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RESUMO

BARCELLOS, A. L. B. Estudo de Técnicas de Identificagdo de Sistemas aplicado
a um Twin-Rotor. 2025. 91 p. Monografia (Trabalho de Conclusao de Curso) - Escola
de Engenharia de Sao Carlos, Universidade de Sdo Paulo, Sao Carlos, 2025.

Os métodos de identificagdo de sistemas sao essenciais para a engenharia moderna, dada a
necessidade de modelos adequados para a implementacao de técnicas de controle e para o
monitoramento preditivo de processos industriais. Nesse contexto, é fundamental definir
uma estrutura para otimizar o processo de modelagem, partindo da escolha de um sinal
de excitagao persistentemente excitante que assegure a excitacao de um amplo espectro de
frequéncias durante o experimento, até a selecdo de representagoes robustas a presenca
de ruidos no sistema, utilizando estimadores, como o MMQ), para minimizar o erro de
estimacao. A metodologia escolhida deve também priorizar a obtencao de modelos com
alta capacidade de generalizacao e menor dependéncia das caracteristicas do sinal de
entrada, uma vez que os processos de identificagdo do tipo caixa-preta tendem a incluir um
elevado niimero de regressores pouco relevantes para o sistema de interesse. Para mitigar
esse problema, é essencial aplicar técnicas como o LASSO, que reduzem a influéncia do
overfitting ao selecionar regressores mais representativos do modelo. Embora nao sejam
o principal motivador do uso dessas técnicas, elas também contribuem para a eficiéncia
computacional ao reduzir o custo associado ao processo de estimacao. A eficacia desse
procedimento foi demonstrada em experimentos com sistemas lineares e nao lineares,
nos quais as metodologias apresentadas foram comparadas aos processos tradicionais de
identificacao. Por fim, os conhecimentos obtidos foram aplicados a uma modelagem do

tipo caixa cinza para um sistema de alta complexidade e forte acoplamento: o twin-rotor.

Palavras-chave: Identificacao de Sistemas; Modelagem Dindmica; MMQ; LASSO; Over-

fitting; Caixa Preta; Caixa Cinza; Twin-Rotor.






ABSTRACT

BARCELLOS, A. L. B. Study of Systems Identification Techniques applied to a
Twin-Rotor. 2025. 91 p. Monograph (Conclusion Course Paper) - Escola de Engenharia
de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2025.

ABSTRACT

System identification methods are essential in modern engineering, given the need for
satisfactory models to implement control techniques and to predictively monitor industrial
processes. In this context, it is crucial to define a structured workflow to optimize the
modeling process, starting from the choice of a persistently exciting input signal, which
ensures the excitation of a broad frequency spectrum during the experiment, up to the
selection of representations that are robust to eventual noise inserted into the system, mak-
ing use of estimators such as Least Squares (LS) to minimize estimation error. The chosen
methodology must also focus on obtaining models with high generalization capability and
reduced dependence on the characteristics of the input signal, since black-box identification
processes often involve a large number of regressors that are only weakly relevant to the
system of interest. To address this, it is essential to apply techniques such as LASSO,
which reduces overfitting by selecting the regressors that are more representative of the
model. Although not the primary motivation for using such methods, they also improve
efficiency by reducing the computational cost of estimation, thereby lowering processing
demands and, consequently, the financial impact during modeling. The effectiveness of
this process was demonstrated through experiments with linear and nonlinear systems,
in which various methodologies were compared with traditional identification procedures.
Finally, the knowledge obtained was applied to a grey-box modeling approach for a highly

complex and coupled system: the twin-rotor.

Keywords: System Identification; Dynamic Modeling; Least Squares (LS); LASSO Re-
gression; Overfitting Reduction; Black-Box Modeling; Grey-Box Modeling; Twin-Rotor
System.
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1 INTRODUCAO

A capacidade de modelar com precisdo a dindmica de um sistema fisico é crucial
para diversas aplicagoes de engenharia, como o desenvolvimento de estratégias de controle, a
otimizacao do desempenho e o monitoramento preditivo. Neste contexto, a identificacao de
sistemas é um procedimento fundamental que permite construir representagoes matematicas
de seus objetos de estudo a partir da analise de dados experimentais [Ljung 1999, Chen 1998].
Essa abordagem apresenta semelhancas conceituais com o método cientifico tradicional,
partindo do principio de que visa inferir os principios construtivos de seu sistema de interesse.
Tal comportamento é apresentado na figura 1. Ambas as praticas se fundamentam em
observacoes e evidéncias empiricas para formular e validar um modelo ou hipdtese que
descreva de forma satisfatoria os fenémenos observados, adotando um ciclo continuo de

validagao e reformulacao [Ljung 1999, Voit 2019].

Prior
Knowledge

Collect existing knnwledge about the
observation and formulate potential
explanatluns

Figura 1 — Comparagao entre os processos relacionados ao método cientifico e a identifica-
Design

v

Validate Not OK:

cao de sistemas.
Data
Model Revise

Identify an observation that cannot
|mmedlately be explained Experiment L
Select the seemlngly most likely but
so-far unproven explanation and
formulate it as a testable, falsifiable Choose | o
hypothe5|s Model Set
h
De5|gn and execute carefully CC . oqse -
lled wet-lab or nter{on e
experiments to tesl the hypotheS|s of Fit
\ Y ‘
Yes <
Test results support the hypothesis Calcuate Model

New insights are gained

k [ Disseminate the new insights

(a) Método cientifico classico. (b) Identificagéo de sistemas.

Fonte: [Voit 2019] (1a) e [Ljung 1999] (1b).

LOK: Use it!

Ainda que similares, ambas as metodologias divergem fundamentalmente: o método
cientifico tende a buscar a formulacao que melhor represente seu objeto de estudo, enquanto
a modelagem, no ambito da identificacao de sistemas, necessita apenas de uma representacao
que descreva os fendmenos de maneira satisfatoria para a aplicacdo de interesse [Voit

2019, Chen 1998]. Essa diferenga, ainda que sutil, é de suma importancia: ha intimeros
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parametros e variaveis envolvidos na dinamica de qualquer sistema, e até mesmo o mais
simples dos resistores pode ser modelado tanto a partir da medicao empirica de sua

resisténcia quanto em fungdo de suas diferentes curvas caracteristicas [Ford e Hasbun
2019].

Neste contexto, a identificagdo de sistemas é tipicamente dividida em metodologias
paramétricas e nao paramétricas. As técnicas nao paramétricas incluem a andalise de
resposta em frequéncia, utilizada para obter diagramas de Bode ou Nyquist, bem como o
calculo das funcoes de correlagao e de coeréncia. Tais func¢oes fornecem insights valiosos
sobre a relagao entre as variaveis de entrada e de saida, bem como sobre a influéncia do ruido
nos dados observados. Mais recentemente, abordagens baseadas em redes neurais também
ganharam destaque, aplicadas principalmente em sistemas com forte nao-linearidade ou
com poucas caracteristicas conhecidas. Dessa maneira, embora este trabalho tenha como
foco o uso de técnicas paramétricas, devido as suas capacidades de predigao e simulacao
mais diretas, é essencial reconhecer a relevancia e o uso das metodologias nao paramétricas

na pratica da engenharia.

Assim, considerando o equilibrio entre o detalhamento do modelo e a aplicacao
pratica, nao é factivel obter uma representacao excessivamente complexa, devido a limita-
¢oes relacionadas a custos dos mais diversos tipos: financeiros, computacionais, temporais,
etc. [Chen 1998|. Além disso, a abordagem escolhida deve considerar demais limitagoes,
tais como os pontos onde podem ser realizadas as aferi¢oes, os desgastes relacionados ao
processo de identificagdo, a inviabilidade de alteragao do sinal de entrada e afins [Isermann
e Miinchhof 2010]. Dessa maneira, faz-se necessario delimitar as varidveis e os processos
mais significativos, de modo a obter uma modelagem factivel e com um custo associado

satisfatorio.

Assim sendo, um dos métodos disponiveis para encontrar tal representacdo paramé-
trica pode ser obtido a partir de um estudo analitico composto por quatro etapas distintas:
escopo da modelagem, representacao matematica, analise do modelo resultante e validacao
com o sistema real [Chen 1998], como ilustrado na figura 2. Outra abordagem apresentada
em [Ljung 1999] adiciona uma etapa paralela a modelagem, envolvendo nao apenas o

objeto a ser estudado, mas também a definicao de todo o experimento a ser realizado.

Figura 2 — Estudo analitico proposto por Chen.

Analise
E d 3 idaca
scopo da Representacao do modelo Validagao com

modelagem matematica o sistema real
resultante

Fonte: [Chen 1998].
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Por fim, vale reforcar que tal procedimento, assim como a propria metodologia
cientifica, ¢ iterativo. Nao é incomum, portanto, ser necessario ajustar os parametros ou
obter mais dados sobre o objeto de estudo, a fim de eliminar discrepancias ou aprimorar o
modelo utilizado [Ljung 1999]. Caso necessério, deve-se considerar a possibilidade de efetuar
um pré-processamento dos dados obtidos, tendo em vista eventuais ruidos e disturbios

inerentes ao sistema ou ao processo de medicao [Juang 1994].

1.1 Objetivos

1.1.1 Objetivo geral

O presente trabalho propoe-se a desenvolver e avaliar técnicas de identificacio

aplicaveis a sistemas dinamicos, tanto lineares quanto nao lineares.

1.1.2  Objetivos especificos

Em especifico, sao estabelecidas as seguintes metas para o desenvolvimento deste
trabalho:

» Realizar um estudo aprofundado das principais técnicas de identificacao de sistemas,

bem como da teoria de estimacao e métodos numéricos necessarios;

o Implementar algoritmos de identificacao de sistemas, tanto para modelos lineares

quanto para modelos nao-lineares, em ambiente de simulagdo computacional;

o Avaliar o desempenho comparativo entre diferentes técnicas de identificagdo de

sistemas;

o Aplicar e validar os algoritmos de identificagao em uma planta do tipo twin-rotor

em um ambiente de simulagao computacional;

e Documentar os resultados e as conclusoes obtidos.

1.2 Justificativa do trabalho

A modelagem precisa e eficiente de sistemas dinamicos é imperativa para a enge-
nharia moderna, aplicando-se a contextos variados: desde o monitoramento de processos
industriais até a utilizagdo em sistemas de controle de redes de energia elétrica [Aguirre
2004]. Outra de suas aplicagoes notéaveis estd no projeto de sistemas de controle para
diversas aplicagoes, como drones e até mesmo em plantas de cardter educacional, como
o twin-rotor. A identificacdo de sistemas surge, portanto, como a ferramenta ideal para
construir representagoes matematicas a partir de dados empiricos, superando as limitagoes

e os custos da modelagem puramente fisica. O desafio reside, contudo, em selecionar a
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metodologia de estimagao que ofereca o melhor equilibrio entre a acuracia preditiva e a

simplicidade computacional.

Neste sentido, a relevancia do trabalho reside na analise comparativa e na aplicacao
de diversas técnicas de modelagem paramétrica de sistemas dinamicos. Essa abordagem
abrange desde a selecao adequada do sinal de excitagao e da estrutura de representacao
até a escolha de estimadores, buscando sempre alternativas que apresentem caracteristicas
intrinsecas de rejeicdo ao ruido. Especificamente para os estimadores, o estudo utiliza
o MMQ como referéncia para a implementacao do LASSO; assim, é possivel analisar

quantitativamente o equilibrio entre o custo computacional e a precisao do modelo obtido.

1.3 Procedimentos metodolégicos

Inicialmente, foi realizada uma revisao bibliografica da literatura existente, centrada
nas técnicas usuais e recomendadas para a identificacao correta de sistemas. Também
foram considerados estudos de caso com foco em estratégias empregadas em plantas do
tipo twin-rotor. Posteriormente, foram avaliadas as fundamentagoes tedricas e matematicas
necessarias a aplicacao das metodologias estudadas, com enfoque em fungoes de correlagao

e autocorrelacao.

Dentre as estratégias aplicadas, destacam-se a importancia do uso de sinais per-
sistentemente excitantes como entrada do sistema de interesse, bem como a aplicacao
do MMQ e a analise comparativa com o LASSO. Foco também na utilizacdo do LASSO
como ferramenta de sele¢ao de regressores, devido ao seu grande potencial para mitigar

problemas decorrentes do overfitting.

Desse modo, foi realizada a validagao computacional dessas metodologias em
sistemas lineares e nao lineares, analisando a robustez e o nivel de acuracia dos estimadores

em funcao dos parametros e dos procedimentos empregados.

Por fim, os conhecimentos tedricos e praticos obtidos foram aplicados para identificar
uma planta do tipo twin-rotor, o que demonstra a eficacia das metodologias estudadas em

sistemas de alta complexidade.

1.4 Estrutura do trabalho

o Capitulo 1 - Introducao ao tema, bem como uma breve comparacao entre o método

cientifico e a identificacao de sistemas. Proposta do trabalho, justificativas e objetivos;

o Capitulo 2 - Apresentacao de conceitos necessarios para um bom entendimento do
trabalho;

o Capitulo 3 - Apresentagao de técnicas de identificagdo de sistemas. Foco na escolha

do sinal de entrada, do método de representacao e dos estimadores utilizados;
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Capitulo 4 - Simulacao e estimacao de sistemas lineares e nao lineares em ambiente
computacional. Aplicagdo pratica em sistemas de primeira ordem com caracteristicas

lineares e nao lineares;
Capitulo 5 - Identificacao do sistema twin-rotor;

Capitulo 6 - Conclusoes finais do trabalho.
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2 REVISAO BIBLIOGRAFICA

A identificacao de sistemas dinamicos apoia-se em diversas areas, desde a teoria
dos sinais até as ferramentas estatisticas e matematicas. E igualmente importante, embora
nao necessario, possuir um certo conhecimento do objeto e do objetivo de estudo, conforme
abordado no capitulo 1. Nesse ambito, é interessante abordar estudos de caso notaveis
na literatura: por exemplo, o twin-rotor é um sistema altamente nao linear e acoplado,
constituindo um excelente ambiente de testes para a aplicacao de técnicas de identificagao

e controle.

Considerando os desafios apresentados anteriormente, dentre as técnicas usual-
mente utilizadas para obter uma representacao do twin-rotor encontram-se: modelagem
matematica padrao, identificagdo de sistemas do tipo caixa-preta, uso de algoritmos heu-
risticos e técnicas hibridas. Na mesma ordem anterior, os artigos [Rahideh e Shaheed
2008], [Ahmad e Chipperfield 2002], [Darus, Aldebrez e Tokhi 2004] e [Huu e Ismail 2016]

sao representativos de cada uma das metodologias apresentadas.

