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Resumo
Os serviços de recomendação musical mais utilizados atualmente têm como foco propor-
cionar ao usuário uma forma de descoberta de novas músicas, utilizando informações
extraídas da sua base de usuários, como as músicas favoritas de pessoas com gostos
semelhantes e as músicas mais populares entre seus amigos. No entanto, ainda existem
muitas pessoas que mantêm grandes coleções musicais em seus dispositivos pessoais e
não possuem formas automatizadas de organizar essas coleções ou receber recomendações
adequadas ao seu perfil de uso. Este trabalho pretende atender a essas pessoas, utilizando
técnicas de agrupamento e o feedback do usuário durante a reprodução para sugerir ao
usuário o que ouvir em seguida.

Palavras-chave: Recomendação de músicas, geração de playlists, music information
retrieval.





Abstract
Current popular music recommendation services help the user to discover new songs,
based mainly on social information, i.e. favorite songs of people with similar tastes, or
friends’ favorite songs. However, there are still many people that keep large song collections
on their personal devices and they can’t organize automatically these collections or get
recommendations suited to certain listening profiles. This project aims to help those people,
using song similarity, clustering and implicit feedback during playback to suggest to the
user what to hear next.

Keywords: Music recommendation, playlist generation, music information retrieval.
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1 Introdução

Com a crescente disponibilidade de arquivos de música em formato digital na inter-
net, a área de pesquisa em Recuperação de Informações Musicais (MIR - Music Information
Retrieval) têm se desenvolvido rapidamente. Diversos algoritmos e ferramentas têm sido
propostos para organização de coleções musicais, recomendação de músicas e geração de
playlists, classificação e agrupamento das músicas, transcrição de letras, busca por trechos,
entre outras tarefas relacionadas. Essas tarefas envolvem não só algoritmos e técnicas
computacionais, mas também processamento de sinais de áudio, teoria musical e estudos
psicológicos, o que torna a área de pesquisa complexa e interdisciplinar (TZANETAKIS,
2015).

Há diversos serviços comerciais que utilizam técnicas de MIR para oferecer, princi-
palmente, recomendações musicais aos usuários e possibilitar a descoberta de novas músicas.
Dentre os serviços mais populares, podem ser citados Spotify1, Pandora2 e Last.fm3 (LEE;
WATERMAN, 2012). Os serviços de streaming têm se popularizado principalmente por
funcionarem sob demanda, possibilitando que o usuário ouça as músicas que desejar no
momento em que quiser, sem a necessidade de armazená-las previamente, desde que possua
conexão à internet (LEE; WATERMAN, 2012).

Apesar da crescente popularidade de serviços de streaming, os downloads continuam
sendo a principal fonte de lucro digital para gravadoras, somando milhões em vendas
nas lojas digitais, como iTunes Store e Google Play (IFPI, 2015). Isso indica que, além
dos usuários que já construíam suas coleções musicais digitais antes dessa popularização,
muitos usuários continuam armazenando suas músicas localmente e construindo grandes
coleções.

Com essas grandes coleções, surge o problema de explorá-las e organizá-las adequa-
damente. A tarefa manual de seleção de faixas e criação de playlists demanda muito tempo
e dedicação por parte do usuário. Por outro lado, a função de shuffle dos players de música,
aplicada à totalidade das músicas do usuário, por ser baseada em aleatoriedade, gera
sequências geralmente desprovidas de relação entre as faixas, o que faz com que o usuário
“pule” diversas músicas enquanto ouve a sua coleção (PAMPALK; POHLE; WIDMER,
2005).

Diversos sistemas já foram propostos para auxiliar o usuário nessa tarefa, tanto
para coleções locais (KING, 2014; PAMPALK; POHLE; WIDMER, 2005; PAMPALK;
GASSER; TOMITSCH, 2007), quanto para grandes coleções em nuvem (Spotify, Pandora).
1 <spotify.com>
2 <pandora.com>
3 <last.fm>
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Como descrito em (SCHEDL et al., 2012), há diversos tipos de atributos que podem ser
utilizados para quantificar a semelhança entre músicas, bem como diversas formas de
combiná-los para tentar realizar uma previsão do que o usuário poderia desejar ouvir em
seguida. No entanto, gostos pessoais são de difícil modelagem e uma alternativa ótima
ainda não foi encontrada.

Este trabalho pretende fornecer uma nova alternativa, tendo como base os trabalhos
já realizados na área. O objetivo geral do trabalho é desenvolver um novo sistema de
recomendação musical que forneça músicas adequadas, isto é, que minimize o número de
músicas rejeitadas pelo usuário. De maneira específica, pretende-se utilizar neste sistema
agrupamentos de músicas, para determinar músicas semelhantes, e o feedback implícito do
usuário, para que a recomendação se adapte ao usuário e ao mesmo tempo seja transparente
a ele.

