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RESUMO

BARCELLOS, A. L. B. Estudo de Técnicas de Identificação de Sistemas aplicado
a um Twin-Rotor. 2025. 91 p. Monografia (Trabalho de Conclusão de Curso) - Escola
de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2025.

Os métodos de identificação de sistemas são essenciais para a engenharia moderna, dada a
necessidade de modelos adequados para a implementação de técnicas de controle e para o
monitoramento preditivo de processos industriais. Nesse contexto, é fundamental definir
uma estrutura para otimizar o processo de modelagem, partindo da escolha de um sinal
de excitação persistentemente excitante que assegure a excitação de um amplo espectro de
frequências durante o experimento, até a seleção de representações robustas à presença
de ruídos no sistema, utilizando estimadores, como o MMQ, para minimizar o erro de
estimação. A metodologia escolhida deve também priorizar a obtenção de modelos com
alta capacidade de generalização e menor dependência das características do sinal de
entrada, uma vez que os processos de identificação do tipo caixa-preta tendem a incluir um
elevado número de regressores pouco relevantes para o sistema de interesse. Para mitigar
esse problema, é essencial aplicar técnicas como o LASSO, que reduzem a influência do
overfitting ao selecionar regressores mais representativos do modelo. Embora não sejam
o principal motivador do uso dessas técnicas, elas também contribuem para a eficiência
computacional ao reduzir o custo associado ao processo de estimação. A eficácia desse
procedimento foi demonstrada em experimentos com sistemas lineares e não lineares,
nos quais as metodologias apresentadas foram comparadas aos processos tradicionais de
identificação. Por fim, os conhecimentos obtidos foram aplicados a uma modelagem do
tipo caixa cinza para um sistema de alta complexidade e forte acoplamento: o twin-rotor.

Palavras-chave: Identificação de Sistemas; Modelagem Dinâmica; MMQ; LASSO; Over-
fitting; Caixa Preta; Caixa Cinza; Twin-Rotor.





ABSTRACT

BARCELLOS, A. L. B. Study of Systems Identification Techniques applied to a
Twin-Rotor. 2025. 91 p. Monograph (Conclusion Course Paper) - Escola de Engenharia
de São Carlos, Universidade de São Paulo, São Carlos, 2025.

ABSTRACT

System identification methods are essential in modern engineering, given the need for
satisfactory models to implement control techniques and to predictively monitor industrial
processes. In this context, it is crucial to define a structured workflow to optimize the
modeling process, starting from the choice of a persistently exciting input signal, which
ensures the excitation of a broad frequency spectrum during the experiment, up to the
selection of representations that are robust to eventual noise inserted into the system, mak-
ing use of estimators such as Least Squares (LS) to minimize estimation error. The chosen
methodology must also focus on obtaining models with high generalization capability and
reduced dependence on the characteristics of the input signal, since black-box identification
processes often involve a large number of regressors that are only weakly relevant to the
system of interest. To address this, it is essential to apply techniques such as LASSO,
which reduces overfitting by selecting the regressors that are more representative of the
model. Although not the primary motivation for using such methods, they also improve
efficiency by reducing the computational cost of estimation, thereby lowering processing
demands and, consequently, the financial impact during modeling. The effectiveness of
this process was demonstrated through experiments with linear and nonlinear systems,
in which various methodologies were compared with traditional identification procedures.
Finally, the knowledge obtained was applied to a grey-box modeling approach for a highly
complex and coupled system: the twin-rotor.

Keywords: System Identification; Dynamic Modeling; Least Squares (LS); LASSO Re-
gression; Overfitting Reduction; Black-Box Modeling; Grey-Box Modeling; Twin-Rotor
System.
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1 INTRODUÇÃO

A capacidade de modelar com precisão a dinâmica de um sistema físico é crucial
para diversas aplicações de engenharia, como o desenvolvimento de estratégias de controle, a
otimização do desempenho e o monitoramento preditivo. Neste contexto, a identificação de
sistemas é um procedimento fundamental que permite construir representações matemáticas
de seus objetos de estudo a partir da análise de dados experimentais [Ljung 1999,Chen 1998].
Essa abordagem apresenta semelhanças conceituais com o método científico tradicional,
partindo do princípio de que visa inferir os princípios construtivos de seu sistema de interesse.
Tal comportamento é apresentado na figura 1. Ambas as práticas se fundamentam em
observações e evidências empíricas para formular e validar um modelo ou hipótese que
descreva de forma satisfatória os fenômenos observados, adotando um ciclo contínuo de
validação e reformulação [Ljung 1999,Voit 2019].

Figura 1 – Comparação entre os processos relacionados ao método científico e à identifica-
ção de sistemas.

(a) Método científico clássico. (b) Identificação de sistemas.

Fonte: [Voit 2019] (1a) e [Ljung 1999] (1b).

Ainda que similares, ambas as metodologias divergem fundamentalmente: o método
científico tende a buscar a formulação que melhor represente seu objeto de estudo, enquanto
a modelagem, no âmbito da identificação de sistemas, necessita apenas de uma representação
que descreva os fenômenos de maneira satisfatória para a aplicação de interesse [Voit
2019, Chen 1998]. Essa diferença, ainda que sutil, é de suma importância: há inúmeros
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parâmetros e variáveis envolvidos na dinâmica de qualquer sistema, e até mesmo o mais
simples dos resistores pode ser modelado tanto a partir da medição empírica de sua
resistência quanto em função de suas diferentes curvas características [Ford e Hasbun
2019].

Neste contexto, a identificação de sistemas é tipicamente dividida em metodologias
paramétricas e não paramétricas. As técnicas não paramétricas incluem a análise de
resposta em frequência, utilizada para obter diagramas de Bode ou Nyquist, bem como o
cálculo das funções de correlação e de coerência. Tais funções fornecem insights valiosos
sobre a relação entre as variáveis de entrada e de saída, bem como sobre a influência do ruído
nos dados observados. Mais recentemente, abordagens baseadas em redes neurais também
ganharam destaque, aplicadas principalmente em sistemas com forte não-linearidade ou
com poucas características conhecidas. Dessa maneira, embora este trabalho tenha como
foco o uso de técnicas paramétricas, devido às suas capacidades de predição e simulação
mais diretas, é essencial reconhecer a relevância e o uso das metodologias não paramétricas
na prática da engenharia.

Assim, considerando o equilíbrio entre o detalhamento do modelo e a aplicação
prática, não é factível obter uma representação excessivamente complexa, devido a limita-
ções relacionadas a custos dos mais diversos tipos: financeiros, computacionais, temporais,
etc. [Chen 1998]. Além disso, a abordagem escolhida deve considerar demais limitações,
tais como os pontos onde podem ser realizadas as aferições, os desgastes relacionados ao
processo de identificação, a inviabilidade de alteração do sinal de entrada e afins [Isermann
e Münchhof 2010]. Dessa maneira, faz-se necessário delimitar as variáveis e os processos
mais significativos, de modo a obter uma modelagem factível e com um custo associado
satisfatório.

Assim sendo, um dos métodos disponíveis para encontrar tal representação paramé-
trica pode ser obtido a partir de um estudo analítico composto por quatro etapas distintas:
escopo da modelagem, representação matemática, análise do modelo resultante e validação
com o sistema real [Chen 1998], como ilustrado na figura 2. Outra abordagem apresentada
em [Ljung 1999] adiciona uma etapa paralela à modelagem, envolvendo não apenas o
objeto a ser estudado, mas também a definição de todo o experimento a ser realizado.

Figura 2 – Estudo analítico proposto por Chen.

Escopo da
modelagem

Representação
matemática

Análise
do modelo
resultante

Validação com
o sistema real

Fonte: [Chen 1998].
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Por fim, vale reforçar que tal procedimento, assim como a própria metodologia
científica, é iterativo. Não é incomum, portanto, ser necessário ajustar os parâmetros ou
obter mais dados sobre o objeto de estudo, a fim de eliminar discrepâncias ou aprimorar o
modelo utilizado [Ljung 1999]. Caso necessário, deve-se considerar a possibilidade de efetuar
um pré-processamento dos dados obtidos, tendo em vista eventuais ruídos e distúrbios
inerentes ao sistema ou ao processo de medição [Juang 1994].

1.1 Objetivos

1.1.1 Objetivo geral

O presente trabalho propõe-se a desenvolver e avaliar técnicas de identificação
aplicáveis a sistemas dinâmicos, tanto lineares quanto não lineares.

1.1.2 Objetivos específicos

Em específico, são estabelecidas as seguintes metas para o desenvolvimento deste
trabalho:

• Realizar um estudo aprofundado das principais técnicas de identificação de sistemas,
bem como da teoria de estimação e métodos numéricos necessários;

• Implementar algoritmos de identificação de sistemas, tanto para modelos lineares
quanto para modelos não-lineares, em ambiente de simulação computacional;

• Avaliar o desempenho comparativo entre diferentes técnicas de identificação de
sistemas;

• Aplicar e validar os algoritmos de identificação em uma planta do tipo twin-rotor
em um ambiente de simulação computacional;

• Documentar os resultados e as conclusões obtidos.

1.2 Justificativa do trabalho

A modelagem precisa e eficiente de sistemas dinâmicos é imperativa para a enge-
nharia moderna, aplicando-se a contextos variados: desde o monitoramento de processos
industriais até a utilização em sistemas de controle de redes de energia elétrica [Aguirre
2004]. Outra de suas aplicações notáveis está no projeto de sistemas de controle para
diversas aplicações, como drones e até mesmo em plantas de caráter educacional, como
o twin-rotor. A identificação de sistemas surge, portanto, como a ferramenta ideal para
construir representações matemáticas a partir de dados empíricos, superando as limitações
e os custos da modelagem puramente física. O desafio reside, contudo, em selecionar a
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metodologia de estimação que ofereça o melhor equilíbrio entre a acurácia preditiva e a
simplicidade computacional.

Neste sentido, a relevância do trabalho reside na análise comparativa e na aplicação
de diversas técnicas de modelagem paramétrica de sistemas dinâmicos. Essa abordagem
abrange desde a seleção adequada do sinal de excitação e da estrutura de representação
até a escolha de estimadores, buscando sempre alternativas que apresentem características
intrínsecas de rejeição ao ruído. Especificamente para os estimadores, o estudo utiliza
o MMQ como referência para a implementação do LASSO; assim, é possível analisar
quantitativamente o equilíbrio entre o custo computacional e a precisão do modelo obtido.

1.3 Procedimentos metodológicos

Inicialmente, foi realizada uma revisão bibliográfica da literatura existente, centrada
nas técnicas usuais e recomendadas para a identificação correta de sistemas. Também
foram considerados estudos de caso com foco em estratégias empregadas em plantas do
tipo twin-rotor. Posteriormente, foram avaliadas as fundamentações teóricas e matemáticas
necessárias à aplicação das metodologias estudadas, com enfoque em funções de correlação
e autocorrelação.

Dentre as estratégias aplicadas, destacam-se a importância do uso de sinais per-
sistentemente excitantes como entrada do sistema de interesse, bem como a aplicação
do MMQ e a análise comparativa com o LASSO. Foco também na utilização do LASSO
como ferramenta de seleção de regressores, devido ao seu grande potencial para mitigar
problemas decorrentes do overfitting.

Desse modo, foi realizada a validação computacional dessas metodologias em
sistemas lineares e não lineares, analisando a robustez e o nível de acurácia dos estimadores
em função dos parâmetros e dos procedimentos empregados.

Por fim, os conhecimentos teóricos e práticos obtidos foram aplicados para identificar
uma planta do tipo twin-rotor, o que demonstra a eficácia das metodologias estudadas em
sistemas de alta complexidade.

1.4 Estrutura do trabalho

• Capítulo 1 - Introdução ao tema, bem como uma breve comparação entre o método
científico e a identificação de sistemas. Proposta do trabalho, justificativas e objetivos;

• Capítulo 2 - Apresentação de conceitos necessários para um bom entendimento do
trabalho;

• Capítulo 3 - Apresentação de técnicas de identificação de sistemas. Foco na escolha
do sinal de entrada, do método de representação e dos estimadores utilizados;
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• Capítulo 4 - Simulação e estimação de sistemas lineares e não lineares em ambiente
computacional. Aplicação prática em sistemas de primeira ordem com características
lineares e não lineares;

• Capítulo 5 - Identificação do sistema twin-rotor ;

• Capítulo 6 - Conclusões finais do trabalho.
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2 REVISÃO BIBLIOGRÁFICA

A identificação de sistemas dinâmicos apoia-se em diversas áreas, desde a teoria
dos sinais até as ferramentas estatísticas e matemáticas. É igualmente importante, embora
não necessário, possuir um certo conhecimento do objeto e do objetivo de estudo, conforme
abordado no capítulo 1. Nesse âmbito, é interessante abordar estudos de caso notáveis
na literatura: por exemplo, o twin-rotor é um sistema altamente não linear e acoplado,
constituindo um excelente ambiente de testes para a aplicação de técnicas de identificação
e controle.

Considerando os desafios apresentados anteriormente, dentre as técnicas usual-
mente utilizadas para obter uma representação do twin-rotor encontram-se: modelagem
matemática padrão, identificação de sistemas do tipo caixa-preta, uso de algoritmos heu-
rísticos e técnicas híbridas. Na mesma ordem anterior, os artigos [Rahideh e Shaheed
2008], [Ahmad e Chipperfield 2002], [Darus, Aldebrez e Tokhi 2004] e [Huu e Ismail 2016]
são representativos de cada uma das metodologias apresentadas.

Por fim, o controle escolhido para o sistema beneficia-se diretamente da acurácia
do modelo e também é objeto de estudo na literatura. Justifica-se, portanto, o uso de
controladores Proporcional, Integral e Derivativo (PID) [Juang, Huang e Liu 2008] ou
Fuzzy [Zeghlache et al. 2022], demonstrando eficácia na estabilização das dinâmicas diante
de distúrbios e incertezas.

2.1 Embasamento matemático e estatístico

Inicialmente, faz-se importante definir conceitos relacionados à matemática e à
estatística, imprescindíveis para o correto desenvolvimento do trabalho proposto. Demais
formulações amplamente difundidas podem ser encontradas em [Grimmett e Stirzaker
2001], [Walpole et al. 2011] e [Hastie, Tibshirani e Wainwright 2015], ainda que as mais
utilizadas sejam apresentadas ao longo do desenvolvimento do trabalho.

2.1.1 Ergodicidade

A definição de ergodicidade relaciona valores temporais a valores estatísticos, em
especial ao comprovar a equivalência entre a esperança matemática (média estocástica)
e a média temporal. Desse modo, para que um processo estocástico estacionário seja
considerado ergódico, a média temporal de uma sequência 𝑎[𝑘] deve convergir para a sua
esperança matemática em um número de amostras 𝑁 que tende ao infinito [Birkhoff 1931].
Na prática, considerando 𝑁 suficientemente grande, a média temporal é uma estimativa
aceitável da média estocástica conforme a eq. (2.1):



30

E[ 𝑎[𝑘] ] = 1
𝑁

𝑁∑︁
𝑘=1

𝑎[𝑘]. (2.1)

Do ponto de vista da identificação de sistemas, a ergodicidade é crucial por
estabelecer a equivalência prática entre a média temporal de uma única e longa medição e
a média estocástica de diversas medições da mesma dinâmica. Esse princípio é altamente
desejável, pois permite obter estimativas estatisticamente consistentes dos parâmetros do
sistema a partir de um único experimento, superando a inviabilidade de repetir medições
sob as mesmas condições exatas. Contudo, essa propriedade não é universal, sendo crucial
reconhecer que ela não se aplica a todos os sistemas físicos: notadamente, tal princípio
é impraticável para dinâmicas altamente sensíveis às condições iniciais ou que exibem
processos irreversíveis [Aguirre 2004].

2.1.2 Funções de correlação, autocorrelação e espectro

Dadas duas sequências finitas e ergódicas quaisquer 𝑎[𝑘] e 𝑏[𝑘] de comprimento 𝑁 ,
o estimador da função de correlação cruzada 𝑟𝑎𝑏[𝜏 ] para um deslocamento temporal 𝜏 é
dado por eq. (2.2). Desse modo, 𝑟𝑎𝑏 representa o nível de similaridade entre a primeira
sequência e uma versão defasada da segunda [Bakalis et al. 2023,Theodorsen 2016].

