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RESUMO 

A Inteligência Artificial tem recebido amplo destaque nos últimos anos, sobretudo pela 

capacidade de análise de dados e identificação de padrões. Na indústria do petróleo, 

seu uso expande com a vasta gama de experimentos e formulações que a envolvem, 

assim como a exploração de novos horizontes. O trabalho traz uma abordagem 

estatística e experimental que avalia a capacidade da utilização de Redes Neurais 

Artificiais do tipo Self-organizing Maps (SOM) na imputação de dados para 

identificação de topologia de escoamentos multifásicos de água-óleo-gás e cáculo de 

suas frações volumétricas em medições de densiometria gamma, o que ressalta sua 

importância para a indústria do petróleo, onde um dos grandes desafios ainda é medir 

propriedades de escoamentos multifásicos de óleo, gás e água. Os dados são 

imputados seguindo 4 diferentes metodologias, sendo elas imputação simples com o 

BMU (Best Matching Unit, ou neurônio mais representativo), proporcional com o BMU, 

com a média entre o BMU e o segundo candidato a BMU, e com a média entre o BMU 

e seus vizinhos, os resultados são comparados com base em coeficiente de 

determinação, Bias de Correlação, e acurácia na classificação. As metodologias 

baseadas no BMU, substituição simples e proporcional, se mostram mais adequadas.  

Palavras-chave: Engenharia de Petróleo. Redes Neurais. Self-organizing Maps. 

Medições em escoamento multifásico. 



 

 

ABSTRACT 

Artificial Intelligence has received a great deal of attention in recent years, mainly due 

to the capacity of data analysis and identification of patterns. In the oil industry, its use 

expands with the wide range of experiments and formulations involving it, as well as 

exploring new horizons. The assignment brings out a statistical and experimental 

approach that evaluates the ability of using Artificial Neural Networks of the Self-

organizing Maps (SOM) type to data imputation and classification of multiphase flows 

by gamma densiometry, which highlights its importance for the petroleum industry, 

where one of the great challenges is still to measure properties of multiphase flows of 

oil, gas and water. The data are imputed following 4 different methodologies, BMU 

replacement (most representative neuron), proportional BMU replacement, BMU and 

2nd mean replacement, and BMU and neighbors mean replacement, the results are 

compared based on determination coefficient, Correlation Bias, and classification 

accuracy. BMU-based methodologies, BMU replacement and proportional BMU 

replacement, are the most appropriate. 

  

Keywords: Petroleum Engineering. Neural Networks. Self-Organizing Maps. 

Measurements in multiphase flow. 
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1 INTRODUÇÃO 

A IA tem recebido amplo destaque nos últimos anos, sobretudo pela capacidade de 

análise de dados e identificação de padrões. Na Engenharia de Petróleo, com o 

recente interesse e entusiasmo da indústria em análises em tempo real de poços e 

campos inteligentes, a IA tem sido centro de atenções (BRAVO et al., 2014).  Pode-

se citar, a título de exemplo : redes neurais sendo utilizadas para gerar regressões 

otimizadas que permitem predizer produções de óleo (WEISS; BALCH; STUBBS, 

2002); técnicas de fuzzy ranking para rankear os dados de treinamento da rede em 

ordem de importância e aumentar sua taxa de acerto; e o aprendizado de máquina 

aplicado em métodos de análise real-time de poços em produção com integração de 

fuzzy e Multiphase Flow Metering, associados a bases de dados históricas por 

Knowledge Discovery in Databases (ALIMONTI; FALCONE, 2002). Incorporado  a tal 

tendência, o objetivo do presente trabalho é desenvolver um estudo prático e 

estatístico comparando diferentes modelos de imputação utilizados em redes neurais 

do tipo SOM (Self-Organizing Maps), aplicados a medições de densiometria gamma. 

Muitos dos estudos exploratórios na indústria do petróleo sofrem perdas de dados por 

falhas de equipamentos ou carecem de uma relação analítica entre medições diretas 

e informação desejada. Este é um problema que poderia ser amenizado utilizando 

técnicas de imputação de dados.  Os SOM têm sido amplamente utilizados em 

machine learning, pelo fato de serem baseados em aprendizagem não supervisionada 

e identificarem relações pouco triviais. Seu algoritmo  mapeia o conjunto de dados de 

treinamento por competitividade e resulta numa superfície que representa a 

distribuição da amostra num espaço bidimensional. 

O conceito de imputação envolve uma estimativa para preenchimento de variável 

faltante num vetor de dados n-dimensional de acordo com um critério baseado em 

suas demais (n-1) variáveis conhecidas. O uso de técnicas matemáticas clássicas 

permite preencher as lacunas com estimativas como regressões dos demais vetores 

e substituição pela média. Contudo, tomar decisões com base em dados gerados por 

métodos restritos como esses pode não ser seguro, uma vez que a conclusão 

apresentada carrega problemas como tendências e linearizações de dados. Os 

valores encontrados são tendenciosos, pois a abordagem para análise da amostra 
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não representa a população (GELMAN; HILL, 2007). As redes neurais aparecem 

então como um mecanismo que permite não só produzir estimativas livres de 

subjetividade, como também aproveitar a alta capacidade de processamento de dados 

das máquinas, dando a elas a habilidade de aprender sem serem explicitamente 

programadas, o que aumenta a escabilidade dos experimentos. 

O trabalho é dividido em 3 principais etapas. No capítulo de Revisão Bibliográfica são 

introduzidos os conhecimentos necessários para entendimento da Inteligência 

Artificial e suas bases aplicadas. Apresenta-se ainda o que consiste e os motivos para 

a realização de medições em escoamentos multifásicos e do funcionamento de redes 

neurais artificiais do tipo Self-Organizing Maps . Em seguida, já na seção de 

metodologia, se descreve como se desenvolve a geração de dados simulados para 

densiometria gamma em um escoamento multifásico de óleo, gás e água, divididos 

em grupos para treinamento de rede e imputação. Com a rede treinada, realiza-se um 

estudo prático de comparação entre diferentes métodos de imputação de dados que 

têm como base esse tipo de rede. Ao final do estudo, na discussão dos resultados, 

métricas estatísticas são utilizadas para comparar a capacidade das diferentes 

metodologias abordadas. 

1.1 Objetivo 

O objetivo geral do presente estudo é testar diferentes metodologias de imputação de 

dados faltantes utilizando Redes Neurais do tipo SOM em medições de fração de 

fases em escoamentos multifásicos com densiometria gamma e identificação de 

topologia do escoamento. Nesse contexto, é gerado um conjunto de dados sintéticos 

simulando valores de intensidade que seriam medidos, incluindo ruido, de alguns 

padrões de escoamentos multifásicos para treinar uma rede neural do tipo SOM para 

classificação e imputação. Com a rede treinada, é possível testar formas distintas para 

imputação e comparar seus resultados com métricas estatísticas. 
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1.2 Justificativa 

O presente trabalho apresenta quatro grandes motivos para sua realização : 

1. A imputação de dados permite a transformação de leituras de medidores em 

dados úteis sem utilização de formulações complexas, por simples comparação 

com padrões aprendidos. 

2. Soluciona problemas gerados por falhas em sensores, que poderiam exigir 

repetição de experimentos (MCCULLOCH; PITTS, 2017). Alguns exemplos 

com falhas em sensores mitigadas na indústria do petróleo são: em estudos de 

sísmica, sensores frequentemente falham e comprometem a análise de 

especialistas; Na oceanografia, cápsulas para coleta de água para análise são 

perdidas em alto mar, dadas as condições a que são submetidas. Uma 

repetição destes experimentos afetaria muito seus fluxos de caixa. Com 

métodos confiáveis em mãos para estimativa dos dados faltantes, o problema 

seria resolvido.  

3. Além de sua capacidade para estimativa de dados faltantes, a imputação pode 

ser utilizada como forma de predição de dados, esta é a terceria justificativa. É 

o que ocorre nos estudos meteorológicos onde, dadas as barreiras naturais que 

determinadas regiões impõem, há dificuldades em predizer o que pode 

acontecer entre as longas distâncias inter-estações. Nesse caso, confiabilidade 

também é um fator-chave a ser considerado.  

4. Por último, mas não menos importante, pode-se citar a contribuição da 

densiometria gamma para a indústria do petróleo, uma vez que medir 

propriedades de escoamentos multifásicos de óleo, água e gás em tubulações 

ainda é um dos grandes desafios (THORN; JOHANSEN; HJERTAKER, 2013). 

Destacam-se os benefícios de um perfeito conhecimento do escoamento em 

termos de: testes de poço, monitoramento da produção e medição submarina 

na cabeça de poços (MERINI, 2011). 
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2 REVISÃO BIBLIOGRÁFICA 

2.1 Aprendizado de máquinas 

Com a chegada dos computadores na década de 1940, a capacidade de cálculo para 

qualquer estudo foi aumentada a níveis que o cérebro humano não consegue 

acompanhar. As máquinas eram pré-programadas para executar processos 

rigorosamente sistemáticos até que Alan Turing publica seu artigo Computing 

machinery and intelligence, onde levanta a questão “Can machines think?” (TURING, 

2009). O estudo responde à pergunta com uma pesquisa onde o entrevistado deve 

distinguir uma conversa com uma pessoa e outra com um computador que lhes são 

apresentadas.  Machine Learning pode ser definida como “O campo de estudos que 

dá aos computadores a habilidade de aprender sem serem explicitamente 

programados” (SAMUEL, 2000). 

Podemos dividir os algoritmos em dois grandes grupos, de acordo com o tipo de 

aprendizado:  supervisionados e não supervisionados. No dataset de entrada do 

aprendizado supervisionado, já é conhecido como o output deve parecer, assumindo 

um relacionamento entre entradas e saídas. Por esse motivo, podemos separá-los em 

algoritmos de regressão, onde o objetivo é descobrir uma função contínua que mapeie 

a relação entre inputs e outputs com a atribuição de coeficientes para cada uma das 

variáveis, e algoritmos de classificação, onde o intuito é mapear os vetores inputs em 

categorias discretas pré-estabelecidas. 

Já no aprendizado não supervisionado, não é explícito o que fazer com o dataset, e 

nem é dito o que cada vetor representa.  O algoritmo deve identificar e separar os 

dados em diferentes clusters, cujo critério para agrupamento é a relação de 

semelhança entre vetores aprendida. 

2.1.1 Redes Neurais Artificiais (RNA) 

As chamadas Redes Neurais apareceram a primeira vez em 1943, num artigo onde o 

neurofisiologista Warren McCulloch e o matemático Walter Pitts estudam a atividade 

nervosa e suas relações com a comunicação entre neurônios no cérebro humano, 
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formulando a lógica por trás do processo e aplicado-a em um protótipo de circuito 

elétrico (WARREN; WALTER, 1943). Desde então, o algoritmo vem ganhando novas 

variações que o personalizam para diferentes tipos de aprendizado. 

