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Resumo

TEIXEIRA JR, R. O uso de arquiteturas híbridas na tarefa text-to-SQL. 2024. Monogra-
fia (Especialização em Inteligência Artificial) – Escola Politécnica da Universidade
de São Paulo. PECE – Programa de Educação Continuada em Engenharia. Universi-
dade de São Paulo, São Paulo, 2024.

A tarefa de tradução da linguagem natural para linguagem estruturada de banco
de dados (SQL) continua a impor desafios significativos a pesquisadores das mais
diversas áreas. Dificuldades como a adaptabilidade a novos domínios de dados e de
soluções em língua portuguesa sempre estiveram presentes em discussões sobre o
assunto (Androutsopoulos, Ritchie e Thanisch 1995). Isso mudou com a chegada dos
grandes modelos de linguagem (LLMs), pois a facilidade de uso e sua capacidade de
busca e articulação de conhecimento tornou os problemas anteriores parcialmente
superados (Gao et al. 2023). Entretanto, isso trouxe novos problemas como a falta
de transparência no processo de geração de informação, o alto custo para ajuste fino
dos modelos e a limitação de dados sensíveis que podem ser enviados às empresas
produtoras dos modelos.

A técnica proposta neste trabalho concentra-se no envio limitado de informações
aos LLMs e na geração de instruções (prompts) direcionadas à criação da instrução
SQL. O pipeline de processamento aqui proposto é caracterizado por ser híbrido,
ao combinar modelos Transformers codificadores para reconhecimento intenção e
grandes modelos de linguagem (LLMs) gerativos para produção de consultas SQL.
Diferentes modelos Transformers de codificação (BERTimbau, alBERTina e XLM-
RoBERTa) e de decodificação (Maritaca e Mixtral) foram testados e comparados na
criação do pipeline de melhor desempenho. O modelo global foi ajustado e testado
com dados de um dataset público desenvolvido com um banco de dados da Microsoft,
AdventureWorksDW2022.

Para tanto, os modelos de reconhecimento de intenções e os de geração de texto
tiveram de passar por ajustes, tais como: aplicação de taxas de dropout (Srivastava
et al. 2014) e reajuste de estrutura nos modelos de reconhecimento de intenções, e
calibração de aleatoriedade (temperatura) e engenharia de prompt para os modelos
gerativos. Com isso, atingimos resultados de 92% de F1 na tarefa específica de
reconhecimento de intenções (com alBERTina), e 52% de acurácia ao final do pipeline
(usando Mixtral como modelo gerador de consultas), isto é, na seleção correta de
registros buscados. Além dos resultados numéricos propriamente ditos, deve-se
levar em conta que a técnica global proposta oferece transparência, adaptabilidade,
portabilidade e localização linguística dos conteúdos.

Os resultados indicam, ainda, possibilidades concretas para melhorias, seja por
meio de estudos mais aprofundados nas estruturas dos LLMs para criação de prompts
mais precisos, seja pela aplicação de outros LLMs gerativos.

Palavras-chave: Processamento de Linguagem Natural (PLN). text-to-SQL. nlp2sql.
Transformers codificadores. Reconhecimento de Intenções. Grandes Modelos de
Linguagem (LLM). Modelos gerativos. Modelos híbridos. SQL.
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Abstract

TEIXEIRA JR, R. The use of hybrid architectures in the text-to-SQL task 2024. Mono-
grafia (Especialização em Inteligência Artificial) – Escola Politécnica da Universidade
de São Paulo. PECE – Programa de Educação Continuada em Engenharia. University
of São Paulo, São Paulo, Brazil. 2024.

The task of translating natural language into structured database language (SQL)
continues to pose significant challenges for researchers from various fields. Diffi-
culties such as adaptability to new data domains and solutions in Portuguese have
always been present in discussions on the subject (Androutsopoulos, Ritchie, and
Thanisch 1995). This changed with the advent of large language models (LLMs),
as their user-friendly nature and their ability to search and articulate knowledge
partially overcame previous issues (Gao et al. 2023). However, this brought up new
problems, such as lack of transparency in the information generation process, high
costs for fine-tuning the models, and limitations on sensitive data that can be sent
to model-producing companies.

The technique proposed in this work focuses on sending limited information to
LLMs and generating prompts aimed at creating the SQL statement. The proposed
processing pipeline is characterized as hybrid, combining encoder Transformers
models for intention recognition and large generative language models (LLMs)
for SQL query production. Different encoding Transformers models (BERTimbau,
alBERTina, and XLM-RoBERTa) and decoding models (Maritaca and Mixtral) were
tested and compared to create the best-performing pipeline. The overall model was
fine-tuned and tested with data from a public dataset developed using a Microsoft
AdventureWorksDW2022 database.

To achieve this, intention recognition models and text generation models un-
derwent adjustments, such as applying dropout rates (Srivastava et al. 2014) and
restructuring in intention recognition models, and calibrating randomness (tem-
perature) and prompt engineering for generative models. As a result, we achieved
92% F1 score in the specific task of intention recognition (with alBERTina), and 52%
accuracy at the end of the pipeline (using Mixtral as the query generation model),
i.e., in the correct selection of sought-after records. In addition to the numerical
results, it should be noted that the proposed global technique offers transparency,
adaptability, portability, and linguistic localization of contents.

The results also indicate concrete possibilities for improvement, either through
more in-depth studies on LLM structures for the creation of more precise prompts,
or through the application of other generative LLMs.

Keywords: Natural Language Processing (NLP). text-to-SQL. nlp2sql. Transformers
encoders. Intent Recognition. Large Language Models (LLM). Generative models.
Hybrid models. SQL.
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Capítulo1
Introdução

Com o crescimento exponencial da produção de dados, e dada a importância do uso destes
para a tomada eficaz de decisões, tarefas como (1) extração, (2) manipulação e (3) consumo
de dados vêm ganhando uma importância significativa no dia a dia das organizações.
E mesmo que as duas primeiras tarefas, tradicionalmente, se restrinjam a equipes e
departamentos mais técnicos, a terceira, o consumo de dados, tem extrapolado esses
nichos e hoje faz parte do dia a dia da maioria dos departamentos de uma organização.

Áreas antes focadas em aspectos práticos do negócio, por vezes distantes de temáticas
tecnológicas, se veem impelidas a criar estruturas para se adequar a essa nova realidade.
Torna-se necessária, a partir daí, a figura de um analista de dados, que é o responsável
por entender os questionamentos e traduzi-los numa linguagem de consulta estruturada,
como SQL, para obtenção desses dados.

A tarefa de conversão de língua natural para SQL não é nova. Muitas vezes apresentada
sob diferentes nomes, como text-to-SQL ou nlp2sql (Natural Language Processing to SQL),
seus primeiros protótipos aparecem entre os anos 1960 e 1970, em que surgem interfaces
de acesso a base de dados via linguagem natural (NLIDB – Natural Language Interfaces
to Databases) (Androutsopoulos, Ritchie e Thanisch 1995). O tema manteve-se relevante
durante décadas (Deng, Chen e Zhang (2022)), atraindo pesquisadores tanto da área de
processamento de linguagem natural como banco de dados, sendo motivo de estudo até
hoje.

Diante desse cenário, somado à crescente demanda de sistemas capazes de representar
de forma computacional os anseios dos usuários, que diversas metodologias têm sido
propostas. Grande parte delas, baseadas em parseamento semântico, tem seu alcance
limitado à língua inglesa, tornando-as de difícil aplicação para nossa realidade.

Outras soluções, contudo, têm proposto o uso de grandes modelos de linguagem
(LLM – Large Language Models) para solução do problema em questão, superando assim
a limitação da língua. Entretanto, essas metodologias sugerem técnicas de refinamento

1



Introdução 2

desses modelos (Gao et al. 2023), o que inviabiliza sua aplicabilidade em ambiente mais
simples, pela necessidade de infraestruturas computacionais custosas para o processo de
refinamento.

