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Resumo

TEIXEIRA JR, R. O uso de arquiteturas hibridas na tarefa text-to-SQL. 2024. Monogra-
fia (Especializacio em Inteligéncia Artificial) — Escola Politécnica da Universidade
de Séo Paulo. PECE - Programa de Educagéo Continuada em Engenharia. Universi-
dade de Sao Paulo, Sao Paulo, 2024.

A tarefa de traducéo da linguagem natural para linguagem estruturada de banco
de dados (SQL) continua a impor desafios significativos a pesquisadores das mais
diversas areas. Dificuldades como a adaptabilidade a novos dominios de dados e de
solugdes em lingua portuguesa sempre estiveram presentes em discussdes sobre o
assunto (Androutsopoulos, Ritchie e Thanisch 1995). Isso mudou com a chegada dos
grandes modelos de linguagem (LLMs), pois a facilidade de uso e sua capacidade de
busca e articulacio de conhecimento tornou os problemas anteriores parcialmente
superados (Gao et al. 2023). Entretanto, isso trouxe novos problemas como a falta
de transparéncia no processo de geracio de informacéo, o alto custo para ajuste fino
dos modelos e a limitagdo de dados sensiveis que podem ser enviados as empresas
produtoras dos modelos.

A técnica proposta neste trabalho concentra-se no envio limitado de informacoes
aos LLMs e na geracéo de instrugdes (prompts) direcionadas a criagio da instrucio
SQL. O pipeline de processamento aqui proposto é caracterizado por ser hibrido,
ao combinar modelos Transformers codificadores para reconhecimento intengio e
grandes modelos de linguagem (LLMs) gerativos para producéo de consultas SQL.
Diferentes modelos Transformers de codificacio (BERTimbau, alBERTina e XLM-
RoBERTa) e de decodificacio (Maritaca e Mixtral) foram testados e comparados na
criacdo do pipeline de melhor desempenho. O modelo global foi ajustado e testado
com dados de um dataset publico desenvolvido com um banco de dados da Microsoft,
AdventureWorksDW2022.

Para tanto, os modelos de reconhecimento de inten¢des e os de geracio de texto
tiveram de passar por ajustes, tais como: aplicacdo de taxas de dropout (Srivastava
et al. 2014) e reajuste de estrutura nos modelos de reconhecimento de intengdes, e
calibragdo de aleatoriedade (temperatura) e engenharia de prompt para os modelos
gerativos. Com isso, atingimos resultados de 92% de F na tarefa especifica de
reconhecimento de intencdes (com alBERTina), e 52% de acuracia ao final do pipeline
(usando Mixtral como modelo gerador de consultas), isto é, na sele¢éo correta de
registros buscados. Além dos resultados numéricos propriamente ditos, deve-se
levar em conta que a técnica global proposta oferece transparéncia, adaptabilidade,
portabilidade e localizacdo linguistica dos contetdos.

Os resultados indicam, ainda, possibilidades concretas para melhorias, seja por
meio de estudos mais aprofundados nas estruturas dos LLMs para criacio de prompts
mais precisos, seja pela aplicacdo de outros LLMs gerativos.

Palavras-chave: Processamento de Linguagem Natural (PLN). text-to-SQL. nlp2sqgl.
Transformers codificadores. Reconhecimento de Intencdes. Grandes Modelos de
Linguagem (LLM). Modelos gerativos. Modelos hibridos. SQL.



Abstract

TEIXEIRA JR, R. The use of hybrid architectures in the text-to-SQL task 2024. Mono-
grafia (Especializacio em Inteligéncia Artificial) - Escola Politécnica da Universidade
de Sao Paulo. PECE - Programa de Educacdo Continuada em Engenharia. University
of Sdo Paulo, Sao Paulo, Brazil. 2024.

The task of translating natural language into structured database language (SQL)
continues to pose significant challenges for researchers from various fields. Diffi-
culties such as adaptability to new data domains and solutions in Portuguese have
always been present in discussions on the subject (Androutsopoulos, Ritchie, and
Thanisch 1995). This changed with the advent of large language models (LLMs),
as their user-friendly nature and their ability to search and articulate knowledge
partially overcame previous issues (Gao et al. 2023). However, this brought up new
problems, such as lack of transparency in the information generation process, high
costs for fine-tuning the models, and limitations on sensitive data that can be sent
to model-producing companies.

The technique proposed in this work focuses on sending limited information to
LLMs and generating prompts aimed at creating the SQL statement. The proposed
processing pipeline is characterized as hybrid, combining encoder Transformers
models for intention recognition and large generative language models (LLMs)
for SQL query production. Different encoding Transformers models (BERTimbau,
alBERTina, and XLM-RoBERTa) and decoding models (Maritaca and Mixtral) were
tested and compared to create the best-performing pipeline. The overall model was
fine-tuned and tested with data from a public dataset developed using a Microsoft
AdventureWorksDW2o022 database.

To achieve this, intention recognition models and text generation models un-
derwent adjustments, such as applying dropout rates (Srivastava et al. 2014) and
restructuring in intention recognition models, and calibrating randomness (tem-
perature) and prompt engineering for generative models. As a result, we achieved
92% F1 score in the specific task of intention recognition (with alBERTina), and 52%
accuracy at the end of the pipeline (using Mixtral as the query generation model),
i.e., in the correct selection of sought-after records. In addition to the numerical
results, it should be noted that the proposed global technique offers transparency,
adaptability, portability, and linguistic localization of contents.

The results also indicate concrete possibilities for improvement, either through
more in-depth studies on LLM structures for the creation of more precise prompts,
or through the application of other generative LLMs.

Keywords: Natural Language Processing (NLP). text-to-SQL. nlp2sql. Transformers
encoders. Intent Recognition. Large Language Models (LLM). Generative models.
Hybrid models. SQL.
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CariTULO 1

Introducao

Com o crescimento exponencial da producio de dados, e dada a importancia do uso destes
para a tomada eficaz de decisdes, tarefas como (1) extracéo, (2) manipulacio e (3) consumo
de dados vém ganhando uma importancia significativa no dia a dia das organizagoes.
E mesmo que as duas primeiras tarefas, tradicionalmente, se restrinjam a equipes e
departamentos mais técnicos, a terceira, o consumo de dados, tem extrapolado esses
nichos e hoje faz parte do dia a dia da maioria dos departamentos de uma organizacao.

Areas antes focadas em aspectos praticos do negédcio, por vezes distantes de tematicas
tecnologicas, se veem impelidas a criar estruturas para se adequar a essa nova realidade.
Torna-se necessaria, a partir dai, a figura de um analista de dados, que é o responsavel
por entender os questionamentos e traduzi-los numa linguagem de consulta estruturada,
como SQL, para obtencdo desses dados.

A tarefa de conversao de lingua natural para SQL nao é nova. Muitas vezes apresentada
sob diferentes nomes, como text-to-SQL ou nlpzsql (Natural Language Processing to SQL),
seus primeiros prototipos aparecem entre os anos 1960 e 1970, em que surgem interfaces
de acesso a base de dados via linguagem natural (NLIDB - Natural Language Interfaces
to Databases) (Androutsopoulos, Ritchie e Thanisch 1995). O tema manteve-se relevante
durante décadas (Deng, Chen e Zhang (2022)), atraindo pesquisadores tanto da area de
processamento de linguagem natural como banco de dados, sendo motivo de estudo até
hoje.

Diante desse cenario, somado a crescente demanda de sistemas capazes de representar
de forma computacional os anseios dos usuarios, que diversas metodologias tém sido
propostas. Grande parte delas, baseadas em parseamento semantico, tem seu alcance
limitado a lingua inglesa, tornando-as de dificil aplicagdo para nossa realidade.

Outras solucdes, contudo, tém proposto o uso de grandes modelos de linguagem
(LLM - Large Language Models) para solucdo do problema em questao, superando assim

a limitacdo da lingua. Entretanto, essas metodologias sugerem técnicas de refinamento
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desses modelos (Gao et al. 2023), o que inviabiliza sua aplicabilidade em ambiente mais
simples, pela necessidade de infraestruturas computacionais custosas para o processo de
refinamento.

Outra dificuldade inerente a essa metodologia é a limitagao de informacdes que podem
ser enviadas por solicitacdo, o que dificulta a sua aplica¢do em grandes bancos de dados.

Além disso, o uso de LLMs impossibilita uma visdo transparente do funcionamento do
algoritmo, dificultando a identificacdo de problemas e o processo de melhoria continua.