Sua base é imitar como o cérebro humano funciona. Analogamente, uma Rede Neural 

possui neurônios que receberão inputs de uma camada de variáveis dependentes. Os 

inputs devem necessariamente passar por uma etapa de normalização que os 

colocará numa base entre 0 e 1. Isso garante a convergência da rede (LECUN et al., 

2012). A comunicação entre a camada de entradas e o neurônio é feita pela sinapse, 

etapa onde cada uma das variáveis é ponderada por um peso que melhor representa 

sua contribuição para a função ativação, que estima seu output contínuo, binário, ou 

categórico, com base nas variáveis inseridas. 

Figura 1 - Neurônio humano e neurônio artificial. 

Fonte: Adaptado de HAYKIN (2009). 

2.1.2 SOM 

Os Self-Organizing Maps (SOM) são redes neurais de aprendizado não 

supervisionado introduzidas por Teuvo Kohonen (KOHONEN, 1982). Os SOM 

aprendem por competição. Seus neurônios são organizados em uma camada uni ou 

bidimensional. É possível, mas não comum, o trabalho com camadas de maiores 

dimensões por questão de dificultar visualização dos dados em dimensões superiores. 
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Os neurônios são ordenados de maneira a criar um novo sistema de coordenadas 

para as diferentes variáveis de entrada (KOHONEN, 1998). Ainda, no SOM ocorre o 

mapeamento dos dados de entrada, de forma que cada vetor é representante de 

variáveis estatísticas intrínsecas da camada de entrada.  

A formulação de modelos neurais computacionais como os SOM se explica pela 

habilidade do cérebro humano de organizar informações sensoriais em mapas 

topológicos, o que abre espaço para um novo horizonte de métodos e ferramentas a 

serem estudados. Entre as informações sensoriais dessa forma mapeadas no córtex 

humano, pode-se citar o tato (MERZENICH et al., 1983), a visão (HUBEL; WIESEL; 

STRYKER, 1977), e a audição (SUGA; TSUZUKI, 1985). Assim dispostos, os blocos 

ficam disponíveis a nível de aprendizado para que, numa situação posterior,  sejam 

processados. 

Um mapa computacional é definido por uma matriz de neurônios, que representam 

conjuntos de variáveis cujos valores passaram por diferentes filtros ou processos, e 

que agem paralelamente no processamento de informações sensoriais (HAYKIN, 

2008). Consequentemente, o mapa transforma a amostra de entrada em uma 

distribuição de probabilidade implícita no posicionamento de vetores na rede 

(KNUDSEN, 1987). Pode-se citar duas características dos mapas computacionais que 

destacam o valor que agreegam ao processamento: em qualquer estágio, cada um 

dos vetores é preservado em seu próprio contexto, e dessa forma, interagindo com o 

ambiente envolto de informação relacionada, se realizam conexões sinápticas 

próximas que contribuem para sua preservação topológica.  

Um dos fatores cruciais para entendimento de seu funcionamento é o grid do mapa. 

Estes podem ser divididos em dois níveis de abrangência: os grids locais, que 

determinarão as vizinhanças próximas, que podem ser do tipo quadriculado ou 

hexagonal, apresentados na Figura 2; e o grid global do mapa, que representa uma 

visão mais ampla de sua estrutura dos dados (Ver figura 3). Cada quadrado ou cada 

hexágono terá uma vizinhança de neurônios, e o principal impacto da escolha do grid 

para um som está em sua sensibilidade a variações locais (SCHMIDT; REY; SKUPIN, 

2011). Tal característica pode ser observada na Figura 2 ao comparar as vizinhanças 

0, 1 e 2 nos dois grids: Neurônios de grid hexagonal estão sujeitos a influência de um 

número maior de vizinhos. 
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Figura 2 – Grids locais dos SOM. 

 

Fonte: (VESANTO et al., 1999). 

Figura 3 – Diferentes shapes de mapa. 

 

Fonte: (VESANTO et al., 1999). 

 

Para cada entrada de treinamento, após sua normalização são computadas as 

distâncias euclidianas em relação a cada vetor que compõe o mapa. O nó mais 

próximo ao vetor será seu BMU (Best Match Unity), também chamado neurônio 

vencedor. Computado o BMU, os pesos dos neurônios BMU e seus vizinhos são 

atualizados, assim cada neurônio BMU fica mais próximo de seu dado afim e a 

vizinhança acompanha mantendo uma hierarquia topológica. Ao terminar essa etapa, 

temos uma época de treinamento. A cada nova época, o raio de distância para 

atualização dos pesos diminui e a precisão do processo aumenta, obtendo um mapa 
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que se adapta à topologia do dataset de treinamento. Podemos separar a lógica de 

funcionamento dos SOM em 5 passos (HAYKIN, 2008): 

1. Inicialização: Geração de pesos iniciais aleatórios para os neurônios; 

2. Amostramento: Coleta de um amostra da camada de entrada para ativação do 

mapa; 

3. Computação de similaridade: Encontro do neurônio vencedor (BMU) pelo 

critério da mínima distância euclidiana; 

4. Atualização: Ajuste dos vetores de pesos sinápticos de todos os neurônios; 

5. Continuação: Até que nenhuma mudança significativa ocorra com o mapa, 

retorna-se para o passo 2.  

 

Uma vez que o SOM convergiu, obtém-se um mapa rico de informações estatísticas 

da camada de entrada. Biologicamente falando, a camada representa todos os 

neurônios e receptores que se distribuem pelo corpo humano, enquanto o mapa em 

si representa a camapa de neurônios que os mapeia no córtex cerebral. Pode-se citar 

algumas características importantes do mapa resultante: é uma redução, ou 

compressão, da dimensão da camada de entradas, o que justifica a comum adoção 

de uma função gaussiana para as sinapses entre vizinhanças; sua organização 

topológica destaca semelhanças entre vizinhos; dados mais recorrentes, ou seja, 

regiões da camada de entrada com maior número de representantes, são 

representadas por regiões maiores e mais nítidas no mapa; e naturalmente, como 

consequência de todas as demais características, o mapa seleciona as variáveis que 

melhor representam seus vetores de entrada. 

2.1.3 K-means 

Após o treinamento do SOM, o mapa é um importante input para a clusterização dos 

dados. Isto ocorre porque o próprio algoritmo dos SOM resulta numa pré-clusterização 

na organização topológica. O K-means auxilia na geração de grupos com 

características similares (FERLIN, 2008). O método k-means, agrupa os dados 

similares em clusters, representados por diferentes cores. É um método de 
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clusterização não hierárquico, ou seja, cujo número de clusters deve ser pré-definido. 

Podemos separar sua lógica de funcionamento em 5 passos: 

1. Determinar o número K de clusters; 

2. Selecionar aleatoriamente K pontos para serem os centróides dos clusters (não 

precisam estar em seu dataset); 

3. Atribuir cada um dos pontos no dataset ao centróide que tenha menor distância 

eucidiana dele; 

4. Calcular qual é o novo centróide para cada cluster de pontos (será o ponto com 

menor distância de todos os demais); 

5. Atribua novamente cada um dos pontos a um centróide. Se houver alguma 

mudança de centróide para determinado ponto, repita o passo 4. 

Figura 4 – Passos do algoritmo do K-means . 

 

Fonte : Adaptado (ULLMAN et al., 2014). 

A precisão do processo do k-means é muito dependente da escolha dos centros 

iniciais de clusters (MILLIGAN; COOPER, 1988). Para uma melhor performance, eles 

devem ser o máximo distintos que for possível. Uma boa estratégia para melhorar sua 

performance é utilizar métodos conhecidos como o de Ward, que divide os dados em 

grupos e utiliza como centro inicial dos clusters o vetor médio de cada um dos grupos. 

2.1.4 Imputação de dados 

Imputação é o nome dado para a estimativa de dados faltantes que comprometem 

datasets e dificultam análises de dados e a determinação de inferências estatísticas 
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(HU, M., SALVUCCI, S.M., COHEN, 1998). Os métodos mais comuns de imputação 

recorrem a procedimentos estatísticos, tais como médias e modas, o que gera a 

grande desvantagem de não considerar relações entre as diferentes variáveis, assim 

como diminuem a variância da amostra. Tendo isso em vista, outras metodologias 

mais complexas vêm sendo desenvolvidas de modo a considerar na substituição 

características intrínsecas ao meio em que o dado está inserido, o que se mostra muito 

eficiente para grandes conjuntos de dados (CARTWRIGHT; SHEPPERD; SONG, 

2003).  

O uso do SOM como imputador de dados tem sido explorado em diversas áreas de 

aplicação. Por não considerar a amostra inteira no cálculo da média para substituição, 

mas sim selecionar um número determinado de neurônios similares ao vetor, como 

seus vizinhos na rede, o algoritmo se mostra muito mais assertivo. Técnicas de 

substituição pelo vizinho mais próximo sao utilizadas para imputar dados 

pluviométricos em medições feitas na Malásia (MALEK et al., 2008) , regressão 

multivariada para estimar dados faltantes em datasets de qualidade do ar (JUNNINEN 

et al., 2004).  

A confiabilidade do método utilizado para imputação dependerá de diversos fatores, 

tais como variabilidade da amostra e número de pontos no dataset de treinamento. 

Em um algoritmo de SOM, vetores com variáveis faltantes são computados na rede 

substituindo as variáveis faltantes pelos valores em seu BMU.  Como as variáveis 

foram estimadas, pode-se dizer que o cálculo de distâncias carrega um erro induzido 

pela falta.  

Uma vez que as variáveis dos vetores são normalizadas em um intervalo de 0 a 1, o 

erro é limitado a √𝑛 − √(𝑛 − 𝑘), onde n é a dimensão dos vetores de entrada, e k o 

número de variáveis faltantes (R. RALLO, 2005). O erro de cálculo da distância é baixo 

para n>>k. É importante notar que  após um treinamento eficiente da rede, valores 

semelhantes são associados a vetores vizinhos. Isso implica que, se a falta de 

variáveis resulta em um erro no cálculo das distâncias, o BMU calculado para o vetor 

pode não ser o certo, mas será um de seus vizinhos. Dessa forma, o SOM pode ser 

utilizado para imputação de dados, uma vez que a degradação da topografia dos 

dados não estará linearmente correlacionada ao percentual de variáveis perdidas 

(SAMAD; HARP, 1992). 
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No estudo aqui apresentado, quatro metodologias são analisadas e comparadas: 

substituir pelo BMU encontrado para o vetor na rede (Eq. 1), algo já feito na literatura; 

substituir pelo BMU encontrado para o vetor na rede, multiplicado pelo fator de 

projeção do vetor sobre o BMU (Eq. 2); encontrar o BMU e o segundo neurônio 

candidato a BMU, fazer a média deles e imputar (Eq. 3); e encontrar o BMU, fazer 

uma média do BMU com demais pontos que formam o cluster, e imputar (Eq. 4). 

