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RESUMO

Cousseau, G. Modelo de aprendizado de máquina para prever tendências no
Índice Bovespa com a influência de notícias relacionadas. 2024. 47p. Monografia
(MBA em Inteligência Artificial e Big Data) - Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos, 2024.

Este trabalho tem como objetivo apresentar um modelo de previsão da variação percentual
do índice Bovespa, um dos principais indicadores da Bolsa de Valores do Brasil, utilizando
técnicas de aprendizado de máquina. A crescente busca por renda extra foi a motivação e
justificativa para a realização deste trabalho, levando em consideração as análises preditivas
do mercado financeiro, o qual pode fornecer informações importantes para investidores e
analistas. Diante disso, foi implementado um modelo de Rede Neural Recorrente chama
Long Short Term Memory (LSTM), conhecido pela sua eficácia em séries temporais. O
modelo foi alimentado com as informações de mais importantes do índice Bovespa em
relação a semana junto as informações de notícias relevantes para a variação do índice. O
modelo tem como saída prever a variação como negativa, neutra ou positiva. Os resultados
obtidos mostraram um valor de acurácia de 54% e outras métricas de avaliação destacaram
a necessidade de melhorias para a identificação da classe negativa no modelo, o qual não
classificou nenhum registro como negativo. Além disso, o estudo mostrou a relevância de
utilizar redes neurais para previsões no mercado financeiro, abrindo possibilidades de mais
estudos na área que explorem abordagens de outros modelos e outros parâmetros.

Palavras-chave: Bovespa, LSTM, aprendizado de máquina.



ABSTRACT

Cousseau, G. Machine learning model to predict trends in the Bovespa Index
with the influence of related news. 2024. 47p. Monograph (MBA in Artificial
Intelligence and Big Data) - Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos, 2024.

This work aims to present a model for predicting the percentage variation of the Bovespa
index, one of the main indicators of the Brazilian Stock Exchange, using machine learning
techniques. The growing search for extra income was the motivation and justification
for carrying out this work, taking into account the predictive analyzes of the financial
market, which can provide important information for investors and analysts. In view of
this, a Recurrent Neural Network model called Long Short Term Memory (LSTM) was
implemented, known for its effectiveness in time series. The model was fed with the most
important information of the Bovespa index in relation to the week along with information
from relevant news for the variation of the index. The model aims to predict the variation
as negative, neutral or positive. The results obtained showed an accuracy value of 54% and
other evaluation metrics highlighted the need for improvements to identify the negative
class in the model, which did not classify any record as negative. Furthermore, the study
showed the relevance of using neural networks for predictions in the financial market,
opening up possibilities for further studies in the area that explore approaches of other
models and other parameters.

Keywords: Bovespa, LSTM, machine learning.
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1 INTRODUÇÃO

Em muitas empresas há um forte interesse pelo total controle da qualidade. As políti-
cas de gestão de qualidade na maioria das empresas evoluem continuamente, concentrando-
se em questões de qualidade que podem ser críticas. Uma vez que a qualidade é amplamente
reconhecida como um dos fatores-chave para o sucesso no mercado global (SAVINO; BRUN;
XIANG, 2017). Com isso, alguns indicadores começaram a ser introduzidos para monitorar
o resultado de ações de melhoria e estão sendo vistos como uma ferramenta para promover
a melhoria contínua (FORTUIN, 1988).

Um indicador de desempenho pode ser definido como um item de informação
coletado em intervalos regulares para monitorar o desempenho de um sistema. Esses
indicadores são coletados em muitos sistemas complexos, como um sistema de educação.
Porém, não são perfeitos, sem erros ou problemas de definição e interpretação, mas são
indicadores importantes para o funcionamento do sistema e acompanhá-los é um aspecto
do controle de qualidade (FITZ-GIBBON, 1990).

Para ter uma boa qualidade, se torna importante coletar qualquer tipo de dado
ao longo de cada projeto para ajudar, no final, a entender o sucesso que foi o projeto.
Com isso, os gerentes e líderes de equipe se obrigam a estarem cientes de tudo o que está
acontecendo, seja bom ou ruim, e se for ruim encontrar uma solução para consertar e
garantir que tudo funcione bem. É nesse momento que, acompanhar os indicadores de
desempenho corretos ao longo do projeto ajudam a garantir que o projeto seja um sucesso
(PHAKOE, 2023).

Ainda, Varisco et al. (2018) define que um indicador de desempenho é um conjunto
de medidas com foco em atividades críticas. Com a ajuda desses indicadores, as empresas
podem comprovar que existe uma lacuna entre o desempenho real e o desejado. Nesse
sentido, os indicadores são usados para avaliar a eficiência e eficácia das ações no processo
produtivo, parte dos processos ou também todo o sistema produtivo.

Além disso, alguns indicadores indicam o comportamento do mercado de ações,
estando relacionados ao nível de riscos associados ao desempenho e geração de valores das
empresas. Como exemplo, a IBOVESPA (Bolsa de Valores do Estado de São Paulo) tem a
finalidade de instruir investidores e indivíduos em geral sobre o comportamento do mercado
de ações. Não obstante, essa bolsa se tornou tão relevante que indica as expectativas de
investidores em relação a economia (MONZONI; BIDERMAN; BRITO, 2006).

Sendo o indicador de desempenho médio mais importante do mercado acionista
brasileiro (BRONDANI et al., 2013), a IBOVESPA é composta por 87 ações sendo que a
ação com maior participação no índice é a VALE de acordo com o site da B3.
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Com base nessas informações, qualquer investidor é capaz de adquirir ações de
empresas que compõem a IBOVESPA, tornando-se um acionista dessa empresa e tendo
direitos em votos em reuniões. Essas ações são títulos representando uma fração do
capital de uma empresa. Porém, o mercado de ações pode sofrer alterações de acordo
com especialistas do mercado financeiro. Essas variações podem ser afetadas por crises
político-econômicas e informações relatadas por mídias, essas informações podem ser bem
recebidas ou não pelo mercado (JESUS, 2011).

1.1 Motivação e Lacunas

Devido a essas variações nos preços das ações, muitos estudos foram feitos para
tentar prever o comportamento do índice BOVESPA, porém não é uma tarefa simples.
O mercado financeiro é caracterizado por incertezas associadas à expectativa de curto,
médio e longo prazo. A construção de modelos capazes de captar a dinâmica do mercado,
visando reduzir as incertezas, vem sendo o objetivo de pesquisas e têm atraído o interesse
de pesquisas acadêmicas e profissionais de mercado (OLIVEIRA; NOBRE; ZÁRATE,
2013).

No entanto, o maior desafio em prever os preços das ações é a natureza complexa
do mercado. A maioria dos modelos de previsão são bastante limitados quando se trata
de determinar a direção dos preços futuros em virtude da dificuldade inerente em fazer
previsões precisas, especialmente quando ocorre grandes flutuações. Uma vez que não
é suficiente ter baixas medidas quantitativas formais de precisão, o modelo precisa ter
uma alta taxa de precisão para mudanças em direção, pois os movimentos ascendentes e
descendentes são os que realmente importa (OLIVEIRA; NOBRE; ZÁRATE, 2013).

1.2 Objetivo Geral

Considerando as informações apresentadas, o presente trabalho tem como principal
objetivo construir um modelo de aprendizado de máquina utilizando os conceitos de séries
temporais baseando-se nas informações passadas do índice BOVESPA. Complementando
o modelo, serão utilizadas as notícias que impactaram nas mudanças ascendentes e
descendentes do índice como um atributo adicional. Essas notícias serão classificadas como
positiva, negativa e neutra de acordo com a mudança no gráfico das ações.

1.2.1 Objetivos Específicos

Para alcançar o objetivo geral será necessário realizar os objetivos específicos a
seguir:

• Coletar uma base de dados que representa os valores do índice BOVESPA desde o
início de sua aplicação;
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• Coletar notícias que podem influenciar na variação do índice BOVESPA;

• Classificar as notícias de acordo com a influência no gráfico do índice e também,
sendo a influência positiva, negativa ou neutra;

Com o modelo e a aplicação das informações de notícias, espera-se que o resultado
seja superior nos acertos de queda ou alta em relação aos erros. Possibilitando, assim, que
com o modelo, seja possível um retorno lucrativo nos investimentos de ações.

