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Resumo

Os servigos de recomendagao musical mais utilizados atualmente tém como foco propor-
cionar ao usuario uma forma de descoberta de novas musicas, utilizando informagoes
extraldas da sua base de usuarios, como as musicas favoritas de pessoas com gostos
semelhantes e as musicas mais populares entre seus amigos. No entanto, ainda existem
muitas pessoas que mantém grandes colegoes musicais em seus dispositivos pessoais e
nao possuem formas automatizadas de organizar essas colegoes ou receber recomendagcoes
adequadas ao seu perfil de uso. Este trabalho pretende atender a essas pessoas, utilizando
técnicas de agrupamento e o feedback do usuario durante a reproducao para sugerir ao

usuario o que ouvir em seguida.

Palavras-chave: Recomendacao de musicas, geracao de playlists, music information

retrieval.






Abstract

Current popular music recommendation services help the user to discover new songs,
based mainly on social information, i.e. favorite songs of people with similar tastes, or
friends’ favorite songs. However, there are still many people that keep large song collections
on their personal devices and they can’t organize automatically these collections or get
recommendations suited to certain listening profiles. This project aims to help those people,
using song similarity, clustering and implicit feedback during playback to suggest to the

user what to hear next.

Keywords: Music recommendation, playlist generation, music information retrieval.
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1 Introducao

Com a crescente disponibilidade de arquivos de musica em formato digital na inter-
net, a area de pesquisa em Recuperagao de Informagoes Musicais (MIR - Music Information
Retrieval) tém se desenvolvido rapidamente. Diversos algoritmos e ferramentas tém sido
propostos para organizacao de colegoes musicais, recomendagao de musicas e geracao de
playlists, classificacao e agrupamento das musicas, transcri¢gao de letras, busca por trechos,
entre outras tarefas relacionadas. Essas tarefas envolvem nao sé algoritmos e técnicas
computacionais, mas também processamento de sinais de audio, teoria musical e estudos
psicolégicos, o que torna a drea de pesquisa complexa e interdisciplinar (TZANETAKIS,
2015).

Ha diversos servigos comerciais que utilizam técnicas de MIR para oferecer, princi-
palmente, recomendacoes musicais aos usuarios e possibilitar a descoberta de novas musicas.
Dentre os servigos mais populares, podem ser citados Spotify!', Pandora® e Last.fm® (LEE;
WATERMAN;, 2012). Os servigos de streaming tém se popularizado principalmente por
funcionarem sob demanda, possibilitando que o usuario ouca as musicas que desejar no

momento em que quiser, sem a necessidade de armazena-las previamente, desde que possua

conexao a internet (LEE; WATERMAN, 2012).

Apesar da crescente popularidade de servigos de streaming, os downloads continuam
sendo a principal fonte de lucro digital para gravadoras, somando milhoes em vendas
nas lojas digitais, como iTunes Store e Google Play (IFPI, 2015). Isso indica que, além
dos usuarios que ja construiam suas cole¢bes musicais digitais antes dessa popularizagao,
muitos usuarios continuam armazenando suas miusicas localmente e construindo grandes

colecoes.

Com essas grandes colecoes, surge o problema de explora-las e organiza-las adequa-
damente. A tarefa manual de selecao de faixas e criagao de playlists demanda muito tempo
e dedicagao por parte do usuario. Por outro lado, a funcao de shuffie dos players de musica,
aplicada a totalidade das musicas do usuario, por ser baseada em aleatoriedade, gera
sequéncias geralmente desprovidas de relacao entre as faixas, o que faz com que o usuario
“pule” diversas musicas enquanto ouve a sua colegao (PAMPALK; POHLE; WIDMER,
2005).

Diversos sistemas ja foram propostos para auxiliar o usuario nessa tarefa, tanto
para colegoes locais (KING, 2014; PAMPALK; POHLE; WIDMER, 2005; PAMPALK;
GASSER; TOMITSCH, 2007), quanto para grandes colegdes em nuvem (Spotify, Pandora).

<spotify.com>
<pandora.com>
3 <last.fm>



14 Capitulo 1. Introducio

Como descrito em (SCHEDL et al., 2012), ha diversos tipos de atributos que podem ser
utilizados para quantificar a semelhanca entre musicas, bem como diversas formas de
combina-los para tentar realizar uma previsao do que o usudrio poderia desejar ouvir em
seguida. No entanto, gostos pessoais sao de dificil modelagem e uma alternativa 6tima

ainda nao foi encontrada.

Este trabalho pretende fornecer uma nova alternativa, tendo como base os trabalhos
ja realizados na area. O objetivo geral do trabalho ¢ desenvolver um novo sistema de
recomendacao musical que forneca musicas adequadas, isto é, que minimize o niimero de
musicas rejeitadas pelo usuario. De maneira especifica, pretende-se utilizar neste sistema
agrupamentos de miisicas, para determinar musicas semelhantes, e o feedback implicito do
usuario, para que a recomendacao se adapte ao usudrio e ao mesmo tempo seja transparente

a ele.

O restante deste documento esta dividido da seguinte forma:

O Capitulo 2 apresenta os aspectos tedricos que sao base para este trabalho, incluindo

a revisao de trabalhos semelhantes;

O capitulo 3 apresenta a especificacao do sistema;

O capitulo 4 apresenta a metodologia utilizada em todas as fases do trabalho,

incluindo o projeto e implementacao;

O capitulo 5 inclui maiores detalhes técnicos sobre a implementacao, como os desafios

encontrados e as solugoes utilizadas;

O capitulo 6 apresenta os resultados dos testes e avaliacao do sistema implementado;

No capitulo 7 sao apresentadas as conclusoes sobre o trabalho, bem como perspectivas

de continuacao.
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2 Revisao bibliografica

A partir da pesquisa de trabalhos relacionados na literatura, foram identificados

trés topicos de maior relevancia para este trabalho, sendo eles:

1. Atributos musicais: selecao e extracao dos atributos mais relevantes para cada

aplicagao, como caracteristicas de dudio ou metadados;

2. Organizacao musical: diferentes formas de classificagdo e agrupamento das faixas

com base nos atributos selecionados;

3. Recomendagao musical: estratégias de recomendagao musical e geracao automa-

tica de playlists.

Neste capitulo, serdo detalhados cada um destes topicos e como foram abordados

nos trabalhos analisados.