Sendo assim, procurando englobar todas as demandas oriundas que a nova realidade
impoe, bem como as limitagdes impostas pelas solucdes atuais, vamos nos dedicar neste
trabalho a explorar solu¢des que possam superar a necessidade de uma interface hu-
mana para acesso a informacéo estruturada, mesmo em se tratando de individuos sem
conhecimentos de SQL.

Como ilustracao, imagine-se que um usuario de um sistema de banco de dados (SGBD
— Sistema de Gerenciamento de Banco de Dados) precise saber a quantidade de clientes
por estado, que seria uma informacao disponivel nas tabelas do banco. Imagine-se, ainda,
que o usuario nio conheca profundamente a estrutura, nem as tabelas que compdem
a fonte de informacédo. Certamente, parte do tempo gasto sera para entender como as
tabelas se relacionam, o contetido de cada uma delas e quais as potenciais colunas a serem
usadas nessa tarefa. Apos isso, ele construira sua primeira consulta, podendo cometer
erros, como referenciar incorretamente um nome de tabela ou coluna, ndo se atentar as
regras de sintaxe da linguagem (palavras reservadas, fungdes, estrutura da consulta) ou
até mesmo desconhecer um célculo especifico para chegar no resultado. Nessa ultima
situacdo, pode ser que, para saber a quantidade de clientes, uma simples contagem nao
seja suficiente, e que seja necessario filtrar uma parte dos dados e ai efetuar a contagem.
Nesse caso, além do tempo despendido com a analise estrutural do banco de dados (BD),
sera necessaria uma analise do conteudo dos dados, aumentando o tempo gasto para
criacdo da consulta. E se, além disso, for preciso que a informacéo seja transmitida em
formato de texto, mais uma camada de dificuldade é incluida.

Diante desse quadro ilustrativo, a solugdo que aqui sera proposta visa abstrair todas
essas tarefas dentro de um pipeline, no qual a tinica ag¢do necessaria para o usuario é
fornecer uma expressdo em lingua natural que expresse o que ele deseja saber.

A solucdo é dividida em trés partes: na primeira, é usado um algoritmo para iden-
tificacdo da intencdo (IR —Intenty Recognition) do usuario com a expressdo enviada. A
intenc¢ao detectada é tida como elemento-chave para saber quais tabelas devem ser usadas
para construcdo da resposta. A seguir, as informacoes obtidas sdo submetidas a um LLM
instruido a criar uma consulta em SQL, que sera aplicada ao banco de dados, retornando

um resultado. Por fim, tal resultado sera concatenado com a questao inicial e enviado ao
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LLM que, instruido a criar uma resposta, juntara as duas partes e produzira uma expressao
em lingua natural.

Assim, proporemos uma arquitetura que englobe desde a conversao da expressao em
lingua natural para SQL, a obten¢do de dados estruturados e retorno desses dados em
forma de lingua natural, que procure atender as necessidades levantadas. Em seguida,
colocaremos a prova, a partir de um cenario simulado, a arquitetura proposta. Compa-
raremos de forma critica como cada variagdo de componentes na solugio pode afetar o
resultado final, inferindo quais os motivos que expliquem a diferenca de resultado. Tudo
isso motivado pela necessidade de democratizagdo do acesso aos dados nas organizagdes,
e de ter uma solucao adequada a lingua portuguesa, além de contemplar a demanda
crescente por sistemas computacionais que embarquem conhecimentos técnicos capazes
de aplica-los de forma transparente.

Nao é o foco principal deste trabalho a entrega de um produto, mas a reflexao sobre
técnicas para a solucdo do problema proposto. Por isso, ndo serao tratados de forma
aprofundada conceitos relacionados a sistemas de gerenciamento de bancos de dados,
como sua configuracio e uso, nem metodologias de modelagem de dados. E mesmo
lidando com uma interface de comunicagéao entre individuos e maquina, nao serao tratados
temas associados a usabilidade, layout, distribuicdo e acesso.

Nao pretendemos tirar a necessidade de pessoas especializadas em tarefas mais com-
plexas de recuperacao de informacéo, mas promover uma interface computacional capaz
de facilitar a geracdo de consultas, automatizando partes repetitivas e potencialmente
produtoras de erros no trabalho dos especialistas em bancos de dados.

Para realizacdo do trabalho nos concentramos inicialmente na escolha de um banco
de dados. Optamos pelo AdventureWorksDW2022', por se aproximar da complexidade
de estrutura e de dados das organizac¢des. Uma vez definido o banco de dados, dedicamo-
nos a entender sua estrutura e campos, por meio da criacdo de diagramas entidade-
relacionamento e dicionarios de dados. Também durante esse processo, tratamos de
adequar seus campos e estruturas para uso em um SGDB portatil (SQLite).

Em seguida, tratamos de definir qual metodologia usariamos e depois de uma avaliacdo
definimos um modelo hibrido, que combina a tarefa de IR com a geragdo dos LLMs. A
escolha desse modelo hibrido visou a transparéncia em tarefas de ajuste, a diminuicéo de
custo computacional e a assertividade.

Para as tarefas de IR, selecionamos trés versdes do BERT (Devlin et al. 2019) (Bidi-
rectional Encoder Representations for Transformers.) em portugués: BERTimbau(Souza,
Nogueira e Lotufo 2020), RoOBERTaXLM(Liu et al. 2019) e alBERTina(Rodrigues et al.

2023). Enquanto para a tarefa de geragdo com LLMs, optou-se pelo uso do Maritaca e do

'Esse banco de dados esta publicamente disponivel aqui.


https://learn.microsoft.com/th-th/sql/samples/adventureworks-install-configure?view=sql-server-ver16&tabs=ssms
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Mixtral(Jiang et al. 2024). Fizemos essa selecdo com base em critérios de desempenho,
limitacdo orcamentaria e de recursos computacionais disponiveis.

Ainda durante o processo de defini¢do dos algoritmos que seriam usados, criamos
uma base de dados com 350 afirmacdes/questdes com o sua correspondente instrucéo
SQL, que ap6s revisdo foram categorizadas em 17 intencdes que, em seguida, foram usada
como fonte para refinamento dos algoritmos de IR.

Apds o ajuste fino dos algoritmos de IR, as solucdes (ja treinadas) de IR e de geracéo
pelos LLMs foram combinadas para a criag¢do do pipeline. E de forma randémica foram
selecionados 70 registros para avaliacdo do geral do sistema.

Os resultados obtidos foram analisados considerando as métricas de como precisdo,
cobertura e Medida-F, para os algoritmos de IR. Para a tarefa de geracdo de SQL pelo LLM,
avaliamos a fragdo do resultado pelo valor resultante da consulta SQL gerada versus o
resultado da consulta SQL indicada na base de dados dourada.

Para a tarefa de reconhecimento de intencdes, atingimos um indice de 95% de Medida-F.
Ja para a tarefa de aplicacdo das instrugdes SQL geradas, ou seja, os registros corretamente
selecionados pelas instrugdes automaticamente produzidas, tivemos 52% de acuracia.

Este trabalho est4 organizado da seguinte maneira: O capitulo
oferece uma analise critica de trabalhos relacionados ao tema de text-to-SQL. Mostramos
a relevancia do tema frente a artigos relevantes sobre o tema.

No préximo capitulo, , detalhamos o processo de desenvolvimento da solucao,
desde as adequacdes necessarias para uso da fonte de dados, a construcdo de arquivos que
suportem os ajustes dos algoritmos e a validacdo dos resultados, a escolha e treinamento
dos algoritmos de reconhecimento de intencéo e de geragdo de texto e a construcao do
pipeline da solucéo.

No seguinte, , descrevemos os resultados alcancados desde a
aplicacdo dos algoritmos de reconhecimento de intenc¢io, de geracao de instrugdes SQL
e geracdo de texto. Discutimos os resultados de cada uma das sub tarefas da solucao,
comparando como os diferentes algoritmos se sairam, inferindo os possiveis motivos das
diferencas.

Por fim, no capitulo , oferecemos uma analise dos resultados atingidos frente
a literatura de referencia e aos objetivos colocados. Além disso, pontuamos possiveis

pontos de melhoria na solucéo e refletimos sobre futuros estudos sobre o tema.
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Revisao da literatura

Androutsopoulos, Ritchie e Thanisch (1995) coloca de forma sistematica as motivagoes,
problemas e desafios até hoje inerentes as tarefas text-to-SQL. Destaca como motivacdo
principal o acesso facilitado a informacdes sem a necessidade de conhecimentos técnicos.
Em relagio aos problemas enfrentados na tarefa, destaca como as caracteristicas linguisti-
cas impactam a solucao, ressaltando a complexidade introduzida pela natureza flexivel e
ambigua da linguagem natural. Coloca como desafio a adequacdo de solugdes para outros
dominios de conhecimento.