𝑟𝑎𝑏[𝜏 ] = 1
𝑁

𝑁∑︁
𝑖=1

𝑎[𝑖] · 𝑏[𝑖+ 𝜏 ]. (2.2)

De maneira análoga, a função de autocorrelação mede o nível de similaridade entre
uma sequência e uma versão deslocada de si mesma. Assim sendo, o estimador 𝑟𝑎𝑎[𝜏 ] é
obtido ao substituir 𝑏[ 𝑖 + 𝜏 ] por 𝑎[ 𝑖 + 𝜏 ] na eq. (2.2), resultando na formulação 2.3.
Também é válido destacar que 𝑟𝑎𝑎[𝜏 ] é uma função par para processos reais, conforme
dinâmica representada na eq. (2.4). Considerando essa simetria, usualmente se representam
apenas os valores de 𝑟𝑎𝑎 para 𝜏 ≥ 0.

𝑟𝑎𝑎[𝜏 ] = 1
𝑁

𝑁∑︁
𝑖=1

𝑎[𝑖] · 𝑎[𝑖+ 𝜏 ], (2.3)

𝑟𝑎𝑎[𝜏 ] = 𝑟𝑎𝑎[−𝜏 ]. (2.4)

Outra abordagem interessante é averiguar que, pela função de autocorrelação
comparar uma função com si mesma, ela também pode ser utilizada para obter insights
sobre a taxa de variação do sinal de interesse em função do tempo. Isso ocorre visto que
variações mais lentas implicam uma similaridade maior e, portanto, uma autocorrelação
maior entre amostras subsequentes [Aguirre 2004].
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Vale ressaltar que todo o desenvolvimento apresentado parte do princípio de que
as sequências em estudo possuem caráter ergódico. Tal suposição permite o uso das
variações em função do tempo discreto 𝑘, visto que as formulações usuais de correlação e
autocorrelação dependem do operador E (esperança matemática).

Por fim, a relação entre a correlação e o espectro é formalizada pelo Teorema
de Wiener-Khinchin. Ao aplicar a transformada de Fourier ao estimador da função de
correlação e de autocorrelação, obtemos as funções de espectro cruzado (𝜑𝑎𝑏) e autoespectro
(𝜑𝑎𝑎):

⎧⎪⎨⎪⎩𝜑𝑎𝑏(𝑒
𝑗𝜔) = ℱ [ 𝑟𝑎𝑏[ 𝑘 ] ],

𝜑𝑎𝑎(𝜔) = ℱ [ 𝑟𝑎𝑎[ 𝑘 ] ].
(2.5)

Assim como é possível estimar a velocidade de uma dinâmica a partir de sua
autocorrelação, o autoespectro 𝜑𝑎𝑎 indica como a energia ou potência do sinal analisado se
distribui no domínio da frequência [Aguirre 2004]. Tal constatação também decorre do
Teorema de Wiener-Khinchin, visto que 𝜑𝑎𝑎 apresenta a mesma expressão que a Power
Spectral Density (PSD).

2.1.3 Variáveis aleatórias

Por definição, uma variável aleatória é uma função 𝑋 : Ω → R com propriedades
dadas por

{︁
𝜔 ∈ Ω : 𝑋(𝜔) ≤ 𝑥

}︁
∈ ℱ𝑎 para todo 𝑥 ∈ R. Ou seja, variáveis aleatórias são,

formalmente, funções mensuráveis (ou ℱ𝑎-mensuráveis) que associam cada resultado 𝜔
do espaço amostral Ω a um número real 𝑥. A condição apresentada garante que o evento
𝑋(𝜔) ≤ 𝑥 é um evento bem definido e, portanto, sua probabilidade pode ser calculada no
espaço de probabilidade (Ω,ℱ𝑎, 𝑃 ) [Grimmett e Stirzaker 2001].

No contexto de processamento de sinais discretos, uma variável aleatória é fre-
quentemente representada por uma sequência numérica aleatória ou por um processo
estocástico discreto 𝜈[𝑘], em que 𝑘 refere-se ao tempo discreto ou ao índice de uma dada
amostra. Para analisar as propriedades de tais sequências, utilizam-se ferramentas como a
adimensionalização, a flutuação e, crucialmente, a autocorrelação.

Primeiramente, considerando uma sequência 𝑎[𝑘] qualquer, sua adimensionalização,
dada por 𝑎̃[𝑘], consiste em dividir 𝑎[𝑘] pelo seu valor máximo.

𝑎̃[𝑘] = 𝑎[𝑘]
‖𝑎[𝑘]‖∞

. (2.6)

Além disso, a flutuação 𝑎′[𝑘] de uma sequência numérica 𝑎[𝑘] é a diferença entre
𝑎[𝑘] e seu valor médio 𝑎̄[𝑘], representando o comportamento simétrico de 𝑎[𝑘] em relação
ao eixo das abcissas.
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𝑎′[𝑘] = 𝑎[𝑘] − 𝑎̄[𝑘]. (2.7)

No âmbito deste trabalho, uma sequência numérica 𝜈[𝑘] será considerada repre-
sentativa de uma variável aleatória e, consequentemente, com o perfil de ruído branco, se
sua flutuação 𝜈 ′[𝑘] apresentar uma função de autocorrelação 𝑟𝜈′𝜈′ [ 𝜏 ] com característica
impulsiva. Dessa forma, 𝑟𝜈′𝜈′ [ 𝜏 ] é essencialmente não correlacionada com as defasagens
𝜏 ̸= 0, conforme apresentado na eq. (2.8).

⎧⎪⎨⎪⎩𝑟𝜈
′𝜈′ [ 0 ] = 1,

𝑟𝜈′𝜈′ [ 𝜏 ] = 0 ∀ 𝜏 ̸= 0.
(2.8)

Devido à natureza estatística inerente à função de autocorrelação obtida a partir
de uma sequência de amostras com tamanho 𝑁 , a condição ideal apresentada na eq. (2.8)
pode ser relaxada: para que uma sequência finita seja considerada representativa de um
ruído branco, basta que seus valores apresentem um índice de confiança de pelo menos 95%.
Assim sendo, os valores de 𝑟𝜈′𝜈′ [ 𝜏 ] para 𝜏 ̸= 0 devem estar contidos no intervalo ±1.96√

𝑁

para que as características de interesse sejam garantidas, conforme a eq. (2.9) [Aguirre
2004].

Vale reforçar que tal definição, por meio de intervalos de confiança, é de caráter
prático, sendo apenas indicativa da presença de aleatoriedade. A definição da autocorrelação
para uma sequência aleatória com caráter ergódico é dada por eq. (2.8).

⎧⎪⎨⎪⎩𝑟𝜈
′𝜈′ [ 0 ] = 1,

−1.96√
𝑁
< 𝑟𝜈′𝜈′ [ 𝜏 ] < 1.96√

𝑁
∀ 𝜏 ̸= 0.

(2.9)

2.1.3.1 Ruído branco gaussiano

Uma classe importante de ruído branco, amplamente utilizada em simulações
computacionais devido às suas propriedades analíticas e à facilidade de geração, é o ruído
branco gaussiano. O mesmo é obtido por uma sequência de variáveis aleatórias do tipo
independente e identicamente distribuída (i.i.d.) que seguem a distribuição normal (ou
gaussiana), conforme a Função de Densidade de Probabilidade (PDF) dada em eq. (2.10).
A figura 3 ilustra o comportamento da distribuição normal em função dos parâmetros 𝜇𝒩

e 𝜎𝒩 .

𝒩 (𝑘, 𝜇𝒩 , 𝜎
2
𝒩 ) = 1√︁

2𝜋𝜎 2
𝒩

· exp
[︁
− ( 𝑘−𝜇𝒩 )2

2𝜎 2
𝒩

]︁
. (2.10)
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Figura 3 – PDF da distribuição normal em função dos parâmetros 𝜇𝒩 (média) e 𝜎𝒩 (desvio
padrão).

Fonte: Autoria própria.

Gerando uma sequência 𝑎[𝑘] de tamanho 105 a partir do comando 𝑟𝑎𝑛𝑑𝑛() no
MATLAB e, posteriormente, agrupando os valores em 50 intervalos distintos, é possível
calcular a função de densidade de probabilidade do sinal de interesse. Tal procedimento é
realizado ao averiguar o percentual de amostras de 𝑎[𝑘] em cada um dos intervalos definidos,
criando, assim, um histograma do processo estudado. Esse procedimento é apresentado na
figura 4, na qual a distribuição amostral é comparada à PDF teórica da função gaussiana
para 𝜇𝒩 = 0 e 𝜎𝒩 = 1.

Figura 4 – Validação Estatística de uma Sequência Aleatória Gerada no Matlab: Ruído
Branco Gaussiano.

(a) Sequência 𝑎[𝑘]. (b) Histograma e distribuição normal.

Fonte: Autoria própria.

O perfil impulsivo do sinal apresentado na figura 5, com valores próximos de zero
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para 𝜏 ̸= 0, confirma que a sequência gerada no Matlab pode ser modelada como amostras
de um ruído branco.

Figura 5 – Autocorrelação da sequência 𝑎[𝑘].

(a) 𝑟𝑎′𝑎′ . (b) Ampliação da função 𝑟𝑎′𝑎′ .

Fonte: Autoria própria.

Vale destacar, ainda, que os intervalos de confiança, denotados pelas linhas traceja-
das em vermelho, são apenas indicativos de que a sequência de interesse possui caráter
aleatório. Portanto, ainda que se observe uma certa extrapolação dos limites impostos em
eq. (2.9) na figura 5b, é razoável considerar que o comando 𝑟𝑎𝑛𝑑𝑛() do Matlab gera um
ruído branco do tipo gaussiano.

Por fim, é necessário apresentar também o conceito de gaussianas multidimensio-
nais. Essa abordagem é útil para modelar a distribuição conjunta de múltiplas variáveis
aleatórias, em que a correlação entre elas desempenha um papel tão importante quanto
suas médias e variâncias individuais. Considerando, então, que será estimada uma série
de parâmetros, cada um relaciona-se a uma distribuição normal distinta, de modo que a
distribuição resultante é completamente caracterizada pelo vetor de médias 𝜇 e pela matriz
de covariância Σ. Essa matriz captura as variâncias e, crucialmente, as correlações entre
os parâmetros, essenciais para modelar a distribuição conjunta dos parâmetros estimados
neste trabalho, conforme ilustrado na figura 6 e na eq. (2.11).

𝒩 (x|𝜇,Σ) = 1√︁
(2𝜋)𝑛 det(Σ)

exp
(︂

−1
2(x − 𝜇)𝑇Σ−1(x − 𝜇)

)︂
. (2.11)
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Figura 6 – Distribuição normal multidimensional - visualização 3D. As funções 𝑝(𝑥) e 𝑝(𝑦)
são distribuições gaussianas marginais.

Fonte: Autoria própria.

2.2 Conhecimento prévio do sistema

Assim como abordado no capítulo 1, um certo nível de conhecimento prévio,
tanto do objeto quanto do objetivo do estudo, é uma parte importante do processo de
identificação, ainda que não seja essencial para uma modelagem satisfatória. Dessa forma,
o quadro 1 agrega metodologias de classificação comumente utilizadas na literatura, que
podem ser empregadas para definir o sistema de interesse.

Além disso, as seções 2.2.1 e 2.2.2 abordam, em maior detalhe, conceitos de suma
importância para a seleção e validação de técnicas de identificação adequadas.

2.2.1 Definições relacionadas à linearidade

Embora seja comum agrupar sistemas em lineares e não lineares, existem inúmeras
outras definições que devem ser atendidas, de modo a viabilizar a aplicação de diversas
técnicas e simplificações, métodos esses comumente associados a sistemas lineares. Dessa
forma, faz-se necessário definir não só o conceito de linearidade, mas também as demais
propriedades de sistemas lineares, causais e invariantes no tempo.

Vale também destacar que sinais e sistemas são intrinsecamente conectados, embora
as definições agregadas em 2.2.1 sejam utilizadas para categorizar o segundo.
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Quadro 1 – Classificações comuns de sistemas dinâmicos [Aguirre 2004,Ljung 1999,Ogata
2010]

Critério de
Classificação

Tipo Descrição

Número de entradas e
saídas

SISO Uma entrada e uma saída (Single Input
Single Output)

MIMO Múltiplas entradas e múltiplas saídas
(Multiple Input Multiple Output)

Natureza da dinâmica
Determinístico Saída totalmente previsível a partir da

entrada

Estocástico Saída depende, total ou parcialmente, de
características aleatórias

Realimentação
Malha aberta Não há uso da saída no cálculo do sinal

de controle

Malha fechada A saída é realimentada ao sistema de
controle

Estabilidade
Estável As saídas tendem a permanecer limitadas

ao longo do tempo

Instável As saídas divergem ou crescem
indefinidamente

2.2.1.1 Linearidade

Segundo [Ogata 2010], a linearidade de um sistema é definida pela combinação de
duas propriedades: a superposição e a homogeneidade. Pelo princípio da superposição, a
resposta a uma soma de sinais de entrada é a soma das respostas individuais a cada sinal
(equação 2.12), enquanto a homogeneidade define que a resposta a um sinal de entrada
escalonado por uma constante é a resposta individual escalonada pela mesma constante
(2.13).

Matematicamente, se 𝑦𝑖(𝑡) é a saída correspondente ao sinal de entrada 𝑢𝑖(𝑡), as
propriedades são expressas como:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑢1(𝑡) ⇒ 𝑦1(𝑡),

𝑢2(𝑡) ⇒ 𝑦2(𝑡),

∴ 𝑢1(𝑡) + 𝑢2(𝑡) ⇒ 𝑦1(𝑡) + 𝑦2(𝑡).

(2.12)

⎧⎪⎨⎪⎩𝑢1(𝑡) ⇒ 𝑦1(𝑡),

∴ 𝛼 · 𝑢1(𝑡) ⇒ 𝛼 · 𝑦1(𝑡).
(2.13)
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A linearidade é satisfeita quando ambas as condições são combinadas em uma única
relação:

𝛼1 𝑢1(𝑡) + 𝛼2 𝑢2(𝑡) ⇒ 𝛼1 𝑦1(𝑡) + 𝛼2 𝑦2(𝑡). (2.14)

Apesar de nem todos os sistemas serem inerentemente lineares, a linearização é
uma metodologia poderosa. Ao assumir um modelo aproximado em torno de um ponto de
operação, é possível modelar satisfatoriamente uma ampla gama de sistemas não lineares.
Dessa forma, tal metodologia é uma técnica simples e suficientemente precisa para atender
a muitos casos de interesse [Ogata 2010].

2.2.1.2 Causalidade

O princípio da causalidade estabelece que a resposta (saída) de um sistema no
instante 𝑡0 pode depender apenas dos sinais de entrada e das saídas em instantes anteriores
ou no próprio instante 𝑡0. Em outras palavras, um sistema causal não pode ter uma
resposta prévia a um evento futuro.

Formalmente, sistemas lineares e causais obedecem à relação dada em eq. (2.15),
na qual ℎ[𝑘] é a resposta ao impulso do referido sistema. Portanto, como a parcela de
qualquer termo 𝑢[𝑖] · ℎ[𝑘 − 𝑖] para 𝑖 > 𝑡 é nula, é possível substituir o limite superior da
somatória de convoluções por 𝑘.

𝑦[𝑘] =
∞∑︁
𝑖=0

𝑢[𝑖] · ℎ[𝑘 − 𝑖] =
𝑘∑︁
𝑖=0

𝑢[𝑖] · ℎ[𝑘 − 𝑖]. (2.15)

Uma implicação da causalidade na análise em frequência é que a função de transfe-
rência apresenta um número de polos maior ou igual ao de zeros; caso contrário, haveria
dependência de amostras futuras da entrada, o que provocaria um ganho em alta frequência
que tende ao infinito.

Também é importante notar que sistemas físicos reais, como o twin-rotor, são
intrinsecamente causais: isso ocorre porque a inércia e outros fatores físicos fazem com
que o sistema apresente um comportamento semelhante ao de um filtro passa-baixa,
impedindo que a saída responda instantaneamente a mudanças bruscas na entrada. Embora
sistemas teóricos ou computacionais (como no pós-processamento de dados) possam violar
a causalidade, esta é um requisito fundamental para a modelagem de sistemas físicos
usuais [Ogata 2010].