1.3 Organização do texto

No próximo capítulo serão apresentados alguns conceitos em relação a teoria de
aprendizado de máquina, e mostrar como aplicar séries temporais para predizer gráficos.
Para o capítulo 3, serão abordados alguns trabalhos relacionados utilizando séries temporais
e notícias que podem influenciar nos preços das ações do mercado. No capítulo 4, será feita
uma explicação das bases de dados utilizadas para o modelo, e como foram obtidas. Para
o capítulo 5 serão apresentados os resultados obtidos em relação ao modelo e compara-
los com os trabalhos relacionados do capítulo 3. Por último, uma conclusão acerca dos
resultados obtidos.
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2 FUNDAMENTAÇÃO TEÓRICA

Esse capítulo busca estabelecer os fundamentos teóricos necessários para o entendi-
mento dos métodos e técnicas nesta pesquisa. Inicialmente, serão abordados os conceitos e
técnicas de Mineração de Texto, destacando-se as diferentes formas de representação e
técnicas para otimizar essa representação. Posteriormente, serão discutidas as representa-
ção independentes e dependentes de contexto, com ênfase em algoritmos como word2vec,
BERT, ROBERT e transformers. Em seguida, serão explirados os aspectos das Séries
Temporais, contemplando análises determinísticas e estocásticas, sazonalidade, tendência,
bem como estratégias de previsão, incluindo cross-validation for time series, hold-out e
previsão de etapas à frente. Adiante, serão apresentadas as estratégias de fusão, como
early-fusion, late-fusion e joint-fusion. Além disso, serão discutidos os principais modelos
de previsão utilizados como LSTM, GRU, RNN e SVR. Em seguida, serão abordadas as
métricas de avaliação, como Acurácia, F1 e Macro. Por fim, será feita uma breve descrição
dos trabalhos relacionados, contextualizando-os no escopo desta pesquisa

2.1 Mineração de texto

Segundo Kao and Poteet (2007), a mineração de texto é a descoberta e extração
de conhecimento interessante e não trivial de texto livre ou não estruturado. Isso abrange
tudo, desde a recuperação de informações até a classificação e agrupamento de textos, até
a extração de entidades, relações e eventos.

Ainda, a mineração de texto lida com a análise de texto com suporte para máquinas,
utilizando técnicas de recuperação de informação, extração de informação, bem como
Processamento de Linguagem Natural (PLN). Essa mineração se conecta com algoritmos
de aprendizado de máquina, estatísticas e mineração de dados (HOTHO; NÜRNBERGER;
PAASS, 2005).

O processo de mineração de textos é o mesmo que a mineração de dados, exceto
pelo fato de que as ferramentas de mineração de dados lidam com dados estruturados. Os
textos ou dados não estruturados geralmente se referem a informações que não estão em
um banco de dados de linhas e colunas tradicional. Já os dados estruturados estão em
campos fixos dentro de um registro ou arquivo, contidos em banco de dados relacionais e
planilhas. Sendo assim, a mineração de textos tenta resolver problemas que ocorrem nas
áreas de mineração de dados, aprendizado de máquinas, extração de informação, PLN
dentre outras (VIJAYARANI et al., 2015).

Esses dados não estruturados podem vir de e-mails, arquivos HTML e documentos
de textos através da recuperação de informação. E para o processo de mineração de textos,
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faz-se necessário a aplicação de um pré-processamento para a extração de informação. O
pré-processamento é o primeiro passo da mineração de textos e pode ser dividido em quatro
partes: extração, remoção de palavras comuns, derivação e representação (VIJAYARANI
et al., 2015).

O método de extração é utilizado para tokenizar cada palavra do texto. A remoção
de palavras comuns, também conhecida como remoção de stopwords, é a remoção de
algumas palavras que ocorrem com muita frequência e com a mesma frequência em textos
relevantes e textos não relevantes para a pesquisa (WILBUR; SIROTKIN, 1992).

A terceira parte consiste em identificar a raiz de cada palavra, ou seja, encontrar
uma palavra comum entre as diversas variantes da mesma palavra. Como exemplo, as
palavras “apresentação“, “apresentando“ e “apresentado“ podem ser substituídas por uma
só palavra, a palavra “apresentar“ (ORENGO; HUYCK, 2001).

Na última parte, o objetivo é representar o texto de alguma forma estruturada,
possibilitando a extração de padrões através de algoritmos de aprendizado de máquina.
Essa estrutura assume que os dados sejam representados na forma de uma matriz atributo-
valor utilizando diferentes estratégias para a seleção dos atributos (termos) (). Essas
estratégias podem ser divididas em representações vetoriais, independentes de contexto e
dependentes de contexto e são apresentadas a seguir.

2.1.1 Representações vetoriais

Nesse tipo de representação, cada texto é representado como um vetor de termos.
Esses termos podem ser uma palavra ou uma frase. Se o termo for palavra, cada palavra
do texto representa uma dimensão independente em um espaço vetorial de dimensão muito
alta. Qualquer texto pode ser representado por um vetor nesse espaço. Se o termo pertence
ao texto, o vetor texto recebe um valor não nulo naquela dimensão do termo (SINGHAL
et al., 2001).

Nesse sentido, um vetor pode ser representado pela frequência de cada termo, do
inglês Term Frequency (TF), consistindo do número de vezes que o termo aparece no
conjunto de textos. A frequência é um valor entre 0 e N , onde N é o número de tokens.
Em PLN, a frequência de termo é frequentemente convertida em probabilidade, usando
alguns métodos como o Estimador de Máxima Verossimilhança (YAMAMOTO; CHURCH,
2001).

Outro método estatístico, segundo Al-Obaydy et al. (2022), é a Frequência de
documento inversa de frequência de termo (TF-IDF) sendo a técnica estatística numérica
e descritiva mais popular e amplamente utilizada como fator de ponderação. Esse meca-
nismo de ponderação descreve a importância das palavras com base na sua presença no
conteúdo dos documentos. Com isso, o TF-IDF pode ser empregado para diversas tarefas,



17

como extração de tokens de palavras em artigos, cálculo de graus de similaridade entre
documentos, determinação de classificação significativa, entre outras.

O termo de frequência pode ser calculado pela seguinte equação:

tf(t, d) = ft,d∑
t′∈d

(2.1)

onde ft,d é o número de termos iguais no mesmo documento, e o denominador na equação
representa a quantidade total de todos os termos no documento.

E para calcular o TF-IDF do termo é necessário definir a equação IDF abaixo:

idf(t, D) = log N

|d : d ∈ D e t ∈ d|
(2.2)

onde N representa o número total de documentos e o denominador é o número de
documentos onde o termo t aparece. Se o termo não aparecer há uma divisão por 0 e pode
ser contornada adicionando 1 no numerador e no denominador.

Assim, a equação do TF-IDF pode ser definida pela multiplicação das equações
(2.1) e (2.2):

TFIDF (t, d) = tf(t, d) ∗ idf(t, D) (2.3)

2.1.2 Representações independentes de contexto

As representações com embeddings de palavras são uma família de algoritmos que
representam tokens com vetores densos de tamanho fixo (“embeddings“), de modo que
palavras semelhantes obtenham representações vetoriais semelhantes. Essa representação
é geralmente baseada em palavras vizinhas, ou seja, palavras diferentes com um uso
relacionado obterão representações semelhantes, tais como “colher“ e “garfo“ (OFER;
BRANDES; LINIAL, 2021).

O método mencionado foi popularizado com um algoritmo eficiente chamado
word2vec, é um modelo de espaço vetorial semelhante à decomposição da matriz de
coocorrência, capturando as probabilidades de tokens ocorrerem próximos uns dos outros
no texto (GOLDBERG; LEVY, 2014).

O modelo word2vec possui duas arquiteturas: bag-of-words e skip-grams. Na arqui-
tetura bag-of-words, o modelo prevê a palavra atual a partir de uma janela de palavras de
contexto adjacentes (enquanto a ordem das palavras de contexto é ignorada). O oposto
ocorre com a arquitetura skip-grams, o modelo utiliza a palavra atual para prever a janela
adjacente contendo palavras de contexto (OFER; BRANDES; LINIAL, 2021).
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As duas arquiteturas não levam em consideração a ordem das palavras e e também
não consideram o contexto ao redor das palavras. Como exemplo, as frases “homem morde
o cachorro“, “cachorro morde o homem“ e “amor morde“ tem a mesma representação
vetorial em relação a palavra “morde“, independente da frase. Para contornar isso, o
modelo de embeddings contextualizados incluem o contexto da palavra e a ordem em que
está na frase (OFER; BRANDES; LINIAL, 2021).

Esses modelos são normalmente utilizados em redes neurais. As arquiteturas de
aprendizagem profunda são Memória de Longo e Curto Prazo (LSTM), sequência a sequên-
cia (seq2seq) e atenção. Nos modelos de sequência a sequência, um texto é transformado
usando um componente codificador e, em seguida, um decodificador separado usa a repre-
sentação codificada para resolver alguma tarefa (um tarefa de tradução do inglês para o
francês). Já os modelos de atenção usam camadas de atenção que permitem que a rede se
concentre em tokens específicos no texto (OFER; BRANDES; LINIAL, 2021).