Outra dificuldade inerente a essa metodologia é a limitação de informações que podem
ser enviadas por solicitação, o que dificulta a sua aplicação em grandes bancos de dados.

Além disso, o uso de LLMs impossibilita uma visão transparente do funcionamento do
algoritmo, dificultando a identificação de problemas e o processo de melhoria continua.

Sendo assim, procurando englobar todas as demandas oriundas que a nova realidade
impõe, bem como as limitações impostas pelas soluções atuais, vamos nos dedicar neste
trabalho a explorar soluções que possam superar a necessidade de uma interface hu-
mana para acesso à informação estruturada, mesmo em se tratando de indivíduos sem
conhecimentos de SQL.

Como ilustração, imagine-se que um usuário de um sistema de banco de dados (SGBD
– Sistema de Gerenciamento de Banco de Dados) precise saber a quantidade de clientes
por estado, que seria uma informação disponível nas tabelas do banco. Imagine-se, ainda,
que o usuário não conheça profundamente a estrutura, nem as tabelas que compõem
a fonte de informação. Certamente, parte do tempo gasto será para entender como as
tabelas se relacionam, o conteúdo de cada uma delas e quais as potenciais colunas a serem
usadas nessa tarefa. Após isso, ele construirá sua primeira consulta, podendo cometer
erros, como referenciar incorretamente um nome de tabela ou coluna, não se atentar às
regras de sintaxe da linguagem (palavras reservadas, funções, estrutura da consulta) ou
até mesmo desconhecer um cálculo específico para chegar no resultado. Nessa última
situação, pode ser que, para saber a quantidade de clientes, uma simples contagem não
seja suficiente, e que seja necessário filtrar uma parte dos dados e aí efetuar a contagem.
Nesse caso, além do tempo despendido com a análise estrutural do banco de dados (BD),
será necessária uma análise do conteúdo dos dados, aumentando o tempo gasto para
criação da consulta. E se, além disso, for preciso que a informação seja transmitida em
formato de texto, mais uma camada de dificuldade é incluída.

Diante desse quadro ilustrativo, a solução que aqui será proposta visa abstrair todas
essas tarefas dentro de um pipeline, no qual a única ação necessária para o usuário é
fornecer uma expressão em língua natural que expresse o que ele deseja saber.

A solução é dividida em três partes: na primeira, é usado um algoritmo para iden-
tificação da intenção (IR –Intenty Recognition) do usuário com a expressão enviada. A
intenção detectada é tida como elemento-chave para saber quais tabelas devem ser usadas
para construção da resposta. A seguir, as informações obtidas são submetidas a um LLM
instruído a criar uma consulta em SQL, que será aplicada ao banco de dados, retornando
um resultado. Por fim, tal resultado será concatenado com a questão inicial e enviado ao
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LLM que, instruído a criar uma resposta, juntará as duas partes e produzirá uma expressão
em língua natural.

Assim, proporemos uma arquitetura que englobe desde a conversão da expressão em
língua natural para SQL, a obtenção de dados estruturados e retorno desses dados em
forma de língua natural, que procure atender às necessidades levantadas. Em seguida,
colocaremos à prova, a partir de um cenário simulado, a arquitetura proposta. Compa-
raremos de forma crítica como cada variação de componentes na solução pode afetar o
resultado final, inferindo quais os motivos que expliquem a diferença de resultado. Tudo
isso motivado pela necessidade de democratização do acesso aos dados nas organizações,
e de ter uma solução adequada à língua portuguesa, além de contemplar a demanda
crescente por sistemas computacionais que embarquem conhecimentos técnicos capazes
de aplicá-los de forma transparente.

Não é o foco principal deste trabalho a entrega de um produto, mas a reflexão sobre
técnicas para a solução do problema proposto. Por isso, não serão tratados de forma
aprofundada conceitos relacionados a sistemas de gerenciamento de bancos de dados,
como sua configuração e uso, nem metodologias de modelagem de dados. E mesmo
lidando com uma interface de comunicação entre indivíduos e máquina, não serão tratados
temas associados à usabilidade, layout, distribuição e acesso.

Não pretendemos tirar a necessidade de pessoas especializadas em tarefas mais com-
plexas de recuperação de informação, mas promover uma interface computacional capaz
de facilitar a geração de consultas, automatizando partes repetitivas e potencialmente
produtoras de erros no trabalho dos especialistas em bancos de dados.

Para realização do trabalho nos concentramos inicialmente na escolha de um banco
de dados. Optamos pelo AdventureWorksDW20221, por se aproximar da complexidade
de estrutura e de dados das organizações. Uma vez definido o banco de dados, dedicamo-
nos a entender sua estrutura e campos, por meio da criação de diagramas entidade-
relacionamento e dicionários de dados. Também durante esse processo, tratamos de
adequar seus campos e estruturas para uso em um SGDB portátil (SQLite).

Em seguida, tratamos de definir qual metodologia usaríamos e depois de uma avaliação
definimos um modelo híbrido, que combina a tarefa de IR com a geração dos LLMs. A
escolha desse modelo híbrido visou a transparência em tarefas de ajuste, a diminuição de
custo computacional e a assertividade.

Para as tarefas de IR, selecionamos três versões do BERT (Devlin et al. 2019) (Bidi-
rectional Encoder Representations for Transformers.) em português: BERTimbau(Souza,
Nogueira e Lotufo 2020), RoBERTaXLM(Liu et al. 2019) e alBERTina(Rodrigues et al.
2023). Enquanto para a tarefa de geração com LLMs, optou-se pelo uso do Maritaca e do

1Esse banco de dados está publicamente disponível aqui.

https://learn.microsoft.com/th-th/sql/samples/adventureworks-install-configure?view=sql-server-ver16&tabs=ssms
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Mixtral(Jiang et al. 2024). Fizemos essa seleção com base em critérios de desempenho,
limitação orçamentária e de recursos computacionais disponíveis.

Ainda durante o processo de definição dos algoritmos que seriam usados, criamos
uma base de dados com 350 afirmações/questões com o sua correspondente instrução
SQL, que após revisão foram categorizadas em 17 intenções que, em seguida, foram usada
como fonte para refinamento dos algoritmos de IR.

Após o ajuste fino dos algoritmos de IR, as soluções (já treinadas) de IR e de geração
pelos LLMs foram combinadas para a criação do pipeline. E de forma randômica foram
selecionados 70 registros para avaliação do geral do sistema.

Os resultados obtidos foram analisados considerando as métricas de como precisão,
cobertura e Medida-F, para os algoritmos de IR. Para a tarefa de geração de SQL pelo LLM,
avaliamos a fração do resultado pelo valor resultante da consulta SQL gerada versus o
resultado da consulta SQL indicada na base de dados dourada.

Para a tarefa de reconhecimento de intenções, atingimos um índice de 95% deMedida-F.
Já para a tarefa de aplicação das instruções SQL geradas, ou seja, os registros corretamente
selecionados pelas instruções automaticamente produzidas, tivemos 52% de acurácia.

Este trabalho está organizado da seguinte maneira: O capítulo Revisão da literatura
oferece uma análise critica de trabalhos relacionados ao tema de text-to-SQL. Mostramos
a relevância do tema frente a artigos relevantes sobre o tema.

No próximo capítulo, Métodos, detalhamos o processo de desenvolvimento da solução,
desde as adequações necessárias para uso da fonte de dados, a construção de arquivos que
suportem os ajustes dos algoritmos e a validação dos resultados, a escolha e treinamento
dos algoritmos de reconhecimento de intenção e de geração de texto e a construção do
pipeline da solução.