2.2.1.3 Invariância no tempo

De forma simplificada, um sistema invariante no tempo apresenta coeficientes
(como 𝛼1 e 𝛼2 na formulação 2.14) independentes do tempo. Formalmente, se um sinal
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de entrada 𝑢1(𝑡) produz uma saída 𝑦1(𝑡), então um atraso 𝜏 na entrada deve resultar
no mesmo atraso na saída, de modo que os coeficientes associados a ambos, 𝑢1(𝑡− 𝜏) e
𝑦1(𝑡− 𝜏), permaneçam inalterados.

Ainda assim, a variação paramétrica é comum em sistemas físicos, podendo ser lenta
(como o desgaste de componentes) ou rápida (como a ejeção de massa em um foguete). No
entanto, para a maioria dos sistemas e em um horizonte de tempo determinado, considerar
o sistema invariante no tempo é uma suposição aceitável [Ljung 1999].

Por outro lado, quando tal variação exerce uma grande influência no modelo
utilizado, pode-se empregar técnicas de identificação em tempo real para atualizar dinami-
camente os parâmetros variáveis [Ljung 1999]. Essas técnicas, frequentemente associadas
ao controle adaptativo e à identificação em malha fechada, incluem o Filtro de Kalman e
o Método dos Mínimos Quadrados Recursivo (MMQR).

2.2.2 Classificação por nível de conhecimento

Por fim, diversos métodos de representação exigem que as equações matemáticas
definidoras do sistema de estudo sejam conhecidas. Faz-se necessário, portanto, categorizar
os sistemas com base no nível de informação que é possível obter a partir deles, o que
possibilitará, posteriormente, a escolha de uma representação adequada.

Figura 7 – Escalas de tons cinzentos que ilustram diferentes abordagens “caixa-cinza”. Da
região 1 à 3, a quantidade de informação sobre o sistema diminui.

Fonte: [Fernandes, Oliveira e Souto 2017].

Primeiramente, métodos de identificação do tipo caixa branca pressupõem conheci-
mento total das dinâmicas do sistema de interesse, sendo muito utilizados em sistemas
de menor complexidade. Dessa forma, embora seja possível aplicar técnicas de estimação
paramétrica, também seria plausível estudar a planta de interesse de forma completamente
analítica [Ljung 1999].

Por outro lado, métodos relacionados a um sistema de caixa-preta consideram que
não há nenhum conhecimento prévio do objeto de estudo, sendo possível obter apenas
amostras do sinal de entrada e do sinal de saída do mesmo. Assim, como abordado em [Chen
1998], pode ser necessária uma grande quantidade de amostras e um poder computacional
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considerável. Ainda que seja possível encontrar uma modelagem satisfatória e robusta,
tanto a perturbações quanto a alterações sistêmicas.

Por fim, métodos de caixa cinza consideram que as características do sistema de
interesse estão parcialmente obscurecidas, seja por desconhecimento do funcionamento
interno, seja pela dificuldade de mensurar alguns de seus parâmetros e dinâmicas. Dessa
forma, é comum recorrer a modelagens físicas já conhecidas, ainda que parciais ou simplifi-
cadas [Aguirre 2004].

Vale também destacar que é possível utilizar diversas técnicas para agregar as
informações previamente conhecidas às demais informações do sistema, seja por meio da
correta definição dos regressores, do teorema de Bayes, da formulação matemática do filtro
de Kalman ou até mesmo de redes neurais de diversas complexidades.
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3 METODOLOGIA

Nesta seção, serão apresentados os métodos a partir dos quais serão efetuadas as
medições e o processamento dos dados obtidos a partir do sistema de interesse, bem como
os índices com base nos quais é possível validar o modelo obtido.

Figura 8 – Sistema M do tipo SISO, apresentando entrada 𝑢[𝑘] e saída 𝑦[𝑘].

u[k] M y[k]

Fonte: Autoria própria.

3.1 Projeto do sinal de excitação

Tendo em vista que é possível escolher a entrada do sistema de interesse, há uma
ampla gama de sinais que podem ser utilizados para a identificação. Dentre os mais comuns,
estão o uso da resposta ao degrau, da resposta impulsiva e da resposta em frequência do
sistema por meio de entradas senoidais. Vale destacar, porém, que, embora amplamente
utilizado, o método de obtenção da resposta em frequência de um sistema consiste na
aquisição de um grande volume de dados.

Tal afirmação parte do princípio de que a solução para excitar todo o espectro de
frequências de forma satisfatória consiste, usualmente, na utilização de um conjunto de
funções senoidais de frequências 𝑓0 distintas, cada uma excitando uma frequência específica
do sistema. Essa dinâmica é representada pela eq. (3.1).

⎧⎪⎪⎨⎪⎪⎩
𝑢sin(𝑡) = sin(2𝜋𝑓0𝑡),

𝑈sin(𝑓) = ℱ
[︂
𝑢sin(𝑡)

]︂
= 1

2𝑗

[︂
𝛿(𝑓 − 𝑓0) − 𝛿(𝑓 + 𝑓0)

]︂
.

(3.1)

Uma alternativa mais eficiente é utilizar sinais com um espectro de frequências
mais rico, tais como sinais chirp ( eq. (3.2) e figura 9) ou sinais de natureza aleatória.
Em particular, para sinais aleatórios, tal afirmação baseia-se no fato de que um ruído
branco contém informações em todo o espectro de frequências. Desse modo, a utilização
de sinais de entrada bem projetados permite reduzir drasticamente a quantidade de dados
necessários para obter uma resposta em frequência satisfatória para o sistema de interesse.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢chirp(𝑡) = sin
(︂

2𝜋𝑓0𝑡+ 𝜋 𝑓1−𝑓0
𝑇

𝑡2
)︂
, 0 ≤ 𝑡 ≤ 𝑇,

𝑈chirp(𝑓) ≈

⎧⎪⎨⎪⎩ ̸= 0, 𝑓 ∈ F,

0, 𝑓 /∈ F,

F = { 𝑓 | 𝑓0 ≤ |𝑓 | ≤ 𝑓1 }.

(3.2)

Figura 9 – Exemplo de sinal do tipo 𝐶ℎ𝑖𝑟𝑝.

(a) Domínio do tempo. (b) Domínio da frequência.

Fonte: Autoria própria.

3.1.1 Sinal aleatório

Assim como apresentado em 3.1, uma alternativa ao uso de sinais senoidais na
identificação de sistemas é adquirir a resposta ao impulso. Entretanto, a excitação impulsiva
ideal, 𝛿(𝑡), é impraticável em sistemas físicos, pois exigiria amplitude e largura de banda
infinitas. Por esse motivo, algumas alternativas para uso em técnicas de identificação
consistem em empregar excitações que aproximam a resposta ao impulso, tais como o
ruído branco, Maximum Length Sequence (MLS), PRBS ou até mesmo o PRMLS [Farina
2000,Theodorsen 2016].

Para o ruído branco, um processo estocástico 𝜈[𝑘] é dito aleatório quando sua função
de autocorrelação apresenta características semelhantes à de uma função de impulso. Esse
resultado, como já definido em 2.1.2, implica que amostras do sinal são descorrelacionadas
para todos os atrasos 𝜏 ̸= 0 [Bakalis et al. 2023,Theodorsen 2016].

𝑟𝜈𝜈 [𝜏 ] = 𝜎2
𝜈 𝛿[𝜏 ]. (3.3)

Considerando tal desenvolvimento, de acordo com as definições apresentadas em
2.1.2, a PSD é dada pela Discrete Fourier Transform (DFT) da autocorrelação.
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𝜑𝜈𝜈(𝑒𝑗𝜔) =
∞∑︁

𝑘=−∞
𝑟𝜈𝜈 [𝑘] 𝑒−𝑗𝜔𝑘. (3.4)

Nota-se que a definição introduzida pela equação 3.4 é análoga à apresentada na
equação 2.5. Desse modo, substituindo 3.3 em 3.4 e resolvendo a DFT, é possível obter 3.5.

𝜑𝜈𝜈(𝑒𝑗𝜔) =
∞∑︁

𝑘=−∞
𝜎2 𝛿[𝑘] 𝑒−𝑗𝜔𝑘 = 𝜎2. (3.5)

Portanto, a PSD de um sinal com características aleatórias é constante para um
número suficientemente grande de amostras 𝑁 . Dessa forma, o ruído branco contém
componentes em todas as frequências discretas, sendo, assim, um sinal persistentemente
excitante [Aguirre 2004].

Figura 10 – Comparação entre senoides e variável aleatória, simulação de 1𝑠 e 𝐹𝑠 = 104𝐻𝑧.

(a) Sinais no domínio do tempo. (b) Sinais no domínio da frequência.

Fonte: Autoria própria.

3.1.2 PRBS

Ainda que sinais aleatórios excitem um espectro de frequências muito mais amplo
do que o de um único senoide, restam várias questões associadas ao seu uso. Algumas delas
residem no fato de que uma variação de nível em períodos de tempo muito curtos, uma
de suas características, pode implicar um desgaste maior em atuadores mecânicos. Além
disso, a inversão constante do sinal de entrada leva a diversos malfuncionamentos, avarias
e impossibilidades, dependendo dos equipamentos de medição e dos atuadores intrínsecos
ao sistema de estudo.

Além disso, a análise de um sistema com essas características na entrada pode
mostrar-se ineficaz, visto que essas características variam a cada intervalo mínimo de
aferição. Portanto, sistemas com dinâmicas muito mais lentas do que as do sinal aleatório
terão pouco tempo para serem devidamente excitados e, consequentemente, necessitarão
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de uma quantidade maior de dados para que seja realizada uma aquisição paramétrica
satisfatória.

Uma das soluções possíveis para contornar esses problemas é o uso de um sinal
PRBS, eventualmente adicionando um segurador à entrada do sinal, a fim de evitar
desgastes desnecessários e auxiliar na identificação de dinâmicas mais lentas. Ao contrário
de uma variável completamente aleatória, o PRBS possui valores binários; mas, como se
vê na figura 11b, ainda excita satisfatoriamente todo o espectro de frequências.

Figura 11 – Comparação entre uma variável aleatória e um período do sinal PRBS, com
simulação de 1𝑠 e 𝐹𝑠 = 104𝐻𝑧. 𝑁 = 105.

(a) Sinais no domínio do tempo. (b) Sinais no domínio da frequência.

Fonte: Autoria própria.

Outra de suas particularidades é que o sinal PRBS é periódico, porém apresenta
fortes características aleatórias ao longo de um de seus períodos. Dessa forma, ainda é
possível aproveitar as características previamente abordadas em 3.1.

Por fim, vale destacar que, para fins comparativos, será sempre utilizada a função
de autocorrelação normalizada simétrica para avaliar o comportamento aleatório dos sinais
de interesse, conforme apresentado nas figuras 12 [Aguirre 2004].
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Figura 12 – Comportamento da função de autocorrelação do sinal PRBS.

Fonte: Autoria própria

3.1.2.1 Geração de um PRBS

Duas das possíveis maneiras de gerar um sinal PRBS, uma focada na implementação
em hardware e outra em uma representação matemática formal, são apresentadas a partir
da equação 3.6 [Ljung 1999] e da imagem 13 [Aguirre 2004], em que 𝑟𝑒𝑚2(𝛼) representa o
resto da divisão de 𝛼 por 2.

𝑢(𝑡) = 𝑟𝑒𝑚2
(︁ ∑︀𝑛

𝑖=1 𝑎𝑖 · 𝑢(𝑡− 𝑖)
)︁
. (3.6)

Assim, em função do tamanho do período de aleatoriedade requisitado (𝑁), é
possível definir o número mínimo de bits, n, necessário para a implementação desejada.
Assim, os valores não nulos de a𝑘, bem como o esquema de ligação via hardware usando
a porta ou-exclusivo (fig. 13), podem ser encontrados na tabela 1.

Figura 13 – Exemplo de implementação em nível de hardware, n = 6.

1 2 3 4 5 6

⊕

saída

temporização

E

OU-Exclusivo

Fonte: [Aguirre 2004].
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Tabela 1 – Geração de um sinal PRBS

n 𝑁 = 2n − 1 a𝑘 X-OR
2 3 1, 2 1, 2
3 7 2, 3 2, 3
4 15 1, 4 3, 4
5 31 2, 5 3, 5
6 63 1, 6 5, 6
7 127 3, 7 4, 7
8 255 1, 2, 7, 8 2, 3, 4, 8
9 511 4, 9 5, 9
10 1023 7, 10 7, 10
11 2047 9, 11 9, 11

Fonte: adaptado de [Ljung 1999] e [Aguirre 2004]

Vale destacar que é possível gerar um sinal PRBS de diversas maneiras e que os
parâmetros da tabela 1 garantem o maior período possível para um número de bits dado.
Assim sendo, as referências utilizadas não impedem que sejam efetuadas outras ligações ou
arranjos que resultem em resultados semelhantes. Para o desenvolvimento deste trabalho,
os valores a𝑘 serão sempre obtidos a partir de [Toker e Emara-Shabaik 2004].

3.1.3 PRMLS

Análogo ao já abordado para o sinal PRBS, é importante mencionar sua versão
multinível, o PRMLS. Extremamente útil para identificação de sistemas não lineares, o
mesmo pode ser criado a partir da equação 3.7, análoga à 3.6. Para tal, foi implementada
uma variação da metodologia introduzida por [Toker e Emara-Shabaik 2004] para obter os
valores de a𝑘.

𝑢(𝑡) =
𝑝∑︁
𝑖=1

𝑎𝑖 · 𝑢(𝑡− 𝑖) ; {𝑝 ∈ N / 𝑝 ≥ 2}. (3.7)

Dessa forma, serão calculados parâmetros aleatoriamente até obter-se um período
máximo para o PRMLS, mapeando tais valores aleatórios para níveis ótimos estritamente
positivos, a serem utilizados como valores do sinal de entrada. Um exemplo de PRMLS é
dado a seguir:
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Figura 14 – Comparação entre variável aleatória e um período do sinal PRMLS escolhido,
simulação de 1𝑠 e 𝐹𝑠 = 104𝐻𝑧. 𝑁 = 105

(a) Sinais no domínio do tempo (b) Sinais no domínio da frequência

Fonte: Autoria própria.

Figura 15 – Comportamento da função de autocorrelação do sinal PRMLS escolhido.

Fonte: Autoria própria.

Vale também destacar que, a partir da definição de [Toker e Emara-Shabaik 2004],
o PRMLS garante persistência de excitação para 𝑝 maior que a ordem de não linearidade
do sistema (𝑝 > O). Por outro lado, isso também significa que o sinal PRBS clássico excita
efetivamente somente sistemas sem nenhuma não linearidade (𝑝 = 2 ∴ O ≤ 1), ainda que
apresente componentes em todas as frequências.



48

3.2 Métodos de representação

Embora representações clássicas, como o espaço de estados e as funções de transfe-
rência, sejam válidas, é comum recorrer a modelos polinomiais na identificação de sistemas
em tempo discreto. A estrutura geral dessas classes de modelos é definida pela Equação
3.8 e ilustrada na figura 16.

𝐴(𝜃|𝑞) 𝑦[𝑘] = 𝐵(𝜃|𝑞)
𝐶(𝜃|𝑞) 𝑢[𝑘] + 𝐷(𝜃|𝑞)

𝐹 (𝜃|𝑞) 𝑒[𝑘]. (3.8)

Figura 16 – Sistema dado pela equação 3.8.

𝑢[𝑘]
𝐵(𝜃 | 𝑞)
𝐶(𝜃 | 𝑞) +

1
𝐴(𝜃 | 𝑞)

𝑦[𝑘]

𝐷(𝜃 | 𝑞)
𝐹 (𝜃 | 𝑞)

𝑒[𝑘]

Fonte: Autoria própria.

Estes modelos polinomiais estão definidos no domínio do tempo discreto por meio
do operador de atraso 𝑞−1, que atua sobre as variáveis 𝑢[𝑘] ou 𝑦[𝑘] conforme a Equação 3.9.
O operador 𝑞−1 no domínio do tempo discreto é o análogo ao termo 𝑧−1 na Transformada
Z e permite escrever as equações de diferença como funções de transferência.

𝑞−𝛼 𝑢[𝑘] = 𝑢[𝑘 − 𝛼] : 𝛼 ∈ N. (3.9)

Tabela 2 – Classes de modelos notáveis obtidos a partir de 3.8.