2.1.3 Representações dependentes de contexto

Uma representação dependente de contexto é a arquitetura Transformer, essa
arquitetura de aprendizado profundo foi desenvolvida pelo Google e baseada no mecanismo
de atenção multicabeças, proposto em um artigo de 2017 chamado “Atenção é Tudo o Que
Você Precisa“ (Attention is All You Need). Essa arquitetura também converte um texto
em um representação numérica chamada tokens, cada token é convertido em um vetor por
meio de pesquisa em uma tabela de incorporação de palavras.

Para isso, essa estrutura utiliza um codificador que mapeia uma sequência de
entrada de representações de símbolos (x1, ..., xn) para uma sequência de representações
contínuas z = (z1, ..., zn). Dados z, o decodificador gera uma sequência de saída (y1, ..., yn)
de símbolos, um elemento por vez. A cada passo o modelo é auto-regressivo, consumindo
os símbolos gerados anteriormente como entrada adicional ao gerar o próximo.

O Transformer segue essa arquitetura (Figura 1) geral usando autoatenção empi-
lhada e camadas totalmente conectadas e pontuais para o codificador e o decodificador. O
codificador é composto por uma pilha de N = 6 camadas idênticas. Cada camada possui
duas subcamadas. A primeira camada é um mecanismo de autoatenção com várias multi
cabeças e o segundo é uma rede feed-forward simples, totalmente conectada e posicionada.
As saídas de cada camada produzem saídas de dimensão dmodel = 512

O decodificador também é composto por N = 6 camadas idênticas. Além das
duas sub-camadas em cada camada do codificador, o decodificador insere uma terceira
sub-camada, que realiza atenção multi cabeças sobre a saída da pilha do codificador. Uma
função de atenção pode ser descrita como o mapeamento de uma consulta e um conjunto
de pares de valores-chave para uma saída, onde a consulta, as chaves, os valores e a saída
são todos vetores. A saída é calculada como uma soma ponderada dos valores, onde o peso
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Figura 1 – Modelo de arquitetura do Transformer

atribuído a cada valor é calculado por uma função de compatibilidade da consulta com a
chave correspondente.

A função de atenção pode ser descrita como o mapeamento de uma consulta e um
conjunto de pares de valores-chave para uma saída, onde a consulta, as chaves, os valores
e a saída são todos vetores. A saída é calculada como uma soma ponderada dos valores,
onde o peso atribuído a cada valor é calculado por uma função de compatibilidade da
consulta com a chave correspondente.

A parte da multi cabeças aprende diversas representações de atenção simultanea-
mente. Na atenção multi cabeças, uma sequência de vetores é dividido em várias partes
sendo que cada parte é utilizada como entrada para uma cabeça de atenção. Cada saída
da cabeça representa uma matriz de pesos de atenção indicando a importância de cada
token em relação aos outros tokens da sequência. Cada saída é combinada representando
uma captura múltipla de atenção.

A saída do modelo é uma distribuição de probabilidade sobre o vocabulário de
saída, sendo comparada com a saída esperada usando uma função de perda, como a
entropia cruzada. E para maximizar essa perda, o modelo é atualizado com algoritmos de
otimização como o gradiente descendente. Por fim, o modelo pode ser pré treinado com
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grandes quantidades de dados não supervisionados e depois pode ser ajustado para tarefas
de PLN.

Outro modelo dependente de contexto, introduzido por (DEVLIN et al., 2018),
é o modelo de linguagem chamado BERT, em português Representação do Codificador
Bidirecional de Transformadores. BERT é projetado para pré-treinar representações
bidirecionais profundas de texto não rotulado, condicionando conjuntamente o contexto
esquerdo e direito em todas as camadas. Como resultado, o modelo BERT pré-treinado
pode ser ajustado com apenas uma camada de saída adicional para criar modelos de
última geração para uma ampla gama de tarefas, como resposta a perguntas e inferência
de linguagem, sem modificações substanciais na arquitetura específica da tarefa.

A arquitetura do modelo BERT é baseada na arquitetura do Transformer, seu pré
treinamento bidirecional permite que o modelo seja treinado da esquerda para a direita e
da direita para a esquerda. Assim é possível capturar o contexto de uma palavra de acordo
com o contexto de palavras anteriores como em modelos de linguagem tradicionais, mas
também capturar o contexto capturar o contexto com palavras posteriores na sequência.

As camadas de atenção do modelo Transformer são empilhadas para formar o
codificador do BERT. O pré-treinamento é dividido em duas partes: a primeira parte é o
Modelo de Linguagem Mascarada onde algumas palavras são mascaradas aleatoriamente,
e o modelo é treinado para prever as palavras mascaradas de acordo com o contexto das
palavras não mascaradas; a segunda é a Predição da Próxima Sentença que ajuda o modelo
a entender melhor as frases e suas relações nas tarefas que exigem compreensão de longo
alcance (tradução automática ou resumo de textos) com a previsão de que se uma frase
é a próxima frase em um conjunto de frases fornecidas ou se é uma frase aleatório do
documento inteiro.

Devido aos ganhos de desempenho significativo dos modelos Transformer e BERT
pode ser um desafio determinar quais aspectos contribuem mais. O treinamento é compu-
tacionalmente caro, limitando a quantidade de ajuste que pode ser feito, e muitas vezes é
feito com dados de treinamento privados de tamanhos variados, limitando a capacidade de
medir os efeitos dos avanços na modelagem. Para isso, uma replicação do pré-treinamento
do BERT é apresentado por Liu et al. (2019) na qual inclui uma avaliação cuidadosa dos
efeitos do ajuste do hiper-parâmetro e do tamanho do conjunto de treinamento. Os autores
descobriram que o BERT foi significativamente sub-treinado e propuseram uma melhora
para o treinamento chamado RoBERTa, que pode igualar ou exceder o desempenho de
todos os métodos pós-BERT.

As modificações para melhoria incluem: treinar o modelo por mais tempo, com
lotes maiores e mais dados; remover o objeto de previsão da próxima frase; treinamento
em sequências mais longas; e alterar dinamicamente o padrão de mascaramento aplicado
aos dados de treinamento. Diante dessas modificações, foi concluído que o desempenho
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pode ser melhorado substancialmente quando o modelo for treinado por mais tempo, com
lotes maiores e com mais dados; quando remover o objetivo de previsão da próxima frase;
quando o treinamento em sequências mais longas; e quando alterar dinamicamente o
padrão de mascaramento aplicado aos dados de treinamento.

2.2 Séries temporais

Esling and Agon (2012) definem uma série temporal como uma representação de
uma coleção de valores obtidos de medições sequenciais ao longo do tempo. Ao modelar
séries temporais, é possível estudar, analisar e prever o comportamento dos sistemas. As
séries são compostas por dados sequenciais coletados de uma ou mais variáveis ao longo
do tempo. Quando composta de uma variável X, representa as observações na forma de
(x0, x1, ..., xn−1 considerando um intervalo de tempo t ∈ [0, n − 1]. E quando há mais de
um variável, k variáveis são observadas em cada instante de tempo t, sendo descrita por
(x1t, x2t, ..., xkt) com t ∈ [0, n − 1] (ISHII; RIOS; MELLO, 2011).

Ainda, uma série temporal Xt pode ser formalmente definida pela soma de três
componentes não observáveis: Xt = Γt + St + ϵt, em que Γt representa a tendência, St é
o sazonalidade e ϵt é um componente aleatório. A tendência representa as variações do
comportamento da série e a sazonalidade indica se o comportamento da série tende a se
repetir nos intervalos de tempo ∆t.

2.2.1 Análises de séries temporais

As séries temporais podem ser determinísticas ou estocásticas. A determinística
apresenta comportamento recorrente, ou seja, ela se repete ao passar do tempo com escalas
iguais ou diferentes. Ademais, os sistemas que utilizam séries determinísticas podem ser
modelados usando equações diferenciais determinísticas e se torna possível predizer as
próximas observações de acordo com as informações anteriores. Por outro lado, as séries
estocásticas, onde as observações futuras podem depender das já observadas, assim como
nas séries determinísticas, podem também ser gerados por efeitos aleatórios (ISHII; RIOS;
MELLO, 2011).