No seguinte, Resultados e Discussão, descrevemos os resultados alcançados desde a
aplicação dos algoritmos de reconhecimento de intenção, de geração de instruções SQL
e geração de texto. Discutimos os resultados de cada uma das sub tarefas da solução,
comparando como os diferentes algoritmos se saíram, inferindo os possíveis motivos das
diferenças.

Por fim, no capítulo Conclusão, oferecemos uma analise dos resultados atingidos frente
à literatura de referencia e aos objetivos colocados. Além disso, pontuamos possíveis
pontos de melhoria na solução e refletimos sobre futuros estudos sobre o tema.



Capítulo2
Revisão da literatura

Androutsopoulos, Ritchie e Thanisch (1995) coloca de forma sistemática as motivações,
problemas e desafios até hoje inerentes as tarefas text-to-SQL. Destaca como motivação
principal o acesso facilitado a informações sem a necessidade de conhecimentos técnicos.
Em relação aos problemas enfrentados na tarefa, destaca como as características linguísti-
cas impactam a solução, ressaltando a complexidade introduzida pela natureza flexível e
ambígua da linguagem natural. Coloca como desafio a adequação de soluções para outros
domínios de conhecimento.

Essa análise preliminar forneceu subsídios para compreender a origem e os desafios
fundamentais para a tarefa de text-to-SQL. Não nos concentraremos na superação dos
desafios linguísticos impostos à tarefa, mas em responder a motivação colocada pelo
autor, buscando soluções para superar o desafio proposto.

Para definir os pontos a serem abordados neste trabalho, utilizamos como referência
o artigo de Deng, Chen e Zhang (2022). Nele os autores fornecem detalhes sobre bases
de dados, métodos e formas de avaliação para algoritmos de text-to-SQL baseados em
estruturas diversas. Ao final, destacam os desafios para o futuro, incluindo a adaptação
de algoritmos a novas estruturas, a exploração de técnicas para línguas além do inglês, a
ampliação do escopo de uso e o uso de LLMs para a tarefa.

Motivado pelos desafios que os autores destacaram no final de seu texto, definimos
os objetivos deste trabalho. Procuraremos propor uma solução adaptável a novos contex-
tos, com ênfase na língua portuguesa, incorporando a capacidade gerativa dos LLMs e
propondo uma interface capaz de traduzir linguagem natural para SQL.

Para definição do pipeline, baseamo-nos no artigo de Shankar (2023), que demonstra
cinco estruturas possíveis usando LLMs capazes de sustentar a tarefa de text-to-SQL. Após
delinear o problema, indicar as dificuldades e demonstrar a relevância das LLMs para a
tarefa, são descritas de forma prática as cinco abordagens possíveis, das quais optamos por
explorar nesse trabalho a estratégia de Reconhecimento de Intenção e Reconhecimento de

5



Revisão da literatura 6

Entidades Nomeadas com o uso de LLMs. Essa estratégia usa essas técnicas para refinar
as informações que serão depois enviadas aos LLMs.

Essa estratégia destaca-se por ser uma solução de fácil customização, transparente
e com uma precisão aceitável. Nós a aplicamos neste trabalho divergindo da solução
apresentada, ao não abordar de forma destacada a sub-tarefa de NER, atribuindo essa
responsabilidade à parte geracional dos LLMs.

Na definição de qual técnica seria usada no reconhecimento de intenções, baseamo-
nos no artigo de Khan e Meenai (2021). Nele, os autores iniciam definindo a tarefa de
reconhecimento de intenções. Após isso, eles descrevem quais são as abordagens possíveis
para a tarefa. Em seguida, descrevem o funcionamento do algoritmo escolhido por eles
(BERT – Biderectional Encoders Representations from Transformers (Devlin et al. 2019)),
apresentando o processo de treinamento e avaliando a assertividade da solução a partir
de métricas especificas.

Optamos por seguir com a mesma técnica apresentada pelos autores, a de ajuste finos
de modelos pré-treinados na arquitetura BERT para domínios específicos. Entretanto,
diferenciamo-nos pela escolha de qual algoritmo foi usado. Enquanto os autores usaram
a versão original do BERT, nesse trabalho utilizamos versões pré treinadas em português
ou multilíngues.

Acerca da definição do método a ser usado nas tarefas de geração de instruções SQL,
baseamo-nos no artigo de Gao et al. (2023). Nele, os autores detalham os usos dos LLMs
para a tarefa de geração de instruções SQL, inicialmente delimitando os modos de usos já
existentes a partir de chamadas diretas aos algoritmos, propondo a realização de um ajuste
fino desses modelos para melhor performance. O texto oferece, além disso, instruções de
como construir instruções para os modelos de linguagem de forma eficiente e demonstra
seus resultados. Nele é descrito o estado da arte, nas tarefas de text-to-SQL, que se baseia
na construção eficaz de prompts, a partir de técnicas de few-shot 1, associadas ao ajuste
fino dos grandes modelos de linguagem.

Escolhemos representar, no nosso trabalho, uma versão que não contempla a técnica
de ajuste fino domodelo proposta no referido artigo. A escolha foi feita devido a limitações
computacionais e orçamentárias para esse projeto. As instruções relativas a construção
eficaz de prompts para os modelos de linguagem foram aplicadas em todas as etapas
associadas nesse projeto.

Em relação às métricas possíveis para avaliação da geração de instrução SQL pelo
LLMs, tivemos como referência o artigo de Yu et al. (2018). Nele, é apresentada uma base
de dados para servir de referência e comparação para algoritmos de text-to-SQL. Além

1O termo se refere à técnica de envio de informações de base necessárias para resolução da tarefa
ao LLM. Por exemplo, no nosso caso, envia-se a questão e quais as tabelas possíveis para construção da
resposta.
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disso, o texto trata da definição de métricas para avaliação da solução e categorização das
instruções SQL por dificuldade de geração: correspondência de componentes, correspon-
dência exata, acurácia de execução e divisão das instruções em quatro categorias: fácil,
média, difícil e extra difícil. No nosso trabalho, inspiramo-nos no que foi proposto, mas
focamos somente em métricas de execução. Além disso, aplicamos critérios diferentes a
categorização das instruções.



Capítulo3
Métodos

Os métodos descritos a seguir visam à replicação da solução como proposta na Figura 3.1.
A solução completa, bem como os arquivos para configuração, encontram-se disponíveis
no repositório do GitHub.

3.1 Procedimentos

Nessa seção detalharemos quais procedimentos são necessários para replicação integral
da solução, desde a camada de dados, configuração e pipeline.

3.1.1 Dados

Nesta sub-seção apresentaremos os métodos usados de adequação do banco de dados para
o ambiente do SQLite. É nessa camada onde os dados ficam armazenados e disponíveis
para consulta a partir de instruções SQL.

Replicação de estrutura de dados

Para este trabalho, as instruções SQL de construção do banco de dados, fornecidas pela
Microsoft , tiveram que ser reescritas visando a adequação de tipo e formato de colunas
para o SQLite.

Além de ajustes nas estruturas das colunas, comandos para inclusão de índice especí-
ficos para sistemas Microsoft foram retirados e reescritos conforme o sistema destino.

Também foram retirados da instrução original os comandos de carga em lote dos
dados, novamente por não estarem disponíveis no sistema destino e reescritos usando a
linguagem Python na versão 3.10.12 e a biblioteca Pandas.

8

https://github.com/RogerioPiazzon/trabalhofinalPECE
https://www.sqlite.org/index.html
https://www.python.org/
https://pandas.pydata.org/
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3.1.2 Configuração

Detalharemos, a partir daqui, os procedimentos usados para geração dos arquivos neces-
sários na camada de configuração da solução. Esses arquivos são usados em processos de
ajuste fino dos algoritmos de IR e também no pipeline da solução proposta.

Dicionário de dados

Listing 1 Estrutura do dicionário de dados.