Nome da estrutura Funções utilizadas
FIR (Finite Impulse Response) B
ARX A, B
ARMAX A, B, D
ARMA A, D
ARARX A, B, F
ARARMAX A, B, D, F
OE (Output Error) B, C
BJ (Box-Jenkins) B, C, D, F

Fonte: [Ljung 1999].
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Vale também mencionar que, por vezes, há a presença de um delay entre a dinâmica
da saída e a dinâmica da entrada. Sua representação pode ser efetuada por meio da simples
inserção de uma nova variável 𝜏 , de modo que as equações características do método
Autoregressive with eXogenous inputs (ARX) sejam obtidas a partir de eq. (3.10). A
eq. (3.11) apresenta um exemplo de estimação de um sistema de ordem 2.

⎧⎪⎨⎪⎩𝑦[ 𝑘 ] = ∑︀𝛼
𝑗=𝜏+1 𝑎𝑗−𝜏 𝑦[ 𝑘 − 𝑗 ] + ∑︀𝛽

𝑖=𝜏 𝑏𝑖−𝜏 𝑢[ 𝑘 − 𝑖 ] + 𝑒[ 𝑘 ],

𝑦[ 𝑘 ] = 𝐵(𝜃|𝑞|𝜏)
𝐴(𝜃|𝑞) 𝑢[ 𝑘 ] + 1

𝐴(𝜃|𝑞)𝑒[ 𝑘 ].
(3.10)

⎧⎪⎪⎨⎪⎪⎩
𝑦[𝑘] = 𝑎1, 𝑦[𝑘 − 1] + 𝑎2, 𝑦[𝑘 − 2] + 𝑏1, 𝑢[𝑘 − 1] + 𝑏2, 𝑢[𝑘 − 2] + 𝑒[𝑘]

𝑦[𝑘] = 𝑏1𝑞
−1 + 𝑏2𝑞

−2

1 − 𝑎1𝑞−1 − 𝑎2𝑞−2 , 𝑢[𝑘] + 1
1 − 𝑎1𝑞−1 − 𝑎2𝑞−2 , 𝑒[𝑘].

(3.11)

Dessa forma, a popularidade dos modelos ARX na modelagem e identificação é
explicada por sua formulação direta no domínio do tempo discreto e pela capacidade
intrínseca de lidar com distúrbios e ruídos de medição.

Análogo ao já apresentado, o modelo Non-linear Autoregressive with eXogenous
inputs (NARX) inclui regressores com características não lineares na equação 3.10. Um dos
métodos para incluir tais dinâmicas consiste em adicionar termos polinomiais dependentes
de 𝑢 e 𝑦 como regressores, incluindo produtos cruzados e potências elevadas dos sinais de
entrada e de saída, que atuam como regressores não-lineares. Esses termos polinomiais,
usualmente implementados para identificações do tipo caixa-preta, seguem a eq. (3.12):

𝑢𝑖 · 𝑦𝑗 : [𝑖, 𝑗] ∈ N. (3.12)

Vale destacar que há um grande número de combinações possíveis a partir dessa
aproximação polinomial, o que aumenta exponencialmente o custo computacional associado
ao processo de estimação. Entretanto, um grande número de regressores também tende a
introduzir o problema de overfitting, elevando a variância do modelo e diminuindo sua
capacidade de generalização. Para contornar tal problemática é comum recorrer a métodos
de seleção de regressores como o LASSO.

Além disso, dependendo do sistema modelado e da quantidade de informações
previamente obtidas sobre o sistema, há uma grande separação entre a modelagem e o
significado físico de cada um dos parâmetros encontrados. Dessa forma, o processo de
validação para identificações do tipo caixa-preta torna-se mais complexo e abstrato, mesmo
que ainda seja possível comprovar que o modelo encontrado é satisfatório.
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3.3 Teoria da estimação

Tendo como base os dados referentes ao comportamento do sistema de interesse,
faz-se necessário encontrar, a partir de eq. (3.8), os parâmetros de um modelo escolhido que
aproximem o melhor possível o sistema real em sua estimativa. Esse problema tem origem
histórica nas aplicações à astronomia e à geodésia do século XVIII, quando Legendre e
Gauss formalizaram e aplicaram o MMQ para ajustar observações ruidosas [Legendre
1805,Gauss 1809].

Além disso, ao longo do século XX, o desenvolvimento teórico e computacional
consolidou propriedades formais dos estimadores clássicos e abriu caminho para métodos
que penalizam a complexidade do modelo, visando a um melhor desempenho preditivo
em situações em que o sistema apresenta alta dimensionalidade [Greene 2018, Hastie,
Tibshirani e Friedman 2009].

Com este objetivo, introduzido e analisado por Tibshirani, o método LASSO
acrescenta um termo de regularização à formulação do MMQ. Essa penalização seleciona
as variáveis mais significativas para a dinâmica do sistema, reduzindo a variância a custo
de um aumento do viés [Tibshirani 1996,Hastie, Tibshirani e Friedman 2009]. Portanto,
o LASSO pode ser utilizado como estratégia de seleção de regressores no âmbito da
identificação de sistemas.

A partir da teoria da estimação, portanto, é possível encontrar algoritmos que sele-
cionam e estimam os parâmetros de interesse, mantendo eficiência e robustez, minimizando
possíveis efeitos decorrentes do ruído [Wasserman 2004].

3.3.1 O estimador de mínimos quadrados

A abordagem clássica do estimador por MMQ tem como objetivo minimizar a
soma dos quadrados dos erros de estimação, ou seja, o custo quadrático 𝐽(𝜃), conforme
a eq. (3.13). De sua formulação clássica, a saída estimada é obtida por 𝑦 = 𝑀𝜃, com
o objetivo de definir o vetor de parâmetros 𝜃 que minimiza 𝐽(𝜃) (min𝜃 𝐽(𝜃) ∈ R). A
matriz 𝑀 é definida com base no modelo de representação a ser utilizado: como, durante
o desenvolvimento do trabalho, será aplicado o método ARX, 𝑀 é denominada matriz de
regressores.

min
{︁∑︀𝑁

𝑖 ||𝑦𝑖 − 𝑦𝑖||2
}︁

= min 𝐽(𝜃). (3.13)

Dada uma função convexa qualquer 𝑓(𝑦), um método analítico comprovado para
encontrar pontos de mínimo (ou máximo) é a solução por pontos estacionários, ou seja,
pontos em que a derivada de 𝑓(𝑦) é zero. Dessa forma, assumindo que tal função é bem
comportada e derivável até a segunda ordem, para a minimização, deve-se calcular 𝜃 a
partir de eq. (3.14). As propriedades de derivação matricial são apresentadas em eq. (3.15).
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⎧⎪⎨⎪⎩
𝜕
𝜕 𝜃
𝑓(𝑦) = 0,

𝜕2

𝜕 𝜃2𝑓(𝑦) ≥ 0.
(3.14)

⎧⎪⎨⎪⎩
𝜕
𝜕 𝜃
𝜃′𝐴𝜃 = (𝐴+ 𝐴′)𝜃,

𝜕
𝜕 𝜃
𝐴′𝜃 = 𝜃.

(3.15)

Portanto, se a segunda derivada for estritamente positiva, a solução encontrada é
única. Considerando, ainda, a natureza quadrática da função 3.13, ilustrada em fig. 17, é
possível encontrar o valor de 𝜃 para o qual o erro associado à estimação seja mínimo. Vale
também relembrar que, em ambiente computacional, certas operações matemáticas podem
ser facilmente transformadas em suas versões matriciais, conforme proposto em eq. (3.17).

Figura 17 – Exemplo de uma função 𝐽(𝜃) de natureza quadrática.

Fonte: Autoria própria.

𝑓(𝑦,𝑀, 𝜃) =
∑︁

(𝑦 − 𝑦)2 =
∑︁

𝜁2, (3.16)

∑︁
𝜁2 = 𝜁𝑇 𝜁 = || 𝜁 ||2. (3.17)

Aplicando as definições na equação característica 𝑦 = 𝑀𝜃:

𝑦 = 𝑀𝜃 ∴ 𝜁 = 𝑀𝜃 − 𝑦, (3.18)

|| 𝜁 ||2 = (𝑀𝜃 − 𝑦)𝑇 (𝑀𝜃 − 𝑦) = (𝜃𝑇𝑀𝑇 − 𝑦𝑇 )(𝑀𝜃 − 𝑦), (3.19)

|| 𝜁 ||2 = 𝜃𝑇𝑀𝑇𝑀𝜃 − 𝜃𝑇𝑀𝑇 𝑦 − 𝑦𝑇𝑀𝜃 + 𝑦𝑇𝑦. (3.20)
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As dimensões das matrizes, 𝑦 𝜃𝑇𝑀𝑇 , são idênticas a 𝑦𝑇𝑀𝜃, visto que ambos os
termos são escalares. Assim sendo, é possível aplicar a derivação de eq. (3.21), a fim de
identificar um valor de 𝜃 que seja candidato à minimização de 𝐽(𝜃).

|| 𝜁 ||2 = 𝜃𝑇𝑀𝑇𝑀𝜃 − 2𝜃𝑇𝑀𝑇 𝑦 + 𝑦𝑇𝑦, (3.21)

𝜕

𝜕 𝜃
𝑓(𝑦,𝑀, 𝜃) = 0 ∴ 2𝑀𝑇𝑀𝜃 = 2𝑀𝑇 𝑦, (3.22)

∴ 𝜃 = (𝑀𝑇𝑀)−1 𝑀𝑇𝑦 . (3.23)

Além disso, considerando as condições para minimização, faz-se necessário averiguar
o comportamento da segunda derivada:

𝜕

𝜕 𝜃
2𝑀𝑇𝑀𝜃 − 2𝑀𝑇 𝑦 > 0 ⇐⇒ 2𝑀𝑇𝑀 > 0. (3.24)

Da própria construção do MMQ, é possível garantir que a minimização ocorre
quando se utilizam entradas persistentemente excitantes, visto que levam a uma matriz
𝑀 com posto completo e, portanto, a 𝑀𝑇𝑀 ser definida positiva [Aguirre 2004].

Portanto, utilizando a definição de matriz de Penrose (𝑀+ = (𝑀𝑇𝑀)−1 𝑀𝑇 ),
é possível obter a definição do parâmetro 𝜃 que resulta em eq. (3.25). Pelas definições
eq. (3.13) a eq. (3.24), fica claro que 𝑀𝑇𝑀 definida positiva implica uma solução ótima e
única para os parâmetros do modelo.

𝜃 = 𝑀+ · 𝑦 ⇐⇒
∑︁

(𝑦 − 𝑦)2 = 𝑚𝑖𝑛
{︁ ∑︀(𝑦 − 𝑦)2

}︁
. (3.25)

De forma equivalente, a solução do MMQ pode ser expressa por meio de somatórias,
como apresentado na equação 3.26 [Aguirre 2004]. Nesta notação, 𝜓(𝑖− 1) representa o
vetor de regressores (a 𝑖-ésima linha da matriz 𝑀) e 𝑁 é o número de amostras:

𝜃𝑁 =
[︁

1
𝑁

∑︀𝑁
𝑖=1 𝜓(𝑖− 1)𝜓𝑇 (𝑖− 1)

]︁−1
·

[︁
1
𝑁

∑︀𝑁
𝑖=1 𝜓(𝑖− 1)𝑦(𝑖)

]︁
. (3.26)

É fundamental notar que o MMQ exige linearidade nos parâmetros (vetor 𝜃),
permitindo sua aplicação tanto em modelos de regressão lineares (como retas) quanto
em modelos intrinsecamente não-lineares nos dados (como polinômios), desde que os
parâmetros sejam lineares em relação ao modelo.

A fim de ilustrar o estimador proposto, foram identificados parâmetros da reta
𝑦 = 2𝑡+ 7 (𝜃 =

[︁
2, 7

]︁
), considerando um pequeno ruído do tipo i.i.d. na saída do sistema.

Dessa forma, a equação 3.27 descreve as quatro primeiras amostras do sistema ruidoso.



53

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

6.6552 = 2 · 0 + 7 + 𝑒[0],

8.9776 = 2 · 1 + 7 + 𝑒[1],

10.9123 = 2 · 2 + 7 + 𝑒[2],

13.4654 = 2 · 3 + 7 + 𝑒[3].

(3.27)

Considerando a formulação encontrada para o MMQ, é possível reescrever o sistema
de equações eq. (3.27) a partir de eq. (3.28). Dessa forma, é possível aplicar a eq. (3.25)
iterativamente à medida que aumenta o número de amostras obtidas, ou seja, utilizando
um número crescente de linhas no processo de estimação. Portanto, alterando a ordem do
sistema de equações aplicado a eq. (3.25), é possível averiguar a qualidade dos parâmetros
estimados a partir da tabela 3.

⎡⎢⎢⎢⎢⎢⎢⎣
6.6552
8.9776
10.9123
13.4654

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1
1 1
2 1
3 1

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎡⎣𝜃1

𝜃2

⎤⎦ + 𝑒. (3.28)

Tabela 3 – Estimação dos parâmetros da reta 𝑦 = 𝜃1𝑡 + 𝜃2 em função do número de
amostras

Amostras Coeficiente angular Coeficiente linear
2 2.3223 6.6552
3 2.1285 6.7198
4 2.2365 6.6478

Fonte: Autoria própria.

A fig. 18 ilustra o resultado do mesmo processo de estimação. O gráfico 18a mostra
a reta estimada a partir de 100 amostras de dados ruidosos, enquanto 18b apresenta a
convergência dos parâmetros 𝜃1 (coeficiente angular) e 𝜃2 (coeficiente linear) em função
do número de amostras utilizadas, destacando como o estimador se aproxima dos valores
reais (𝜃1 = 2, 𝜃2 = 7) à medida que mais dados são processados.
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Figura 18 – Exemplo de estimação a partir do MMQ - número máximo de 100 amostras.

(a) Identificação da reta 𝑦 = 2𝑡 + 7. (b) Parâmetros em função das amostras.

Fonte: Autoria própria.

3.3.2 O MMQ recursivo

O MMQR permite atualizar os parâmetros do modelo (𝜃) a cada nova aquisição de
dados, eliminando a necessidade de recomputar a solução em batch (3.26) a cada passo. A
derivação inicia-se reescrevendo a solução batch para um número de amostras 𝑐:

𝜃𝑐 =
[︁∑︀𝑐

𝑖=1 𝜓(𝑖− 1)𝜓𝑇 (𝑖− 1)
]︁−1

·
[︁∑︀𝑐

𝑖=1 𝜓(𝑖− 1)𝑦(𝑖)
]︁
. (3.29)

Desse modo, definindo as matrizes 𝑃𝑐 e 𝑄𝑐 tal que 𝑃𝑐 =
[︁∑︀𝑐

𝑖=1 𝜓(𝑖− 1)𝜓𝑇 (𝑖− 1)
]︁−1

e 𝑄𝑐 =
[︁∑︀𝑐

𝑖=1 𝜓(𝑖− 1)𝑦(𝑖)
]︁
, a equação 3.29 pode ser reescrita como 3.30.

𝜃𝑐 = 𝑃𝑐 ·𝑄𝑐. (3.30)

Efetuando a separação do termo para 𝑖 = 𝑐 tanto em 𝑃𝑐 quanto em 𝑄𝑐, é possível
obter 3.31. Em seguida, devido à nomenclatura utilizada, é plausível reescrever 3.31 como
3.32.

⎧⎪⎪⎨⎪⎪⎩
𝑃−1
𝑐 =

[︂∑︀𝑐−1
𝑖=1 𝜓(𝑖− 1)𝜓𝑇 (𝑖− 1)

]︂
+ 𝜓(𝑐− 1)𝜓𝑇 (𝑐− 1),

𝑄𝑐 =
[︂∑︀𝑐−1

𝑖=1 𝜓(𝑖− 1)𝑦(𝑖)
]︂

+ 𝜓(𝑐− 1)𝑦(𝑐),
(3.31)

⎧⎪⎨⎪⎩𝑃
−1
𝑐 = 𝑃−1

𝑐−1 + 𝜓(𝑐− 1)𝜓𝑇 (𝑐− 1),

𝑄𝑐 = 𝑄𝑐−1 + 𝜓(𝑐− 1)𝑦(𝑐).
(3.32)

Retomando a equação 3.30, é possível reescrevê-la para o instante 𝑐− 1, de modo a
obter 3.33.
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⎧⎪⎨⎪⎩𝑄𝑐−1 = 𝑃−1
𝑐−1𝜃𝑐−1,

𝑄𝑐 = 𝑃−1
𝑐−1𝜃𝑐−1 + 𝜓(𝑐− 1)𝑦(𝑐).