𝑋௡ = 𝑋௡஻ெ௎
                                                              (Eq. 1) 

𝑋௡ = 𝑋௡   
(஻ெ௎×஺ெை)  

|஻ெ௎|×|஺ெை|
                                                        (Eq. 2) 

𝑋௡ =
(௑೙ಳಾೆభା௑೙ಳಾೆమ)

ଶ
                                                      (Eq. 3) 

𝑋௡ =
∑ ௑೙೤

௠
                                                      (Eq. 4) 

Onde 𝑦  é o conjunto do BMU e seus vizinhos, e 𝑚  o número de vetores desse 

conjunto. 

2.1.4.1 Imputação global baseada na variável com valores faltantes 

O método de imputação global tem como base  cálculos estatísticos que levam em 

consideração todos os vetores do mapa para estimar valores desconhecidos. Estes 

podem ser determinísticos ou estocásticos. No primeiro caso, os valores são 

substituidos pelo centro da distribuição, enquanto numa imputação estocástica se 

introduz um ruído ao centro da distribuição, procurando diminuir o viés nos dados. 

Para variáveis contínuas, se utiliza a média – ver Eq. 5. Enquanto categóricas são 

estimadas pela moda – ver Eq. 6. A opção pela imputação global carrega duas 

grandes desvatagens. Primeiramente, em casos onde se tem grandes outliers, a 

média é distorcida e seu valor não repesenta fielmente a amostra. Ainda, ao realizar 

substituição pela media global, se está diminuindo a variância dos dados, enviesando 

análises que possam ser feitas (FERLIN, 2008). 

𝑋 =
∑ ௑ೖ

೙
ೖసభ

௡
                                                        (Eq. ) 

𝑋 = 𝑀𝑜(𝑋)                                                       (Eq. 6) 
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2.1.4.2 Imputação global baseada em demais variáveis 

A imputação global baseada em demais variáveis engloba técnicas principalmente de 

regressão, onde valores de variáveis faltantes são estimados por uma relação entre 

as variáveis ajustada globalmente. Algumas das desvantagens dessa abordagem 

para imputação são: quando se tem mais de um dado faltante para o mesmo vetor, o 

modelo carece de informações para solucionar todos seus graus de liberdade; e a 

metodologia considera a premissa de que existe uma relação ente as variáveis e ainda 

que as amostras completas coletadas representam essa relação, o que nem sempre 

é verdade (FERLIN, 2008; SOARES, 2007). 

 

2.1.4.3 Imputação local 

Ao delimitar um sub-conjunto da amostra que se assemelhe ao vetor com variáveis 

faltantes para realização da imputação, se realiza uma imputação local. Quando da 

utilização da técnica, o critério de escolha do subconjunto e seu número de 

participantes são cruciais para uma boa estimativa (FERLIN, 2008). Aqui se 

enquadram o presente estudo e as três técnicas que serão testadas. A medida de 

similaridade normalmente é feita pela distância euclidiana entre os vetores, o que 

justifica as escolhas das três técnicas escolhidas, uma vez que os primeiro e segundo 

candidatos a BMU, assim como seus vizinhos, são vetores escolhidos pelo algoritmo 

como similares ao vetor a ser imputado pelo critério distância. 

Entre as vantagens de uso da técnica, pode-se citar (FERLIN, 2008; MAGNANI, 2004; 

SOARES, 2007):  

1. Obtenção de uma amostra sem dados faltantes; 

2. Preservação das relações e distribuições implícitas na amostra; 

3. Não toma nenhuma premissa de distribuição específica; 

4. Mostra-se confiável mesmo com presença de ruídos e número elevado de 

dados; 
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Já quanto a desvantagens, pode-se citar: 

1. Alto custo computacional; 

2. Número de dados e escolha do sub-conjunto estão diretamente ligados à 

assertividade; 

3. A maneira de cálculo da similaridade afeta diretamente os resultados. 

 

2.2 Medições em escoamentos multifásicos 

O problema de conseguir medir propriedades de escoamentos multifásicos de óleo, 

água e gás em tubulações ainda é um dos grandes desafios na indústria do petróleo 

(THORN; JOHANSEN; HJERTAKER, 2013). Existem inúmeras metodologias na 

literatura para medição destas propriedades, cada uma com suas peculiaridades. 

Podemos separá-las em dois grandes grupos: aquelas que dependem e as que não 

dependem de homogeneizar a representação do escoamento. Uma das metodologias, 

o Tubo de Venturi, permite obter a vazão do escoamento a partir da variação de 

pressão medida em uma contração na tubulação. O medidor de placa de orifício 

aproveita-se do mesmo princípio, com a inserção de uma placa com furo conhecido 

na tubulação, o que  provoca perda de carga, mudando suas características.  

Ambas as metodologias, apesar de utilizadas por seu baixo custo, são afetadas pelas 

frações de fases e necessitam de seu conhecimento a priori. Além disso, técnicas que 

necessitam da homogeneização não funcionam perfeitamente com escoamentos com 

gases, já que momentos após a mistura, o escoamento começa a heterogeneizar 

(FALCONE; HEWITT; ALIMONTI, 2009).  A densiometria gamma e a impedância 

elétrica-magnética são duas metodologias não intrusivas utilizadas para análise de 

escoamentos multifásicos que não dependem de homogeneização (BELO; MENDES 

DE MOURA, 1999). Entre as vantagens de usá-las, pode-se citar a realização da 

análise sem depender da presença de um furo no trecho da tubulação a ser analisado 

ou da instalação de sistemas defletores que acabam mudando suas propriedades 

naturais.  Outra metodologia não-intrusiva é a tomografia por impedância elétrica, que 

utiliza de correntes e potenciais elétricos. A técnica é não-linear e mal posta, o que 

exige sua integração com outros métodos (PELLEGRINI, 2019). 
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2.2.1 Análise de escoamentos multifásicos por densiometria gamma 

Ao realizar medições por diversos raios distribuídos uniformemente no entorno de uma 

tubulação, a densiometria gamma permite calcular propriedades interessantes do 

fluxo que por ela passa,  tal como  a configuração das fases que o  compõem e suas 

respectivas frações (Figura 5). Uma análise confiável das propriedades de 

escoamentos em tubulações é de extrema importância para a indústria do petróleo, 

uma vez que o alto custo de unidades flutuantes leva a opção dos players pela 

construção de tubulações para condução das misturas multifáscas de óleo, água e 

gás até o continente.  

Figura 5 – Seção transversal em tubulação de transporte de  óleo . 

 

Fonte: Adaptado (BISHOP; JAMES, 1993). 

A análise feita parte do fenômeno de atenuação dos raios gamma ao passar por 

diferentes meios, que dependerá do tamanho da camada, do comprimento de onda 

com que se está trabalhando e da natureza do meio onde está propagando. A 

intensidade de um raio gamma após passar por uma camada do meio de comprimento 

d é dada por: 

 

𝐼 = 𝐼଴ × 𝑒ିఓ×ఘ×ௗ                                                   (Eq. 7) 

 

Onde 𝜌 é a densidade do material, μ o coeficiente mássico de absorção do material 

para o comprimento de onda utilizado e 𝐼଴ a intensidade do raio-gamma antes de 
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adentrar o meio. Tendo conhecidos μ, 𝜌 e coletando as itensidades observadas no 

experimento com raios gamma, encontra-se o comprimento da camada atravessada. 

Para o caso de uma tubulação onde escoa uma mistura de óleo, água e gás na 

vertical, e com o raio sendo emitido na direção diametral, temos três parcelas do termo 

exponencial, representadas respectivamente pelos sub-índices O, A e G, uma para 

cada fase: 

 

𝐼 = 𝐼଴ × 𝑒ିఓೀ×ఘೀ×ௗೀ × 𝑒ିఓಲ×ఘಲ×ௗಲ × 𝑒ିఓಸ×ఘಸ×ௗಸ                         (Eq. 8) 

 

A equação 8 possui três variáveis desconhecidas, os comprimentos de cada camada 

por onde o raio passa. Sendo assim, para determiná-las faz-se necessária a 

eliminação de mais dois graus de liberdade. Emitindo um segundo raio, de 

comprimento de onda diferente, de mesma direção e percorrendo o mesmo caminho 

na tubulação, obtém-se a equação 9. A última equação, que completa a solução do 

problema vem da propriedade geométrica de que a soma dos comprimentos de cada 

uma das fases deve ser igual ao diâmetro (2R) da tubulação: 

 

𝐼′ = 𝐼′଴ × 𝑒ିఓᇱೀ×ఘೀ×ௗೀ × 𝑒ିఓᇱಲ×ఘಲ×ௗಲ × 𝑒ିఓᇱಸ×ఘಸ×ௗಸ                       (Eq. 9) 

 

2𝑅 = 𝑑ை + 𝑑஺ + 𝑑ீ                                                 (Eq. 10) 

 

As  variáveis 𝜇 e 𝜌 são calibradas previamente. Com as equações 8, 9 e 10, ao obter 

as intensidades medidas para ao menos dois raios distintos passando pela tubulação, 

obtém-se os comprimentos das camadas . As frações para cada fase do escoamento 

𝐹ை , 𝐹஺ 𝑒 𝐹  observadas pelo raio serão dadas pela divisão de seu comprimento pelo 

diâmetro total da tubulação atravessada. Como o objetivo da análise é obter a fração 

de óleo por exemplo, e não o comprimento da camada, uma vez que essa dependerá 
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da configuração, são necessárias mais informações. Indica-se então um procedimento 

que permite obter as informações necessárias sem interferir no escoamento (BISHOP; 

JAMES, 1993).  

Figura 6 – Padrão de distribuição dos 6 raios do experimento. 

 

Fonte: BISHOP (1993). 

A alternativa consiste na utilização de múltiplos raios distribuídos numa configuração 

padronizada no entorno da tubulação (por exemplo Figura 6), de forma que 12 

medições sejam feitas em 6 caminhos distintos, adotando dois comprimentos de onda 

para cada raio. Com os dados obtidos, uma rede neural do tipo SOM, com a habilidade 

de reconhecer padrões previamente treinada é utilizada para reconhecer o tipo de 

escoamento observado. Aqui se tem mais uma motivação para a utilização da rede 

neural. Como ainda não é conhecida a distribuição das fases, o SOM, além de calcular 

suas frações, indica qual a topologia do escoamento, apenas com os dados da 

densiometria gamma e o treinamento adequado da rede.  