2.1 Atributos musicais

Segundo (SCHEDL et al., 2012), um dos grandes desafios da drea de MIR é o
desenvolvimento de caracteristicas computacionais que codifiquem conhecimento sobre a
forma como as pessoas percebem uma musica. Essa percepcao é influenciada por diversos
aspectos, como a preferéncia musical do ouvinte, bem como sua cultura e seu conhecimento
musical. Além disso, informagdes relevantes sobre faixas musicais podem ser extraidas de
varias fontes, como o préprio sinal de audio, partituras, letras ou até mesmo capas de

albuns. Os autores categorizam as diversas caracteristicas computacionais em trés classes:

e Contetido musical: esta classe engloba caracteristicas obtidas diretamente da midia

que contém a faixa musical, como o proprio sinal de dudio, partituras ou videoclipes.

As caracteristicas obtidas a partir do sinal de audio sao as mais utilizadas na area de
MIR e sdo comumente obtidas a partir da aplicacdo de técnicas de processamento de
sinais. Essas técnicas geram caracteristicas de baixo nivel, relativas a frequéncias e
amplitudes do sinal, que, embora facilmente manipulaveis computacionalmente, nao
possuem muito significado para a maioria dos ouvintes. Essas caracteristicas podem
ser combinadas para a geragao de descritores de nivel de abstragdao mais alto, como

timbre, ritmo, tom ou até mesmo humor e género;

e Contexto musical: os autores descrevem o contexto musical como toda informacgao

relevante ao item musical em questao que nao pode ser extraida diretamente da
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midia que o contém. Como exemplos dessas informagoes podem ser citados o pais de

origem do autor e a letra da musica.

A extracao dessas caracteristicas é fortemente relacionada a mineracao de dados
da Web, por exemplo em perfis de artistas, playlists geradas por usuarios e tags

colaborativas;

e Contexto do usuario: para aplicagoes com foco nos usuarios, informagoes de
contexto podem ser relevantes. Exemplos dessas caracteristicas sao as atividades
realizadas pelo usuério, aspectos fisiolégicos (como pressao arterial e frequéncia
cardiaca), contexto social, estado emocional e contexto espago-temporal (como

localizagao, horario e clima).

Nos trabalhos pesquisados, as caracteristicas utilizadas foram predominantemente

da classe de contetido musical.

Em (POHLE; PAMPALK; WIDMER, 2005) foram computados os coeficientes
Mel-Cepstrais (MFCC) das musicas para o uso em um modelo de mistura Gaussiano.
Espectros e padroes de flutuagoes descritos no trabalho realizado em (PAMPALK; FLEXER,;
WIDMER, 2005) sao utilizados em (PAMPALK; POHLE; WIDMER, 2005; PAMPALK;
GASSER; TOMITSCH, 2007) para uso em um modelo de agrupamento semelhante ao
utilizado por Self-Organizing Maps (SOM) (KOHONEN, 1998).

Atributos relacionados a timbre (espectro), intensidade (raiz da média quadratica
do sinal do dudio) e ritmo (forga das batidas, regularidade e tempo) foram utilizados em

(LIU; LU; ZHANG, 2003) para identificar o humor que as misicas causam.

Valores relacionados a sensacao de volume e modulagao do volume sao utilizadas
por (PAMPALK, 2006) para o treinamento de uma SOM.

Em (KING, 2014), foram utilizadas diversas caracteristicas de dudio, como descri-

tores do espectro, quantidade de zero-crossing e coeficientes Mel-Cepstrais.

Frameworks de extracao de caracteristicas de audio

A extragao de caracteristicas de adudio é um assunto amplamente discutido e
estudado na area de recuperacao de informagoes musicais. Seu estudo é tao amplo, que ha
diversas bibliotecas e frameworks de licenca aberta para utilizacgao em projetos e pesquisas
relacionadas ao tema; um exemplo pode ser visto em (KING, 2014), que utiliza o jAudio.

Alguns dos frameworks existentes sao:

e Essentia: biblioteca de licenga aberta, escrita em C-++, para andlise de dudio e
extracao de informagoes musicais (BOGDANOV et al., 2013). Nao ¢é considerado um

framework propriamente dito, mas sim um conjunto de algoritmos para a extracao
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de caracteristicas do audio. Sua implementagao foi feita para computacao de grandes
bibliotecas de audio. Os algoritmos presentes na biblioteca incluem o manuseio de
arquivos de audio, andalise de dudio digital, filtros, algoritmos genéricos estatisticos
para caracterizacao, e descritores para caracteristicas de baixo nivel, tal como o

espectro. A biblioteca pode ser obtida no site <http://essentia.upf.edu>;

e Marsyas: framework de licenga aberta, escrito em C++, para processamento de audio
com énfase em aplicagdes de recuperagao de informagoes musicais (TZANETAKIS;
COOK, 2000). O objetivo principal do framework é prover uma arquitetura geral,
extensiva e flexivel para uso em pesquisas e experimentos de ferramentos para
analise de audio. Ele oferece diversas tarefas relacionadas ao manuseio de arquivos
de dudio, tais como entrada e saida de audio e arquivos de dudio, processamento de
sinais e modulos de aprendizado de maquina. O framework pode ser obtido no site

<http://marsyas.info/>;

e MIRtoolbox: conjunto de funcoes escritas em Matlab para a extracdo de carac-
teristicas a partir de arquivos de audio (LARTILLOT; TOIVIAINEN; EEROLA,
2008). Ele tem por objetivo a computacido de uma grande quantidade de carac-
teristicas de bibliotecas de audio, que podem ser aplicados para andlises esta-
tisticas. Taxa de zero-crossing, espectro e tom sdo algumas das caracteristicas
que podem ser extraidas com a ferramenta. Ela pode ser obtida no site <https:

//www.jyu.fi/hum/laitokset /musiikki/en/research/coe/materials/mirtoolbox>;

e jAudio: pacote de software utilizado para a extracao de caracteristicas a partir de
arquivos de dudio. Seu funcionamento é simples: fornecendo uma lista de arquivos de
audio como entrada, é retornada uma lista com os valores reais das caracteristicas
de cada um deles. O pacote pode realizar a extracdo de todas as caracteristicas
mencionadas na descricao dos frameworks anteriores. Ele pode ser obtido no site

<http://sourceforge.net /projects/jmir /files/>.

2.2 Organizacao musical

Diversos métodos de organizacao musical podem ser empregados utilizando os

atributos musicais mencionados anteriormente.

Uma das aplicagoes mais comuns destes atributos é a classificacdo das misicas em
categorias, como género (TZANETAKIS, 2015). A deteccao de caracteristicas musicais
de alto nivel como humor ou até mesmo compositor e album também sao amplamente

estudadas e existe um framework especializado para avaliar tais sistemas!.

