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ABSTRACT

Air traffic is growing almost exponentially and new civil aircrafts have brought
revolutionary advancements, yet subsonic jets fly no faster than in the 1970s. This is due
to the complexity of compressibility effects within the transonic regime. Aerodynamicists
have put a great amount of research effort into this topic and although the behavior of
transonic flow is nowadays understood, uncertainties remain about quantitative
predictions. These uncertainties arise mainly due to the non-linearity of the governing
flow equations. This work aims to study the influence of compressibility on the
aerodynamic center for 2-D airfoils at transonic speeds (Mach 0.60-0.95). Available
Computational Fluid Dynamics codes based on the Euler equations and the adjoint method
are used to study these effects for the airfoils NACA 0012 and RAE 2822. A study of the
governing equations and a bibliographical review of available research is conducted, in
order to compare and validate the obtained results. These results will be used as input for
the adjoint method, to study the sensitivities of the aerodynamic center with respect to

stagnation pressure and stagnation temperature.

Keywords: Aerodynamics, Transonic Flow, Aerodynamic Center, Adjoint Method
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1. INTRODUCTION

Airflows are called transonic flows when local velocities are reached, that are close to the
speed of sound (sonic). In the same flow field, a mixed sub- and supersonic local flow

occurs. The ratio of the flow speed v to the speed of sound a is called the Mach number:

P (1)
a

with a = /¥RT.
T being the absolute Temperature, R the gas constant and y the ratio of specific heats.

Transonic flows therefore are flows where the Mach number is close to Ma = 1. This

2
means that the static pressure and the dynamic pressure % have the same magnitude. In

subsonic flows for slender bodies until a flow velocity of approximately Ma = 0.6 no
significant changes in the behaviour of lift and drag for incompressible fluids occur.
However, an increase to Mach numbers above Ma = 0.6 results in local supersonic
velocities and shock waves. Hence the characteristics of the flow field change
significantly. The freestream Mach number where local sonic conditions are first obtained
somewhere on the airfoil surface is named the critical Mach number. It is a function of
various parameters like shape, thickness, sweep and the lift coefficient of the wing. In
Figure 1.1 the zero-drag coefficient is shown depending on the Mach number. The blue
part represents the drag due to skin friction, the red part represents the form and
interference drag, whereas the green part of the figure shows the wave drag. Once the
critical Mach number Ma = Mag,, in this case Ma = 0.8, is reached, the wave drag starts
increasing with the mere appearance of a locally supersonic flow region within the
domain. With increasing Mach numbers shock waves appear in the flow field and get
stronger as the velocity increases which leads to an almost exponential growth in wave
drag. Therefore, the rapid increase in drag in the transonic regime is due to the emergence
of wave drag and because the pressure rise through a shock wave thickens the boundary

1



layer, leading to an increase in viscous drag. For slender bodies, transonic flow occurs in
the region of 0.8 <Ma > 1.2.

The aerodynamic centre also begins to move along the chord after a critical Mach number
Is reached. As the aerodynamic centre is very important for the stability of the aircraft it
Is of great interest to know how this change of position occurs in the transonic regime. For
an aircraft not designed to fly at the Critical Mach number, shock waves in the flow over
the wing and tailplane can be sufficient to stall the wing, make control surfaces ineffective
and lead to loss of control.(BOSWIRTH, BSCHORER, 2014; COLE, COOK, 1986;
SCHOLZ, CIORNEI, 2005)

Cp,

Wave drag

Interference Drag

Friction drag

——— A

08 10 12 M

Figure 1.1 Drag coefficient over Mach number extracted from (HORNUNG, 2015)

When the first operational jet-propelled airplanes reached such velocities in 1944, the
incompressible theory became inapplicable. To be able to use the large amount of data
that already existed for low-speed aerodynamics, aerodynamicists searched for methods
that would allow to take the effects of compressibility into account. These methods are
called compressibility corrections. The Prandtl-Glauert-Correlation given by eq.(2) is
such a compressibility correction based on the linearized perturbation velocity potential
equation. It is limited to thin airfoils and small angles of attack, as well as it loses its

applicability in the proximity of Ma = 1 where the flow characteristics lose their linearity.

2
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dCl _ 1 d 21 (2)
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Figure 1.2 shows an airfoil at increasing freestream velocities M... The point A represents
the location of the minimum pressure on the surface of the airfoil and therefore as well
the maximum Mach number Ma. By increasing M.., Ma also increases. For the airfoil in
Figure 1.2 the corresponding local Mach number Ma to a freestream velocity of M= 0.3
and M., = 0.5, is respectively Ma = 0.435 and Ma = 0.772. It can be seen that Ma=M,

hence Ma= 1 is reached at subsonic freestream velocities respectively M., = 0.61 in Figure
1.2.. Equally to the critical Mach number, the critical pressure coefficient is the value of

the pressure coefficient when Ma= 1 is reached. The formula is:

ot (3)

SRS I € (67 V317 LY
perit 7y m2, 1+(5 '

2

It establishes a relation between the freestream velocity and the pressure coefficient on

the profile surface at local Ma = 1. (Anderson, 2001)

Local M4 = 0.435
o

{a)

Local M, =0.772
Moo =0.5
—_—

_ === «—Sonic line where M = 1
- N
e M= \

——

(dy

Figure 1.2 Definition of critical Mach number. Point A represents the location of minimum

pressure on the top surface of the airfoil. Extracted from (Anderson, 2001)



2. FLOW EQUATIONS

2.1. THE CONINUITY EQUATION

Mass can neither be created nor destroyed. This means that the mass of a fluid element
remains constant, even though its shape, volume and density may change. The total mass
within the control volume R, which is fixed in the field is:

It @

On the control surface, the mass flow per unit time through any incremental area dS is
pV * ndS. The net efflux of mass through the surface S must be equal to the decrease of

mass within R. Therefore, the conservation of mass in terms of field properties is

Ljpﬁ.ﬁdsz—jﬂ%’odR ©)

Figure 2.1 Conservation of Mass extracted from (JUNGLAS)

Applying the above principle to a steady flow in a tube as shown in Figure 2.1, with no

flux through the wall and by assuming that p, andu, as well as p, and u, are average values

across the areas A, and A, the conservation of mass principle becomes

Pl Ay —pu A=0 (6)



If the divergence theorem by Gauss is applied to the surface integral in eq.(5) it can be

transformed into a volume integral:
[[ pti-rids = [[[ divpii dR @)
S R

Therefore, eq. (5) can be written in the form

jy(div,om%de:o ®)

As eq.(8) holds for all control volumes regardless of size the integrand must be zero. Then
the equation of continuity, which is a statement of the conservation of mass principle is
obtained as a differential equation:

. Op ©)
divoli +—+— =0
pu S

(KUETHE, CHOW, 1998)

2.2. THE MOMENTUM EQUATION

The application of Newtons Law on fluid volume V means: The temporal change in

momentum of a fluid volume V is equal to the resultant of the forces acting on it.
The moment

um vector is given by

pP= j pudV (10)

and the temporal change in momentum is



(11)

o
2%,

d id
-2 [ ity =3 F,
Possible forces that may occur are:

e volume forces acting on every fluid element represented by

R = J:pl?dV (12)
\

e forces acting on the body in isolated points

3 (13)

e surface forces distributed over the surface S of V

Fe=[o"nds. (14)
S

Hereby o is a second order tensor in the form of

—-Pp+7y 71 T13 (15)
=—pl+z= Ty —P+7y T3
T T3 —P+75

where p represents the pressure, | the identity vector and

the stress tensor. The diagonal components of 7 are the normal stresses, while the other

components are the shear stresses.

