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ABSTRACT 

Air traffic is growing almost exponentially and new civil aircrafts have brought 

revolutionary advancements, yet subsonic jets fly no faster than in the 1970s. This is due 

to the complexity of compressibility effects within the transonic regime. Aerodynamicists 

have put a great amount of research effort into this topic and although the behavior of 

transonic flow is nowadays understood, uncertainties remain about quantitative 

predictions. These uncertainties arise mainly due to the non-linearity of the governing 

flow equations. This work aims to study the influence of compressibility on the 

aerodynamic center for 2-D airfoils at transonic speeds (Mach 0.60-0.95). Available 

Computational Fluid Dynamics codes based on the Euler equations and the adjoint method 

are used to study these effects for the airfoils NACA 0012 and RAE 2822. A study of the 

governing equations and a bibliographical review of available research is conducted, in 

order to compare and validate the obtained results. These results will be used as input for 

the adjoint method, to study the sensitivities of the aerodynamic center with respect to 

stagnation pressure and stagnation temperature. 

 

Keywords: Aerodynamics, Transonic Flow, Aerodynamic Center, Adjoint Method  
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1. INTRODUCTION 

Airflows are called transonic flows when local velocities are reached, that are close to the 

speed of sound (sonic). In the same flow field, a mixed sub- and supersonic local flow 

occurs. The ratio of the flow speed v to the speed of sound a is called the Mach number: 

𝑀𝑎 =
𝑣

𝑎
 (1) 

with 𝑎 = √𝛾𝑅𝑇.  

T being the absolute Temperature, R the gas constant and 𝛾 the ratio of specific heats. 

Transonic flows therefore are flows where the Mach number is close to Ma = 1. This 

means that the static pressure and the dynamic pressure 
ρv2

2
 have the same magnitude. In 

subsonic flows for slender bodies until a flow velocity of approximately Ma = 0.6 no 

significant changes in the behaviour of lift and drag for incompressible fluids occur. 

However, an increase to Mach numbers above Ma = 0.6 results in local supersonic 

velocities and shock waves. Hence the characteristics of the flow field change 

significantly. The freestream Mach number where local sonic conditions are first obtained 

somewhere on the airfoil surface is named the critical Mach number. It is a function of 

various parameters like shape, thickness, sweep and the lift coefficient of the wing. In 

Figure 1.1 the zero-drag coefficient is shown depending on the Mach number. The blue 

part represents the drag due to skin friction, the red part represents the form and 

interference drag, whereas the green part of the figure shows the wave drag. Once the 

critical Mach number Ma = 𝑀𝑎∞
∗ , in this case Ma = 0.8, is reached, the wave drag starts 

increasing with the mere appearance of a locally supersonic flow region within the 

domain. With increasing Mach numbers shock waves appear in the flow field and get 

stronger as the velocity increases which leads to an almost exponential growth in wave 

drag. Therefore, the rapid increase in drag in the transonic regime is due to the emergence 

of wave drag and because the pressure rise through a shock wave thickens the boundary 
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layer, leading to an increase in viscous drag. For slender bodies, transonic flow occurs in 

the region of 0.8 ≤ Ma ≥ 1.2. 

The aerodynamic centre also begins to move along the chord after a critical Mach number 

is reached. As the aerodynamic centre is very important for the stability of the aircraft it 

is of great interest to know how this change of position occurs in the transonic regime. For 

an aircraft not designed to fly at the Critical Mach number, shock waves in the flow over 

the wing and tailplane can be sufficient to stall the wing, make control surfaces ineffective 

and lead to loss of control.(BÖSWIRTH, BSCHORER, 2014; COLE, COOK, 1986; 

SCHOLZ, CIORNEI, 2005) 

 

Figure 1.1 Drag coefficient over Mach number extracted from (HORNUNG, 2015) 

When the first operational jet-propelled airplanes reached such velocities in 1944, the 

incompressible theory became inapplicable. To be able to use the large amount of data 

that already existed for low-speed aerodynamics, aerodynamicists searched for methods 

that would allow to take the effects of compressibility into account. These methods are 

called compressibility corrections. The Prandtl-Glauert-Correlation given by eq.(2) is 

such a compressibility correction based on the linearized perturbation velocity potential 

equation. It is limited to thin airfoils and small angles of attack, as well as it loses its 

applicability in the proximity of Ma = 1 where the flow characteristics lose their linearity.  

https://www.skybrary.aero/index.php/Loss_of_Control
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𝑑𝑐𝑙

𝑑𝛼
=  

1

√1 − 𝑀∞
2

𝑑𝑐𝑙

𝑑𝛼
|𝑖𝑘 =

2𝜋

√1 − 𝑀∞
2

 
(2) 

Figure 1.2 shows an airfoil at increasing freestream velocities M∞. The point A represents 

the location of the minimum pressure on the surface of the airfoil and therefore as well 

the maximum Mach number MA. By increasing M∞, MA also increases. For the airfoil in 

Figure 1.2 the corresponding local Mach number MA to a freestream velocity of M∞= 0.3 

and M∞ = 0.5, is respectively MA = 0.435 and MA = 0.772. It can be seen that MA≥M∞, 

hence MA= 1 is reached at subsonic freestream velocities respectively M∞ = 0.61 in Figure 

1.2.. Equally to the critical Mach number, the critical pressure coefficient is the value of 

the pressure coefficient when MA= 1 is reached. The formula is: 

𝑐𝑝,𝑐𝑟𝑖𝑡 =
2

𝛾𝑀∞
2 {(

1+((𝛾−1)/2)𝑀∞
2

1+(
𝛾−1

2
)

)

𝛾

𝛾−1

− 1}. 

(3) 

It establishes a relation between the freestream velocity and the pressure coefficient on 

the profile surface at local Ma = 1. (Anderson, 2001) 

 

Figure 1.2 Definition of critical Mach number. Point A represents the location of minimum 

pressure on the top surface of the airfoil. Extracted from (Anderson, 2001) 
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2. FLOW EQUATIONS 

2.1. THE CONINUITY EQUATION 

Mass can neither be created nor destroyed. This means that the mass of a fluid element 

remains constant, even though its shape, volume and density may change. The total mass 

within the control volume R, which is fixed in the field is: 

dR
R

   (4) 

On the control surface, the mass flow per unit time through any incremental area dS is 

ρV ∗ ndS. The net efflux of mass through the surface S must be equal to the decrease of 

mass within R. Therefore, the conservation of mass in terms of field properties is 

 
RS

dR
t

dSnu






 

(5) 

 

Figure 2.1 Conservation of Mass extracted from (JUNGLAS) 

Applying the above principle to a steady flow in a tube as shown in Figure 2.1, with no 

flux through the wall and by assuming that 1 and 1u as well as 2 and 2u are average values 

across the areas 1A and 2A the conservation of mass principle becomes  

0111222  AuAu   (6) 
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If the divergence theorem by Gauss is applied to the surface integral in eq.(5) it can be 

transformed into a volume integral: 

 
RS

dRudivdSnu


  (7) 

Therefore, eq. (5) can be written in the form  

 









R

dR
t

udiv 0






 
(8) 

As eq.(8) holds for all control volumes regardless of size the integrand must be zero. Then 

the equation of continuity, which is a statement of the conservation of mass principle is 

obtained as a differential equation: 

0
t

udiv






 
(9) 

(KUETHE, CHOW, 1998) 

2.2. THE MOMENTUM EQUATION 

The application of Newtons Law on fluid volume V
~

means: The temporal change in 

momentum of a fluid volume V
~

is equal to the resultant of the forces acting on it. 

The moment 

um vector is given by 

dVuP
V



~

  (10) 

and the temporal change in momentum is  
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 
m

m

V

FdVu
dt

d

dt

Pd 


~

  . 
(11) 

Possible forces that may occur are: 

• volume forces acting on every fluid element represented by  


V

V dVfF
~


  (12) 

• forces acting on the body in isolated points  

KF


 (13) 

• surface forces distributed over the surface S
~

of V
~

 

 
S

T

S dSnF
~




. (14) 

Hereby is a second order tensor in the form of  

























333231

232221

131211









p

p

p

pI  

(15) 

where p represents the pressure, I the identity vector and  



















333231

232221

131211







  

the stress tensor. The diagonal components of  are the normal stresses, while the other 

components are the shear stresses.  

The second stage tensor is symmetric and therefore 
T  or jiij   . 
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This characteristic is going to be used from now on. The application of the Reynolds-

Transport-Theorem on every component Pi of  



















3

2

1

P

P

P

P


 

with 

dVuP i

V

i 
~

  

results in: 

 dSnuudV
t

u

dt

dP
i

V S

ii 





  


. 

(16) 

All components i = 1,2,3 brought together in a vector gives us the momentum equation in 

the integral notation: 

 

K

VSS

K

VS

m

m

V S

FdVfdSndSn

FdVfdSn

FdSnuudV
t

u

dt

Pd






















 








 

(17) 

The application of the Reynolds-Transport-Theorem to all components Pi of P


results in 

  K

VSSV

FdVfdSndSndVuu
t

u 















 



. 

(18) 

If now the Gauss´s theorem is applied on every i-component we get 
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 
VS

dVdSn 


. 

And with   pI  we can transform eq.(18) into  

    K

VV

FdVfpdVuu
t

u 


 















 

(19) 

If the forces acting on the body are KF


= 0 and an arbitrary volume V then  

  fpuu
t

u 









 

(20) 

must hold true.  