1 <NOME DA TABELA>: {
2 "TipoTabela": <DIMENSÃO OU FATO>,
3 "Objetivo": <INFORMAÇÃO REPRESENTADA NA TABELA>,
4 "Colunas": {
5 <NOME DA COLUNA>: {
6 "Descrição": <INFORMAÇÃO REPRESENTADA NA COLUNA>,
7 "Valores Possíveis": <LISTA DE VALORES POSSÍVEIS>
8 }
9 },
10 "DDL": <INSTRUÇÃO DE CRIAÇÃO DA TABELA> ,
11 "Relacionamentos": <LISTA OS RELACIONAMENTOS DA TABELA>
12 }

O dicionário de dados foi desenvolvido a partir de métodos empíricos para servir
como base de informação de características relacionadas as estruturas do banco de dados.
Esse método se baseia na analise dos nomes e do conteúdo das tabelas e suas respectivas
colunas para obter informações relacionadas ao objetivo da tabela ou a que dado a coluna
se refere.

Unificamos todas essas informações em arquivos delimitados por vírgulas (CSV –
comma-separated-values) e, em seguida, usando Python e as bibliotecas Pandas e JSON
criamos um único arquivo JSON (JavaScript Object Notation) com todas as informações.

A estrutura desse aquivo é indicado na Listing 1 e seu preenchimento é feito da
seguinte maneira:

• Linha 2, a partir do prefixo do nome da tabela
• Linhas 3 e 6, a partir dos arquivos preenchidos pelo método empírico
• Linha 7, a partir de dos dados disponíveis na coluna
• Linhas 10 e 11, a partir dos arquivos de criação do BD

https://docs.python.org/3/library/json.html
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Essa estrutura é um elemento-chave dentro da solução proposta por ser parte ne-
cessária no processo de construção do prompt, que é enviado ao algoritmos gerativo
responsável pela construção das instruções SQL.

AdventureQI

Da mesma forma que o anterior, o arquivo AdventureQI foi desenvolvido empiricamente,
a partir da escrita de 350 registros com o paralelo entre questões/afirmações de usuários,
as intenções, a instrução SQL correspondente e as tabelas que serão usadas em arquivo
CSV.

As questões e afirmações contidas no arquivo foram escritas para admitirem uma
única resposta possível a partir da instrução SQL correta, que também é indicada no
arquivo.

Como forma de subsidiar nosso trabalho, seus dados são utilizados como insumo
e critério de avaliação no processo de ajuste fino do modelos de reconhecimento de
intenção, e também como avaliação da resposta resultante da instrução SQL gerada via
pipeline versus o esperado.

Seu processo de conversão para arquivo json é feito usando Python e as bibliotecas
Pandas e JSON.

3.1.3 Pipeline

O pipeline global da solução é o que se apresenta na Figura 3.1.

Figura 3.1: Diagrama da solução proposta.
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Na primeira camada, que é a camada de dados, está o banco de dados que será usado
como exemplo na solução. Nessa camada estão também os métodos para acesso e consulta
aos dados.

Na camada 2, estão os arquivos de configuração: o dicionário de dados que contém
uma descrição das tabelas e das colunas e o arquivo de Mapeamento Intenção-Estrutura,
que contém o relacionamento entre a intenção identificada e as tabelas relacionadas.

Na última camada, a de número 3, ficam os algoritmos de identificação de intenções e
os algoritmos de geração de texto, que faz a comunicação entre as demais camadas da
aplicação.

Reconhecimento de intenções

Para a sub-tarefa de reconhecimento de intenções, são utilizados algoritmos baseados em
BERT (Devlin et al. 2019) pré-treinados em língua portuguesa, (Souza, Nogueira e Lotufo
(2020), Conneau et al. (2020) e Rodrigues et al. (2023)) que passaram por um processo de
ajuste fino. Esse processo, chamado também de fine-tuning, propõe que, a partir de uma
base de dados nova, os pesos internos do modelo sejam alterados. Essa alteração ocorre
em todos as camadas da rede, na grandeza dos valores obtidos nas camadas de atenção
do modelo.

Neste trabalho, o ajuste fino dos modelos foi feito utilizando a biblioteca Transformers
da plataforma HuggingFace. Essa biblioteca oferece uma API1 (Application Programming
Interface) para acesso aosmodelos pré-treinados hospedados na plataforma como, também,
ferramentas para treinamento e análise desses.

Como preparação para essa etapa, foi feito o tratamento dos dados do AdventureQI
com o uso bibliotecas Pandas e Numpy. Esse tratamento inicial consistiu na seleção dos
campos que serão usados (questões/interações e intenção), no ajuste de nomenclatura e
na conversão do campo de intenções em representações numéricas.

Ainda na fase de tratamento de dados, as informações de questões/interações são
submetidas ao processo de tokenização por meio das funções assistentes disponíveis
na biblioteca Transformers. Essa ação consiste em quebrar uma sentença em pedaços
(palavras ou parte delas), chamados de tokens, e em seguida atribuir a cada um deles uma
representação numérica. Conforme Mielke et al. (2021), essa tarefa não é propriamente
nova, mas nas arquiteturas BERT ela é feita de forma bidirecional e dentro de uma janela
de contexto (Devlin et al. 2019).

O resultado da função de tokenização são duas novas estruturas: uma com a repre-
sentação numérica de cada token nas respectivas sentenças e, outra, com a máscara de
atenção. Essa segunda estrutura é necessária para indicar quais valores, da representação

1Interface de comunicação entre diferentes sistemas.

https://huggingface.co/docs/transformers/index
https://huggingface.co/
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numérica das sentenças, devem ser levados em conta em processamentos posteriores. Isso
acontece pelo fato de as sentenças tokenizadas não terem o mesmo tamanho e, por isso,
deve-se completar a quantidade de tokens minímas configurada, conforme documentação.
Sendo assim, usamos essa técnica para que esses tokens adicionais não influenciem no
treinamento que utiliza a mascara de atenção para indicar quais deles devem ser levados
em conta.

Os dados tratados são separados em estruturas de treino e teste, sob a divisão de
80/20. Essa divisão é realizada usando a biblioteca sklearn e é feita na representações
numéricas das intenções, nos tokens das sentenças e nas máscaras de atenção de forma
estratificada.

Para o ajuste fino dos modelos escolhidos, foi utilizada a biblioteca tensorflow (Abadi
et al. 2016) para configuração das métricas de performance, função de perda e otimização,
e a biblioteca transformers para construção e treinamento do modelo. A integração entre
as duas é feita de forma natural pelo fato de a segunda se basear em muitas das suas
funções na primeira.

As opções disponibilizadas pela biblioteca transformers para construção e treinamento
do modelo basicamente implantam uma rede neural composta por três camadas: a
primeira com o algoritmo pré-treinado, a segunda por uma camada de dropout e, a última,
por uma camada de saída com uma função softmax.

Na configuração do processo de treinamento usamos como métricas de perda (loss)
a entropia cruzada esparsa, e, como medida de performance, a acurácia. Para ajuste
dos pesos da rede escolhemos empregou-se a abordagem de otimização em gradientes
descentes baseados em estimativas adaptadas de primeira e segunda ordem, também
conhecido como ADAM (Kingma e Ba 2017).

Todos os modelos foram treinados por até 600 épocas, com os mesmos dados de
treino e de teste.

Nesse ponto, um dos desafios encontrados no processo de ajuste fino dos modelos
de reconhecimento de intenção foi a quantidade limitada de dados. Isso fazia com que
os algoritmos com poucas iterações de treinamento ficassem sobre-ajustados aos dados
(também conhecido como overfitting).

A metodologia usada para solução desse problema foi a aplicação de dropout (Sri-
vastava et al. 2014), que consiste no desligar de neurônios aleatórios naquele momento
(época) do treinamento, conforme exemplificado na Figura 3.2.