(3.33)

Substituindo 𝑄𝑐 (de 3.33) em 𝜃𝑐 = 𝑃𝑐𝑄𝑐 (3.30), obtemos uma forma que ainda
requer a inversão da matriz 𝑃−1

𝑐 a cada passo eq. (3.34). Para evitar essa onerosa inversão
matricial, aplicamos a Identidade da Inversão da Matriz (ou Identidade de Woodbury)
3.35 à relação 𝑃−1

𝑐 = 𝑃−1
𝑐−1 + 𝜓(𝑐− 1)𝜓𝑇 (𝑐− 1) (3.32).

𝜃𝑐 = 𝑃𝑐
[︁
𝑃−1
𝑐−1𝜃𝑐−1 + 𝜓(𝑐− 1)𝑦(𝑐)

]︁
, (3.34)

(𝐴+ 𝑈𝐶𝑉 )−1 = 𝐴−1 − 𝐴−1𝑈(𝐶−1 + 𝑉 𝐴−1𝑈)−1𝑉 𝐴−1, (3.35)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐴 = 𝑃−1
𝑐−1,

𝑈 = 𝜓(𝑐− 1),

𝐶 = 1,

𝑉 = 𝜓𝑇 (𝑐− 1).

(3.36)

Assim sendo, é possível inverter 𝑃−1
𝑐 denotada na formulação 3.32 a partir de:

𝑃𝑐 =
[︁
𝑃−1
𝑐−1 + 𝜓(𝑐− 1)𝜓𝑇 (𝑐− 1)

]︁−1
, (3.37)

𝑃𝑐 = (𝐴+ 𝑈𝐶𝑉 )−1 = 𝐴−1 − 𝐴−1𝑈(𝐶−1 + 𝑉 𝐴−1𝑈)−1𝑉 𝐴−1, (3.38)

𝑃𝑐 = 𝑃𝑐−1 − 𝑃𝑐−1𝜓(𝑐− 1)
[︁
1 + 𝜓𝑇 (𝑐− 1) · 𝑃𝑐−1 · 𝜓(𝑐− 1)

]︁−1
𝜓𝑇 (𝑐− 1)𝑃𝑐−1, (3.39)

∴ 𝑃𝑐 = 𝑃𝑐−1 − 𝑃𝑐−1𝜓(𝑐− 1)
1 + 𝜓𝑇 (𝑐− 1) · 𝑃𝑐−1 · 𝜓(𝑐− 1)𝜓

𝑇 (𝑐− 1)𝑃𝑐−1. (3.40)

Definindo um ganho 𝐾𝑐 de modo que a formulação 3.41 seja verdadeira, é possível
reescrever 3.39 como 3.42.

⎧⎪⎨⎪⎩𝐾𝑐 = 𝑃𝑐−1 𝜓(𝑐−1)
1+𝑎 ,

𝑎 = 𝜓𝑇 (𝑐− 1) 𝑃𝑐−1 𝜓(𝑐− 1),
(3.41)

𝑃𝑐 = 𝑃𝑐−1 −𝐾𝑐𝜓
𝑇 (𝑐− 1)𝑃𝑐−1. (3.42)
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Substituindo 3.42 em 3.34, obtém-se 3.44. É importante ressaltar que, a partir do
uso de 3.30 e da primeira equação em 3.33 é possível simplificar os termos 𝑀1 e 𝑀3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜃𝑐 = 𝑀1 +𝑀2 −𝑀3 −𝑀4,

𝑀1 = 𝑃𝑐−1 𝑃
−1
𝑐−1𝜃𝑐−1 = 𝜃𝑐−1,

𝑀2 = 𝑃𝑐−1𝜓(𝑐− 1)𝑦(𝑐),

𝑀3 = 𝐾𝑐𝜓
𝑇 (𝑐− 1)𝑃𝑐−1 𝑃

−1
𝑐−1𝜃𝑐−1 = 𝐾𝑐𝜓

𝑇 (𝑐− 1)𝜃𝑐−1,

𝑀4 = 𝐾𝑐𝜓
𝑇 (𝑐− 1)𝑃𝑐−1𝜓(𝑐− 1)𝑦(𝑐) = 𝐾𝑐 · 𝑎 · 𝑦(𝑐),

(3.43)

∴ 𝜃𝑐 = 𝜃𝑐−1 −𝐾𝑐𝜓
𝑇 (𝑐− 1)𝜃𝑐−1 +

[︁
𝑃𝑐−1𝜓(𝑐− 1) −𝐾𝑐 · 𝑎

]︁
𝑦(𝑐). (3.44)

A partir da definição de 𝐾𝑐, verifica-se que 𝑃𝑐−1𝜓(𝑐− 1) = 𝐾𝑐(1 + 𝑎). Substituindo
na equação 3.44 e agrupando os termos dependentes de 𝐾𝑐, obtém-se 3.45.

⎧⎪⎨⎪⎩
𝜃𝑐 = 𝜃𝑐−1 −𝐾𝑐𝜓

𝑇 (𝑐− 1)𝜃𝑐−1 +𝐾𝑐𝑦(𝑐),

𝜃𝑐 = 𝜃𝑐−1 +𝐾𝑐

[︂
𝑦(𝑐) − 𝜓𝑇 (𝑐− 1)𝜃𝑐−1

]︂
.

(3.45)

O MMQR básico pressupõe que todos os dados anteriores são igualmente relevantes.
Em sistemas em que as características mudam lentamente, é comum introduzir o fator
de esquecimento 𝜆, com 0 < 𝜆 ≤ 1, para dar maior peso às amostras mais recentes e
‘esquecer’ as anteriores. O uso de 𝜆 resulta em equações formuladas em 3.46 [Goel, Bruce
e Bernstein 2020].

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐾𝑐 = 𝑃𝑐−1 𝜓(𝑐−1)

𝜆+𝜓𝑇 (𝑐−1) 𝑃𝑐−1 𝜓(𝑐−1) ,

𝜃𝑐 = 𝜃𝑐−1 +𝐾𝑐

[︂
𝑦(𝑐) − 𝜓𝑇 (𝑐− 1) 𝜃𝑐−1

]︂
,

𝑃𝑐 = 𝜆−1
[︂
𝑃𝑐−1 −𝐾𝑐𝜓

𝑇 (𝑐− 1)𝑃𝑐−1.

]︂ (3.46)

O sucesso do MMQR reside no fato de que, ao contrário do MMQ padrão, a única
inversão necessária no algoritmo (3.46) é a do denominador do ganho 𝐾𝑐. Visto que
𝜆+ 𝜓𝑇𝑃𝑐−1𝜓 é um escalar, o alto custo computacional da inversão matricial é evitado, o
que permite a execução eficiente em tempo real.

3.3.3 Uso do LASSO como ferramenta de seleção de regressores

A partir da metodologia apresentada em 3.3.1 e 3.2, é possível obter uma apro-
ximação paramétrica ótima a partir do MMQ. Deve-se considerar, porém, que o custo
computacional associado à estimação pode se tornar desnecessariamente elevado e que a
possível inserção de regressores não relevantes pode provocar o efeito de overfitting.
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Isso ocorre quando foi definida uma quantidade elevada de regressores, que pode
ser superior ao número necessário para caracterizar o sistema de interesse. Isso tende a
ocorrer por desconhecimento ou até mesmo por uma interpretação equivocada do objeto
de estudo.

Nesses casos, com base nas limitações previamente abordadas no capítulo 1, faz-se
necessário limitar o número de regressores. Além disso, outro problema oriundo do uso
de uma quantidade superior à necessária é o overfitting, o que pode levar a um modelo
enviesado ou demasiadamente contaminado por ruídos. Tal dinâmica é representada pela
figura 20

Figura 19 – Exemplos de underfitting (à esquerda) e de overfitting (à direita).

Fonte: Autoria própria.

Para tais casos, é útil utilizar técnicas como a regressão LASSO, que identifica e
atenua a influência de regressores irrelevantes para o sistema de interesse. Assim sendo,
espera-se que a utilização de métodos como este acarrete uma diminuição da precisão do
modelo nos dados obtidos, em troca de maior eficácia na descrição do sistema como um
todo. Em termos de machine learning, o desempenho nos dados de treinamento é inferior,
mas tende a ser igual ou superior ao dos dados de validação.

Assim, definem-se duas funções distintas: 𝑓(𝑀, 𝜃), que minimiza o problema
original, e 𝑔(𝑀, 𝜃), um termo de regularização que busca generalizar melhor os dados
obtidos e eliminar o overfitting. Vale destacar que o parâmetro 𝜆, abordado separadamente,
nada mais é do que um peso adicionado à função objetivo, indicando o quão importante é
essa correção em relação ao desempenho da função original 𝑓(𝑀, 𝜃).

𝑚𝑖𝑛
{︁
𝑓(𝑀, 𝜃) + 𝜆 𝑔(𝑀, 𝜃)

}︁
. (3.47)

Dessa forma, as regressões do tipo Ridge e LASSO são dadas pelas equações 3.48 e
3.49. É importante destacar que a regressão de Ridge é mais utilizada para reduzir o viés
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que os dados de treinamento podem introduzir no modelo, enquanto o método LASSO é
extremamente útil para eliminar regressores e, portanto, dinâmicas, que possuem pouca
ou nenhuma influência na saída do sistema. Em específico, para o LASSO, aplica-se a
regularização baseada na norma L1, que tende a zerar os parâmetros de menor relevância
à medida que aumenta 𝜆.

𝑚𝑖𝑛
{︁

1
𝑛

∑︀(𝑦𝑖 − 𝑦𝑖)2 + 𝜆
∑︀(𝜃𝑖)2

}︁
, (3.48)

𝑚𝑖𝑛
{︁

1
𝑛

∑︀(𝑦𝑖 − 𝑦𝑖)2 + 𝜆
∑︀ |𝜃𝑖|

}︁
. (3.49)

Vale também destacar que é possível substituir a função 𝑔(𝑀, 𝜃) a partir de
eq. (3.50), desde que a função objetivo original 𝑓(𝑀, 𝜃) respeite a nova restrição imposta.
Desse modo, a fig. 20 representa tal dinâmica para Ridge e LASSO, tratando 𝜃 = [ 𝜃1, 𝜃2 ],
e 𝜃 o ponto em que 𝑓(𝑀, 𝜃) é mínimo.

∑︁
|𝜃𝑖|𝑞 < 𝑡𝑞. (3.50)

Figura 20 – Comportamento da função objetivo 𝑓(𝑀, 𝜃) em vermelho, apresentando ponto
de minimização em 𝜃. Os termos de regularização impostos pela equação 3.50
são denotados pelas formas geométricas em azul. Da esquerda para a direita:
Lasso (𝑞 = 1) e Ridge (𝑞 = 2).

𝜃1

𝜃2

𝜃

𝜃1

𝜃2

𝜃

Fonte: [Hastie, Tibshirani e Wainwright 2015].

Além das regularizações L1 (LASSO) e L2 (Ridge), existe uma família de restrições
similares que resulta em diversos métodos de otimização distintos, todos os quais podem
ser representados pela estrutura dada na equação 3.47, apenas alterando a natureza das
funções 𝑓(𝑀, 𝜃) e 𝑔(𝑀, 𝜃). As restrições correspondentes a essas regularizações são
apresentadas na fig. 21, notando-se que para L1 (𝑞 = 1) e L2 (𝑞 = 2) o formato é o mesmo
do apresentado em fig. 20.
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𝑔(𝑀, 𝜃) =
∑︁

|𝜃𝑖|𝑞. (3.51)

Figura 21 – Diferentes formatos das restrições introduzidas em eq. (3.50).

Fonte: adaptado de [Hastie, Tibshirani e Wainwright 2015].

3.3.3.1 Parâmetro de penalização 𝜆

É importante também destacar a influência do parâmetro 𝜆 na modelagem do
problema. Inicialmente, é possível afirmar que, para 𝜆 = 0, a equação de interesse nada
mais é do que o método dos mínimos quadrados já abordado, acrescido de um fator 1

𝑛
. A

influência de valores elevados de 𝜆, porém, pode não ser tão intuitiva.

Considerando que o problema de interesse é classificado como uma otimização
por minimização, para pesos maiores em 𝑔(𝑀, 𝜃), os próprios parâmetros terão de ser
fortemente penalizados, o que indica uma menor variação de 𝑦 em função dos regressores.
Para o método LASSO, tal comportamento é ainda mais evidente, visto que os regressores
de menor influência podem ser simplesmente eliminados da equação do sistema.

Figura 22 – Exemplo de validação cruzada.

Fonte: [Hastie, Tibshirani e Wainwright 2015].

Desse modo, uma das maneiras de verificar um valor ideal de 𝜆 é realizar a validação
cruzada dos dados, como ilustrado na fig. 22. Isso nada mais é do que excluir uma das
linhas de 𝑀 e sua correspondente em 𝑦, verificando, para uma ampla gama de valores de
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𝜆, a regressão LASSO (ou Ridge) correspondente. Depois, apenas para a linha excluída,
calcule o erro quadrático médio da saída.

Ao efetuar o procedimento em todas as linhas, é possível agrupar os erros de todas
as amostras em vetores, um por 𝜆, e confirmar suas médias e variâncias. Assim, é possível
verificar qual 𝜆 leva ao menor Mean Squared Error (MSE), conforme apresentado na
fig. 22.

É importante destacar que tal processo acarreta um grande custo computacional,
visto que requer o cálculo do erro associado à retirada de N amostras. Dessa forma, será
utilizada uma abordagem distinta, na qual os dados amostrados serão separados em um
número determinado de folds. Dessa forma, é necessário efetuar 𝑁𝑓𝑜𝑙𝑑𝑠 operações, o que
representa um custo bem inferior ao associado a 𝑁 loops de cross-validation.

Por fim, a fig. 23 ilustra tanto o processo de validação cruzada (23a) quanto a
tendência do LASSO a zerar os coeficientes à medida que o parâmetro 𝜆 aumenta (23b).

Figura 23 – Influência do parâmetro 𝜆 na estimação, com dados obtidos na seção 4.4,
relativos à figura 36a. Uso da escala logarítmica no eixo x.

(a) MSE. (b) 𝜃[ 𝜆 = 0 ] = 𝜃𝑀𝑀𝑄 =
[︁
0.9996 0.004

]︁𝑇
.

Fonte: Autoria própria.

Dessa forma, mesmo que o custo computacional associado à implementação do
LASSO seja significativo, a depender da necessidade e do nível de invariância temporal
do sistema, tal etapa pode ser aplicada a partir de um pré-processamento sobre os dados
obtidos experimentalmente. Portanto, considerando uma aplicação em tempo real, é
possível se utilizar do MMQ, ou até mesmo de sua versão recursiva, para identificar apenas
os parâmetros mais significativos encontrados. Assim sendo, o uso de regularizações como o
LASSO tende a diminuir não só o efeito do overfitting, mas também o custo computacional
associado a utilização de toda a lógica de identificação.
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3.4 Validação dos modelos

Também é de suma importância verificar se o modelo obtido condiz com o sistema
de interesse. Para tal, no escopo do trabalho, serão utilizados três parâmetros principais: o
MSE, o fit dos dados e o Final Prediction Error (FPE). Os demais indicadores também
serão definidos, embora não sejam utilizados diretamente na validação dos dados obtidos.

Primeiramente, o indicador 𝑅2 baseia-se na diferença entre o valor estimado (𝑦)
e o valor médio (𝑦) do sinal de interesse, bem como no erro de estimação. Assim sendo,
valores próximos ao unitário indicam uma boa modelagem e, para valores superiores a 0.7,
a representação é considerada confiável [Gupta, Stead e Ganti 2024].

𝑅2 =
∑︀(𝑦 − 𝑦)2∑︀(𝑦 − 𝑦)2 + (𝑦 − 𝑦)2 . (3.52)

Como o 𝑅2, também é comum utilizar o parâmetro 𝐹𝑖𝑡 para avaliar a adequação
da modelagem em relação aos dados utilizados para obtê-la.