In tensor notation eq.(18) becomes 

iK

V

ij

S

iji

S

jj

S

i

V

i FdVfdSndSnpdSnuudV
t

u





 


 

(21) 

and eq.(20) is the momentum equation as a differential equation 

i

j

ij

ij

jii f
xx

p

x

uu

t

u























 . 

(22) 

Using the continuum equation eq.(13), eq.(20) or eq.(22) can be written as 

  fpuu
t

u 










11
 

(23) 

or 

i

j

ij

ij

i
j

i f
xx

p

x

u
u

t

u



















 



11
 

(24) 
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2.3. THE ENERGY EQUATION 

For incompressible flows ρ is constant and the primary flow variables are p and V. To 

study incompressible flow, the continuity and momentum equation are sufficient. But for 

compressible flows ρ is an extra variable that has to be considered and therefore another 

fundamental equation is needed.  

The first law of thermodynamics, the law of conservation of energy expresses the balance 

of energy exchanges between a system and its surroundings. Hence, the rate of increase 

of energy E of a fluid element is equal to the rate W1, where work is done on the element 

by body forces, plus W2, where work is done on the elements surface by surface forces, 

plus W3, which accounts for the heat transfer. This can be expressed as 

321 WWW
Dt

DE
  

(25) 

The energy of the fluid per unit mass is  

2

2u
e   

(26) 

where ),( tre   represents the internal energy and 
2

2u
 the kinetic energy. 

Hence, the energy of the fluid is given by 











2

2u
eE   

(27) 

The work rate conducted through body forces is expressed by 

ufW

 1

 (28) 
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We are considering an inviscid fluid, and therefore pressure forces are the only surface 

forces. Hence, the work rate conducted by surface forces is 

 
SS

dSnupudSnpW



2

 

(29) 

Eq.(29) applied to an infinitesimally small volume element becomes 

)(2 udivpupgradudivW


    (30) 

Hence, the rate of work conducted by the surface forces is equal to udiv  . This work 

can be subdivided into two parts where upgrad  represents the rate at which work rate 

due to the resultant of the surfaces forces and divup the work rate due to an increase in 

its volume. (KARAMCHETI, 1980) 

Bringing eq. (25)(27)(28) and (30) together we are presented with  

udivpupgraduf
u

e
Dt

D 
  



















2

2

 
(31) 

and as the derivative of  is zero,  

udivpupgraduf
u

e
Dt

D 
  










2

2

 
(32) 

The equation of conservation of energy or, simply the equation of energy is obtained by 

expressing eq.(32) per unit volume 

udivpupgraduf
u

e
Dt

D 









 

2

2

 
(33) 
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2.4. THE NAVIER-STOKES EQUATIONS 

Putting the previous results together we are presented with the Navier-Stokes equations: 

u
Dt

D 
 


 

(34) 

fp
Dt

uD 
   

(35) 

qpuupf
Dt

De



:  

(36) 

Equation (34) represents local mass conservation. Change in density of a Lagrangian fluid 

element occurs due to a change in specific volume. 

Equation (35) represents local momentum conservation. Gravity, pressure gradients and 

viscous forces produce accelerations. 

Equation (36) represents the local energy conservation, where the second law of 

thermodynamics is implicit. For Newtonian-Stokesian fluids changes in internal energy 

can be produced by work, conduction, viscous dissipation or viscous heating. 

The Navier-Stokes equations are named after Claude-Louis Navier and George Gabriel 

Stokes and govern the motion of fluids. They are of great importance in computational 

fluid dynamics. Due to their complexity, only a limited number of analytical solutions 

exist. Hence, depending on the application simplification are adopted to solve the 

equations.(LORENZ, 1994) 
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2.5. EULER EQUATIONS 

Around the 1750s Leonhard Euler presented a set of equations that solves the Navier-

Stokes equations when the effects of viscosity and heat transfer are neglected. With zero 

viscosity and zero thermal conductivity we get: 

u
Dt

D 
 


 

(37) 

 

fp
Dt

uD 
   

(38) 

 

up
Dt

De r
  

(39) 

The German Ludwig Prandtl presented in 1904 a study, where he showed that the flow 

around a body can be modelled by two different areas. He proved that the viscous effects 

can be modelled by dividing the flow field into two layers. The boundary layer, dominated 

by viscosity, and a layer outside of the boundary layer where viscosity effects can be 

neglected without any significant errors in the solution. He therefore proved the usefulness 

of the Euler equations. In the scope of this study, the simulations are based on this 

approach. (CHRISTODOULOU, 2007; BARDOS, GOLSE, LEVERMORE, 1993) 

 



 

13 

 

3. SHOCK WAVES 

In subsonic compressible flow, the flow far ahead of the body is forewarned about the 

presence of the body and adjusts accordingly. In supersonic flow though, the flow 

upstream of the body only knows about the bodies presence when it encounters the 

leading-edge shock wave. Every supersonic flow is subject to shock waves and therefore 

the understanding of shockwaves is of great importance when studying supersonic flow.  

Shock-waves are extremely thin regions (10-5 cm), where drastic changes in flow 

properties can occur. Shock waves appear either, in oblique angles to the flow as 

represented in Figure 3.1, or, in normal angles in relation to the flow as represented in 

Figure 3.2. 

 

Figure 3.1 Oblique shock extracted from (ANDERSON, 2017) 

 

Figure 3.2 Normal shockwave extracted from (ANDERSON, 2017) 



 

14 

 

According to Anderson (2017) in both cases, an discontinuous increase in pressure is 

observable across the wave, as an almost explosive compression process occurs. Pressure, 

temperature, density and entropy increase across the shock while total pressure, velocity 

and Mach number decrease. Adams (2010) and Anderson (2017) state that the basic 

normal shock equations for steady, adiabatic, inviscid flow are  

𝜌1𝑢1 =  𝜌2𝑢2 (40) 

𝑝1 + 𝜌1𝑢1
2 =  𝑝2 + 𝜌2𝑢2

2 (41) 

ℎ1 + 
𝑢1

2

2
=  ℎ2 +  

𝑢2
2

2
 

(42) 

Hereby, eq. (40) is the continuity equation, whereas eq.(41) presents the momentum 

equation and eq.(42) the energy equation. The subscript 1refers to the region bevor and 

respectively 2 to the region behind the shock. 

In Figure 3.1 for an oblique shock wave the angle between the wave and the upstream 

flow direction is defined as the wave angle β and the downstream flow is inclined by the 

deflection angle θ. The equations above, lead to the relations for changes across a shock 

wave from the region before and after the wave, at a wave angle ξ< β < 
𝜋

2
 , where 

represents the acoustic limit: 

𝜌2

𝜌1
=

(𝛾 + 1)𝑀1
2 sin2 𝛽

2 + (𝛾 + 1)𝑀1
2 sin2 𝛽

 
(43) 

𝑝2

𝑝1
=

2𝛾

𝛾 + 1
𝑀1

2 sin2 𝛽 −
𝛾 − 1

𝛾 + 1
 

(44) 

𝑇2

𝑇1
= (

2𝛾

𝛾 + 1
𝑀1

2 sin2 𝛽 −
𝛾 − 1

𝛾 + 1
) (

𝛾 − 1

𝛾 + 1
+

2𝛾

𝛾 + 1
𝑀1

2 sin2 𝛽) 
(45) 
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The Rankine-Hugoniot relation brings the flow in the region before and after the 

shockwave in relation and establishes an expression for the Mach number in the region 

behind the shock (𝑀2):  

𝑀2
2 sin2(𝛽 − 𝜃) =

𝑀1
2 sin2 𝛽 +

2

𝛾−1

2𝛾𝑀1
2 sin2 𝛽

𝛾−1
− 1

 

(46) 

From a physical point of view, the flow across a wave is adiabatic and the total enthalpy 

is constant across the wave. We can derive from eq. (42) that the flow ahead of the shock 

has to be supersonic, whereas behind the shock, the flow usually is also supersonic, 

although special cases exist, where the oblique shock is sufficiently strong to decelerate 

the flow downstream of the shock to subsonic Mach numbers. For normal shocks, the 

downstream flow is always subsonic.  
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4. AERODYNAMIC CENTER 

The aerodynamic center (AC) is the point on a lifting surface where the pitching moment 

remains approximately constant with variation of the angle of attack. The position of the 

center of gravity (CG) relative to the aerodynamic center is of great importance 

concerning both the static and dynamic longitudinal stability. A dimensionless distance 

between the center of gravity and the aerodynamic center with regard to the mean 

aerodynamic chord (c̅W) of the wing can be defined as a measure of longitudinal stability 

and is called static margin:  

𝑥𝐶𝐺

𝑐𝑊̅
−

𝑥𝐴𝐶

𝑐𝑊̅
= 𝑥̅𝐶𝐺 − 𝑥̅𝐴𝐶[%] (47) 

Where:  

xAC = position of the aerodynamic center 

xCG = position of the center of gravity 

𝑐𝑊̅ = mean aerodynamic chord 

This measure is expressed in per cent and for stable aircraft configurations its value is 

negative. According to Hornung (2015), civil and transport aircraft achieve values 

between -5% and -10%, whereas new combat aircrafts reach values of up to +15%, as they 

are designed in an instable way. Figure 4.1 represents two cases of the position of the 

center of gravity regarding the aerodynamic center. In the first (1) the position of the center 
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of gravity lies in front of the aerodynamic center causing a positive moment and therefore 

decreasing the Δα which results in a stable behaviour as Δα increases.  