L <http://www.music-ir.org/mirex/wiki/MIREX_HOME>
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Em (WATSON; MANDRYK, 2012) sao utilizadas caracteristicas de dudio e in-
formagoes contextuais do usudrio para criar um modelo de humor musical. Em (LIU;
LU; ZHANG, 2003), as caracteristicas de timbre, intensidade e ritmo sdo utilizadas para
classificar o humor de uma musica conforme o plano bidimensional de Thayer, que define

o humor musical nas escalas de valéncia (feliz/triste) e energia (calma/agitada).

Outra forma de organizacao utilizada é a medicao de similaridades entre musicas
com base em seus atributos. Em (PAMPALK; POHLE; WIDMER, 2005; PAMPALK;
GASSER; TOMITSCH, 2007), a similaridade entre as musicas é medida através da
distancia Euclidiana entre os conjuntos de caracteristicas extraidas e é utilizada uma

abordagem semelhante a utilizada em SOMs para o agrupamento de musicas semelhantes.

Outro método de organizagao encontrado é a geracao de clusters a partir dos
atributos extraidos. Os sistemas Islands of Music (PAMPALK, 2006), BeatlesExplorer
(STOBER; NURNBERGER, 2008) e SoniXplorer (LUBBERS; JARKE, 2009) sdo sistemas
que traduzem os agrupamentos musicais para representacoes visuais que simulam localiza-
¢oes geograficas. Tanto BeatlesExplorer quanto SoniXplorer permitem que o usudario altere
a localizacao das faixas, alterando os pesos das caracteristicas adequadamente. Em (KING,
2014) sao gerados agrupamentos hierarquicos de musicas; adicionalmente, um algoritmo
de Reinforcement Learning é utilizado para aprender as probabilidades de transicdao entre
os clusters, a fim de selecionar as musicas com maior probabilidade de serem aceitas pelo

usuario durante a reproducao ou na geragao automatica de playlists.

2.3 Recomendacido de musicas

Diversos trabalhos na area também estao relacionados com uma forma inteligente

e/ou automéatica de recomendacao de musicas para o usudrio.

Em (POHLE; PAMPALK; WIDMER, 2005) foi desenvolvido um trabalho em
que o problema de se gerar playlists de musicas similares foi mapeado em um problema
do caixeiro viajante. Assim, de acordo com esse mapeamento, temos que os vértices do
grafo sdo as musicas na colecao, e que a similaridade entre elas sdo as arestas. Estas
similaridades sao calculadas a partir dos atributos extraidos das musicas, como explicado
anteriormente. Para resolver o problema, trés algoritmos foram propostos: um algoritmo
guloso, que monta um caminho no grafo incrementalmente, examinando as arestas em
ordem crescente de comprimento; um algoritmo de arvore de extensao minima, onde, a
partir da arvore geradora minima encontrada, é realizada uma busca em profundidade
para montar um caminho conectando os vértices na ordem em que eles sao visitados; e
uma versao otimizada do algoritmo de Lin-Kernighan, proposta em 1971. Validacoes foram
feitas para cada um dos algoritmos propostos, verificando a eficiéncia e a qualidade das

playlists geradas, bem como uma analise subjetiva dos mesmos, através da disponibilizacao
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de um applet Java para que os usuarios pudessem navegar pelas listas geradas e avalia-las.
Ressalta-se que, mantendo-se a mesma colecao, os algoritmos sempre retornaram a mesma

playlist, isto é, a playlist gerada ¢é estatica.

Em (PAMPALK; POHLE; WIDMER, 2005) sao apresentadas propostas sobre
geracao de playlists baseadas na similaridade entre as musicas. Foram propostas quatro

heuristicas para a geracao de uma sequéncia de musicas:

1. Dada uma musica semente (escolhida pelo usuédrio ou de maneira aleatéria), os n
vizinhos mais proximos da semente sao reproduzidos, sendo n a soma do nimero de

miusicas aceitas e rejeitadas pelo usuario;

2. A musica candidata (musica ainda nao reproduzida) mais proxima da dltima musica
aceita pelo usuario é a proxima a ser reproduzida. Esta heuristica é similar a anterior,
com a diferenca de que na heuristica anterior a musica semente é sempre a tltima

musica aceita;

3. A musica candidata mais proxima de todas as outras musicas aceitas é a proxima a

ser reproduzida;

4. Para cada musica candidata, seja d, a distancia para a musica aceita mais proxima,
e seja dg a distancia para a musica rejeitada mais proxima. Se d, < d, adiciona-se a
musica candidata ao conjunto S. A partir de S, é reproduzida a musica com menor

d.; se S for vazio, é reproduzida a misica com menor relagao d,/d;.

Com estas heuristicas em maos, testes com casos de uso hipotéticos foram realizados
para comprovar a eficiéncia de cada uma delas, mostrando que a eficiéncia aumenta da

heuristica 1 para a 4.

A partir deste trabalho, (PAMPALK; GASSER; TOMITSCH, 2007) prop6s um
trabalho baseado na heuristica 4. Ao contrario do trabalho anterior, o usuario pode avaliar
musicas e artistas. Uma variacao da heuristica 4, anteriormente explicada, foi proposta.
Esta nova heuristica recomenda as misicas mais préximas de todas as musicas avaliadas
positivamente e mais distantes das musicas avaliadas negativamente. O funcionamento

dessa heuristica esta ilustrado no algoritmo 1, empregando a seguinte notacao:

® Spos/Sneg - 0 conjunto de musicas avaliadas positivamente e negativamente, respecti-

vamente;

o A,s/Ane, - 0 conjunto de artistas avaliados positivamente e negativamente, respecti-

vamente;

® S.und - 0 conjunto de musicas candidatas, isto é, musicas ainda nao reproduzidas;
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e songs(A) - busca de todos as musicas do artista A;
e A(sy,$9) - distancia entre a musica s; e a musica Ss;

e closest_song(S,a) - encontra a musica s € S com o menor valor A(s,a).

Algorithm 1 Gerador de playlists(PAMPALK; POHLE; WIDMER, 2005)

1 A = Spos U (songs(Apos) — Spos)

2: B 4= Speg U (songs(Aneg) — Spos)
3: O« Scand — B

4: for all s in C do

5: da(s) < A(s, closestsong(A, s))
6: dp(s) < A(s, closestsong(B, s))
7: if dy(s) < d,(s) then

8: C+C-s

9: if empty(C) then

10: return argmin(d,(s)/dy(s))
11: else

12: return argmin(d,(s))

A validagao do sistema proposto, diferentemente de (PAMPALK; POHLE; WID-
MER, 2005), teve a participagao de usuarios reais, os quais testaram um player que
implementava a heuristica do algoritmo 1. Foi realizada a validagao da usabilidade do

sistema e da qualidade das playlists geradas.