O restante deste documento está dividido da seguinte forma:

• O Capítulo 2 apresenta os aspectos teóricos que são base para este trabalho, incluindo
a revisão de trabalhos semelhantes;

• O capítulo 3 apresenta a especificação do sistema;

• O capítulo 4 apresenta a metodologia utilizada em todas as fases do trabalho,
incluindo o projeto e implementação;

• O capítulo 5 inclui maiores detalhes técnicos sobre a implementação, como os desafios
encontrados e as soluções utilizadas;

• O capítulo 6 apresenta os resultados dos testes e avaliação do sistema implementado;

• No capítulo 7 são apresentadas as conclusões sobre o trabalho, bem como perspectivas
de continuação.
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2 Revisão bibliográfica

A partir da pesquisa de trabalhos relacionados na literatura, foram identificados
três tópicos de maior relevância para este trabalho, sendo eles:

1. Atributos musicais: seleção e extração dos atributos mais relevantes para cada
aplicação, como características de áudio ou metadados;

2. Organização musical: diferentes formas de classificação e agrupamento das faixas
com base nos atributos selecionados;

3. Recomendação musical: estratégias de recomendação musical e geração automá-
tica de playlists.

Neste capítulo, serão detalhados cada um destes tópicos e como foram abordados
nos trabalhos analisados.

2.1 Atributos musicais
Segundo (SCHEDL et al., 2012), um dos grandes desafios da área de MIR é o

desenvolvimento de características computacionais que codifiquem conhecimento sobre a
forma como as pessoas percebem uma música. Essa percepção é influenciada por diversos
aspectos, como a preferência musical do ouvinte, bem como sua cultura e seu conhecimento
musical. Além disso, informações relevantes sobre faixas musicais podem ser extraídas de
várias fontes, como o próprio sinal de áudio, partituras, letras ou até mesmo capas de
álbuns. Os autores categorizam as diversas características computacionais em três classes:

• Conteúdo musical: esta classe engloba características obtidas diretamente da mídia
que contém a faixa musical, como o próprio sinal de áudio, partituras ou videoclipes.

As características obtidas a partir do sinal de áudio são as mais utilizadas na área de
MIR e são comumente obtidas a partir da aplicação de técnicas de processamento de
sinais. Essas técnicas geram características de baixo nível, relativas a frequências e
amplitudes do sinal, que, embora facilmente manipuláveis computacionalmente, não
possuem muito significado para a maioria dos ouvintes. Essas características podem
ser combinadas para a geração de descritores de nível de abstração mais alto, como
timbre, ritmo, tom ou até mesmo humor e gênero;

• Contexto musical: os autores descrevem o contexto musical como toda informação
relevante ao item musical em questão que não pode ser extraída diretamente da
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mídia que o contém. Como exemplos dessas informações podem ser citados o país de
origem do autor e a letra da música.

A extração dessas características é fortemente relacionada à mineração de dados
da Web, por exemplo em perfis de artistas, playlists geradas por usuários e tags
colaborativas;

• Contexto do usuário: para aplicações com foco nos usuários, informações de
contexto podem ser relevantes. Exemplos dessas características são as atividades
realizadas pelo usuário, aspectos fisiológicos (como pressão arterial e frequência
cardíaca), contexto social, estado emocional e contexto espaço-temporal (como
localização, horário e clima).

Nos trabalhos pesquisados, as características utilizadas foram predominantemente
da classe de conteúdo musical.

Em (POHLE; PAMPALK; WIDMER, 2005) foram computados os coeficientes
Mel-Cepstrais (MFCC) das músicas para o uso em um modelo de mistura Gaussiano.
Espectros e padrões de flutuações descritos no trabalho realizado em (PAMPALK; FLEXER;
WIDMER, 2005) são utilizados em (PAMPALK; POHLE; WIDMER, 2005; PAMPALK;
GASSER; TOMITSCH, 2007) para uso em um modelo de agrupamento semelhante ao
utilizado por Self-Organizing Maps (SOM) (KOHONEN, 1998).

Atributos relacionados a timbre (espectro), intensidade (raiz da média quadrática
do sinal do áudio) e ritmo (força das batidas, regularidade e tempo) foram utilizados em
(LIU; LU; ZHANG, 2003) para identificar o humor que as músicas causam.

Valores relacionados à sensação de volume e modulação do volume são utilizadas
por (PAMPALK, 2006) para o treinamento de uma SOM.

Em (KING, 2014), foram utilizadas diversas características de áudio, como descri-
tores do espectro, quantidade de zero-crossing e coeficientes Mel-Cepstrais.

Frameworks de extração de características de áudio

A extração de características de áudio é um assunto amplamente discutido e
estudado na área de recuperação de informações musicais. Seu estudo é tão amplo, que há
diversas bibliotecas e frameworks de licença aberta para utilização em projetos e pesquisas
relacionadas ao tema; um exemplo pode ser visto em (KING, 2014), que utiliza o jAudio.
Alguns dos frameworks existentes são:

• Essentia: biblioteca de licença aberta, escrita em C++, para análise de áudio e
extração de informações musicais (BOGDANOV et al., 2013). Não é considerado um
framework propriamente dito, mas sim um conjunto de algoritmos para a extração
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de características do áudio. Sua implementação foi feita para computação de grandes
bibliotecas de áudio. Os algoritmos presentes na biblioteca incluem o manuseio de
arquivos de áudio, análise de áudio digital, filtros, algoritmos genéricos estatísticos
para caracterização, e descritores para características de baixo nível, tal como o
espectro. A biblioteca pode ser obtida no site <http://essentia.upf.edu>;