Por fim, o controle escolhido para o sistema beneficia-se diretamente da acuracia
do modelo e também é objeto de estudo na literatura. Justifica-se, portanto, o uso de
controladores Proporcional, Integral e Derivativo (PID) [Juang, Huang e Liu 2008] ou
Fuzzy [Zeghlache et al. 2022], demonstrando eficicia na estabilizacio das dindmicas diante

de disturbios e incertezas.

2.1 Embasamento matematico e estatistico

Inicialmente, faz-se importante definir conceitos relacionados a matematica e a
estatistica, imprescindiveis para o correto desenvolvimento do trabalho proposto. Demais
formulagdes amplamente difundidas podem ser encontradas em [Grimmett e Stirzaker
2001], [Walpole et al. 2011] e [Hastie, Tibshirani ¢ Wainwright 2015], ainda que as mais

utilizadas sejam apresentadas ao longo do desenvolvimento do trabalho.

2.1.1 Ergodicidade

A definicao de ergodicidade relaciona valores temporais a valores estatisticos, em
especial ao comprovar a equivaléncia entre a esperanca matemaética (média estocéstica)
e a média temporal. Desse modo, para que um processo estocdstico estacionario seja
considerado ergddico, a média temporal de uma sequéncia a[k] deve convergir para a sua
esperanca matematica em um nimero de amostras N que tende ao infinito [Birkhoff 1931].
Na pratica, considerando N suficientemente grande, a média temporal ¢ uma estimativa

aceitavel da média estocastica conforme a eq. (2.1):
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E[ afk] | = jlvkza[k]. (2.1)

Do ponto de vista da identificacao de sistemas, a ergodicidade é crucial por
estabelecer a equivaléncia pratica entre a média temporal de uma tnica e longa medicao e
a média estocastica de diversas medigoes da mesma dinamica. Esse principio é altamente
desejavel, pois permite obter estimativas estatisticamente consistentes dos parametros do
sistema a partir de um tnico experimento, superando a inviabilidade de repetir medic¢oes
sob as mesmas condi¢oes exatas. Contudo, essa propriedade nao é universal, sendo crucial
reconhecer que ela nao se aplica a todos os sistemas fisicos: notadamente, tal principio
¢ impraticavel para dinamicas altamente sensiveis as condigoes iniciais ou que exibem

processos irreversiveis [Aguirre 2004].

2.1.2 Funcgoes de correlagao, autocorrelagao e espectro

Dadas duas sequéncias finitas e ergbdicas quaisquer alk| e b[k] de comprimento N,
o estimador da funcao de correlacao cruzada r,[7] para um deslocamento temporal 7 é
dado por eq. (2.2). Desse modo, 14, representa o nivel de similaridade entre a primeira

sequéncia e uma versao defasada da segunda [Bakalis et al. 2023, Theodorsen 2016].

Mz

Tab|T ali] - bli + 7]. (2.2)

z:l
De maneira andloga, a fungao de autocorrelacao mede o nivel de similaridade entre
uma sequéncia e uma versao deslocada de si mesma. Assim sendo, o estimador 74,[7] é
obtido ao substituir b i + 7 | por a| i + 7 ] na eq. (2.2), resultando na formulagao 2.3.
Também é valido destacar que r,,[7] é uma fungdo par para processos reais, conforme
dindmica representada na eq. (2.4). Considerando essa simetria, usualmente se representam

apenas os valores de r,, para 7 > 0.

1
Taa|T NZCL ali + 7], (2.3)

=1

Taa|T| = Taal—T]. (2.4)

Outra abordagem interessante é averiguar que, pela fungdo de autocorrelacao
comparar uma func¢ao com si mesma, ela também pode ser utilizada para obter insights
sobre a taxa de variacao do sinal de interesse em func¢do do tempo. Isso ocorre visto que
variagoes mais lentas implicam uma similaridade maior e, portanto, uma autocorrelagao

maior entre amostras subsequentes [Aguirre 2004].
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Vale ressaltar que todo o desenvolvimento apresentado parte do principio de que
as sequéncias em estudo possuem carater ergddico. Tal suposicdo permite o uso das
variagoes em funcao do tempo discreto k, visto que as formulagoes usuais de correlagao e

autocorrelagdo dependem do operador E (esperanga matemaética).

Por fim, a relacdo entre a correlacdo e o espectro é formalizada pelo Teorema
de Wiener-Khinchin. Ao aplicar a transformada de Fourier ao estimador da func¢ao de

correlagao e de autocorrelagao, obtemos as fungoes de espectro cruzado (¢4) e autoespectro

(¢aa):

Pap(€) = Flrap[ k] ],
¢aa(w) - ‘F[ T.aa[ k ] ]

(2.5)

Assim como é possivel estimar a velocidade de uma dindmica a partir de sua
autocorrelagao, o autoespectro ¢,, indica como a energia ou poténcia do sinal analisado se
distribui no dominio da frequéncia [Aguirre 2004]. Tal constatagdo também decorre do
Teorema de Wiener-Khinchin, visto que ¢,, apresenta a mesma expressao que a Power
Spectral Density (PSD).

2.1.3 Varidveis aleatérias

Por definicao, uma variavel aleatoria é uma funcao X :  — R com propriedades
dadas por {w €N: X(w) < x} € F, para todo x € R. Ou seja, variaveis aleatorias sao,
formalmente, fungdes mensuraveis (ou F,-mensuraveis) que associam cada resultado w
do espago amostral {2 a um ntmero real . A condi¢do apresentada garante que o evento
X(w) <z é um evento bem definido e, portanto, sua probabilidade pode ser calculada no
espago de probabilidade (€2, F,, P) [Grimmett e Stirzaker 2001].

No contexto de processamento de sinais discretos, uma variavel aleatoria é fre-
quentemente representada por uma sequéncia numérica aleatéria ou por um processo
estocastico discreto v[k], em que k refere-se ao tempo discreto ou ao indice de uma dada
amostra. Para analisar as propriedades de tais sequéncias, utilizam-se ferramentas como a

adimensionaliza¢ao, a flutuagao e, crucialmente, a autocorrelacao.

Primeiramente, considerando uma sequéncia a[k] qualquer, sua adimensionalizagao,

dada por a[k], consiste em dividir a[k] pelo seu valor maximo.

_ alk]
afk] = ———. (2.6)
k][l
Além disso, a flutuacao da'[k] de uma sequéncia numérica a[k| é a diferenca entre
alk] e seu valor médio a[k|, representando o comportamento simétrico de a[k] em relagao

ao eixo das abcissas.
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d[k] = alk] — alk]. (2.7)

No ambito deste trabalho, uma sequéncia numérica v[k| serd considerada repre-
sentativa de uma variavel aleatéria e, consequentemente, com o perfil de ruido branco, se
sua flutuagao v/[k] apresentar uma funcao de autocorrelagao 7,.,/[ 7 | com caracteristica
impulsiva. Dessa forma, 7,,,,[ 7 ] é essencialmente néo correlacionada com as defasagens

7 # 0, conforme apresentado na eq. (2.8).

fV/l//[ 0 ] = ]-7

(2.8)
Fow[T]=0VY 7#0.

Devido a natureza estatistica inerente a funcao de autocorrelagao obtida a partir

de uma sequéncia de amostras com tamanho N, a condigao ideal apresentada na eq. (2.8)
pode ser relaxada: para que uma sequéncia finita seja considerada representativa de um
ruido branco, basta que seus valores apresentem um indice de confianca de pelo menos 95%.
Assim sendo, os valores de 7,,/[ T | para 7 # 0 devem estar contidos no intervalo :tl'—\/gﬁ6
para que as caracteristicas de interesse sejam garantidas, conforme a eq. (2.9) [Aguirre

2004].

Vale reforcar que tal definigdo, por meio de intervalos de confianca, é de carater
pratico, sendo apenas indicativa da presenca de aleatoriedade. A definicao da autocorrelacao

para uma sequéncia aleatéria com carater ergddico é dada por eq. (2.8).

T 0] =1,
1.96 1.96 (2.9)
—ﬁ<7’l,/y/[7']<ﬁ VT#O

2.1.3.1 Ruido branco gaussiano

Uma classe importante de ruido branco, amplamente utilizada em simulac¢oes
computacionais devido as suas propriedades analiticas e a facilidade de geracao, é o ruido
branco gaussiano. O mesmo é obtido por uma sequéncia de variaveis aleatérias do tipo
independente e identicamente distribuida (i.i.d.) que seguem a distribui¢do normal (ou
gaussiana), conforme a Funcao de Densidade de Probabilidade (PDF) dada em eq. (2.10).

A figura 3 ilustra o comportamento da distribuicdo normal em fungao dos parametros pipr

€ oN.

1 )
N (k, iy, 03) = ——— - exp [—HEg2E] (2.10)
N \/ 270\ [ 20N ]
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Figura 3 — PDF da distribui¢do normal em fungao dos pardmetros iy (média) e o (desvio
padrao).

Grafico da distribuicdo normal

0351
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Densidade de probabilidade
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Valores de a[k]

Fonte: Autoria proépria.

Gerando uma sequéncia a[k| de tamanho 10° a partir do comando randn() no
MATLAB e, posteriormente, agrupando os valores em 50 intervalos distintos, é possivel
calcular a funcao de densidade de probabilidade do sinal de interesse. Tal procedimento é
realizado ao averiguar o percentual de amostras de a[k] em cada um dos intervalos definidos,
criando, assim, um histograma do processo estudado. Esse procedimento é apresentado na
figura 4, na qual a distribuicdo amostral é comparada a PDF tedrica da funcao gaussiana
para py =0 e opn = 1.

Figura 4 — Validacao Estatistica de uma Sequéncia Aleatéria Gerada no Matlab: Ruido
Branco Gaussiano.
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(a) Sequéncia alk]. (b) Histograma e distribuigdo normal.

Fonte: Autoria prépria.

O perfil impulsivo do sinal apresentado na figura 5, com valores proximos de zero
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para 7 # 0, confirma que a sequéncia gerada no Matlab pode ser modelada como amostras

de um ruido branco.

Figura 5 — Autocorrelacao da sequéncia a[k].

Funcéo de autocorrelacdo da sequéncia a[k]
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Fonte: Autoria proépria.

Vale destacar, ainda, que os intervalos de confianca, denotados pelas linhas traceja-
das em vermelho, sdo apenas indicativos de que a sequéncia de interesse possui carater
aleatorio. Portanto, ainda que se observe uma certa extrapolacao dos limites impostos em
eq. (2.9) na figura 5b, é razodvel considerar que o comando randn() do Matlab gera um

ruido branco do tipo gaussiano.

Por fim, é necessario apresentar também o conceito de gaussianas multidimensio-
nais. Essa abordagem ¢ util para modelar a distribuicdo conjunta de multiplas varidveis
aleatérias, em que a correlagao entre elas desempenha um papel tao importante quanto
suas médias e variancias individuais. Considerando, entao, que sera estimada uma série
de parametros, cada um relaciona-se a uma distribuicao normal distinta, de modo que a
distribuicao resultante é completamente caracterizada pelo vetor de médias p e pela matriz
de covariancia 3. Essa matriz captura as varidncias e, crucialmente, as correlagoes entre
os parametros, essenciais para modelar a distribuicao conjunta dos parametros estimados

neste trabalho, conforme ilustrado na figura 6 e na eq. (2.11).

1 1 Ty —1(x _
N ®) = e 0 (5= == ). (2.11)
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Figura 6 — Distribui¢do normal multidimensional - visualizagdo 3D. As fungdes p(z) e p(y)
sao distribui¢oes gaussianas marginais.

Gaussiana bidimensional e suas projegoes

Yy 4 4 T

Fonte: Autoria prépria.

2.2 Conhecimento prévio do sistema

Assim como abordado no capitulo 1, um certo nivel de conhecimento prévio,
tanto do objeto quanto do objetivo do estudo, é uma parte importante do processo de
identificacdo, ainda que nao seja essencial para uma modelagem satisfatoria. Dessa forma,
o quadro 1 agrega metodologias de classificacdo comumente utilizadas na literatura, que

podem ser empregadas para definir o sistema de interesse.

Além disso, as secoes 2.2.1 e 2.2.2 abordam, em maior detalhe, conceitos de suma

importancia para a sele¢ao e validacao de técnicas de identificagdo adequadas.

2.2.1 Definigoes relacionadas a linearidade

Embora seja comum agrupar sistemas em lineares e nao lineares, existem inimeras
outras defini¢oes que devem ser atendidas, de modo a viabilizar a aplicagao de diversas
técnicas e simplificagdes, métodos esses comumente associados a sistemas lineares. Dessa
forma, faz-se necessario definir nao s6 o conceito de linearidade, mas também as demais

propriedades de sistemas lineares, causais e invariantes no tempo.

Vale também destacar que sinais e sistemas sao intrinsecamente conectados, embora

as defini¢bes agregadas em 2.2.1 sejam utilizadas para categorizar o segundo.
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Quadro 1 — Classificagdes comuns de sistemas dindmicos [Aguirre 2004, Ljung 1999, Ogata

2010]

Critério de Tipo Descricao
Classificagao
Ntmero de entradas e | SISO Uma entrada e uma saida (Single Input
safdas Single Output)

MIMO Multiplas entradas e multiplas saidas

(Multiple Input Multiple Output)
o Deterministico Saida totalmente previsivel a partir da

Natureza da dinamica entrada

Estocéstico Saida depende, total ou parcialmente, de

caracteristicas aleatérias

) ~ Malha aberta Nao ha uso da saida no calculo do sinal
Realimentacao de controle
Malha fechada A saida é realimentada ao sistema de
controle
. Estavel As saidas tendem a permanecer limitadas
Estabilidade a0 longo do tempo
Instavel As saidas divergem ou crescem
indefinidamente

2.2.1.1 Linearidade

Segundo [Ogata 2010], a linearidade de um sistema ¢ definida pela combinacao de
duas propriedades: a superposi¢ao e a homogeneidade. Pelo principio da superposicao, a
resposta a uma soma de sinais de entrada é a soma das respostas individuais a cada sinal
(equacao 2.12), enquanto a homogeneidade define que a resposta a um sinal de entrada

escalonado por uma constante é a resposta individual escalonada pela mesma constante

(2.13).

Matematicamente, se y;(t) é a saida correspondente ao sinal de entrada w;(t), as

propriedades sao expressas como:

Uy (t) =N (t)>
us(t) = ya(t), (2.12)
Soug(t) Fug(t) = yi(t) + ya(t).

Uy (t) = Y1 <t>’
coocug(t) = a-yi(t).

(2.13)
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A linearidade é satisfeita quando ambas as condi¢des sdo combinadas em uma tnica

relagao:

a1 ul(t) + Qo U2<t> = o1 yl(t) + Qo y2<t) (214)

Apesar de nem todos os sistemas serem inerentemente lineares, a linearizacao é
uma metodologia poderosa. Ao assumir um modelo aproximado em torno de um ponto de
operagao, é possivel modelar satisfatoriamente uma ampla gama de sistemas nao lineares.
Dessa forma, tal metodologia ¢ uma técnica simples e suficientemente precisa para atender

a muitos casos de interesse [Ogata 2010].