The second case (2) represents an instable behavior, as the center of gravity lies behind 

the aerodynamic center, which leads to a negative moment as Δα increases and therefore 

in an increase in Δα. (Hornung, 2015) 

A third case, which is not represented in the figure is the case of neutral stability, when 

CP and AC fall together at the same point. This case represents an indifferent behavior of 

the airplane with respect to a change in Δα. Depending on the type of aircraft such 

configurations can be desirable, e.g. for aerobatic aircrafts. 

 

Figure 4.1 Position of the center of gravity and the center of pressure extracted from 

(HORNUNG, 2015) 

Following an approach by Etkin (1996) these statements are going to be deduced 

theoretically. The aerodynamic forces on lifting surfaces can be represented as lift and 
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drag acting at the mean aerodynamic center, together with a pitching moment independent 

of the angle of attack.  

 

Figure 4.2 Moment about the CG in the plane of symmetry extracted from (ETKIN, 1996) 

The position of the center of gravity is from now represented by h, and the position of the 

aerodynamic center by hn. 

Figure 4.2 shows the total moment for the wing about its CG, which is given by:  

𝑀𝑤 = 𝑀𝑎𝑐,𝑤 + (𝐿𝑤 cos 𝛼𝑤 + 𝐷𝑤 sin 𝛼𝑤)(ℎ − ℎ𝑛,𝑤)𝑐̅ + (𝐿𝑤 sin 𝛼𝑤

− 𝐷𝑤 cos 𝛼𝑤)𝑧 

(48) 

In this case the hypothesis of a small angle of attack α is assumed which justifies the sine 

and cosine approximations ( cos αw = 1;sin αw = 1). By dividing eq. (48) by 
1

2
ρV2Sc̅ it 

is made nondimensional and becomes: 

𝐶𝑀,𝑤 = 𝐶𝑀𝑎𝑐,𝑤 + (𝐶𝐿,𝑤 + 𝐶𝐷,𝑤𝛼𝑤)(ℎ − ℎ𝑛,𝑤) + (𝐶𝐿,𝑤𝛼𝑤 − 𝐶𝐷,𝑤)
𝑧

𝑐̅
 (49) 

Etkin (1996) claims that the last term in eq. ((49) is negligible, and CD,wαw may also be 

neglected in comparison with CL,w which leads us to the equation that represents the wing 

pitching moment: 

𝐶𝑀,𝑤 = 𝐶𝑀𝑎𝑐,𝑤 + (𝐶𝐿,𝑤)(ℎ − ℎ𝑛,𝑤) = 𝐶𝑀𝑎𝑐,𝑤 + 𝛼𝑤𝛼𝑤(ℎ − ℎ𝑛,𝑤) (50) 
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The wing is not the only part of an airplane that accounts for a pitching moment. Body 

and nacelles must be considered as well. Their contribution is quite complex due to 

interference effects. The body distorts the flow of the wing, and vice versa. If wing, body 

and nacelles are examined, the same equation as for a wing (eq. (50)) can be used but with 

different values of the parameters accounting for the usual interpretation of a forward shift 

of the mean aerodynamic center, the increase in the lift-curve slope, and a negative 

increment in CMac,w. 

𝐶𝑀,𝑤𝑏 = 𝐶𝑀𝑎𝑐,𝑤𝑏 + (𝐶𝐿,𝑤𝑏)(ℎ − ℎ𝑛,𝑤𝑏) = 𝐶𝑀𝑎𝑐,𝑤𝑏 + 𝛼𝑤𝑏𝛼𝑤𝑏(ℎ − ℎ𝑛,𝑤𝑏) (51) 

Here αwb represents the lift-curve-slope of the configuration of wing, body and nacelles. 

After considering wing, body and nacelles, the tail has also to be examined. It can be 

represented the same way as an isolated wing, but the occurring interference effects must 

be considered separately. The most important one is the mean downwash, which stands 

for the downward deflection of the flow at the tail caused by the wing. Further interference 

effects are the blanking of part of the tail by the body and the reduction of the relative 

wind when the tail lies in the wing wake. The forces acting on the tail are visualized in 

Figure 4.3. The subscript t refers to the tail. 

 

 

Figure 4.3 Forces acting on the tail of an airplane extracted from (ETKIN, 1996) 
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The total lift of the airplane is  

𝐿 = Lwb + Lt (52) 

and in coefficient form  

𝐶𝐿 = 𝐶𝐿,𝑤𝑏 +
𝑆𝑡

𝑆
𝐶𝐿,𝑡. (53) 

CL,t represents the lift coefficient of the tail, based on the dynamic pressure and the tail 

area St. 

From this Figure 4.3, we obtain the pitching moment of the tail about the CG: 

𝑀𝑡 = −𝑙𝑡[𝐿𝑡 cos(𝛼𝑤𝑏 − ε) + 𝐷𝑡 sin(𝛼𝑤𝑏 − ε)]

− 𝑧𝑡[𝐷𝑡 cos(𝛼𝑤𝑏 − ε) − 𝐿𝑡 sin(𝛼𝑤𝑏 − ε)] + 𝑀𝑎𝑐,𝑡 

(54) 

The downwash is characterized by the mean downwash angle ε. According to Etkin 

(1996), the first term is dominant, while the others can be neglected. In combination with 

the assumption of small angles this leads us to: 

𝑀𝑡 = −𝑙𝑡𝐿𝑡 = −𝑙𝑡𝐶𝐿,𝑡

1

2
ρV2𝑆𝑡 

(55) 

Now, the coefficient form can be obtained 

𝐶𝑀,𝑡 =
𝑙𝑡

𝑐̅

𝑆𝑡

𝑆
𝐶𝐿,𝑡 = −𝑉𝐻𝐶𝐿,𝑡 

(56) 

In eq.(56), ltSt/S𝑐̅ represents the ratio of two volumes and is named “horizontal-tail volume 

ratio” and will be denoted VH. The center of gravity varies in its position depending on 

the loading configuration and the fuel consumption, hence VH is not a constant. Thus, it 

makes sense to express to define the pitching moment coefficient as a function of the 

aerodynamic center of the wing-body combination. Using 
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VH
̅̅ ̅ =

lt̅

c̅

St

S
 and  VH = VH

̅̅ ̅ −
St

S
(h − hn,wb) 

we obtain the moment about the wing-body aerodynamic center 

𝐶𝑀,𝑡
̅̅ ̅̅ ̅ = 𝑉𝐻

̅̅ ̅𝐶𝐿,𝑡 (57) 

and the moment about the CG: 

𝐶𝑀,𝑡 = −𝑉𝐻
̅̅ ̅𝐶𝐿,𝑡 +

𝑆𝑡

𝑆
(ℎ − ℎ𝑛,𝑤𝑏)𝐶𝐿,𝑡 

(58) 

For the consideration of the propulsive system two parts have a contribution, namely 

forces cause by the propulsion system itself and the interference effects of the propulsive 

stream with other aircraft parts. Etkin (1996) makes the assumption that the interference 

part is already included in the moments for wing, body and tail and the propulsion effects 

can be represented by CM,p. 

Summing up the coefficients for the wing-body-nacelle combination (eq.(51)), the 

coefficient of the tail (eq.(58)), the coefficient accounting for the propulsive system, and 

using eq.(53 ) we get the total pitching moment about the CG: 

𝐶𝑀 = 𝐶𝑀𝑎𝑐,𝑤𝑏 + 𝐶𝐿(ℎ − ℎ𝑛,𝑤𝑏) − 𝑉𝐻
̅̅ ̅𝐶𝐿,𝑡 + 𝐶𝑀,𝑝 (59) 

To obtain the pitch stiffness (−CM,α) eq. (57) is differentiated with respect to α: 

𝐶𝑀,𝛼 =
𝜕𝐶𝑀𝑎𝑐,𝑐𝑏

𝜕𝛼
+ 𝐶𝐿,𝛼(ℎ − ℎ𝑛,𝑤𝑏) − 𝑉𝐻

̅̅ ̅
𝜕𝐶𝐿,𝑡

𝜕𝛼
+

𝜕𝐶𝑀,𝑝

𝜕𝛼
 

(60) 

According to the definition of the mean aerodynamic center at the beginning of this 

chapter, the term  
∂CMac,cb

∂α
 is equal to zero, which leads to  

𝐶𝑀,𝛼 = 𝐶𝐿,𝛼(ℎ − ℎ𝑛,𝑤𝑏) − 𝑉𝐻
̅̅ ̅

𝜕𝐶𝐿,𝑡

𝜕𝛼
+

𝜕𝐶𝑀,𝑝

𝜕𝛼
 

(61) 
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As the value of CL,α is large with respect to the other values of the CM,α, CM,α depends 

strongly on the value of h. We define a position of the CG for which CM,α is zero. This 

represents the boundary between the positive and negative stiffness and can therefore be 

defined as the neutral point or the aerodynamic center of the whole aircraft. Its location is 

given by setting eq. (58) equal to zero, which leads to: 

ℎ𝑛 = ℎ𝑛,𝑤𝑏 −
1

𝐶𝐿,𝛼
(

𝜕𝑐𝑀𝑎𝑐,𝑐𝑏

𝜕𝛼
− 𝑉𝐻

̅̅ ̅
𝜕𝑐𝐿,𝑡

𝜕𝛼
+

𝜕𝑐𝑀,𝑝

𝜕𝛼
) 

(62) 

Substituting this expression back into equation (58) we are presented with the simplified 

expression: 

𝐶𝑀,𝛼 = 𝐶𝐿,𝛼(ℎ − ℎ𝑛) = −𝐶𝐿,𝛼𝐾𝑛 (63) 

where  

𝐾𝑛 = (ℎ − ℎ𝑛) (64) 

The criterion to be satisfied for static stability is CM,α < 0, which represents positive 

stiffness, then Kn > 0, or h < hn. This leads us to the same conclusion as was already 

obtained from HORNUNG at the very beginning and is represented in (eq. 47): 

For static stability, the CG must be forward of the aerodynamic center.  