• Marsyas: framework de licença aberta, escrito em C++, para processamento de áudio
com ênfase em aplicações de recuperação de informações musicais (TZANETAKIS;
COOK, 2000). O objetivo principal do framework é prover uma arquitetura geral,
extensiva e flexível para uso em pesquisas e experimentos de ferramentos para
análise de áudio. Ele oferece diversas tarefas relacionadas ao manuseio de arquivos
de áudio, tais como entrada e saída de áudio e arquivos de áudio, processamento de
sinais e módulos de aprendizado de máquina. O framework pode ser obtido no site
<http://marsyas.info/>;

• MIRtoolbox: conjunto de funções escritas em Matlab para a extração de carac-
terísticas a partir de arquivos de áudio (LARTILLOT; TOIVIAINEN; EEROLA,
2008). Ele tem por objetivo a computação de uma grande quantidade de carac-
terísticas de bibliotecas de áudio, que podem ser aplicados para análises esta-
tísticas. Taxa de zero-crossing, espectro e tom são algumas das características
que podem ser extraídas com a ferramenta. Ela pode ser obtida no site <https:
//www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox>;

• jAudio: pacote de software utilizado para a extração de características a partir de
arquivos de áudio. Seu funcionamento é simples: fornecendo uma lista de arquivos de
áudio como entrada, é retornada uma lista com os valores reais das características
de cada um deles. O pacote pode realizar a extração de todas as características
mencionadas na descrição dos frameworks anteriores. Ele pode ser obtido no site
<http://sourceforge.net/projects/jmir/files/>.

2.2 Organização musical

Diversos métodos de organização musical podem ser empregados utilizando os
atributos musicais mencionados anteriormente.

Uma das aplicações mais comuns destes atributos é a classificação das músicas em
categorias, como gênero (TZANETAKIS, 2015). A detecção de características musicais
de alto nível como humor ou até mesmo compositor e álbum também são amplamente
estudadas e existe um framework especializado para avaliar tais sistemas1.
1 <http://www.music-ir.org/mirex/wiki/MIREX_HOME>
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Em (WATSON; MANDRYK, 2012) são utilizadas características de áudio e in-
formações contextuais do usuário para criar um modelo de humor musical. Em (LIU;
LU; ZHANG, 2003), as características de timbre, intensidade e ritmo são utilizadas para
classificar o humor de uma música conforme o plano bidimensional de Thayer, que define
o humor musical nas escalas de valência (feliz/triste) e energia (calma/agitada).

Outra forma de organização utilizada é a medição de similaridades entre músicas
com base em seus atributos. Em (PAMPALK; POHLE; WIDMER, 2005; PAMPALK;
GASSER; TOMITSCH, 2007), a similaridade entre as músicas é medida através da
distância Euclidiana entre os conjuntos de características extraídas e é utilizada uma
abordagem semelhante à utilizada em SOMs para o agrupamento de músicas semelhantes.

Outro método de organização encontrado é a geração de clusters a partir dos
atributos extraídos. Os sistemas Islands of Music (PAMPALK, 2006), BeatlesExplorer
(STOBER; NÜRNBERGER, 2008) e SoniXplorer (LÜBBERS; JARKE, 2009) são sistemas
que traduzem os agrupamentos musicais para representações visuais que simulam localiza-
ções geográficas. Tanto BeatlesExplorer quanto SoniXplorer permitem que o usuário altere
a localização das faixas, alterando os pesos das características adequadamente. Em (KING,
2014) são gerados agrupamentos hierárquicos de músicas; adicionalmente, um algoritmo
de Reinforcement Learning é utilizado para aprender as probabilidades de transição entre
os clusters, a fim de selecionar as músicas com maior probabilidade de serem aceitas pelo
usuário durante a reprodução ou na geração automática de playlists.

2.3 Recomendação de músicas

Diversos trabalhos na área também estão relacionados com uma forma inteligente
e/ou automática de recomendação de músicas para o usuário.

Em (POHLE; PAMPALK; WIDMER, 2005) foi desenvolvido um trabalho em
que o problema de se gerar playlists de músicas similares foi mapeado em um problema
do caixeiro viajante. Assim, de acordo com esse mapeamento, temos que os vértices do
grafo são as músicas na coleção, e que a similaridade entre elas são as arestas. Estas
similaridades são calculadas a partir dos atributos extraídos das músicas, como explicado
anteriormente. Para resolver o problema, três algoritmos foram propostos: um algoritmo
guloso, que monta um caminho no grafo incrementalmente, examinando as arestas em
ordem crescente de comprimento; um algoritmo de árvore de extensão mínima, onde, a
partir da árvore geradora mínima encontrada, é realizada uma busca em profundidade
para montar um caminho conectando os vértices na ordem em que eles são visitados; e
uma versão otimizada do algoritmo de Lin-Kernighan, proposta em 1971. Validações foram
feitas para cada um dos algoritmos propostos, verificando a eficiência e a qualidade das
playlists geradas, bem como uma análise subjetiva dos mesmos, através da disponibilização
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de um applet Java para que os usuários pudessem navegar pelas listas geradas e avaliá-las.
Ressalta-se que, mantendo-se a mesma coleção, os algoritmos sempre retornaram a mesma
playlist, isto é, a playlist gerada é estática.