Outra técnica usada para melhoria do resultado desses algoritmos foi a alteração da
estrutura de camadas ocultas. Para alguns deles, a complexidade padrão indicada pela
biblioteca impedia que houvesse melhora no processo de aprendizagem.

https://huggingface.co/transformers/v2.4.0/glossary.html
https://scikit-learn.org/stable/
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Figura 3.2: Remoção temporária de neurônios de uma rede neural, dropout. Fonte: Srivastava et al.
(2014).

Ao final de cada processo de treinamento os modelos foram avaliados com base nas
métricas de precisão, cobertura e Medida- F. Os pesos que fossem correspondentes às
melhores versões foram salvos num repositório persistente para uso posterior.

Os resultados obtidos a partir das técnicas de dropout, alteração de estrutura da rede
neural e a avaliação dos modelos pós treinamento serão discutidos no capítulo Resultados
e Discussão.

Acerca das características dos modelos pré-treinados usados nesse trabalho, todos
são baseados em arquiteturas BERT (Devlin et al. 2019). São modelos transformers de
redes neurais com camadas totalmente conectadas (fully connected), e diferem entre si
seja pela quantidade de parâmetros treináveis, pela arquitetura da rede ou pelas base de
dados em sua construção.

BERTimbau alBERTina XLM-RoBERTa
Idioma Português Português Multilíngue
Parâmetros 335 milhões 900 milhões 560 milhões
Camada Transformers 12 24 24
Dimensões Ocultas 768 1536 1024
Camadas de Atenção 12 24 16
Base Pré-Treino brWaC brWaC CommonCrawl

Tabela 3.1: Comparativo entre características dos modelos.

No caso do BERTimbau (Souza, Nogueira e Lotufo 2020) e do alBERTina (Rodrigues et
al. 2023), eles foram treinados com o corpus brWaC (Wagner Filho et al. 2018), mas diferem
na arquitetura da rede neural. O primeiro tem 12 camadas, tanto de transformadores como
de atenção, enquanto o segundo, tem 24 de cada. Isso muda tanto o nível de complexidade
que a rede pode representar como seus parâmetros treináveis: 335M e 900M.

Já o XLMRoBERTa (Conneau et al. 2020) se distingue principalmente por ser um
modelo multilíngue. Ele foi treinado com uma base de cerca de 2.5TB de dados coletados
de paginas Web pelo CommonCrawl, contendo mais de 100 línguas. Sua estrutura se

https://commoncrawl.org/
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baseia numa arquitetura com 24 camadas de transformadores e 16 de atenção, com 560M
de parâmetros treináveis.

Para uso dos modelos de reconhecimento de intenções após o treinamento, foram
criadas três classes em linguagem Python que abstraíssem as etapas necessárias para uso.

Na primeira, UtilsData, é feita a comunicação com as estruturas de dados responsáveis
por mapear o resultado da rede neural, necessariamente em representação numérica, para
a intenção textual.

A seguinte, UtilsBert, trata de implementar funções comuns a todos os modelos
treinados, como, por exemplo, o processo de tokenização de uma nova sentença.Nessa
etapa, ainda, foram implementados métodos para tratamento da informação de saída da
rede, como a transformação das probabilidades das intenções em valor textual.

Por fim, a última classe procura encapsular as informações modelo treinado com todas
as variáveis e funções que possam ser usadas. Nesse caso, cada modelo tem uma classe
especifica (FineTuningBERTimbau, FineTuningAlBERTina e FineTuningRoBERTaXLM ) que
recebe através de herança as variáveis e métodos das classes anteriores.

Geração de texto

Usamos para a tarefa de geração de texto dois modelos grandes de linguagem (LLMs):
o Maritaca (Maritaca 2024) e o Mixtral (Jiang et al. 2024), ambos implementados com a
biblioteca LangChain.

No Maritaca (Maritaca 2024), o uso do modelo foi feito via API oficial da solução, o
Maritalk, e sua interface foi construída a partir de códigos disponibilizados (que podem
ser consultados nesse link) pelos próprios autores e pela o uso da biblioteca LangChain.

Já no Mixtral (Jiang et al. 2024), o uso do modelo foi feito de forma local e operacio-
nalizado com métodos de quantização mista e uso por demanda de frações do modelo
por meio de experts (Eliseev e Mazur 2023) e a partir de códigos disponibilizados (que
podem ser consultados nesse link) pelos autores.

O LangChain foi usado como facilitador nas tarefas de criação modelos de prompts
(templates) e uso encadeado dos modelos (chain). Nos templates definimos previamente
a estrutura da instrução que será enviada ao modelo, podendo ser reusada com novas
informações. Questões relativas a tokens e estruturas especificas que o modelo necessita
no input da informação são abstraídas nesse processo, pois a própria biblioteca cuidará,
quando necessário, da inclusão dessas estruturas.

Dois templates específicos foram desenvolvidos nesse trabalho: um com instruções
para geração da instrução SQL, como regras para criação da instrução, questão a ser
respondida e estrutura do DB, e, outro, para criação de uma resposta ao usuário, contendo
a questão a ser respondida e o resultado da instrução SQL gerada.

https://python.langchain.com/docs/get_started/introduction
https://chat.maritaca.ai/auth
https://github.com/maritaca-ai/maritalk-api
https://github.com/dvmazur/mixtral-offloading?tab=readme-ov-file


3.1. Procedimentos 15

Listing 2 Estrutura básica dos templates criados.

[
("system", <INSTRUÇOES DA TAREFA> ),
("human", <INSUMOS PARA REALIZACAO DA TAREFA> )

]

Naturalmente, o processo de geração de informação pelos modelos de linguagem
passa por etapas de inserção de dados, processamento e resposta. A técnica de chain, do
LangChain, simplifica a construção desses mini-pipelines, encadeando todas as etapas do
processo num único objeto. Além disso, ela permite o reuso de diversos componentes,
como templates, chamadas a modelos de linguagem e analisadores de saída (OutputParses).

Para cada modelo, criamos duas chains especificas: uma para geração da instrução
SQL e outra para geração do texto resposta. Cada uma com um template distinto mas os
componentes de chamadas aos modelos de linguagens e saídas iguais.

Figura 3.3: Diagrama do funcionamento do Maritaca na solução.

De forma prática, o resultado que cada modelo traz ao usuário tende a ser parecido
em termos de formato e conteúdo. Entretanto, a forma interna como isso acontece
difere bastante. Em se tratando de Maritaca, o funcionamento é simples: o prompt é
construído a partir dos templates e enviado via uma requisição HTTP para um servidor
externo que processa a informação e retorna com o resultado. No entanto, esse processo
obscurece etapas importantes dos algoritmos gerativos, como a tokenização. De maneira
não explícita, ao enviar uma requisição HTTP para o servidor do Maritalk, ocorre a
tokenização da instrução fornecida, assim como a criação das máscaras de atenção, como
exemplificado na Figura 3.3.

Por se tratar de um processamento local, isso não ocorre com o Mixtral. As etapas de
tokenização e criação de máscaras de atenção são explícitas e devem ser realizadas antes
do uso efetivo do algoritmo. Essa dinâmica é exemplificada na Figura 3.4.
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Figura 3.4: Diagrama do funcionamento do Mixtral na solução.

Em se tratando da integração desses modelos com o LangChain, no caso do Maritaca,
os autores já tinham disponível um código com a integração. Utilizamos este código como
referência e o refatoramos para atendimento às necessidades específicas do trabalho.
Por outro lado, para o Mixtral, essa integração pré-existente não existia, e, por isso,
desenvolvemos a solução com base na documentação de referência do LangChain.