For subsonic flow, the aerodynamic center is located at the 25% chord. When examining 

supersonic flows, a shift from the 25% chord to the 50% chord is observed. This is denoted 

the aerodynamic center shift. A detailed knowledge of the aerodynamic center position 

and its shift in the transonic regime is a very important factor, in order to minimize trim 

drag, maximize load-factor capability, and provide acceptable handling qualities. 

(ETKIN, 1996; HORNUNG, 2015) 
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5. THE ADJOINT METHOD 

The adjoint method is a method that has been broadly studied and used as an aircraft 

design tool. CFD-based aerodynamic optimization requires a very large number of design 

parameters and a reasonable calculation effort. Due to the resulting computational effort, 

the possibility of allowing many parameters to be varied is questionable with conventional 

methods. Using the adjoint method, sensitivities (derivations) of flow quantities and 

quantities derived therefrom can be calculated according to geometric parameters. This is 

significantly more efficient than the calculation of derivatives by means of flow solutions, 

e.g. by finite differences when many parameters and relatively few target variables are 

considered. Since only one adjoint solution has to be calculated for each functional, the 

effort for a sensitivity calculation of target variables is independent of the number of 

design parameters and a powerful acceleration in computing speed is obtained. This 

improves optimization significantly as the number of equations to be solved is 

independent of the number of design parameters. 

The adjoint method, based on the control theory of systems governed by differential 

equations, was initially proposed by Pironneau for shape optimization in elliptical 

problems and later extended for transonic flows by Jameson. The traditional approach by 

Jameson will be presented in a summarized version in the following. 

5.1 FORMULATION OF THE ADJOINT METHOD 

According to Hayashi (2016) in aerodynamic applications, relevant measures of merit, I, 

normally involve functions of flow variables, 𝑸, and the geometry of the solid body 

surface, 𝐺, which can be represented as:  
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𝐼[𝑸, 𝑃] =  ∫ 𝐹[𝑄(𝑥), 𝑃(𝑥), 𝑥] 𝑑𝑥

𝑥

 

(65) 

Here, the vector Q represents the coordinates of the analyzed system in the space of state. 

The vector 𝑥 represents the coordinates of the domain in physical state, and 𝑃 

encompasses the control parameteres of the system, e.g. the given geometry of a solid 

body.  

The sensitivity of the measure of merit to geometric variations is measured by the Gâteaux 

differential, which is given by: 

𝛿𝐼 = 〈𝐹𝑸
′ , 𝛿𝑸〉 + 〈𝐹𝑃

′ , 𝛿𝑃〉 = 𝛿𝐼𝑸 + 𝛿𝐼𝑃 (66) 

where the first term of the RHS, 𝛿𝐼𝑸, corresponds to physical variations 𝛿𝑸(𝑥) of the total 

variation𝛿𝐼 , whereas the second term, 𝛿𝐼𝑃, is related to the parametric part of the total 

variation.  

The adjoint method intends to restrict the variations of 𝛿𝑸 to the space of solutions within 

the space of realizability in order to greatly reduce the computational effort when 

computing the sensitivity of the measure of merit, 𝛿𝐼. Therefore, the adjoint method relies 

on concepts of the control theory to impose the governing flow equations as constraints to 

the variational formulation, and thus avoiding non-realizable variations. Assuming that 

the equations that govern the flow are composed of a system N of K nonlinear PDE’s, 

which are subject to a set of B boundary conditions, imposed on appropriate boundaries, 

we get: 

𝑵[𝑸(𝑥), P ] = 𝑹 (𝑥, 𝑃) (67) 

𝑩[𝑸(𝑥)]𝑠 = 0 (68) 
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By introducing the governing equations and its boundary conditions to the original 

measure of merit, I, by means of the Lagrange multipliers Ψ and Φ, an augmented function 

G that describes the constrained variational problem can be defined as: 

𝐺(𝑸, 𝑃, Φ, Ψ) = I[𝑸, 𝑃] − 〈Φ, 𝐍 − 𝐑〉 (69) 

According to Jameson (JAMESON, 1988) the sensitivity and the variation of the measure 

of merit can be simplified through transformations to: 

𝛿𝐺 = 〈𝐹′𝑃, 𝛿𝑃〉 + 〈Φ, (𝑹′
𝑃 − 𝑵′

𝑃)𝛿𝑃〉 (70) 

in a way that Φ is calibrated to satisfy the adjoint equation:  

𝑵′𝑸 ̽ Φ = 𝐹′𝑸 (71) 

where ( ) ̽ indicates the conjugate transpose, also known as the adjoint matrix. 

It can be observed that the gradient accuracy obtained by the adjoint method does not 

depend on the magnitude of any variation of the parameters 𝛿P as it would be the case in 

when using the finite difference method. The expression 𝛿𝐺in eq. (70) is clearly 

independent of physical variations 𝛿𝑄. Therefore, it is possible to obtain the gradient 

information without the need for additional flow simulations, which is the essence of the 

adjoint method as proposed by Jameson for transonic flows. (JAMESON, 1988; 

HAYASHI, 2016) 
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6. METHODOLOGY 

The first stage of this work was to carry out flow simulations over the airfoils NACA 0012 

and RAE 2822 using the previously described Euler equations, plus the ideal gas law. 

Those equations are discretized, that is, the derivatives are approximated by differences, 

and then iterated until the residuals reach an appropriate accuracy level. The NACA 0012 

is a symmetrical 2-D profile without camber, which is represented by the first two digits, 

and a maximum thickness of 12% of the chord. It is used as a common test case in 

computational fluid dynamics. Contrary to that, the RAE 2822 is a supercritical transonic 

airfoil. The airfoil was designed for transonic speeds with the objective of eliminating or 

weakening shock waves.  

The numerical code that simulates the flow is based on the finite volume method, it uses 

a unstructured mesh with tetrahedral control volumes and was extracted form a 

dissertation by Hayashi (2016). The type of mesh used, is a mesh with a square format 

and periodic conditions at the upper and lower borders as shown in Figure 6.1. In all the 

used meshes the side of the square was defined as 100 times the chord of the airfoils and 

farfield boundary conditions were implemented at the left and right borders. The meshes 

were created with the software Gambit 

For this study, the hypothesis of inviscid and compressible flow in a transient regime are 

assumed. The method of Jameson and the Runge-Kutta five-step method for finite volume 

solutions are used for the simulation. The chosen convergence criterion (residual) is 10-12 

and must be reached by the following parameters of the flow: conservation of mass, 

conservation of energy and the amount of movement in the x and in the y direction. 

The boundary conditions of the flow are the free stream conditions of pressure, Mach 

number, temperature and angle of attack. The pressure and temperature adopted for all 

flows as a farfield initial state are: 

- pff  = 108.988 kPa;   -  Tff = 255.55 K. 
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Figure 6.1 Mesh with periodic conditions on the upper and lower border extracted from 

(HAYASHI, 2016) 

The angle of attack and the Mach number are varied for the different simulations. The 

Euler flow simulations were conducted for Mach numbers between 0.60 and 0.95 Mach 

for the NACA 0012 airfoil, whereas Mach numbers between 0.60 and 1.00 Mach were 

chosen for the RAE 2822.  For the angle of attack, values from α = 0° to α = 5° for RAE 

2822, and angles from α = 0° to α = 4° for NACA 0012 were investigated. 

The results of the simulations are obtained in a .vtk file and can be post-processed in data 

analysis and visualization software. The tools chosen for this study are ParaView and 

MATLAB. ParaView, due to its flexibility, allowing to visualize distributions of various 

parameters like density, pressure, temperature and the velocity and MATLAB for the 

analysis of the obtained data. The results are presented in their dimensionless form in 

relation to a reference state.  

Using the results of the Euler simulations, the values of lift, drag and the moment about 

the leading edge for the respective angles of attack and Mach numbers were calculated 

and graphically represented. Dimensional values can be obtained by rearranging the 

following equations, where ( )* represents the dimensionless values: 
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• Dimensionless density 

𝜌∗ =
𝜌

𝜌𝑟𝑒𝑓
 (72) 

• Dimensionless velocity 

𝑢∗ =  
𝑢

𝑐𝑟𝑒𝑓
  ;  𝑣∗ =  

𝑣

𝑐𝑟𝑒𝑓
 (73) 

• Dimensionless pressure 

𝑢∗ =  
𝑢

𝜌𝑟𝑒𝑓𝑐𝑟𝑒𝑓
2  (74) 

• Dimensionless temperature 

𝑇∗ =  
𝑇

𝑇𝑟𝑒𝑓
 

(75) 

This specified reference state is: 

• ρref  = 1.486 kg/m3  

• Tref = 357.78 K 

• cref = 320.44 m/s 

To verify and analyze the solutions, MATLAB was used to calculate the pressure 

coefficient cp and the critical pressure coefficient cp,crit: 

𝑐𝑝 =
2

𝛾𝑀∞
2

{
𝑝

𝑝∞
− 1} 

(76) 
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𝑐𝑝,𝑐𝑟𝑖𝑡 =
2

𝛾𝑀∞
2

{(
1 + ((𝛾 − 1)/2)𝑀∞

2

1 + (
𝛾−1

2
)

)

𝛾

𝛾−1

− 1} 

 

(77) 

The equilibrium of moments at the leading-edge leads to a linear system from which the 

position of the aerodynamic center (xac, zac) and the moment about the aerodynamic center 

(Mac) can be obtained, in order to evaluate their evolution with increasing Mach number. 