Os períodos das séries temporais que são mais curtos que um ano, como mês,
podem variar de acordo com a sazonalidade. Ou seja, é um fenômeno que pode ocorrer com
maior frequência em certos períodos do ano e com menos frequência em outros. Nem toda
série com períodos mensais ou quadrimestrais são sazonais. Deve-se então, realizar uma
análise da série se é ou não sazonal, essa análise serve para obter informações úteis nas
tomadas de decisão. As descrições de padrões que mudam conforme o tempo em uma série
fornecem uma base necessária para modelos explicativos, previsões e testes de hipóteses
de intervenção. Sem uma descrição prévia, os modelos podem ser mal especificados, as
previsões imprecisas e os testes de hipóteses errôneos (BLOCK, 1984).
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Já a tendência representa uma direção ascendente, descendente ou horizontal
ao longo do tempo. É possível capturar um padrão de crescimento e uma previsão do
comportamento da série, e também, separar componentes de longo prazo em flutuações
aleatórias e sazonais (HAMILTON, 2020).

2.2.2 Estratégias de previsão

Uma maneira de prever o comportamento de uma série temporal é utilizar algoritmos
de classificação e uma forma de avaliar esses algoritmos é utilizar o método de validação
cruzada K-Fold. Essa maneira pode ser mostrada por Bergmeir, Hyndman and Koo (2018),
a configuração específica na qual a previsão de séries temporais é geralmente realizada
usando métodos de aprendizado de máquina torna possível o uso do K-Fold. Ainda, o
K-Fold é amplamente utilizado para avaliar a generalização de algoritmos em classificação,
porém, quando se trata de séries temporais, profissionais muitas vezes não têm certeza
sobre a melhor maneira de avaliar seus modelos.

Na avaliação de diferentes parâmetros para os estimadores dos modelos, há um risco
de acontecer um overfitting, ou seja, todos os dados serem utilizados para o treinamento,
fazendo com que a rede acerte todos os dados já vistos e nenhum que esteja fora do
conjunto de dados. Uma forma de resolver esse problema é utilizar a validação cruzada
com k-fold, onde o conjunto de dados é dividido em k conjuntos menores. O modelo é
treinado usando k − 1 conjuntos menores como dados de treinamento é testado com o
restante do conjunto (OJALA; GARRIGA, 2010).

A partir disso, outro conjunto menor é escolhido para o teste do modelo, até que
cada conjunto menor seja utilizado. É feita uma média dos valores calculados depois de
cada treinamento e teste para encontrar o parâmetro mais adequado. Ao aplicar essas
avaliações em séries temporais, o conjunto de dados é dividido em pares de treino-teste
sequenciais, a divisão consiste em um conjunto de treino que avança no tempo e conjunto
de teste inclui os pontos seguintes.

Outro método utilizado é o método hold-out que divide o conjunto em duas partes,
normalmente 70% ou 80% para treinamento e o restante para teste. Sendo uma abordagem
simples e rápida é considerada menos confiável em conjuntos de dados pequenos, pois a
escolha da divisão pode influenciar significativamente os resultados (KOHAVI et al., 1995).
Esse método, ao utilizar com séries temporais, é necessário preservar a ordem temporal.

Outra maneira de prever o comportamento da série temporal é utilizar a previsão
de passos a frente. Esse tipo de previsão pode ser de apenas um passo a frente como de
vários. Quando utilizado um passo a frente, o preditor usa todas ou algumas observações
para estimar uma variável de interesse para o intervalo de tempo imediatamente após a
última observação (XIONG; BAO; HU, 2013).
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Já na previsão de múltiplos passos, a tarefa de previsão consiste em predizer os
próximos valores h em [yn+1, ..., yn+h] de uma série temporal histórica [y1, ..., yn] composta
por n observações, onde h > 1 denotando o horizonte de previsão (TAIEB et al., 2012).

Essas previsões podem ser divididas em diferentes estratégias:

2.2.2.1 Estratégia Recursiva

Essa estratégia envolve a utilização de um modelo único f de treinamento para
executar a previsão de um passo:

yt+1 = f(yt, ..., yt−d+1) + w (2.4)

com t ∈ {d, ..., n − 1}.

Para h passos à frente, é necessário prever o primeiro passo e usa-lo como parte
das variáveis de entrada para prever o próximo passo utilizando o mesmo modelo uma
passo à frente. É repetido o processo até que todos os dados sejam previstos.

yn+h =


f(yn, ..., yn−d+1) se h = 1

f(yn+h−1, ..., yn+1, yn, ..., yn−d+h) se h ∈ {2, ..., d}

f(yn+h−1, ..., yn+h−d) se h ∈ {d + 1, ..., h}

(2.5)

Uma estratégia simples de implementação e que requer o treinamento de apenas
um modelo. Porém, os erros podem ser acumulados ao longo das previsões, resultando em
previsões menos precisas para h maiores.

2.2.2.2 Estratégia Direta

Diferente da recursiva, essa estratégia possui um modelo de treinamento para cada
passo de previsão.

yt+h = fh(yt, ..., yt−d+1) + w (2.6)

com t ∈ {d, ..., n − h} e h ∈ {1, ..., h}.

As previsões são obtidas utilizando os modelos treinados H de acordo com a
Equação 2.7:

yN+h = fh(yN , ..., yN−d+1) (2.7)
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A vantagem dessa estratégia é que cada modelo é otimizado para seu passo específico
da previsão evitando acumular erros, diferente da estratégia recursiva. Mas, requer o
treinamento de múltiplos modelos, podendo ser computacionalmente intensivo.

2.2.2.3 Estratégica Direta Recursiva

Combina as arquiteturas e os princípios das estratégias recursivas e diretas. A Direta
Recursiva calcula as previsões com modelos diferentes para cada horizonte (estratégia
Direta) e, a cada passo de tempo, amplia o conjunto de entradas adicionando variáveis
correspondentes às previsões da etapa anterior (estratégia Recursiva). No entanto, ao
contrário das duas estratégias anteriores, o tamanho d não é o mesmo para todos os
horizontes.

yt+h = fh(yt+h−1, ..., yt−d+1) + w (2.8)

onde t ∈ {d, ..., N − H} e h ∈ {1, ..., H}.

Para obter as previsões, o modelo treinado H fica de acordo com a Equação 2.9:

yN+h =

fh(yN , ..., yN−d+1) se h = 1

fh(yN+h−1, ..., yN+1, yN , ..., yN−d+1) se h ∈ {2, ..., H}
(2.9)

Essa estratégia pode mitigar a amplificação de erros da estratégia recursiva e usa
as informações adicionais em cada passo, podendo melhorar a precisão. No entanto, é mais
complexa sua implementação e requer o treinamento de múltiplos modelos intermediários.

2.2.2.4 Estratégia MIMO

A estratégia MIMO (Múltiplas Entradas e Múltiplas Saídas), envolve treinar um
modelo único para prever múltiplos passos à frente simultaneamente. Essa, aprende um
modelo F de múltiplas saídas da série temporal.

[yt+H , ..., yt+1] = F (yt, ..., yt−d+1) + w (2.10)

onde t ∈ {d, ..., N − H}, F : Rd → RH é uma função com valor vetorial e w ∈ RH é
o ruído do vetor. As previsões são retornadas em uma única etapa por um modelo de
múltiplos resultados onde:

[yt+H , ..., yt+1] = F (YN , ..., yN−d+1) (2.11)
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Com isso, é capaz de capturar dependências entre diferentes passos de previsão.
Treina um único modelo simplificando a implementação. Todavia, requer uma maior capaci-
dade computacional e o ajuste do modelo pode ser mais complexo devido a simultaneidade
das previsões.

2.2.2.5 Estratégia DIRMO

Combina a estratégia direta e a MIMO, adotando uma abordagem intermediária, o
DIRMO prevê o horizonte H em blocos, onde cada bloco é previsto no estilo MIMO. Ou
seja, é treinado um modelo separado para prever os primeiros k passos à frente diretamente
e depois é utilizada a abordagem MIMO para treinar modelos subsequentes para prever
múltiplos passos além dos primeiros k passos.

A vantagem de combinar os benefícios de otimização específica para certos passos
com a capacidade de capturar dependências complexas pode oferecer um equilíbrio entre
a complexidade e o desempenho. Pode ser mais complexo de implementar e requer um
treinamento de múltiplos modelos, cada um com sua própria configuração.

2.3 Modelos de previsão

Os modelos de previsão dependem dos dados disponíveis. Se os dados são irrele-
vantes para a previsão, métodos qualitativos devem ser usados. Para o uso de métodos
quantitativos, duas condições devem ser satisfeitas: informações numéricas sobre o pas-
sado e assumir que alguns aspectos dos padrões do passado podem continuar no futuro
(HYNDMAN; ATHANASOPOULOS, 2018). Diante disso, alguns modelos são discutidos
abaixo.