King (KING, 2014) apresentou um sistema de geracao dindmica de playlists utili-
zando aprendizado por reforgo (Reinforcement Learning). A ideia é que um agente receba
recompensas baseadas em suas agoes. Em seu trabalho, o autor utilizou o algoritmo
Q-learning (WATKINS; DAYAN, 1992). O sistema proposto trabalha com um céalculo de
recompensa 7, baseado no tempo que o usudrio ouviu a musica corrente, onde —1 < r < 1.
Com isso, o célculo pode ser realizado em cinco cenarios diferentes, de acordo com o

feedback implicito do usudario e o tempo de execugdo de uma faixa musical:

Faixa de musica terminada

Quando uma misica é executada até o fim sem nenhuma interrupcao do usuario,

uma recompensa positiva é atribuida;

Msica pulada
Quanto mais cedo uma faixa de musica foi pulada pelo usuario, menor sera o valor
negativo de recompensa. Portanto, tomando como r = —1.0 como o menor valor
negativo de recompensa quando a musica ¢ pulada com 0 segundos, e r = 1.0 como

o maior valor positivo de recompensa quando a musica nao é pulada, um calculo
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linear entre estes dois valores é realizado de acordo com o instante em que a musica

foi pulada;

Escolha de uma nova musica
Um caso similar ocorre quando o usuario escolhe outra musica para reproduzir. Neste
caso, considera-se que o usuario pulou a musica que estava sendo reproduzida, e é
realizado o mesmo célculo de recompensa descrito no item anterior. Além disso, é
atribuida uma grande recompensa positiva a musica escolhida pelo usuario, pois o
autor considera que este é o feedback implicito mais poderoso que o usuario pode

fornecer;

Adicao a fila
O player apresentado pelo autor permite que se adicione musicas a fila de execugao.
Neste caso, diferentemente do caso anterior, o usuario nao interrompe a reproducgao
da faixa atual; dessa forma, ha a atribuicao de dois valores positivos de recompensa:
um para a faixa que estd sendo reproduzida e nao foi pulada, e outro para a faixa

que foi adicionada a fila;

Playlists
Outra funcionalidade que o player do autor apresenta é a importacgao, criagao e
modificacao de playlists feitas manualmente pelo usuario. Neste caso, um pequeno
valor positivo de recompensa é atribuido para todas as musicas presentes na lista, e

um valor positivo maior é atribuido a musicas consecutivas da lista.

O sistema utiliza clusters hierarquicos de musicas, gerados a partir de caracteristicas
extraidas do audio. O algoritmo de aprendizado utiliza as recompensas descritas acima
para aprender as probabilidades de transicao entre os clusters. Assim, durante a reproducao
no modo chamado pelo autor de “smart mode” ou na criacao de playlists, a préxima musica
a ser reproduzida ou incluida na lista é selecionada da seguinte forma: navega-se pelos
clusters de maior probabilidade a partir do caminho até a musica atual; ao chegar num
cluster que possui apenas folhas (musicas), utiliza-se uma func¢ao heuristica para escolha

da musica.

Essa fungao heuristica incorpora: (i) a distancia Euclidiana entre a musica sendo
analisada e a tltima musica tocada; (ii) as misicas mais tocadas; (iii) uma lista do histérico
de reproducao imediato. Cada uma dessas parcelas é somada aos “votos” de uma faixa e a

faixa com maior valor de votos é escolhida.

Para validagao do sistema, o autor realizou testes com usuarios e testes para
medicao dos clusters gerados. No primeiro caso, ao disponibilizar um aplicativo contendo o
sistema para um certo nimero de usuarios, foram coletados dados de uso para determinar

o numero de vezes que o usuario pula uma musica conforme o uso do aplicativo, bem
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como uma pesquisa de satisfacao sobre o sistema. Ja para o segundo caso, experimentos
de validagao no proprio sistema foram realizados para verificar se o mesmo realizava suas

tarefas corretamente.
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3 Especificacao

Neste capitulo, serd apresentada a proposta deste trabalho e sua especificacao.
Primeiramente, na secao 3.1, serd apresentada uma visao geral do sistema e de suas
principais funcionalidades; nas segoes 3.2 e 3.3 serao listados os requisitos funcionais e
nao funcionais levantados; na secao 3.4 serao descritos os casos de uso; na secao 3.5, serd
apresentada a visao de alto nivel da arquitetura proposta; na secao 3.6, sera mostrado o
diagrama de classes do sistema juntamente com uma breve explicacao das classes definidas;
na secao 3.7 serd apresentado o algoritmo de recomendagao utilizado; na secao 3.8 serao
apresentados os wireframes da interface grafica; por fim, na secao 3.9, serd apresentada
uma tabela com as escolhas de tecnologias feitas para o projeto, acompanhada de uma

breve justificativa.

As alteracoes realizadas em relacao a especificacao original apresentada no primeiro

semestre serao explicitadas em cada uma das se¢oes, quando houver.

3.1 Visao geral

O sistema utilizard agrupamentos baseados em caracteristicas de audio bem como

o feedback implicito do usuario para sugerir musicas durante a reproducao.

Em relacao a especificacao apresentada anteriormente, foi removida a etapa de

adaptagao dos clusters.

De maneira geral, o sistema terd o seguinte funcionamento, também ilustrado na

Figura 1:

e Inicialmente, os arquivos de audio serao carregados no sistema.

e Suas caracteristicas serao extraidas, produzindo um conjunto de caracteristicas para

cada faixa.

As caracteristicas utilizadas serdo caracteristicas de conteiido musical, conforme
categorias descritas na secao 2.1. Para selecdo de quais caracteristicas a serem
extraidas, foram utilizadas as referéncias mencionadas na mesma sec¢ao. Para extragao,

foi utilizada uma biblioteca ja existente, como descrito na se¢ao 3.9.

e Esses conjuntos serao enviados para o algoritmo de agrupamento, que produzira os

clusters correspondentes.
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Como descrito na secao 3.9, inicialmente serd utilizado o algoritmo k-médias (RUS-
SEL; NORVIG, 2013). Outros trabalhos que utilizam clustering sao mencionados na

secao 2.2.
e Estes clusters serao utilizados pelo algoritmo de sugestao de musica durante a
reprodug¢ao, bem como o feedback implicito do usuario.

Foi proposto um novo algoritmo de sugestao, com base nos algoritmos pesquisados,

descrito na secao 3.7.