2.3 Validação de modelos 

2.3.1 Coeficiente de determinação 

O coeficiente de determinação, ou 𝑅ଶ, é uma métrica de validação de modelos que 

diz quanto o modelo encontrado representa a amostra (ZHANG, 2017). Pode ser 

entendido também como o grau em que a variabilidade do modelo explica a 

variabilidade da amostra (Eq. 11). No caso de comparação de representatividade de 

modelos, o modelo com maior coeficiente de determinação consegue representar 
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melhor a amostra. Portanto, no trabalho em questão, busca-se a metodologia que gere 

maior coeficiente de determinação. 

𝑅ଶ = 1 −
ௌொ೘೚೏

ௌொ೘೚೏
                                                       (Eq. 11) 

𝑆𝑄௠௢ௗ = ∑ (𝑦௜ − 𝑚𝑟௜)ଶ௡
ଵ                                                   (Eq. 12) 

𝑆𝑄௔௠௢ = ∑ (𝑦௜ − 𝑚𝑡௜)ଶ௡
ଵ                                                   (Eq. 13) 

Onde 𝑆𝑄௠௢ௗ e 𝑆𝑄௔௠௢ são as somas dos desvios quadráticos do modelo e da amostra, 

respectivamente, em relação a suas médias. 

2.3.2 Bias de Correlação 

Enquanto o coeficiente de determinação se apresenta como métrica para comparação 

de modelos em questão de variabilidade, o Bias de Correlação é uma métrica que 

indica quão distorcidas foram as correlações entre variáveis da amostra na construção 

do modelo (FERLIN, 2008). Portanto, busca-se no presente estudo a metodologia com 

menor Bias de Correlação em módulo (Eq. 16).  

 𝑂𝐶(𝐾ଵ) =
∑ ఘ(௄భ,௄೙) 

௡ିଵ
                                                     (Eq. 14) 

𝐴𝐶𝐵൫𝐾௢௥௜௚௜௡௔௟, 𝐾௜௠௣௨௧௔ௗ௢൯ = 𝑂𝐶൫𝐾௜௠௣௨௧௔ௗ௢൯ − 𝑂𝐶(𝐾௢௥௜௚௜௡௔௟)                (Eq. 15) 

𝐶𝐵 = ∑ 𝐴𝐶𝐵(𝐾௜௠௣௨௧௔ௗ௢ , 𝐾௢௥௜௚௜௡௔௟)
௡
௜ୀଵ                                     (Eq. 16) 

Onde 𝜌 é o coeficiente de correlação entre as variáveis, ACB o Bias de Correlação do 

atributo em questão, e CB o Bias de Correlação do modelo. 
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3 MATERIAL E MÉTODOS 

A metodologia proposta segue uma ordem que garante congruência entre suas etapas 

interdependentes. Para que a Rede Neural seja treinada, é necessária uma base de 

dados confiável e não tendenciosa, gerada por simulações de densiometria gamma. 

Quatro tipos diferentes de escoamento multifásico são abordados: homogêneo, 

estratificado, anular e anular inverso.  Treina-se então a rede até que seu mapa 

represente a amostra. Por fim, parte dos dados é ocultada e as capacidades de 

diferentes técnicas de imputação são comparadas, cumprindo então o objetivo do 

trabalho. 

3.1 Geração de datasets 

A formulação toma como base o embasamento teórico apresentado na seção 2.2 e 

adiciona a simulação ruídos, como a estatística de fótons para os dados medidos, 

aproximando-a a um experimento real. A geração de dados se dá em quatro passos:  

1. Escolha aleatória de uma das quatro configurações de 

escoamento adotadas; 

2. Escolha de números aleatórios entre 0 e 1 para 𝐹ଵ, 𝐹ଶ 𝑒 𝐹ଷ , de 

modo que 𝐹ை, 𝐹஺ 𝑒 𝐹  serão dados por: 

                    𝐹ை =
ிభ

ிభାிమశಷయ

; 𝐹஺ =
ிమ

ிభାிమశಷయ

; 𝐹 = 1 − 𝐹ை − 𝐹஺. 

3. Para cada um dos seis caminhos de raios, como ilustrado na 

figura 5, calcular os comprimentos das camadas para as 

configurações e fases escolhidas; 

4. Adicionar ruído aos comprimentos das camadas para considerar 

o efeito das estatísticas de fótons, que simula a distribuição de 

detecção de fótons por um sensor, tornando o dataset mais 

próximo de algo medido e não simulado. 

 

A definição de parâmetros a serem utilizados é etapa crucial do processo. Para 

garantir proximidade das simulações a medições reais, se adota os parâmetros 

apresentados na tabela 1 (BISHOP; JAMES, 1993). Cabe levantar que tais valores 
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ainda são sintéticos e arredondados. O escopo do estudo é mostrar que os SOM e a 

imputação de dados funcionam, o que abre espaço para utilizar os parâmetros de 

referência, mesmo que esses não respeitem padrões de significância. Dado que 

padrões de comportamento são estudados, a única premissa é que os valores de  𝜌 

sejam distintos entre as três fases. Quanto ao intervalo de tempo de medição, definido 

em 10 segundos, destaca-se a razão para o valor ser ótimo. Dado que as medições 

de intensidade de raios gamma depende diretamente da estatística de fótons, tal efeito 

deve ser considerado no planejamento do experimento, de forma a evitar que os 

dados sejam enviesados. Tendo isso em conta, experimentos analisando a predição 

de dados por redes neurais em função do intervalo de experimentação levam a um ∆𝑡 

ótimo de 10 segundos. A estatística de fótons entra ainda como diferenciadora de um 

experimento real para aquele simulado. De modo a aproximar a simulação em questão 

a um caso real, se  adiciona ruído à amostra, simulando uma distribuição de Poisson 

(BISHOP; JAMES, 1993). 

Tabela 1 –Parâmetros utilizados para simulação (BISHOP; JAMES, 1993). 

 

A metodologia descrita é programada e simulada em Python para os dados de 

treinamento da rede e, posteriormente, para geração da amostra com dados faltantes. 

Foi escolhido Python dada sua gama de módulos de cálculo já implementados de 

maneira eficiente para utilização. Essa eficiência é crucial, dada a grande quantizade 

de dados que será gerada.  

Para ambos os casos, são simulados dois valores iniciais de intensidade 𝐼଴
ଵ e 𝐼଴

ଶ ,  

dados pela equação 17, onde  𝑚𝑢௚ representa o decaimento gamma em gás e𝜌௚a 

densidade do fluido. A formulação assume que para cada raio emitido a intensidade 

Diameter (cm) 15.00
Decay for gamma 1 (cm^2/g) - water 0.220
Decay for gamma 1 (cm^2/g) - oil 0.197
Decay for gamma 1 (cm^2/g) - gas 0.213
Decay for gamma 2 (cm^2/g) - water 0.058
Decay for gamma 2 (cm^2/g) - oil 0.062
Decay for gamma 2 (cm^2/g) - gas 0.068
Density (g/cm^3) - water 1.05
Density (g/cm^3) - oil 0.9
Density (g/cm^3) - gas 0.2
Δt (s) 10
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máxima enxergada seja de 60000 𝑠ିଵ, num cenário onde o fluxo é monofásico, de 

gás.  

𝐼
଴ୀ

ల×೐ర

೐
(ష೘ೠ೒೙×ഐ೒×೏)

௡                                                     (Eq. 17) 

No desenvolvimento da formulação, preza-se pela utilização de medidas referenciais 

ao raio de tubulação simulado. Ainda, em busca de maior nitidez na distinção entre 

fases, posiciona-se os feixes de diferentes direções em seções distintas: horizontais 

posicionados a (+ 
ோ

ଶ
 ; 0 ; - 

ோ

ଶ
) em referência ao diâmetro, e verticais a (- 

ହோ

଺
 ; 0 ; - 

ோ

଺
) , 

conforme Figura 7. 

Figura 7 – Esquema representativo do sistema de feixes de raios gamma simulados 

 

Sorteadas as topologias, passa-se a tratar cada um dos casos e suas particularidades. 

A etapa 3 do processo de geração de dados deve ser tratada diferentemente, 

conforme apresentam as seções 3.1.1 a 4.1.3. Pada cada topologia encontra-se 

distintas possibilidades de caminhos dos feixes: passando por uma, duas ou três fases 

(Tabela 2).  
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Tabela 2 – Diferentes possibilidades para caminho dos feixes de raios gamma para cada 

topologia. 

 

Os valores de 𝐹ை, 𝐹஺ 𝑒 𝐹  obtidos  são transformados e inseridos na rede como 

intensidades observadas, utilizando as equações 8, 9 e 10, e não só a classificação 

dada, como os outputs calculados pelas redes, são comparados com os dados 

simulados. O algoritmo desenvolvido para simulação compreende todas as 

particularidades descritas para cada um dos tipos de escoamento. É gerado um 

dataset com 10000 amostras. Com a validação finalizada, 20% dos dados gerados 

são utilizados para treinamento da rede e os restantes para testes de imputação.  

3.1.1 Caso homogêneo 

Para escoamentos homogêneos, os comprimentos das camadas de óleo, gás e água 

serão dados em relação ao comprimento 𝑑  da tubulação que o raio atravessa por: 

𝑥ை = 𝐹ை × 𝑑, 𝑥஺ = 𝐹஺ × 𝑑, 𝑥ீ = 𝐹 × 𝑑                                 (Eq. 18) 
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3.1.2 Caso estratificado 

Figura 8 – Definição de variáveis para o escoamento estratificado . 

 

Fonte: (BISHOP; JAMES, 1993). 

Para escoamentos estratificados, faz-se necessário utilizar propriedades 

trigonométricas que relacionam as variáveis apresentadas na Figura 8, de forma a 

obter a equação transcendental Eq. 22. Para sua solução, foi utilizado um modulo de 

Python chamado scipy.optimize.brentq, que encontra uma raiz para a equação dentro 

de um intervalo entre 0 e R através do método de Brent de interpolação quadrática 

inversa. O método foi escolhido por otimizar a convergência de seu método iterativo 

de interpolação. 