2.3.1 Redes Neurais Recorrentes

As RNN fazem parte das redes neurais artificiais que são feitas com camadas de
unidades conectadas chamadas neurônios. Quanto maior o número de camadas, maior a
complexidade da rede. Um maior número de camadas ou conexões recorrentes geralmente
aumenta a profundidade da rede e permite que ela forneça vários níveis de representação
de dados e extração de recursos, chamados de aprendizado profundo (SALEHINEJAD et
al., 2017).

Essas redes são uma classe de modelos de aprendizado de máquina feitas de
neurônios artificiais com um mais ciclos de feedback, geralmente são ciclos recorrentes
através do tempo. Um modelo simples de RNN contém três camadas, sendo a primeira de
entrada, a segunda é a recorrente oculta e a última é a de saída. Assim, a camada de entrada
possui N unidades. A entrada para essa camada de entrada é composta de uma sequência
de vetores ao decorrer do tempo t como ..., xt−1, xt, xt+1, ..., onde xt = (x1, x2, ..., xN).
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Cada unidade de entrada em uma RNN totalmente conectada são conectadas às
unidades ocultas na camada oculta, onde as conexões são definidas como uma matriz de
pesos WIH . Cada camada oculta tem M unidades escondidas ht = (h1, h2, ..., hM) que
são conectadas nelas mesmas ao decorrer do tempo com conexões recorrentes. Os estados
ocultos da RNN são conjuntos de valores, que representam as informações dos estados
passados através do tempo. Essa integração de informação pode definir o comportamento
futuro da rede e fazer predições precisas na camada de saída.

Ademais, as RNN utilizam uma função de ativação que é normalmente utilizada
nas camadas de saída. Podem ser usadas funções lineares e não lineares, as não lineares são
mais poderosas pois podem traçar limites não lineares. Algumas das funções de ativação
mais utilizadas são a sigmoid, tanh e rectified linear unit (ReLU) e têm recebido maior
atenção do que as outras funções. A escolha das funções de ativação irão depender do
problema a ser resolvido.

Após as funções de ativação, é aplicada a função de perda para avaliar o desempenho
da rede comparando a saída da camada de saída com a saída desejada de acordo com
o conjunto. E, assim como a escolha da função de ativação, a função de perda também
depende do problema. Uma das mais conhecidas é a distância Euclidiana.

Com essas informações é possível treinar a RNN. Uma das dificuldades encontradas
é a inicialização apropriada dos pesos na rede e no algoritmo de otimização para ajustes
de forma a minimizar a perda de treinamento. A inicialização dos pesos na RNN é crucial,
geralmente escolhidos os valores 0.01 ou 0.001.

O método de otimização é o gradiente descendente, um método simples e popular
em aprendizado profundo. A ideia básica é ajustar os pesos do modelo encontrando as
derivadas da função de erro em relação a cada membro das matrizes de pesos do modelo.
Para minimizar a perda total, o gradiente descendente altera cada peso proporcionalmente
à derivada do erro em relação a esse peso, desde que a ativação não linear funcione são
diferenciáveis.

Como a RNN é uma estrutura ao longo do tempo, é necessário estender o gradiente
descendente ao longo do tempo para treinar a rede, chamado de retropropagação ao longo
do tempo. Porém, as RNN não podem aprender dependências temporais de longo alcance
quando gradiente descendente é utilizado para treinamento. Isso é devido ao decaimento
exponencial do gradiente, à medida que ele é retropropagado ao longo do tempo, o que é
chamado de problema do gradiente descendente.

2.3.2 Long Short-Term Memory

O modelo LSTM ou Memória de longo prazo é um tipo de de rede neural recorrente
projetada para resolver as limitações das redes neurais recorrentes tradicionais, particu-
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larmente o problema de dependências de longo prazo. As RNN tradicionais sofrem com
problema do gradiente de desaparecimento, o que torna difícil para as RNN aprenderem e
lembrarem de dependências de longo prazo em dados sequenciais. As redes LSM superam
esse problema por meio de uma arquitetura única que lhes permite reter informações por
longos períodos (GRAVES; GRAVES, 2012).

A arquitetura LSTM se diferencia por sua célula de memória exclusiva, projetada
para manter informações por longos períodos. Essa capacidade é alcançada por meio de
uma série de portas que regulam o fluxo de informações para dentro e para fora da célula.
Essas portas são cruciais para controlar o estado da célula e o estado oculto em cada
etapa de tempo, garantindo que informações importantes sejam retidas e informações
irrelevantes sejam descartadas.

Essa arquitetura permite que as redes LSTM mantenham um gradiente estável,
possibilitando aprender dependências de longo prazo e ter um bom desempenho em
tarefas que envolvem dados sequenciais, como previsão de séries temporais, modelagem de
linguagem e reconhecimento de fala.

2.3.2.1 Forget Gate

O Forget Gate decide quais informações do estado anterior da célula (Ct−1) devem
ser descartados. Ele pega o estado oculto anterior (ht−1) e a entrada atual (xt) como
entradas, processa-os por meio de uma função de ativação sigmóide e gera um valor entre
0 e 1 para cada componente da célula estado. Este valor determina até que ponto cada
componente é retido ou esquecido.

ft = σ(Wf · [ht−1, xt] + bf ) (2.12)

2.3.2.2 Inpput Gate e Célula de Memória Candidata (C̃t)

A porta de entrada (Input Gate) controla a atualização do estado da célula com
novas informações. Ele também pega o estado oculto anterior e a entrada atual e os
processa por meio de uma função de ativação sigmóide para decidir quais valores serão
atualizados. Simultaneamente, uma célula de memória candidata (C̃t) é criada usando
uma função de ativação tangente hiperbólica.

it = σ(Wi · [ht−1, xt] + bi) (2.13)

C̃t = tanh(WC · [ht−1, xt] + bC) (2.14)
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2.3.2.3 Atualização do estado da célula (Ct)

O estado da célula é atualizado combinando o estado anterior da célula, escalonado
pela Forget Gate, e a célula de memória candidata, escalonada pela porta de entrada.

Ct = ft · Ct−1 + it · C̃t (2.15)

2.3.2.4 Porta de saída (ot) e estado oculto (ht)

A porta de saída determina o próximo estado oculto, que é usado para o próximo
intervalo de tempo e como parte da saída. Ele processa o estado oculto anterior e a
entrada atual por meio de uma função de ativação sigmóide. O novo estado oculto é
então calculado usando o estado atualizado da célula passado por uma função de ativação
tangente hiperbólica, escalonada pela porta de saída.

ot = σ(Wo · [ht−1, xt] + bo) (2.16)

ht = ot · tanh(Ct) (2.17)

2.3.3 Unidade Recorrente Fechada (GRU)

A GRU é um tipo de arquitetura de RNN introduzida por Cho et al. (2014) em
2014. Foi projetada para melhorar a RNN padrão e fornecer uma alternativa mais simples
às redes LSTM, abordando alguns dos mesmos problemas, como o problema do gradiente
de fuga.

Essa arquitetura combina o estado oculto e o estado da célula em um único vetor
de estado, simplificando a arquitetura em comparação às LSTM. Usa duas portas, a porta
de atualização e a porta de redefinição, para controlar o fluxo de informações.

2.3.3.1 Redefinir porta (rt)

A porta de redefinição determina quanto do estado oculto anterior (ht−1) deve ser
redefinido ou esquecido. É calculado da seguinte forma:

rt = σ(Wr · [ht−1, xt] + br) (2.18)
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2.3.3.2 Atualizar portão (zt)

A porta de atualização controla quanto do estado oculto anterior deve ser passado
para o próximo passo de tempo.

zt = σ(Wz · [ht−1, xt] + bz) (2.19)

2.3.3.3 Estado oculto candidato (h̃t)

O estado oculto candidato é uma atualização potencial do estado oculto. É influen-
ciado pela porta de redefinição e pela entrada atual (xt).

h̃t = tanh(Wh · [rt · ht−1, xt] + bh) (2.20)

2.3.3.4 Estado oculto final (ht)

O estado oculto final é uma interpolação linear entre o estado oculto anterior e o
estado oculto candidato, controla pela porta de atualização.

ht = zt · ht−1 + (1 − zt) · h̃t (2.21)

As vantagens da GRU incluem uma estrutura simples comparada com as LSTM,
com menos portas e nenhum estado de célula separado, o que reduz a complexidade
computacional. Além disso, geralmente são mais rápidas de treinar e requerem menos
memória, tem desempenho comparável às LSTM, tornando-as uma alternativa viável em
cenários onde os recursos computacionais são limitados.