The second stage tensor o is symmetric and therefore o =o' or 7, = 7.



This characteristic is going to be used from now on. The application of the Reynolds-

Transport-Theorem on every component P; of

o
I
s0 U .o

P szuidv
v

results in:

dP

—i:j%dv +[ou,(@-m)ds. (16)

dt

All components i = 1,2,3 brought together in a vector gives us the momentum equation in

the integral notation:

N AT @)
" _\J/. p dV+£pu(u i)ds=>"F,

o-fidS + [ pf dV + Fy
\%

m

Il
[ L —

=—[p-fidS +[r-fidS + [ of dV +F,
S S \

The application of the Reynolds-Transport-Theorem to all components P; of P results in

(18)

J-(agtlj +V-(pUU)jdV Z_Ip.ﬁds +J.z'-ﬁdS+J.p]?dV + 'EK
v s ° '

If now the Gauss’s theorem is applied on every i-component we get



ja-ﬁdszjv-adv.
S \Y

And with o =—pl +7 we can transform eg.(18) into

- - - 19
I(%’u+v-(pﬁﬁ)}dv=J-(—Vp+V-r+pf)dV+FK (19)
\ \Y

If the forces acting on the body are F, = 0 and an arbitrary volume V then
agtu +V-(plil)=-Vp+V- 7+ pf (20)

must hold true.

In tensor notation eq.(18) becomes

opu. 21
j%dv +jpuiujnjd8 :—_[ pn,dS +Irijnjds +Ipfi dVv +F 1)
\Y S S S \Y

and eq.(20) is the momentum equation as a differential equation

. Opuu, ot 22
%+ﬂ:_@+j+pfi . ( )
ot OX; OX;  OX;

Using the continuum equation eq.(13), eq.(20) or eq.(22) can be written as
a—u+(U-V)U=—£Vp+£V-z'+1? (23)
ot P P

or

. . oT;; 24
ou  ou_ lop 107 (24)

[
ot OX; pO%  poX



2.3. THE ENERGY EQUATION

For incompressible flows p is constant and the primary flow variables are p and V. To
study incompressible flow, the continuity and momentum equation are sufficient. But for
compressible flows p is an extra variable that has to be considered and therefore another

fundamental equation is needed.

The first law of thermodynamics, the law of conservation of energy expresses the balance
of energy exchanges between a system and its surroundings. Hence, the rate of increase
of energy E of a fluid element is equal to the rate W1, where work is done on the element
by body forces, plus W2, where work is done on the elements surface by surface forces,

plus W3, which accounts for the heat transfer. This can be expressed as

%§=m+mﬁwa (25)

The energy of the fluid per unit mass is

u? (26)

2
wheree = (r,t) represents the internal energy and u? the Kinetic energy.

Hence, the energy of the fluid is given by

E=poe+t 7
=po, e+?

The work rate conducted through body forces is expressed by

W, =ps. f-a (28)



We are considering an inviscid fluid, and therefore pressure forces are the only surface

forces. Hence, the work rate conducted by surface forces is

W, =—ff prids -t =—§f pa -fids (29)
]

Eq.(29) applied to an infinitesimally small volume element becomes
W, =-¢_div pli =-45_(grad p-u+ pdivd) (30)

Hence, the rate of work conducted by the surface forces is equal to —div pu. This work
can be subdivided into two parts where — grad p - u represents the rate at which work rate
due to the resultant of the surfaces forces and — p divu the work rate due to an increase in

its volume. (KARAMCHETI, 1980)

Bringing eq. (25)(27)(28) and (30) together we are presented with

D u’ - _ (31)
—|po.|e+—||=po f-U-o gradp-U-o, pdivi
Dt 2
and as the derivative of por is zero,
(32)

2
pé’DRt(EJru?j:p@ f-U—-o gradp-t—o, pdivl

The equation of conservation of energy or, simply the equation of energy is obtained by

expressing €q.(32) per unit volume

(33)

b e+£ = pf -G—grad p-t— pdivd
Potl" T2 )77

10



2.4. THE NAVIER-STOKES EQUATIONS

Putting the previous results together we are presented with the Navier-Stokes equations:

Dp _ (34)
il ate—— V.u

Dt r

DU - (39)
—=-Vp+V.7+pof
P o P+V-r+p
pB—f:—v-F—pv-U+r:v-u+pq"' (36)

Equation (34) represents local mass conservation. Change in density of a Lagrangian fluid

element occurs due to a change in specific volume.

Equation (35) represents local momentum conservation. Gravity, pressure gradients and

viscous forces produce accelerations.

Equation (36) represents the local energy conservation, where the second law of
thermodynamics is implicit. For Newtonian-Stokesian fluids changes in internal energy
can be produced by work, conduction, viscous dissipation or viscous heating.

The Navier-Stokes equations are named after Claude-Louis Navier and George Gabriel
Stokes and govern the motion of fluids. They are of great importance in computational
fluid dynamics. Due to their complexity, only a limited number of analytical solutions
exist. Hence, depending on the application simplification are adopted to solve the
equations.(LORENZ, 1994)

11



2.5. EULER EQUATIONS

Around the 1750s Leonhard Euler presented a set of equations that solves the Navier-
Stokes equations when the effects of viscosity and heat transfer are neglected. With zero

viscosity and zero thermal conductivity we get:

Dr__ v (37)
Dt
DU - (38)
— =-Vp+ fof
P Dt p+p
De r (39)
—=—nV-u
P Dt p

The German Ludwig Prandtl presented in 1904 a study, where he showed that the flow
around a body can be modelled by two different areas. He proved that the viscous effects
can be modelled by dividing the flow field into two layers. The boundary layer, dominated
by viscosity, and a layer outside of the boundary layer where viscosity effects can be
neglected without any significant errors in the solution. He therefore proved the usefulness
of the Euler equations. In the scope of this study, the simulations are based on this
approach. (CHRISTODOULOU, 2007; BARDOS, GOLSE, LEVERMORE, 1993)

12



3. SHOCK WAVES

In subsonic compressible flow, the flow far ahead of the body is forewarned about the
presence of the body and adjusts accordingly. In supersonic flow though, the flow
upstream of the body only knows about the bodies presence when it encounters the
leading-edge shock wave. Every supersonic flow is subject to shock waves and therefore

the understanding of shockwaves is of great importance when studying supersonic flow.

Shock-waves are extremely thin regions (10° cm), where drastic changes in flow
properties can occur. Shock waves appear either, in oblique angles to the flow as
represented in Figure 3.1, or, in normal angles in relation to the flow as represented in

Figure 3.2.

Figure 3.1 Oblique shock extracted from (ANDERSON, 2017)

*l'” “U‘E :\_\u‘l
[l B3 <\)u‘]
2! 23 >2|
\ V>
——
ol e
W Wi >\]l
N OMI1®, K <N
w > W<

Figure 3.2 Normal shockwave extracted from (ANDERSON, 2017)
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According to Anderson (2017) in both cases, an discontinuous increase in pressure is
observable across the wave, as an almost explosive compression process occurs. Pressure,
temperature, density and entropy increase across the shock while total pressure, velocity
and Mach number decrease. Adams (2010) and Anderson (2017) state that the basic
normal shock equations for steady, adiabatic, inviscid flow are

P1Uy = PrUy (40)
p1+p1Uf = pp + paud (41)
2 2
upy Uz (42)
hy + > = h, + >

Hereby, eq. (40) is the continuity equation, whereas eq.(41) presents the momentum
equation and eq.(42) the energy equation. The subscript ;refers to the region bevor and

respectively , to the region behind the shock.