𝑧ଶ + 𝑟ଶ = 𝑅ଶ                                                     (Eq. 19) 

𝑧 = 𝑅 ×  cos 𝛼                                                    (Eq. 20) 

ቀ
ଶఈ

ଶగ
ቁ 𝜋𝑅ଶ = 𝑓𝜋𝑅ଶ + 2 ቀ

௭௥

ଶ
ቁ                                            (Eq. 21) 

𝐺௙(𝑧) ≡ 𝑓𝜋 +
௭

ோ
ቀ1 −

௭మ

ோమቁ
ቀ

భ

మ
ቁ

− cosିଵ ቀ
௭

ோ
ቁ                                 (Eq. 22) 

Além do respeito dessa formulação, como nem todos os raios atravessarão a direção 

radial da tubulação, deve ser consideradas para simulação 6 possibilidades: 3 onde o 

raio atravessa apenas uma das fases, óleo, água ou gás; duas onde o raio atravessa 

duas das fases, óleo e água ou óleo e gás; e uma onde o raio atravessa todas as 

fases conforme ilustrado na Tabela 2. 
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3.1.3 Casos anular e anular inverso 

Para os casos anular e anular inverso, a formulação é a mesma que a do caso 

estratificado. A diferença está no número de possibilidades de caminhos que o raio 

pode fazer. Enquanto para o escoamento estratificado poderiam ser encontradas 6 

diferentes possibilidades, para os casos anular e anular inverso se tem apenas 3 

delas: passar por uma das fases; passar por duas das fases; ou passar pelas três 

fases. No caso anular, passar por apenas uma das fases significa atravessar somente 

a água, e por duas fases a água e o óleo. Já para escoamentos anulares inversos, 

apenas uma das fases é atravessar apenas gás, enquanto duas fases é passar por 

ele e o óleo. 

3.2 Implementação do SOM 

Apesar de o mercado de softwares disponibilizar plataformas que oferecem algoritmos 

de redes do tipo SOM já implementadas, com parâmetros ajustáveis, as mais 

utilizadas exigem compra de assinatura. Por tal motivo, optou-se novamente pela 

utilização de módulos open source já desenvolvidos em Python, mas cuja estrutura 

de entrada de dados, pré-tratamento da amostra e a definição de parâmetros da rede 

deveria der implementada. O modulo Somoclu (WITTEK et al., 2017)  mostrou-se mais 

adequado ao trabalho quanto a performance e flexibilidade para mudança de 

parâmetros. A topologia do mapa pode ser optada tanto como planar ou em toróide e 

o grid retangular ou hexagonal, assim como diversos outros parâmetros que podem 

ser ajustados de acordo com a necessidade do usuário. 

3.2.1 Mapa 

O mapa definido visa estrategicamente potencializar as análises a serem feitas 

ressaltando diferenças entre os diferentes tipos de topologia. Para tal, recorre-se à 

literatura em busca de melhores práticas e fórmas heurísticas para definição dos 

parâmetros a serem utilizados. O grid local escolhido é hexagonal, de forma a 

aumentar a sensibilidade dos neurônios a variações locais, conforme seção 2.1.2. 

Globalmente, opta-se pela estrutura toroidal, garantindo simetria na rede de forma que 
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neurônios de borda tenham todos o mesmo número de conexões. Quanto ao tamanho 

do mapa, este está diretemente ligado à acurácia e a interpretabilidade dos resultados. 

Um mapa muito pequeno resulta em baixa acurácia, enquanto um muito grande em 

baixa interpretabilidade (SHALAGINOV; FRANKE, 2015). Para cada grid a ser 

utilizado, existem na literatura exemplos de modelos que otimizam o tamanho do 

mapa. Para grids hexagonais, a Eq. 23  define seu número ótimo de neurônios em 

função no número  𝑚 de amostras no dataset de treinamento e a Eq.24 a proporção 

ótima entre dimensões no mapa, onde 𝐶𝑂𝑉௏ଵ e 𝐶𝑂𝑉௏ଶ são as máximas covariâncias 

observadas entre variáveis ainda nos dados de treinamento (VESANTO et al., 1999). 

O número de amostras utilizadas para treinamento é de 8000, o que resulta em 

aproximadamente 500 vetores ótimos. A rede utilizada é do tamanho 20X25. 

    𝑁º 𝑑𝑒 𝑛𝑒𝑢𝑟ô𝑛𝑖𝑜𝑠 = 5 × √𝑚                                         (Eq. 23) 

஽(௑)

஽(௒)
=

஼ை௏ೇభ

஼ை௏ೇమ
                                                     (Eq. 24) 

A função vizinhança adotada é a Gaussiana, que determinará a taxa de mudança da 

vizinhança ao entorno do neurônio vencedor. O coeficiente utilizado para a função é 

de 0.5. Ela influenciará diretamente o treinamento da rede, e em algoritmos aplicados 

para classificação, a função Gaussiana, combinada com uma taxa de aprendizado 

linear, geram ótima performance com baixo erro de quantização (NATITA; 

WIBOONSAK; DUSADEE, 2016). 

3.2.2 Treinamento 

Para treinamento da rede, faz-se necessária boa escolha de parâmetros, minimizando 

tedências por excesso ou falta de iterações, os chamados overfitting e underfitting. A 

literatura no assunto destaca a dificuldade de se criar modelos que criem padrôes de 

otimização nessa etapa de desenvolvimento do SOM. Para cada tipo de dados, de 

algoritmo e variância de dataset se obtém um resultado. Dessa forma, opta-se pela 

realização de testes de forma a atingir melhor performance com ajustes finos. Para 

tal, se realizam testes variando número de épocas de treinamento da rede, assim 

como as relações de ajuste de raio de vizinhanças, linear ou exponencial, e de escala. 

As métricas utilizadas como parâmetro para melhora de resultados são os erros 
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topográfico e quantitativo obtidos ao final do treinamento. O primeiro mede o nível de 

preservação da topologia local após redução de dimensão, pelo percentual de vetores 

cujos BMUs primários e secundários não são adjacentes , enquanto o segundo resulta 

do cálculo da distância média entre cada um dos nós e seus BMUs. Quanto menores 

os números, melhor é o algoritmo (CABANES; BENNANI, 2010).  

Tabela 3 – Erro topográfico observado em função da configuração de treinamento escolhida. 

 

Tabela 4 – Erro quantitativo observado em função da configuração de treinamento 

escolhida. 
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Os resultados para os testes realizados permitem observar que para números muito 

baixos de épocas de treinamento, tem-se alta variabilidade de resultados, 

consequentes de underfitting. A rede foi pouco treinada. Em contrapartida, para 

números muito altos, se observa algo semelhante, com os erros medidos assumindo 

valores elevados. Tendo isso em vista, opta-se por uma configuração que apresenta 

bom desempenho, com número de épocas de treinamento balanceado: 90 épocas, 

com atualização de escala linear e atualização de raios de vizinhança exponencial – 

vide Tabelas 3 e 4. 

Plots pós-treinamento mostram como seriam visualizados os mapas gerados após seu 

treinamento, e as mudanças provocadas por uma alteração no grid. As component 

planes permitem uma visualização da distribuição de cada uma das componentes dos 

vetores da amostra utilizada no mapa. As U-matrix, organizam o mapa de forma a 

representar as distâncias entre os neurônios vizinhos no SOM – Figura 9. Para análise 

mais detalhada dos resultados de treinamento da rede, elenca-se no Apêndice C seus 

demais resultados. 

Figura 9 – U-matrix  plotada, um heatmap cuja formatação indica as distâncias entre 

neurônios. 
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3.2.3 Imputação 

São abordados quatro tipos diferentes de imputação de variáveis faltantes. O primeiro 

deles segue o que é feito por muitos exemplos na literatura: a substituição do vazio 

por seus correspondentes do BMU encontrado para o vetor (Eq.1). Uma variável dele, 

ainda, é multiplicá-lo pela projeção do vetor sobre o BMU (Eq. 2). Já as duas outras 

metodologias combinam o SOM a métodos estatísticos para determinação dos valors 

imputados: substituição pela média entre os correspondentes no primeiro e no 

segundo candidato a BMU (Eq.3), e a substituição pela média entre os valores 

correspondentes no BMU e seus vizinhos (Eq.4). Para tal, exportam-se os dados da 

rede treinada e se realizam as estimativas. 

Entre os quatro métodos utilizados, aqueles que combinam o SOM com médias 

estatísticas promovem a imputação de valores que representam melhor sua 

vizinhança como um todo, aumenta-se a variância dos dados. Por outro lado, na 

substituição pelo BMU e em sua variação proporcional, não há incremento relevante 

de variância podendo induzir uma tendência. 

3.2.3.1 Validação  

A validação dos dados imputados segue duas principais metodologias de comparação 

estatística: o Coeficiente de Determinação e o que chama-se de Bias da Correlação. 

No desenvolvimento do estudo, adota-se função já implementada em Python para 

cálculo do coeficiente de determinação (eq. 11). Já para o Bias de Correlação, adota-

se metodologia apresentada na literatura (FERLIN, 2008) e também introduzida na 

revisão bibliográfica (eq. 14). 
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4 RESULTADOS 

4.1 Geração de dados de escoamento multifásico 

A geração de dados de medições de escoamento multifásico por densiometria gamma 

é etapa crucial para um bom desenvolvimento das demais etapas do estudo. 

Conforme metodologia, se adotam parâmetros elencados pela literatura (BISHOP; 

JAMES, 1993), sintéticos e arredondados. Algo importante a ser destacado é o fato 

de se ter dividido a amostra simulada em duas: uma para treinamento da rede, com 

8000 vetores, e outra para testes, com 2000 vetores. A razão para tal divisão está em 

evitar o overfitting, um viés que resultaria em falsas constatações.  

As variáveis para análise relacionadas à densiometria gamma são : as intensidades 

medidas para o primeiro comprimento de onda testado para os raios 1 a 6 (Figura 7), 

com nome seguindo o padrão de L11 a L16; as intensidades medidas para os mesmos 

raios, com o segundo comprimento de onda testado, seguindo o padrão de L21 a L26; 

as frações volumétricas de água, óleo e gás, respectivamente Fw, Fo e Fg; e quatro 

variáveis binárias que identificam a topologia do escoamento. 

Gráfico 1 – Histograma dos valores simulados de fração de água para treino (a) da rede 

neural e para testes (b). 

  

Para efeito de análise, elencam-se aqui as variáveis Fw e Fo, respecivamente, as 

frações de água e de óleo dos vetores gerados. Por serem resultados de cálculos que 

envolvem as variáveis medidas na densiometria, podem servir como norte de 

comparação entre as duas amostras geradas. Conforme ilustram os histogramas nos 

(a) (b) 
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gráficos 1.a e 1.b para o caso da fração de água, ambas as distribuições, tanto para 

a amostra de treinamento, quanto para a amostra de teste, têm a mesma forma. Os 

histogramas de fração de óleo encontram-se no Apêndice B. Pode-se dizer ainda que 

se aproximam da distribuição de Poisson. 

Figura 10 – Heatmap de correlação entre as variáveis na amostra gerada para treinamento 

da rede neural. 