For small angles of attack the effect of the drag can be neglected, due to its small values 

and its negligible lever arm. For each Mach number three different angles of attack are 

required to determine the linear system with its three unknown variables (xac, zac, Mac). 

The linear system to be solved, is presented in the following: 

𝑀1 = 𝐿1 cos 𝛼1 𝑥𝑎𝑐 + 𝐿1 sin 𝛼1 𝑧𝑎𝑐 + 𝑀𝑎𝑐 

𝑀2 = 𝐿2 cos 𝛼2 𝑥𝑎𝑐 + 𝐿2 sin 𝛼2 𝑧𝑎𝑐 + 𝑀𝑎𝑐 

𝑀3 = 𝐿3 cos 𝛼3 𝑥𝑎𝑐 + 𝐿3 sin 𝛼3 𝑧𝑎𝑐 + 𝑀𝑎𝑐 

 

(78) 

Where: 

Mi = Moment about the leading-edge 

Li = Lift 

𝛼𝑖= Angle of attack 

xac = Position of the aerodynamic center on the x-axis in relation to the airfoil chord length 

zac = Position of the aerodynamic center on the z-axis in relation to the airfoil chord length 

Mac = Moment about the aerodynamic center 

The second stage of this work was to use the results, obtained as described in the section 

before, as an input for a numerical simulation based on the adjoint method. The codes 
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extracted from Hayashi (2016) solve the adjoint equations and provide a result, which 

allows the calculation of sensitivity gradients for the respective measures of merit. In this 

study, the measures of merit are the lift, drag and the moment about the leading edge. The 

obtained gradients are with respect to stagnation temperature (𝑇0) and stagnation pressure 

(𝑝0). 

The focus of the study is to investigate the influence of compressibility on the 

aerodynamic center in the transonic region. Therefore, the linear system (78) is derived 

with respect to stagnation temperature (T0) and stagnation pressure (p0). Then, the 

sensitivity gradients of the lift and the moment about the leading edge, extracted from the 

numerical simulations, are used to determine the sensitivities of the position of the 

aerodynamic center and the moment about the aerodynamic center.  First, the behavior of 

the aerodynamic center with respect to the T0 (
∂xac

∂T0
,

∂zac

∂T0
,

∂Mac

∂T0
) is investigated solving the 

linear system (79). Second, the sensitivities of the aerodynamic center with respect to p0 

(
∂xac

∂p0
,

∂zac

∂p0
,

∂Mac

∂p0
) are investigated solving the linear system (80). 

 

𝜕𝑀1

𝜕𝑇0
= cos 𝛼1 [

𝜕𝐿1

𝜕𝑇0
𝑥𝑎𝑐 + 𝐿1

𝜕𝑥𝑎𝑐

𝜕𝑇0
] + sin 𝛼1 [

𝜕𝐿1

𝜕𝑇0
𝑧𝑎𝑐 + 𝐿1

𝜕𝑧𝑎𝑐

𝜕𝑇0
] +

𝜕𝑀𝑎𝑐

𝜕𝑇0
 

𝜕𝑀2

𝜕𝑇0
= cos 𝛼2 [

𝜕𝐿2

𝜕𝑇0
𝑥𝑎𝑐 + 𝐿2

𝜕𝑥𝑎𝑐

𝜕𝑇0
] + sin 𝛼2 [

𝜕𝐿2

𝜕𝑇0
𝑧𝑎𝑐 + 𝐿2

𝜕𝑧𝑎𝑐

𝜕𝑇0
] +

𝜕𝑀𝑎𝑐

𝜕𝑇0
 

𝜕𝑀3

𝜕𝑇0
= cos 𝛼𝑖 [

𝜕𝐿3

𝜕𝑇0
𝑥𝑎𝑐 + 𝐿3

𝜕𝑥𝑎𝑐

𝜕𝑇0
] + sin 𝛼3 [

𝜕𝐿3

𝜕𝑇0
𝑧𝑎𝑐 + 𝐿3

𝜕𝑧𝑎𝑐

𝜕𝑇0
] +

𝜕𝑀𝑎𝑐

𝜕𝑇0
 

 

 

(79) 

 

𝜕𝑀1

𝜕𝑃0
= cos 𝛼1 [

𝜕𝐿1

𝜕𝑃0
𝑥𝑎𝑐 + 𝐿1

𝜕𝑥𝑎𝑐

𝜕𝑃0
] + sin 𝛼1 [

𝜕𝐿1

𝜕𝑃0
𝑧𝑎𝑐 + 𝐿1

𝜕𝑧𝑎𝑐

𝜕𝑃0
] +

𝜕𝑀𝑎𝑐

𝜕𝑃0
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𝜕𝑀2

𝜕𝑃0
= cos 𝛼2 [

𝜕𝐿2

𝜕𝑃0
𝑥𝑎𝑐 + 𝐿2

𝜕𝑥𝑎𝑐

𝜕𝑃0
] + sin 𝛼2 [

𝜕𝐿2

𝜕𝑃0
𝑧𝑎𝑐 + 𝐿2

𝜕𝑧𝑎𝑐

𝜕𝑃0
] +

𝜕𝑀𝑎𝑐

𝜕𝑃0
 

𝜕𝑀3

𝜕𝑃0
= cos 𝛼3 [

𝜕𝐿3

𝜕𝑃0
𝑥𝑎𝑐 + 𝐿3

𝜕𝑥𝑎𝑐

𝜕𝑃0
] + sin 𝛼3 [

𝜕𝐿3

𝜕𝑃0
𝑧𝑎𝑐 + 𝐿3

𝜕𝑧𝑎𝑐

𝜕𝑃0
] +

𝜕𝑀𝑎𝑐

𝜕𝑃0
 

 

(80) 
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7. RESULTS 

7.1.1. EULER FLOW SIMULATION RESULTS 

Using the above described numerical codes, the flow over the airfoils NACA 0012 and 

RAE 2822 was simulated. Their respective geometries are plotted in figures below. 

 

Figure 7.1 NACA 0012 airfoil geometry 

 

Figure 7.2 RAE 2822 airfoil geometry 

The flow simulations over the NACA 0012 airfoil and the RAE 2822 airfoil are presented 

for angles of attack of α = 0.0°, α = 2.0° and free stream velocities of Ma = 0.60, Ma = 

0,80 and Ma = 0,90. They are represented with their respective pressure coefficient plots, 

which were calculated using MATLAB. The Figure 7.3 to Figure 7.14 show the graphics 

for the NACA 0012, while the Figure 7.15 to Figure 7.26 illustrate the RAE 2822 airfoil. 

The velocities were selected, because they illustrate the transonic regime and display the 

appearance and development of shockwaves.  

The velocity contours show for NACA 0012, at zero angle of attack, a uniform velocity 

contour for the top and bottom side of the airfoil, which was expected due to its symmetry. 

In Figure 7.4, Figure 7.6 and Figure 7.8 this uniformity of the pressure distribution for the 

upper and lower sides of the NACA 0012 airfoil can be observed. For an angle of attack 

of α > 0.0°, the Cp-values on the upper surface are higher than on the lower surface, which 
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coincides with the theory. The same uniformity is obtained for the pressure and 

temperature plots which are not presented in this work. 

For the RAE 2822 the velocity over the upper surface of the airfoil is higher than the 

velocity over the lower surface, as can be observed in Figure 7.15, Figure 7.17, Figure 

7.21, and Figure 7.23. With increasing Mach number though, the velocities approach each 

other and the difference diminishes. For the pressure and temperature, the contrary is the 

case, and their values are lower on the upper than on the lower side. This is consistent 

with Bernoulli’s principle that the pressures will be lower on the upper and higher on the 

lower side and the velocities accordingly higher, on the upper and lower on the lower side, 

which validates the presented results. The same phenomenon can be observed for the 

NACA 0012 at an angle of attack different form zero (uniformity), in this case α = 2.0°. 

When the velocities approach the transonic regime, the development of normal shock 

waves is expected. The strength of the shock increases with the increase in Mach number. 

For this case it reaches its peak at Ma = 0.90, which can be observed in the presented 

figures for both airfoils (Figure 7.7, Figure 7.13, Figure 7.19, Figure 7.25). It can further 

be observed that the shock shifts to the aft of the airfoil, as the Mach number increases. 

The shock waves hereby are formed for the NACA 0012 uniformly for α = 0.0° on the 

upper and lower side of the airfoil, whereas for the RAE 2822 (α = 0.0°, α = 2.0°) and 

NACA 0012 at α = 2.0° the shock appears on the upper camber prior to the lower camber.  

A comparison of the values of the maximum Mach number, the minimum pressure and 

the minimum temperature for both airfoils at the same angle of attack displays a tendency 

that on the NACA 0012 airfoil, the values of the maximum Mach number is lower, and 

the minimum pressures and minimum temperatures are higher than on the RAE 2822 

airfoil.  

