura.

Figura 31 – Gráfico Precision x Recall para YOLOv3

Fonte: Elaborado pelo autor.

https://drive.google.com/drive/folders/1HWnkxpEwzEcbDV6sTqZi7aWfIEDPLlug?usp=sharing

84

Figura 32 – Gráfico Precision x Recall para Faster R-CNN

Fonte: Elaborado pelo autor.

Figura 33 – Gráfico Precision x Recall para SSD

Fonte: Elaborado pelo autor.

	Folha de rosto
	Resumo
	Abstract
	Lista de figuras
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Objetivos do trabalho
	Organização do texto

	Revisão Bibliográfica
	Redes Neurais Artificiais
	Rede de Perceptron Multicamadas

	Redes Neurais Convolucionais (CNN)
	Camada de convolução
	Camada de Pooling
	Camada Softmax

	Faster R-CNN
	Region Proposal Network (RPN)
	Classificação e Regressão

	Single Shot MultiBox Detector(SSD)
	Diferenciais
	Mapas de características multi-escala
	Preditores convolucionais
	Boxes e Aspect Ratios Padrões

	You Only Look Once(YOLO)
	Predição das bounding boxes
	Extração de características

	Average Precision (AP)

	Materiais e Métodos
	Banco de Imagens
	YOLOv3
	Faster R-CNN
	SSD

	Resultados e Discussões
	Conclusões
	Trabalhos Futuros

	Referências
	Código de treinamento YOLOv3
	Código de treinamento Faster R-CNN
	Código de treinamento SSD
	Código de detecção YOLOv3
	Código de detecção Faster R-CNN
	Código de detecção SSD
	Detecções
	Resultados AP