𝐹𝑖𝑡 = 100 ·
[︁
1 − ||𝑦−𝑦||

||𝑦−𝑦||

]︁
. (3.53)

Além disso, é possível utilizar a própria norma de diferença de vetores (eq. (3.54))
para identificar a similaridade entre eles. De uma perspectiva geométrica, tal resultado
nada mais é do que o comprimento do vetor de diferenças, ou seja, a distância entre o
vetor estimado e o vetor com informações aferidas diretamente no sistema.

||𝑣|| =
⎯⎸⎸⎷ 𝑛∑︁
𝑖=0

𝑣2
𝑖 . (3.54)

Assim, utilizando a definição de norma (eq. (3.54)), o MSE calcula um valor médio
associado à diferença entre os parâmetros de interesse, usualmente expressa por 𝑦 − 𝑦 ou
𝑡ℎ𝑒𝑡𝑎−
ℎ𝑎𝑡𝑡ℎ𝑒𝑡𝑎.

𝑀𝑆𝐸( 𝑣[ 𝑘 ] ) = || 𝑣[ 𝑘 ]2 ||
𝑁

; {𝑘 ∈ N/1 < 𝑘 < 𝐾}. (3.55)

O FPE também é uma métrica interessante de obter, pois quantifica a capacidade
do sistema de evitar o overfitting.

𝐹𝑃𝐸 = 𝜎2
𝜁 · 𝑁 + 𝑑

𝑁 − 𝑑
. (3.56)

Por fim, dadas as funções de correlação cruzada e autocorrelação dos sinais de
entrada e de saída de um sistema qualquer, é possível obter o espectro de coerência a
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partir de 3.57. Assim, como abordado em [Aguirre 2004], é possível considerar confiáveis
os valores obtidos para frequências em que 𝛾𝑢𝑦(𝜔) ≥ 0.6.

𝛾𝑢𝑦(𝜔) =

⎯⎸⎸⎷ |𝜑(𝑒𝑗𝜔)|2

|𝜑𝑢(𝜔)||𝜑𝑦(𝜔)|
. (3.57)
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4 EXPERIMENTOS

A fim de ilustrar e validar os métodos definidos no capítulo 3, foram primeiramente
realizados testes em ambientes computacionais e laboratoriais para sistemas de menor
complexidade, tanto lineares quanto não lineares. Tal procedimento foi realizado com o
intuito de aumentar o nível de familiaridade com processos de identificação antes de aplicar
as mesmas metodologias a sistemas mais complexos, tais como o twin-rotor.

4.1 Sinal PRBS e degrau unitário

Inicialmente, é interessante comparar o espectro de frequências, bem como a
qualidade da identificação do sistema de interesse, em função do sinal de entrada escolhido.
Com tal objetivo em mente, serão avaliados os resultados em função da entrada PRBS
proposta e da resposta ao degrau, método amplamente utilizado na identificação. Também
serão utilizados todos os procedimentos relevantes a sistemas lineares, apresentados no
capítulo 3.

Figura 24 – Comparação entre o espectro de frequências do sinal PRBS de degrau unitário,
simulação de 2.5𝑠 e 𝐹𝑠 = 103𝐻𝑧.

(a) Espectro de frequências (b) Ampliação em frequências mais baixas

Fonte: Autoria própria.

Comparando fig. 24a e fig. 24b, é possível afirmar que uma variável com caráter
aleatório possui componentes em uma faixa de frequências muito superior à de sinais con-
vencionais, como o degrau unitário. Portanto, ainda que seja possível obter representações
precisas a partir da identificação por um degrau unitário, fica claro que o uso de sinais de
banda larga, como o PRBS, é preferível. Tal afirmação se mostra ainda mais precisa para
sistemas de alta complexidade, como já abordado previamente.
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Além disso, é interessante definir uma variável 𝜌 que contém a informação sobre o
quão significativa é a magnitude do ruído em relação ao sinal de entrada de interesse. Como
exemplo, foi obtida a resposta de um sistema RC para diferentes valores de 𝜌, apresentada
na figura 25.

𝜌 = || 𝑒[ 𝑘 ] ||∞
|| 𝑢[ 𝑘 ] ||∞

. (4.1)

Figura 25 – Resposta ao sistema para diferentes distúrbios na entrada, simulação de 1𝑠 e
𝐹𝑠 = 104𝐻𝑧.

(a) 𝜌 = 0.1. (b) 𝜌 = 1. (c) 𝜌 = 10.

Fonte: Autoria própria.

Vale ressaltar que, para fins de identificação, ainda é possível obter um modelo
satisfatório mesmo em condições nas quais 𝜌 indica a presença de um ruído significativo
nos dados. A imagem 26 foi obtida por meio da aplicação do MMQ a um modelo ARX nos
dados de 25c, utilizando a mesma entrada sem distúrbios para fins comparativos. Para a
simulação, foi utilizado o circuito de primeira ordem, apresentado na fig. 27 e na tabela 5.

Figura 26 – Comparação do modelo obtido para 𝜌 = 10 e saída ideal. Simulação de 1𝑠 e
𝐹𝑠 = 104𝐻𝑧.

Fonte: Autoria própria.
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Tabela 4 – Dados de validação para o modelo da figura 26.

Validação da saída 𝑦 Valor obtido
MSE 5.1418 · 10−29

FIT 100%
FPE 2.2213 · 10−16

Fonte: Autoria própria.

4.1.1 Comparação em um circuito RC: simulação computacional

A partir dos exemplos apresentados nas figuras 25 e 26, é possível abordar em mais
detalhes o comportamento do circuito RC de interesse, bem como as demais características
e resultados relevantes à identificação de sistemas.

Figura 27 – Circuito RC implementado no Simulink.

Fonte: Autoria própria.

Tabela 5 – Componentes utilizados para a simulação.

Componente Valor associado
R 1 𝑘Ω
C 1 𝜇𝐹

Fonte: Autoria própria.

𝐻𝑅𝐶 = 1
𝑅𝐶𝑠+ 1 = 1

10−3𝑠+ 1 = 103

𝑠+ 103 . (4.2)

Desse modo, foi obtida a resposta em frequência em função de ambas as entradas
degrau e PRBS. Além disso, considerando que se encontra em ambiente computacional,
também é possível averiguar a qualidade da estimação diretamente a partir do vetor de
parâmetros 𝜃
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Figura 28 – Comparação entre respostas do sistema RC ao sinal PRBS e degrau unitário,
simulação de 2.5𝑠 e 𝐹𝑠 = 103𝐻𝑧.

(a) Resposta ao degrau. (b) Resposta ao PRBS.

Fonte: Autoria própria.

Figura 29 – Comparação entre respostas em frequência do sistema RC ao sinal PRBS e
degrau unitário, simulação de 2.5𝑠 e 𝐹𝑠 = 103𝐻𝑧.

(a) Resposta ao degrau. (b) Resposta ao PRBS.

Fonte: Autoria própria.

Avaliando, primeiramente, a resposta em frequência apresentada na figura 29, é
possível afirmar que o resultado obtido para a entrada PRBS representa, de maneira mais
fiel, o comportamento esperado do circuito, característica que se manifesta com maior
intensidade em frequências mais altas. Dessa forma, também é possível afirmar que os
resultados obtidos na fase do sistema não foram satisfatórios para nenhum dos sinais de
entrada escolhidos.

Além disso, é possível afirmar que a função de coerência é representativa da
qualidade do modelo na frequência de interesse, em especial da magnitude da resposta em
frequência. Assim sendo, ainda que formalmente represente o quanto a entrada explica o
comportamento observado na saída do sistema, a função de coerência também é indicativa
da qualidade da estimação em cada frequência.
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A figura 30 apresenta o comportamento dos parâmetros MSE e FIT em função do
aumento do nível de ruído no sistema (aumento de 𝜌), tanto para uma entrada PRBS
quanto para uma entrada do tipo degrau unitário. É notável que, considerando a escala
utilizada, há pouca variação na qualidade da estimação com o aumento de 𝜌. Ainda assim,
devem ser considerados diversos aspectos que também afetam esta influência do ruído
no processo de identificação, como não linearidades, a presença de acoplamento entre
entradas e saídas, a ordem do sistema ou até mesmo o número de medições obtidas do
mesmo. Ainda assim, é possível constatar que a aplicação do MMQ a modelos do tipo
ARX apresenta características intrínsecas de rejeição ao ruído.

Figura 30 – Comportamento da estimação do vetor de parâmetros em função de 𝜌, simu-
lação de 1𝑠 e 𝐹𝑠 = 104𝐻𝑧.

Fonte: Autoria própria.

É importante observar que o modelo identificado a partir da entrada PRBS apresenta
uma modelagem mais próxima dos dados do sistema real diante de distúrbios, como
mostrado em 30. Além disso, vale destacar que se espera uma certa variabilidade nos dados
obtidos, considerando as características estocásticas do distúrbio utilizado. Foi também
necessário aumentar a taxa de amostragem para 𝐹𝑠 = 104𝐻𝑧 para a obtenção da figura,
considerando que o parâmetro FIT𝑠𝑡𝑒𝑝 iniciava em 15% mesmo na modelagem ideal.
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4.2 Exemplo de identificação simples: circuito RC

Com base no que foi apresentado para o circuito computacional, também foram
realizadas a aferição e validação de um circuito de primeira ordem utilizando-se de dados
reais obtidos em laboratório, resultando na figura 31. Percebe-se que os resultados para
os dados de validação, assim como para o caso simulado, são tão satisfatórios quanto os
obtidos para a estimação. Os parâmetros foram obtidos a partir da resposta ao degrau,
posteriormente ajustados em função da nova frequência de amostragem e comparados com
um sinal de onda quadrada.

Figura 31 – Dados do circuito RC obtidos em laboratório. Para estimação e validação:
5𝑚𝑠, 𝐹𝑠 = 5 · 105𝐻𝑧; 25𝑚𝑠, 𝐹𝑠 = 1 · 105𝐻𝑧.

(a) Dados para estimação. (b) Dados para validação.

Fonte: Autoria própria.

Tabela 6 – Dados de validação para o modelo da figura 31.

Validação da saída 𝑦 Valor para estimação Valor para validação
MSE 78 · 10−4 173 · 10−4

FIT 97.55% 96.34%
FPE 78 · 10−4 173 · 10−4

Fonte: Autoria própria.

Desse modo, embora não seja preferível para a modelagem, é possível obter uma
representação satisfatória do sistema de interesse a partir de uma entrada degrau. Vale
destacar apenas que tal afirmação é aplicável a circuitos de menor complexidade e com
poucas influências não lineares, assim como o utilizado nesta seção.

4.3 Alteração paramétrica durante a identificação

Considerando a possibilidade de o sistema de interesse depender de alterações
paramétricas ao longo do tempo, é interessante avaliar se o método utilizado consegue
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identificar tais variações durante o processo de estimação. Essa capacidade é extremamente
interessante, por exemplo, para a aplicação em sistemas com controle adaptativo, nos
quais já se espera uma variação durante o processo de identificação e controle. Para tal, foi
aplicado o MMQR descrito em seção 3.3.2 a uma alteração da carga resistiva do circuito
denotado em fig. 27, visto que ele já permite essa variação por meio da alteração de
variáveis no workspace do Matlab.

𝑅[ 𝑘 ] ∈ {0.5𝑠 ≤ 𝑘 ≤ 1𝑠} = 2 ·𝑅[ 𝑘 ] ∈ {0𝑠 ≤ 𝑘 < 0.5𝑠} (4.3)

Figura 32 – Dados do circuito RC para o MMQ recursivo, com ampliação no instante em
que a carga resistiva é aumentada. Simulação de 1𝑠, 𝐹𝑠 = 1 · 104𝐻𝑧

(a) Resposta dos estimadores. (b) Variação em 𝜃𝑀𝑀𝑄𝑟 .

Fonte: Autoria própria.

Tabela 7 – Dados para o MMQ e o MMQR, 𝜆 = 0.9

Validação da saída 𝑦 Valor para MMQ Valor para MMQR
MSE 4.7156 · 10−4 3.1261 · 10−7

FIT 76.93% 99.41%
FPE 4.7175 · 10−4 3.1274 · 10−7

Fonte: Autoria própria.

Desse modo, a partir da figura 32a e da tabela 7, é possível afirmar que o estimador
recursivo apresenta um desempenho muito superior ao do estimador MMQ em sistemas
variantes no tempo.

4.4 Exemplo de identificação simples: dinâmica de temperatura

Análoga à realizada na seção 4.1.1, a aferição de temperatura de um circuito
resistivo foi realizada, conforme apresentado em fig. 34. Os dados obtidos em função da
entrada PRBS foram utilizados para estimar um modelo, tanto pelo método ARX quanto
por meio de uma função de transferência, utilizando o comando tfest.
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Figura 33 – Esquemático do circuito para aferição de temperatura.

Fonte: [Fernandes 2025].

Figura 34 – Circuito para aferição de temperatura, sensor NTC indicado.

Fonte: [Fernandes 2025].

Considerando que o sistema em estudo envolve dinâmicas de temperatura, a
temperatura foi aproximada por uma Função de Transferência (FT) de primeira ordem,
conforme apresentada na equação 4.4. Desse modo, é possível desenvolver eq. (4.4) para
obter a Equação Diferencial Ordinária (EDO) 4.6.

𝐺(𝑠) = 𝑘

𝑇𝑠+ 1 , (4.4)

𝑌 (𝑠) · (𝑇𝑠+ 1) = 𝑘 · 𝑈(𝑠), (4.5)

𝑇 · 𝑑
𝑑𝑡
𝑦(𝑡) + 𝑦(𝑡) = 𝑘 · 𝑢(𝑡). (4.6)

Considerando uma discretização da formulação apresentada em 4.6, dada pela
aproximação 𝑑

𝑑𝑡
𝑦(𝑡) = 𝑦[𝑘]−𝑦[𝑘−1]

𝑇𝑠
, é possível obter eq. (4.9) a partir de eq. (4.7).

𝑇 · 𝑦[𝑘] − 𝑦[𝑘 − 1]
𝑇𝑠

+ 𝑦[𝑘] = 𝑘 · 𝑢[𝑘], (4.7)
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𝑇 + 𝑇𝑠
𝑇𝑠

· 𝑦[𝑘] = 𝑇

𝑇𝑠
𝑦[𝑘 − 1] + 𝑘 · 𝑢[𝑘], (4.8)

·𝑦[𝑘] = 𝑇

𝑇 + 𝑇𝑠
𝑦[𝑘 − 1] + 𝑘𝑇𝑠

𝑇 + 𝑇𝑠
· 𝑢[𝑘]. (4.9)

Por fim, é possível reescrever eq. (4.9) de modo a obter eq. (4.11), tal que se
encontrem 𝜃1 = 𝑇

𝑇+𝑇𝑠
e 𝜃2 = 𝑘𝑇𝑠

𝑇+𝑇𝑠
que resultem na formulação do MMQ para o modelo de

interesse:

·𝑦[𝑘] = 𝜃1 · 𝑦[𝑘 − 1] + 𝜃2 · 𝑢[𝑘], (4.10)

·𝑦[𝑘] =
[︁
𝑦[𝑘 − 1] 𝑢[𝑘]

]︁
·

⎡⎣𝜃1

𝜃2

⎤⎦ . (4.11)

Figura 35 – Entradas dos dados obtidos para o sistema de temperatura. Para estimação e
validação: 10 𝑚𝑖𝑛, 𝐹𝑠 = 50𝐻𝑧; 5 𝑚𝑖𝑛, 𝐹𝑠 = 50𝐻𝑧.

(a) Dados para estimação (b) Dados para validação

Fonte: Autoria própria.

Para fins de validação, também foi efetuado um ajuste manual no ganho encontrado
para ambas as metodologias de estimação utilizadas, visando maximizar a semelhança entre
os sinais de validação e os obtidos em laboratório. Tal ajuste mostrou-se necessário, visto
que, embora o MMQ e o estimador de FT utilizados tenham obtido resultados satisfatórios
tanto na estimação quanto na dinâmica do sistema como um todo, não conseguiram
reproduzir fielmente o ganho na validação. Desse modo, a partir da figura 36c e da tabela
10, é visível que o uso do método ARX se comprova como uma alternativa mais fidedigna
à dinâmica do sistema de interesse. Vale também mencionar que, como abordado em [Ford
e Hasbun 2019], existem diversas dinâmicas não lineares associadas ao comportamento
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dissipativo de um resistor, que não foram consideradas em nenhum dos modelos (ARX e
FT) utilizados.