Comparing the different angles of attack for the same airfoil, it is noticeable that the 

difference between the minimum pressure coefficients is quite high at lower Mach 

numbers. These differences, however, diminish with an increasing free stream velocity 
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and the values approach each other. This can be observed in Figure 7.27 and Figure 7.28, 

where the variation of the minimum pressure coefficient with increasing Mach number, 

as well as the critical pressure coefficient is plotted. It can be noticed, that the minimum 

pressure depends highly on the angle of attack. The behavior is similar for the angles of 

attack α = 0.0° and α = 1.0°. It increases until Ma = 0.80, then decreases until Ma = 0.90 

and starts increasing again until Ma = 0.95. For an angle of attack of α = 4.0° though, the 

behavior differs quite significantly. Instead of increasing, it decreases continuously until 

Ma = 0.85, then increases slightly to Ma = 0.9 and decreases again. It is also noticeable 

that for the highest Mach number evaluated in this study for the NACA 0012 airfoil (Ma 

= 0.95), all minimum pressures meet at very similar values. Similar observations can be 

made for the RAE 2822 airfoil. For the angles of attack α = 0.0° and α = 1.0° the behavior 

is almost equal compared with NACA 0012 and for angles greater than α = 3.0° the plots 

resemble the plot for α = 4.0° of the NACA airfoil. It is notable though, that the pressure 

coefficients for all angles evaluated for the RAE 2822 airfoil, in contrary to the NACA 

0012 decrease with a similar slope commencing at Ma = 0.8 and end as well at very similar 

values.  

The intersection of the minimum pressure coefficient with the critical pressure plot (Cp,crit) 

presents us with an estimation of the critical Mach number for the different angles of 

attack. For the both airfoils the following is valid: the higher the angle of attack, the earlier 

the critical Mach number is reached.  
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Figure 7.3 Mach number distribution over the 

NACA 0012 airfoil at a free stream Mach 

number of Ma = 0.60 and an angle of attack of α 

= 0.0° 

 

 

 

Figure 7.4 Pressure distribution over the NACA 

0012 airfoil at a free stream Mach number of 

Ma = 0.60 and an angle of attack of α = 0.0 

 

Figure 7.5 Mach number distribution over the 

NACA 0012 airfoil at a free stream Mach 

number of Ma = 0.80 and an angle of attack of α 

= 0.0° 

 

Figure 7.6 Pressure distribution over the NACA 

0012 airfoil at a free stream Mach number of 

Ma = 0.80 and an angle of attack of α = 0.0 
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Figure 7.7 Mach number distribution over the 

NACA 0012 airfoil at a free stream Mach 

number of Ma = 0.90 and an angle of attack of α 

= 0.0° 

 

 

 

Figure 7.8 Pressure distribution over the NACA 

0012 airfoil at a free stream Mach number of 

Ma = 0.90 and an angle of attack of α = 0.0 

 

Figure 7.9 Mach number distribution over the 

NACA 0012 airfoil at a free stream Mach 

number of Ma = 0.60 and an angle of attack of α 

= 2.0° 

 

Figure 7.10 Pressure distribution over the 

NACA 0012 airfoil at a free stream Mach 

number of Ma = 0.60 and an angle of attack of 

α = 2.0 

 



 

37 

 

 

Figure 7.11 Mach number distribution over the 

NACA 0012 airfoil at a free stream Mach 

number of Ma = 0.80 and an angle of attack of α 

= 2.0° 

 

 

 

Figure 7.12 Pressure distribution over the 

NACA 0012 airfoil at a free stream Mach 

number of Ma = 0.80 and an angle of attack of 

α = 2.0 

 

Figure 7.13 Mach number distribution over the 

NACA 0012 airfoil at a free stream Mach 

number of Ma = 0.90 and an angle of attack of α 

= 2.0° 

 

Figure 7.14 Pressure distribution over the 

NACA 0012 airfoil at a free stream Mach 

number of Ma = 0.90 and an angle of attack of 

α = 2.0 
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Figure 7.15 Mach number distribution over the 

RAE 2822 airfoil at a free stream Mach number 

of Ma = 0.60 and an angle of attack of α = 0.0° 

 

 

 

 

Figure 7.16 Pressure distribution over the RAE 

2822 airfoil at a free stream Mach number of 

Ma = 0.60 and an angle of attack of α = 0.0 

 

Figure 7.17 Mach number distribution over the 

RAE 2822 airfoil at a free stream Mach number 

of Ma = 0.80 and an angle of attack of α = 0.0° 

 

Figure 7.18 Pressure distribution over the RAE 

2822 airfoil at a free stream Mach number of 

Ma = 0.80 and an angle of attack of α = 0.0 
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Figure 7.19 Mach number distribution over the 

RAE 2822 airfoil at a free stream Mach number 

of Ma = 0.90 and an angle of attack of α = 0.0° 

 

 

 

 

Figure 7.20 Pressure distribution over the RAE 

2822 airfoil at a free stream Mach number of 

Ma = 0.90 and an angle of attack of α = 0.0 

 

Figure 7.21 Mach number distribution over the 

RAE 2822 airfoil at a free stream Mach number 

of Ma = 0.60 and an angle of attack of α = 2.0° 

 

Figure 7.22 Pressure distribution over the RAE 

2822 airfoil at a free stream Mach number of 

Ma = 0.60 and an angle of attack of α = 2.0 
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Figure 7.23 Mach number distribution over the 

RAE 2822 airfoil at a free stream Mach number 

of Ma = 0.80 and an angle of attack of α = 2.0° 

 

 

 

Figure 7.24 Pressure distribution over the RAE 

2822 airfoil at a free stream Mach number of 

Ma = 0.80 and an angle of attack of α = 2.0 

 

 

Figure 7.25 Mach number distribution over the 

RAE 2822 airfoil at a free stream Mach number 

of Ma = 0.90 and an angle of attack of α = 2.0° 

 

Figure 7.26 Pressure distribution over the RAE 

2822 airfoil at a free stream Mach number of 

Ma = 0.90 and an angle of attack of α = 2.0 



 

41 

 

 

Figure 7.27  Variation of the minimum pressure coefficient Cp,min and critical pressure 

coefficient Cp,crit for NACA 0012 with increasing Mach number  

 

Figure 7.28 Variation of the minimum pressure coefficient Cp,min and critical pressure coefficient 

Cp,crit for RAE 2822 with increasing Mach number 
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The behavior of the wave drag, with augmenting Mach number is displayed in Figure 7.29 

for the NACA 0012 airfoil and in Figure 7.30 for the RAE 2822 respectively. All values 

are presented in their dimensionless form, as they are calculated from the adimensional 

parameters described in the section 6, Methodology. It is worth to remember, that the 

adopted model for the flow is inviscid and, therefore only wave drag can be obtained from 

the solutions. 

The behavior of the wave drag and the values for the same Mach number and same angle 

of attack are very similar for both airfoils. Coinciding with the theory, higher angles of 

attack lead to higher values of wave drag. A steep increase in drag can be noticed, starting 

at approximately Ma = 0.70. The drag continues to increase until a velocity of Ma = 0.90, 

where the curves start to flatten. Consistent with the results presented above and in Figure 

1.1, the wave drag starts to increase, when the flow over the airfoil reaches the critical 

Mach number and therefore supersonic speeds. The appearance of the wave drag starts at 

a Mach number between Ma = 0.60 and Ma = 0.75. This coincides with the data plotted 

in Figure 7.27 and Figure 7.28. For a more detailed investigation of the critical Mach 

number and when exactly the wave drag appears, more simulations have to be conducted, 

in order to obtain more points in the plots.  
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Figure 7.29 Variation of wave drag for the NACA 0012 airfoil with increasing freestream Mach 

number 

 

Figure 7.30 Variation of wave drag for the RAE 2822 airfoil with increasing freestream Mach 

number 
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For the calculation of the aerodynamic center, pitching moment about the leading edge 

and lift are needed. The variation of the lift with increasing Mach number is plotted for 

NACA 0012 and RAE 2822 in Figure 7.31 and Figure 7.32. The behavior of the two 

airfoils is very similar. As expected, no lift is generated for the NACA 0012 at a zero angle 

of attack, although at Ma = 0.85 a small amplitude is noticeable. For the other angles of 

attack as well as for the RAE 2822 airfoil it can be observed, that the lift starts increasing 

in the region where the critical Mach number is reached. For the NACA 0012 the lift keeps 

increasing until reaching a peak at a Mach number of Ma = 0.85, where it starts decreasing 

until Ma = 0.90, from where it almost stabilizes until Ma = 0.95. For the RAE 2822 the 

behavior is very similar, although it reaches its peak earlier, at Ma = 0.80. This coincides 

with the pressure coefficient plots. For the plots presented above it can be seen that the 

greatest pressure difference between the upper and lower side of the airfoil exists for Ma 

= 0.80, which results in a greater lift generation. The comparison of the two graphics 

shows a predominance of the airfoil geometry until the respective peaks are reached. The 

lift values are hereby higher for the RAE 2822 than for the NACA 0012, but both drop to 

similar values after the peak.  

The behavior of the pitching moment about the leading edge with increasing Mach number 

is plotted in Figure 7.33 for the NACA 0012 airfoil and in Figure 7.34 for the RAE 2822 

airfoil. The pitching moment graph is very similar to the lift graph, only that it is inverted. 