In Figure 3.1 for an oblique shock wave the angle between the wave and the upstream
flow direction is defined as the wave angle p and the downstream flow is inclined by the
deflection angle 6. The equations above, lead to the relations for changes across a shock

wave from the region before and after the wave, at a wave angle §< B < % , Where

represents the acoustic limit:

p2 (¥ +DMfsin’p (43)
p1 2+ (y+1)M?sin2 g

2 -1
P2 _ 2V MZ sin? g — Yy~ - (44)
i, y+1 y+1
T. 2 -1 -1 2
2 (_}/ MZ sin? g — Y ) ()/ + r M? sin? ,B) (45)
T y+1 y+1/\y+1 y+1
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The Rankine-Hugoniot relation brings the flow in the region before and after the
shockwave in relation and establishes an expression for the Mach number in the region
behind the shock (M,):

M2 sin? g + = (46)
) _ vy—1
M3 sin“(f — 0) =

2yMisin?g

y—-1
From a physical point of view, the flow across a wave is adiabatic and the total enthalpy
Is constant across the wave. We can derive from eq. (42) that the flow ahead of the shock
has to be supersonic, whereas behind the shock, the flow usually is also supersonic,
although special cases exist, where the oblique shock is sufficiently strong to decelerate
the flow downstream of the shock to subsonic Mach numbers. For normal shocks, the

downstream flow is always subsonic.
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4. AERODYNAMIC CENTER

The aerodynamic center (AC) is the point on a lifting surface where the pitching moment
remains approximately constant with variation of the angle of attack. The position of the
center of gravity (CG) relative to the aerodynamic center is of great importance
concerning both the static and dynamic longitudinal stability. A dimensionless distance
between the center of gravity and the aerodynamic center with regard to the mean
aerodynamic chord (Cyy) of the wing can be defined as a measure of longitudinal stability

and is called static margin:

X X
=2 - T = X — Tac%) (47)
Cw Cw

Where:

Xac = position of the aerodynamic center
Xce = position of the center of gravity
Cw = mean aerodynamic chord

This measure is expressed in per cent and for stable aircraft configurations its value is
negative. According to Hornung (2015), civil and transport aircraft achieve values
between -5% and -10%, whereas new combat aircrafts reach values of up to +15%, as they
are designed in an instable way. Figure 4.1 represents two cases of the position of the

center of gravity regarding the aerodynamic center. In the first (1) the position of the center
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of gravity lies in front of the aerodynamic center causing a positive moment and therefore

decreasing the Aa which results in a stable behaviour as Aa increases.

The second case (2) represents an instable behavior, as the center of gravity lies behind
the aerodynamic center, which leads to a negative moment as Aa increases and therefore

in an increase in Aa. (Hornung, 2015)

A third case, which is not represented in the figure is the case of neutral stability, when
CP and AC fall together at the same point. This case represents an indifferent behavior of
the airplane with respect to a change in Aa. Depending on the type of aircraft such

configurations can be desirable, e.g. for aerobatic aircrafts.
(Y
Mce

C CG. ‘AC
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C robes &
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Figure 4.1 Position of the center of gravity and the center of pressure extracted from
(HORNUNG, 2015)

Following an approach by Etkin (1996) these statements are going to be deduced

theoretically. The aerodynamic forces on lifting surfaces can be represented as lift and
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drag acting at the mean aerodynamic center, together with a pitching moment independent
of the angle of attack.

Wing zero aerodynamic
lift direction chord
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Figure 4.2 Moment about the CG in the plane of symmetry extracted from (ETKIN, 1996)

The position of the center of gravity is from now represented by h, and the position of the
aerodynamic center by hp.

Figure 4.2 shows the total moment for the wing about its CG, which is given by:

M,, = My, + (L, cosa,, + Dy, sina,,)(h — hy, )¢ + (L, sina, (48)

—D,, cosa,)z

In this case the hypothesis of a small angle of attack a is assumed which justifies the sine
and cosine approximations ( cos a, = 1;sina,, = 1). By dividing eq. (48) by%pVZSE it

is made nondimensional and becomes:

Z
CM,W = CMac,w + (CL,W + CD,WaW)(h - hn,w) + (CL,WaW - CD,W) E— (49)

Etkin (1996) claims that the last term in eq. ((49) is negligible, and Cp, , &, may also be
neglected in comparison with Cy,,, which leads us to the equation that represents the wing

pitching moment:

CM,W = CMac,w + (CL,W)(h - hn,w) = CMac,w + awaw(h - hn,w) (50)
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The wing is not the only part of an airplane that accounts for a pitching moment. Body
and nacelles must be considered as well. Their contribution is quite complex due to
interference effects. The body distorts the flow of the wing, and vice versa. If wing, body
and nacelles are examined, the same equation as for a wing (eq. (50)) can be used but with
different values of the parameters accounting for the usual interpretation of a forward shift
of the mean aerodynamic center, the increase in the lift-curve slope, and a negative

increment in Cwmacw.

CM,wb = CMac,wb + (CL,wb)(h - hn,wb) = CMac,wb + Ayp Aywp (h - hn,wb) (51)

Here a,,, represents the lift-curve-slope of the configuration of wing, body and nacelles.
After considering wing, body and nacelles, the tail has also to be examined. It can be
represented the same way as an isolated wing, but the occurring interference effects must
be considered separately. The most important one is the mean downwash, which stands
for the downward deflection of the flow at the tail caused by the wing. Further interference
effects are the blanking of part of the tail by the body and the reduction of the relative
wind when the tail lies in the wing wake. The forces acting on the tail are visualized in
Figure 4.3. The subscript t refers to the tail.

e l‘
Tail mean
L, aerodynamic
. s center
Wing mean ¢
aerodynamic _¢EG ‘f
chord

V F =

18l we

Wwe e ¢e\°f‘

N o s Tail mean
aerodynamic

chord

Figure 4.3 Forces acting on the tail of an airplane extracted from (ETKIN, 1996)
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The total lift of the airplane is

L=Lyp+ L (52)
and in coefficient form

Cr = Crowp + = Cye. (53)

Cv: represents the lift coefficient of the tail, based on the dynamic pressure and the tail

area S.
From this Figure 4.3, we obtain the pitching moment of the tail about the CG:

M, = —l;[L; cos(a,,p — €) + D; sin(a,,;, — €)] (54)

—Z [Dt COS(awb - 8) - Lt Sin(a{wb - E)] + Mac,t

The downwash is characterized by the mean downwash angle €. According to Etkin
(1996), the first term is dominant, while the others can be neglected. In combination with

the assumption of small angles this leads us to:

1
My =—lLL, = _ltCL,tEPVZSt (55)
Now, the coefficient form can be obtained
1, S, (56)

Crre = ~—=Cpp = =VyC
M,t cS Lt H%™L,t

In €q.(56), I£St/S¢ represents the ratio of two volumes and is named “‘horizontal-tail volume
ratio” and will be denoted VH. The center of gravity varies in its position depending on
the loading configuration and the fuel consumption, hence Vn is not a constant. Thus, it
makes sense to express to define the pitching moment coefficient as a function of the

aerodynamic center of the wing-body combination. Using
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al |57
wn

Et and VH = W - E (h - hn,wb)

we obtain the moment about the wing-body aerodynamic center
W,t = V_HCL,t (57)
and the moment about the CG:

_ S 58
Cyp = —VyuCpp + gt(h - hn,wb)CL,t (58)

For the consideration of the propulsive system two parts have a contribution, namely
forces cause by the propulsion system itself and the interference effects of the propulsive
stream with other aircraft parts. Etkin (1996) makes the assumption that the interference
part is already included in the moments for wing, body and tail and the propulsion effects

can be represented by Cwm,p.