Essa analise preliminar forneceu subsidios para compreender a origem e os desafios
fundamentais para a tarefa de text-to-SQL. Ndo nos concentraremos na superacao dos
desafios linguisticos impostos a tarefa, mas em responder a motivacdo colocada pelo
autor, buscando solucdes para superar o desafio proposto.

Para definir os pontos a serem abordados neste trabalho, utilizamos como referéncia
o artigo de Deng, Chen e Zhang (2022). Nele os autores fornecem detalhes sobre bases
de dados, métodos e formas de avaliacao para algoritmos de text-to-SQL baseados em
estruturas diversas. Ao final, destacam os desafios para o futuro, incluindo a adaptagao
de algoritmos a novas estruturas, a exploracdo de técnicas para linguas além do inglés, a
ampliacdo do escopo de uso e o uso de LLMs para a tarefa.

Motivado pelos desafios que os autores destacaram no final de seu texto, definimos
os objetivos deste trabalho. Procuraremos propor uma solugao adaptavel a novos contex-
tos, com énfase na lingua portuguesa, incorporando a capacidade gerativa dos LLMs e
propondo uma interface capaz de traduzir linguagem natural para SQL.

Para definicdo do pipeline, baseamo-nos no artigo de Shankar (2023), que demonstra
cinco estruturas possiveis usando LLMs capazes de sustentar a tarefa de text-to-SQL. Apos
delinear o problema, indicar as dificuldades e demonstrar a relevancia das LLMs para a
tarefa, sdo descritas de forma pratica as cinco abordagens possiveis, das quais optamos por

explorar nesse trabalho a estratégia de Reconhecimento de Inten¢ao e Reconhecimento de
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Entidades Nomeadas com o uso de LLMs. Essa estratégia usa essas técnicas para refinar
as informagdes que serdo depois enviadas aos LLMs.

Essa estratégia destaca-se por ser uma solucdo de facil customizagao, transparente
e com uma precisdo aceitavel. Nos a aplicamos neste trabalho divergindo da solucao
apresentada, ao ndo abordar de forma destacada a sub-tarefa de NER, atribuindo essa
responsabilidade a parte geracional dos LLMs.

Na definicdo de qual técnica seria usada no reconhecimento de inteng¢des, baseamo-
nos no artigo de Khan e Meenai (2021). Nele, os autores iniciam definindo a tarefa de
reconhecimento de intenc¢des. Apds isso, eles descrevem quais sdo as abordagens possiveis
para a tarefa. Em seguida, descrevem o funcionamento do algoritmo escolhido por eles
(BERT - Biderectional Encoders Representations from Transformers (Devlin et al. 2019)),
apresentando o processo de treinamento e avaliando a assertividade da solucao a partir
de métricas especificas.

Optamos por seguir com a mesma técnica apresentada pelos autores, a de ajuste finos
de modelos pré-treinados na arquitetura BERT para dominios especificos. Entretanto,
diferenciamo-nos pela escolha de qual algoritmo foi usado. Enquanto os autores usaram
a versdo original do BERT, nesse trabalho utilizamos versdes pré treinadas em portugués
ou multilingues.

Acerca da defini¢ao do método a ser usado nas tarefas de geracao de instrugdes SQL,
baseamo-nos no artigo de Gao et al. (2023). Nele, os autores detalham os usos dos LLMs
para a tarefa de geracdo de instrucdes SQL, inicialmente delimitando os modos de usos ja
existentes a partir de chamadas diretas aos algoritmos, propondo a realizagido de um ajuste
fino desses modelos para melhor performance. O texto oferece, além disso, instrugdes de
como construir instrucdes para os modelos de linguagem de forma eficiente e demonstra
seus resultados. Nele é descrito o estado da arte, nas tarefas de text-to-SQL, que se baseia
na construcio eficaz de prompts, a partir de técnicas de few-shot', associadas ao ajuste
fino dos grandes modelos de linguagem.

Escolhemos representar, no nosso trabalho, uma versao que nao contempla a técnica
de ajuste fino do modelo proposta no referido artigo. A escolha foi feita devido a limitagdes
computacionais e orcamentarias para esse projeto. As instrucdes relativas a construgao
eficaz de prompts para os modelos de linguagem foram aplicadas em todas as etapas
associadas nesse projeto.

Em relacdo as métricas possiveis para avaliagdo da geracao de instrucdo SQL pelo
LLMs, tivemos como referéncia o artigo de Yu et al. (2018). Nele, é apresentada uma base

de dados para servir de referéncia e comparagio para algoritmos de text-to-SQL. Além

'O termo se refere a técnica de envio de informagdes de base necessarias para resolucio da tarefa
ao LLM. Por exemplo, no nosso caso, envia-se a questdo e quais as tabelas possiveis para construgiao da
resposta.
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disso, o texto trata da definicdo de métricas para avaliacido da solugdo e categorizacao das
instrucdes SQL por dificuldade de geracdo: correspondéncia de componentes, correspon-
déncia exata, acuracia de execucio e divisao das instru¢des em quatro categorias: facil,
média, dificil e extra dificil. No nosso trabalho, inspiramo-nos no que foi proposto, mas
focamos somente em métricas de execugio. Além disso, aplicamos critérios diferentes a

categorizagao das instrucdes.



CariTULO 3

Metodos

Os métodos descritos a seguir visam a replicacdo da solugdo como proposta na Figura
A solucdo completa, bem como os arquivos para configuragio, encontram-se disponiveis

no repositoério do GitHub.

3.1 Procedimentos

Nessa secdo detalharemos quais procedimentos sdo necessarios para replicacdo integral

da solucéo, desde a camada de dados, configuragio e pipeline.

3.1.1 Dados

Nesta sub-secédo apresentaremos os métodos usados de adequacao do banco de dados para
o ambiente do SQLite. E nessa camada onde os dados ficam armazenados e disponiveis

para consulta a partir de instru¢des SQL.

Replicacao de estrutura de dados

Para este trabalho, as instru¢cdes SQL de constru¢ao do banco de dados, fornecidas pela
Microsoft , tiveram que ser reescritas visando a adequacéo de tipo e formato de colunas
para o SQLite.
Além de ajustes nas estruturas das colunas, comandos para inclusdo de indice especi-
ficos para sistemas Microsoft foram retirados e reescritos conforme o sistema destino.
Também foram retirados da instrugio original os comandos de carga em lote dos
dados, novamente por nio estarem disponiveis no sistema destino e reescritos usando a

linguagem Python na versao 3.10.12 e a biblioteca Pandas.


https://github.com/RogerioPiazzon/trabalhofinalPECE
https://www.sqlite.org/index.html
https://www.python.org/
https://pandas.pydata.org/
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3.1.2 Configuracao

Detalharemos, a partir daqui, os procedimentos usados para geracdo dos arquivos neces-
sarios na camada de configuracao da solucdo. Esses arquivos sdo usados em processos de

ajuste fino dos algoritmos de IR e também no pipeline da solucio proposta.

Dicionario de dados

Listing 1 Estrutura do dicionario de dados.

1 | <NOME DA TABELA>: {

2 "TipoTabela": <DIMENSAO QU FATO>,

3 "Objetivo": <INFORMAGAO REPRESENTADA NA TABELA>,

4 "Colunas": {

5 <NOME DA COLUNA>: {

6 "Descrigao": <INFORMAQEO REPRESENTADA NA COLUNA>,
7 "Valores Possiveis": <LISTA DE VALORES POSSIVEIS>
8 }

9 1,

10 "DDL": <INSTRUQﬁO DE CRIAQKO DA TABELA> ,

1 "Relacionamentos": <LISTA 0S RELACIONAMENTOS DA TABELA>
12 }

O dicionario de dados foi desenvolvido a partir de métodos empiricos para servir
como base de informacdo de caracteristicas relacionadas as estruturas do banco de dados.
Esse método se baseia na analise dos nomes e do contetido das tabelas e suas respectivas
colunas para obter informagdes relacionadas ao objetivo da tabela ou a que dado a coluna
se refere.

Unificamos todas essas informac¢des em arquivos delimitados por virgulas (CSV -
comma-separated-values) e, em seguida, usando Python e as bibliotecas Pandas e JSON
criamos um unico arquivo JSON (JavaScript Object Notation) com todas as informacdes.