For both airfoils, instead of increasing, it starts decreasing in the region where the critical 

Mach number is reached until Ma = 0.85, where it reaches its peak and starts increasing 

until stabilizing at Ma = 0.90. This behavior was expected as the pitching moment is a 

function of the lift and therefore greater lift values lead to greater pitching moment values.  
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Figure 7.31 Variation of the lift for the NACA 0012 airfoil with increasing freestream Mach 

number

 

 

Figure 7.32 Variation of the lift for the RAE 2822 airfoil with increasing freestream Mach 

number  
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Figure 7.33 Variation of the pitching moment about the leading edge for the NACA 0012 airfoil 

with increasing Mach number 

 

Figure 7.34 Variation of the pitching moment about the leading edge for the RAE 2822 airfoil 

with increasing Mach number 
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Now, that all the forces influencing the aerodynamic center according to the model present 

in the section of the methodology are calculated and presented, the position of the 

aerodynamic center and the moment about the aerodynamic center can be obtained. 

In Figure 7.35 the variation of the x-coordinate of the aerodynamic center (xac) with 

increasing freestream Mach number is presented for both airfoils, NACA 0012 and RAE 

2822. The respective values of the plots are displayed in Table 1 for the NACA 0012 and 

in Table 2 for the RAE 2282. The behavior is quite similar for both airfoils. For subsonic 

freestream velocities, the x-coordinate of the aerodynamic center of the NACA 0012 is 

closer to the leading edge than for the RAE 2822. For the NACA 0012 airfoil the value at 

a freestream Mach number Ma = 0.60 is at 26.8% of the chord, whereas for the RAE 2822 

it is at 29.6% of the chord. Both values are close to the 25% chord, the value that can be 

found in the literature and was presented above in the part of the theory of the aerodynamic 

center. For both airfoils a minor change of xac can be noticed at Ma = 0.60. It is interesting, 

that this minor change of xac for the NACA 0012 is towards the leading edge, while for 

the RAE 2822 it moves towards the trailing edge. As the Mach number increases, a shift 

of the aerodynamic center towards 50% of the chord is observed. The shift to the 50% 

chord occurs much quicker for the RAE 2822 than for the NACA 0012. At Ma = 0.80 the 

xac of the NACA 0012 is still at 30.5% of the chord, whereas the xac of the RAE 2822 

already performed a shift to 45.5% of the chord. From Ma = 0.80 to Ma = 0.90 the xac of 

the NACA 0012 undergoes an almost linear shift from 30.5% of the chord to 46.9% of the 

chord. Once the shift towards the trailing edge for both airfoils has taken place, the 

position of the aerodynamic center stabilizes at the end of the transonic regime. Examining 

the results closely it can be seen, that for both airfoils, it doesn’t stabilize completely but 

performs a small shift towards the leading edge. 

It was expected, that the position of the aerodynamic center shifts from the 25% chord to 

the 50% chord once supersonic Mach numbers are reached. It is also consistent with the 

Cp-plots, for the transonic speed Ma = 0.80 presented above (Figure 7.6, Figure 7.12, 

Figure 7.18, Figure 7.24, Figure 7.27, Figure 7.28). In the mentioned figures, it can be 
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observed that, while the shock already moved to the aft of the airfoil for the RAE 2822, 

this shift hasn’t been completed yet for the NACA 0012. Therefore, it is plausible that the 

shift of the aerodynamic center also still hasn’t been completed. This observation is 

consistent with the fact, that the RAE 2822 airfoil is an airfoil developed for transonic 

speeds and therefore passes through the transonic regime quicker than normal airfoils. 

This explains why the shift of the x-coordinate of the aerodynamic is already completed 

at lower Mach numbers than for the NACA 0012 airfoil. 

 

Figure 7.35 Variation of the x-coordinate of the aerodynamic center for the airfoils NACA 0012 

and RAE 2822 with increasing free stream Mach number 

The variation of the z-coordinate of the aerodynamic center (zac) is represented for both 

airfoils in Figure 7.36. We notice that the zac of the RAE 2822 starts at a position below 

the chord at zac = -0.457 for Ma = 0.60 and increases alternatingly to a value of zac = 

0.319, which means a position above the chord.It is interesting that the zac of the NACA 

0012 airfoil also varies with increasing Mach number. As it is a symmetric airfoil, 
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according to theory the zac, should be located at z = 0. For the presented simulations though 

this is not the case. In the figure below we can observe according to the results of the 

simulations the zac also starts at a position beneath the chord, then shifts to a position way 

above it, from where it drops to values close to zero. As these results don’t coincide with 

the theory, the results should be treated with caution and further simulations should be 

conducted, to investigate the phenomenon. 

 

Figure 7.36 Variation of the z-coordinate of the aerodynamic center for the airfoils NACA 0012 

and RAE 2822 with increasing free stream Mach number 

The last result that is obtained from the Euler flow solutions is the moment about the 

aerodynamic center (Mac), which is displayed in Figure 7.37. It was expected that its 

values are going to be zero or close to zero. We can observe, that all the values for the 

NACA 0012 correspond with the expectations but the value for Ma = 0.85, Mac = 0.030 

deviates quite noticeable form zero. This may well be a numerical error that builds up, 

owing to the instability of the shock wave position at Ma = 0, which is widely 
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acknowledged in the literature. For the RAE 2822 the behavior is different. A moment 

about the aerodynamic center is already present, although with a small value at Ma = 0.60. 

From this point it increases until Ma = 0.80 from where it drops again to a value at Ma = 

0, which is similar to the value at Ma = 0.60. 

 

Figure 7.37 Variation of the moment about the aerodynamic Mac center for the airfoils NACA 

0012 and RAE 2822 with increasing free stream Mach number 

Table 1 Numeric values of the x-coordinate and z-coordinate of the aerodynamic center and the 

moment about the aerodynamic center 

NACA 0012 

Mach Number Xac Zac Mac 

0.600 0.268 -0.301 0.000 

0.700 0.263 -0.608 0.000 

0.800 0.305 1.536 -0.001 

0.850 0.375 0.937 0.030 

0.900 0.469 0.037 0.000 

0.950 0.460 0.116 0.000 
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Table 2 Numeric values of the x-coordinate and z-coordinate of the aerodynamic center and the 

moment about the aerodynamic center 

RAE 2822 

Mach Number Xac Zac Mac 

0.600 0.296 -0.457 0.014 

0.700 0.315 -0.799 0.020 

0.800 0.455 -0.117 0.026 

0.900 0.457 -0.193 0.024 

1.000 0.439 0.319 0.015 

 

7.1.2. ADJOINT METHOD RESULTS 

In this section, the results of the adjoint method simulations are presented. It is important 

to remember that the adjoint variables have no direct physical significance. Thus, it is 

difficult to analyze the results obtained from the simulations and make predictions if they 

are correct or not.  

To be able to calculate the gradients of the position of the aerodynamic center and the 

moment about the aerodynamic center, the adjoint gradients of the pitching moment about 

the leading edge and the lift have to be obtained first. They can be directly calculated from 

the results of the adjoint simulation. The sensibilities of the lift are not presented in this 

work, but can be looked up in the study presented by Conçalves Junior. 

In Figure 7.38 and Figure 7.39 the variation of the sensibility of the pitching moment 

about the leading edge with respect to the stagnation temperature T0 for the airfoils NACA 

0012 and RAE 2822 with increasing Mach number, is displayed. The behavior for the two 

airfoils are very different. It is interesting to notice that the sensibility gradients of the 

pitching moment with respect to T0 for NACA 0012 airfoil, resemble a lot the variation 

of the pitching moment presented in Figure 7.33, only that it is inverted.  
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Figure 7.38  Variation of the sensibility of the pitching moment about the leading edge with 

respect to the stagnation temperature T0 for the NACA 0012 airfoil with increasing Mach 

number 

 

Figure 7.39 Variation of the sensibility of the pitching moment about the leading edge with 

respect to the stagnation temperature T0 for the RAE 2822 airfoil with increasing Mach number 
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For α = 0.0°, the adjoint gradient stays around zero, with only a small deflection, whereas 

for the other angles of attack the adjoint gradient keeps increasing until Ma = 0.85, from 

where it starts decreasing again until a value close to zero for Ma =0.90. The adjoint 

gradient with respect to T0 for the RAE 2822 airfoil shows the same behavior for all the 

presented angles of attack, except for α = 1.0°. For α = 1.0°, the gradient stays almost 

stable around a value of zero. For the other angles of attack the gradient decreases until 

Ma = 0.8, from where it increases steeply. 

Next, the variation of the sensibility of the pitching moment about the leading edge with 

respect to the stagnation pressure p0, with increasing Mach number is presented. Figure 

7.40 shows the results for the NACA 0012 airfoil. The behavior is again similar for all the 

angles of attack, except for α = 0.0°. The plot resembles an inversion of the gradient 

presented above in Figure 7.38. The plot for the RAE 2822 airfoil shows the same behavior 

as the plot of the gradient with respect to T0 but the values are significantly higher.  

 

Figure 7.40 Variation of the sensibility of the pitching moment about the leading edge with 

respect to the stagnation pressure p0 for the NACA 0012 airfoil with increasing Mach number 
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Figure 7.41 Variation of the sensibility of the pitching moment about the leading edge with 

respect to the stagnation pressure p0 for the RAE 2822 airfoil with increasing Mach number 

Finally, we get to the last objective of this study, the sensibility of the position of the 

aerodynamic center and the moment about the aerodynamic center with respect to the 

stagnation temperature T0 and the stagnation pressure p0.   