Figura 1 — Diagrama de funcionamento do sistema
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3.2 Requisitos funcionais

Os requisitos funcionais do sistema sao listados abaixo.

Em relagao a especificacao apresentada originalmente, o requisito 2 foi alterado
para a inclusao do player no sistema a ser desenvolvido, ao invés da comunica¢ao com um
player existente. Além disso, foi removido o requisito referente a adaptacao dos clusters

gerados.

RF1. O sistema devera aceitar arquivos de musica no formato mp3;

RF2. O sistema devera reproduzir arquivos de musica adicionados a ele e possuir interface

para receber do usuario os comandos de play, pause, skip e repeat.

RF3. O sistema devera indexar todas as musicas adicionadas ao player que estejam no

formato suportado;
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RF4. O sistema devera extrair e armazenar caracteristicas de audio para todas as musicas

indexadas;

RF5. O sistema deverd gerar clusters de musicas a partir das caracteristicas extraidas e

armazenadas;

RF6. O sistema devera enviar ao player a nova musica a ser tocada ao receber eventos

de término de uma miusica, pulo de uma musica ou inicio da reproducao;
RF7. O sistema devera armazenar a sequéncia de musicas tocadas e eventos recebidos;

RF8. A nova musica a ser tocada deverd ser produzida como funcao dos clusters de

musicas, da sequéncia de musicas tocadas e da sequéncia de eventos recebidos.

3.3 Requisitos nao funcionais

Sao apresentados a seguir os requisitos nao funcionais do sistema. Os valores
utilizados para os intervalos de tempo sao estimativas de valores de espera aceitaveis para
o usudario em cada um dos casos. O tamanho da colecao e a duragao média das faixas sao

restrigoes impostas para atingir o desempenho desejado.

Em relacao a especificacao apresentada originalmente, foram removidos os requisitos

relacionados a adaptagao dos clusters e ao desempenho da rotina de inicializacao.

RNF1. O intervalo entre o recebimento dos eventos e o envio da préoxima musica ao

player deve ser inferior a 20 segundos;

RNF2. A interagao do sistema com o player nao deve interferir na qualidade da repro-

ducao das faixas;



26

Capitulo 3. FEspecificagdo

3.4 Casos de Uso

Nas tabelas a seguir sao descritos os casos de uso do sistema.

Em relacao a especificagdo apresentada originalmente, foi adicionado o caso de uso

3 e removido o caso de uso relacionado a adaptacao dos clusters.

Tabela 1 — UCO01

Cédigo ucCo1

Nome Adicionar misicas

Atores Usuario

Descricao Usuario adiciona musicas ao player.

Requisitos relacionados

RF1, RF3, RF4, RF5

Pré-Condigoes

Nenhuma

Fluxo béasico de eventos

Acoes do ator

Acoes do sistema

adicionar musicas

1. Usuario seleciona comando de

sicas para serem adicionadas

2. Usuario seleciona pastas de mil- | 3. Sistema obtém das pastas selecionadas as musicas nos

formatos suportados

4. Sistema extrai caracteristicas das musicas em segundo
plano

5. Ao término da extracdo, sistema gera os clusters a
partir das caracteristicas extraidas

6. Ao ser terminado, sistema armazena as informagoes
em disco

7. Fim do UC

Tabela 2 — UC02

Cdédigo uco02

Nome Recomendar nova musica

Atores Nenhum

Descricao Sistema recomenda uma nova misica para o usuario.

Requisitos relacionados

RF6, RF8

Pré-Condigoes

Nenhuma

Fluxo basico de eventos

Acoes do ator

Acoes do sistema

1. Sistema recebe um evento de proxima musica

2. Sistema executa o algoritmo para determinar a pro-
xima musica

3. Sistema passa ao player a proxima musica a ser repro-
duzida

4. Fim do UC
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Tabela 3 — UC03

repita uma musica.

Cédigo ucCo3

Nome Reproduzir

Atores Usuario

Descricao Sistema permite que o usuério reproduza, pause, pule ou

Requisitos relacionados

RF2 e RE7

Pré-Condicoes

A miusica deve ter sido adicionada ao sistema.

Fluxo basico de eventos

Acoes do ator

Acoes do sistema

1. Usuédrio seleciona um dos
comandos de reproducao na
interface do sistema.

2. Sistema efetua o comando recebido.

3. Sistema armazena o evento recebido.

4. Fim do UC

3.5 Arquitetura

O sistema possui dois grandes componentes: o player e o componente de légica

da recomendagao. A arquitetura do player foi baseada no padrao MVC (Model- View-

Controller). O componente de l6gica da recomendacao foi dividido em trés médulos légicos,

sendo eles o modulo de extragao, o médulo de agrupamento e o médulo de recomendagao.

Todos os moédulos dependem do modelo de dados, que representa os dados do sistema e

lida com o armazenamento e carregamento desses dados no sistema de arquivos.

O diagrama abaixo representa a visao de alto-nivel da arquitetura do sistema.

Figura 2 — Arquitetura do sistema
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3.6 Diagrama de Classes

Na Figura 3 estd representado o diagrama de classes do sistema, atualizado em

relacdo a especificagao original. Nele estao representados apenas os atributos e métodos

mais relevantes. Também nao estdo representados tipos de pardmetros ou retornos.

—

Figura 3 — Diagrama de classes
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A seguir serdo descritas de maneira simplificada as responsabilidades das classes
definidas no diagrama da Figura 3. As classes controladoras possuem de maneira geral a
responsabilidade de coordenar as tarefas executadas pelas classes as quais se relacionam,

por isso nao estao descritas na lista abaixo.

View

Classe responsavel pela interface grafica do sistema;

Streamer

Classe responsavel pelo playback de musicas;

Extractor

Classe responsavel pela extracao dos atributos das miusicas;

ExtractionParser

Classe responsavel pela adaptacao da saida da extracgao;

Library

Classe responsavel pelo armazenamento da lista atual de miusicas;

Music

Classe que representa uma musica no sistema;

Clusterer

Classe responsavel pela geracao dos agrupamentos de musicas;

ClusterSet

Classe que armazena o conjunto clusters gerados;

Cluster

Classe que representa um cluster;
Ring

Classe que representa um anel de um cluster (conforme definido na segéo 3.7);
Recommender

Classe responsavel por gerar a proxima musica a ser reproduzida pelo player com

base no algoritmo de recomendacao;

Logger

Classe com a responsabilidade de armazenar eventos ocorridos.