2.2.1.2 C(Causalidade

O principio da causalidade estabelece que a resposta (saida) de um sistema no
instante ¢y pode depender apenas dos sinais de entrada e das saidas em instantes anteriores
ou no proprio instante ty. Em outras palavras, um sistema causal nao pode ter uma

resposta prévia a um evento futuro.

Formalmente, sistemas lineares e causais obedecem a relacao dada em eq. (2.15),
na qual hlk] é a resposta ao impulso do referido sistema. Portanto, como a parcela de
qualquer termo u[i] - h[k — i] para i > t é nula, é possivel substituir o limite superior da

somatoria de convolugbes por k.

ylk] = iu[i] “hlk —1i] = Z(:]u[i] - hlk —i]. (2.15)

Uma implicacdo da causalidade na analise em frequéncia é que a funcao de transfe-
réncia apresenta um nimero de polos maior ou igual ao de zeros; caso contrario, haveria
dependéncia de amostras futuras da entrada, o que provocaria um ganho em alta frequéncia

que tende ao infinito.

Também é importante notar que sistemas fisicos reais, como o twin-rotor, sao
intrinsecamente causais: isso ocorre porque a inércia e outros fatores fisicos fazem com
que o sistema apresente um comportamento semelhante ao de um filtro passa-baixa,
impedindo que a saida responda instantaneamente a mudancas bruscas na entrada. Embora
sistemas tedéricos ou computacionais (como no pés-processamento de dados) possam violar
a causalidade, esta é um requisito fundamental para a modelagem de sistemas fisicos
usuais [Ogata 2010].

2.2.1.3 Invariancia no tempo

De forma simplificada, um sistema invariante no tempo apresenta coeficientes

(como oy e ag na formulagao 2.14) independentes do tempo. Formalmente, se um sinal
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de entrada u;(t) produz uma saida y;(t), entdo um atraso 7 na entrada deve resultar
no mesmo atraso na saida, de modo que os coeficientes associados a ambos, ui(t — 7) e

y1(t — 7), permanecam inalterados.

Ainda assim, a variagdo paramétrica é comum em sistemas fisicos, podendo ser lenta
(como o desgaste de componentes) ou rapida (como a eje¢do de massa em um foguete). No
entanto, para a maioria dos sistemas e em um horizonte de tempo determinado, considerar

o sistema invariante no tempo é uma suposigao aceitavel [Ljung 1999].

Por outro lado, quando tal variacdo exerce uma grande influéncia no modelo
utilizado, pode-se empregar técnicas de identificagdo em tempo real para atualizar dinami-
camente os parametros variaveis [Ljung 1999]. Essas técnicas, frequentemente associadas
ao controle adaptativo e a identificacdo em malha fechada, incluem o Filtro de Kalman e
o Método dos Minimos Quadrados Recursivo (MMQR).

2.2.2  Classificagdo por nivel de conhecimento

Por fim, diversos métodos de representacao exigem que as equagoes matematicas
definidoras do sistema de estudo sejam conhecidas. Faz-se necessario, portanto, categorizar
os sistemas com base no nivel de informagao que é possivel obter a partir deles, o que

possibilitara, posteriormente, a escolha de uma representagao adequada.

Figura 7 — Escalas de tons cinzentos que ilustram diferentes abordagens “caixa-cinza”. Da
regiao 1 a 3, a quantidade de informagao sobre o sistema diminui.

L 2 3

7\ \\5 ¢ "-\;

caixa caixa caixa
branca cinza preta

Fonte: [Fernandes, Oliveira e Souto 2017].

Primeiramente, métodos de identificacao do tipo caixa branca pressupoem conheci-
mento total das dinamicas do sistema de interesse, sendo muito utilizados em sistemas
de menor complexidade. Dessa forma, embora seja possivel aplicar técnicas de estimacgao
paramétrica, também seria plausivel estudar a planta de interesse de forma completamente
analitica [Ljung 1999].

Por outro lado, métodos relacionados a um sistema de caixa-preta consideram que
nao ha nenhum conhecimento prévio do objeto de estudo, sendo possivel obter apenas
amostras do sinal de entrada e do sinal de saida do mesmo. Assim, como abordado em [Chen

1998], pode ser necessaria uma grande quantidade de amostras e um poder computacional
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consideravel. Ainda que seja possivel encontrar uma modelagem satisfatoria e robusta,

tanto a perturbagoes quanto a alteracoes sistémicas.

Por fim, métodos de caixa cinza consideram que as caracteristicas do sistema de
interesse estao parcialmente obscurecidas, seja por desconhecimento do funcionamento
interno, seja pela dificuldade de mensurar alguns de seus parametros e dindmicas. Dessa
forma, é comum recorrer a modelagens fisicas ja conhecidas, ainda que parciais ou simplifi-
cadas [Aguirre 2004].

Vale também destacar que é possivel utilizar diversas técnicas para agregar as
informagoes previamente conhecidas as demais informagoes do sistema, seja por meio da
correta defini¢do dos regressores, do teorema de Bayes, da formulagao matematica do filtro

de Kalman ou até mesmo de redes neurais de diversas complexidades.
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3 METODOLOGIA

Nesta secao, serao apresentados os métodos a partir dos quais serao efetuadas as
medigoes e o processamento dos dados obtidos a partir do sistema de interesse, bem como

os indices com base nos quais é possivel validar o modelo obtido.

Figura 8 — Sistema M do tipo SISO, apresentando entrada u[k] e saida y[k].

uk] ——> M —> y[k]|

Fonte: Autoria proépria.

3.1 Projeto do sinal de excitacao

Tendo em vista que é possivel escolher a entrada do sistema de interesse, ha uma
ampla gama de sinais que podem ser utilizados para a identificagdo. Dentre os mais comuns,
estdo o uso da resposta ao degrau, da resposta impulsiva e da resposta em frequéncia do
sistema por meio de entradas senoidais. Vale destacar, porém, que, embora amplamente
utilizado, o método de obtencao da resposta em frequéncia de um sistema consiste na

aquisicao de um grande volume de dados.

Tal afirmacao parte do principio de que a solugao para excitar todo o espectro de
frequéncias de forma satisfatéria consiste, usualmente, na utilizagdo de um conjunto de
fungoes senoidais de frequéncias fy distintas, cada uma excitando uma frequéncia especifica

do sistema. Essa dindmica é representada pela eq. (3.1).

Usin (1) = sin(27 fot),

(3.1)
Usnl ) = F [uan(®)| = (607 = f0) = 67 + fo)]

Uma alternativa mais eficiente ¢ utilizar sinais com um espectro de frequéncias
mais rico, tais como sinais chirp ( eq. (3.2) e figura 9) ou sinais de natureza aleatéria.
Em particular, para sinais aleatorios, tal afirmacgao baseia-se no fato de que um ruido
branco contém informacgoes em todo o espectro de frequéncias. Desse modo, a utilizacao
de sinais de entrada bem projetados permite reduzir drasticamente a quantidade de dados

necessarios para obter uma resposta em frequéncia satisfatoria para o sistema de interesse.
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U’Chirp(t) = sin (27Tf0t -+ ’7Tfle0t2), 0 S t S T,
£0, feF, 52

0, fé¢F,
F={f|Hh<IfI<h}

Uchirp(f ) ~

Figura 9 — Exemplo de sinal do tipo C'hirp.
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Fonte: Autoria proépria.

3.1.1 Sinal aleatério

Assim como apresentado em 3.1, uma alternativa ao uso de sinais senoidais na
identificagao de sistemas é adquirir a resposta ao impulso. Entretanto, a excitacao impulsiva
ideal, §(t), é impraticavel em sistemas fisicos, pois exigiria amplitude e largura de banda
infinitas. Por esse motivo, algumas alternativas para uso em técnicas de identificacao
consistem em empregar excitagoes que aproximam a resposta ao impulso, tais como o
ruido branco, Maximum Length Sequence (MLS), PRBS ou até mesmo o PRMLS [Farina
2000, Theodorsen 2016].

Para o ruido branco, um processo estocastico v[k] é dito aleatério quando sua fungao
de autocorrelacao apresenta caracteristicas semelhantes a de uma funcao de impulso. Esse
resultado, como ja definido em 2.1.2, implica que amostras do sinal sdo descorrelacionadas
para todos os atrasos 7 # 0 [Bakalis et al. 2023, Theodorsen 2016].

T, |T] = a2 8[7]. (3.3)

Considerando tal desenvolvimento, de acordo com as defini¢bes apresentadas em

2.1.2, a PSD é dada pela Discrete Fourier Transform (DFT) da autocorrelagao.
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Gu (€)= > 1 K] e Wk, (3.4)
k=—o00
Nota-se que a defini¢ao introduzida pela equagao 3.4 é andloga a apresentada na

equacao 2.5. Desse modo, substituindo 3.3 em 3.4 e resolvendo a DF'T, é possivel obter 3.5.

o
jw 2 —jwk 2
G (&) = > o lk]e 7 = 0" (3.5)
k=—o00
Portanto, a PSD de um sinal com caracteristicas aleatérias é constante para um
numero suficientemente grande de amostras N. Dessa forma, o ruido branco contém
componentes em todas as frequéncias discretas, sendo, assim, um sinal persistentemente

excitante [Aguirre 2004].

Figura 10 — Comparacao entre senoides e variavel aleatéria, simulacao de 1s e F, = 10*H 2.
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Fonte: Autoria proépria.

Ainda que sinais aleatorios excitem um espectro de frequéncias muito mais amplo
do que o de um unico senoide, restam varias questoes associadas ao seu uso. Algumas delas
residem no fato de que uma variagao de nivel em periodos de tempo muito curtos, uma
de suas caracteristicas, pode implicar um desgaste maior em atuadores mecanicos. Além
disso, a inversdo constante do sinal de entrada leva a diversos malfuncionamentos, avarias
e impossibilidades, dependendo dos equipamentos de medicao e dos atuadores intrinsecos

ao sistema de estudo.

Além disso, a analise de um sistema com essas caracteristicas na entrada pode
mostrar-se ineficaz, visto que essas caracteristicas variam a cada intervalo minimo de
afericao. Portanto, sistemas com dinamicas muito mais lentas do que as do sinal aleatoério

terao pouco tempo para serem devidamente excitados e, consequentemente, necessitarao
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de uma quantidade maior de dados para que seja realizada uma aquisicdo paramétrica

satisfatoria.

Uma das solugoes possiveis para contornar esses problemas é o uso de um sinal
PRBS, eventualmente adicionando um segurador a entrada do sinal, a fim de evitar
desgastes desnecessarios e auxiliar na identificacdo de dindmicas mais lentas. Ao contrario
de uma variavel completamente aleatoria, o PRBS possui valores binarios; mas, como se

vé na figura 11b, ainda excita satisfatoriamente todo o espectro de frequéncias.

Figura 11 — Comparacao entre uma variavel aleatéria e um periodo do sinal PRBS, com
simulacdo de 1s e F, = 10°Hz. N = 10°.
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Fonte: Autoria proépria.

Outra de suas particularidades é que o sinal PRBS ¢é periodico, porém apresenta
fortes caracteristicas aleatérias ao longo de um de seus periodos. Dessa forma, ainda é

possivel aproveitar as caracteristicas previamente abordadas em 3.1.

Por fim, vale destacar que, para fins comparativos, sera sempre utilizada a fungao
de autocorrelagao normalizada simétrica para avaliar o comportamento aleatorio dos sinais

de interesse, conforme apresentado nas figuras 12 [Aguirre 2004].
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Figura 12 — Comportamento da fungao de autocorrelagao do sinal PRBS.
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Fonte: Autoria prépria

3.1.2.1 Geragao de um PRBS

Duas das possiveis maneiras de gerar um sinal PRBS, uma focada na implementacao
em hardware e outra em uma representacao matematica formal, sdo apresentadas a partir
da equacao 3.6 [Ljung 1999] e da imagem 13 [Aguirre 2004], em que remgy(«) representa o

resto da divisao de o por 2.

u(t) = remy ( S aq-u(t — z)) . (3.6)

Assim, em func¢ao do tamanho do periodo de aleatoriedade requisitado (N), é
possivel definir o nimero minimo de bits, n, necessario para a implementagao desejada.
Assim, os valores nao nulos de a;, bem como o esquema de ligacao via hardware usando

a porta ou-exclusivo (fig. 13), podem ser encontrados na tabela 1.

Figura 13 — Exemplo de implementagao em nivel de hardware, n = 6.

temporizacao
1 ¢

1 2 3 4 5 6 —— saida

OU-Exclusivo (@)

Fonte: [Aguirre 2004].
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Tabela 1 — Geragao de um sinal PRBS

n\N:2“—1‘ ay, ‘ X-OR
2 3 1,2 1,2
3 7 2,3 2,3
4 15 1,4 3,4
5 31 2,5 3,5
6 63 1,6 5,6
7 127 3,7 4,7
8 255 1,2,7,82,3,4,8
9 511 4,9 5,9
10 1023 7, 10 7, 10
11 2047 9,11 9, 11

Fonte: adaptado de [Ljung 1999] e [Aguirre 2004]

Vale destacar que ¢é possivel gerar um sinal PRBS de diversas maneiras e que os
parametros da tabela 1 garantem o maior periodo possivel para um nimero de bits dado.
Assim sendo, as referéncias utilizadas nao impedem que sejam efetuadas outras ligagoes ou
arranjos que resultem em resultados semelhantes. Para o desenvolvimento deste trabalho,

os valores aj, serdo sempre obtidos a partir de [Toker e Emara-Shabaik 2004].

3.1.3 PRMLS

Anélogo ao ja abordado para o sinal PRBS, é importante mencionar sua versao
multinivel, o PRMLS. Extremamente 1til para identificacdo de sistemas néo lineares, o
mesmo pode ser criado a partir da equacao 3.7, analoga a 3.6. Para tal, foi implementada
uma variagao da metodologia introduzida por [Toker ¢ Emara-Shabaik 2004] para obter os

valores de ay,.

P

u(t)y= > a;-u(t—i);{peN/p>2}. (3.7)

i=1

Dessa forma, serao calculados parametros aleatoriamente até obter-se um periodo
maximo para o PRMLS, mapeando tais valores aleatérios para niveis 6timos estritamente
positivos, a serem utilizados como valores do sinal de entrada. Um exemplo de PRMLS ¢

dado a seguir:
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Figura 14 — Comparacao entre variavel aleatoria e um periodo do sinal PRMLS escolhido,
simulacdo de 1s e Fy = 10*Hz. N = 10°
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Fonte: Autoria proépria.

Figura 15 — Comportamento da fungao de autocorrelagao do sinal PRMLS escolhido.
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Ruido aleatério
PRMLS

o
w0
T

Autocorrelagao normalizada
©c o o o o o
w = W (+2] ~ o]
: ‘ ‘ . ‘ :

o
N
T

01r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Atraso [s]

Fonte: Autoria proépria.