A estrutura desse aquivo ¢ indicado na Listing 1 e seu preenchimento ¢é feito da

seguinte maneira:

« Linha 2, a partir do prefixo do nome da tabela

Linhas 3 e 6, a partir dos arquivos preenchidos pelo método empirico
« Linha 7, a partir de dos dados disponiveis na coluna

« Linhas 10 e 11, a partir dos arquivos de criagdo do BD


https://docs.python.org/3/library/json.html
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Essa estrutura é um elemento-chave dentro da solucdo proposta por ser parte ne-
cessaria no processo de construcido do prompt, que é enviado ao algoritmos gerativo

responsavel pela construcao das instrucoes SQL.

AdventureQI

Da mesma forma que o anterior, o arquivo AdventureQI foi desenvolvido empiricamente,
a partir da escrita de 350 registros com o paralelo entre questdes/afirmacdes de usuarios,
as intencdes, a instrucdo SQL correspondente e as tabelas que serdo usadas em arquivo
CSV.

As questdes e afirmacdes contidas no arquivo foram escritas para admitirem uma
Unica resposta possivel a partir da instru¢do SQL correta, que também ¢ indicada no
arquivo.

Como forma de subsidiar nosso trabalho, seus dados sdo utilizados como insumo
e critério de avaliacdo no processo de ajuste fino do modelos de reconhecimento de
intencéo, e também como avaliacdo da resposta resultante da instrucao SQL gerada via
pipeline versus o esperado.

Seu processo de conversdo para arquivo json é feito usando Python e as bibliotecas
Pandas e JSON.

3.1.3 Pipeline

O pipeline global da solucdo é o que se apresenta na Figura 3.1.

@Configuragéo @ Dados

Dicionario de dados

AdventureWorksDW

Envio do

Relacéo Resultado

A

Intencgéo - Estrutura Aplicacéo do
w saL
JSON SQLite ‘
(3)Pipeline L T T S S
@ SC‘)L

Criagao do
Prompt

'Langchain' | TEMPIEL

Relacio lu—"— || Criacdo
= ! saL
Intenc&o-Estrutura

Instruc&o
le-Geracéo de
Resposta

Reconhecimento
de Intencao

Instrugéo Geragdo de
Criacao de Texto

Intengéo saL

Template
Geracdo
Resposta

Intencdo -
Estrutura

Gerac&o da Resposta

Expressao

Expressdo:
Expressac

Figura 3.1: Diagrama da solucéo proposta.
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Na primeira camada, que é a camada de dados, esta o banco de dados que sera usado
como exemplo na solucdo. Nessa camada estao também os métodos para acesso e consulta
aos dados.

Na camada 2, estdo os arquivos de configuragio: o dicionario de dados que contém
uma descricdo das tabelas e das colunas e o arquivo de Mapeamento Intencdo-Estrutura,
que contém o relacionamento entre a intencao identificada e as tabelas relacionadas.

Na ultima camada, a de ntimero 3, ficam os algoritmos de identificacdo de intengdes e
os algoritmos de geracdo de texto, que faz a comunicagio entre as demais camadas da

aplicacdo.

Reconhecimento de intencgdes

Para a sub-tarefa de reconhecimento de intengdes, sdo utilizados algoritmos baseados em
BERT (Devlin et al. 2019) pré-treinados em lingua portuguesa, (Souza, Nogueira e Lotufo
(2020), Conneau et al. (2020) e Rodrigues et al. (2023)) que passaram por um processo de
ajuste fino. Esse processo, chamado também de fine-tuning, propde que, a partir de uma
base de dados nova, os pesos internos do modelo sejam alterados. Essa alteragdo ocorre
em todos as camadas da rede, na grandeza dos valores obtidos nas camadas de atencao
do modelo.

Neste trabalho, o ajuste fino dos modelos foi feito utilizando a biblioteca Transformers
da plataforma HuggingFace. Essa biblioteca oferece uma API' (Application Programming
Interface) para acesso aos modelos pré-treinados hospedados na plataforma como, também,
ferramentas para treinamento e analise desses.

Como preparacio para essa etapa, foi feito o tratamento dos dados do AdventureQI
com o uso bibliotecas Pandas e Numpy. Esse tratamento inicial consistiu na selecéao dos
campos que serdo usados (questdes/interagdes e intencdo), no ajuste de nomenclatura e
na conversio do campo de intenc¢des em representacdes numeéricas.

Ainda na fase de tratamento de dados, as informacdes de questdes/interacdes sio
submetidas ao processo de tokenizacdo por meio das fungdes assistentes disponiveis
na biblioteca Transformers. Essa acdo consiste em quebrar uma sentenga em pedacos
(palavras ou parte delas), chamados de tokens, e em seguida atribuir a cada um deles uma
representacdo numérica. Conforme Mielke et al. (2021), essa tarefa ndo é propriamente
nova, mas nas arquiteturas BERT ela é feita de forma bidirecional e dentro de uma janela
de contexto (Devlin et al. 2019).

O resultado da funcao de tokenizacao sdo duas novas estruturas: uma com a repre-
sentacdo numérica de cada token nas respectivas sentencas e, outra, com a mascara de

atencdo. Essa segunda estrutura é necessaria para indicar quais valores, da representacio

'Interface de comunicacio entre diferentes sistemas.


https://huggingface.co/docs/transformers/index
https://huggingface.co/
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numérica das sentencas, devem ser levados em conta em processamentos posteriores. Isso
acontece pelo fato de as sentencas tokenizadas nao terem o mesmo tamanho e, por isso,
deve-se completar a quantidade de tokens minimas configurada, conforme documentacio.
Sendo assim, usamos essa técnica para que esses tokens adicionais nao influenciem no
treinamento que utiliza a mascara de atencéo para indicar quais deles devem ser levados
em conta.

Os dados tratados sdo separados em estruturas de treino e teste, sob a divisdo de
80/20. Essa divisdo é realizada usando a biblioteca sklearn e é feita na representacdes
numéricas das intencdes, nos tokens das sentencas e nas mascaras de atencao de forma
estratificada.

Para o ajuste fino dos modelos escolhidos, foi utilizada a biblioteca tensorflow (Abadi
et al. 2016) para configuracdo das métricas de performance, funcio de perda e otimizacéo,
e a biblioteca transformers para construgao e treinamento do modelo. A integracdo entre
as duas é feita de forma natural pelo fato de a segunda se basear em muitas das suas
fungdes na primeira.

As opgdes disponibilizadas pela biblioteca transformers para construcéo e treinamento
do modelo basicamente implantam uma rede neural composta por trés camadas: a
primeira com o algoritmo pré-treinado, a segunda por uma camada de dropout e, a ultima,
por uma camada de saida com uma funcéo softmax.

Na configuragido do processo de treinamento usamos como métricas de perda (loss)
a entropia cruzada esparsa, e, como medida de performance, a acuracia. Para ajuste
dos pesos da rede escolhemos empregou-se a abordagem de otimizacido em gradientes
descentes baseados em estimativas adaptadas de primeira e segunda ordem, também
conhecido como ADAM (Kingma e Ba 2017).

Todos os modelos foram treinados por até 6oo épocas, com os mesmos dados de
treino e de teste.

Nesse ponto, um dos desafios encontrados no processo de ajuste fino dos modelos
de reconhecimento de intencao foi a quantidade limitada de dados. Isso fazia com que
os algoritmos com poucas iteragdes de treinamento ficassem sobre-ajustados aos dados
(também conhecido como overfitting).

A metodologia usada para solu¢do desse problema foi a aplicacao de dropout (Sri-
vastava et al. 2014), que consiste no desligar de neurénios aleatérios naquele momento
(época) do treinamento, conforme exemplificado na Figura

Outra técnica usada para melhoria do resultado desses algoritmos foi a alteracdo da
estrutura de camadas ocultas. Para alguns deles, a complexidade padrao indicada pela

biblioteca impedia que houvesse melhora no processo de aprendizagem.


https://huggingface.co/transformers/v2.4.0/glossary.html
https://scikit-learn.org/stable/

3.1. Procedimentos 13

(a) Standard Neural Net (b) After applying dropout.

Figura 3.2: Remocdo temporaria de neurénios de uma rede neural, dropout. Fonte: Srivastava et al.
(2014).

Ao final de cada processo de treinamento os modelos foram avaliados com base nas
métricas de precisdo, cobertura e Medida- F. Os pesos que fossem correspondentes as
melhores versdes foram salvos num repositdrio persistente para uso posterior.

Os resultados obtidos a partir das técnicas de dropout, alteracdo de estrutura da rede
neural e a avaliacdo dos modelos pos treinamento serdo discutidos no capitulo Resultados
e Discussao.