Figura 36 – Saídas estimadas para os dados obtidos do sistema de temperatura.

(a) Dados para estimação. (b) Dados para validação. (c) Ajuste no ganho.

Fonte: Autoria própria.

Tabela 8 – Dados de estimação para o modelo da figura 36a

Validação da saída 𝑦 Valor para ARX Valor para FT
MSE 14.2718 5.2588
FIT 75.21% 84.95%
FPE 14.2747 5.2595

Fonte: Autoria própria.

Tabela 9 – Dados de validação para o modelo da figura 36b

Validação da saída 𝑦 Valor para ARX Valor para FT
MSE 34.4915 98.5323
FIT 76.99% 61.11%
FPE 34.5053 95.5586

Fonte: Autoria própria.

Tabela 10 – Dados de validação para o modelo da figura 36c

Validação da saída 𝑦 Valor para ARX Valor para FT
MSE 2.2571 38.7603
FIT 94.11% 75.61%
FPE 2.2580 38.7707

Fonte: Autoria própria.

𝑦 = 1.07 ·
[︁
𝑦[ 𝑘 − 1 ] 𝑢[ 𝑘 ]

]︁ ⎡⎣0.9996
0.0004

⎤⎦ . (4.12)

Por fim, é importante destacar que o gráfico da função de autocorrelação do sinal
PRBS utilizado não atende aos limites impostos em 2.9. Para fins de comprovação do nível
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de excitação do sistema, basta adquirir o espectro de frequências da entrada. Portanto, a
partir da comparação entre 37b e 24, é possível confirmar que o resultado obtido ainda é
satisfatório no domínio da frequência, embora ocorra uma grande atenuação em dinâmicas
mais velozes.

Tal efeito decorre da inserção de um segurador na entrada PRBS usual, evitando que
dinâmicas excessivamente rápidas prejudiquem o funcionamento e a vida útil do dispositivo
de chaveamento utilizado. Outro fator importante a se considerar é que componentes de
frequência mais elevada possuem pouca ou nenhuma influência na dinâmica de interesse,
tendo em vista a escala de tempo utilizada e a característica de os sistemas físicos atuarem
como filtros passa-baixa.

Figura 37 – Função de autocorrelação e espectro de frequências da entrada PRBS apre-
sentada em 35a.

(a) Autocorrelação. (b) Ampliação do espectro de frequências.

Fonte: Autoria própria.

4.4.1 Influência do overfitting

Com base nos dados obtidos para o circuito real em laboratório, com o intuito de
avaliar a influência do overfitting sobre os dados de validação do modelo, foi novamente
efetuada a estimação do circuito de primeira ordem, agora com 50 regressores na entrada
e 50 na saída. Como visto na comparação entre as figuras 36 e 38, embora o modelo
represente satisfatoriamente os dados de estimação, a simples inserção de um número
maior de regressores pode prejudicar o sistema.
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Figura 38 – Saídas estimadas para 100 regressores.

(a) Dados para estimação. (b) Validação com ajuste no ganho.

Fonte: Autoria própria.

Tabela 11 – Dados de estimação para o modelo da figura 38a.

Validação da saída 𝑦 Valor para ARX Valor para FT
MSE 13.9081 0.3069
FIT 75.53% 96.37%
FPE 14.0011 0.3090

Fonte: Autoria própria.

Tabela 12 – Dados de validação para o modelo da figura 38b.

Validação da saída 𝑦 Valor para ARX Valor para FT
MSE 2.9527 44.8955
FIT 93.27% 73.75%
FPE 2.9923 45.4980

Fonte: Autoria própria.

É importante mencionar que o modelo estimado não apresentou melhora significativa
com o aumento da ordem do sistema, mesmo com a utilização de uma grande quantidade
de regressores. O mesmo ocorre para os dados de validação, em que houve apenas uma
pequena queda nos indicadores utilizados.

4.4.2 Uso do LASSO como ferramenta de seleção de regressores

Levando em consideração os resultados obtidos, é possível afirmar que o overfitting
leva a um aumento do viés do modelo estimado, visto que há um melhor desempenho no
treinamento, a custa de uma perda de generalização. Assim, ainda que o impacto encontrado
em 4.4.1 não tenha sido considerável, tal tendência pode se mostrar significativa para
a qualidade do modelo em casos nos quais a quantidade de regressores seja ainda mais
elevada.
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Além disso, o tempo necessário para calcular os parâmetros, bem como o custo
computacional associado ao processo de estimação, aumentam com o número de operações
associadas a uma ordem superior. Desse modo, como abordado em 3.3.3, é possível utilizar
o algoritmo LASSO para identificar os parâmetros mais significativos do sistema, evitando
problemas de desempenho ou um custo computacional muito elevado.

Tabela 13 – Tempo necessário para estimar e validar o sistema, conforme a figura 34.
Notebook modelo Lenovo Ideapad 82CGS00100.

2 regressores 100 regressores
2.6133 [s] 14.8803 [s]

Fonte: Autoria própria.

Dessa forma, os valores de 𝜃𝐿𝐴𝑆𝑆𝑂 foram analisados iterativamente, a fim de reduzir
gradativamente o número de regressores e recuperar apenas os mais significativos para
a modelagem do sistema. A figura 39 apresenta a saída do método LASSO, em que os
regressores mais significativos foram 𝑦[ 𝑘 − 1 ], 𝑦[ 𝑘 − 2 ] e 𝑢[ 𝑘 − 1 ].

Vale destacar que, devido ao elevado custo computacional de modelar um sistema
de ordem 10 por meio do método LASSO, foram utilizados 5 regressores na entrada e 5
na saída. Além disso, por conhecimento do sistema de interesse, é, de fato, impossível
que uma representação de ordem tão elevada denote de maneira verossímil a dinâmica
desejada.

Figura 39 – Saída para 3 regressores, com o uso do método LASSO em um modelo de 100
parâmetros.

(a) Dados para estimação. (b) Validação com ajuste no ganho.

Fonte: Autoria própria.
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Tabela 14 – Dados em função do modelo LASSO dado pela figura 39

Validação da saída 𝑦 Valor para estimação Valor para validação
MSE 14.3428 2.1815
FIT 75.15% 94.21%
FPE 14.3447 2.1821

Fonte: Autoria própria.

𝑦 = 1.095 ·
[︁
𝑦[ 𝑘 − 1 ] 𝑦[ 𝑘 − 2 ] 𝑢[ 𝑘 − 1 ]

]︁ ⎡⎢⎢⎢⎣
0.5196
0.4799
0.0005

⎤⎥⎥⎥⎦ . (4.13)

Analisando os dados obtidos, é possível afirmar que, para casos em que não se
conhece o sistema de interesse, o método LASSO oferece uma boa estimativa para a
identificação dos regressores mais significativos. Além disso, é perceptível uma qualidade
inferior dos dados de estimação em troca de uma melhora na validação do modelo, seja em
relação à representação dada pela equação 4.12 ou à ilustrada na figura 38. Dessa forma, é
possível estimar um modelo a partir do MMQ usual, ou até mesmo sua versão recursiva,
com base nos dados encontrados a partir do LASSO.

4.5 Identificação de sistemas não lineares

Com base no desenvolvimento das seções 4.1.1 e 4.4, é possível aplicar todas as
técnicas já validadas e comprovadas a fim de obter uma modelagem satisfatória do twin-
rotor. Serão também introduzidas as classes de modelos não lineares dadas pelo NARX,
embora as métricas para aferir o desempenho dessas sejam idênticas às apresentadas em
3.4.

Levando em consideração as diversas não linearidades relacionadas ao processo de
aquecimento e resfriamento de um resistor, conforme abordado em [Ford e Hasbun 2019],
foram adicionados termos polinomiais não lineares à equação característica 4.13, resultando
na modelagem indicada na figura 40. Assim sendo, as características fundamentais do
sistema são definidas pelas componentes lineares, enquanto os demais resíduos podem ser
aproximados por termos polinomiais ou até mesmo por redes neurais [Aguirre 2004].

Neste caso, foi introduzido um termo dependente da relação entre a entrada e a
saída do sistema, além de um termo de quarta ordem na saída e de um atraso unitário.
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Figura 40 – Adição de um termo dependente de 𝑦[𝑘 − 1]4 · 𝑢[𝑘 − 1] ao sistema obtido na
seção 4.4.2

(a) Dados para estimação. (b) Validação com ajuste no ganho.

Fonte: Autoria própria.

Tabela 15 – Dados para o modelo não linear proposto.

Validação da saída 𝑦 Valor para estimação Valor para validação
MSE 14.8011 1.1119
FIT 74.75% 95.87%
FPE 14.8031 1.1122

Fonte: Autoria própria.

Com base na tabela 15, é possível afirmar que a inclusão de apenas um termo
não linear aumentou significativamente a precisão do modelo, especialmente nos dados
de validação. Embora a dependência de um termo de quarta ordem tenha sido deduzida
a partir da relação entre a saída aferida e a temperatura do sistema [Aguirre 2004], é
perfeitamente plausível aplicar um modelo NARX do tipo caixa-preta e, posteriormente,
delimitar os parâmetros mais significativos por meio do LASSO.
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5 ESTUDO DE CASO: TWIN ROTOR

Por fim, aplicando os métodos apresentados ao longo do desenvolvimento do
trabalho, foi possível identificar o tipo caixa cinza do modelo computacional do twin-rotor
presente no Laboratório de Controle (LAC). Para tal, foi realizada a simulação das equações
fornecidas pelo próprio fabricante da planta, apresentadas em eq. (5.1) a eq. (5.4). As
tabelas tabela 16 e tabela 17 apresentam as dinâmicas e os parâmetros sugeridos para a
modelagem, enquanto fig. 41 ilustra o comportamento do twin-rotor.

Figura 41 – Sistema de interesse.

Fonte: retirado de [Huu e Ismail 2016].

Vale também destacar que, como abordado em seção 3.3.1, desde que haja lineari-
dade entre os regressores e os parâmetros, ainda é possível utilizar todo o desenvolvimento
do MMQ e do LASSO. Por fim, também será utilizada a entrada PRMLS, conforme
desenvolvida em seção 3.1.3.

𝜓 = 𝑀1 −𝑀𝐹𝐺 −𝑀𝐵1 −𝑀𝐺

𝐼1
, (5.1)

𝜙 = 𝑀2 −𝑀𝐵2 −𝑀𝑅

𝐼2
, (5.2)

𝜏𝑖 = − 1
𝑇𝑖
𝜏𝑖 + 𝑘𝑖

𝑇𝑖
𝑢𝑖, (5.3)

𝑀̇𝑅 = − 1
𝑇𝑝
𝑀𝑅 + 𝑘𝑐 · 𝑇0

𝑇𝑝
𝜏1 + 𝑘𝑐

𝑇𝑝
𝜏1. (5.4)
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As variáveis 𝑀𝐵1 e 𝑀𝐵2, bem como os demais estados intermediários, são descritas
em mais detalhes na tabela 16. Também foram incluídos termos para simplificar as
formulações 5.1 a 5.4, sendo eles 𝑖 ∈ {1, 2} e 𝜅 ∈ {𝜅1, 𝜅2}, tais que 𝜅1 = 𝜓 e 𝜅2 = 𝜙.

Tabela 16 – Parâmetros dinâmicos referentes às equações 5.1 e 5.2

Parâmetro Formulação Significado físico
𝑀𝑖 𝑎𝑖 · 𝜏 2

𝑖 + 𝑏𝑖 · 𝜏𝑖 Característica estática
𝜏𝑖

𝑘𝑖

𝑇𝑖𝑠+1 · 𝑢𝑖 Dinâmica dos motores
𝑀𝐹𝐺 𝑀𝑔 · sin(𝜓) Momentum da gravidade
𝑀𝐵𝑖 𝐵1𝑖 · 𝜅̇𝑖 +𝐵2𝑖 · 𝑠𝑖𝑔𝑛(𝜅̇𝑖) Momentum de fricção
𝑀𝐺 𝐾𝑔𝑦 ·𝑀1 · 𝜙 · cos(𝜓) Momentum do giroscópio
𝑀𝑅 𝑘𝑐

𝑇0𝑠+1
𝑇𝑝𝑠+1𝜏1 Momentum de acoplamento

Fonte: Autoria própria.

Tabela 17 – Parâmetros do modelo TRMS: significado e valores numéricos

Parâmetro Descrição Valor Unidade
𝐼1 Momento de inércia do rotor vertical 6.8 · 10−2 kg·m2

𝐼2 Momento de inércia do rotor horizontal 2 · 10−2 kg·m2

𝑎1 Parâmetro de característica estática 1.35 · 10−2 –
𝑏1 Parâmetro de característica estática 9.24 · 10−2 –
𝑎2 Parâmetro de característica estática 2 · 10−2 –
𝑏2 Parâmetro de característica estática 9 · 10−2 –

𝑀𝑔 Momentum da gravidade 0.32 N·m
𝐵11 Parâmetro do momentum de fricção 6 · 10−3 N·m·s/rad
𝐵21 Parâmetro do momentum de fricção 1 · 10−3 N·m·s2/rad
𝐵12 Parâmetro do momentum de fricção 1 · 10−1 N·m·s/rad
𝐵22 Parâmetro do momentum de fricção 1 · 10−2 N·m·s2/rad
𝐾𝑔𝑦 Parâmetro do momentum de giroscópico 0.05 s/rad

𝑘1 Ganho do motor de movimento vertical 1.1 –
𝑘2 Ganho do motor de movimento horizontal 0.8 –
𝑘𝑐 Ganho do momentum de acoplamento -0.2 –

𝑇1 Constante de tempo do motor vertical 1.1 –
𝑇2 Constante de tempo do motor horizontal 1 –
𝑇0 Constante de tempo do zero de acoplamento 3.5 –
𝑇𝑝 Constante de tempo do polo de acoplamento 2 –

𝑢1 Tensão de controle aplicada ao motor vertical – V
𝑢2 Tensão de controle aplicada ao motor horizontal – V
𝜓 Ângulo do movimento vertical (pitch) – rad
𝜙 Ângulo do movimento horizontal (yaw) – rad

Fonte: [Feedback Instruments Ltd. 2013].



81

5.1 Discretização

Como o presente trabalho tem como objetivo efetuar a identificação paramétrica
no domínio discreto, faz-se necessário discretizar as equações definidoras do sistema de
interesse. Tal processo também é de suma importância para definir corretamente os
regressores na modelagem do tipo caixa cinza, evitando o overfitting. Aplica-se, portanto,
o mesmo princípio utilizado em eq. (4.4) a eq. (4.11), a saber: 𝑑

𝑑𝑡
𝑥 ≈ 𝑥[𝑘]−𝑥[𝑘−1]

𝑇𝑠
, com 𝑇𝑠

como tempo de amostragem. Dessa forma, pode-se tomar a seguinte equivalência

𝑥̇ = 𝑓(𝑥) ⇒ 𝑥[𝑘] − 𝑥[𝑘 − 1]
𝑇𝑠

= 𝑓(𝑥[𝑘 − 1]).

A partir das equações diretamente relacionadas às entradas do twin-rotor, é interes-
sante iniciar o processo de discretização retomando as equações 5.3 e 5.4. Primeiramente,
para 𝜏𝑖, obtêm-se:

𝜏𝑖 ≈ 𝜏𝑖[𝑘] − 𝜏𝑖[𝑘 − 1]
𝑇𝑠

= − 1
𝑇𝑖
𝜏𝑖[𝑘 − 1] + 𝑘𝑖

𝑇𝑖
𝑢𝑖[𝑘 − 1],

∴ 𝜏𝑖[𝑘] = (1 − 𝑇𝑠
𝑇𝑖

)𝜏𝑖[𝑘 − 1] + 𝑇𝑠𝑘𝑖
𝑇𝑖

𝑢𝑖[𝑘 − 1], (5.5)

Os termos 𝑀𝑖 para 𝑖 ∈ {1, 2} podem ser reescrito a partir de eq. (5.6) e 𝑀𝐹𝐺 de
eq. (5.7). As saídas 𝜓 e 𝜙 foram renomeadas para 𝑦1 e 𝑦2, para manter a consistência com
a nomenclatura utilizada no restante do trabalho.