In Table 3 and Table 4, the numeric values of the variation of the sensibilities of the 

position of the aerodynamic center and the moment about the aerodynamic center with 

respect to the stagnation temperature T0 with increasing Mach number, are presented for 

the airfoils NACA 0012, and RAE 2822 respectively.  

In Figure 7.42 the adjoint gradients of the x-coordinate (
𝜕Xac

𝜕𝑇0
) with respect to T0 are plotted 

for both airfoils. In the scope of this work it was not possible to obtain more results. The 

behavior for both airfoils is again completely different and their respective values have 

completely different magnitudes. For the NACA 0012 the obtained values are close to 

zero, with a great deviation at Ma = 0.80. For the RAE 2822, it can be observed, that the 

values are very small and alternating compared to the NACA 0012. At Ma = 0.60 the 



 

55 

 

results show a positive value, while for Ma = 0.70, the value is negative and for the last 

data point at Ma = 0.80 the value of the adjoint gradient is close to zero. 

  

Figure 7.42 Variation of the sensibility of the x-coordinate of the aerodynamic center with 

respect to the stagnation temperature T0 for the airfoils RAE 2822 and NACA 0012 with 

increasing Mach number 

Figure 7.43 displays the adjoint gradients of the x-coordinate (
𝜕Xac

𝜕𝑝0
) with respect to p0 for 

both airfoils. The description of the plot for NACA 0012 is the same as above for the 

adjoint gradient with respect to T0, only that the deflection at Ma = 0.80 is negative and 

with a value of  
𝜕Xac

𝜕𝑝0
 = 189.84, its magnitude is much greater. For the RAE 2822 airfoil 

we perceive a steep and almost linear increase from a negative value to a positive one.  

The figures Figure 7.44 and Figure 7.45 represent the variation of the adjoint gradients of 

the z-coordinate of the aerodynamic center with respect to T0, (
𝜕Zac

𝜕𝑇0
), and p0, (

𝜕Zac

𝜕𝑝0
). The 

adjoint gradients with respect to T0 for the NACA 0012 show a similar behavior to the 

behavior of 
𝜕Xac

𝜕𝑝0
. For the RAE 2822 the plot resembles the plot in Figure 7.42, only 

inverted. It increases from a negative value to a value close to zero, from where it 

decreases again.  
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Figure 7.43 Variation of the sensibility of the x-coordinate of the aerodynamic center with 

respect to the stagnation pressure p0 for the airfoils RAE 2822 and NACA 0012 with increasing 

Mach number 

 

  

Figure 7.44 Variation of the sensibility of the z-coordinate of the aerodynamic center with 

respect to the stagnation temperature T0 for the airfoils RAE 2822 and NACA 0012 with 

increasing Mach number 
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Figure 7.45 Variation of the sensibility of the z-coordinate of the aerodynamic center with 

respect to the stagnation pressure p0 for the airfoils RAE 2822 and NACA 0012 with increasing 

Mach number 

It is interesting to note, that the behavior of the adjoint gradients of the z-coordinate with 

respect to p0, (
𝜕Zac

𝜕𝑝0
), are almost identical with the adjoint gradients 

𝜕Xac

𝜕𝑇0
 for both airfoils 

represented in Figure 7.42. The only significant difference is that the values are of a very 

different magnitude, reaching for the NACA 0012 at Ma = 0.80, a value of 1670.4. 

At last the variation of the sensibility of the moment about the aerodynamic center with 

respect to the stagnation temperature T0, (
𝜕Mac

𝜕𝑇0
), and the stagnation pressure p0, ( 

𝜕Mac

𝜕𝑝0
), is 

presented in the following two figures. For the NACA 0012 airfoil we can observer a 

contrary behavior for the adjoint gradients with respect to T0, presented in Figure 7.46 and 

the adjoint gradients with respect to p0, represented in Figure 7.47. 
𝜕Mac

𝜕𝑇0
 shows a negative 

deflection, whereas 
𝜕Mac

𝜕𝑝0
 shows a positive one. The plots for the RAE are not very similar.  

𝜕Mac

𝜕𝑇0
 increases from a negative value to a positive one, from where it drops again to a 

negative value. The 
𝜕Mac

𝜕𝑝0
 plot decreases continuously from a value close to zero to a 
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negative value. It should also be mentioned, that the magnitudes of the  
𝜕Mac

𝜕𝑝0
 values are a 

lot greater than the ones for 
𝜕Mac

𝜕𝑇0
.  

  

Figure 7.46 Variation of the sensibility of the moment about the aerodynamic center with respect 

to the stagnation temperature T0 for the airfoils RAE 2822 and NACA 0012 with increasing 

Mach number 

 

  

Figure 7.47 Variation of the sensibility of the moment about the aerodynamic center with respect 

to the stagnation pressure p0 for the airfoils RAE 2822 and NACA 0012 with increasing Mach 

number 
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Table 3 Variation of the sensibilities of the x-coordinate and z-coordinate of the aerodynamic 

center and the moment about the aerodynamic center with respect to the stagnation temperature 

T0 for the NACA 0012 airfoil with increasing Mach number 

NACA 0012 

Mach Number 
𝜕Xac

𝜕𝑇0
 

𝜕Zac

𝜕𝑇0
 

𝜕Mac

𝜕𝑇0
 

0.600 -0.005 -0.006 0.000 

0.700 -0.011 0.197 0.000 

0.800 0.127 -0.992 -0.011 

0.900 0.001 0.017 0.000 

 

 

Table 4 Variation of the sensibilities of the x-coordinate and z-coordinate of the aerodynamic 

center and the moment about the aerodynamic center with respect to the stagnation temperature 

T0 for the RAE 2822 airfoil with increasing Mach number 

RAE 2822 

Mach Number 
𝜕Xac

𝜕𝑇0
 

𝜕Zac

𝜕𝑇0
 

𝜕Mac

𝜕𝑇0
 

0.6 0.01202 -0.23669 -0.00074 

0.7 -0.00349 -0.04195 0.00016 

0.8 -0.00037 -0.12999 -0.00010 
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Table 5 Variation of the sensibilities of the x-coordinate and z-coordinate of the aerodynamic 

center and the moment about the aerodynamic center with respect to the stagnation pressure p0 

for the NACA 0012 airfoil with increasing Mach number 

NACA 0012 

Mach Number 
𝜕Xac

𝜕𝑝0
 

𝜕Zac

𝜕𝑝0
 

𝜕Mac

𝜕𝑝0
 

0.600 -7.458 49.677 0.133 

0.700 -16.284 119.760 0.863 

0.800 -189.840 1670.400 18.540 

0.900 0.266 34.934 -0.199 

 

 

Table 6 Variation of the sensibilities of the x-coordinate and z-coordinate of the aerodynamic 

center and the moment about the aerodynamic center with respect to the stagnation pressure p0 

for the RAE 2822 airfoil with increasing Mach number 

RAE 2822 

Mach Number 
𝜕Xac

𝜕𝑝0
 

𝜕Zac

𝜕𝑝0
 

𝜕Mac

𝜕𝑝0
 

0.600 -3.996 7.914 -0.074 

0.700 -2.041 -23.903 -0.257 

0.800 2.299 -27.709 -2.041 
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8. CONCLUSIONS AND OUTLOOK 

The objective of this work was to study the influence of compressibility on the 

aerodynamic center for 2-D airfoils at transonic speeds (Mach 0.6-0.95). Available 

Computational Fluid Dynamics codes, based on the Euler equations and the adjoint 

method were used to study these effects for the airfoils NACA 0012 and RAE 2822. 

After a bibliographical review, the Euler flow simulations were conducted for Mach 

numbers in the transonic regime at various angles of attack. The results were post-

processed in order to obtain the values for the following measures of merit: lift, drag, 

and pitching moment about the leading edge. These results were then used to calculate 

the position of the aerodynamic center and the moment about the aerodynamic center. 

Apart from that the results were used to calculate and plot the pressure coefficient 

values, in order to evaluate the solutions.  

The obtained results were very satisfactory, as a consistency with the existing theories 

was proven. The simulations were able to capture the shift of the aerodynamic center 

form the 25% chord to 50% of the chord, as well as the appearance of shock waves and 

their shift towards the trailing edge with increasing Mach number for both airfoils. The 

link between the beginning of the aerodynamic center shift and the appearance of shock 

waves was established. The calculated measures of merit also showed a similar behavior 

as found in the literature. Only the results for the z-coordinate of the aerodynamic center 

for the NACA 0012 airfoil didn’t provide the theoretically expected results and should 

therefore be subject to closer examination. 

The Euler flow simulation results were then used as input for the simulations based on 

the adjoint method, in order to study the sensitivities of the aerodynamic center with 

respect to the stagnation pressure p0 and the stagnation temperature T0. Here, it is 

difficult to say if the obtained results were satisfactory or not as the adjoint variables 

have no direct physical significance, which complicates their validation. However, we 
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observe a greater sensitivity of the aerodynamic center with respect to stagnation 

temperature, than to the stagnation pressure. 

Finally, for further research it would be very interesting to conduct more simulations, 

especially for the transonic regime to get a more detailed idea of the behavior of the 

measures of merit and the aerodynamic center. It would also be interesting to see, what 

results are obtained if the simulations are conducted for different airfoils and different 

types of meshes, to be able to compare and validate the results presented in this study. 
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