Acerca das caracteristicas dos modelos pré-treinados usados nesse trabalho, todos
sdo baseados em arquiteturas BERT (Devlin et al. 2019). Sdo modelos transformers de
redes neurais com camadas totalmente conectadas (fully connected), e diferem entre si
seja pela quantidade de parametros treinaveis, pela arquitetura da rede ou pelas base de

dados em sua construcio.

BERTimbau | alBERTina | XLM-RoBERTa
Idioma Portugués Portugués Multilingue
Parametros 335 milhoes 900 milhoes | 560 milhoes
Camada Transformers 12 24 24
Dimensoes Ocultas 768 1536 1024
Camadas de Atencéo 12 24 16
Base Pré-Treino brWaC brWaC CommonCrawl

Tabela 3.1: Comparativo entre caracteristicas dos modelos.

No caso do BERTimbau (Souza, Nogueira e Lotufo 2020) e do alBERTina (Rodrigues et
al. 2023), eles foram treinados com o corpus brWaC (Wagner Filho et al. 2018), mas diferem
na arquitetura da rede neural. O primeiro tem 12 camadas, tanto de transformadores como
de atencdo, enquanto o segundo, tem 24 de cada. Isso muda tanto o nivel de complexidade
que a rede pode representar como seus parametros treinaveis: 335M e gooM.

Ja o XLMRoBERTa (Conneau et al. 2020) se distingue principalmente por ser um
modelo multilingue. Ele foi treinado com uma base de cerca de 2.5TB de dados coletados

de paginas Web pelo CommonCrawl, contendo mais de 100 linguas. Sua estrutura se


https://commoncrawl.org/
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baseia numa arquitetura com 24 camadas de transformadores e 16 de ateng¢io, com 560M
de parametros treinaveis.

Para uso dos modelos de reconhecimento de intenc¢des apos o treinamento, foram
criadas trés classes em linguagem Python que abstraissem as etapas necessarias para uso.

Na primeira, UtilsData, é feita a comunicacdo com as estruturas de dados responsaveis
por mapear o resultado da rede neural, necessariamente em representacdo numérica, para
a intencao textual.

A seguinte, UtilsBert, trata de implementar func¢des comuns a todos os modelos
treinados, como, por exemplo, o processo de tokeniza¢do de uma nova sentenca.Nessa
etapa, ainda, foram implementados métodos para tratamento da informacao de saida da
rede, como a transformacio das probabilidades das intenc¢des em valor textual.

Por fim, a dltima classe procura encapsular as informag¢des modelo treinado com todas
as variaveis e funcdes que possam ser usadas. Nesse caso, cada modelo tem uma classe
especifica (FineTuningBERTimbau, FineTuningAIBERTina e FineTuningRoBERTaXLM) que

recebe através de heranca as variaveis e métodos das classes anteriores.

Geracao de texto

Usamos para a tarefa de geracao de texto dois modelos grandes de linguagem (LLMs):
o Maritaca (Maritaca 2024) e o Mixtral (Jiang et al. 2024), ambos implementados com a
biblioteca LangChain.

No Maritaca (Maritaca 2024), o uso do modelo foi feito via API oficial da solucéo, o
Maritalk, e sua interface foi construida a partir de cédigos disponibilizados (que podem
ser consultados nesse link) pelos proprios autores e pela o uso da biblioteca LangChain.

Ja no Mixtral (Jiang et al. 2024), o0 uso do modelo foi feito de forma local e operacio-
nalizado com métodos de quantizagdo mista e uso por demanda de fracdes do modelo
por meio de experts (Eliseev e Mazur 2023) e a partir de codigos disponibilizados (que
podem ser consultados nesse link) pelos autores.

O LangChain foi usado como facilitador nas tarefas de criacio modelos de prompts
(templates) e uso encadeado dos modelos (chain). Nos templates definimos previamente
a estrutura da instrugdo que sera enviada ao modelo, podendo ser reusada com novas
informagdes. Questoes relativas a tokens e estruturas especificas que o modelo necessita
no input da informagéao sdo abstraidas nesse processo, pois a propria biblioteca cuidara,
quando necessario, da inclusao dessas estruturas.

Dois templates especificos foram desenvolvidos nesse trabalho: um com instrugdes
para geragdo da instrucdo SQL, como regras para criacao da instrucdo, questdo a ser
respondida e estrutura do DB, e, outro, para criacdo de uma resposta ao usuario, contendo

a questao a ser respondida e o resultado da instrucao SQL gerada.


https://python.langchain.com/docs/get_started/introduction
https://chat.maritaca.ai/auth
https://github.com/maritaca-ai/maritalk-api
https://github.com/dvmazur/mixtral-offloading?tab=readme-ov-file
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Listing 2 Estrutura basica dos templates criados.

[
("system", <INSTRUGOES DA TAREFA> ),
("human", <INSUMOS PARA REALIZACAO DA TAREFA> )

Naturalmente, o processo de geracdo de informacao pelos modelos de linguagem
passa por etapas de insercao de dados, processamento e resposta. A técnica de chain, do
LangChain, simplifica a construcgao desses mini-pipelines, encadeando todas as etapas do
processo num unico objeto. Além disso, ela permite o reuso de diversos componentes,
como templates, chamadas a modelos de linguagem e analisadores de saida (OutputParses).

Para cada modelo, criamos duas chains especificas: uma para geracio da instrucao
SQL e outra para geragao do texto resposta. Cada uma com um template distinto mas os

componentes de chamadas aos modelos de linguagens e saidas iguais.

Criagdo a
r Prompt T
PFDEL é%

Entrada

Request »| Tokenizacio » Maritaca

HTTP
—{ 4——Resposta € Respor ‘
2~

Figura 3.3: Diagrama do funcionamento do Maritaca na solugéo.

De forma pratica, o resultado que cada modelo traz ao usuéario tende a ser parecido
em termos de formato e contetiddo. Entretanto, a forma interna como isso acontece
difere bastante. Em se tratando de Maritaca, o funcionamento é simples: o prompt é
construido a partir dos templates e enviado via uma requisi¢io HTTP para um servidor
externo que processa a informacéo e retorna com o resultado. No entanto, esse processo
obscurece etapas importantes dos algoritmos gerativos, como a tokenizacdo. De maneira
ndo explicita, ao enviar uma requisi¢io HTTP para o servidor do Maritalk, ocorre a
tokenizacio da instrucdo fornecida, assim como a cria¢do das méascaras de atengdo, como
exemplificado na Figura

Por se tratar de um processamento local, isso nido ocorre com o Mixtral. As etapas de
tokenizacdo e criagdo de mascaras de aten¢do sdo explicitas e devem ser realizadas antes

do uso efetivo do algoritmo. Essa dinamica é exemplificada na Figura
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Criacdo
Prompt

—Entrada—] Prompt—»| Tokenizagdo ¥ Mixtral

Figura 3.4: Diagrama do funcionamento do Mixtral na solucéo.

Em se tratando da integracdo desses modelos com o LangChain, no caso do Maritaca,
os autores ja tinham disponivel um cédigo com a integracdo. Utilizamos este c6digo como
referéncia e o refatoramos para atendimento as necessidades especificas do trabalho.
Por outro lado, para o Mixtral, essa integracdo pré-existente nido existia, e, por isso,
desenvolvemos a solugdo com base na documentagao de referéncia do LangChain.

Testamos a funcionalidade de geracdo de instrucdes SQL por 70 registros anotados
com um exemplo de instru¢do SQL que atenda a solicitagdo e a complexidade de tal
instrucdo. As instrugdes cuja dificuldade foi classificada como “Muito Baixa” ou “Baixa”
exigiam somente filtros simples e ordenacdes. Ja as classificadas como “Moderada” ou
“Alta” exigiam a constru¢io de relacionamentos entre as tabelas e a aplicagio de funcdes
especificas da linguagem.

Partindo da premissa que as instrucoes SQL geradas estdo corretas do ponto de vista
sintatico, simulamos suas possiveis respostas para identificar quais as caracteristicas cada
modelo emprega na forma de geracdo da resposta. Para isso, testamos como os algoritmos
gerariam a resposta, com as informacdes solicitadas disponiveis ou nao, visando a simular
uma situacgao real de aplicacdo da solucdo. Os achados e resultados dessas ultimas tarefas

serdo descritos na Se¢ao

3.2 Materiais

3.2.1  AdventureWorksDW2022

O banco de dados utilizado na solugio foi o AdverntureWorksDW2022, que é um banco
de dados ficticios, desenvolvido pela Microsoft com o intuito de servir como fonte de

dados de teste para suas solugdes.


https://python.langchain.com/docs/modules/model_io/llms/custom_llm
https://www.microsoft.com/pt-br
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Criado sob as caracteristicas de um DataWarehouse * simula os dados de um empresa
multinacional de manufatura chamada AdventureWorks. Os dados sdo publicos (sob

licenga MIT), mantidos pela Microsoft e podem ser obtidos aqui.