Testamos a funcionalidade de geração de instruções SQL por 70 registros anotados
com um exemplo de instrução SQL que atenda à solicitação e à complexidade de tal
instrução. As instruções cuja dificuldade foi classificada como “Muito Baixa” ou “Baixa”
exigiam somente filtros simples e ordenações. Já as classificadas como “Moderada” ou
“Alta” exigiam a construção de relacionamentos entre as tabelas e a aplicação de funções
específicas da linguagem.

Partindo da premissa que as instruções SQL geradas estão corretas do ponto de vista
sintático, simulamos suas possíveis respostas para identificar quais as características cada
modelo emprega na forma de geração da resposta. Para isso, testamos como os algoritmos
gerariam a resposta, com as informações solicitadas disponíveis ou não, visando a simular
uma situação real de aplicação da solução. Os achados e resultados dessas últimas tarefas
serão descritos na Seção Resultados e Discussão.

3.2 Materiais

3.2.1 AdventureWorksDW2022

O banco de dados utilizado na solução foi o AdverntureWorksDW2022, que é um banco
de dados fictícios, desenvolvido pela Microsoft com o intuito de servir como fonte de
dados de teste para suas soluções.

https://python.langchain.com/docs/modules/model_io/llms/custom_llm
https://www.microsoft.com/pt-br
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Criado sob as características de um DataWarehouse 2 simula os dados de um empresa
multinacional de manufatura chamada AdventureWorks. Os dados são públicos (sob
licença MIT), mantidos pela Microsoft e podem ser obtidos aqui.

3.2.2 AdventureQI

O AdventureQI é uma base de dados construída a partir do AdventureWorksDW2022
usada como recurso para treinamento dos modelos de reconhecimento de intenção desse
trabalho e avaliação de resultados.

Os dados são públicos e trazem em paralelo expressões em língua portuguesa, a
intenção associada à expressão e uma consulta SQL para obtenção do resultado. Ela foi
desenvolvida pelo autor deste trabalho e pode ser acessada por aqui.

3.3 Instrumentos

Como instrumento de hardware para esse trabalho utilizamos a plataforma Google
Colaboratory, usando a versão PRO+.

Para treinamento de cada modelo de reconhecimento de intenções, configuramos a
plataforma com as seguintes especificações:

• BERTimbau: Processador: Intel(R) Xeon(R) CPU @ 2.00GHz, Armazenamento:
166.8 GB, Memória RAM: 83.5 GB de RAM, GPU: NVIDIA V100 com 15GB

• alBERTina: Processador: Intel(R) Xeon(R) CPU @ 2.20GHz, Armazenamento:
166.8 GB, Memória RAM: 83.5 GB de RAM, GPU: NVIDIA A100 com 40GB

• XLMRoBERTa: Processador: Intel(R) Xeon(R) CPU@ 2.00GHz, Armazenamento:
166.8 GB, Memória RAM: 51 GB de RAM, GPU: NVIDIA T4 com 15GB

Para a execução da solução completa, usamos as seguintes configurações: Processador:
Intel(R) Xeon(R) CPU @ 2.20GHz, Armazenamento: 166.8 GB, Memória RAM: 83.5 GB de
RAM, GPU: NVIDIA A100 com 40GB.

Como banco de dados utilizamos o SQLite que “é uma biblioteca em linguagem C
que implementa um mecanismo de banco de dados SQL pequeno, rápido, independente,
de alta confiabilidade e completo´´ (conforme página oficial). Como SGDB, usamos o
SQLiteExpert.

Os softwares usados foram a linguagem Python na versão 3.10 e suas seguintes
bibliotecas:

2[DataWarehouse] “É um sistema de armazenamento digital que conecta e harmoniza grandes volumes
de dados de várias fontes diferentes“ Fonte: SAP

https://learn.microsoft.com/pt-br/sql/samples/adventureworks-install-configure?view=sql-server-ver16&tabs=ssms
https://learn.microsoft.com/pt-br/sql/samples/adventureworks-install-configure?view=sql-server-ver16&tabs=ssms
https://colab.google/
https://colab.google/
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqliteexpert.com/
https://www.python.org/
https://www.sap.com/brazil/products/technology-platform/datasphere/what-is-a-data-warehouse.html


3.3. Instrumentos 18

• The Python Standard Library: biblioteca que armazena uma lista extensiva de
procedimentos e funções utilitárias do Python

• Pandas: oferece ferramentas para analise e tratamento de dados tabulares
• Numpy: biblioteca numérica para cálculos em matrizes.
• TensorFlow: biblioteca para aprendizado de máquina focada em redes neurais
• Transformers: API para integração com modelos de inteligencia artificial
• Scikit-learn: biblioteca para aprendizado de máquina
• LangChain: biblioteca dedicada para desenvolvimento de modelos de linguagem

https://docs.python.org/3/library/index.html
https://pandas.pydata.org/
https://numpy.org/
https://www.tensorflow.org/?hl=pt-br
https://huggingface.co/docs/transformers/index
https://scikit-learn.org/stable/
https://www.langchain.com/


Capítulo4
Resultados e Discussão

Neste capítulo, descreveremos os resultados obtidos em relação aos modelos de reco-
nhecimento de intenções e de geração de instruções SQL e, posteriormente, a geração
dos textos. Após isso, discutiremos os resultados alcançados decorrentes em cada etapa
citada.

4.1 Descrição dos achados

Nesta seção, apresentaremos os dados do processo de treinamento dos modelos de re-
conhecimento de intenção bem como seus resultados. Na geração de instruções SQL,
avaliaremos a assertividade da informação gerada a partir da consulta SQL criada. Por
fim, analisaremos a diferença entre as respostas geradas pelos diferentes algoritmos de
geração de texto.

4.1.1 Reconhecimento de Intenções

Figura 4.1: Comparativo da acurácia entre modelos treinados com e sem a técnica de dropout
(BERTimbau).
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Devido à quantidade limitada de dados, as primeiras tentativas de ajuste fino dos mo-
delos não atingiram o resultado esperado, gerando um sobre ajuste nos dados (overfitting).
Já nas primeiras épocas, os modelos atingiam a 100% de acurácia nos dados de treino, o
que inviabilizava o uso do modelo para previsão de novos resultados.

Aplicamos então taxas de 40% até 60% de dropout, nos algoritmos de reconhecimento
de intenção, e com isso tivemos uma melhora expressiva na capacidade de generalização
do modelo, que evitou que ocorresse o sobre ajuste nos dados, conforme Figura 4.1.

Esse ajuste foi o suficiente para atingirmos uma performance aceitável com o BER-
Timbau (Souza, Nogueira e Lotufo 2020). Entretanto, para os demais, foi necessário
alterarmos a estrutura das camadas ocultas. O padrão das arquiteturas dos modelos
alBERTina(Rodrigues et al. 2023) e XLM-RoBERTa(Conneau et al. 2020) estava orientada
para tarefas muito mais complexas.

Como estratégia para contornar esse problema, alteramos a quantidade de camadas
de transformadores em cada um dos modelos de 24 para 12. Isso produziu o resultado
esperado: os modelos foram capazes de assimilar as características dos exemplos e assim
reduzir seu valor de perda, como pode ser visto na Figura 4.2.

Figura 4.2: Comparativo da perda entre modelos treinados com quantidade de camadas diferente
(XLMRoBERTa).

Passando para o processo de treinamento, identificamos comportamentos diferentes
para cada modelo. O momento em que cada modelo atingiu o estado estacionário em
relação ao valores de perda diferiu consideravelmente. Para o BERTimbau , ocorreu perto
da época 333. Já para o alBERTina e o XLM- RoBERTa , ocorreu bem antes, próximo a
época 279 e 249 consecutivamente.