2.4 Métricas de avaliação

As métricas de avaliação são cruciais para avaliar o desempenho de modelos de
aprendizado de máquina, especialmente em tarefas de classificação. Três das métricas mais
comumente usadas são Precisão, Pontuação F1 e Média Macro. Cada uma dessas métricas
fornecem informações diferentes sobre o desempenho do modelo (FAWCETT, 2006).

2.4.1 Acurácia

A acurácia é calculada pela proporção de predições corretas em relação ao número
de predições. É uma métrica simples e intuitiva frequentemente usada para avaliar a
eficácia de um modelo de classificação.
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Acurácia = TP + TN

TP + TN + FP + FN
(2.22)

onde:

• TP (True Positive): instâncias que foram preditas como positivas corretamente;

• TN (True Negative): instâncias que foram preditas como negativas corretamente;

• FP (False Positive): instâncias que foram preditas como positivas incorretamente;

• FN (False Negative): instâncias que foram preditas como negativas incorretamente;

Essa métrica é muito útil quando o conjunto de dados possui classes igualmente
distribuídas. No entanto, quando uma classe é mais dominante que as outras, a alta
precisão pode não refletir o verdadeiro desempenho do modelo.

2.4.2 F1

A pontuação F1 é a média harmônica de precisão e recuperação. É particularmente
útil ao lidar com conjuntos de dados desequilibrados, proporcionando um equilíbrio entre
a precisão e a recuperação.

Precisão = TP

TP + FP
(2.23)

Recuperação = TP

TP + FN
(2.24)

F1 = 2 ∗ Precisão ∗ Recuperação
Precisão + Recuperação (2.25)

Com isso, equilibra precisão e recuperação, tornando-a uma métrica robusta para
conjuntos de dados desequilibrados onde falsos positivos e falsos negativos são importantes.
Também, fornece uma métrica única que captura a compensação entre a precisão e a
recuperação do modelo. Porém, é menos intuitiva que a precisão.
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2.4.3 Média Macro

A Média Macro calcula as métricas (Precisão, Recuperação e Pontuação F1) para
cada classe individualmente e, em seguida, calcula a média dessas métricas. Esta abordagem
atribui peso igual a cada classe, independente da sua frequência.

Macro F1 = 1
N

N∑
i=1

F1i (2.26)

onde N é o número de classes e F1i é a pontuação F1 para cada classe i.

Fornece uma visão equilibrada do desempenho do modelo em todas as classes, o
que é particularmente útil em problemas de classificação multi classe com distribuições
de classes desequilibradas. Garante que cada classe seja tratada igualmente, destacando
o desempenho do modelo em todas as classes. No entanto, pode não refletir bem o
desempenho geral se algumas classes forem significativamente mais importante que outras.
Também, pode ser menos informativo se o conjunto de dados for altamente desequilibrado,
pois não considera as diferentes frequências de classe.
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3 TRABALHOS RELACIONADOS

Alguns trabalhos na literatura fornecem informações sobre o uso de série temporal
para predizer o preço e as tendências do mercado de ações de acordo com o gráfico de preços
de ações. Outros utilizam apenas informações da Internet, como notícias e sentimentos
de usuários nas mídias sociais para análise dos eventos e impactos na movimentação dos
preços. Abaixo são comentados alguns artigos que relacionam as informações de preços
e/ou de notícias na Web para predizer preços de mercados.

De acordo com Zhang et al. (2018), uma nova abordagem para a previsão do
mercado de ações é proposta utilizando informações heterogêneas. São extraídos eventos
de notícias da web e os sentimentos dos usuários das redes sociais, investigam também, os
impactos conjuntos nos movimentos dos preços das ações através de um framework de
fatoração de matriz e tensor. Esse tensor é construído para unir os dados e capturar as
relações entre os eventos e os sentimentos dos investidores.

Outro estudo feito por Li, Shang and Wang (2019), mostra um novo método de
previsão de preços de petróleo bruto, utilizando mineração de textos de mídia online,
com o objetivo de capturar os antecedentes de mercado mais imediatos das flutuações de
preços. É utilizada um Rede Neural Convolucional (CNN) para a extração de padrões
ocultos nas mídias de notícias. É proposto um método de agrupamento de recursos baseado
no modelo de tópico Latent Dirichlet Allocation (LDA) para distinguir efeitos de vários
tópicos de notícias online. A abordagem de síntese tópico-sentimento é baseada em texto
para construção de série temporal com base no modelo CNN, análise de sentimento e
identificação de tópico.

Diante disso, a abordagem a ser utilizada nesse trabalho envolve as tendências em
relação aos preços do mercado de ações do índice Bovespa utilizando uma representação
de textos vetorial. Para isso é necessário buscar um conjunto de informações em relação
aos gráficos dos preços e informações de notícias. Será utilizado o método de validação
cruzada K-Fold para fazer o treinamento e teste em diversas combinações nos conjuntos
de representações vetoriais. E também, um método de combinação dos valores do gráfico
e da classificação dos textos das notícias será utilizado como entrada para a uma rede
neural convolucional predizendo as tendências no mercado de ações.

Outros trabalhos relacionados podem ser vistos na tabela ?? e as suas comparações
entre os modelos utilizados e as representações de textos.
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Tabela 1 – Referências e estratégias utilizadas para previ-
são de mercado financeiro.

Referência (Autores) Representação Estratégia Modelo

Picasso et al. (2019) Sentiment Embed-
dings, Análise Técnica

Previsão de Ten-
dências

Redes Neurais

Li, Shang and Wang (2019) Previsão de Preços Redes Neurais
Profundas

Zhang et al. (2019) Multisourced Data Previsão de Ten-
dências

Hidden Markov
Model

Li, Wu and Wang (2020) Sentimentos de Notí-
cias, Preços de Ações

Previsão de Pre-
ços

Modelos de Re-
gressão

Xu et al. (2020) Tweets, Preços Históri-
cos

Previsão de Mo-
vimentos

Redes de Aten-
ção

Xu et al. (2020) Múltiplas Fontes de
Dados

Previsão de Mo-
vimentos

Modelos de Ma-
chine Learning

Zhang et al. (2018) Fusão de Informações
Heterogêneas

Previsão de Mo-
vimentos

Modelos de Ma-
chine Learning

Avramelou et al. (2024) Aprendizado por Re-
forço

Deep Reinforce-
ment Learning

Tan et al. (2024) Clues Visuais Precificação de
Ativos

Deep Learning

Zhang et al. (2024) Preços de Ações, Texto Previsão de Mo-
vimentos

Modelos de Fu-
são de Informa-
ção

Wang, Hsiao and Liou
(2024)

Indicadores Técnicos,
Fatores de Chip, Notí-
cias de Ações

Previsão de Pre-
ços

Multi-Kernel Ap-
proach

Chang and Zhang (2023) Comentários em Fó-
runs de Especialistas

Análise de Senti-
mentos

Modelos de Ma-
chine Learning

Zhao et al. (2023) Dados Financeiros He-
terogêneos

Previsão de Mo-
vimentos

Multi-Head At-
tention

Usmani and Shamsi (2023) Previsão de Movimen-
tos

LSTM

Gu et al. (2023) Sentiment Score,
Efeito de Fim de
Semana

Previsão de Pre-
ços

Deep Learning

Continua na próxima página...
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Referência (Autores) Representação do
Texto

Estratégia Modelo

Yang et al. (2023) Decisões Três Vias Se-
quenciais

Previsão de Mo-
vimentos

Modelos de Ma-
chine Learning

Wang et al. (2023) Indicadores Técnicos,
Sentimentos de Mídia
Social

Previsão de Ten-
dências

Modelos de Ma-
chine Learning

Tadphale et al. (2023) Sentimentos de Notí-
cias

Previsão de Ta-
xas de Câmbio

Modelos de Re-
gressão

Ma et al. (2023) Classificação Agregada
de Múltiplas Fontes

Previsão de Mo-
vimentos

Modelos de Clas-
sificação

Eslamieh, Shajari and Nic-
kabadi (2023)

User2Vec Previsão de Mo-
vimentos

Redes Neurais
Convolucionais e
Recorrentes

Wang et al. (2022) Fusão de Informações
Heterogêneas

Previsão de Mo-
vimentos

Abordagem Ba-
seada em Grafos

Li et al. (2022) Modelo de Pontuação
e Triagem

Seleção de Ações Modelos de Pon-
tuação e Triagem

Lin et al. (2022) Texto e Informação
Numérica

Previsão de Pre-
ços

Redes Convoluci-
onais com Aten-
ção Espacial-
Temporal

Filho, Marcacini and Re-
zende (2022)

Dados Textuais Previsão de Pre-
ços de Commodi-
ties

Modelos de Ma-
chine Learning

Ye et al. (2022) Comentários no Twit-
ter

Previsão de Pre-
ços

Stacking Ensem-
ble Deep Lear-
ning

Pode-se destacar que os trabalhos revisados apresentam diversas abordagens para
prever os movimentos no mercado financeiro, com fontes de dados diversas e técnicas
diferentes de representação de texto e modelos preditivos. Essas abordagens demonstram
a importância de integrar dados de séries temporais com informações de notícias ou
sentimentos, para obter previsões precisas e relevantes.