Vale também destacar que, a partir da definicio de [Toker e Emara-Shabaik 2004],
o PRMLS garante persisténcia de excitagdo para p maior que a ordem de nao linearidade
do sistema (p > Q). Por outro lado, isso também significa que o sinal PRBS classico excita
efetivamente somente sistemas sem nenhuma nao linearidade (p =2 . O < 1), ainda que

apresente componentes em todas as frequéncias.
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3.2 Métodos de representacao

Embora representacoes classicas, como o espacgo de estados e as fungoes de transfe-

réncia, sejam validas, é comum recorrer a modelos polinomiais na identificacdo de sistemas

em tempo discreto. A estrutura geral dessas classes de modelos é definida pela Equagao

3.8 e ilustrada na figura 16.

A(Olq) ylk] =

A(0]q)

Fonte: Autoria proépria.

(3.8)

Estes modelos polinomiais estao definidos no dominio do tempo discreto por meio

do operador de atraso ¢!

O operador ¢!

no dominio do tempo discreto ¢ o andlogo ao termo z~

1

, que atua sobre as varidveis u[k] ou y[k] conforme a Equacao 3.9.

na Transformada

7 e permite escrever as equacgoes de diferenca como fungoes de transferéncia.

¢ ulk] =ulk —a]:aeN.

(3.9)

Tabela 2 — Classes de modelos notaveis obtidos a partir de 3.8.

Nome da estrutura ‘ Funcoes utilizadas

FIR (Finite Impulse Response)

ARX

ARMAX

s

ARMA

ARARX

ARARMAX

o >

s

OE (Output Error)

BJ (Boz-Jenkins)

w
(@)

Fonte: [Ljung 1999].

o| 3| O| w| = | F| >

| Q| = O O W @
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Vale também mencionar que, por vezes, ha a presenca de um delay entre a dindmica
da saida e a dindmica da entrada. Sua representacao pode ser efetuada por meio da simples
inser¢ao de uma nova variavel 7, de modo que as equacgoes caracteristicas do método
Autoregressive with eXogenous inputs (ARX) sejam obtidas a partir de eq. (3.10). A

eq. (3.11) apresenta um exemplo de estimacao de um sistema de ordem 2.

ylk] =S5 a5yl k=G ]+ X0, biru[k—i]+e[k], (3.10)
B(0lq|T :
yl k] = Zigul k ]+ aggel k-
ylk] = a1, ylk — 1] + a9, y[k — 2] + by, ulk — 1] + by, ulk — 2] + e[k]
big " +bag? 1 (3.11)

ylk] =

Cl—aig = axg?

ulk] + elk].

1 —aiq "t —asq?’

Dessa forma, a popularidade dos modelos ARX na modelagem e identificacao é
explicada por sua formulagao direta no dominio do tempo discreto e pela capacidade

intrinseca de lidar com distturbios e ruidos de medicao.

Andélogo ao ja apresentado, o modelo Non-linear Autoregressive with eXogenous
inputs (NARX) inclui regressores com caracteristicas nao lineares na equagao 3.10. Um dos
métodos para incluir tais dindmicas consiste em adicionar termos polinomiais dependentes
de u e y como regressores, incluindo produtos cruzados e poténcias elevadas dos sinais de
entrada e de saida, que atuam como regressores nao-lineares. Esses termos polinomiais,

usualmente implementados para identificagoes do tipo caixa-preta, seguem a eq. (3.12):

u' -yt c iy §] €N (3.12)

Vale destacar que ha um grande nimero de combinagoes possiveis a partir dessa
aproximacao polinomial, o que aumenta exponencialmente o custo computacional associado
ao processo de estimagao. Entretanto, um grande niimero de regressores também tende a
introduzir o problema de overfitting, elevando a variancia do modelo e diminuindo sua
capacidade de generalizagao. Para contornar tal probleméatica é comum recorrer a métodos

de sele¢ao de regressores como o LASSO.

Além disso, dependendo do sistema modelado e da quantidade de informacoes
previamente obtidas sobre o sistema, ha uma grande separacao entre a modelagem e o
significado fisico de cada um dos parametros encontrados. Dessa forma, o processo de
validagao para identificacoes do tipo caixa-preta torna-se mais complexo e abstrato, mesmo

que ainda seja possivel comprovar que o modelo encontrado é satisfatério.
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3.3 Teoria da estimacdo

Tendo como base os dados referentes ao comportamento do sistema de interesse,
faz-se necessario encontrar, a partir de eq. (3.8), os pardmetros de um modelo escolhido que
aproximem o melhor possivel o sistema real em sua estimativa. Esse problema tem origem
historica nas aplicacoes a astronomia e a geodésia do século XVIII, quando Legendre e
Gauss formalizaram e aplicaram o MMQ para ajustar observagoes ruidosas [Legendre

1805, Gauss 1809).

Além disso, ao longo do século XX, o desenvolvimento tedrico e computacional
consolidou propriedades formais dos estimadores classicos e abriu caminho para métodos
que penalizam a complexidade do modelo, visando a um melhor desempenho preditivo
em situagdes em que o sistema apresenta alta dimensionalidade [Greene 2018, Hastie,
Tibshirani e Friedman 2009].

Com este objetivo, introduzido e analisado por Tibshirani, o método LASSO
acrescenta um termo de regularizacao a formulacao do MMQ. Essa penalizacao seleciona
as varidveis mais significativas para a dinamica do sistema, reduzindo a variancia a custo
de um aumento do viés [Tibshirani 1996, Hastie, Tibshirani e Friedman 2009]. Portanto,
o LASSO pode ser utilizado como estratégia de selecdo de regressores no ambito da

identificagao de sistemas.

A partir da teoria da estimacao, portanto, é possivel encontrar algoritmos que sele-
cionam e estimam os parametros de interesse, mantendo eficiéncia e robustez, minimizando

possiveis efeitos decorrentes do ruido [Wasserman 2004].

3.3.1 O estimador de minimos quadrados

A abordagem classica do estimador por MMQ tem como objetivo minimizar a
soma dos quadrados dos erros de estimagao, ou seja, o custo quadrético J(6), conforme
a eq. (3.13). De sua formulagao classica, a saida estimada é obtida por § = M6, com
o objetivo de definir o vetor de pardmetros 6 que minimiza J(#) (ming J(0) € R). A
matriz M é definida com base no modelo de representagao a ser utilizado: como, durante
o desenvolvimento do trabalho, sera aplicado o método ARX, M é denominada matriz de

regressores.

min { SV [[g; — yil[2} = min J(6). (3.13)

Dada uma fungao convexa qualquer f(y), um método analitico comprovado para
encontrar pontos de minimo (ou méximo) é a solugao por pontos estacionarios, ou seja,
pontos em que a derivada de f(y) é zero. Dessa forma, assumindo que tal fun¢ao é bem
comportada e derivavel até a segunda ordem, para a minimizacao, deve-se calcular 6 a

partir de eq. (3.14). As propriedades de derivagdo matricial sdo apresentadas em eq. (3.15).
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0
0 =0,
’ jf ) (3.14)
9 02 f(y) > 0.
9@ Af = (A+ A,
00 ( ) (3.15)
DA =4,

Portanto, se a segunda derivada for estritamente positiva, a solu¢ao encontrada é
unica. Considerando, ainda, a natureza quadratica da funcao 3.13, ilustrada em fig. 17, é
possivel encontrar o valor de @ para o qual o erro associado a estimacao seja minimo. Vale
também relembrar que, em ambiente computacional, certas operacoes matematicas podem

ser facilmente transformadas em suas versdes matriciais, conforme proposto em eq. (3.17).

Figura 17 — Exemplo de uma fungao J(#) de natureza quadratica.

Superficie da Fungao Quadratica f(9)=9f+9§
18

fy. M, 0)=> (—y)?=> ¢, (3.16)

S == ¢ |- (3.17)

Aplicando as defini¢coes na equagao caracteristica § = M@:

g=M0 . (=M0-—y, (3.18)

1 ¢ = (MO —y)" (MO —y) = (0" M" —y") (MO — ), (3.19)

1 CIP=0"M" MO — 0" M y— y" MO+ y"y. (3.20)
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As dimensdes das matrizes, y 07 M7, sdo idénticas a y? M@, visto que ambos os
termos sao escalares. Assim sendo, é possivel aplicar a derivacao de eq. (3.21), a fim de

identificar um valor de 6 que seja candidato & minimizagao de J(6).

| C 1P =0T M MO — 20" M" y +y"y, (3.21)
9 T T
0= (M"M)™ MTy| (3.23)

Além disso, considerando as condigdes para minimizagao, faz-se necesséario averiguar

o comportamento da segunda derivada:

0
57 OMTMO —2M" y >0 <= 2M*'M > 0. (3.24)

Da propria construcao do MMQ), ¢é possivel garantir que a minimizacao ocorre
quando se utilizam entradas persistentemente excitantes, visto que levam a uma matriz

M com posto completo e, portanto, a M7 M ser definida positiva [Aguirre 2004].

Portanto, utilizando a definicio de matriz de Penrose (M* = (MTM)~' MT),
é possivel obter a definicdo do pardmetro 6 que resulta em eq. (3.25). Pelas definigbes
eq. (3.13) a eq. (3.24), fica claro que MM definida positiva implica uma solucio 6tima e

Unica para os parametros do modelo.

O=M"y <= S (G—y?=min{ ¥(j—y?}| (3.25)

De forma equivalente, a solucao do MMQ pode ser expressa por meio de somatoérias,
como apresentado na equagao 3.26 [Aguirre 2004]. Nesta notagao, ¥ (i — 1) representa o

vetor de regressores (a i-ésima linha da matriz M) e N é o nimero de amostras:

by = [ASX 0 - DT -] - [L SN el ()] (3.26)

E fundamental notar que o MMQ exige linearidade nos pardmetros (vetor 6),
permitindo sua aplicacdo tanto em modelos de regressao lineares (como retas) quanto
em modelos intrinsecamente nao-lineares nos dados (como polinémios), desde que os

parametros sejam lineares em relagao ao modelo.

A fim de ilustrar o estimador proposto, foram identificados pardmetros da reta
y=2t+7 (0= [2, 7} ), considerando um pequeno ruido do tipo i.i.d. na saida do sistema.

Dessa forma, a equacao 3.27 descreve as quatro primeiras amostras do sistema ruidoso.
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6.6552 =20+ 7 + ¢[0
8BITT6=2-1+7+¢[l
10.9123 = 2247+ €[2),
13.4654 = 234+ 7+ ¢[3).

J
)

(3.27)

Considerando a formulacao encontrada para o MMQ), é possivel reescrever o sistema
de equagoes eq. (3.27) a partir de eq. (3.28). Dessa forma, é possivel aplicar a eq. (3.25)
iterativamente a medida que aumenta o niimero de amostras obtidas, ou seja, utilizando
um numero crescente de linhas no processo de estimagao. Portanto, alterando a ordem do
sistema de equagoes aplicado a eq. (3.25), é possivel averiguar a qualidade dos pardmetros

estimados a partir da tabela 3.

6.6552 0 1
8.9776 11| o

— e (3.28)
109123 |2 1| |6y
134654 |3 1

Tabela 3 — Estimacao dos parametros da reta y = 61t 4+ 65 em funcao do nimero de
amostras

Amostras ‘ Coeficiente angular ‘ Coeficiente linear

2 2.3223 6.6552
3 2.1285 6.7198
4 2.2365 6.6478

Fonte: Autoria proépria.

A fig. 18 ilustra o resultado do mesmo processo de estimagao. O grafico 18a mostra
a reta estimada a partir de 100 amostras de dados ruidosos, enquanto 18b apresenta a
convergéncia dos parametros 0; (coeficiente angular) e , (coeficiente linear) em funcéo
do ntimero de amostras utilizadas, destacando como o estimador se aproxima dos valores

reais (01 = 2, f; = 7) a medida que mais dados sao processados.
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Figura 18 — Exemplo de estimagao a partir do MMQ - nimero maximo de 100 amostras.
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(a) Identificacdo da reta y = 2t + 7. (b) Parametros em funcdo das amostras.

Fonte: Autoria proépria.

3.3.2 O MMQ recursivo

A

O MMQR permite atualizar os pardmetros do modelo () a cada nova aquisigao de
dados, eliminando a necessidade de recomputar a solu¢ao em batch (3.26) a cada passo. A

derivacao inicia-se reescrevendo a solugao batch para um nimero de amostras c:

b= [y w06 —-1)] - [2e vl — )y()]- (3.29)

Desse modo, definindo as matrizes P, e (). tal que P, = [ ¢ v — DT (i — 1)] -
e Q.= { ¢ (i — 1)y(i)}, a equacao 3.29 pode ser reescrita como 3.30.

.= P.- Q.. (3.30)

Efetuando a separacdo do termo para i = ¢ tanto em P, quanto em ()., é possivel
obter 3.31. Em seguida, devido a nomenclatura utilizada, é plausivel reescrever 3.31 como

3.32.

Pt =[S = 0TG- 1)) + vl = DU (e - D),

(3.31)
Qe = { —Lap(i — 1)y(i)] + ¥ (c — Dy(c),

Pc_l = Pcill + Z/}(C - 1)wT(C - 1)7
Qc = Qc—l + @D(C - 1)y(C)

(3.32)

Retomando a equacao 3.30, é possivel reescrevé-la para o instante ¢ — 1, de modo a
obter 3.33.
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c— :Pciléc—a
{Q L =P -

Qc - Pc_—lléc—l + 77/)(0 - 1)y(C).

Substituindo @, (de 3.33) em 6, = P.Q. (3.30), obtemos uma forma que ainda
requer a inversao da matriz P! a cada passo eq. (3.34). Para evitar essa onerosa inversao

matricial, aplicamos a Identidade da Inversao da Matriz (ou Identidade de Woodbury)
3.35 a relagio Pt = P4 4+ (e — DT (c — 1) (3.32).

bc = P. [P0y + (e — 1y(e)] (3.34)
(A+UCV) = A — AW U(CH+ VAU VAT, (3.35)
A= Pcilla
v=dle-1), (3.36)
C =1,
V =9y (c—1).

Assim sendo, é possivel inverter P! denotada na formulagao 3.32 a partir de:
-1
Po= [P +v(c—DwT(c—1)] (3.37)

P.=(A+UCV) ' =A"—A'UCH+vATIU) VAT (3.38)

Po= Py — Pgdle— D)1+ 97(c=1)- Py (e —1)] 9" (c =Py, (3.39)

Pc_1¢(c — ]_)
1+9¢T(c—1)-P.y -Y(c—1)

S P.=P._,— Ppi(c—1)P._;. (3.40)

Definindo um ganho K. de modo que a formulagio 3.41 seja verdadeira, é possivel

reescrever 3.39 como 3.42.