Entretanto, o fato do processo de otimização para um determinado modelo ser mais
rápido do que outro não necessariamente o torna melhor. Como demonstrado na Fi-
gura 4.3, os modelos que convergiram a um estado estacionário com menos épocas não
diminuíram os valores de perda de forma paralela nos dados de treino e teste. De forma
prática, eles aprendem mais rápido mas não tão bem quanto o primeiro.
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Figura 4.3: Evolução do valor de perda no processo de treinamento dos modelos. As linhas em azul
se referem aos dados de treino e, as em laranja, aos de teste.

BERTimbau alBERTina XLM-RoBERTa

Precisão Cobertura F1 Precisão Cobertura F1 Precisão Cobertura F1

89.95% 93.27% 91.25% 95.72% 95.51% 95.56% 93.38% 91.31% 91.39%

Tabela 4.1: Avaliação comparativa de modelos de IR.

Com o término dos treinamentos, avaliamos os modelos através das métricas de
precisão, cobertura e Medida-F. Dos três modelos treinados, somente o alBERTina ficou
acima dos 95% em todos os indicadores, conforme exposto na Tabela 4.1. Mesmo assim,
os valores acima de 90% na métrica F1 indicam que os modelos atingiram o resultado
esperado: são capazes de prever na maioria dos casos as intenções corretas.

4.1.2 Geração de instruções SQL

Maritaca Mixtral

Acertos Erros Acertos Erros

T # % S % C % # % S % C %

0.1 27 38.57% 13 18.57% 30 42.85% 33 47.14% 13 18.57% 27 38.57%
0.4 23 32.85% 20 28.57% 27 38.57% 34 48.57% 14 20.00% 22 31.42%
0.7 23 32.85% 20 28.57% 27 38.57% 37 52.85% 10 14.28% 23 32.85%

Tabela 4.2: Avaliação comparativa da métricas de geração de instruções SQL. A coluna T se refere ao
parâmetro de temperatura do modelo. A S, aos erros de sintaxe e C aos erros de conteúdo. Os valores
destacados se referem ao maior valor dentro daquele modelo.

A capacidade de aleatoriedade de um modelo de geração de texto pode determinar se
ele será eficaz ou não numa determinada tarefa. Nos modelos que usamos no trabalho,
a partir de um estudo comparado com nossas bases de dados, identificamos que, para
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o Maritaca (Maritaca 2024), valores mais baixos de temperatura, entre 0.1 e 0.4, são
melhores, enquanto pro Mixtral (Jiang et al. 2024) isso não ocorre, os valores começam a
melhorar a partir de 0.4. Esse comportamento pode ser visto na Tabela 4.2.

De forma prática, o aumento na permissividade de geração de valores aleatórios
permitiu que os algoritmos construíssem instruções mais elaboradas. Isso foi benéfico
em tarefas mais complexas 1 para o Mixtral, mas nem tanto para o Maritaca (Figura 4.4).

Figura 4.4: Quantidade de erros pela complexidade da instrução SQL.

Conforme o valor de temperatura aumentava, erros de sintaxe ocorriam mais no
Maritaca, diferentemente do Mixtral, conforme explicitado na Figura 4.5.

Figura 4.5: Quantidade de erros pelo tipo de erro.

Um outro fator para se levar em conta quando falamos de performance dos algorit-
mos da geração de texto é o prompt. Durante o trabalho, alguns modelos de prompts

1As instruções classificadas como Muito Baixa/Baixa exigiam somente filtros simples e ordenações, as
classificadas como Moderada/Alta exigiam a construção de relacionamento entre as tabelas e aplicação de
funções especificas da linguagem.
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foram testados. Identificamos que prompts mais completos (no sentido de restrição da
tarefa)eram mais precisos, principalmente no uso do Mixtral.

De forma prática, essa restrição é feita pela inclusão no prompt para qual sistema a o
LLM deve gerar a instrução SQL (no caso o SQLite) e pela indicação direta que o resultado
deve levar em conta estritamente as estruturas do banco de dados enviadas ao prompt.

O exemplo apresentado na Figura 4.6 demonstra como a construção do prompt
influencia na geração pelo algoritmo. Enquanto no primeiro modelo é passada a tarefa e
as informações necessárias para a conclusão, no segundo é passado explicitamente que
a instrução deveria ser formulada para o SQLite e que os campos a serem usados nela
deveriam estar obrigatoriamente contidos no prompt.

Figura 4.6: Exemplo da geração com diferentes prompts. O modelo usado foi o Mixtral sob uma
temperatura de 0.7.

4.1.3 Geração de respostas

Como rotina em aplicações desse escopo, é plausível que em determinados momentos a
solução se depare com informações faltantes para a construção da resposta. Buscando
avaliar o comportamento diante dessas situações, realizamos testes em uma base de dados
com 20 registros de questões/interações separados em proporção igual entre prompts
com informações e sem informações. Os pontos importantes estão representados na
Figura 4.7 e serão detalhados a seguir.

A análise do comportamento dos algoritmos gerativos em casos onde há ou não
registro indicou características importantes para o pleno funcionamento da solução. Para
os casos aonde a informação era fornecida identificamos dois comportamentos: (1) a
resposta ser fornecida em língua inglesa e (2) a resposta ser omitida de forma proposital.

Na primeira situação, mesmo que a questão fosse fornecida em língua portuguesa,
sua resposta era dada em língua inglesa. A análise que fizemos indicou que, a partir
da informação passada ao prompt com a resposta da instrução SQL (que é em língua
inglesa), o algoritmo entendia que a resposta também deveria ser em inglês. Sendo assim,
identificamos a necessidade de inclusão de forma explícita no prompt que a resposta seja
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sempre em português. A alteração surtiu o efeito esperado: as respostas, mesmo que a
informação seja passada na língua inglesa, foram geradas em português.

Na segunda, o algoritmo, ao ser perguntado sobre uma informação que poderia ser
classificada como pessoal, negava a informação na forma de resposta. Isso aconteceu so-
mente no Maritaca, mas foi o suficiente para ajustarmos o prompt para os dois algoritmos.
Dado que a solução lida com informações de dados abertos, essa camada de segurança
não se torna necessária.

Em se tratando das questões fornecidas sem a informação necessária para resposta,
tivemos comportamentos distintos para cada algoritmo. O Maritaca conseguiu interpretar
esses prompts e de fato afirmou que não seria possível responder a pergunta por não
ter os dados necessários. Já o Mixtral alternou entre a geração de textos sem sentido e a
produção de informações não verídicas em algumas situações. Na tentativa de solucionar
o problema, incluímos mais detalhes no prompt, mas sem um efeito consistente: em
alguns momentos funcionava, em outros, não.

Figura 4.7: Exemplo da geração com e sem informação. Os modelos usados foram configurados sob
uma temperatura de 0.7.

4.2 Discussão

Todos os modelos treinados neste trabalho para a tarefa de reconhecimento de intenção
apresentaram uma boa performance dentro dos dados que tínhamos (Tabela 4.1). A
diferença entre eles, como já apresentada anteriormente, baseia-se na complexidade e na
base de dados com o qual forma treinados (Tabela 3.1).

Neste contexto, é relevante destacar que o BERTimbau, mesmo apresentando a arqui-
tetura mais simples em comparação aos demais, obteve um F1 de 91%, demonstrando-se
como eficaz para a tarefa de reconhecimento de intenção. É justamente por causa de
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sua arquitetura enxuta que o BERTimbau pode ser treinado em contextos mais limitados
computacionalmente, tornando-o altamente viável para personalização em diversas bases
de dados.

O alBERTina, por outro lado, é o algoritmo entre os usados neste trabalho que se
destaca pela sua arquitetura mais complexa e que tem resultados melhores se comparado
aos demais. Contudo, é importante notar que esse benefício vem acompanhado da
necessidade de máquinas mais robustas para o processo de treinamento e uso, o que pode
ser uma limitação para soluções de menor porte.