35

4 PROPOSTA DO MODELO PARA PREVER AS TENDÊNCIAS DO ÍNDICE
BOVESPA

Para começar a construção do modelo foi feito um fluxograma demonstrado pela
Figura 2 que acompanha os processos feitos até a entrada para o modelo LSTM.

Figura 2 – Fluxograma dos processos que compõem o modelo

De início foi necessário coletar os dados do gráfico do índice Bovespa e as notícias que
ocorreram no período. Foram coletadas notícias do site 1www.exame.com sobre economia
brasileira através de web-scraping. Com isso foram armazenadas as datas e os conteúdos
de cada notícia. A partir do conteúdo foi necessário remover as stop-words, que são as
palavras que não influenciam na análise do texto, como por exemplo “a“, “o“, “é“, “de“,
“para“, “com“, “que“, remover acentuações, pontuações e caracteres especiais. Por último
deixar todas as letras minúsculas.

Após essa transformação do texto, um processo de Stemming foi utilizado para
reduzir as palavras para sua forma raiz, ou seja, deixar as palavras relacionadas no mesmo
radical comum entre elas, como por exemplo “correndo“, “correr“ e “correria“, essas
palavras se tornam “corr“. Esse processo ajuda a reduzir a quantidade de palavras do texto
e para isso foi utilizada a a função RSLPStemmer da biblioteca NLTK do Python.

O último passo foi criar uma representação numérica (bag of words) das palavras
mais importantes dos textos, essa representação mostra a quantidade de palavras que
estão contidas no conjunto de textos de todas as notícias. Para isso foi utilizado o modelo
estatístico TF-IDF, se alguma palavra aparece em muitas notícias, ela é considerada menos
importante, se a sua frequência nos textos é baixa, ela é considerada mais importante.

Foram consideradas apenas as 30 palavras mais importantes para a junção dos
dados com as informações do índice Bovespa. Os dados do índice são formados pelos
1 Exame é uma revista brasileira mensal, de circulação nacional especializada em economia,

negócios, política e tecnologia.



36

atributos:

• Data;

• Último: valor de fechamento do índice no final do dia de negociação, é o valor final
do dia anterior de acordo com todas as transações feitas no dia anterior;

• Abertura: valor do índice no início do dia de negociação, é o ponto de partida daquele
dia específico e pode ser comparado com o valor de fechamento do dia anterior para
ver a mudança inicial;

• Máxima: valor mais alto atingido pelo índice durante o dia de negociação, mostrando
os momentos de maior valorização;

• Mínima: valor mais baixo atingido pelo índice durante o dia de negociação, momento
de maior depreciação;

• Volume: volume total das negociações (número de ações transacionadas) no dia;

• Variação percentual: variação percentual do índice em relação ao valor de fechamento
do dia anterior.

Ainda, para uma análise a longo prazo, o período escolhido foi de uma semana entre
as datas de cada registro do índice e pode ser visto um exemplo na Tabela 2. Diante disso,
para juntar as informações das notícias com as informações do índice, foi necessário somar
os valores de cada atributo da bag of words das notícias para formar uma bag of words da
semana e normalizar os atributos do índice Bovespa para uma melhor convergência do
modelo. Contudo, para o atributo de variação percentual, que é a classe utilizada para o
modelo, foi considerado valores −1 para uma variação negativa, 0 para sem variação e 1
para variação positiva.

Data Último Abertura Mínimo Máximo Volume (M) Variação (%)

08/09/2024 134.882 134.574 135.879 133.591 38.66 0.23

01/09/2024 134.572 136.004 136.838 134.171 38.85 -1.05

25/08/2024 136.004 135.608 137.469 134.91 48.55 0.29

18/08/2024 135.608 133.953 137.04 133.953 45.66 1.24

11/08/2024 133.953 130.615 134.781 130.615 51.97 2.56

Tabela 2 – Números do índice Bovespa semanal

Com os dados das notícias e do índice Bovespa devidamente preparados e combina-
dos, um modelo LSTM é implementado. O LSTM é um tipo especializado de Rede Neural
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Recorrente para lidar com dados sequenciais e que aprende padrões em séries temporais.
Esse modelo foi escolhido por sua habilidade em capturar dependências a longo prazo, ou
seja, pode detectar como eventos e flutuações passadas influenciam tendências futuras.

Para aplicar esse modelo, a combinação dos dados foram transformados em uma
estrutura adequada para o treinamento. Com os dados normalizados, janelas de tempo
foram criadas. Cada janela contém os dados das últimas n semanas para prever o valor
para a semana seguinte. Após, houve a divisão do conjunto de dados entre treinamento,
validação e teste. O conjunto de treinamento foi usado para ajustar os pesos da rede. O
conjunto de validação foi usado durante o treinamento para monitorar o desempenho do
modelo e ajustar os hiperparâmetros, garantindo que ele não se ajuste demais aos dados de
treinamento. Por fim, o conjunto de teste foi usado para avaliar o desempenho do modelo
em dados não vistos.

A estrutura do modelo requer três dimensões de dados de entrada no seguinte
formato: número de amostras, tamanho da janela e número de atributos. Para cada semana,
o modelo recebe os atributos do índice e o conjunto de palavras mais importantes como
entrada.

A arquitetura do modelo foi construída utilizando a biblioteca Keras disponível no
TensorFlow do Python. Essa arquitetura consiste das seguintes camadas:

• Camada de entrada: o modelo começa com uma camada de entrada, que espera
dados na forma de (tamanho da janela n, número de atributos p). Esta forma indica
que o modelo usará dados das últimas n semanas para previsão;

• Camada LSTM: A primeira camada é uma camada LSTM com um 64 neurônios.
Esta camada aprende padrões temporais dos dados sequenciais ao longo das janelas
de n semanas;

• Camada densa: após a camada LSTM, uma camada densa com 8 neurônios e ativação
ReLU é adicionada. Esta camada ajuda a extrair padrões não lineares adicionais da
saída da cama LSTM;

• Camada de saída: a camada final é uma camada densa com um único neurônio e
ativação linear. Esta camada prevê o valor da próxima semana do índice Bovespa.

O modelo foi treinado utilizando o otimizador Adam, o qual é altamente eficaz
para redes neurais, junto com a função de perda chamada Erro Quadrático Médio (Mean
Squared Error) para medir a diferença entre o valor predito e o valor real. Logo após o
treinamento, o desempenho do modelo foi avaliado no conjunto de teste usando as seguintes
métricas:
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• Erro Absoluto Médio (MAE): a diferença absoluta média entre os valores previstos e
reais;

• Erro Quadrático Médio (MSE): a média das diferenças quadradas, que penaliza erros
maiores com mais pesos;

• Pontuação R2 (Coeficiente de Determinação): indica o quão bem os valores previstos
se ajustam aos dados reais, com valores variando de 0 a 1.
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5 AVALIAÇÃO EXPERIMENTAL

Nesta seção é descrito os resultados e discussões encontrados após a aplicação do mo-
delo de rede neural recorrente LSTM na combinação das notícias encontradas através de um
web-scraping no site de notícias www.exame.com e das informações semanais do índice Bo-
vespa de acordo com os dados coletados no site 1https://br.investing.com/indices/bovespa-
historical-data.

5.1 Conjuntos de Dados

As notícias foram armazenadas em arquivo csv para a aplicação da transformação
do conteúdo em uma representação vetorial chamada bag of words que contém as 30
palavras mais importantes do documento (conjunto total dos conteúdos das notícias). Os
radicais das palavras mais importantes foram: aind, alt, ano, aument, banc, bilho, brasil,
cent, cresc, dev, diss, econom, empr, govern, indic, inflaca, invest, mai, med, merc, nest,
nov, pal, pass, pib, pod, presid, segund, set e sobr. Cada radical é um atributo utilizado
no conjunto representado por um valor numérico de 0 a 1.