K, = P 1/1(0—1)7
Ita (3.41)
a=vYT(c—1) Py ¥(c—1),

P.=P. 1 — K" (c—1)P._;. (3.42)
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Substituindo 3.42 em 3.34, obtém-se 3.44. E importante ressaltar que, a partir do

uso de 3.30 e da primeira equacao em 3.33 é possivel simplificar os termos M; e Ms.

0, = M, + My — My — My,

My =P,y P40y = 6,4,

My = P._19(c — 1)y(c), (3.43)
My = KT (c — 1)Poy P70,y = KT (c — 1)1,

My = KT (c = 1) Pertp(c — D)y(c) = K. - a - y(c),

e =001 — K" (c = Doy + [Peoytp(c — 1) — K. - a] y(c). (3.44)

A partir da definicdo de K., verifica-se que P._11(c —1) = K (1 + a). Substituindo

na equagao 3.44 e agrupando os termos dependentes de K., obtém-se 3.45.

éc = éc—l cw (C - 1) e—1 T+ Kcy(c)a

PO ) (3.45)
0. =0.1+ K. |y(c) — v (c—1)0.] -

O MMQR bésico pressupoe que todos os dados anteriores sao igualmente relevantes.
Em sistemas em que as caracteristicas mudam lentamente, é comum introduzir o fator
de esquecimento A\, com 0 < A < 1, para dar maior peso as amostras mais recentes e
‘esquecer’ as anteriores. O uso de \ resulta em equagoes formuladas em 3.46 [Goel, Bruce
e Bernstein 2020].

— c 1 ¢(C_1)
KC AT (e—1) Peey (c—1)?
b= 0.1 + K. [y(c) (1) éc_l} , (3.46)

Po= APy — K (e— )P |

O sucesso do MMQR reside no fato de que, ao contrario do MMQ padrao, a tnica
inversao necessaria no algoritmo (3.46) é a do denominador do ganho K.. Visto que
A+ YT P,_11) é um escalar, o alto custo computacional da inversao matricial é evitado, o

que permite a execucao eficiente em tempo real.

3.3.3 Uso do LASSO como ferramenta de selegao de regressores

A partir da metodologia apresentada em 3.3.1 e 3.2, é possivel obter uma apro-
ximagao paramétrica 6tima a partir do MMQ. Deve-se considerar, porém, que o custo
computacional associado a estimacao pode se tornar desnecessariamente elevado e que a

possivel insercao de regressores nao relevantes pode provocar o efeito de overfitting.
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Isso ocorre quando foi definida uma quantidade elevada de regressores, que pode
ser superior ao nimero necessario para caracterizar o sistema de interesse. Isso tende a
ocorrer por desconhecimento ou até mesmo por uma interpretacao equivocada do objeto

de estudo.

Nesses casos, com base nas limitagdes previamente abordadas no capitulo 1, faz-se
necessario limitar o niimero de regressores. Além disso, outro problema oriundo do uso
de uma quantidade superior a necessaria é o overfitting, o que pode levar a um modelo

enviesado ou demasiadamente contaminado por ruidos. Tal dinamica é representada pela
figura 20

Figura 19 — Exemplos de underfitting (a esquerda) e de overfitting (a direita).

Grau do polinomio estimado: 1 Grau do polinomio estimado: 4 Grau do polinomio estimado: 15

MSE = 2.76e + 00(+4.25¢ — 01) 5 MSE = 6.86e — 02(+7.08¢ — 02) 5 MSE = 2.55¢ — 02(+5.46e + 08)

Modelo
Fungéo real
2L ® Amostras com ruido 2 2

Fonte: Autoria proépria.

Para tais casos, é util utilizar técnicas como a regressao LASSO, que identifica e
atenua a influéncia de regressores irrelevantes para o sistema de interesse. Assim sendo,
espera-se que a utilizacdo de métodos como este acarrete uma diminuicao da precisao do
modelo nos dados obtidos, em troca de maior eficacia na descri¢ao do sistema como um
todo. Em termos de machine learning, o desempenho nos dados de treinamento ¢ inferior,

mas tende a ser igual ou superior ao dos dados de validacao.

Assim, definem-se duas fungdes distintas: f(M, 6), que minimiza o problema
original, e g(M, ), um termo de regularizagdo que busca generalizar melhor os dados
obtidos e eliminar o overfitting. Vale destacar que o parametro A\, abordado separadamente,
nada mais é do que um peso adicionado a funcao objetivo, indicando o quao importante é

essa corre¢ao em relagdo ao desempenho da fungao original f(M, 6).

min { f(M, )+ X g(M, 0)}. (3.47)

Dessa forma, as regressoes do tipo Ridge e LASSO sao dadas pelas equagoes 3.48 e

3.49. E importante destacar que a regressao de Ridge ¢ mais utilizada para reduzir o viés
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que os dados de treinamento podem introduzir no modelo, enquanto o método LASSO é
extremamente 1til para eliminar regressores e, portanto, dinamicas, que possuem pouca
ou nenhuma influéncia na saida do sistema. Em especifico, para o LASSO, aplica-se a
regularizacao baseada na norma L1, que tende a zerar os parametros de menor relevancia

a medida que aumenta .
min {159 —y:)® + AT (0:)°} (3.48)

min {% Y0 —vi)® + A |91|} : (3.49)

Vale também destacar que é possivel substituir a funcao g(M, #) a partir de
eq. (3.50), desde que a fungao objetivo original f(M, 6) respeite a nova restrigio imposta.
Desse modo, a fig. 20 representa tal dindmica para Ridge e LASSO, tratando 6 = [ 6y, 05 ],

¢ 6 o ponto em que f(M, ) ¢ minimo.

3160 < 9. (3.50)

Figura 20 — Comportamento da fungao objetivo f(M, ) em vermelho, apresentando ponto
de minimizac¢ao em . Os termos de regularizagao impostos pela equagao 3.50

sao denotados pelas formas geométricas em azul. Da esquerda para a direita:
Lasso (¢ = 1) e Ridge (¢ = 2).

0y

1

02

01

0

Fonte: [Hastie, Tibshirani e Wainwright 2015].

Além das regularizagoes L1 (LASSO) e L2 (Ridge), existe uma familia de restrigoes
similares que resulta em diversos métodos de otimizagao distintos, todos os quais podem
ser representados pela estrutura dada na equacao 3.47, apenas alterando a natureza das
fungoes f(M, 0) e g(M, 0). As restrigdes correspondentes a essas regularizagoes sao
apresentadas na fig. 21, notando-se que para L1 (¢ = 1) e L2 (¢ = 2) o formato é o mesmo

do apresentado em fig. 20.
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g(M, 6) =>"16:]". (3.51)

Figura 21 — Diferentes formatos das restri¢oes introduzidas em eq. (3.50).

qg=4 qg=05 qg=01

DO+ +

Fonte: adaptado de [Hastie, Tibshirani e Wainwright 2015].

3.3.3.1 Parametro de penalizacao A

E importante também destacar a influéncia do parametro A na modelagem do
problema. Inicialmente, é possivel afirmar que, para A = 0, a equacao de interesse nada
mais é do que o método dos minimos quadrados ja abordado, acrescido de um fator % A

influéncia de valores elevados de A\, porém, pode nao ser tao intuitiva.

Considerando que o problema de interesse é classificado como uma otimizacao
por minimizagao, para pesos maiores em g(M, 6), os préprios parametros terdo de ser
fortemente penalizados, o que indica uma menor variacao de y em fungao dos regressores.
Para o método LASSO, tal comportamento é ainda mais evidente, visto que os regressores

de menor influéncia podem ser simplesmente eliminados da equacao do sistema.

Figura 22 — Exemplo de validagao cruzada.
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Fonte: [Hastie, Tibshirani e Wainwright 2015].

Desse modo, uma das maneiras de verificar um valor ideal de \ é realizar a validagao
cruzada dos dados, como ilustrado na fig. 22. Isso nada mais é do que excluir uma das

linhas de M e sua correspondente em y, verificando, para uma ampla gama de valores de
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A, a regressao LASSO (ou Ridge) correspondente. Depois, apenas para a linha excluida,

calcule o erro quadratico médio da saida.

Ao efetuar o procedimento em todas as linhas, é possivel agrupar os erros de todas
as amostras em vetores, um por A, e confirmar suas médias e variancias. Assim, é possivel
verificar qual A leva ao menor Mean Squared Error (MSE), conforme apresentado na
fig. 22.

E importante destacar que tal processo acarreta um grande custo computacional,
visto que requer o calculo do erro associado a retirada de N amostras. Dessa forma, sera
utilizada uma abordagem distinta, na qual os dados amostrados serao separados em um
nimero determinado de folds. Dessa forma, é necessario efetuar Ny, 45 operacoes, o que

representa um custo bem inferior ao associado a N loops de cross-validation.

Por fim, a fig. 23 ilustra tanto o processo de validagao cruzada (23a) quanto a

tendéncia do LASSO a zerar os coeficientes a medida que o parametro A aumenta (23b).

Figura 23 — Influéncia do pardmetro A na estimacao, com dados obtidos na secao 4.4,
relativos a figura 36a. Uso da escala logaritmica no eixo x.
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(a) MSE. () 01X =0] = Oararq = |0.9996 0.004}T.

Fonte: Autoria proépria.

Dessa forma, mesmo que o custo computacional associado a implementacao do
LASSO seja significativo, a depender da necessidade e do nivel de invaridncia temporal
do sistema, tal etapa pode ser aplicada a partir de um pré-processamento sobre os dados
obtidos experimentalmente. Portanto, considerando uma aplicacdo em tempo real, é
possivel se utilizar do MMQ), ou até mesmo de sua versao recursiva, para identificar apenas
os parametros mais significativos encontrados. Assim sendo, o uso de regularizagdes como o
LASSO tende a diminuir nao s6 o efeito do overfitting, mas também o custo computacional

associado a utilizacao de toda a logica de identificacao.
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3.4 \Validacdo dos modelos

Também é de suma importancia verificar se o0 modelo obtido condiz com o sistema
de interesse. Para tal, no escopo do trabalho, serao utilizados trés parametros principais: o
MSE, o fit dos dados e o Final Prediction Error (FPE). Os demais indicadores também

serdao definidos, embora nao sejam utilizados diretamente na validacao dos dados obtidos.

Primeiramente, o indicador R? baseia-se na diferenca entre o valor estimado ()
e o valor médio (y) do sinal de interesse, bem como no erro de estimagao. Assim sendo,
valores proximos ao unitario indicam uma boa modelagem e, para valores superiores a 0.7,

a representagao é considerada confidvel [Gupta, Stead e Ganti 2024].

R =

J—9)
T (G (3.52)

>
Xy -9 v

Como o R?, também é comum utilizar o parAmetro Fit para avaliar a adequacao

da modelagem em relacao aos dados utilizados para obté-la.

=100 [1 — L=l
Fit =100 [1 - =2}, (3.53)

Além disso, é possivel utilizar a prépria norma de diferenca de vetores (eq. (3.54))
para identificar a similaridade entre eles. De uma perspectiva geométrica, tal resultado
nada mais é do que o comprimento do vetor de diferengas, ou seja, a distancia entre o

vetor estimado e o vetor com informacoes aferidas diretamente no sistema.

ol =, 2 . (3.54)

Assim, utilizando a definigdo de norma (eq. (3.54)), o MSE calcula um valor médio
associado a diferenca entre os parametros de interesse, usualmente expressa por y — §j ou
theta —
hattheta.

MSE(v[k])_HU[N}2|| {keN/1<k<K}. (3.55)

O FPE também é uma métrica interessante de obter, pois quantifica a capacidade

do sistema de evitar o overfitting.

N +d
FPE =52 .
9 N4

(3.56)

Por fim, dadas as fung¢oes de correlagdo cruzada e autocorrelacao dos sinais de

entrada e de saida de um sistema qualquer, é possivel obter o espectro de coeréncia a
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partir de 3.57. Assim, como abordado em [Aguirre 2004], é possivel considerar confiaveis

os valores obtidos para frequéncias em que 4, (w) > 0.6.

D)

Hule) = J Gu@)10y(@)] (3:57)
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4 EXPERIMENTOS

A fim de ilustrar e validar os métodos definidos no capitulo 3, foram primeiramente
realizados testes em ambientes computacionais e laboratoriais para sistemas de menor
complexidade, tanto lineares quanto nao lineares. Tal procedimento foi realizado com o
intuito de aumentar o nivel de familiaridade com processos de identificacao antes de aplicar

as mesmas metodologias a sistemas mais complexos, tais como o twin-rotor.

4.1 Sinal PRBS e degrau unitario

Inicialmente, é interessante comparar o espectro de frequéncias, bem como a
qualidade da identificacdo do sistema de interesse, em func¢ao do sinal de entrada escolhido.
Com tal objetivo em mente, serdo avaliados os resultados em funcao da entrada PRBS
proposta e da resposta ao degrau, método amplamente utilizado na identificacao. Também
serao utilizados todos os procedimentos relevantes a sistemas lineares, apresentados no

capitulo 3.

Figura 24 — Comparacao entre o espectro de frequéncias do sinal PRBS de degrau unitario,
simulacao de 2.5s e F, = 103H z.
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(a) Espectro de frequéncias (b) Ampliagdo em frequéncias mais baixas

Fonte: Autoria proépria.

Comparando fig. 24a e fig. 24b, é possivel afirmar que uma variavel com carater
aleatério possui componentes em uma faixa de frequéncias muito superior a de sinais con-
vencionais, como o degrau unitario. Portanto, ainda que seja possivel obter representacoes
precisas a partir da identificagdo por um degrau unitario, fica claro que o uso de sinais de
banda larga, como o PRBS, é preferivel. Tal afirmacao se mostra ainda mais precisa para

sistemas de alta complexidade, como ja abordado previamente.
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Além disso, € interessante definir uma variavel p que contém a informacao sobre o
quao significativa é a magnitude do ruido em relacao ao sinal de entrada de interesse. Como
exemplo, foi obtida a resposta de um sistema RC para diferentes valores de p, apresentada

na figura 25.

_ el k]l

Pk ]

(4.1)

Figura 25 — Resposta ao sistema para diferentes distirbios na entrada, simulagao de 1s e
F, =10*Hz.

Comparagio entre saida original e saida com distiirbio Comparagio entre saida original e saida com distiirbio 4, Comparagao entre saida original e saida com distlrbio
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Magnitude [V]
Magnitude [V]
Magnitude [V]

0 0.2 0.4 0.6 0.8 1
Tempo [s] Tempo [s]

(a) p=0.1. (b) p=1.

Fonte: Autoria proépria.

Vale ressaltar que, para fins de identificacdo, ainda é possivel obter um modelo
satisfatorio mesmo em condigoes nas quais p indica a presenca de um ruido significativo
nos dados. A imagem 26 foi obtida por meio da aplicacdo do MMQ a um modelo ARX nos
dados de 25¢, utilizando a mesma entrada sem distirbios para fins comparativos. Para a

simulagao, foi utilizado o circuito de primeira ordem, apresentado na fig. 27 e na tabela 5.