O XLM-RoBERTa, como os outros, é efetivo na tarefa e, diferentemente do alBERTina,
não precisa de maquinas robustas para processamento, mas também não é tão portátil
quanto o BERTimbau. Seu diferencial, entretanto, está em ser um modelo multilíngue
(Tabela 3.1). Isso torna-o significativamente relevante em contextos onde a capacidade de
lidar com múltiplos idiomas é necessária.

Para critério de comparação, demonstramos na Tabela 4.3 os tempos de execução
médio para treinamento de cada modelo, bem como as épocas necessárias para convergi-
rem para um estado estacionário. Como é possível observar, mesmo que o alBERTina
apresente menos épocas para o estado estacionário, no total, ele demora mais para ser
treinado.

Além de custo computacional, questões relacionadas a limitações orçamentarias
devem ser levadas em conta. Os modelos mais complexos necessitaram infraestruturas
mais robustas para serem processadas, e para isso no Google Colaboratory foram usadas
máquinas disponíveis somente nos planos pagos.

Máquina
utilizada

Tempo
médio

por época

Épocas
necessárias

Tempo
total

BERTimbau V100 3s 333 16m30s

alBERTina A100 21s 279 1h37m30s

XLM-RoBERTa T4 4s 249 16m29s

Tabela 4.3: Avaliação comparativa da performance no treinado dos modelos de IR.

Em se tratando dos modelos gerativos e com base nos dados disponíveis e nas técnicas
empregadas, a performance no geral do Mixtral foi superior quando comparada à do
Maritaca nas tarefas de geração das instruções SQL (Tabela 4.2). A superioridade, nesse
cenário, fica evidente pelo índice de acertos do modelo a questão solicitada, mas também
é demonstrado pela capacidade de inferência para conhecimentos não fornecidos pelo
prompt, nas instruções de complexidade moderada e alta.

https://colab.research.google.com/
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O Maritaca, diante das mesmas questões e com os mesmos ajustes, não desempenhou
um papel satisfatório. Na realidade, com o aumento da permissividade de inferência/ale-
atoriedade, era esperado que o algoritmo pudesse gerar consultas que articulassem as
informações passadas pelo prompt e seu conhecimento prévio, o que não ocorreu.

Por outro lado, enquanto a dificuldade do Maritaca apareceu na geração da instrução
SQL, a do Mixtral foi seguir as instruções contidas no prompt. O algoritmo diversas vezes
apresentou informações erradas com base em dados que não foram fornecidas 4.5, mesmo
sendo tendo sido apontado de forma explícita o uso exclusivo de informações do prompt.
O mesmo problema não ocorre com o Maritaca. Em situações onde as informações
fornecidas são insuficientes ou não existem, o algoritmo indica essa limitação em sua
resposta.

Em resumo, no contexto deste trabalho, o Mixtral se apresenta melhor nas tarefas
onde é exigido algum tipo de inferência e associação de relações previas aprendidas pelo
algoritmo. Já o Maritaca se sai melhor na parte conversacional e de seguir as regras de
prompt, oferecendo respostas mais precisas quando tem de fato as informações requeridas.

A discussão sobre o custo relativo ao uso dos algoritmos também deve ser considerada.
Do ponto de vista computacional, o Maritaca, ao ser utilizado via API, apresenta um tempo
menor de resposta (≈ 20 s por chamada), enquanto o Mixtral, por ter sido executado
em um ambiente com limitações computacionais, teve um tempo de resposta bem mais
elevado (≈ 3 min por chamada). Entretanto, do ponto de vista financeiro, o custo relativo
ao uso da API do Maritaca se evidencia, já que a cobrança é feita por números de tokens,
o que pode encarecer potenciais projetos que utilizam o algoritmo.
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Conclusão

Diante dos problemas inerentes às tarefas de text-to-SQL, buscamos propor uma solução
viável, adaptativa e que atenda o propósito de ser uma interface entre língua natural e
linguagem SQL. Entretanto, durante o processo de criação, algumas descobertas foram
feitas e, a partir delas, ajustes forma necessários a fim de superar os desafios que a
proposta impunha.

A superação da barreira linguística foi alcançada mediante o uso de LLMsmultilíngues
para tarefa de geração de instruções SQL. A questão da transparência foi atendida pelo
uso de métodos de reconhecimento de intenção que restringem o escopo e permite ajustes
quando necessários. Por fim, a necessidade de customização foi atendida ao empregar
técnicas de engenharia de prompt, incorporando informações das tabelas diretamente às
instruções enviadas ao modelo de linguagem, eliminando a necessidade de treinamentos
prévios.

O sistema resultante se situa, âmbito das soluções text-to-SQL, como uma solução
transparente, customizável e econômica, habilitada para trabalhar com consultas simples.
Aponta direções para estudos aprofundados nas técnicas de construção de prompt e
apresenta oportunidades dentro de sua estrutura para a automatização de tarefas que
ainda demandam intervenção manual.

Sua aplicação em outras bases de dados, contudo, só será possível a partir da criação
de tabelas com o dicionário de dados do banco de dados e uma amostra das questões, com
intenções e tabelas associadas para o treinamento do algoritmo de reconhecimento de
intenções.

Dentro dessa temática, só podemos afirmar que os resultados serão satisfatórios
quando aplicados dentro de contextos onde a informação solicitada possa ser extraída a
partir de instruções SQL de consulta de dados (DQL – DataQuery Language) simples, de
preferência que utilizem uma única tabela.

27



Conclusão 28

Essa, inclusive, é uma das limitações deste trabalho: somente consultas de recuperação
de dados foram avaliadas, isto é, nenhum dos outros tipos1 da linguagem SQL foram
avaliados. Além disso, as consultas avaliadas têm como característica retornarem apenas
um registro, o que impossibilitou a avaliação do comportamento da solução em situações
em que seriam obtidos múltiplos registros.

Outra limitação diz respeito à complexidade das consultas avaliadas. Devido à quanti-
dade limitada de dados classificadas como consultas de complexidade alta e muito alta,
não foi possível avaliar com precisão o desempenho da solução dentro desses escopos
mais complexos.

O tempo para execução completa do pipeline também é uma restrição da solução. Na
combinação com melhor desempenho (utilizando alBERTina como modelo de reconhe-
cimento de intenções e Mixtral para geração de instruções SQL), o tempo médio para
execução completa do pipeline chega a 4 minutos nas infraestruturas testadas (com GPUs
NVIDIA A100).

O uso de uma quantidade restrita de LLMs igualmente se colocou como obstáculo.
Neste contexto, restrições relacionadas a custos orçamentários e computacionais impedi-
ram a exploração de outros algoritmos.

A pesquisa desenvolvida estabelece fundamentos para investigações futuras. Nossa
intenção é progredir no estudo do tema a partir da experimentação de técnicas para maior
refinamento dos dados enviados ao prompt.

Além disso, o estudo aprofundado das estruturas dos algoritmos de LLM visando
à criação de prompts mais eficientes também se coloca como etapa para obtenção de
melhores resultados. Nesse ponto, devemos incluir também prompts específicos para
atender aos demais tipos de linguagem SQL, aumentando o escopo de atuação da solução.

O resultado esperado desses estudos futuros é o desenvolvimento de uma interface de
código aberto que será capaz de responder a solicitações que demandem ações de consulta
(DQL) bem como ações de criação de estrutura (DDL) em banco de dados, utilizando
linguagem natural. Idealmente, será transparente, plenamente adaptável e em língua
portuguesa, capaz de atender a todas as ações aplicáveis a um banco de dados, isto é,
não só consultas mas, também, execuções, e em qualquer banco de dados relacional, de
qualquer complexidade.

1DDL (Data Definition Language), para definição de dados; DML (Data Manipulation Langague), para
manipulação de dados; DTL (Data Transaction Language), para transação de dados e DCL (Data Control
Language), para controle de acesso aos dados
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