 

Destaca-se ainda a correlação entre variáveis das amostras simuladas para treino 

(Figura 10). Para uma análise mais minuciosa, os valores da matriz encontram-se no 

Apêndice A. Conforme metodologia, para a geração de amostras de densiometria, 

duas medidas são simuladas para uma mesma trajetória de travessia da tubulação, 

com comprimentos de onda diferentes, a título de exemplo L11e L21. Entre tais 

variáveis , dada sua coincidência de caminho, se observa alta correlação – 

representada pelos pontos mais escuros do heatmap. Outra observação interessante 

está no fato de a topologia estratificada apresentar correlação relevante com as 
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variáveis L14 e L24, referentes à medida simulada para o raio horizontal superior, o 

que faz sentido, uma vez que o raio que passa por tal região, no caso  estratificado, 

estará atravessando apenas uma fase, o que permite fácil identificação da topologia. 

4.2 Imputação de dados 

Tem-se como principal objetivo a comparaçao de metodologias de imputação de 

dados faltantes de densiometria gamma utilizando redes neurais artificiais do tipo 

SOM. Quatro metodologias distintas foram implementadas: substituição pelo valor do 

BMU, pelo valor do BMU proporcional à projeção do vetor sobre seu BMU, pela média 

dos valores do primeiro BMU e do segundo, ou pela média entre o BMU e seus 6 

vizinhos. Entre os quatro métodos implementados, espera-se inicialmente que 

aqueles que combinam o SOM com médias estatísticas promovam a imputação de 

valores que representam melhor sua vizinhança, no entanto aumenta-se a variância 

dos dados. Por outro lado, na substituição pelo BMU espera-se que não ocorra 

incremento relevante de variância. 

As metodologias utilizadas para efeito de validação da imputação, seguindo esta 

lógica, são o coeficiente de determinação dos dados imputados em relação aos dados 

reais, que mede quanto o modelo consegue explicar os valores reais simulados 

(ZHANG, 2017), e o Bias de Correlação, que fornece uma medida de quanto o modelo 

distorce a correlação entre variáveis, em relação aos dados reais (FERLIN, 2008).  

Gráfico 2 – Plot de frações de óleo (a) e água (b)  imputados com BMU e dados originais.   
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Para a imputação por substituição pelos valores do BMU encontrado, se observa altos 

coeficientes de determinação (Gráfico 2). Quanto mais dispersos estiverem os dados 

em relação à linha diagonal do Gráfico 2, menor será sua representatividade em 

relação aos dados originais, o que não parece ser um grande problema no caso em 

questão. O BMU de um vetor é definido como o  vetor de menor distância euclidiana 

na rede em relação ao vetor a ser imputado. Sendo assim, apresenta-se como o vetor  

que melhor o representa. Partindo desse princípio, faz sentido imaginar que  uma 

estimativa dos dados a serem imputados por aqueles encontrados no BMU do vetor 

com dados faltantes seja uma boa alternativa, dado que toda a topologia da rede, com 

suas relações entre vizinhos e as considerações estatísticas que estão nelas 

implícitas, aponta para alta semelhança entre os dois vetores. Ainda, a metodologia 

apresentou o menor valor para Bias de Correlação entre as abordadas pelo presente 

estudo (Tabela 5). Quanto menor o Bias de Correlação, menor a distorção da 

correlação entre variáveis do modelo em relação aos dados originais. 

Tabela 5 – Bias de correlação observado em função da metodologia para imputação 

utilizada. 

 

Para efeito de comparação, analisa-se ainda a assertividade da metodologia de 

imputação na classificação da topologia do escoamento. Neste quesito, a imputação 

por substituição pelo BMU apresenta alto nível de eficácia. Para a população de 2000 

vetores de testes,  apenas 39 receberam classificação que não condiz com sua 

topologia original (Figura 11). Destaca-se ainda o fato de a maior quantidade dos erros 

se concentrar entre os casos homogêneo e anular. De acordo com a quantidade de 

fases que cada raio atravessa, torna-se mais difícil de diferenciar as duas topologias. 

No escoamento homogêneo, os raios necessariamente atravessarão 3 fases de 

escoamento, enquanto no caso anular nem sempre. Num caso anular onde todos os 

raios atravessam 3 fases de escoamento, como exemplo, não se tem este gatilho de 

distinção entre as duas topologias, o que torna menor sua assertividade. 
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Figura 11 – Matriz de classificação para os dados imputados por substituição pelo BMU. 

 

Analogamente à imputação por substituição pelo BMU, a metodologia por substituição 

pelos valores do BMU proporcionalmente à projeção do vetor sobre o BMU apresenta 

os resultados mais favoráveis. Dado que em muito dos casos o fator de proporção 

estimado pela projeção é aproximadamente 1, seus resultados são semelhanes. 

Iguais quando comparados sob o critério coeficiente de determinação (Gráfico 2) e 

matriz de classificação (Figura 12), e próximos ao comparar pelo critério Bias de 

Correlação, apresentado um valor  baixo de 2.30%  para a medida de distorção. 

Gráfico 2 – Plot de frações de óleo (a) e água (b)  imputados com BMU proporcional e dados 

originais.   
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Vale discutir que, para o escopo do presente estudo, não foram encontradas 

diferenças relevantes entre a imputação  por simples substituição pelo BMU e sua 

versão proporcional. No entanto, para amostras onde as variáveis apresentem maior 

variância, e cuja amostra de treinamento de treinamento não represente tal variância, 

passa-se a observar maior discrepância entre os dois métodos. Uma vez que o escopo 

do estudo é focado na densiometria gamma, que está bem representada pela 

abordagem tomada, opta-se por não explorar tal comparação, deixando espaço para 

futuros trabalhos. 

Figura 12– Matriz de classificação para os dados imputados por substituição pelo BMU  

proporcional. 

 

Passa-se então para as metodologias que combinam conceitos estatísticos como a 

média, para imputação. No caso mais próximo daqules primeiros já discutidos, a 

imputação pela média entre o BMU e o segundo candidato para BMU, se observa 

maior variância nos dados obtivos, e menor representação do modelo em relação a 

seus dados originais, com coeficientes de determinação menores (Gráfico 3). Uma 

vez que é combinada a média, e são considerados para imputação valores de um 

vetor que não é o que melhor o representa, do segundo candidato a BMU, aumenta-

se a variância dos resultados. Quanto ao Bias de correlação, a metodologia 

apresentou valor levemente maior que a substituição pelo BMU,  o que indica uma 

maior distorção da correlação original entre variáveis, e reforça a tese de aumento de 

variância. 
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Gráfico 3 – Plot de frações de óleo (a) e água (b)  imputados com BMU e segundo BMU e 

dados originais.   

 

Pelo critério classificação, a soma total de erros se mantém quando comparada aos 

casos de substituição pelo BMU (Figura 13). Porém, destaca-se a mudança na 

distribuição dos erros. Como comentado anteriormente, a distinção entre topologias 

homogênea e anular, em casos onde todos os raios passam por três fases por 

exemplo, pode ser difícil, o que faz com que apareçam exemplos de erros nesse 

sentido. O mesmo ocorre com o caso anular inverso, por sua semelhança à topologia 

anular, o que pode ser observado no caso em questão, onde 38 dos 39 erros de 

classificação podem ser discutidos por tal argumento.   

Figura 13– Matriz de classificação para os dados imputados por substituição pela média 

entre o BMU e o segundo candidato a BMU. 
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Chega-se então ao último caso abordado, e que apresenta os piores resultados: a 

imputação pela média entre o BMU e seus seis vizinhos, para o grid hexagonal da 

rede. A variâcia do modelo obtido pela metodologia é alta e sua média destoa da 

amostra original, o que é reforçado pelo coeficiente de determinação negativo 

observado (Gráfico 4). Para efeito de análise, o coeficiente de determinação negativo 

indica um modelo que não representa em nada a amostra original. Basicamente, o 

modelo se mostra pior que uma simples linha horizontal para explicar a amostra, o 

que exlica seu fator Ssreg  maior que Sstot , resultando no valor negativo. 

 

Gráfico 4 – Plot de frações de óleo (a) e água (b)  imputados com BMU e seus vizinhos e 

dados originais.   

 

 

 

Quanto ao critério Bias de Correlação, a metodologia também se destaca. Com o valor 

de 25.74% para o coeficiente, pode-se dizer que o modelo de imputação pela média 

entre o BMU e seus vizinhos provoca elevada distorção na amostra, as correlações 

entre variáveis são altamente enviesadas. Os  erros de classificação também se 

itensificam, com um total de 4420 erros, representando aproximadamente 55% da 

amostra de testes (Figura 14). Conclui-se, portanto, que tal metodologia apresentou 

os piores resultados, de acordo com as métricas de validação utilizadas. Além de não 

representar a amostra original, foi incrementada alta variabilidade aos dados, assim 

como distorcidas as correlações entre variáveis. A taxa de erro de classificação 

também foi intensificada.  
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Figura 14– Matriz de classificação para os dados imputados por substituição pela média 

entre o BMU e seus vizinhos. 

 

 

 

4.2.1. Verificação de overfitting de dados 

Para efeitos de comparação e destaque ao conceito de overfitting, realiza-se por fim 

um teste de imputação utilizando a mesma amostra para o treino da rede e para os 

testes. Isto testa a memória da rede em relação aos dados de treinamento. Como 

resultado, observa-se algo que não representa um uso real: um coeficiente de 

determinação de valor 1 perfeito. Ao conhecer previamente por completo a amostra 

que seria utilizada para imputação, ao invés de conhecer a amostra para aprender a 

imputar, o trabalho da rede se resume a um ajuste fino, ou seja, memorizar. Em termos 

práticos, de nada vale utilizar o resultado, uma vez que o sentido da imputação 

presume um não conhecimento da amostra por completo. Para evitar tal viés no 

estudo, opta-se por utilizar diferentes amostras para treino da rede e realização dos 

testes. 
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Gráfico 5 – Plot de frações de óleo (a) e água (b)  imputados com BMU e dados originais, 

treinando a rede com a mesma amostra utilizada para os testes de imputação.   
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5 CONCLUSÕES 

As métricas que utilizam o BMU para imputação, portanto, mostram-se mais eficazes 

para o processo de imputação de dados faltantes em medições de densiometria 

gamma. Dado que o BMU é por definição o vetor que mais se assemelha ao vetor em 

questão, pelo critério distância euclidiana, faz sentido a constatação. Além de sua 

maior acurácia, a metodologia  provoca menores distorções nas relações entre 

variáveis como um todo. No caso da densiometria gamma, a metodologia se mostra 

eficaz para classificação da topologia de escoamento sem a utilização da série de 

formulas comumente utilizadas na indústria para o mesmo fim, o que comprova a 

usabilidade da metodologia em larga escala. A imputação pela média entre o BMU e 

seus vizinhos, por outro lado, se mostra ineficaz. O modelo encontrado não representa 

os dados originais, assim como provoca distorções de correlações e aumento de 

variância. 