No capitulo 5, onde detalhe-se a implementacao do sistema, encontra-se identificada

a relagao entre cada uma dessas classes e os modulos apresentados na figura 2.
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3.7 Algoritmo de recomendacao

O algoritmo de recomendagao desenvolvido neste trabalho baseia-se nas seguintes

ideias:

e Recomendar musicas similares as que o usuario aceitou mais recentemente;

e Introduzir aleatoriedade para que as sequéncias geradas nao sejam monotonas ou

repetitivas;
e Transitar entre clusters de maneira gradual;

e Permitir a recomendacao de misicas similares, porém um pouco mais distantes, para

acompanhar transi¢oes graduais de interesse do usuario.

Com base nessas ideias, foi introduzido o conceito de anéis dentro dos clusters
gerados. Esses anéis sdo gerados com base no raio do cluster, que é a maior distancia entre
uma musica desse cluster e seu centroide. Todas as musicas com distancia ao centroide
menor que um terco do raio sao alocadas no anel mais interno; as musicas com distancia
entre um e dois tercos sdo alocadas no anel intermediario e as demais sao alocadas no anel

mais externo.

A reproducao ¢é iniciada no anel mais interno de um cluster selecionado aleatoria-
mente. Enquanto o usuario aceita as musicas desse anel, sdo recomendadas aleatoriamente
outras musicas dentre as miusicas disponiveis, que sao as musicas do anel atual que nao
fazem parte das tultimas musicas tocadas. Para isso, o algoritmo mantém a lista de musicas

tocadas. Caso o conjunto de musicas disponiveis seja vazio, troca-se de anel.

Caso o usuario rejeite duas musicas consecutivas, transita-se para o préximo anel,
distanciando-se do centroide e, eventualmente, trocando de cluster. Foi introduzida também
uma pequena chance (5%) de mudanca espontanea de anel, para acompanhar transi¢oes

de interesse do usuario. Essa mudanca pode acontecer em ambos os casos.

O diagrama da figura 4 representa o algoritmo desenvolvido.
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Figura 4 — Algoritmo de recomendagao
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3.8 Interface grafica

A partir da decisao de implementar um player ao invés de integrar o sistema a
um player existente como um plugin, como havia sido decidido anteriormente, foi feito
o projeto de uma interface grafica para o player. Essa interface foi projetada para ser
minima, pois um dos objetivos do projeto é que a eficiéncia da recomendacao diminua
a necessidade de interagao do usuario com o player, permitindo que ele se concentre em
suas musicas. Assim, a interface projetada possui apenas uma area de texto para que o
usuario seja informado do progresso das tarefas de extracao e agrupamento e os controles
necessarios para o funcionamento do player: play/pause, skip, repeat e um comando para

adicionar musicas, representado pelo simbolo de adicao.

Figura 5 — Esquema da interface grafica

x play it

3.9 Tecnologias

Na tabela 4 estao listadas as escolhas realizadas para o desenvolvimento do projeto
em relacao a tecnologias e bibliotecas utilizadas. Essas escolhas foram alteradas em relagao

a especificacdo apresentada originalmente. As justificativas estao apresentadas abaixo.

Tabela 4 — Tecnologias a serem utilizadas no projeto

Item Escolha

Plataforma Linux (Elementary/Ubuntu Trusty)
Linguagem Ruby 2.2.3

Framework de extragao Essentia

Biblioteca de agrupamento | gem kmeans-clusterer

L <https://rubygems.org/gems/kmeans-clusterer>
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A linguagem Ruby foi escolhida para o desenvolvimento por ser uma linguagem
orientada a objetos e ser a linguagem com a qual os autores possuem maior familiari-
dade, possibilitando o foco nos objetivos do projeto diretamente, sem a necessidade do

aprendizado ou revisao da linguagem.

A plataforma Linux foi escolhida por possuir maior facilidade e ferramentas de
desenvolvimento, além de ser gratuita. A distribuicao utilizada pelos autores para desen-

volvimento é o Elementary OS 2, baseado no sistema Ubuntu 14.04.

O algoritmo de agrupamento utilizado serd inicialmente o k-médias, por ser um dos
algoritmos de agrupamento mais tradicionais e ser amplamente utilizado. A implementagao
utilizada serd a fornecida pela gem (biblioteca da linguagem Ruby) kmeans-clusterer,

devido a simplicidade de utilizagao e bom desempenho.

A biblioteca de extragao selecionada foi a Essentia, devido ao suporte nativo ao

formato mp3.

2 <http://elementary.io>
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4 Metodologia

O desenvolvimento deste trabalho foi divido em dois semestres. Durante o primeiro
semestre, foi priorizado o trabalho de pesquisa bibliografica e concepcao do projeto. No
segundo semestre, foi realizada a implementacao, seguindo uma abordagem iterativa e

incremental.

A seguir sao apresentadas as etapas nas quais foi dividido o desenvolvimento deste

trabalho e como foram desenvolvidas cada uma delas.

Etapa 1: Pesquisa bibliografica

A primeira parte do trabalho consistiu na pesquisa bibliografica. Foram consultadas
diversas fontes académicas, especialmente artigos publicados na area e trabalhos

apresentados em conferéncias, como por exemplo as realizadas pela ISMIR !.

Etapa 2: Analise

Com o objetivo de delinear a funcionalidade do sistema, foi realizada uma etapa de

analise para levantamento de requisitos funcionais e casos de uso.

As informagoes levantadas nesta etapa serviram como base para o desenvolvimento

do projeto, porém foram aprimoradas durante a etapa de implementacao.

Etapa 3: Design

Nesta etapa, foi determinada a plataforma de implantagao do sistema e foi realizada
a modelagem do sistema, através da definicao da arquitetura e da estrutura interna

dos componentes.

Da mesma forma que na etapa de analise, a modelagem realizada nesta etapa foi

aprimorada durante a implementagcao.

Etapa 4: Implementacao

Na etapa de implementacao, foram desenvolvidos e testados cada um dos componentes
definidos para o sistema de forma iterativa e incremental. Cada funcionalidade do
sistema foi implementada através de ciclos de modelagem, implementacao e testes,
até que o comportamento desejado fosse atingido. Foram utilizados testes unitéarios

e o framework de testes automatizados RSpec?.

O desenvolvimento dos componentes foi iniciado pelo modelo de dados. Na etapa

posterior, os médulos de extracao e agrupamento foram implementados paralelamente

L International Society for Music Information Retrieval (<http://www.ismir.net/>)

2 <http://rspec.info/>
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ao player, com seus trés componentes (playback, controller e view). Em seguida, o
player foi integrado a esses modulos paralelamente ao desenvolvimento do algoritmo

de recomendagao e, finalmente, foi integrado a ele.

Ao término desta etapa, foram realizados testes de integracao.