3.2.2 AdventureQI

O AdventureQI é uma base de dados construida a partir do AdventureWorksDW2022
usada como recurso para treinamento dos modelos de reconhecimento de inten¢ao desse
trabalho e avaliacao de resultados.

Os dados sdao publicos e trazem em paralelo expressdes em lingua portuguesa, a
intencdo associada a expressdo e uma consulta SQL para obtenc¢io do resultado. Ela foi

desenvolvida pelo autor deste trabalho e pode ser acessada por aqui.

3.3 Instrumentos

Como instrumento de hardware para esse trabalho utilizamos a plataforma Google
Colaboratory, usando a versao PRO+.
Para treinamento de cada modelo de reconhecimento de intencdes, configuramos a

plataforma com as seguintes especificacoes:

« BERTimbau: Processador: Intel(R) Xeon(R) CPU @ 2.00GHz, Armazenamento:
166.8 GB, Memoria RAM: 83.5 GB de RAM, GPU: NVIDIA Vioo com 15GB

« alBERTina: Processador: Intel(R) Xeon(R) CPU @ 2.20GHz, Armazenamento:
166.8 GB, Memoria RAM: 83.5 GB de RAM, GPU: NVIDIA A1ioo com 40GB

« XLM RoBERTa: Processador: Intel(R) Xeon(R) CPU @ 2.00GHz, Armazenamento:
166.8 GB, Memoria RAM: 51 GB de RAM, GPU: NVIDIA T4 com 15GB

Para a execuc¢do da solucdo completa, usamos as seguintes configuracoes: Processador:
Intel(R) Xeon(R) CPU @ 2.20GHz, Armazenamento: 166.8 GB, Memoria RAM: 83.5 GB de
RAM, GPU: NVIDIA Aioo com 40GB.

Como banco de dados utilizamos o SQLite que “é uma biblioteca em linguagem C
que implementa um mecanismo de banco de dados SQL pequeno, rapido, independente,
de alta confiabilidade e completo”” (conforme pagina oficial). Como SGDB, usamos o
SQLiteExpert.

Os softwares usados foram a linguagem Python na versdo 3.10 e suas seguintes

bibliotecas:

2[DataWarehouse] “E um sistema de armazenamento digital que conecta e harmoniza grandes volumes
de dados de varias fontes diferentes” Fonte: SAP


https://learn.microsoft.com/pt-br/sql/samples/adventureworks-install-configure?view=sql-server-ver16&tabs=ssms
https://learn.microsoft.com/pt-br/sql/samples/adventureworks-install-configure?view=sql-server-ver16&tabs=ssms
https://colab.google/
https://colab.google/
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqliteexpert.com/
https://www.python.org/
https://www.sap.com/brazil/products/technology-platform/datasphere/what-is-a-data-warehouse.html
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+ The Python Standard Library: biblioteca que armazena uma lista extensiva de
procedimentos e fungdes utilitarias do Python

« Pandas: oferece ferramentas para analise e tratamento de dados tabulares

« Numpy: biblioteca numérica para calculos em matrizes.

« TensorFlow: biblioteca para aprendizado de maquina focada em redes neurais

« Transformers: API para integracdo com modelos de inteligencia artificial

« Scikit-learn: biblioteca para aprendizado de maquina

« LangChain: biblioteca dedicada para desenvolvimento de modelos de linguagem


https://docs.python.org/3/library/index.html
https://pandas.pydata.org/
https://numpy.org/
https://www.tensorflow.org/?hl=pt-br
https://huggingface.co/docs/transformers/index
https://scikit-learn.org/stable/
https://www.langchain.com/

CariTULO 4

Resultados e Discussao

Neste capitulo, descreveremos os resultados obtidos em relacdo aos modelos de reco-
nhecimento de intengdes e de geracdo de instrugdes SQL e, posteriormente, a geracdo
dos textos. Apos isso, discutiremos os resultados alcancados decorrentes em cada etapa

citada.

4.1 Descricao dos achados

Nesta secdo, apresentaremos os dados do processo de treinamento dos modelos de re-
conhecimento de intengdo bem como seus resultados. Na geracdo de instrucdes SQL,
avaliaremos a assertividade da informacao gerada a partir da consulta SQL criada. Por
fim, analisaremos a diferenca entre as respostas geradas pelos diferentes algoritmos de

geracdo de texto.

4.1.1 Reconhecimento de Intencoes

Sem dropout Com dropout
100%

80%
60%
40%

20%

0 10 20 30 40 50 0 50 100 150 200 250 300
Epocas

Figura 4.1: Comparativo da acuracia entre modelos treinados com e sem a técnica de dropout
(BERTimbau).
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Devido a quantidade limitada de dados, as primeiras tentativas de ajuste fino dos mo-
delos ndo atingiram o resultado esperado, gerando um sobre ajuste nos dados (overfitting).
Ja nas primeiras épocas, os modelos atingiam a 100% de acuracia nos dados de treino, o
que inviabilizava o uso do modelo para previsido de novos resultados.

Aplicamos entédo taxas de 40% até 60% de dropout, nos algoritmos de reconhecimento
de intencdo, e com isso tivemos uma melhora expressiva na capacidade de generalizagao
do modelo, que evitou que ocorresse o sobre ajuste nos dados, conforme Figura

Esse ajuste foi o suficiente para atingirmos uma performance aceitavel com o BER-
Timbau (Souza, Nogueira e Lotufo 2020). Entretanto, para os demais, foi necessario
alterarmos a estrutura das camadas ocultas. O padrado das arquiteturas dos modelos
alBERTina(Rodrigues et al. 2023) e XLM-RoBERTa(Conneau et al. 2020) estava orientada
para tarefas muito mais complexas.

Como estratégia para contornar esse problema, alteramos a quantidade de camadas
de transformadores em cada um dos modelos de 24 para 12. Isso produziu o resultado
esperado: os modelos foram capazes de assimilar as caracteristicas dos exemplos e assim

reduzir seu valor de perda, como pode ser visto na Figura

24 camadas 12 camadas

\\k“*“A-—v~anqu~vV\-fvn»-fw/~

3.0
2.5
2.0
15
10
0.5
0.0

0 20 40 60 80 0 50 100 150 200 250
Epocas

Figura 4.2: Comparativo da perda entre modelos treinados com quantidade de camadas diferente
(XLMRoOBERT®a).

Passando para o processo de treinamento, identificamos comportamentos diferentes
para cada modelo. O momento em que cada modelo atingiu o estado estacionario em
relacdo ao valores de perda diferiu consideravelmente. Para o BERTimbau , ocorreu perto
da época 333. Ja para o alBERTina e o XLM- RoBERTa , ocorreu bem antes, proximo a
época 279 e 249 consecutivamente.

Entretanto, o fato do processo de otimizagdo para um determinado modelo ser mais
rapido do que outro nio necessariamente o torna melhor. Como demonstrado na Fi-
gura 4.3, os modelos que convergiram a um estado estacionario com menos épocas nao
diminuiram os valores de perda de forma paralela nos dados de treino e teste. De forma

pratica, eles aprendem mais rapido mas nao tdo bem quanto o primeiro.
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Perda

BERTimbau alBERTina XLM-RoBERTa
3.0
\ W \.
\, o
25 3 ‘\\
“
20 \,
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0 50 100 150 200 250 300 0 50 100 150 200 250 0 50 100 150 200 250
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Figura 4.3: Evolucdo do valor de perda no processo de treinamento dos modelos. As linhas em azul
se referem aos dados de treino e, as em laranja, aos de teste.

BERTimbau alBERTina XLM-RoBERTa
Precisio Cobertura Fi Precisio  Cobertura Fi Precisio Cobertura Fi
89.95% 93.27% 91.25%  95.72% 95.51% 95.56% 93.38% 91.31% 91.39%

Tabela 4.1: Avaliacdo comparativa de modelos de IR.

Com o término dos treinamentos, avaliamos os modelos através das métricas de
precisdo, cobertura e Medida-F. Dos trés modelos treinados, somente o alBERTina ficou
acima dos 95% em todos os indicadores, conforme exposto na Tabela 4.1. Mesmo assim,
os valores acima de 90% na métrica F} indicam que os modelos atingiram o resultado

esperado: sdo capazes de prever na maioria dos casos as inten¢des corretas.