Em (PAMPALK; POHLE; WIDMER, 2005) são apresentadas propostas sobre
geração de playlists baseadas na similaridade entre as músicas. Foram propostas quatro
heurísticas para a geração de uma sequência de músicas:

1. Dada uma música semente (escolhida pelo usuário ou de maneira aleatória), os n

vizinhos mais próximos da semente são reproduzidos, sendo n a soma do número de
músicas aceitas e rejeitadas pelo usuário;

2. A música candidata (música ainda não reproduzida) mais próxima da última música
aceita pelo usuário é a próxima a ser reproduzida. Esta heurística é similar à anterior,
com a diferença de que na heurística anterior a música semente é sempre a última
música aceita;

3. A música candidata mais próxima de todas as outras músicas aceitas é a próxima a
ser reproduzida;

4. Para cada música candidata, seja da a distância para a música aceita mais próxima,
e seja ds a distância para a música rejeitada mais próxima. Se da < ds, adiciona-se a
música candidata ao conjunto S. A partir de S, é reproduzida a música com menor
da; se S for vazio, é reproduzida a música com menor relação da/ds.

Com estas heurísticas em mãos, testes com casos de uso hipotéticos foram realizados
para comprovar a eficiência de cada uma delas, mostrando que a eficiência aumenta da
heurística 1 para a 4.

A partir deste trabalho, (PAMPALK; GASSER; TOMITSCH, 2007) propôs um
trabalho baseado na heurística 4. Ao contrário do trabalho anterior, o usuário pode avaliar
músicas e artistas. Uma variação da heurística 4, anteriormente explicada, foi proposta.
Esta nova heurística recomenda as músicas mais próximas de todas as músicas avaliadas
positivamente e mais distantes das músicas avaliadas negativamente. O funcionamento
dessa heurística está ilustrado no algoritmo 1, empregando a seguinte notação:

• Spos/Sneg - o conjunto de músicas avaliadas positivamente e negativamente, respecti-
vamente;

• Apos/Aneg - o conjunto de artistas avaliados positivamente e negativamente, respecti-
vamente;

• Scand - o conjunto de músicas candidatas, isto é, músicas ainda não reproduzidas;
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• songs(A) - busca de todos as músicas do artista A;

• ∆(s1, s2) - distância entre a música s1 e a música s2;

• closest_song(S, a) - encontra a música s ∈ S com o menor valor ∆(s, a).

Algorithm 1 Gerador de playlists(PAMPALK; POHLE; WIDMER, 2005)
1: A← Spos ∪ (songs(Apos)− Spos)
2: B ← Sneg ∪ (songs(Aneg)− Spos)
3: C ← Scand −B
4: for all s in C do
5: da(s)← ∆(s, closestsong(A, s))
6: db(s)← ∆(s, closestsong(B, s))
7: if db(s) < da(s) then
8: C ← C − s

9: if empty(C) then
10: return argmin(da(s)/db(s))
11: else
12: return argmin(da(s))

A validação do sistema proposto, diferentemente de (PAMPALK; POHLE; WID-
MER, 2005), teve a participação de usuários reais, os quais testaram um player que
implementava a heurística do algoritmo 1. Foi realizada a validação da usabilidade do
sistema e da qualidade das playlists geradas.

King (KING, 2014) apresentou um sistema de geração dinâmica de playlists utili-
zando aprendizado por reforço (Reinforcement Learning). A ideia é que um agente receba
recompensas baseadas em suas ações. Em seu trabalho, o autor utilizou o algoritmo
Q-learning (WATKINS; DAYAN, 1992). O sistema proposto trabalha com um cálculo de
recompensa r, baseado no tempo que o usuário ouviu a música corrente, onde −1 < r < 1.
Com isso, o cálculo pode ser realizado em cinco cenários diferentes, de acordo com o
feedback implícito do usuário e o tempo de execução de uma faixa musical:

Faixa de música terminada
Quando uma música é executada até o fim sem nenhuma interrupção do usuário,
uma recompensa positiva é atribuída;

Música pulada
Quanto mais cedo uma faixa de música foi pulada pelo usuário, menor será o valor
negativo de recompensa. Portanto, tomando como r = −1.0 como o menor valor
negativo de recompensa quando a música é pulada com 0 segundos, e r = 1.0 como
o maior valor positivo de recompensa quando a música não é pulada, um cálculo
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linear entre estes dois valores é realizado de acordo com o instante em que a música
foi pulada;

Escolha de uma nova música
Um caso similar ocorre quando o usuário escolhe outra música para reproduzir. Neste
caso, considera-se que o usuário pulou a música que estava sendo reproduzida, e é
realizado o mesmo cálculo de recompensa descrito no item anterior. Além disso, é
atribuída uma grande recompensa positiva à música escolhida pelo usuário, pois o
autor considera que este é o feedback implícito mais poderoso que o usuário pode
fornecer;

Adição à fila
O player apresentado pelo autor permite que se adicione músicas à fila de execução.
Neste caso, diferentemente do caso anterior, o usuário não interrompe a reprodução
da faixa atual; dessa forma, há a atribuição de dois valores positivos de recompensa:
um para a faixa que está sendo reproduzida e não foi pulada, e outro para a faixa
que foi adicionada à fila;

Playlists
Outra funcionalidade que o player do autor apresenta é a importação, criação e
modificação de playlists feitas manualmente pelo usuário. Neste caso, um pequeno
valor positivo de recompensa é atribuído para todas as músicas presentes na lista, e
um valor positivo maior é atribuído a músicas consecutivas da lista.