Summing up the coefficients for the wing-body-nacelle combination (eq.(51)), the
coefficient of the tail (eg.(58)), the coefficient accounting for the propulsive system, and

using eq.(53 ) we get the total pitching moment about the CG:
Cy = CMac,wb + C,, (h - hn,wb) - V_HCL,t + CM,p (59)
To obtain the pitch stiffness (—Cy; o) €0. (57) is differentiated with respect to a:

8Chae, __aC,, 0Cy, (60)
Crg = ’;—‘;“” + Cpa(h = Ryp) = Vg a;t + aap

According to the definition of the mean aerodynamic center at the beginning of this

acMac,cb

chapter, the term is equal to zero, which leads to

_OC, aCM, (61)
CM,a = CL,a(h - hn,wb) —Vy T:(t + aap
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As the value of Cp is large with respect to the other values of the Cm,a, Cm,« depends
strongly on the value of h. We define a position of the CG for which Cw, is zero. This
represents the boundary between the positive and negative stiffness and can therefore be
defined as the neutral point or the aerodynamic center of the whole aircraft. Its location is
given by setting eq. (58) equal to zero, which leads to:

1 a(:Mac,cb T aCL,t acM,p (62)
h"_h”'W”_cL,a< da " oa | oa

Substituting this expression back into equation (58) we are presented with the simplified

expression:

Cua = Cra(h — hy) = —Cp oKy (63)
where

Kn = (h = hy,) (64)

The criterion to be satisfied for static stability is Cm« < 0, which represents positive
stiffness, then Ky > 0, or h < h,. This leads us to the same conclusion as was already

obtained from HORNUNG at the very beginning and is represented in (eq. 47):
For static stability, the CG must be forward of the aerodynamic center.

For subsonic flow, the aerodynamic center is located at the 25% chord. When examining
supersonic flows, a shift from the 25% chord to the 50% chord is observed. This is denoted
the aerodynamic center shift. A detailed knowledge of the aerodynamic center position
and its shift in the transonic regime is a very important factor, in order to minimize trim
drag, maximize load-factor capability, and provide acceptable handling qualities.
(ETKIN, 1996; HORNUNG, 2015)
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5. THE ADJOINT METHOD

The adjoint method is a method that has been broadly studied and used as an aircraft
design tool. CFD-based aerodynamic optimization requires a very large number of design
parameters and a reasonable calculation effort. Due to the resulting computational effort,
the possibility of allowing many parameters to be varied is questionable with conventional
methods. Using the adjoint method, sensitivities (derivations) of flow quantities and
quantities derived therefrom can be calculated according to geometric parameters. This is
significantly more efficient than the calculation of derivatives by means of flow solutions,
e.g. by finite differences when many parameters and relatively few target variables are
considered. Since only one adjoint solution has to be calculated for each functional, the
effort for a sensitivity calculation of target variables is independent of the number of
design parameters and a powerful acceleration in computing speed is obtained. This
improves optimization significantly as the number of equations to be solved is
independent of the number of design parameters.

The adjoint method, based on the control theory of systems governed by differential
equations, was initially proposed by Pironneau for shape optimization in elliptical
problems and later extended for transonic flows by Jameson. The traditional approach by

Jameson will be presented in a summarized version in the following.

5.1 FORMULATION OF THE ADJOINT METHOD

According to Hayashi (2016) in aerodynamic applications, relevant measures of merit, I,
normally involve functions of flow variables, @, and the geometry of the solid body

surface, G, which can be represented as:
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(65)
11Q.P] = f FIQ(O, P(x), x] dx

Here, the vector Q represents the coordinates of the analyzed system in the space of state.
The vector x represents the coordinates of the domain in physical state, and P
encompasses the control parameteres of the system, e.g. the given geometry of a solid

body.

The sensitivity of the measure of merit to geometric variations is measured by the Gateaux

differential, which is given by:
81 = (Fy,8Q) + (Fp,6P) = 6l + S1p (66)

where the first term of the RHS, 61, corresponds to physical variations §Q(x) of the total

variationé! , whereas the second term, 61p, is related to the parametric part of the total

variation.

The adjoint method intends to restrict the variations of 6@ to the space of solutions within
the space of realizability in order to greatly reduce the computational effort when
computing the sensitivity of the measure of merit, §1. Therefore, the adjoint method relies
on concepts of the control theory to impose the governing flow equations as constraints to
the variational formulation, and thus avoiding non-realizable variations. Assuming that
the equations that govern the flow are composed of a system N of K nonlinear PDE’s,

which are subject to a set of B boundary conditions, imposed on appropriate boundaries,

we get:
N[Q(x),P] =R (x,P) (67)
B[Q(x)];=0 (68)
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By introducing the governing equations and its boundary conditions to the original
measure of merit, I, by means of the Lagrange multipliers ¥ and @, an augmented function

G that describes the constrained variational problem can be defined as:

According to Jameson (JAMESON, 1988) the sensitivity and the variation of the measure
of merit can be simplified through transformations to:

8G = (F'p,6P) +(®,(R'p — N'p)JP) (70)
in a way that @ is calibrated to satisfy the adjoint equation:

Ng®=F, (71)
where () “indicates the conjugate transpose, also known as the adjoint matrix.

It can be observed that the gradient accuracy obtained by the adjoint method does not
depend on the magnitude of any variation of the parameters §P as it would be the case in
when using the finite difference method. The expression §Gin eq. (70) is clearly
independent of physical variations §Q. Therefore, it is possible to obtain the gradient
information without the need for additional flow simulations, which is the essence of the
adjoint method as proposed by Jameson for transonic flows. (JAMESON, 1988;
HAYASHI, 2016)
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6. METHODOLOGY

The first stage of this work was to carry out flow simulations over the airfoils NACA 0012
and RAE 2822 using the previously described Euler equations, plus the ideal gas law.
Those equations are discretized, that is, the derivatives are approximated by differences,
and then iterated until the residuals reach an appropriate accuracy level. The NACA 0012
is a symmetrical 2-D profile without camber, which is represented by the first two digits,
and a maximum thickness of 12% of the chord. It is used as a common test case in
computational fluid dynamics. Contrary to that, the RAE 2822 is a supercritical transonic
airfoil. The airfoil was designed for transonic speeds with the objective of eliminating or

weakening shock waves.

The numerical code that simulates the flow is based on the finite volume method, it uses
a unstructured mesh with tetrahedral control volumes and was extracted form a
dissertation by Hayashi (2016). The type of mesh used, is a mesh with a square format
and periodic conditions at the upper and lower borders as shown in Figure 6.1. In all the
used meshes the side of the square was defined as 100 times the chord of the airfoils and
farfield boundary conditions were implemented at the left and right borders. The meshes

were created with the software Gambit

For this study, the hypothesis of inviscid and compressible flow in a transient regime are
assumed. The method of Jameson and the Runge-Kutta five-step method for finite volume
solutions are used for the simulation. The chosen convergence criterion (residual) is 102
and must be reached by the following parameters of the flow: conservation of mass,

conservation of energy and the amount of movement in the x and in the y direction.