O escopo do presente trabalho foca na comparação e aplicabilidade de quatro 

metodologias de imputação de dados faltantes em amostras de medições de 

densiometria gamma, em especial na indústria do petróleo, abordando escoamentos 

mono, bi e trifásicos de água, óleo e gás. Sendo assim, abre espaço para futuros 

estudos que abordem e respondam perguntas que não foram exploradas pois desviam 

do objetivo: a comparação de metodologias para imputação aplicadas à densiometria 

gamma. A título de exemplo: testes com tamanhos diferentes de mapas, aumentando 

ou diminuindo a concentração de unidades topológicas; testes com amostras de 

experimentos que tenham como característica uma maior variância; testes de 

diferentes tamanhos de amostra; e a comparação de outras metodologias 

encontradas na literatura. 

Por ora, as métricas coeficiente de determinação e Bias de Correlação permitem 

elencar a substituição pelo BMU como a técnica que apresenta melhor performance e 

eficácia entre as 4 estudadas.  Em segundo e terceiro lugares, respectivamente, 

encontram-se a substituição proporcional pelo BMU e a média entre o BMU e o 

segundo candidato a BMU. Por fim, destaca-se a pior performance da substituição 

pela média entre o BMU e seus vizinhos. A técnica, além de distorcer as relações 

entre variávies, em nada representou seus dados originais. 
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APÊNDICE A 

Tabela de correlações entre variáveis para a amostra de medições de densiometria 

gamma gerada para realização do estudo. Tonalidades vermelhas indicam 

correlações negativas, enquanto as verdes correlações altas positivas. Conforme 

descrito na análise do heatmap, L11e L21. Entre variáveis como L11 e L21, de raios 

que atravessam o mesmo caminho, se observa alta correlação. 
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APÊNDICE B 

Gráfico 6 – Histograma dos valores simulados de fração de óleo para treino da rede neural.

 

Gráfico 7 – Histograma dos valores simulados de fração de óleo para testes.
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APÊNDICE C 

Figura 15– Clusters identificados após o treinamento da rede. 

 

Figura 16– Component plots resultantes após o treinamento da rede. 

 

Na a Figura 16, cada uma das componentes representa uma das variáveis. Da 

componente 1 à componente 5, as medições realizadas para o primeiro comprimento 
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de onda simulado conforme Figura 7, sendo a componente 0 a variável L11. Da 

componente 6 à 13, as medições enxergadas para o segundo comprimento de onda 

simulado. Por fim, as componentes 14 a 17 represenam as quatro topologias de 

escoamento estudadas, respectivamente homogêneo, anular, anular inverso e 

estratificado. 
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Resumo 

O trabalho traz uma abordagem estatística e experimental que avalia a capacidade da utilização de Redes 
Neurais Artificiais do tipo Self-organizing Maps (SOM) na imputação de dados para identificação de 
topologia de escoamentos multifásicos de água-óleo-gás e cáculo de suas frações volumétricas em 
medições de densiometria gamma, o que ressalta sua importância para a indústria do petróleo, onde um 
dos grandes desafios ainda é medir propriedades de escoamentos multifásicos de óleo, gás e água. Os 
dados são imputados seguindo 4 diferentes metodologias, sendo elas imputação simples com o BMU 
(Best Matching Unit, ou neurônio mais representativo), proporcional com o BMU, com a média entre o 
BMU e o segundo candidato a BMU, e com a média entre o BMU e seus vizinhos, e seus resultados são 
comparados com base em coeficiente de determinação, Bias de Correlação, e acurácia na classificação. 
As metodologias baseadas no BMU, substituição simples e proporcional, se mostram mais adequadas.  

Abstract 

The assignment brings out a statistical and experimental approach that evaluates the ability of using 
Artificial Neural Networks of the Self-organizing Maps (SOM) type to data imputation and 
classification of multiphase flows by gamma densiometry, which highlights its importance for the 
petroleum industry, where one of the great challenges is still to measure properties of multiphase flows 
of oil, gas and water. The data are imputed following 4 different methodologies, BMU replacement 
(most representative neuron), proportional BMU replacement, BMU and 2nd mean replacement, and 
BMU and neighbors mean replacement, and their results are compared based on determination 
coefficient, Correlation Bias, and classification accuracy. BMU-based methodologies, BMU 
replacement and proportional BMU replacement, are the most appropriate. 

1. Introdução 

A Inteligência Artificial tem recebido amplo destaque nos últimos anos, sobretudo pela capacidade de 
análise de dados e identificação de padrões. Na Engenharia de Petróleo, com o recente interesse e 
entusiasmo da indústria em análises em tempo real de poços e campos inteligentes, a IA tem sido centro 
de atenções (BRAVO et al., 2014).  Incorporado a tal tendência, o objetivo do presente trabalho é 
desenvolver um estudo prático e estatístico comparando diferentes modelos de imputação utilizados em 
redes neurais do tipo SOM (Self-Organizing Maps) aplicados a medições de densiometria gamma. Os 
SOM têm sido amplamente utilizados em machine learning, destacando-se pelo fato de não serem 
supervisionados e identificarem relações pouco triviais. Seu algoritmo  mapeia o conjunto de dados de 
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treinamento por competitividade e resulta numa superfície que representa a distribuição da amostra num 
espaço bidimensional. 
O conceito de imputação envolve a estimativa para preenchimento de uma variável faltante num vetor 
de dados n-dimensional de acordo com um critério baseado em suas demais (n-1) variáveis conhecidas. 
O uso de técnicas matemáticas clássicas permite preencher tais lacunas regressões dos demais vetores e 
substituição pela média. No entanto, os valores encontrados são tendenciosos, pois a abordagem para 
análise da amostra não representa a população (GELMAN; HILL, 2007). As redes neurais aparecem 
então como um mecanismo que permite não só produzir estimativas livres de subjetividade, como 
também aproveitar a alta capacidade de processamento de dados das máquinas. 
O estudo é dividido em 3 principais etapas. Nas Referências Bibliográficas são introduzidos o 
funcionamento de redes neurais artificiais do tipo Self-Organizing Maps e o que consiste e os motivos 
para a realização de medições em escoamentos multifásicos. Em seguida, já na seção de metodologia, 
desenvolve-se como se desenvolve a geração de dados simulados para densiometria gamma em um 
escoamento multifásico de óleo, gás e água, divididos em grupos para treinamento de rede e imputação. 
Com a rede treinada, realiza-se um estudo prático de comparação entre diferentes métodos de imputação 
de dados que têm como base o SOM. Ao final do estudo, na discussão dos resultados, métricas 
estatísticas são utilizadas para comparar a capacidade das diferentes metodologias abordadas. 

2. Revisão Bibliográfica 

2.1. Self-Organizing Maps 

Os Self-Organizing Maps (SOM) são redes neurais de aprendizado não supervisionado introduzidas por 
Teuvo Kohonen (KOHONEN, 1982), que aprendem por competição. Seus neurônios são organizados 
em uma camada uni ou bidimensional e ordenados de maneira a criar um novo sistema de coordenadas 
para as diferentes variáveis de entrada (KOHONEN, 1998). Ainda, em sua performance ocorre o 
mapeamento dos dados de entrada, de forma que cada vetor é representante de variáveis estatísticas 
intrínsecas da amostra. Em qualquer estágio, cada um dos vetores é preservado em seu próprio contexto, 
e dessa forma, se realizam conexões sinápticas próximas que contribuem para sua preservação 
topológica.  

2.2. Imputação de dados 

Imputação é o nome dado para a estimativa de dados faltantes que comprometem datasets e dificultam 
análises de dados e a determinação de inferências estatísticas (HU, M., SALVUCCI, S.M., COHEN, 
1998). O uso do SOM como imputador de dados tem sido explorado em diversas áreas de aplicação. Por 
não considerar a amostra inteira no cálculo da média para substituição, mas sim selecionar um número 
determinado de neurônios similares ao vetor, o algoritmo se mostra muito mais assertivo que outras 
metodologias puramente estatísticas. 
No estudo aqui apresentado, quatro metodologias são analisadas e comparadas: substituir pelo BMU 
encontrado para o vetor na rede (Eq. 1), algo já feito na literatura; substituir pelo BMU encontrado para 
o vetor na rede, multiplicado pelo fator de projeção do vetor sobre o BMU (Eq. 2); encontrar o BMU e o 
segundo neurônio candidato a BMU, fazer a média deles e imputar (Eq. 3); e encontrar o BMU, fazer 
uma média do BMU com demais pontos que formam o cluster, e imputar (Eq. 4). 

𝑋௡ = 𝑋௡஻ெ௎
                                                                           (1) 

𝑋௡ = 𝑋௡   
(஻ெ௎×஺ெை)  

|஻ெ௎|×|஺ெை|
                                                                 (2) 

𝑋௡ =
(௑೙ಳಾೆభା௑೙ಳಾೆమ)

ଶ
                                                                 (3) 

𝑋௡ =
∑ ௑೙೤

௠
                                                                  (4) 
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Onde y é o conjunto do BMU e seus vizinhos, e m o número de vetores desse conjunto. 

2.3. Medições em escoamentos multifásicos 

Conseguir medir propriedades de escoamentos multifásicos de óleo, água e gás em tubulações ainda é 
um dos grandes desafios na indústria do petróleo (THORN; JOHANSEN; HJERTAKER, 2013). 
Existem inúmeras metodologias na literatura para medição destas propriedades, cada uma com suas 
peculiaridades. A densiometria gamma e a impedância elétrica-magnética são duas metodologias não 
intrusivas utilizadas para análise de escoamentos multifásicos que não dependem de homogeneização 
(BELO; MENDES DE MOURA, 1999). Entre as vantagens de usá-las, pode-se citar a realização da 
análise sem depender da presença de um furo no trecho da tubulação a ser analisado ou da instalação de 
sistemas defletores que acabam mudando suas propriedades naturais. Ao realizar medições por diversos 
raios distribuídos uniformemente no entorno de uma tubulação, a densiometria gamma permite calcular 
propriedades interessantes do fluxo que por ela passa, tal como  a configuração das fases que o  
compõem e suas respectivas frações (Figura 1).  

 
Figura 1 - Seção transversal em tubulação de transporte de  óleo. Fonte: Adaptado (BISHOP; JAMES, 1993). 

3. Metodologia 

3.1. Geração de dados 

A geração de dados de medições de densiometria gamma se baseia em metodologia apresentada na 
literatura (BISHOP; JAMES, 1993). 