O sistema utiliza clusters hierárquicos de músicas, gerados a partir de características
extraídas do áudio. O algoritmo de aprendizado utiliza as recompensas descritas acima
para aprender as probabilidades de transição entre os clusters. Assim, durante a reprodução
no modo chamado pelo autor de “smart mode” ou na criação de playlists, a próxima música
a ser reproduzida ou incluída na lista é selecionada da seguinte forma: navega-se pelos
clusters de maior probabilidade a partir do caminho até a música atual; ao chegar num
cluster que possui apenas folhas (músicas), utiliza-se uma função heurística para escolha
da música.

Essa função heurística incorpora: (i) a distância Euclidiana entre a música sendo
analisada e a última música tocada; (ii) as músicas mais tocadas; (iii) uma lista do histórico
de reprodução imediato. Cada uma dessas parcelas é somada aos “votos” de uma faixa e a
faixa com maior valor de votos é escolhida.

Para validação do sistema, o autor realizou testes com usuários e testes para
medição dos clusters gerados. No primeiro caso, ao disponibilizar um aplicativo contendo o
sistema para um certo número de usuários, foram coletados dados de uso para determinar
o número de vezes que o usuário pula uma música conforme o uso do aplicativo, bem



22 Capítulo 2. Revisão bibliográfica

como uma pesquisa de satisfação sobre o sistema. Já para o segundo caso, experimentos
de validação no próprio sistema foram realizados para verificar se o mesmo realizava suas
tarefas corretamente.
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3 Especificação

Neste capítulo, será apresentada a proposta deste trabalho e sua especificação.
Primeiramente, na seção 3.1, será apresentada uma visão geral do sistema e de suas
principais funcionalidades; nas seções 3.2 e 3.3 serão listados os requisitos funcionais e
não funcionais levantados; na seção 3.4 serão descritos os casos de uso; na seção 3.5, será
apresentada a visão de alto nível da arquitetura proposta; na seção 3.6, será mostrado o
diagrama de classes do sistema juntamente com uma breve explicação das classes definidas;
na seção 3.7 será apresentado o algoritmo de recomendação utilizado; na seção 3.8 serão
apresentados os wireframes da interface gráfica; por fim, na seção 3.9, será apresentada
uma tabela com as escolhas de tecnologias feitas para o projeto, acompanhada de uma
breve justificativa.

As alterações realizadas em relação à especificação original apresentada no primeiro
semestre serão explicitadas em cada uma das seções, quando houver.

3.1 Visão geral

O sistema utilizará agrupamentos baseados em características de áudio bem como
o feedback implícito do usuário para sugerir músicas durante a reprodução.

Em relação à especificação apresentada anteriormente, foi removida a etapa de
adaptação dos clusters.

De maneira geral, o sistema terá o seguinte funcionamento, também ilustrado na
Figura 1:

• Inicialmente, os arquivos de áudio serão carregados no sistema.

• Suas características serão extraídas, produzindo um conjunto de características para
cada faixa.

As características utilizadas serão características de conteúdo musical, conforme
categorias descritas na seção 2.1. Para seleção de quais características a serem
extraídas, foram utilizadas as referências mencionadas na mesma seção. Para extração,
foi utilizada uma biblioteca já existente, como descrito na seção 3.9.

• Esses conjuntos serão enviados para o algoritmo de agrupamento, que produzirá os
clusters correspondentes.
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Como descrito na seção 3.9, inicialmente será utilizado o algoritmo k-médias (RUS-
SEL; NORVIG, 2013). Outros trabalhos que utilizam clustering são mencionados na
seção 2.2.

• Estes clusters serão utilizados pelo algoritmo de sugestão de música durante a
reprodução, bem como o feedback implícito do usuário.

Foi proposto um novo algoritmo de sugestão, com base nos algoritmos pesquisados,
descrito na seção 3.7.

Figura 1 – Diagrama de funcionamento do sistema

3.2 Requisitos funcionais

Os requisitos funcionais do sistema são listados abaixo.

Em relação à especificação apresentada originalmente, o requisito 2 foi alterado
para a inclusão do player no sistema a ser desenvolvido, ao invés da comunicação com um
player existente. Além disso, foi removido o requisito referente à adaptação dos clusters
gerados.

RF1. O sistema deverá aceitar arquivos de música no formato mp3;

RF2. O sistema deverá reproduzir arquivos de música adicionados a ele e possuir interface
para receber do usuário os comandos de play, pause, skip e repeat.