Como o período do índice foi escolhido como semanal, foi considerado os valores dos
atributos como semanais também. Com isso, no período de uma semana houve uma ou mais
notícias ou nenhuma notícia. Para isso, se houve apenas uma notícia, os valores das bag of
words foram mantidos os mesmos, para mais de uma notícia, os valores foram somados e
normalizados para valores entre 0 e 1, e para nenhuma notícia, foram considerados valores
nulos para cada atributo dos radicais.

Todos os dados do índice Bovespa foram normalizados levando em consideração
cada atributo separadamente, com exceção da variação percentual, o qual levou-se em
consideração a classe para a qual o modelo faria a previsão. Esse atributo teve como
valores: valor −1 para variação percentual negativa, valor 0 para sem variação percentual
e valor 1 para variação percentual positiva.

O conjunto de dados consistiu da concatenação dos dados do índice Bovespa e das
bag of words correspondentes naquele período da semana. O período total foi escolhido de
acordo com a disponibilidade das notícias, sendo a data mais antiga 24/06/2012 e a data
mais recente 08/09/2024, totalizando 11007 notícias e 638 semanas. Portanto, o conjunto
de dados tem 638 registros e 38 atributos, sendo um deles a classe Variação Percentual.
1 O Investing.com ofecere notícias e informações sobre investimentos
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5.2 Configuração Experimental

O conjunto foi configurado de forma a atender a entrada do modelo LSTM, alguns
atributos estavam na forma de texto. Foram retiradas as vírgulas e colado pontos pra
diferenciar os números decimais. Também, foram retirados os caracteres de porcentagem no
atributo Variação Percentual. Come exceção da Variação Percentual e Data, os atributos
foram normalizados conforme a equação (5.1)

X ′ = X − Xmin

Xmax − Xmin

(5.1)

onde X é o valor original do atributo a ser normalizado, Xmin é o menor valor do atributo
em todo o conjunto, Xmax é o maior valor do atributo em todo o conjunto e X ′ é o valor
do atributo depois de normalizado. Todos os valores ficaram entre 0 e 1.

Os atributos de notícias, formado pela bag of words com as 30 palavras mais
importantes também passaram pelo mesmo processo de normalização após a soma das
notícias semanais formando uma bag of words semanal. Alguns dos registros semanais
ficaram com os atributos da bag of words ficaram zerados, pois não tiveram notícias
relacionadas na semana.

Essa combinação foi organizada na forma de uma janela de dados de 4 semanas
anteriores para a entrada do modelo LSTM usada para prever o valor do índice da próxima
semana. O tamanho da entrada consiste das 4 semanas e 37 atributos do conjunto. O
modelo deve aprender com as sequências temporais, portanto cada entrada deve conter as
4 semanas anteriores e a próxima semana deve ser a saída do modelo e pode ser visto um
exemplo na Figura 3.

Figura 3 – Exemplo de janela deslizante
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Com a estrutura feita, os dados foram divididos em 70% para treinamento, 15%
para validação e 15% para teste. O treinamento foi utilizado para ajustar os pesos do
modelo, aprendendo em cada época as relações entre os atributos. Durante o treinamento,
o modelo foi avaliado periodicamente no conjunto de validação para medir a capacidade de
generalização e ajuste de hiperparâmetros, interrompendo o treinamento se o desempenho
do conjunto de validação piorar. Depois do termino de treinamento, o conjunto de teste
foi usado para avaliar o desempenho final do modelo.

A arquitetura do modelo composta pela camada de entrada, camada LSTM, camada
densa e com ativação ReLU e camada densa com ativação linear gerou o seguinte modelo:

Tipo de camada Forma de saída Número de parâmetros

LSTM (None, 64) 26,112

Dense (None, 8) 520

Dense (None, 1) 9

Tabela 3 – Arquitetura do modelo LSTM utilizado na previsão do índice Bovespa.

5.3 Resultados e Discussões

Após treinar o modelo, os resultados foram gerados e analisados conforme a função
de perda, a quantidade de época escolhida, a raiz quadrada do erro médio quadrático, a
validação da perda e a validação do RMSE. As épocas geraram uma passagem completa
por todo o conjunto de dados de treinamento e o modelo ajustou seus pesos com base no
erro que cometeu nas previsões. Os valores da primeira e da última época são mostrados
abaixo na tabela:

Época Loss RMSE Validation Loss Validation RMSE

1 0.6095 0.7799 0.4614 0.6793

100 0.2103 0.4584 0.2719 0.5214

Tabela 4 – Valores da primeira e última época.

O desempenho do modelo mostrou um bom progresso, pois tanto a perda quanto o
RMSE, nos dados de treinamento e validação, estão diminuindo. Sugerindo que o modelo
está aprendendo com os dados e não está acontecendo o overfitting. Nas primeiras 20
épocas, há uma redução significativa na perda e no RMSE, o que é comum em modelos que
estão começando a aprender. Logo após a taxa de diminuição se estabiliza, apresentando
normalidade.
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Com essa estabilidade, a partir de uma certa época, as melhorias na perda de
validação e RMSE se tornam menores. Podendo indicar que o modelo está se aproximando
de um ponto de saturação em termos de aprendizado. Apesar da perda e o RMSE nos
dados de validação foram diminuindo, a perda de validação começa a aumentar, podendo
ser um sinal de overfitting. Neste caso, paradas antecipadas e técnicas de regularização ou
até mesmo ajustes na arquitetura do modelo podem se tornar necessárias.

A partir dessa análise é possível ver as métricas de avaliação utilizadas, como a
matriz de confusão, a acurácia, recall, F1 score e suporte.

Classe Real Negativa Neutra Positiva

Negativa 0 0 0

Neutra 0 5 37

Positiva 0 7 46

Tabela 5 – Matriz de confusão para as previsões do modelo nas classes de tendências
negativas, neutras e positivas.

Com isso, o modelo mostrou que teve um acerto maior para a classe positiva em
relação as outras. Porém não conseguiu identificar nenhuma classe negativa no conjunto
de teste. O conjunto de dados, conforme as configurações escolhidas, mostrou que dos
638 registros, 298 deles possuem variação negativa, 340 com variação positiva e nenhum
registro sem variação.

Classe Precisão Recall F1-Score Suporte

0.0 0.42 0.12 0.19 42

1.0 0.55 0.87 0.68 53

Acurácia 0.54

Média Macro 0.49 0.49 0.43 95

Média Ponderada 0.49 0.54 0.46 95

Tabela 6 – Relatório de classificação para o modelo com as classes 0 e 1.

A acurácia indica que mais da metade dos dados foram classificados corretamente.
A precisão, sendo aproximadamente 49%, indica que, em média, o modelo não tem alta
confiança nas previsões corretas para todas as classes. Com o recall em quase 50%, esse valor
sugere que o modelo esta recuperando corretamente quase metade dos registros para cada
classe, sendo que a classe positiva apresenta melhores resultados. Com o desbalanceamento
dos acertos de cada classe, o resultado é refletido no valor da métrica F1-Score com 43.08%.
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6 CONCLUSÕES

Este trabalho teve como objetivo a criação de um modelo de previsão das tendências
do índice Bovespa utilizando um modelo de aprendiza de máquina chamado LSTM.
A relevância deste estudo está na capacidade de fornecer informações que podem ser
importantes para o comportamento do mercado financeiro, em específico o índice Bovespa,
podendo ser crucial para analistas e investidores do mercado de ações.

Os resultados mostraram que o conjunto de informações dos gráficos semanais do
índice Bovespa junto com as notícias que ocorreram na semana podem ser utilizados como
entrada para os modelos de aprendizado de máquina. E nesse modelo LSTM, com as
configurações apresentadas, chegou a uma precisão de 54%, indicando uma capacidade
moderada de prever as variações do índice. A matriz de confusão apresentada ajudou a
entender quais foram as classes que foram previstas pelo conjunto de testes, porém, não foi
possível o modelo prever as classes de variação negativa, prejudicando as outras métricas
de avaliação.

Apesar dos resultados apresentados, é importante mostrar quais são as possíveis
limitações do modelo utilizado, que um conjunto com poucos registros pode influenciar
no resultado, e também, utilizar algum método que possa balancear as classes e testar
novamente os resultados. Em estudos futuros, podem ser modificados essas informações,
coletar mais notícias de outras fontes de notícias e utilizar um conjunto maior do índice
Bovespa, podendo ser um conjunto diário.

Essas técnicas de aprendizado e a constante evolução do mercado financeiro, podem
ajudar analistas e investidores a terem mais confiança na hora de investir nesse mercado
de ações. Os modelos podem ser utilizados para outros índices também, podendo ser
necessário a modificação de parâmetros do modelo para melhor se ajustar as necessidades
do estudo.
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