Figura 26 — Comparacao do modelo obtido para p = 10 e saida ideal. Simulacao de 1s e
F,=10*Hz.
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Fonte: Autoria proépria.
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Tabela 4 — Dados de validagdo para o modelo da figura 26.
Validagao da saida y ‘ Valor obtido

MSE 5.1418 - 10~
FIT 100%
FPE 2.2213-1071¢

Fonte: Autoria prépria.

4.1.1 Comparacao em um circuito RC: simulacao computacional

A partir dos exemplos apresentados nas figuras 25 e 26, é possivel abordar em mais
detalhes o comportamento do circuito RC de interesse, bem como as demais caracteristicas

e resultados relevantes a identificagao de sistemas.

Figura 27 — Circuito RC implementado no Simulink.

Fonte: Autoria proépria.

Tabela 5 — Componentes utilizados para a simulacao.

Componente ‘ Valor associado

R 1 kQ

C 1 uF
Fonte: Autoria proépria.

1 1 103

H oy = = .
RC™ RCs+1 103s+1 s+ 103

(4.2)

Desse modo, foi obtida a resposta em frequéncia em fun¢do de ambas as entradas
degrau e PRBS. Além disso, considerando que se encontra em ambiente computacional,
também ¢é possivel averiguar a qualidade da estimacao diretamente a partir do vetor de

parametros 6
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Figura 28 — Comparacao entre respostas do sistema RC ao sinal PRBS e degrau unitario,
simulacdo de 2.5s e F, = 103H z.
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Fonte: Autoria proépria.

Figura 29 — Comparagao entre respostas em frequéncia do sistema RC ao sinal PRBS e
degrau unitario, simulacao de 2.5s5 e F, = 10°H 2.
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Fonte: Autoria proépria.

Avaliando, primeiramente, a resposta em frequéncia apresentada na figura 29, é
possivel afirmar que o resultado obtido para a entrada PRBS representa, de maneira mais
fiel, o comportamento esperado do circuito, caracteristica que se manifesta com maior
intensidade em frequéncias mais altas. Dessa forma, também ¢é possivel afirmar que os
resultados obtidos na fase do sistema nao foram satisfatérios para nenhum dos sinais de

entrada escolhidos.

Além disso, é possivel afirmar que a funcdo de coeréncia é representativa da
qualidade do modelo na frequéncia de interesse, em especial da magnitude da resposta em
frequéncia. Assim sendo, ainda que formalmente represente o quanto a entrada explica o
comportamento observado na saida do sistema, a fungao de coeréncia também é indicativa

da qualidade da estimagao em cada frequéncia.
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A figura 30 apresenta o comportamento dos parametros MSE e FIT em funcao do
aumento do nivel de ruido no sistema (aumento de p), tanto para uma entrada PRBS
quanto para uma entrada do tipo degrau unitario. E notdvel que, considerando a escala
utilizada, ha pouca variagdo na qualidade da estimag¢ao com o aumento de p. Ainda assim,
devem ser considerados diversos aspectos que também afetam esta influéncia do ruido
no processo de identificacao, como nao linearidades, a presenca de acoplamento entre
entradas e saidas, a ordem do sistema ou até mesmo o niimero de medi¢oes obtidas do
mesmo. Ainda assim, é possivel constatar que a aplicagao do MMQ a modelos do tipo

ARX apresenta caracteristicas intrinsecas de rejeicao ao ruido.

Figura 30 — Comportamento da estimacao do vetor de pardmetros em fungao de p, simu-
lacdo de 1s e F, = 10*Hz.
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Fonte: Autoria proépria.

E importante observar que o modelo identificado a partir da entrada PRBS apresenta
uma modelagem mais préoxima dos dados do sistema real diante de distirbios, como
mostrado em 30. Além disso, vale destacar que se espera uma certa variabilidade nos dados
obtidos, considerando as caracteristicas estocasticas do distturbio utilizado. Foi também
necessario aumentar a taxa de amostragem para F's = 10*Hz para a obtencdo da figura,

considerando que o pardmetro FIT,., iniciava em 15% mesmo na modelagem ideal.
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4.2 Exemplo de identificacdo simples: circuito RC

Com base no que foi apresentado para o circuito computacional, também foram
realizadas a afericao e validagao de um circuito de primeira ordem utilizando-se de dados
reais obtidos em laboratorio, resultando na figura 31. Percebe-se que os resultados para
os dados de validagao, assim como para o caso simulado, sao tao satisfatérios quanto os
obtidos para a estimacao. Os parametros foram obtidos a partir da resposta ao degrau,
posteriormente ajustados em funcao da nova frequéncia de amostragem e comparados com

um sinal de onda quadrada.

Figura 31 — Dados do circuito RC obtidos em laboratério. Para estimagao e validagao:
5ms, Fy =5-10°Hz; 25ms, F, =1-10°Hz.
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Fonte: Autoria proépria.

Tabela 6 — Dados de validagdo para o modelo da figura 31.

Validacao da saida y ‘ Valor para estimagao ‘ Valor para validagao

MSE 78 - 1071 173-107*
FIT 97.55% 96.34%
FPE 78 - 1071 173-10~*

Fonte: Autoria prépria.

Desse modo, embora nao seja preferivel para a modelagem, é possivel obter uma
representacao satisfatoria do sistema de interesse a partir de uma entrada degrau. Vale
destacar apenas que tal afirmacao é aplicavel a circuitos de menor complexidade e com

poucas influéncias nao lineares, assim como o utilizado nesta secao.

4.3 Alteracao paramétrica durante a identificacao

Considerando a possibilidade de o sistema de interesse depender de alteragoes

paramétricas ao longo do tempo, é interessante avaliar se o método utilizado consegue
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identificar tais variagoes durante o processo de estimacao. Essa capacidade é extremamente
interessante, por exemplo, para a aplicacdo em sistemas com controle adaptativo, nos
quais ja se espera uma variacdo durante o processo de identificacao e controle. Para tal, foi
aplicado o MMQR descrito em secao 3.3.2 a uma alteragdo da carga resistiva do circuito
denotado em fig. 27, visto que ele ja permite essa variagao por meio da alteragdo de

variaveis no workspace do Matlab.

Rl k] e€{05s<k<1s}=2-R[k]e€{0s<k<05s} (4.3)

Figura 32 — Dados do circuito RC para o MMQ recursivo, com amplia¢do no instante em
que a carga resistiva é aumentada. Simulacdo de 1s, F, = 1-10*Hz
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Fonte: Autoria proépria.

Tabela 7 — Dados para o MMQ e o MMQR, A = 0.9
Validacao da saida y ‘ Valor para MMQ ‘ Valor para MMQR

MSE 4.7156 - 1074 3.1261- 1077
FIT 76.93% 99.41%
FPE 4.7175- 1074 3.1274 - 1077

Fonte: Autoria proépria.

Desse modo, a partir da figura 32a e da tabela 7, é possivel afirmar que o estimador
recursivo apresenta um desempenho muito superior ao do estimador MM(Q em sistemas

variantes no tempo.

4.4 Exemplo de identificacao simples: dinamica de temperatura

Analoga a realizada na secao 4.1.1, a afericdo de temperatura de um circuito
resistivo foi realizada, conforme apresentado em fig. 34. Os dados obtidos em funcao da
entrada PRBS foram utilizados para estimar um modelo, tanto pelo método ARX quanto

por meio de uma funcao de transferéncia, utilizando o comando tfest.
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Figura 33 — Esquemaético do circuito para afericao de temperatura.
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Fonte: [Fernandes 2025].

Figura 34 — Circuito para afericao de temperatura, sensor NTC indicado.

Fonte: [Fernandes 2025].

Considerando que o sistema em estudo envolve dinamicas de temperatura, a
temperatura foi aproximada por uma Fungao de Transferéncia (FT) de primeira ordem,
conforme apresentada na equagao 4.4. Desse modo, é possivel desenvolver eq. (4.4) para
obter a Equacao Diferencial Ordindria (EDO) 4.6.

G@)=1%i&, (4.4)

Y(s)-(Ts+1)=k-Ul(s), (4.5)
d

T-—yt)+y(t) =k - u(t). (4.6)

dt

Considerando uma discretizagdo da formulacao apresentada em 4.6, dada pela

ylk—1]

aproximagao Ly(t) = %, ¢ possivel obter eq. (4.9) a partir de eq. (4.7).

ylk] —y[k — 1]

T .
T

+ ylk] =k - u[k], (4.7)
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oyl = ol = U kel (4.8)
9] = 2yl = 1)+l (1.9

Por fim, é possivel reescrever eq. (4.9) de modo a obter eq. (4.11), tal que se

T kT
T+Ts T+Ts

encontrem #; = ety = que resultem na formulacao do MMQ para o modelo de

interesse:

y[k] = 01 - y[k — 1] + 05 - u[k], (4.10)
01
ylk] = |ylk — 1] ulk]] [92] - (4.11)

Figura 35 — Entradas dos dados obtidos para o sistema de temperatura. Para estimacao e
validacao: 10 min, Fy, =50Hz; 5 main, Fy = 50H z.
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Fonte: Autoria proépria.

Para fins de validacao, também foi efetuado um ajuste manual no ganho encontrado
para ambas as metodologias de estimacao utilizadas, visando maximizar a semelhanca entre
os sinais de validacao e os obtidos em laboratorio. Tal ajuste mostrou-se necessario, visto
que, embora o MMQ e o estimador de F'T utilizados tenham obtido resultados satisfatorios
tanto na estimacao quanto na dinamica do sistema como um todo, nao conseguiram
reproduzir fielmente o ganho na validacao. Desse modo, a partir da figura 36¢ e da tabela
10, é visivel que o uso do método ARX se comprova como uma alternativa mais fidedigna
a dindmica do sistema de interesse. Vale também mencionar que, como abordado em [Ford

e Hasbun 2019], existem diversas dindmicas nao lineares associadas ao comportamento
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dissipativo de um resistor, que nao foram consideradas em nenhum dos modelos (ARX e
FT) utilizados.

Figura 36 — Saidas estimadas para os dados obtidos do sistema de temperatura.
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Fonte: Autoria proépria.

Tabela 8 — Dados de estimacao para o modelo da figura 36a

Validacao da saida y | Valor para ARX ‘ Valor para FT

MSE 14.2718 0.2588
FIT 75.21% 84.95%
FPE 14.2747 5.2595

Fonte: Autoria proépria.

Tabela 9 — Dados de validagao para o modelo da figura 36b
Validacao da saida y | Valor para ARX ‘ Valor para FT

MSE 34.4915 98.5323
FIT 76.99% 61.11%
FPE 34.5053 95.5586

Fonte: Autoria proépria.

Tabela 10 — Dados de validacao para o modelo da figura 36¢
Validacao da saida y ‘ Valor para ARX ‘ Valor para FT

MSE 2.2571 38.7603
FIT 94.11% 75.61%
FPE 2.2580 38.7707

Fonte: Autoria proépria.

=107 [y[k—1] ulk]] [82332] . (4.12)

Por fim, é importante destacar que o grafico da func¢ao de autocorrelagdo do sinal

PRBS utilizado nao atende aos limites impostos em 2.9. Para fins de comprovacao do nivel
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de excitagao do sistema, basta adquirir o espectro de frequéncias da entrada. Portanto, a
partir da comparagao entre 37b e 24, é possivel confirmar que o resultado obtido ainda é
satisfatorio no dominio da frequéncia, embora ocorra uma grande atenuacdo em dinamicas

mais velozes.

Tal efeito decorre da insercao de um segurador na entrada PRBS usual, evitando que
dindmicas excessivamente rapidas prejudiquem o funcionamento e a vida 1til do dispositivo
de chaveamento utilizado. Outro fator importante a se considerar é que componentes de
frequéncia mais elevada possuem pouca ou nenhuma influéncia na dinamica de interesse,
tendo em vista a escala de tempo utilizada e a caracteristica de os sistemas fisicos atuarem

como filtros passa-baixa.

Figura 37 — Funcao de autocorrelagao e espectro de frequéncias da entrada PRBS apre-
sentada em 3ba.
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Fonte: Autoria proépria.

4.4.1 Influéncia do overfitting

Com base nos dados obtidos para o circuito real em laboratério, com o intuito de
avaliar a influéncia do overfitting sobre os dados de validacao do modelo, foi novamente
efetuada a estimacao do circuito de primeira ordem, agora com 50 regressores na entrada
e 50 na saida. Como visto na comparagao entre as figuras 36 e 38, embora o modelo
represente satisfatoriamente os dados de estimacgao, a simples insercao de um numero

maior de regressores pode prejudicar o sistema.
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Figura 38 — Saidas estimadas para 100 regressores.
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Fonte: Autoria prépria.

Tabela 11 — Dados de estimagao para o modelo da figura 38a.

Validacao da saida y ‘ Valor para ARX ‘ Valor para FT

MSE 13.9081 0.3069
FIT 75.53% 96.37%
FPE 14.0011 0.3090

Fonte: Autoria proépria.

Tabela 12 — Dados de validagao para o modelo da figura 38b.
Validacao da saida y | Valor para ARX ‘ Valor para FT

MSE 2.9527 44.8955
FIT 93.27% 73.75%
FPE 2.9923 45.4980

Fonte: Autoria proépria.

E importante mencionar que o modelo estimado nao apresentou melhora significativa
com o aumento da ordem do sistema, mesmo com a utilizacdo de uma grande quantidade
de regressores. O mesmo ocorre para os dados de validagao, em que houve apenas uma

pequena queda nos indicadores utilizados.

4.4.2 Uso do LASSO como ferramenta de selegdo de regressores

Levando em consideracao os resultados obtidos, é possivel afirmar que o overfitting
leva a um aumento do viés do modelo estimado, visto que ha um melhor desempenho no
treinamento, a custa de uma perda de generalizagdo. Assim, ainda que o impacto encontrado
em 4.4.1 nao tenha sido consideravel, tal tendéncia pode se mostrar significativa para
a qualidade do modelo em casos nos quais a quantidade de regressores seja ainda mais

elevada.



75

Além disso, o tempo necessario para calcular os parametros, bem como o custo
computacional associado ao processo de estimagao, aumentam com o nimero de operagoes
associadas a uma ordem superior. Desse modo, como abordado em 3.3.3, é possivel utilizar
o algoritmo LASSO para identificar os parametros mais significativos do sistema, evitando

problemas de desempenho ou um custo computacional muito elevado.

Tabela 13 — Tempo necessario para estimar e validar o sistema, conforme a figura 34.
Notebook modelo Lenovo Ideapad 82CGS00100.

2 regressores ‘ 100 regressores

2.6133 3] \ 14.8803 [s]
Fonte: Autoria proépria.