RF3. O sistema deverá indexar todas as músicas adicionadas ao player que estejam no
formato suportado;
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RF4. O sistema deverá extrair e armazenar características de áudio para todas as músicas
indexadas;

RF5. O sistema deverá gerar clusters de músicas a partir das características extraídas e
armazenadas;

RF6. O sistema deverá enviar ao player a nova música a ser tocada ao receber eventos
de término de uma música, pulo de uma música ou início da reprodução;

RF7. O sistema deverá armazenar a sequência de músicas tocadas e eventos recebidos;

RF8. A nova música a ser tocada deverá ser produzida como função dos clusters de
músicas, da sequência de músicas tocadas e da sequência de eventos recebidos.

3.3 Requisitos não funcionais
São apresentados a seguir os requisitos não funcionais do sistema. Os valores

utilizados para os intervalos de tempo são estimativas de valores de espera aceitáveis para
o usuário em cada um dos casos. O tamanho da coleção e a duração média das faixas são
restrições impostas para atingir o desempenho desejado.

Em relação à especificação apresentada originalmente, foram removidos os requisitos
relacionados à adaptação dos clusters e ao desempenho da rotina de inicialização.

RNF1. O intervalo entre o recebimento dos eventos e o envio da próxima música ao
player deve ser inferior a 20 segundos;

RNF2. A interação do sistema com o player não deve interferir na qualidade da repro-
dução das faixas;
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3.4 Casos de Uso

Nas tabelas a seguir são descritos os casos de uso do sistema.

Em relação à especificação apresentada originalmente, foi adicionado o caso de uso
3 e removido o caso de uso relacionado à adaptação dos clusters.

Tabela 1 – UC01
Código UC01
Nome Adicionar músicas
Atores Usuário
Descrição Usuário adiciona músicas ao player.
Requisitos relacionados RF1, RF3, RF4, RF5
Pré-Condições Nenhuma

Fluxo básico de eventos
Ações do ator Ações do sistema

1. Usuário seleciona comando de
adicionar músicas
2. Usuário seleciona pastas de mú-
sicas para serem adicionadas

3. Sistema obtém das pastas selecionadas as músicas nos
formatos suportados
4. Sistema extrai características das músicas em segundo
plano
5. Ao término da extração, sistema gera os clusters a
partir das características extraídas
6. Ao ser terminado, sistema armazena as informações
em disco

7. Fim do UC

Tabela 2 – UC02
Código UC02
Nome Recomendar nova música
Atores Nenhum
Descrição Sistema recomenda uma nova música para o usuário.
Requisitos relacionados RF6, RF8
Pré-Condições Nenhuma

Fluxo básico de eventos
Ações do ator Ações do sistema

1. Sistema recebe um evento de próxima música
2. Sistema executa o algoritmo para determinar a pró-
xima música
3. Sistema passa ao player a próxima música a ser repro-
duzida

4. Fim do UC
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Tabela 3 – UC03
Código UC03
Nome Reproduzir
Atores Usuário
Descrição Sistema permite que o usuário reproduza, pause, pule ou

repita uma música.
Requisitos relacionados RF2 e RF7
Pré-Condições A música deve ter sido adicionada ao sistema.

Fluxo básico de eventos
Ações do ator Ações do sistema

1. Usuário seleciona um dos
comandos de reprodução na
interface do sistema.

2. Sistema efetua o comando recebido.

3. Sistema armazena o evento recebido.
4. Fim do UC

3.5 Arquitetura

O sistema possui dois grandes componentes: o player e o componente de lógica
da recomendação. A arquitetura do player foi baseada no padrão MVC (Model-View-
Controller). O componente de lógica da recomendação foi dividido em três módulos lógicos,
sendo eles o módulo de extração, o módulo de agrupamento e o módulo de recomendação.
Todos os módulos dependem do modelo de dados, que representa os dados do sistema e
lida com o armazenamento e carregamento desses dados no sistema de arquivos.

O diagrama abaixo representa a visão de alto-nível da arquitetura do sistema.

Figura 2 – Arquitetura do sistema
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3.6 Diagrama de Classes

Na Figura 3 está representado o diagrama de classes do sistema, atualizado em
relação à especificação original. Nele estão representados apenas os atributos e métodos
mais relevantes. Também não estão representados tipos de parâmetros ou retornos.

Figura 3 – Diagrama de classes



3.6. Diagrama de Classes 29

A seguir serão descritas de maneira simplificada as responsabilidades das classes
definidas no diagrama da Figura 3. As classes controladoras possuem de maneira geral a
responsabilidade de coordenar as tarefas executadas pelas classes às quais se relacionam,
por isso não estão descritas na lista abaixo.

View
Classe responsável pela interface gráfica do sistema;

Streamer
Classe responsável pelo playback de músicas;

Extractor
Classe responsável pela extração dos atributos das músicas;

ExtractionParser
Classe responsável pela adaptação da saída da extração;

Library
Classe responsável pelo armazenamento da lista atual de músicas;

Music
Classe que representa uma música no sistema;

Clusterer
Classe responsável pela geração dos agrupamentos de músicas;

ClusterSet
Classe que armazena o conjunto clusters gerados;

Cluster
Classe que representa um cluster ;

Ring
Classe que representa um anel de um cluster (conforme definido na seção 3.7);

Recommender
Classe responsável por gerar a próxima música a ser reproduzida pelo player com
base no algoritmo de recomendação;

Logger
Classe com a responsabilidade de armazenar eventos ocorridos.