The boundary conditions of the flow are the free stream conditions of pressure, Mach
number, temperature and angle of attack. The pressure and temperature adopted for all

flows as a farfield initial state are:

- prr = 108.988 kPa; - T = 255.55 K.
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Figure 6.1 Mesh with periodic conditions on the upper and lower border extracted from
(HAYASHI, 2016)

The angle of attack and the Mach number are varied for the different simulations. The
Euler flow simulations were conducted for Mach numbers between 0.60 and 0.95 Mach
for the NACA 0012 airfoil, whereas Mach numbers between 0.60 and 1.00 Mach were
chosen for the RAE 2822. For the angle of attack, values from o = 0° to o = 5° for RAE
2822, and angles from o = 0° to o = 4° for NACA 0012 were investigated.

The results of the simulations are obtained in a .vtk file and can be post-processed in data
analysis and visualization software. The tools chosen for this study are ParaView and
MATLAB. ParaView, due to its flexibility, allowing to visualize distributions of various
parameters like density, pressure, temperature and the velocity and MATLAB for the
analysis of the obtained data. The results are presented in their dimensionless form in

relation to a reference state.

Using the results of the Euler simulations, the values of lift, drag and the moment about
the leading edge for the respective angles of attack and Mach numbers were calculated
and graphically represented. Dimensional values can be obtained by rearranging the
following equations, where ( )* represents the dimensionless values:
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e Dimensionless density

L_ P (72)
pref

p

e Dimensionless velocity

w = — ;v = 7 (73)

Cre f Cre f

e Dimensionless pressure

oY (74)

Pre f Cfe f

e Dimensionless temperature

T (75)

T" =
Tref

This specified reference state is:

®  Pref = 1.486 kg/m3
o Trer=357.78K

e Crf=320.44 m/s

To verify and analyze the solutions, MATLAB was used to calculate the pressure

coefficient cp and the critical pressure coefficient Cpcrit:

2 (p (76)
v =Mz {p: - 1}
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X

v—-1

o2 (1 -n/ame
Pt yMg, 1+ (&2 (77)

The equilibrium of moments at the leading-edge leads to a linear system from which the
position of the aerodynamic center (Xac, Zac) and the moment about the aerodynamic center
(Mac) can be obtained, in order to evaluate their evolution with increasing Mach number.
For small angles of attack the effect of the drag can be neglected, due to its small values
and its negligible lever arm. For each Mach number three different angles of attack are
required to determine the linear system with its three unknown variables (Xac, Zac, Mac).

The linear system to be solved, is presented in the following:
M; = Licosay Xy + Lysinay zg. + Mg,
M, = L, cosay Xge + Ly sinay 25, + Mg, (78)
M3 = Lycosaz xqc + Lz sinaz z,. + My,
Where:
M; = Moment about the leading-edge
Li = Lift
a;= Angle of attack
Xac = Position of the aerodynamic center on the x-axis in relation to the airfoil chord length
Zac = Position of the aerodynamic center on the z-axis in relation to the airfoil chord length
Mac = Moment about the aerodynamic center

The second stage of this work was to use the results, obtained as described in the section

before, as an input for a numerical simulation based on the adjoint method. The codes
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extracted from Hayashi (2016) solve the adjoint equations and provide a result, which
allows the calculation of sensitivity gradients for the respective measures of merit. In this
study, the measures of merit are the lift, drag and the moment about the leading edge. The

obtained gradients are with respect to stagnation temperature (T,) and stagnation pressure

(o)

The focus of the study is to investigate the influence of compressibility on the
aerodynamic center in the transonic region. Therefore, the linear system (78) is derived
with respect to stagnation temperature (To) and stagnation pressure (po). Then, the
sensitivity gradients of the lift and the moment about the leading edge, extracted from the
numerical simulations, are used to determine the sensitivities of the position of the

aerodynamic center and the moment about the aerodynamic center. First, the behavior of

0Z4c

the aerodynamic center with respect to the To (%, =
0 0

,%) is investigated solving the
0

linear system (79). Second, the sensitivities of the aerodynamic center with respect to po

(axac 0z3c OMac

, , are investigated solving the linear system (80).
op0 " 3pe apo) g g y (80)

6A41 _aLl 0% . 'aL1 0z,.1 OM

E)_TO = COoS aq _c’)_TOx“C + L, a’;:)C- + sinay _a—TOZac + L, —a;{:- + aTZc

aMz ~ -aLZ axac_ 4 6L2 n azac_ n aMaC

aTO = COS az aTO xac 2 aTO | Sin az _aTO Za(; 2 aTo ] aTo (79)
OM; 0L 0Xac] | . [0L3 Zac) | WMac

T, ~ COS% |gp Kac T Ls 5] tsinas T, Z2 i T, | * aT,

oM, dL, Otac] , o [0l Oac) , OM

_aPO = Cos a4 a_POxac + L1 Ff;c] tsinay a_POZaC + L1 a;: * apzc
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— | tsina, |-

+sinasz | =

(80)
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7. RESULTS

7.1.1. EULER FLOW SIMULATION RESULTS

Using the above described numerical codes, the flow over the airfoils NACA 0012 and

RAE 2822 was simulated. Their respective geometries are plotted in figures below.
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Figure 7.1 NACA 0012 airfoil geometry Figure 7.2 RAE 2822 airfoil geometry

The flow simulations over the NACA 0012 airfoil and the RAE 2822 airfoil are presented
for angles of attack of a = 0.0°, o = 2.0° and free stream velocities of Ma = 0.60, Ma =
0,80 and Ma = 0,90. They are represented with their respective pressure coefficient plots,
which were calculated using MATLAB. The Figure 7.3 to Figure 7.14 show the graphics
for the NACA 0012, while the Figure 7.15 to Figure 7.26 illustrate the RAE 2822 airfoil.

The velocities were selected, because they illustrate the transonic regime and display the

appearance and development of shockwaves.

The velocity contours show for NACA 0012, at zero angle of attack, a uniform velocity
contour for the top and bottom side of the airfoil, which was expected due to its symmetry.
In Figure 7.4, Figure 7.6 and Figure 7.8 this uniformity of the pressure distribution for the
upper and lower sides of the NACA 0012 airfoil can be observed. For an angle of attack

of o> 0.0°, the Cp-values on the upper surface are higher than on the lower surface, which
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coincides with the theory. The same uniformity is obtained for the pressure and

temperature plots which are not presented in this work.

For the RAE 2822 the velocity over the upper surface of the airfoil is higher than the
velocity over the lower surface, as can be observed in Figure 7.15, Figure 7.17, Figure
7.21, and Figure 7.23. With increasing Mach number though, the velocities approach each
other and the difference diminishes. For the pressure and temperature, the contrary is the
case, and their values are lower on the upper than on the lower side. This is consistent
with Bernoulli’s principle that the pressures will be lower on the upper and higher on the
lower side and the velocities accordingly higher, on the upper and lower on the lower side,
which validates the presented results. The same phenomenon can be observed for the

NACA 0012 at an angle of attack different form zero (uniformity), in this case o = 2.0°.