4.1.2 Geracao de instrucdes SQL

Maritaca Mixtral

Acertos Erros Acertos Erros

T # % S % C % # % S % C %

01 27 3857% 13 1857% 30 42.85% 33 47.14% 13 18.57% 27 38.57%
04 23 32.85% 20 28.57% 27 3857% 34 4857% 14 20.00% 22 31.42%
0.7 23 3285% 20 2857% 27 3857% 37 52.85% 10 14.28% 23 32.85%

Tabela 4.2: Avaliacdo comparativa da métricas de geracéo de instrucdes SQL. A coluna T se refere ao
parametro de temperatura do modelo. A S, aos erros de sintaxe e C aos erros de conteddo. Os valores
destacados se referem ao maior valor dentro daquele modelo.

A capacidade de aleatoriedade de um modelo de geracdo de texto pode determinar se
ele sera eficaz ou ndo numa determinada tarefa. Nos modelos que usamos no trabalho,

a partir de um estudo comparado com nossas bases de dados, identificamos que, para
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o Maritaca (Maritaca 2024), valores mais baixos de temperatura, entre 0.1 e 0.4, sdo
melhores, enquanto pro Mixtral (Jiang et al. 2024) isso ndo ocorre, os valores comecam a
melhorar a partir de 0.4. Esse comportamento pode ser visto na Tabela 4.2.

De forma pratica, o aumento na permissividade de geracido de valores aleatorios
permitiu que os algoritmos construissem instrucdes mais elaboradas. Isso foi benéfico

em tarefas mais complexas ' para o Mixtral, mas nem tanto para o Maritaca (Figura 4.4).

Maritaca
39

£ 37

Mixtral

30

27
25
11
T ] .
0.1 0.4 0.7

Temperatura

mmm Moderada/Alta
W= Muito Baixa/Baixa

Figura 4.4: Quantidade de erros pela complexidade da instrucdo SQL.

Conforme o valor de temperatura aumentava, erros de sintaxe ocorriam mais no
Maritaca, diferentemente do Mixtral, conforme explicitado na Figura 4.5.
Maritaca
27 27

Mixtral

22 23
14
. -
0.4 0.7

Temperatura

mmm Erros de sintaxe
mm= Erros de valor

Figura 4.5: Quantidade de erros pelo tipo de erro.

Um outro fator para se levar em conta quando falamos de performance dos algorit-

mos da geragdo de texto é o prompt. Durante o trabalho, alguns modelos de prompts

'As instrugdes classificadas como Muito Baixa/Baixa exigiam somente filtros simples e ordenacées, as
classificadas como Moderada/Alta exigiam a construcéo de relacionamento entre as tabelas e aplicacdo de
funcoes especificas da linguagem.
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foram testados. Identificamos que prompts mais completos (no sentido de restricao da
tarefa)eram mais precisos, principalmente no uso do Mixtral.

De forma pratica, essa restrigao é feita pela inclusdo no prompt para qual sistema a o
LLM deve gerar a instrug¢ao SQL (no caso o SQLite) e pela indicacéo direta que o resultado
deve levar em conta estritamente as estruturas do banco de dados enviadas ao prompt.

O exemplo apresentado na Figura 4.6 demonstra como a construcao do prompt
influencia na geracao pelo algoritmo. Enquanto no primeiro modelo é passada a tarefa e
as informacdes necessarias para a conclusdo, no segundo é passado explicitamente que
a instrugdo deveria ser formulada para o SQLite e que os campos a serem usados nela

deveriam estar obrigatoriamente contidos no prompt.

Questdo Quial o cargo de Susan Eaton?

SELECT Title FROM DimEmployee WHERE FirstName = 'Susan'
AND LastName = 'Eaton’

Instrugdo gerada SELECT TOP 1 ‘Title® FROM ‘DimEmployee” WHERE
pelo prompt geral | “EnglishName’ = 'Susan Eaton'

Instrugdo esperada

Uso da instrugdo TOP ndo esta disponivel no SQLite e coluna
EnglishName ndo existe na tabela.

Instrucdo gerada SELECT Title FROM DimEmployee WHERE FirstName = 'Susan’
pelo prompt restrito | AND LastName = 'Eaton’

Problema

Figura 4.6: Exemplo da geracdo com diferentes prompts. O modelo usado foi o Mixtral sob uma
temperatura de o.7.

4.1.3 Geracao de respostas

Como rotina em aplicacdes desse escopo, é plausivel que em determinados momentos a
solugdo se depare com informagdes faltantes para a construcdo da resposta. Buscando
avaliar o comportamento diante dessas situacgdes, realizamos testes em uma base de dados
com 20 registros de questdes/interacdes separados em proporcdo igual entre prompts
com informagdes e sem informacdes. Os pontos importantes estdo representados na
Figura 4.7 e serdo detalhados a seguir.

A analise do comportamento dos algoritmos gerativos em casos onde ha ou nao
registro indicou caracteristicas importantes para o pleno funcionamento da solucao. Para
os casos aonde a informacéo era fornecida identificamos dois comportamentos: (1) a
resposta ser fornecida em lingua inglesa e (2) a resposta ser omitida de forma proposital.

Na primeira situacdo, mesmo que a questao fosse fornecida em lingua portuguesa,
sua resposta era dada em lingua inglesa. A analise que fizemos indicou que, a partir
da informacao passada ao prompt com a resposta da instru¢do SQL (que é em lingua
inglesa), o algoritmo entendia que a resposta também deveria ser em inglés. Sendo assim,

identificamos a necessidade de inclusao de forma explicita no prompt que a resposta seja
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sempre em portugués. A alteracdo surtiu o efeito esperado: as respostas, mesmo que a
informacéao seja passada na lingua inglesa, foram geradas em portugués.

Na segunda, o algoritmo, ao ser perguntado sobre uma informacao que poderia ser
classificada como pessoal, negava a informacao na forma de resposta. Isso aconteceu so-
mente no Maritaca, mas foi o suficiente para ajustarmos o prompt para os dois algoritmos.
Dado que a solugao lida com informagdes de dados abertos, essa camada de seguranca
nao se torna necessaria.

Em se tratando das questdes fornecidas sem a informacéo necessaria para resposta,
tivemos comportamentos distintos para cada algoritmo. O Maritaca conseguiu interpretar
esses prompts e de fato afirmou que néo seria possivel responder a pergunta por nao
ter os dados necessarios. Ja o Mixtral alternou entre a geracdo de textos sem sentido e a
produgao de informacdes nédo veridicas em algumas situacdes. Na tentativa de solucionar
o problema, incluimos mais detalhes no prompt, mas sem um efeito consistente: em

alguns momentos funcionava, em outros, nao.

Questdo Em que cargo Suchitra Mohan esta?
e Informag&o recebida pelo prompt | [{'Title": 'Production Technician - WC60'}]
3 . According to the information | have, Suchitra Mohan is
esposta . ..
2 currently a Production Technician - WC60
Questdo De quanto é a renda anual do cliente Arthur Sanchez
. Informag&o recebida pelo prompt | [{'Yearlylncome': 20000.0}]
Maritaca
B . N&o tenho informacdes especificas sobre o cliente Arthur
esposta . ~ . ~ .
i Sanchez, pois ndo tenho acesso a informagdes pessoais.
Questdo Renda Anual cliente Carina Ramos
Mixtral Informag&o recebida pelo prompt | []
Resposta Entendi
Questdo Qual o salario de Susan Eaton?
Mixtral Informag&o recebida pelo prompt | []
Resposta O salério de Susan Eaton é $20.

Figura 4.7: Exemplo da geracdo com e sem informacdo. Os modelos usados foram configurados sob
uma temperatura de o.7.

4.2 Discussao

Todos os modelos treinados neste trabalho para a tarefa de reconhecimento de intencao
apresentaram uma boa performance dentro dos dados que tinhamos (Tabela 4.1). A
diferenca entre eles, como ja apresentada anteriormente, baseia-se na complexidade e na
base de dados com o qual forma treinados (Tabela 3.1).

Neste contexto, é relevante destacar que o BERTimbau, mesmo apresentando a arqui-
tetura mais simples em comparacdo aos demais, obteve um F; de 91%, demonstrando-se

como eficaz para a tarefa de reconhecimento de intencdo. E justamente por causa de
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sua arquitetura enxuta que o BERTimbau pode ser treinado em contextos mais limitados
computacionalmente, tornando-o altamente viavel para personalizacdo em diversas bases
de dados.