No capítulo 5, onde detalhe-se a implementação do sistema, encontra-se identificada
a relação entre cada uma dessas classes e os módulos apresentados na figura 2.



30 Capítulo 3. Especificação

3.7 Algoritmo de recomendação
O algoritmo de recomendação desenvolvido neste trabalho baseia-se nas seguintes

ideias:

• Recomendar músicas similares às que o usuário aceitou mais recentemente;

• Introduzir aleatoriedade para que as sequências geradas não sejam monótonas ou
repetitivas;

• Transitar entre clusters de maneira gradual;

• Permitir a recomendação de músicas similares, porém um pouco mais distantes, para
acompanhar transições graduais de interesse do usuário.

Com base nessas ideias, foi introduzido o conceito de anéis dentro dos clusters
gerados. Esses anéis são gerados com base no raio do cluster, que é a maior distância entre
uma música desse cluster e seu centroide. Todas as músicas com distância ao centroide
menor que um terço do raio são alocadas no anel mais interno; as músicas com distância
entre um e dois terços são alocadas no anel intermediário e as demais são alocadas no anel
mais externo.

A reprodução é iniciada no anel mais interno de um cluster selecionado aleatoria-
mente. Enquanto o usuário aceita as músicas desse anel, são recomendadas aleatoriamente
outras músicas dentre as músicas disponíveis, que são as músicas do anel atual que não
fazem parte das últimas músicas tocadas. Para isso, o algoritmo mantém a lista de músicas
tocadas. Caso o conjunto de músicas disponíveis seja vazio, troca-se de anel.

Caso o usuário rejeite duas músicas consecutivas, transita-se para o próximo anel,
distanciando-se do centroide e, eventualmente, trocando de cluster. Foi introduzida também
uma pequena chance (5%) de mudança espontânea de anel, para acompanhar transições
de interesse do usuário. Essa mudança pode acontecer em ambos os casos.

O diagrama da figura 4 representa o algoritmo desenvolvido.
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Figura 4 – Algoritmo de recomendação
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3.8 Interface gráfica
A partir da decisão de implementar um player ao invés de integrar o sistema a

um player existente como um plugin, como havia sido decidido anteriormente, foi feito
o projeto de uma interface gráfica para o player. Essa interface foi projetada para ser
mínima, pois um dos objetivos do projeto é que a eficiência da recomendação diminua
a necessidade de interação do usuário com o player, permitindo que ele se concentre em
suas músicas. Assim, a interface projetada possui apenas uma área de texto para que o
usuário seja informado do progresso das tarefas de extração e agrupamento e os controles
necessários para o funcionamento do player : play/pause, skip, repeat e um comando para
adicionar músicas, representado pelo símbolo de adição.

Figura 5 – Esquema da interface gráfica

3.9 Tecnologias
Na tabela 4 estão listadas as escolhas realizadas para o desenvolvimento do projeto

em relação a tecnologias e bibliotecas utilizadas. Essas escolhas foram alteradas em relação
à especificação apresentada originalmente. As justificativas estão apresentadas abaixo.

Tabela 4 – Tecnologias a serem utilizadas no projeto
Item Escolha
Plataforma Linux (Elementary/Ubuntu Trusty)
Linguagem Ruby 2.2.3
Framework de extração Essentia
Biblioteca de agrupamento gem kmeans-clusterer 1

1 <https://rubygems.org/gems/kmeans-clusterer>
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A linguagem Ruby foi escolhida para o desenvolvimento por ser uma linguagem
orientada a objetos e ser a linguagem com a qual os autores possuem maior familiari-
dade, possibilitando o foco nos objetivos do projeto diretamente, sem a necessidade do
aprendizado ou revisão da linguagem.

A plataforma Linux foi escolhida por possuir maior facilidade e ferramentas de
desenvolvimento, além de ser gratuita. A distribuição utilizada pelos autores para desen-
volvimento é o Elementary OS 2, baseado no sistema Ubuntu 14.04.

O algoritmo de agrupamento utilizado será inicialmente o k-médias, por ser um dos
algoritmos de agrupamento mais tradicionais e ser amplamente utilizado. A implementação
utilizada será a fornecida pela gem (biblioteca da linguagem Ruby) kmeans-clusterer,
devido à simplicidade de utilização e bom desempenho.

A biblioteca de extração selecionada foi a Essentia, devido ao suporte nativo ao
formato mp3.

2 <http://elementary.io>
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4 Metodologia

O desenvolvimento deste trabalho foi divido em dois semestres. Durante o primeiro
semestre, foi priorizado o trabalho de pesquisa bibliográfica e concepção do projeto. No
segundo semestre, foi realizada a implementação, seguindo uma abordagem iterativa e
incremental.

A seguir são apresentadas as etapas nas quais foi dividido o desenvolvimento deste
trabalho e como foram desenvolvidas cada uma delas.