When the velocities approach the transonic regime, the development of normal shock
waves is expected. The strength of the shock increases with the increase in Mach number.
For this case it reaches its peak at Ma = 0.90, which can be observed in the presented
figures for both airfoils (Figure 7.7, Figure 7.13, Figure 7.19, Figure 7.25). It can further
be observed that the shock shifts to the aft of the airfoil, as the Mach number increases.
The shock waves hereby are formed for the NACA 0012 uniformly for a = 0.0° on the
upper and lower side of the airfoil, whereas for the RAE 2822 (a = 0.0°, a = 2.0°) and
NACA 0012 at o = 2.0° the shock appears on the upper camber prior to the lower camber.

A comparison of the values of the maximum Mach number, the minimum pressure and
the minimum temperature for both airfoils at the same angle of attack displays a tendency
that on the NACA 0012 airfoil, the values of the maximum Mach number is lower, and
the minimum pressures and minimum temperatures are higher than on the RAE 2822

airfoil.

Comparing the different angles of attack for the same airfoil, it is noticeable that the
difference between the minimum pressure coefficients is quite high at lower Mach

numbers. These differences, however, diminish with an increasing free stream velocity
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and the values approach each other. This can be observed in Figure 7.27 and Figure 7.28,
where the variation of the minimum pressure coefficient with increasing Mach number,
as well as the critical pressure coefficient is plotted. It can be noticed, that the minimum
pressure depends highly on the angle of attack. The behavior is similar for the angles of
attack o = 0.0° and o = 1.0°. It increases until Ma = 0.80, then decreases until Ma = 0.90
and starts increasing again until Ma = 0.95. For an angle of attack of a = 4.0° though, the
behavior differs quite significantly. Instead of increasing, it decreases continuously until
Ma = 0.85, then increases slightly to Ma = 0.9 and decreases again. It is also noticeable
that for the highest Mach number evaluated in this study for the NACA 0012 airfoil (Ma
= 0.95), all minimum pressures meet at very similar values. Similar observations can be
made for the RAE 2822 airfoil. For the angles of attack oo = 0.0° and a. = 1.0° the behavior
is almost equal compared with NACA 0012 and for angles greater than a = 3.0° the plots
resemble the plot for o = 4.0° of the NACA airfoil. It is notable though, that the pressure
coefficients for all angles evaluated for the RAE 2822 airfoil, in contrary to the NACA
0012 decrease with a similar slope commencing at Ma = 0.8 and end as well at very similar

values.

The intersection of the minimum pressure coefficient with the critical pressure plot (Cp,crit)
presents us with an estimation of the critical Mach number for the different angles of
attack. For the both airfoils the following is valid: the higher the angle of attack, the earlier

the critical Mach number is reached.
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The behavior of the wave drag, with augmenting Mach number is displayed in Figure 7.29
for the NACA 0012 airfoil and in Figure 7.30 for the RAE 2822 respectively. All values
are presented in their dimensionless form, as they are calculated from the adimensional
parameters described in the section 6, Methodology. It is worth to remember, that the
adopted model for the flow is inviscid and, therefore only wave drag can be obtained from

the solutions.

The behavior of the wave drag and the values for the same Mach number and same angle
of attack are very similar for both airfoils. Coinciding with the theory, higher angles of
attack lead to higher values of wave drag. A steep increase in drag can be noticed, starting
at approximately Ma = 0.70. The drag continues to increase until a velocity of Ma = 0.90,
where the curves start to flatten. Consistent with the results presented above and in Figure
1.1, the wave drag starts to increase, when the flow over the airfoil reaches the critical
Mach number and therefore supersonic speeds. The appearance of the wave drag starts at
a Mach number between Ma = 0.60 and Ma = 0.75. This coincides with the data plotted
in Figure 7.27 and Figure 7.28. For a more detailed investigation of the critical Mach
number and when exactly the wave drag appears, more simulations have to be conducted,
in order to obtain more points in the plots.
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For the calculation of the aerodynamic center, pitching moment about the leading edge
and lift are needed. The variation of the lift with increasing Mach number is plotted for
NACA 0012 and RAE 2822 in Figure 7.31 and Figure 7.32. The behavior of the two
airfoils is very similar. As expected, no lift is generated for the NACA 0012 at a zero angle
of attack, although at Ma = 0.85 a small amplitude is noticeable. For the other angles of
attack as well as for the RAE 2822 airfoil it can be observed, that the lift starts increasing
in the region where the critical Mach number is reached. For the NACA 0012 the lift keeps
increasing until reaching a peak at a Mach number of Ma = 0.85, where it starts decreasing
until Ma = 0.90, from where it almost stabilizes until Ma = 0.95. For the RAE 2822 the
behavior is very similar, although it reaches its peak earlier, at Ma = 0.80. This coincides
with the pressure coefficient plots. For the plots presented above it can be seen that the
greatest pressure difference between the upper and lower side of the airfoil exists for Ma
= 0.80, which results in a greater lift generation. The comparison of the two graphics
shows a predominance of the airfoil geometry until the respective peaks are reached. The
lift values are hereby higher for the RAE 2822 than for the NACA 0012, but both drop to

similar values after the peak.

The behavior of the pitching moment about the leading edge with increasing Mach number
is plotted in Figure 7.33 for the NACA 0012 airfoil and in Figure 7.34 for the RAE 2822
airfoil. The pitching moment graph is very similar to the lift graph, only that it is inverted.
For both airfoils, instead of increasing, it starts decreasing in the region where the critical
Mach number is reached until Ma = 0.85, where it reaches its peak and starts increasing
until stabilizing at Ma = 0.90. This behavior was expected as the pitching moment is a

function of the lift and therefore greater lift values lead to greater pitching moment values.
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Now, that all the forces influencing the aerodynamic center according to the model present
in the section of the methodology are calculated and presented, the position of the

aerodynamic center and the moment about the aerodynamic center can be obtained.

In Figure 7.35 the variation of the x-coordinate of the aerodynamic center (Xac) with
increasing freestream Mach number is presented for both airfoils, NACA 0012 and RAE
2822. The respective values of the plots are displayed in Table 1 for the NACA 0012 and
in Table 2 for the RAE 2282. The behavior is quite similar for both airfoils. For subsonic
freestream velocities, the x-coordinate of the aerodynamic center of the NACA 0012 is
closer to the leading edge than for the RAE 2822. For the NACA 0012 airfoil the value at
a freestream Mach number Ma = 0.60 is at 26.8% of the chord, whereas for the RAE 2822
it is at 29.6% of the chord. Both values are close to the 25% chord, the value that can be
found in the literature and was presented above in the part of the theory of the aerodynamic
center. For both airfoils a minor change of xac can be noticed at Ma = 0.60. It is interesting,
that this minor change of xac for the NACA 0012 is towards the leading edge, while for
the RAE 2822 it moves towards the trailing edge. As the Mach number increases, a shift
of the aerodynamic center towards 50% of the chord is observed. The shift to the 50%
chord occurs much quicker for the RAE 2822 than for the NACA 0012. At Ma = 0.80 the
Xac Of the NACA 0012 is still at 30.5% of the chord, whereas the xac of the RAE 2822
already performed a shift to 45.5% of the chord. From Ma = 0.80 to Ma = 0.90 the Xac of
the NACA 0012 undergoes an almost linear shift from 30.5% of the chord to 46.9% of the
chord. Once the shift towards the trailing edge for both airfoils has taken place, the
position of the aerodynamic center stabilizes at the end of the transonic regime. Examining
the results closely it can be seen, that for both airfoils, it doesn’t stabilize completely but

performs a small shift towards the leading edge.