Etapa 5: Testes e avaliacao

O sistema foi testado a partir de uma avaliacdo do niimero de pulos resultantes
da simulacao de alguns casos de uso, de maneira similar aos testes realizados em
(PAMPALK; POHLE; WIDMER, 2005). Os resultados também foram comparados

aos obtidos neste trabalho.

Etapa 6: Documentacgao

Os resultados obtidos foram avaliados e registrados na documentacao final do projeto.
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5 Implementacao

Neste capitulo, serao apresentados detalhes da implementacao de cada modulo,
bem como os desafios encontrados e soluc¢oes utilizadas. A se¢ao 5.2 descreve o médulo
de extracao; a secao 5.3 descreve o médulo de agrupamento, incluindo as modifica¢oes
introduzidas na estrutura de dados dos clusters; a secao 5.4 descreve a implementagao do
player, incluindo playback, interface grafica e integragdo com o restante do sistema; por

fim, a secao 5.5 descreve a implementacao da recomendacao.

Cada uma das segbes esta ilustrada por um diagrama de classes esquematico do
componente descrito. No entanto, esses diagramas nao sao completos. O diagrama completo
encontra-se na figura 3. O codigo fonte deste projeto pode ser encontrado no seu repositorio

em <https://github.com/play-it/play-it>.

5.1 Modelo de dados

Figura 6 — Modelo de dados
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O modelo de dados implementado é constituido das classes que representam os
dados do sistema, relacionados a misicas e clusters. As classes Library e ClusterSet
implementam métodos para armazenamento e carregamento de seus dados a partir do

sistema de arquivos.

5.2 Extracao

Como mencionado na secao 3.9, foi utilizada a biblioteca Essentia para extracao
das caracteristicas de audio. Para isso, foi utilizado um arquivo binario precompilado para
a plataforma escolhida, que é invocado pela classe Extractor através de chamadas do
sistema. As caracteristicas a serem extraidas sao configuradas através de um arquivo de
perfil, e a saida é gravada em formato JSON num arquivo temporario; os dados deste

arquivo sao entao transformado num objeto em formato adequado pela classe Parser.
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Figura 7 — Médulo de extracao
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Devido a problemas de desempenho da extracdo, esse processo foi transferido para
o segundo plano através do uso de uma thread secundaria e uma fila de extracao. Estas sao
controlados pelo Controller. Isso permite que novas miisicas sejam processadas enquanto

o player mantém seu funcionamento.

Devido a esse funcionamento assincrono, foi utilizado o padrao de design de
delegagao para que o Controller informe ao solicitante o progresso da extragdao. O
protocolo definido consiste em dois métodos: um invocado quando hé alteragdo no tamanho

da fila e outro invocado quando a extracao ¢ concluida.

5.3 Agrupamento

Figura 8 — Mdédulo de agrupamento
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Como descrito na secao 3.9, o algoritmo de agrupamento utilizado foi o k-médias,

implementado pela gem kmeans-clusterer.

Para a geracao dos clusters, ¢ utilizado o método de avaliagao da soma do erro

quadratico, a fim de determinar o melhor conjunto de clusters gerados. Logo, o agrupamento
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é executado com diferentes valores de k, em um intervalo de dois até a raiz do nimero de
musicas, e selecionado o conjunto com menor soma do erro quadratico. Para garantir a
convergéncia, para cada valor de k, o algoritmo de agrupamento é executado um ntmero

de vezes calculado a partir do niimero de musicas a serem agrupadas.

Para dar suporte ao algoritmo de recomendagao, foi introduzida a estrutura de
anéis nos clusters gerados. Esses anéis sao regioes dos clusters ao redor de seu centroide,

determinadas com base no raio do cluster.

5.4 Player

Figura 9 — Mdédulo player
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O player possui trés componentes: controller, responséavel pelo controle e integracao
dos demais componentes, bem como a comunicagao com o restante do sistema, wview,

responsavel pela interface grafica, e playback, responsavel pela reproducao de audio.

A wiew foi implementada através da biblioteca GTK+!, utilizando builders para
definir o layout através de XML e também utilizando folhas de estilo (CSS) para alguns
efeitos da interface. Os icones foram obtidos gratuitamente da colegdo Material Design do

Google, disponivel no site flaticon?.

O playback foi implementado através da biblioteca GStreamer®, utilizando especifi-

camente o plugin playbin®. Isso foi encapsulado na classe Streamer.

O controle foi realizado com base no padrao de delegagdo, como mencionado

na secao 5.2. View e Streamer possuem uma referéncia para o Controller e enviam

<http://www.gtk.org/>

<http://www.flaticon.com/packs/material-design>

<http://gstreamer.freedesktop.org/>

<http://gstreamer.freedesktop.org/data/doc/gstreamer /head /gst-plugins-base-plugins /html/
gst-plugins-base-plugins-playbin.html>

1
2
3
4
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mensagens a ele quando capturam eventos através de um protocolo predefinido. O trecho

de cédigo abaixo ilustra os métodos delegados da View para o Controller.

| def_delegators :Q@controller,
2 :on_play_icon_view_item_activated,
3 :on_replay_icon_view_item_activated,

4 :on_skip_icon_view_item_activated

A figura 10 apresenta uma captura de tela da interface do player.

Figura 10 — Captura de tela da interface do player

® playit

5.5 Recomendacao

Figura 11 — Classe Recommender

Recommender

Recommender ClusterSet

-———-————> -clusters

+recommend(entrada last_event)

A recomendacao foi implementada através da classe Recommender, que possui como
atributo o ClusterSet de todas as musicas indexadas e recebe um evento para recomendar
a proxima musica. Essa classe possui também diversos outros atributos para manter o seu
estado, como o indice do cluster e do anel em que se encontra, e uma lista de musicas ja

tocadas para evitar recomendacoes muito frequentes da mesma musica.
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A gem probability® foi utilizada para implementar as chances de troca espontanea

de anéis ou clusters.

> <http://ariejan.github.io/probability />
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6 Testes e avaliacao

Neste capitulo, sdo apresentados os testes realizados e seus resultados. A secdo
6.1 descreve os testes realizados; a secao 6.2 apresenta os resultados obtidos e a secao 6.3

apresenta a analise dos resultados.

6.1 Descricao

Para realizacao dos testes, foi utilizado o dataset de trechos de musicas disponi-
bilizado pela Universidade de Dortmund!. O dataset contém 1886 trechos de musicas de
diferentes géneros em formato mp3. A tabela 5 apresenta a quantidade de trechos para

cada género.