3.2. Escolha do Mapa 

O mapa definido visa estrategicamente potencializar as análises a serem feitas ressaltando diferenças 
entre os diferentes tipos de topologia. Para tal, recorre-se à literatura em busca de melhores práticas e 
fórmas heurísticas para definição dos parâmetros a serem utilizados. O grid local escolhido é hexagonal, 
de forma a aumentar a sensibilidade dos neurônios a variações locais. Globalmente, opta-se pela 
estrutura toroidal, garantindo simetria na rede de forma que neurônios de borda tenham todos o mesmo 
número de conexões. Quanto ao tamanho do mapa, este está diretemente ligado à acurácia e a 
interpretabilidade dos resultados. Para grids hexagonais, a Eq. 5  define seu número ótimo de neurônios 
em função no número  𝑚 de amostras no dataset de treinamento e a Eq. 6 a proporção ótima entre 
dimensões no mapa, onde 𝐶𝑂𝑉௏ଵ e 𝐶𝑂𝑉௏ଶ são as máximas covariâncias observadas entre variáveis ainda 
nos dados de treinamento (VESANTO et al., 1999). O número de amostras utilizadas para treinamento é 
de 2000, o que resulta em aproximadamente 230 vetores ótimos. 

    𝑁º 𝑑𝑒 𝑛𝑒𝑢𝑟ô𝑛𝑖𝑜𝑠 = 5 × √𝑚                                               (5) 
஽(௑)

஽(௒)
=

஼ை௏ೇభ

஼ை௏ೇమ
                                                            (6) 

A função vizinhança adotada é a Gaussiana, que determinará a taxa de mudança da vizinhança ao 
entorno do neurônio vencedor. O coeficiente utilizado para a função é de 0.5. Ela influenciará 
diretamente o treinamento da rede, e em algoritmos aplicados para classificação, a função Gaussiana, 
combinada com uma taxa de aprendizado linear, geram ótima performance com baixo erro de 
quantização (NATITA; WIBOONSAK; DUSADEE, 2016). 
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3.3. Imputações 

São abordados quatro tipos diferentes de imputação de variáveis faltantes. O primeiro deles segue o que 
é feito por muitos exemplos na literatura: a substituição do vazio por seus correspondentes do BMU 
encontrado para o vetor (Eq.1). Uma variável dele, ainda, é multiplicá-lo pela projeção do vetor sobre o 
BMU (Eq. 2). Já as duas outras metodologias combinam o SOM a métodos estatísticos para 
determinação dos valors imputados: substituição pela média entre os correspondentes no primeiro e no 
segundo candidato a BMU (Eq.3), e a substituição pela média entre os valores correspondentes no BMU 
e seus vizinhos (Eq.4). Para tal, exportam-se os dados da rede treinada e se realizam as estimativas. 
Entre os quatro métodos utilizados, aqueles que combinam o SOM com médias estatísticas promovem a 
imputação de valores que representam melhor sua vizinhança como um todo, aumenta-se a variância dos 
dados. Por outro lado, na substituição pelo BMU e em sua variação proporcional, não há incremento 
relevante de variância podendo induzir uma tendência. 

3.4. Validação 

A validação dos dados imputados segue duas principais metodologias de comparação estatística: o 
Coeficiente de Determinação e o que chama-se de Bias da Correlação. No desenvolvimento do estudo, 
adota-se função já implementada em Python para cálculo do coeficiente de determinação. Já para o Bias 
de Correlação, adota-se metodologia apresentada na literatura (FERLIN, 2008). 

4. Resultados 

4.1. Imputação de dados 

O presente estudo tem como principal objetivo a comparaçao de metodologias de imputação de dados 
faltantes de densiometria gamma utilizando redes neurais artificiais do tipo SOM. Quatro metodologias 
distintas foram implementadas: substituição pelo valor do BMU, pelo valor do BMU proporcional à 
projeção do vetor sobre seu BMU, pela média dos valores do primeiro BMU e do segundo, ou pela 
média entre o BMU e seus 6 vizinhos. Entre os quatro métodos implementados, espera-se inicialmente 
que aqueles que combinam o SOM com médias estatísticas promovam a imputação de valores que 
representam melhor sua vizinhança, no entanto aumenta-se a variância dos dados. Por outro lado, na 
substituição pelo BMU espera-se que não ocorra incremento relevante de variância. 
 

Gráfico 1 – Plot de frações de óleo (a) e água (b)  imputados com BMU e dados originais.   

 
Para a imputação por substituição pelos valores do BMU encontrado, se observa altos coeficientes de 
determinação (Gráfico 1). O BMU de um vetor é definido como o  vetor de menor distância euclidiana 
na rede em relação ao vetor a ser imputado. Partindo desse princípio, faz sentido imaginar que  uma 
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estimativa dos dados a serem imputados por aqueles encontrados no BMU do vetor com dados faltantes 
seja uma boa alternativa, dado que toda a topologia da rede, com suas relações entre vizinhos e as 
considerações estatísticas que estão nelas implícitas, aponta para alta semelhança entre os dois vetores. 
Ainda, a meodologia apresentou o menor valor para Bias de Correlação entre as abordadas pelo presente 
estudo. Quanto menor o Bias de Correlação, menor a distorção da correlação entre variáveis do modelo 
em relação aos dados originais. Para a substituição pelo BMU e BMU proporcional, encontraram-se os 
menores valores de, respectivamente, 2.29% e 2.30%. Para a suabstituição pela media entre o BMU e o 
segundo, 3.07%. Já a imputação pela media entre o BMU e seus vizinhos apresentou a maior distorção, 
um Bias de Correlação de 25.74%. 
Para efeito de comparação, analisa-se ainda a assertividade da metodologia de imputação na 
classificação da topologia do escoamento. Para a população de 8000 vetores de testes,  apenas 39 
receberam classificação que não condiz com sua topologia original. Destaca-se ainda o fato de a maior 
quantidade dos erros se concentrar entre os casos homogêneo e anular. De acordo com quantas fases 
cada raio atravessa, torna-se mais difícil de diferenciar as duas topologias. No escoamento homogêneo, 
os raios necessariamente atravessarão 3 fases de escoamento, enquanto no caso anular nem sempre. 
Num caso anular onde todos os raios atravessam 3 fases de escoamento, como exemplo, não se tem este 
gatilho de distinção entre as duas topologias, o que torna menor sua assertividade. 
Analogamente à imputação por substituição pelo BMU, a metodologia por substituição pelos valores do 
BMU, proporcionalmente à projeção do vetor sobre o BMU, apresenta os resultados mais favoráveis. 
Dado que em muito dos casos o fator de proporção estimado pela projeção é aproximadamente 1, seus 
resultados são semelhanes. Iguais quando comparados sob o critério coeficiente de determinação, de 
0.786 para Fo e 0.881 para Fw, e matriz de classificação , apresentando 39 erros, e próximos ao 
comparar pelo critério Bias de Correlação, apresentado um valor  baixo de 2.30%  para a medida de 
distorção. 
Passa-se então para as metodologias que combinam conceitos estatísticos como a média, para 
imputação. No caso mais próximo daqules primeiros já discutidos, a imputação pela média entre o BMU 
e o segundo candidato para BMU, se observa maior variância nos dados obtivos, e menor representação 
do modelo em relação a seus dados originais, com coeficientes de determinação menores, de 0.774 para 
Fo e 0.875 para Fw. Uma vez que é combinada a média, e são considerados para imputação valores de 
um vetor que não é o que melhor o representa, do segundo candidato a BMU, aumenta-se a variância 
dos resultados. Quanto ao Bias de correlação, a metodologia apresentou valor levemente maior que a 
substituição pelo BMU,  o que indica uma maior distorção da correlação original entre variáveis, e 
reforça a tese de aumento de variância. 
Quanto ao critério classificação, a soma total de erros de classificação se mantém quando comparada aos 
casos de substituição pelo BMU, com 39 erros. Porém, destaca-se a mudança na distribuição dos erros. 
Como comentado anteriormente, a distinção entre topologias homogênea e anular pode ser difícil. O 
mesmo ocorre com o caso anular inverso, por sua semelhança à topologia anular, o que pode ser 
observado no caso em questão, onde 38 dos 39 erros de classificação podem ser discutidos por tal 
argumento.   
Chega-se então ao último caso abordado, e que apresenta os piores resultados: a imputação pela média 
entre o BMU e seus seis vizinhos, para o grid hexagonal do presente estudo. A variâcia do modelo 
obtido pela metodologia é alta e sua média destoa da amostra original, o que é reforçado pelo coeficiente 
de determinação negativo observado de -0.336 para Fo e -0.005 para Fw. Para efeito de análise, o 
coeficiente de determinação negativo indica um modelo que não representa em nada a amostra original. 
Basicamente, o modelo se mostra pior que uma simples linha horizontal para explicar a amostra, o que 
exlica seu fator Ssreg  maior que Sstot , resultando no valor negativo. 
Quanto ao critério Bias de Correlação, a metodologia também destaca. Com o valor de 25.74% para o 
coeficiente, se pode dizer que o modelo de imputação pela média entre o BMU e seus vizinhos provoca 
elevada distorção na amostra, as correlações entre variáveis são altamente enviesadas. Os  erros de 
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classificação também se itensificam, com um total de 4420 erros, representando aproximadamente 55% 
de nossa amostra de teste. Conclui-se, portanto, que tal metodologia apresentou os piores resultados, de 
acordo com as métricas de validação utilizadas. Além de o modelo obtido não representar a amostra 
original, foi incrementada alta variabilidade aos dados, assim como distorcidas as correlações entre 
variáveis. A taxa de erro de classificação também foi intensificada.  

5. Conclusões 

As métricas que utilizam o BMU para imputação, portanto, mostram-se mais eficazes para o processo de 
imputação de dados faltantes em medições de densiometria gamma. Além de sua maior acurácia, a 
metodologia  provoca menores distorções nas relações entre variáveis como um todo. No caso da 
densiometria gamma, a metodologia se mostra eficaz para classificação da topologia de escoamento sem 
a utilização da série de formulas comumente utilizadas na indústria para o mesmo fim, o que comprova a 
usabilidade da metodologia em larga escala. A imputação pela média entre o BMU e seus vizinhos, por 
outro lado, se mostra ineficaz. O modelo encontrado não representa os dados originais, assim como 
provoca distorções de correlações e aumento de variância. Por ora, as métricas coeficiente de 
determinação e Bias de Correlação permitem elencar a substituição pelo BMU como a técnica que 
apresenta melhor performance e eficácia entre as 4 estudadas.  Em segundo e terceiro lugares, 
respectivamente, encontram-se a substituição proporcional pelo BMU e a média entre o BMU e o 
segundo candidato a BMU. Por fim, destaca-se a pior performance da substituição pela média entre o 
BMU e seus vizinhos. A técnica, além de distorcer as relações entre variávies, em nada representou seus 
dados originais. 
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