It was expected, that the position of the aerodynamic center shifts from the 25% chord to
the 50% chord once supersonic Mach numbers are reached. It is also consistent with the
Cp-plots, for the transonic speed Ma = 0.80 presented above (Figure 7.6, Figure 7.12,
Figure 7.18, Figure 7.24, Figure 7.27, Figure 7.28). In the mentioned figures, it can be
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observed that, while the shock already moved to the aft of the airfoil for the RAE 2822,
this shift hasn’t been completed yet for the NACA 0012. Therefore, it is plausible that the
shift of the aerodynamic center also still hasn’t been completed. This observation is
consistent with the fact, that the RAE 2822 airfoil is an airfoil developed for transonic
speeds and therefore passes through the transonic regime quicker than normal airfoils.
This explains why the shift of the x-coordinate of the aerodynamic is already completed
at lower Mach numbers than for the NACA 0012 airfoil.
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Figure 7.35 Variation of the x-coordinate of the aerodynamic center for the airfoils NACA 0012

and RAE 2822 with increasing free stream Mach number

The variation of the z-coordinate of the aerodynamic center (zac) is represented for both
airfoils in Figure 7.36. We notice that the zac of the RAE 2822 starts at a position below
the chord at zac = -0.457 for Ma = 0.60 and increases alternatingly to a value of zac =
0.319, which means a position above the chord.lt is interesting that the z,c of the NACA

0012 airfoil also varies with increasing Mach number. As it is a symmetric airfoil,
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according to theory the zac, should be located at z = 0. For the presented simulations though
this is not the case. In the figure below we can observe according to the results of the
simulations the z,c also starts at a position beneath the chord, then shifts to a position way
above it, from where it drops to values close to zero. As these results don’t coincide with
the theory, the results should be treated with caution and further simulations should be

conducted, to investigate the phenomenon.
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Figure 7.36 Variation of the z-coordinate of the aerodynamic center for the airfoils NACA 0012

and RAE 2822 with increasing free stream Mach number

The last result that is obtained from the Euler flow solutions is the moment about the
aerodynamic center (Mac), which is displayed in Figure 7.37. It was expected that its
values are going to be zero or close to zero. We can observe, that all the values for the
NACA 0012 correspond with the expectations but the value for Ma = 0.85, Mac = 0.030
deviates quite noticeable form zero. This may well be a numerical error that builds up,

owing to the instability of the shock wave position at Ma = 0, which is widely

49



acknowledged in the literature. For the RAE 2822 the behavior is different. A moment

about the aerodynamic center is already present, although with a small value at Ma = 0.60.

From this point it increases until Ma = 0.80 from where it drops again to a value at Ma =

0, which is similar to the value at Ma = 0.60.
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Figure 7.37 Variation of the moment about the aerodynamic Mx. center for the airfoils NACA

0012 and RAE 2822 with increasing free stream Mach number

Table 1 Numeric values of the x-coordinate and z-coordinate of the aerodynamic center and the

moment about the aerodynamic center

NACA 0012
Mach Number Xac Zac Mac
0.600 0.268 -0.301 0.000
0.700 0.263 -0.608 0.000
0.800 0.305 1.536 -0.001
0.850 0.375 0.937 0.030
0.900 0.469 0.037 0.000
0.950 0.460 0.116 0.000
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Table 2 Numeric values of the x-coordinate and z-coordinate of the aerodynamic center and the

moment about the aerodynamic center

RAE 2822
Mach Number Xac Zac Mac
0.600 0.296 -0.457 0.014
0.700 0.315 -0.799 0.020
0.800 0.455 -0.117 0.026
0.900 0.457 -0.193 0.024
1.000 0.439 0.319 0.015

7.1.2. ADJOINT METHOD RESULTS

In this section, the results of the adjoint method simulations are presented. It is important
to remember that the adjoint variables have no direct physical significance. Thus, it is
difficult to analyze the results obtained from the simulations and make predictions if they

are correct or not.

To be able to calculate the gradients of the position of the aerodynamic center and the
moment about the aerodynamic center, the adjoint gradients of the pitching moment about
the leading edge and the lift have to be obtained first. They can be directly calculated from
the results of the adjoint simulation. The sensibilities of the lift are not presented in this

work, but can be looked up in the study presented by Concgalves Junior.

In Figure 7.38 and Figure 7.39 the variation of the sensibility of the pitching moment
about the leading edge with respect to the stagnation temperature To for the airfoils NACA
0012 and RAE 2822 with increasing Mach number, is displayed. The behavior for the two
airfoils are very different. It is interesting to notice that the sensibility gradients of the
pitching moment with respect to To for NACA 0012 airfoil, resemble a lot the variation

of the pitching moment presented in Figure 7.33, only that it is inverted.
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Figure 7.39 Variation of the sensibility of the pitching moment about the leading edge with

respect to the stagnation temperature To for the RAE 2822 airfoil with increasing Mach number
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For a = 0.0°, the adjoint gradient stays around zero, with only a small deflection, whereas
for the other angles of attack the adjoint gradient keeps increasing until Ma = 0.85, from
where it starts decreasing again until a value close to zero for Ma =0.90. The adjoint
gradient with respect to To for the RAE 2822 airfoil shows the same behavior for all the
presented angles of attack, except for a = 1.0°. For a = 1.0°, the gradient stays almost
stable around a value of zero. For the other angles of attack the gradient decreases until

Ma = 0.8, from where it increases steeply.

Next, the variation of the sensibility of the pitching moment about the leading edge with
respect to the stagnation pressure po, with increasing Mach number is presented. Figure
7.40 shows the results for the NACA 0012 airfoil. The behavior is again similar for all the
angles of attack, except for a = 0.0°. The plot resembles an inversion of the gradient
presented above in Figure 7.38. The plot for the RAE 2822 airfoil shows the same behavior

as the plot of the gradient with respect to To but the values are significantly higher.
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Figure 7.40 Variation of the sensibility of the pitching moment about the leading edge with

respect to the stagnation pressure po for the NACA 0012 airfoil with increasing Mach number
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Figure 7.41 Variation of the sensibility of the pitching moment about the leading edge with

respect to the stagnation pressure po for the RAE 2822 airfoil with increasing Mach number

Finally, we get to the last objective of this study, the sensibility of the position of the
aerodynamic center and the moment about the aerodynamic center with respect to the

stagnation temperature To and the stagnation pressure po.

In Table 3 and Table 4, the numeric values of the variation of the sensibilities of the
position of the aerodynamic center and the moment about the aerodynamic center with
respect to the stagnation temperature To with increasing Mach number, are presented for
the airfoils NACA 0012, and RAE 2822 respectively.

dXac
a

In Figure 7.42 the adjoint gradients of the x-coordinate ( p.
0

) with respect to To are plotted

for both airfoils. In the scope of this work it was not possible to obtain more results. The
behavior for both airfoils is again completely different and their respective values have
completely different magnitudes. For the NACA 0012 the obtained values are close to
zero, with a great deviation at Ma = 0.80. For the RAE 2822, it can be observed, that the
values are very small and alternating compared to the NACA 0012. At Ma = 0.60 the
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results show a positive value, while for Ma = 0.70, the value is negative and for the last

data point at Ma = 0.80 the value of the adjoint gradient is close to zero.
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Figure 7.42 Variation of the sensibility of the x-coordinate of the aerodynamic center with
respect to the stagnation temperature To for the airfoils RAE 2822 and NACA 0012 with

increasing Mach number

for

both airfoils. The description of the plot for NACA 0012 is the same as above for the
adjoint gradient with respect to To, only that the deflection at Ma = 0.80 is negative and

0Xac _ 189.84, its magnitude is much greater. For the RAE 2822 airfoil

with a value of
Po

we perceive a steep and almost linear increase from a negative value to a positive one.