Dessa forma, os valores de 61,4550 foram analisados iterativamente, a fim de reduzir
gradativamente o nimero de regressores e recuperar apenas os mais significativos para
a modelagem do sistema. A figura 39 apresenta a saida do método LASSO, em que os

regressores mais significativos foram y[ k — 1], y[k—2]eu[ k—1].

Vale destacar que, devido ao elevado custo computacional de modelar um sistema
de ordem 10 por meio do método LASSO, foram utilizados 5 regressores na entrada e 5
na saida. Além disso, por conhecimento do sistema de interesse, é, de fato, impossivel
que uma representacao de ordem tao elevada denote de maneira verossimil a dinamica

desejada.

Figura 39 — Saida para 3 regressores, com o uso do método LASSO em um modelo de 100
parametros.

Comparativo de Saidas Comparativo de Saidas
801 120 ¢

70

60
i Saida Real
.o - Modelo LASSO

507 801 A ++sesea TF Estimado

40 1
60 - @5

Saida
Saida

30

Saida Real 40 b ¢

= — - Modelo LASSO 4
-------- TF Estimado 4

10 -

20
0
0 . ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ .
0 100 200 300 400 500 600 0 50 100 150 200 250 300
Tempo (s) Tempo (s)
(a) Dados para estimagao. (b) Validagao com ajuste no ganho.

Fonte: Autoria proépria.



76

Tabela 14 — Dados em funcao do modelo LASSO dado pela figura 39

Validagao da saida y ‘ Valor para estimagao ‘ Valor para validagao

MSE 14.3428 2.1815
FIT 75.15% 94.21%
FPE 14.3447 2.1821

Fonte: Autoria proépria.

0.5196
§=1.095-[gk—1] glk—2] ulk—1]]]0.4799|. (4.13)
0.0005

Analisando os dados obtidos, é possivel afirmar que, para casos em que nao se
conhece o sistema de interesse, o método LASSO oferece uma boa estimativa para a
identificagao dos regressores mais significativos. Além disso, é perceptivel uma qualidade
inferior dos dados de estimagao em troca de uma melhora na validagdo do modelo, seja em
relacdo a representagao dada pela equacao 4.12 ou a ilustrada na figura 38. Dessa forma, é
possivel estimar um modelo a partir do MMQ usual, ou até mesmo sua versao recursiva,

com base nos dados encontrados a partir do LASSO.

4.5 ldentificacdo de sistemas nao lineares

Com base no desenvolvimento das segoes 4.1.1 e 4.4, é possivel aplicar todas as
técnicas ja validadas e comprovadas a fim de obter uma modelagem satisfatoria do twin-
rotor. Serao também introduzidas as classes de modelos nao lineares dadas pelo NARX,

embora as métricas para aferir o desempenho dessas sejam idénticas as apresentadas em

3.4.

Levando em consideracao as diversas nao linearidades relacionadas ao processo de
aquecimento e resfriamento de um resistor, conforme abordado em [Ford e Hasbun 2019],
foram adicionados termos polinomiais nao lineares a equacao caracteristica 4.13, resultando
na modelagem indicada na figura 40. Assim sendo, as caracteristicas fundamentais do
sistema sdo definidas pelas componentes lineares, enquanto os demais residuos podem ser

aproximados por termos polinomiais ou até mesmo por redes neurais [Aguirre 2004].

Neste caso, foi introduzido um termo dependente da relacao entre a entrada e a

saida do sistema, além de um termo de quarta ordem na saida e de um atraso unitario.
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Figura 40 — Adigao de um termo dependente de y[k — 1]* - u[k — 1] ao sistema obtido na

secao 4.4.2
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Fonte: Autoria proépria.

Tabela 15 — Dados para o modelo nao linear proposto.

Validacao da saida y ‘ Valor para estimacao ‘ Valor para validacao

MSE 14.8011 1.1119
FIT 74.75% 95.87%
FPE 14.8031 1.1122

Fonte: Autoria proépria.

Com base na tabela 15, é possivel afirmar que a inclusdo de apenas um termo
nao linear aumentou significativamente a precisao do modelo, especialmente nos dados
de validagao. Embora a dependéncia de um termo de quarta ordem tenha sido deduzida
a partir da relagdo entre a saida aferida e a temperatura do sistema [Aguirre 2004], é
perfeitamente plausivel aplicar um modelo NARX do tipo caixa-preta e, posteriormente,

delimitar os parametros mais significativos por meio do LASSO.
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Por fim, aplicando os métodos apresentados ao longo do desenvolvimento do

trabalho, foi possivel identificar o tipo caixa cinza do modelo computacional do twin-rotor

presente no Laboratério de Controle (LAC). Para tal, foi realizada a simulacao das equagoes

fornecidas pelo préprio fabricante da planta, apresentadas em eq. (5.1) a eq. (5.4). As

tabelas tabela 16 e tabela 17 apresentam as dinamicas e os parametros sugeridos para a

modelagem, enquanto fig. 41 ilustra o comportamento do twin-rotor.

Figura 41 — Sistema de interesse.

Pitchmotion

-
Horizontafthrust

Tower

Pitchmotion
4!“&@5??

Fonte: retirado de [Huu e Ismail 2016].

Vale também destacar que, como abordado em se¢ao 3.3.1, desde que haja lineari-

dade entre os regressores e os parametros, ainda é possivel utilizar todo o desenvolvimento

do MMQ e do LASSO. Por fim, também serd utilizada a entrada PRMLS, conforme

desenvolvida em secao 3.1.3.

+_ My — Mg — My, — Mg

.._MQ_MBQ_MR
SO_ _[ )
2

_ 1k

T, = T,iﬂ T‘iu“
y 1 kc’TO. kc
Mp=——M Ze .
R Tp R+ Tp 7'1+Tp7'1
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As variaveis Mp; e Mps, bem como os demais estados intermediarios, sao descritas

em mais detalhes na tabela 16. Também foram incluidos termos para simplificar as

formulacoes 5.1 a 5.4, sendo eles i € {1,2} e k € {k1, K2}, tais que kK1 =V e Kk = .

Tabela 16 — Parametros dindmicos referentes as equagoes 5.1 e 5.2

Parametro ‘ Formulacao ‘ Significado fisico
M, a; - TE+ b T Caracteristica estatica
T Ti’;fH - Uy Dinadmica dos motores
Mpa M, - sin(¢)) Momentum da gravidade
Mp; By - Ki + By - sign(K;) Momentum de friccao
Mg Ky, - My - @ - cos(v)) Momentum do giroscépio
Mpg ko Lostlr Momentum de acoplamento

CTps+1

Fonte: Autoria proépria.

Tabela 17 — Parametros do modelo TRMS: significado e valores numéricos

Parametro Descrigao Valor Unidade

I, Momento de inércia do rotor vertical 6.8-107? kg -m?

I Momento de inércia do rotor horizontal 21072 kg - m?

aq Parametro de caracteristica estatica 1.35-1072 —

b Parametro de caracteristica estatica 9.24-1072 -~

Qs Parametro de caracteristica estatica 21072 —

b Pardmetro de caracteristica estatica 9.1072 -

M, Momentum da gravidade 0.32 N-m

By Parametro do momentum de friccao 6-1073 N-m-s/rad
By, Parametro do momentum de friccao 1-1073 N m - s?/rad
Bio Parametro do momentum de friccao 1-1071 N-m-s/rad
Bso Parametro do momentum de friccao 1-1072 N-m-s? /rad
Ky Parametro do momentum de giroscépico 0.05 s/rad

kq Ganho do motor de movimento vertical 1.1 —

ko Ganho do motor de movimento horizontal 0.8 -

ke Ganho do momentum de acoplamento -0.2 -

Ty Constante de tempo do motor vertical 1.1 —

T Constante de tempo do motor horizontal 1 -

Ty Constante de tempo do zero de acoplamento 3.5 -

T, Constante de tempo do polo de acoplamento 2 —

Uy Tensao de controle aplicada ao motor vertical - \Y

Us Tensao de controle aplicada ao motor horizontal — A%

P Angulo do movimento vertical (pitch) - rad

© Angulo do movimento horizontal (yaw) - rad

Fonte: [Feedback Instruments Ltd. 2013].
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5.1 Discretizacao

Como o presente trabalho tem como objetivo efetuar a identificagdo paramétrica
no dominio discreto, faz-se necessario discretizar as equagoes definidoras do sistema de
interesse. Tal processo também é de suma importancia para definir corretamente os

regressores na modelagem do tipo caixa cinza, evitando o overfitting. Aplica-se, portanto,

z[k]—z[k—1]
Ts

como tempo de amostragem. Dessa forma, pode-se tomar a seguinte equivaléncia

o mesmo principio utilizado em eq. (4.4) a eq. (4.11), a saber: 4 ~ , com T}

e )]

A partir das equacoes diretamente relacionadas as entradas do twin-rotor, é interes-
sante iniciar o processo de discretizagao retomando as equagoes 5.3 e 5.4. Primeiramente,

para 7;, obtém-se:

-~ = —— 7k — 1]+ [k — 1
i T Tin[k 1+ Tiuz[k ]

Ts kz
T;

k) = (1= 2)mfk— 1] +

= wlk — 1], (5.5)

Os termos M; para ¢ € {1,2} podem ser reescrito a partir de eq. (5.6) e Mg de
eq. (5.7). As saidas 1 e ¢ foram renomeadas para y; e y», para manter a consisténcia com

a nomenclatura utilizada no restante do trabalho.

Milk] = a; - 72[K] + b; - 7i[K], (5.6)

Miglk] = M, - sin(y [K). (5.7)

Tomando agora o termo Mp; e ja efetuando a troca de nomenclatura das saidas,
é possivel obter eq. (5.9). Além disso, a partir da definigdo dada em eq. (5.8), é possivel

omitir a dependéncia de %
s

1, Va>0,
sign(x) = €0, se z =0, (5.8)
-1, Va<O.
By By .
Mpi[k] = Tl yilk] — Tl yilk — 1] + Boisign(yi[k] — ys[k — 1]). (5.9)

Da mesma maneira, o parametro Mg é dado por
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Mglk] = Kgy - My[k] - ya[k] - cos(ya[K]). (5.10)

Por fim, para o parametro Mpg:

Mgl = Mglk—1 1 ke Ty mlk—1—nlk—2] ke
My~ Mk —1 : Ne th—1
R T, T, rlk =11+ T, T, +Tpﬁ[ )

o Mg[k] = (1 - %)MRU@ - 1]+ kCT'pTO (k=1 =7k —2]) + T}fcﬁ[k —1].

Desse modo, é possivel definir o conjunto de equagoes descrito pela formulacao

eq. (5.11). Para simplificagao, foi alterada a notagdo para incluir os pardmetros auxiliares

ae .

Tilk] = ik — 1] + B[k — 1],

M;[k] = a; - T2[k] + b; - T[],

Mpc[k] = M, - sin(y: [k]),

Mpilk] = Fyilk] — Fyilk — 1] + Baoisign(ys[k] — yilk — 1]),
Me k] = Kgy - Mi[k] - y2[k] - cos(yi[R]),

Mglk] = ag - Mgl[k — 1]+ B3 - [k — 1] — By - i [k — 2].

(5.11)

Por fim, aplicando o mesmo as equagoes das saidas do sistema (eq. (5.1) e eq. (5.2)),
obtém-se eq. (5.12) e eq. (5.13).

T? B L ’
) (5.12)

RS

Yalk] = 2ya[k — 1] —aplk — 2] Mk — 1] — Mps[k — 1] — Mg[k — 1]
T2 N I '

s

b~

(5.13)

Portanto, o modelo nao-linear completo do twin-rotor discretizado é dado por

Mk — 1] — Mpglk — 1] — Mpi[k — 1] — Mgk — 1]
Il ’

k] = 21 [k — 1]+ [k — 2]+ T7
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Mslk — 1] — Mpsl[k — 1] — Mg[k — 1]

ya[k] = 2ya[k — 1] + o[k — 2] + T7

I ’
Ml[k—l] :al'TIQ[k?—l]+bl'7'1[k’—1],
Mk — 1] = ag - o[k — 1] + by - To[k — 1],
Tl[k — 1] = CYlTl[k — 2] + 61'&1[]5 — 1],
Tg[k' — 1] = 0627'2[]{3 — 2] + ﬁzlbg[k — 1],
Mpglk — 1] = M, - sin(y; [k — 1]),
B B .
Mk = 1] = —Fonlk — 1] = k= 2] + Basign([k — 1] — wi[k — 2)),
B B .
Mpalk — 1] = —yalk — 1] = —yalk — 2 + Bsign(yalk — 1] = yalk — 2]),

Malk = 1] = Kgy - Mk = 1] - yo[k — 1] - cos(y [k = 1]),
MR[]f—l] :&3'MR[]€—2]+53'7'1[]C—1]—54'7'1[]{3—2]

5.2 Estimacdo de parametros

Considerando todo o desenvolvimento realizado até o momento, as mesmas técnicas
do capitulo 4 serao aplicadas a identificacdo de um modelo computacional do twin-rotor.

A fim de obter uma modelagem mais realista, serdo inseridos ruidos na saida do sistema.

Por simplicidade, suponha

Ma[k] = yous(k], (5.15)
MR[kZ] = 53’)/11,61 [l{?] — 54’71@61 [k — 1] (516)
Dessa forma, tem-se
T2 T2 ) T2 B
ilk] = 251k — 1] + ik — 2]+~ [k — 1] — == M, sin(y [k — 1]) — == Ly [k — 1]+
[1 [1 [1 TS
T? B T2 .
Tj Tl:yl[k —2] - TijSZgn(yl[k —1] —ylk —2])
T2
- TiKgy%Ul [k — ya[k — 1] cos(y: [k — 1)), (5.17)
(§]
T52 TS2 Bio
Yalk] = 2ys[k — 1] + o[k — 2] + —Zyous[k — 1] — == —=yo[k — 1]+
I I, T,
gBlg T2

Yolk — 2] — 723223i9n(292[k — 1] — ya[k — 2])

T2 T2
i 6371“1[1’5 - 1] - = 64’71u1[k’ — 2]. (518)
]2 [2

Iy Ty

Assim, fica evidente o acoplamento existente entre as saidas y; [k], y2[k] e os sinais
de entrada u; [k — 1], us[k — 1].
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Note ainda que

yl[k’] = Qlyl[k’ — ]_] + Ogyl[k — 2] + 03’&1[]{3 — 1] + 04 sin(y1 [k‘ — 1])
+ Ossign(yi[k — 1] — [k — 2]) + Osur [k — 1]ya|k — 1] cos(yi [k — 1]), (5.19)

Yolk] = E1yalk — 1] + &ayalk — 2] + Sua[k — 1] + Susign(yalk — 1] — yalk — 2])
+ &uilk — 1] + Gua [k — 2] (5.20)

Logo, conclui-se, através de uma abordagem caixa-cinza, que a saida y; é dada pela

combinagao linear dos regressores:
{va[k=1], w1 [k=2], us [k=1], sin(y1 [k—1]), sign(ys [k=1] =31 [k =2]), ur [k =1]y2[k—1] cos(yr [k —1]) }.
Ja a saida 1y, é dada pela combinagao linear dos regressores

{w2lk = 1], yolk — 2], ua[k — 1], sign(ya[k — 1] = ya[k — 2]), wa [k — 1], wa [k — 2]}
Consequentemente, a estimagao dos parametros do modelo pode ser realizada usando o
MMQ, dado um conjunto de entrada-saida D = {y;[k], y2[k], u1[k], ua[k] }2_,.
5.2.1 Identificacado do modelo

Usando as equagoes diferenciais do sistema twin-rotor, foi realizada a simulagao do
sistema com uma entrada PRBS em cada canal u; e us. Os dados simulados resultantes

sao apresentados na figura 42.