Tabela 5 — Quantidade de trechos de cada género no dataset utilizado

Género Quantidade de musicas | %
alternative 145 7,7
blues 120 6,4
electronic 113 6,0
folkcountry 222 11,8
funksoulrnb 47 2,5
jazz 319 16,9
pop 116 6,1
raphiphop 300 15,9
rock 504 26,7
total 1886 100,0

O processo de extragao de caracteristicas e agrupamento das musicas desse dataset

resultou em 43 clusters.

Foram realizados dois tipos de testes. O primeiro tipo, denominado objetivo,
consistiu em automaticamente aceitar ou pular uma musica sugerida pelo sistema com
base em seu género. Foram realizados dois testes desse tipo a partir da simulacao de casos
de uso, como realizado em (PAMPALK; POHLE; WIDMER, 2005).

Para a simulacao dos casos de uso, foi assumido que o usuario gostaria de escutar
uma hora de musica, o que sao aproximadamente 20 misicas aceitas. Os casos simulados

foram:

1. Sao aceitas apenas musicas do mesmo género;

L <http://www-ai.cs.uni-dortmund.de/audio.html>
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2. Sao aceitas inicialmente musicas de um género A, em seguida miusicas tanto do
género A quanto de um género B similar e, por fim, sdo aceitas apenas musicas do

género B (transicao de géneros).

Como base de comparagao, a heuristica A apresentada em (PAMPALK; POHLE;
WIDMER, 2005) foi implementada. Um pequeno mdédulo de selegao aleatoria (shuffle)

também foi implementado para comparacao de resultados.

O segundo tipo de testes, denominado de subjetivo, envolveu a participacao de dois
usuarios. Eles foram apresentados a uma musica inicial e foram instruidos a aceitar ou
pular as musicas subsequentes sugeridas pelo sistema com base na similaridade percebida
por eles entre a musica sugerida e a musica inicial. Foram realizados quatro testes, com

musicas iniciais de diferentes géneros.

6.2 Resultados

Para o primeiro teste objetivo, era esperado que a taxa de aceitagao do shuffile fosse
aproximadamente igual a proporcao de musicas do género sendo testado, como mostrado na
tabela 5. As taxas médias de aceitacao para cada um dos géneros e algoritmos comparados

neste caso de uso estao apresentadas na tabela 6.

Tabela 6 — Taxas de aceitagao por género para o primeiro teste objetivo (%)

Género Algoritmo desenvolvido | Heuristica de referéncia | Shuffle
alternative 6,8 41,7 7,4
blues 5,8 10,3 6,6
electronic 7,8 11,2 5,3
folkcountry 12,1 10,1 11,4
funksoulrnb 2,1 23,3 2,6
jazz 27,0 52,6 20,2
pop 5,4 11,5 7,4
raphiphop 9,0 37,0 15,8
rock 31,8 28,3 25,9
todos 6,9 16,8 7,3

Para o segundo teste objetivo, os géneros de origem e destino (A e B) foram

escolhidos manualmente. A tabela 7 mostra os resultados.

Para os testes subjetivos, apenas o algoritmo desenvolvido neste trabalho foi testado.
As taxas médias de aceitacdo para cada um dos géneros testados estdo apresentadas na
tabela 8.
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Tabela 7 — Taxas de aceitagao por género para o segundo teste objetivo (%)

De Para Algoritmo desenvolvido | Heuristica de referéncia | Shuffle
jazz blues 14,4 12,9 12,6
alternative | rock 19,5 16,0 18,8
rock raphiphop 30,6 16,4 29,7
blues pop 7,0 20,1 8,2
funksoulrnb | electronic 4,7 12,6 4.8
todos 9,8 11,5 10,1

Tabela 8 — Taxas de aceitagdo por género para os testes subjetivos

Género Taxa de aceitagao (%)
rock 92,3
raphiphop 42,9
electronic 48,0
funksoulrnb 60,0
todos 55,8

6.3 Analise dos resultados

Pode-se observar, no primeiro teste objetivo, que a taxa de aceitacao do algoritmo
proposto foi inferior em relagao a heuristica de referéncia na maioria dos géneros. Pode-se
notar uma taxa de aceitacdo muito mais baixa em géneros com os menores NUMeros
de miusicas, como observado para o género funksoulrnb (2,5% do total de musicas), em
que obtivemos uma taxa de aceitagao de apenas 2,1%, sendo muito inferior aos 23,3%
da heuristica de referéncia, e comparavel aos resultados do shuffle, que obteve 2,6% de
aceitagdo. Em comparacdo, o género rock (26,6% do total de musicas) obteve melhores

resultados que as outras duas referéncias.

J& no segundo teste objetivo, o algoritmo proposto obteve resultados similares aos
outros algoritmos, mas ainda com taxas de aceitagao baixas quando sao envolvidos géneros
com quantidades baixas de musicas, como ¢é visto na transicao de blues para pop, e de

funksoulrnb para electronic.

Em contrapartida, os testes subjetivos obtiveram resultados satisfatérios, mesmo
quando o teste foi iniciado com um género de poucas miisicas, como mostra a taxa de
aceitacao de 60% quando iniciado o teste com uma musica do género funksoulrnb, que

representa apenas 2,5% do total de musicas.






47

7 Conclusoes

Como demonstrado pelos testes realizados, o desempenho do algoritmo de recomen-
dacao nao foi satisfatério nos testes objetivos. Isso pode mostrar uma possivel deficiéncia
na heuristica proposta, dados os resultados comparaveis a selecao aleatoria, ou ainda a ma

escolha de caracteristicas para extracao.

Por outro lado, o algoritmo de recomendacao mostrou-se satisfatorio a partir
dos testes subjetivos realizados, o que pode indicar que os géneros nao sao os melhores
categorizadores para as musicas, ou que a estratégia de agrupamento nao foi bem sucedida.
Contudo, uma quantidade maior de testes precisa ser efetuada, aplicada a um grupo maior

de usuérios.

Foi observado durante os testes que a heuristica proposta nao leva em consideragao
as musicas aceitas pelo usuério. Isso faz com que, ao mudar de cluster, o algoritmo demore a
voltar para um cluster semelhante, causando muitas rejei¢coes. Para melhoria do algoritmo,
pode ser implementado um mecanismo mais sofisticado de troca de cluster, que leve em

consideracao as musicas ja aceitas pelo usuario.

Outra continuacao possivel para o projeto é a implementagao da estratégia de
adaptacao dos clusters, como planejado originalmente, a partir dos dados de uso. Isso
permitiria que a percep¢ao de similaridade do usuario influenciasse diretamente nos clusters

gerados e, consequentemente, na recomendagao de musicas.
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