The figures Figure 7.44 and Figure 7.45 represent the variation of the adjoint gradients of

the z-coordinate of the aerodynamic center with respect to To, ( ) and po,
adjoint gradients with respect to To for the NACA 0012 show a similar behavior to the
behavior of . For the RAE 2822 the plot resembles the plot in Figure 7.42, only

inverted. It increases from a negative value to a value close to zero, from where it

decreases again.
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Figure 7.44 Variation of the sensibility of the z-coordinate of the aerodynamic center with
respect to the stagnation temperature To for the airfoils RAE 2822 and NACA 0012 with

increasing Mach number

56



Zac / dPo

Zac / dPo for NACA 0012

Zac [ dPo for RAE 2822

1800 ‘ 10 ;
] K
1600 /\ 1 2N |
7\ 3
L \
1400 / il \
/ \
1200 | / \ 1 \
/ \ P
1000 | / e &
/ \ 2 0
800 / \ 5 \
/ \ N X
/ X -15 \
600 | / \.\\ 1 %
/ \ il
oo / 20 \
//' \\ e
200 / \ 1 25 "=
R \ R
PP
0

30 i | |
0.6 0.7 0.75 0.8
Freestream Mach Number

0.75 0.8 0.85 0.65 0.85

Freestream Mach Number

0.6 0,;35 0.7 0.9 0.95
Figure 7.45 Variation of the sensibility of the z-coordinate of the aerodynamic center with
respect to the stagnation pressure po for the airfoils RAE 2822 and NACA 0012 with increasing

Mach number

It is interesting to note, that the behavior of the adjoint gradients of the z-coordinate with

dXac
aTy

respect to po, (ZZ—:C), are almost identical with the adjoint gradients for both airfoils
0

represented in Figure 7.42. The only significant difference is that the values are of a very
different magnitude, reaching for the NACA 0012 at Ma = 0.80, a value of 1670.4.

At last the variation of the sensibility of the moment about the aerodynamic center with

dMac

respect to the stagnation temperature To, (%), and the stagnation pressure po, (W)’ IS
0 0

presented in the following two figures. For the NACA 0012 airfoil we can observer a

contrary behavior for the adjoint gradients with respect to To, presented in Figure 7.46 and

the adjoint gradients with respect to po, represented in Figure 7.47. % shows a negative
0

. oM
deflection, whereas = a

> shows a positive one. The plots for the RAE are not very similar.
0

dMac

pye increases from a negative value to a positive one, from where it drops again to a
0

: oM .
negative value. The 5 % plot decreases continuously from a value close to zero to a

Po
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dMac

negative value. It should also be mentioned, that the magnitudes of the > values are a
0
dMac
lot greater than the ones for T
0
2 %102 ‘ i MacldTo for NAICA 0012| ‘ 2 %107 ‘ Macf‘dTo for RAEI 2822 ‘
|
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Figure 7.46 Variation of the sensibility of the moment about the aerodynamic center with respect
to the stagnation temperature Tofor the airfoils RAE 2822 and NACA 0012 with increasing

Mach number
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Figure 7.47 Variation of the sensibility of the moment about the aerodynamic center with respect
to the stagnation pressure po for the airfoils RAE 2822 and NACA 0012 with increasing Mach

number
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Table 3 Variation of the sensibilities of the x-coordinate and z-coordinate of the aerodynamic
center and the moment about the aerodynamic center with respect to the stagnation temperature
Tofor the NACA 0012 airfoil with increasing Mach number

NACA 0012
dXac 0Zac dMac
Mach Number
aT, aT, aT,
0.600 -0.005 -0.006 0.000
0.700 -0.011 0.197 0.000
0.800 0.127 -0.992 -0.011
0.900 0.001 0.017 0.000

Table 4 Variation of the sensibilities of the x-coordinate and z-coordinate of the aerodynamic
center and the moment about the aerodynamic center with respect to the stagnation temperature
Tofor the RAE 2822 airfoil with increasing Mach number

RAE 2822
Mach Number d0Xac dZac dMac
aT, aT, aT,
0.6 0.01202 -0.23669 -0.00074
0.7 -0.00349 -0.04195 0.00016
0.8 -0.00037 -0.12999 -0.00010
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Table 5 Variation of the sensibilities of the x-coordinate and z-coordinate of the aerodynamic
center and the moment about the aerodynamic center with respect to the stagnation pressure po
for the NACA 0012 airfoil with increasing Mach number

NACA 0012
dXac 0Zac dMac
Mach Number

o 0po apo
0.600 -7.458 49.677 0.133
0.700 -16.284 119.760 0.863
0.800 -189.840 1670.400 18.540
0.900 0.266 34.934 -0.199

Table 6 Variation of the sensibilities of the x-coordinate and z-coordinate of the aerodynamic
center and the moment about the aerodynamic center with respect to the stagnation pressure po

for the RAE 2822 airfoil with increasing Mach number

RAE 2822
dXac dZac dMac
Mach Number
o 0po apo
0.600 -3.996 7.914 -0.074
0.700 -2.041 -23.903 -0.257
0.800 2.299 -27.709 -2.041
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8. CONCLUSIONS AND OUTLOOK

The objective of this work was to study the influence of compressibility on the
aerodynamic center for 2-D airfoils at transonic speeds (Mach 0.6-0.95). Available
Computational Fluid Dynamics codes, based on the Euler equations and the adjoint
method were used to study these effects for the airfoils NACA 0012 and RAE 2822.

After a bibliographical review, the Euler flow simulations were conducted for Mach
numbers in the transonic regime at various angles of attack. The results were post-
processed in order to obtain the values for the following measures of merit: lift, drag,
and pitching moment about the leading edge. These results were then used to calculate
the position of the aerodynamic center and the moment about the aerodynamic center.
Apart from that the results were used to calculate and plot the pressure coefficient

values, in order to evaluate the solutions.

The obtained results were very satisfactory, as a consistency with the existing theories
was proven. The simulations were able to capture the shift of the aerodynamic center
form the 25% chord to 50% of the chord, as well as the appearance of shock waves and
their shift towards the trailing edge with increasing Mach number for both airfoils. The
link between the beginning of the aerodynamic center shift and the appearance of shock
waves was established. The calculated measures of merit also showed a similar behavior
as found in the literature. Only the results for the z-coordinate of the aerodynamic center
for the NACA 0012 airfoil didn’t provide the theoretically expected results and should
therefore be subject to closer examination.

The Euler flow simulation results were then used as input for the simulations based on
the adjoint method, in order to study the sensitivities of the aerodynamic center with
respect to the stagnation pressure po and the stagnation temperature To. Here, it is
difficult to say if the obtained results were satisfactory or not as the adjoint variables

have no direct physical significance, which complicates their validation. However, we
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observe a greater sensitivity of the aerodynamic center with respect to stagnation

temperature, than to the stagnation pressure.

Finally, for further research it would be very interesting to conduct more simulations,
especially for the transonic regime to get a more detailed idea of the behavior of the
measures of merit and the aerodynamic center. It would also be interesting to see, what
results are obtained if the simulations are conducted for different airfoils and different

types of meshes, to be able to compare and validate the results presented in this study.
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