Figura 42 — Conjunto de dados simulados, gerados com base no modelo de twin-rotor,
para identificagao.
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Fonte: autoria proépria.
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Usando a familia de regressoes definida pela abordagem caixa-cinza descrita anteri-
ormente na segao 5.2, aplicou-se o MMQ para estimar os pardmetros do modelo. A figura
43 apresenta o resultado da identificagdo para a saida y;[k]. J& a figura 44 apresenta o

resultado da identificagao para a saida ys[k].

Figura 43 — Resultado da identificacao para saida ;.
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Fonte: autoria proépria.

Figura 44 — Resultado da identificagdo para saida ys.
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Fonte: autoria proépria.






87

6 CONCLUSAO

Este trabalho foi desenvolvido com o intuito de identificar técnicas adequadas
para a estimacao paramétrica de sistemas lineares e nao lineares. Os objetivos propostos
foram alcangados por meio do desenvolvimento, da ilustragao e da validacao de diversas
metodologias de modelagem de sistemas dinamicos, culminando na aplicacao bem-sucedida

de um modelo dinamico do twin-rotor.

A andlise comparativa entre as técnicas demonstrou a importancia da escolha
estratégica do sinal de excitacao, com o PRBS e o PRMLS mostrando-se mais eficazes do
que o degrau unitario na excitacao do espectro de frequéncias das plantas analisadas. Em

relagdo a estimagao, o MMQ mostrou-se eficaz em todos os casos em que foi aplicado.

Em especial, o uso do LASSO também se mostrou uma ferramenta valiosa para
lidar com o trade-off entre a precisao do modelo e sua capacidade de generalizacao. Ao
penalizar e eliminar regressores de baixa relevancia, o LASSO nao s6 se comprovou eficaz
na reducao do custo computacional do processo de estimacao, como também em evitar o

overfitting, resultando em modelos com maior capacidade de generalizagao.

No estudo de caso do twin-rotor, a abordagem de caixa cinza conseguiu integrar
efetivamente o conhecimento das equacoes fisicas a estimacao de parametros no dominio
discreto, permitindo obter modelos que descreveram satisfatoriamente as dindmicas aco-
pladas do sistema. Portanto, a aplicacao das técnicas estudadas em um sistema de alta

complexidade confirma a validade do desenvolvimento tedrico e pratico proposto.

6.1 Trabalhos futuros

Por fim, considerando a quantidade de técnicas que podem ser aplicadas para
modelar satisfatoriamente o sistema de interesse, ha diversos aspectos que merecem
atencao especial e que podem levar ao desenvolvimento de iniimeros trabalhos futuros.
Primeiramente, considerando a dinamica de temperatura abordada na secao 4.4, é possivel
também determinar a validade de identificar modelos distintos para o aquecimento e o
resfriamento, visto que ambos envolvem parametros, ou até mesmo equacionamentos,
com caracteristicas distintas. Além disso, é valido avaliar o desempenho do LASSO em
comparacao com as demais alternativas de regularizacao apresentadas em secao 4.4.2,
tendo em vista que todas tém a capacidade de contornar os efeitos do owerfitting e o
aumento do custo computacional. Ainda é possivel avaliar o desempenho das diferentes
estruturas apresentadas na tabela 2, em particular, para estimacgoes caixa-preta nao lineares

envolvendo o sistema de temperatura e o twin-rotor.

Além disso, no experimento realizado com o twin-rotor, pode-se estender a aborda-
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gem para dados coletados diretamente de uma planta fisica real, explorar variagoes na
familia de regressores e realizar uma identificacdo paramétrica baseada no LASSO. Assim,
é possivel buscar regressores que melhorem a precisao do modelo em uma planta twin-rotor

real, com base nas ferramentas apresentadas neste trabalho.

Do ponto de vista do controle, também é possivel desenvolver técnicas de iden-
tificacdo em malha fechada, a fim de modelar adequadamente sistemas que necessitam
intrinsecamente de feedback para sua estabilidade. Por fim, também é possivel aplicar as
técnicas de modelagem abordadas ao longo do trabalho para projetar um controlador para
a planta twin-rotor presente no LAC, tais como controladores do tipo sliding mode ou até

mesmo Linear Quadratic Regulator (LQR).



89

REFERENCIAS

AGUIRRE, L. A. Introducao a Identificagdo de Sistemas: Técnicas Lineares e
Nao-Lineares Aplicadas a Sistemas Reais. 2. ed. Belo Horizonte, Brasil: Editora
UFMG, 2004. ISBN 978-85-7041-400-7.

AHMAD, A. J. T. M. O.; CHIPPERFIELD, S. M. Dynamic modelling and open-loop
control of a twin rotor multi-input multi-output system. Proceedings of the Institution

of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,
v. 216, sep 2002.

BAKALIS, E. et al. Daughter coloured noises: The legacy of their mother. Entropy, MDPI,
v. 26, n. 9, sep 2023. ISSN 1099-4300. Disponivel em: https://doi.org/10.3390/e25091371.

BIRKHOFF, G. D. Proof of the ergodic theorem. Proceedings of the National
Academy of Sciences of the United States of America, v. 17, n. 12, p. 656-660,
1931.

CHEN, C.-T. Linear System Theory and Design. [S.l.: s.n.]: Oxford University Press,
1998.

DARUS, I. Z. M.; ALDEBREZ, F. M.; TOKHI, M. O. Parametric modelling of a twin
rotor system using genetic algorithms. In: Control, Communications and Signal
Processing, 2004. First International Symposium on. [S.l.: s.n.], 2004. p. 115-118.

FARINA, A. Impulse Response Measurement Techniques and their
Applicability in the Real World. 2000. AES Convention Paper 108. Disponivel em:
http://pcfarina.eng.unipr.it /Public/Papers/226- AES108.pdf.

Feedback Instruments Ltd. Twin Rotor MIMO System: Control Experiments.
Ed. 02. Park Road, Crowborough, East Sussex, TN6 2QX, United Kingdom, 2013.
Manual 33-949S, Part No. 1160-33949S. For use with MATLAB. Disponivel em:
https://www.feedback-instruments.com.

FERNANDES, M. R. Experimento 2 - Controle de Temperatura - parte 1. 2025.
Roteiro de Laboratorio, SEL0359 - Laboratério de Controle Digital, 2° Semestre de 2025.
Ultima atualizacao: 5 de setembro de 2025.

FERNANDES, M. R.; OLIVEIRA, M. O. F. d.; SOUTO, R. F. Construcao de um
protétipo de helicéptero de baixo custo para estudos em identificacao de sistemas. In:
Anais do XIII Simpésio Brasileiro de Automacao Inteligente (SBAI). Porto
Alegre, RS: Sociedade Brasileira de Automaética, 2017. p. 1177-1183. Disponivel em:
https://www.researchgate.net/publication/324150302.

FORD, K. S.; HASBUN, J. E. Modeling the temperature behavior of an
rle circuit. Georgia Journal of Science, v. 77, n. 2, 2019. Disponivel em:
https://digitalcommons.gaacademy.org/gjs/vol 77 /iss2 /13.

GAUSS, C. F. Theoria motus corporum coelestium in sectionibus conicis solem
ambientium. Hamburg: Sumtibus F. Perthes et 1. H. Besser, 1809. 246 p. Disponivel em:
https://archive.org/details/bub__gb_ ORUOAAAAQAAJ.


https://doi.org/10.3390/e25091371
http://pcfarina.eng.unipr.it/Public/Papers/226-AES108.pdf
https://www.feedback-instruments.com
https://www.researchgate.net/publication/324150302
https://digitalcommons.gaacademy.org/gjs/vol77/iss2/13
https://archive.org/details/bub_gb_ORUOAAAAQAAJ

90

GOEL, A.; BRUCE, A. L.; BERNSTEIN, D. S. Recursive least squares with
variable-direction forgetting: Compensating for the loss of persistency. arXiv preprint
arXiv:2003.03523, mar 2020. Disponivel em: https://arxiv.org/abs/2003.03523.

GREENE, W. H. Econometric Analysis. 8. ed. [S.l.: s.n.]: Pearson, 2018. ISBN
0134461363.

GRIMMETT, G. R.; STIRZAKER, D. R. Probability and Random Processes. Third.
Oxford and New York: Oxford University Press, 2001.

GUPTA, A.; STEAD, T. S.; GANTI, L. Determining a meaningful r-squared value in
clinical medicine. Academic Medicine & Surgery, University Medical Press, oct 27
2024.

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. The Elements of Statistical Learning;:
Data Mining, Inference, and Prediction. 2. ed. Springer, 2009. ISBN 9780387848570.
Disponivel em: https://link.springer.com/book/10.1007/978-0-387-84858-7.

HASTIE, T.; TIBSHIRANI, R.; WAINWRIGHT, M. Statistical Learning with
Sparsity: The Lasso and Generalizations. [S.l.: s.n.]: CRC Press, 2015. v. 143.
(Monographs on Statistics and Applied Probability, v. 143).

HUU, T. D.; ISMAIL, I. B. Modelling of twin rotor mimo system. In: 2016 2nd
IEEE International Symposium on Robotics and Manufacturing Automation
(ROMA). [S.l.: s.n.], 2016. p. 1-6.

ISERMANN, R.; MiNCHHOF, M. Identification of Dynamic Systems: An
Introduction with Applications. [S.l.: s.n.]: Springer, 2010.

JUANG, J.-G.; HUANG, M.-T.; LIU, W.-K. Pid control using presearched genetic
algorithms for a mimo system. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), v. 38, n. 5, p. 716-727, 2008.

JUANG, J.-N. Applied System Identification. [S.l.: s.n.]: Prentice Hall, 1994.

LEGENDRE, A.-M. Nouvelles méthodes pour la détermination des
orbites des comeétes. Paris: F. Didot, 1805. 80 p. Disponivel em: https:
//archive.org/details /nouvellesmthode00legegoog.

LJUNG, L. System Identification: Theory for the User. [S.l.: s.n.]: Prentice Hall,
1999.

OGATA, K. Modern Control Engineering. 5. ed. [S.l.: s.n.]: Prentice Hall, 2010.

RAHIDEH, A.; SHAHEED, M. Mathematical dynamic modelling of a twin-rotor multiple
input-multiple output system. Control Engineering Practice, v. 16, n. 3, p. 241-259,
2008.

THEODORSEN, A. Gaussian processes on compact metric spaces:
spectral characterisation and rates of approximation. 2016. Disponivel em:
https://arxiv.org/abs/1609.01607.


https://arxiv.org/abs/2003.03523
https://link.springer.com/book/10.1007/978-0-387-84858-7
https://archive.org/details/nouvellesmthode00legegoog
https://archive.org/details/nouvellesmthode00legegoog
https://arxiv.org/abs/1609.01607

91

TIBSHIRANI, R. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), Wiley for
the Royal Statistical Society, v. 58, n. 1, p. 267-288, 1996. Disponivel em:
https://doi.org/10.1111/§.2517-6161.1996.tb02080.x.

TOKER, O.; EMARA-SHABAIK, H. E. Construction of optimal multi-level pseudo-
random sequences. IEEE Transactions on Automatic Control, Institute of Electrical
and Electronics Engineers (IEEE), v. 40, n. 5, p. 891-896, may 2004. ISSN 0018-9286.
Disponivel em: http://dx.doi.org/10.1109/TAC.2004.828311.

VOIT, E. O. Perspective: Dimensions of the scientific method. PLoS Computational
Biology, Public Library of Science (PLoS), v. 15, n. 9, p. ¢1007279, sep 2019. ISSN
1553-7358, 1553-734X. Disponivel em: https://doi.org/10.1371/journal.pcbi.1007279.

WALPOLE, R. E. et al. Probability and Statistics for Engineers & Scientists. 9.
ed. [S.l.: s.n.]: Pearson Education, 2011. ISBN 978-0-321-62911-1.

WASSERMAN;, L. All of Statistics: A Concise Course in Statistical Inference.
Springer, 2004. ISBN 0387402721. Disponivel em: https://link.springer.com/book/10.
1007/978-0-387-21736-9.

ZEGHLACHE, S. et al. Twin rotor mimo system experimental validation of robust
adaptive fuzzy control against wind effects. IEEE Systems Journal, v. 16, n. 1, p.
409-419, 2022.


https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1109/TAC.2004.828311
https://doi.org/10.1371/journal.pcbi.1007279
https://link.springer.com/book/10.1007/978-0-387-21736-9
https://link.springer.com/book/10.1007/978-0-387-21736-9

	Folha de rosto
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de figuras
	Lista de tabelas
	Lista de Abreviaturas e Siglas
	Lista de Símbolos
	Sumário
	Introdução
	Objetivos
	Objetivo geral
	Objetivos específicos

	Justificativa do trabalho
	Procedimentos metodológicos
	Estrutura do trabalho

	Revisão bibliográfica
	Embasamento matemático e estatístico
	Ergodicidade
	Funções de correlação, autocorrelação e espectro
	Variáveis aleatórias
	Ruído branco gaussiano


	Conhecimento prévio do sistema
	Definições relacionadas à linearidade
	Linearidade
	Causalidade
	Invariância no tempo

	Classificação por nível de conhecimento


	Metodologia
	Projeto do sinal de excitação
	Sinal aleatório
	PRBS
	Geração de um PRBS

	PRMLS

	Métodos de representação
	Teoria da estimação
	O estimador de mínimos quadrados
	O MMQ recursivo
	Uso do LASSO como ferramenta de seleção de regressores
	Parâmetro de penalização 


	Validação dos modelos

	Experimentos
	Sinal PRBS e degrau unitário
	Comparação em um circuito RC: simulação computacional

	Exemplo de identificação simples: circuito RC
	Alteração paramétrica durante a identificação
	Exemplo de identificação simples: dinâmica de temperatura
	Influência do overfitting
	Uso do LASSO como ferramenta de seleção de regressores

	Identificação de sistemas não lineares

	Estudo de caso: twin rotor
	Discretização
	Estimação de parâmetros
	Identificação do modelo


	Conclusão
	Trabalhos futuros

	Referências