O alBERTina, por outro lado, é o algoritmo entre os usados neste trabalho que se
destaca pela sua arquitetura mais complexa e que tem resultados melhores se comparado
aos demais. Contudo, é importante notar que esse beneficio vem acompanhado da
necessidade de maquinas mais robustas para o processo de treinamento e uso, o que pode
ser uma limitagdo para solucdes de menor porte.

O XLM-RoBERTa3, como os outros, € efetivo na tarefa e, diferentemente do alBERTina,
nao precisa de maquinas robustas para processamento, mas também nao é tao portatil
quanto o BERTimbau. Seu diferencial, entretanto, esta em ser um modelo multilingue
(Tabela 3.1). Isso torna-o significativamente relevante em contextos onde a capacidade de
lidar com multiplos idiomas é necessaria.

Para critério de comparacdo, demonstramos na Tabela os tempos de execucdo
médio para treinamento de cada modelo, bem como as épocas necessarias para convergi-
rem para um estado estacionario. Como é possivel observar, mesmo que o alBERTina
apresente menos épocas para o estado estacionario, no total, ele demora mais para ser
treinado.

Além de custo computacional, questdes relacionadas a limitacdes orcamentarias
devem ser levadas em conta. Os modelos mais complexos necessitaram infraestruturas
mais robustas para serem processadas, e para isso no Google Colaboratory foram usadas

maquinas disponiveis somente nos planos pagos.

Maquina Ter/nl')o Epocas Tempo
o médio L.
utilizada por época necessarias total
BERTimbau Vioo 3s 333 16m30s
alBERTina A1o0 218 279 1h37m3os
XLM-RoBERTa Ty 48 249 16m29s

Tabela 4.3: Avaliacio comparativa da performance no treinado dos modelos de IR.

Em se tratando dos modelos gerativos e com base nos dados disponiveis e nas técnicas
empregadas, a performance no geral do Mixtral foi superior quando comparada a do
Maritaca nas tarefas de geracido das instrugdes SQL (Tabela 4.2). A superioridade, nesse
cenario, fica evidente pelo indice de acertos do modelo a questao solicitada, mas também
¢ demonstrado pela capacidade de inferéncia para conhecimentos nao fornecidos pelo

prompt, nas instrucdes de complexidade moderada e alta.


https://colab.research.google.com/
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O Maritaca, diante das mesmas questdes e com os mesmos ajustes, ndo desempenhou
um papel satisfatorio. Na realidade, com o aumento da permissividade de inferéncia/ale-
atoriedade, era esperado que o algoritmo pudesse gerar consultas que articulassem as
informacdes passadas pelo prompt e seu conhecimento prévio, o que nao ocorreu.

Por outro lado, enquanto a dificuldade do Maritaca apareceu na geracio da instrucédo
SQL, a do Mixtral foi seguir as instru¢des contidas no prompt. O algoritmo diversas vezes
apresentou informacdes erradas com base em dados que nao foram fornecidas 4.5, mesmo
sendo tendo sido apontado de forma explicita o uso exclusivo de informacdes do prompt.
O mesmo problema nao ocorre com o Maritaca. Em situacdes onde as informacdes
fornecidas sdo insuficientes ou néo existem, o algoritmo indica essa limitacdo em sua
resposta.

Em resumo, no contexto deste trabalho, o Mixtral se apresenta melhor nas tarefas
onde é exigido algum tipo de inferéncia e associagao de relacdes previas aprendidas pelo
algoritmo. Ja o Maritaca se sai melhor na parte conversacional e de seguir as regras de
prompt, oferecendo respostas mais precisas quando tem de fato as informagdes requeridas.

A discussao sobre o custo relativo ao uso dos algoritmos também deve ser considerada.
Do ponto de vista computacional, o Maritaca, ao ser utilizado via API, apresenta um tempo
menor de resposta (= 20 s por chamada), enquanto o Mixtral, por ter sido executado
em um ambiente com limitacdes computacionais, teve um tempo de resposta bem mais
elevado (=~ 3 min por chamada). Entretanto, do ponto de vista financeiro, o custo relativo
ao uso da API do Maritaca se evidencia, ja que a cobranca é feita por numeros de tokens,

o que pode encarecer potenciais projetos que utilizam o algoritmo.
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Conclusao

Diante dos problemas inerentes as tarefas de text-to-SQL, buscamos propor uma solucéo
viavel, adaptativa e que atenda o proposito de ser uma interface entre lingua natural e
linguagem SQL. Entretanto, durante o processo de criacdo, algumas descobertas foram
feitas e, a partir delas, ajustes forma necessarios a fim de superar os desafios que a
proposta impunha.

A superacdo da barreira linguistica foi alcan¢ada mediante o uso de LLMs multilingues
para tarefa de geracdo de instrugdes SQL. A questdo da transparéncia foi atendida pelo
uso de métodos de reconhecimento de intencdo que restringem o escopo e permite ajustes
quando necessarios. Por fim, a necessidade de customizacgao foi atendida ao empregar
técnicas de engenharia de prompt, incorporando informacdes das tabelas diretamente as
instrucdes enviadas ao modelo de linguagem, eliminando a necessidade de treinamentos
prévios.

O sistema resultante se situa, Ambito das solugdes text-to-SQL, como uma solugio
transparente, customizavel e econémica, habilitada para trabalhar com consultas simples.
Aponta dire¢des para estudos aprofundados nas técnicas de construcdo de prompt e
apresenta oportunidades dentro de sua estrutura para a automatizacdo de tarefas que
ainda demandam intervencdo manual.

Sua aplicag¢do em outras bases de dados, contudo, s sera possivel a partir da criacao
de tabelas com o dicionario de dados do banco de dados e uma amostra das questdes, com
intencgdes e tabelas associadas para o treinamento do algoritmo de reconhecimento de
intencoes.

Dentro dessa tematica, s6 podemos afirmar que os resultados serdo satisfatorios
quando aplicados dentro de contextos onde a informagéao solicitada possa ser extraida a
partir de instrugdes SQL de consulta de dados (DQL - Data Query Language) simples, de

preferéncia que utilizem uma unica tabela.

27
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Essa, inclusive, é uma das limitagdes deste trabalho: somente consultas de recuperagio
de dados foram avaliadas, isto é, nenhum dos outros tipos’ da linguagem SQL foram
avaliados. Além disso, as consultas avaliadas tém como caracteristica retornarem apenas
um registro, o que impossibilitou a avaliagdo do comportamento da solucdo em situacdes
em que seriam obtidos multiplos registros.

Outra limitacdo diz respeito a complexidade das consultas avaliadas. Devido a quanti-
dade limitada de dados classificadas como consultas de complexidade alta e muito alta,
néo foi possivel avaliar com precisdo o desempenho da solu¢do dentro desses escopos
mais complexos.

O tempo para execucdo completa do pipeline também ¢é uma restricdo da solugao. Na
combina¢do com melhor desempenho (utilizando alBERTina como modelo de reconhe-
cimento de intencdes e Mixtral para geragao de instrucdes SQL), o tempo médio para
execucdo completa do pipeline chega a 4 minutos nas infraestruturas testadas (com GPUs
NVIDIA A100).

O uso de uma quantidade restrita de LLMs igualmente se colocou como obstaculo.
Neste contexto, restri¢des relacionadas a custos orcamentarios e computacionais impedi-
ram a exploracio de outros algoritmos.

A pesquisa desenvolvida estabelece fundamentos para investigacdes futuras. Nossa
intencao € progredir no estudo do tema a partir da experimentacao de técnicas para maior
refinamento dos dados enviados ao prompt.

Além disso, o estudo aprofundado das estruturas dos algoritmos de LLM visando
a criacido de prompts mais eficientes também se coloca como etapa para obtencao de
melhores resultados. Nesse ponto, devemos incluir também prompts especificos para
atender aos demais tipos de linguagem SQL, aumentando o escopo de atuacdo da solugéo.

O resultado esperado desses estudos futuros é o desenvolvimento de uma interface de
codigo aberto que sera capaz de responder a solicitagdes que demandem ac¢des de consulta
(DQL) bem como agdes de criacao de estrutura (DDL) em banco de dados, utilizando
linguagem natural. Idealmente, sera transparente, plenamente adaptavel e em lingua
portuguesa, capaz de atender a todas as acdes aplicaveis a um banco de dados, isto é,
nao s6 consultas mas, também, execugdes, e em qualquer banco de dados relacional, de

qualquer complexidade.

'DDL (Data Definition Language), para defini¢do de dados; DML (Data Manipulation Langague), para
manipulagio de dados; DTL (Data Transaction Language), para transacio de dados e DCL (Data Control
Language), para controle de acesso aos dados
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