𝑀𝑖[𝑘] = 𝑎𝑖 · 𝜏 2
𝑖 [𝑘] + 𝑏𝑖 · 𝜏𝑖[𝑘], (5.6)

𝑀𝐹𝐺[𝑘] = 𝑀𝑔 · sin(𝑦1[𝑘]). (5.7)

Tomando agora o termo 𝑀𝐵𝑖 e já efetuando a troca de nomenclatura das saídas,
é possível obter eq. (5.9). Além disso, a partir da definição dada em eq. (5.8), é possível
omitir a dependência de 1

𝑇𝑠
.

𝑠𝑖𝑔𝑛(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, ∀ 𝑥 > 0,

0, se 𝑥 = 0,

−1, ∀ 𝑥 < 0.

(5.8)

𝑀𝐵𝑖[𝑘] = 𝐵1𝑖

𝑇𝑠
𝑦𝑖[𝑘] − 𝐵1𝑖

𝑇𝑠
𝑦𝑖[𝑘 − 1] +𝐵2𝑖𝑠𝑖𝑔𝑛(𝑦𝑖[𝑘] − 𝑦𝑖[𝑘 − 1]). (5.9)

Da mesma maneira, o parâmetro 𝑀𝐺 é dado por
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𝑀𝐺[𝑘] = 𝐾𝑔𝑦 ·𝑀1[𝑘] · 𝑦2[𝑘] · cos(𝑦1[𝑘]). (5.10)

Por fim, para o parâmetro 𝑀𝑅:

𝑀̇𝑅 ≈ 𝑀𝑅[𝑘] −𝑀𝑅[𝑘 − 1]
𝑇𝑠

= − 1
𝑇𝑝
𝑀𝑅[𝑘− 1] + 𝑘𝑐 · 𝑇0

𝑇𝑝
· 𝜏1[𝑘 − 1] − 𝜏1[𝑘 − 2]

𝑇𝑠
+ 𝑘𝑐
𝑇𝑝
𝜏1[𝑘− 1],

∴𝑀𝑅[𝑘] = (1 − 𝑇𝑠
𝑇𝑝

)𝑀𝑅[𝑘 − 1] + 𝑘𝑐 · 𝑇0

𝑇𝑝
· (𝜏1[𝑘 − 1] − 𝜏1[𝑘 − 2]) + 𝑇𝑠𝑘𝑐

𝑇𝑝
𝜏1[𝑘 − 1].

Desse modo, é possível definir o conjunto de equações descrito pela formulação
eq. (5.11). Para simplificação, foi alterada a notação para incluir os parâmetros auxiliares
𝛼 e 𝛽.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜏𝑖[𝑘] = 𝛼𝑖𝜏𝑖[𝑘 − 1] + 𝛽𝑖𝑢𝑖[𝑘 − 1],

𝑀𝑖[𝑘] = 𝑎𝑖 · 𝜏 2
𝑖 [𝑘] + 𝑏𝑖 · 𝜏𝑖[𝑘],

𝑀𝐹𝐺[𝑘] = 𝑀𝑔 · sin(𝑦1[𝑘]),

𝑀𝐵𝑖[𝑘] = 𝐵1𝑖

𝑇𝑠
𝑦𝑖[𝑘] − 𝐵1𝑖

𝑇𝑠
𝑦𝑖[𝑘 − 1] +𝐵2𝑖𝑠𝑖𝑔𝑛(𝑦𝑖[𝑘] − 𝑦𝑖[𝑘 − 1]),

𝑀𝐺[𝑘] = 𝐾𝑔𝑦 ·𝑀1[𝑘] · 𝑦2[𝑘] · cos(𝑦1[𝑘]),

𝑀𝑅[𝑘] = 𝛼3 ·𝑀𝑅[𝑘 − 1] + 𝛽3 · 𝜏1[𝑘 − 1] − 𝛽4 · 𝜏1[𝑘 − 2].

(5.11)

Por fim, aplicando o mesmo às equações das saídas do sistema (eq. (5.1) e eq. (5.2)),
obtêm-se eq. (5.12) e eq. (5.13).

𝜓 ≈ 𝑦1[𝑘] − 2𝑦1[𝑘 − 1] − 𝑦1[𝑘 − 2]
𝑇 2
𝑠

= 𝑀1[𝑘 − 1] −𝑀𝐹𝐺[𝑘 − 1] −𝑀𝐵1[𝑘 − 1] −𝑀𝐺[𝑘 − 1]
𝐼1

,

(5.12)

𝜑 ≈ 𝑦2[𝑘] − 2𝑦2[𝑘 − 1] − 𝑦2[𝑘 − 2]
𝑇 2
𝑠

= 𝑀2[𝑘 − 1] −𝑀𝐵2[𝑘 − 1] −𝑀𝑅[𝑘 − 1]
𝐼2

. (5.13)

Portanto, o modelo não-linear completo do twin-rotor discretizado é dado por

𝑦1[𝑘] = 2𝑦1[𝑘− 1] +𝑦1[𝑘− 2] +𝑇 2
𝑠

𝑀1[𝑘 − 1] −𝑀𝐹𝐺[𝑘 − 1] −𝑀𝐵1[𝑘 − 1] −𝑀𝐺[𝑘 − 1]
𝐼1

,
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𝑦2[𝑘] = 2𝑦2[𝑘 − 1] + 𝑦2[𝑘 − 2] + 𝑇 2
𝑠

𝑀2[𝑘 − 1] −𝑀𝐵2[𝑘 − 1] −𝑀𝑅[𝑘 − 1]
𝐼2

,

𝑀1[𝑘 − 1] = 𝑎1 · 𝜏 2
1 [𝑘 − 1] + 𝑏1 · 𝜏1[𝑘 − 1],

𝑀2[𝑘 − 1] = 𝑎2 · 𝜏 2
2 [𝑘 − 1] + 𝑏2 · 𝜏2[𝑘 − 1],

𝜏1[𝑘 − 1] = 𝛼1𝜏1[𝑘 − 2] + 𝛽1𝑢1[𝑘 − 1],
𝜏2[𝑘 − 1] = 𝛼2𝜏2[𝑘 − 2] + 𝛽2𝑢2[𝑘 − 1],

𝑀𝐹𝐺[𝑘 − 1] = 𝑀𝑔 · sin(𝑦1[𝑘 − 1]),

𝑀𝐵1[𝑘 − 1] = 𝐵11

𝑇𝑠
𝑦1[𝑘 − 1] − 𝐵11

𝑇𝑠
𝑦1[𝑘 − 2] +𝐵21𝑠𝑖𝑔𝑛(𝑦1[𝑘 − 1] − 𝑦1[𝑘 − 2]),

𝑀𝐵2[𝑘 − 1] = 𝐵12

𝑇𝑠
𝑦2[𝑘 − 1] − 𝐵12

𝑇𝑠
𝑦2[𝑘 − 2] +𝐵22𝑠𝑖𝑔𝑛(𝑦2[𝑘 − 1] − 𝑦2[𝑘 − 2]),

𝑀𝐺[𝑘 − 1] = 𝐾𝑔𝑦 ·𝑀1[𝑘 − 1] · 𝑦2[𝑘 − 1] · cos(𝑦1[𝑘 − 1]),
𝑀𝑅[𝑘 − 1] = 𝛼3 ·𝑀𝑅[𝑘 − 2] + 𝛽3 · 𝜏1[𝑘 − 1] − 𝛽4 · 𝜏1[𝑘 − 2]

5.2 Estimação de parâmetros

Considerando todo o desenvolvimento realizado até o momento, as mesmas técnicas
do capítulo 4 serão aplicadas à identificação de um modelo computacional do twin-rotor.
A fim de obter uma modelagem mais realista, serão inseridos ruídos na saída do sistema.

Por simplicidade, suponha

𝑀1[𝑘] = 𝛾1𝑢1[𝑘], (5.14)
𝑀2[𝑘] = 𝛾2𝑢2[𝑘], (5.15)
𝑀𝑅[𝑘] = 𝛽3𝛾1𝑢1[𝑘] − 𝛽4𝛾1𝑢1[𝑘 − 1] (5.16)

Dessa forma, tem-se

𝑦1[𝑘] = 2𝑦1[𝑘− 1] + 𝑦1[𝑘− 2] + 𝑇 2
𝑠 𝛾1

𝐼1
𝑢1[𝑘− 1] − 𝑇 2

𝑠

𝐼1
𝑀𝑔 sin(𝑦1[𝑘− 1]) − 𝑇 2

𝑠

𝐼1

𝐵11

𝑇𝑠
𝑦1[𝑘− 1]+

𝑇 2
𝑠

𝐼1

𝐵11

𝑇𝑠
𝑦1[𝑘 − 2] − 𝑇 2

𝑠

𝐼1
𝐵21𝑠𝑖𝑔𝑛(𝑦1[𝑘 − 1] − 𝑦1[𝑘 − 2])

− 𝑇 2
𝑠

𝐼1
𝐾𝑔𝑦𝛾1𝑢1[𝑘 − 1]𝑦2[𝑘 − 1] cos(𝑦1[𝑘 − 1]), (5.17)

e

𝑦2[𝑘] = 2𝑦2[𝑘 − 1] + 𝑦2[𝑘 − 2] + 𝑇 2
𝑠

𝐼2
𝛾2𝑢2[𝑘 − 1] − 𝑇 2

𝑠

𝐼2

𝐵12

𝑇𝑠
𝑦2[𝑘 − 1]+

𝑇 2
𝑠

𝐼2

𝐵12

𝑇𝑠
𝑦2[𝑘 − 2] − 𝑇 2

𝑠

𝐼2
𝐵22𝑠𝑖𝑔𝑛(𝑦2[𝑘 − 1] − 𝑦2[𝑘 − 2])

− 𝑇 2
𝑠

𝐼2
𝛽3𝛾1𝑢1[𝑘 − 1] − 𝑇 2

𝑠

𝐼2
𝛽4𝛾1𝑢1[𝑘 − 2]. (5.18)

Assim, fica evidente o acoplamento existente entre as saídas 𝑦1[𝑘], 𝑦2[𝑘] e os sinais
de entrada 𝑢1[𝑘 − 1], 𝑢2[𝑘 − 1].
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Note ainda que

𝑦1[𝑘] = 𝜃1𝑦1[𝑘 − 1] + 𝜃2𝑦1[𝑘 − 2] + 𝜃3𝑢1[𝑘 − 1] + 𝜃4 sin(𝑦1[𝑘 − 1])
+ 𝜃5𝑠𝑖𝑔𝑛(𝑦1[𝑘 − 1] − 𝑦1[𝑘 − 2]) + 𝜃6𝑢1[𝑘 − 1]𝑦2[𝑘 − 1] cos(𝑦1[𝑘 − 1]), (5.19)

e

𝑦2[𝑘] = 𝜉1𝑦2[𝑘 − 1] + 𝜉2𝑦2[𝑘 − 2] + 𝜉3𝑢2[𝑘 − 1] + 𝜉4𝑠𝑖𝑔𝑛(𝑦2[𝑘 − 1] − 𝑦2[𝑘 − 2])
+ 𝜉5𝑢1[𝑘 − 1] + 𝜉6𝑢1[𝑘 − 2]. (5.20)

Logo, conclui-se, através de uma abordagem caixa-cinza, que a saída 𝑦1 é dada pela
combinação linear dos regressores:

{𝑦1[𝑘−1], 𝑦1[𝑘−2], 𝑢1[𝑘−1], sin(𝑦1[𝑘−1]), 𝑠𝑖𝑔𝑛(𝑦1[𝑘−1]−𝑦1[𝑘−2]), 𝑢1[𝑘−1]𝑦2[𝑘−1] cos(𝑦1[𝑘−1])}.

Já a saída 𝑦2 é dada pela combinação linear dos regressores

{𝑦2[𝑘 − 1], 𝑦2[𝑘 − 2], 𝑢2[𝑘 − 1], 𝑠𝑖𝑔𝑛(𝑦2[𝑘 − 1] − 𝑦2[𝑘 − 2]), 𝑢1[𝑘 − 1], 𝑢1[𝑘 − 2]}.

Consequentemente, a estimação dos parâmetros do modelo pode ser realizada usando o
MMQ, dado um conjunto de entrada-saída 𝒟 = {𝑦1[𝑘], 𝑦2[𝑘], 𝑢1[𝑘], 𝑢2[𝑘]}𝑁𝑘=0.

5.2.1 Identificação do modelo

Usando as equações diferenciais do sistema twin-rotor, foi realizada a simulação do
sistema com uma entrada PRBS em cada canal 𝑢1 e 𝑢2. Os dados simulados resultantes
são apresentados na figura 42.

Figura 42 – Conjunto de dados simulados, gerados com base no modelo de twin-rotor,
para identificação.
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Usando a família de regressões definida pela abordagem caixa-cinza descrita anteri-
ormente na seção 5.2, aplicou-se o MMQ para estimar os parâmetros do modelo. A figura
43 apresenta o resultado da identificação para a saída 𝑦1[𝑘]. Já a figura 44 apresenta o
resultado da identificação para a saída 𝑦2[𝑘].

Figura 43 – Resultado da identificação para saída 𝑦1.
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Figura 44 – Resultado da identificação para saída 𝑦2.
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6 CONCLUSÃO

Este trabalho foi desenvolvido com o intuito de identificar técnicas adequadas
para a estimação paramétrica de sistemas lineares e não lineares. Os objetivos propostos
foram alcançados por meio do desenvolvimento, da ilustração e da validação de diversas
metodologias de modelagem de sistemas dinâmicos, culminando na aplicação bem-sucedida
de um modelo dinâmico do twin-rotor.

A análise comparativa entre as técnicas demonstrou a importância da escolha
estratégica do sinal de excitação, com o PRBS e o PRMLS mostrando-se mais eficazes do
que o degrau unitário na excitação do espectro de frequências das plantas analisadas. Em
relação à estimação, o MMQ mostrou-se eficaz em todos os casos em que foi aplicado.

Em especial, o uso do LASSO também se mostrou uma ferramenta valiosa para
lidar com o trade-off entre a precisão do modelo e sua capacidade de generalização. Ao
penalizar e eliminar regressores de baixa relevância, o LASSO não só se comprovou eficaz
na redução do custo computacional do processo de estimação, como também em evitar o
overfitting, resultando em modelos com maior capacidade de generalização.

No estudo de caso do twin-rotor, a abordagem de caixa cinza conseguiu integrar
efetivamente o conhecimento das equações físicas à estimação de parâmetros no domínio
discreto, permitindo obter modelos que descreveram satisfatoriamente as dinâmicas aco-
pladas do sistema. Portanto, a aplicação das técnicas estudadas em um sistema de alta
complexidade confirma a validade do desenvolvimento teórico e prático proposto.

6.1 Trabalhos futuros

Por fim, considerando a quantidade de técnicas que podem ser aplicadas para
modelar satisfatoriamente o sistema de interesse, há diversos aspectos que merecem
atenção especial e que podem levar ao desenvolvimento de inúmeros trabalhos futuros.
Primeiramente, considerando a dinâmica de temperatura abordada na seção 4.4, é possível
também determinar a validade de identificar modelos distintos para o aquecimento e o
resfriamento, visto que ambos envolvem parâmetros, ou até mesmo equacionamentos,
com características distintas. Além disso, é válido avaliar o desempenho do LASSO em
comparação com as demais alternativas de regularização apresentadas em seção 4.4.2,
tendo em vista que todas têm a capacidade de contornar os efeitos do overfitting e o
aumento do custo computacional. Ainda é possível avaliar o desempenho das diferentes
estruturas apresentadas na tabela 2, em particular, para estimações caixa-preta não lineares
envolvendo o sistema de temperatura e o twin-rotor.

Além disso, no experimento realizado com o twin-rotor, pode-se estender a aborda-
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gem para dados coletados diretamente de uma planta física real, explorar variações na
família de regressores e realizar uma identificação paramétrica baseada no LASSO. Assim,
é possível buscar regressores que melhorem a precisão do modelo em uma planta twin-rotor
real, com base nas ferramentas apresentadas neste trabalho.

Do ponto de vista do controle, também é possível desenvolver técnicas de iden-
tificação em malha fechada, a fim de modelar adequadamente sistemas que necessitam
intrinsecamente de feedback para sua estabilidade. Por fim, também é possível aplicar as
técnicas de modelagem abordadas ao longo do trabalho para projetar um controlador para
a planta twin-rotor presente no LAC, tais como controladores do tipo sliding mode ou até
mesmo Linear Quadratic Regulator (LQR).
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