Etapa 1: Pesquisa bibliográfica

A primeira parte do trabalho consistiu na pesquisa bibliográfica. Foram consultadas
diversas fontes acadêmicas, especialmente artigos publicados na área e trabalhos
apresentados em conferências, como por exemplo as realizadas pela ISMIR 1.

Etapa 2: Análise

Com o objetivo de delinear a funcionalidade do sistema, foi realizada uma etapa de
análise para levantamento de requisitos funcionais e casos de uso.

As informações levantadas nesta etapa serviram como base para o desenvolvimento
do projeto, porém foram aprimoradas durante a etapa de implementação.

Etapa 3: Design

Nesta etapa, foi determinada a plataforma de implantação do sistema e foi realizada
a modelagem do sistema, através da definição da arquitetura e da estrutura interna
dos componentes.

Da mesma forma que na etapa de análise, a modelagem realizada nesta etapa foi
aprimorada durante a implementação.

Etapa 4: Implementação

Na etapa de implementação, foram desenvolvidos e testados cada um dos componentes
definidos para o sistema de forma iterativa e incremental. Cada funcionalidade do
sistema foi implementada através de ciclos de modelagem, implementação e testes,
até que o comportamento desejado fosse atingido. Foram utilizados testes unitários
e o framework de testes automatizados RSpec2.

O desenvolvimento dos componentes foi iniciado pelo modelo de dados. Na etapa
posterior, os módulos de extração e agrupamento foram implementados paralelamente

1 International Society for Music Information Retrieval (<http://www.ismir.net/>)
2 <http://rspec.info/>
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ao player, com seus três componentes (playback, controller e view). Em seguida, o
player foi integrado a esses módulos paralelamente ao desenvolvimento do algoritmo
de recomendação e, finalmente, foi integrado a ele.

Ao término desta etapa, foram realizados testes de integração.

Etapa 5: Testes e avaliação

O sistema foi testado a partir de uma avaliação do número de pulos resultantes
da simulação de alguns casos de uso, de maneira similar aos testes realizados em
(PAMPALK; POHLE; WIDMER, 2005). Os resultados também foram comparados
aos obtidos neste trabalho.

Etapa 6: Documentação

Os resultados obtidos foram avaliados e registrados na documentação final do projeto.
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5 Implementação

Neste capítulo, serão apresentados detalhes da implementação de cada módulo,
bem como os desafios encontrados e soluções utilizadas. A seção 5.2 descreve o módulo
de extração; a seção 5.3 descreve o módulo de agrupamento, incluindo as modificações
introduzidas na estrutura de dados dos clusters; a seção 5.4 descreve a implementação do
player, incluindo playback, interface gráfica e integração com o restante do sistema; por
fim, a seção 5.5 descreve a implementação da recomendação.

Cada uma das seções está ilustrada por um diagrama de classes esquemático do
componente descrito. No entanto, esses diagramas não são completos. O diagrama completo
encontra-se na figura 3. O código fonte deste projeto pode ser encontrado no seu repositório
em <https://github.com/play-it/play-it>.

5.1 Modelo de dados

Figura 6 – Modelo de dados

O modelo de dados implementado é constituído das classes que representam os
dados do sistema, relacionados a músicas e clusters. As classes Library e ClusterSet
implementam métodos para armazenamento e carregamento de seus dados a partir do
sistema de arquivos.

5.2 Extração

Como mencionado na seção 3.9, foi utilizada a biblioteca Essentia para extração
das características de áudio. Para isso, foi utilizado um arquivo binário precompilado para
a plataforma escolhida, que é invocado pela classe Extractor através de chamadas do
sistema. As características a serem extraídas são configuradas através de um arquivo de
perfil, e a saída é gravada em formato JSON num arquivo temporário; os dados deste
arquivo são então transformado num objeto em formato adequado pela classe Parser.
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Figura 7 – Módulo de extração

Devido a problemas de desempenho da extração, esse processo foi transferido para
o segundo plano através do uso de uma thread secundária e uma fila de extração. Estas são
controlados pelo Controller. Isso permite que novas músicas sejam processadas enquanto
o player mantém seu funcionamento.

Devido a esse funcionamento assíncrono, foi utilizado o padrão de design de
delegação para que o Controller informe ao solicitante o progresso da extração. O
protocolo definido consiste em dois métodos: um invocado quando há alteração no tamanho
da fila e outro invocado quando a extração é concluída.

5.3 Agrupamento

Figura 8 – Módulo de agrupamento

Como descrito na seção 3.9, o algoritmo de agrupamento utilizado foi o k-médias,
implementado pela gem kmeans-clusterer.

Para a geração dos clusters, é utilizado o método de avaliação da soma do erro
quadrático, a fim de determinar o melhor conjunto de clusters gerados. Logo, o agrupamento
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é executado com diferentes valores de k, em um intervalo de dois até a raiz do número de
músicas, e selecionado o conjunto com menor soma do erro quadrático. Para garantir a
convergência, para cada valor de k, o algoritmo de agrupamento é executado um número
de vezes calculado a partir do número de músicas a serem agrupadas.

Para dar suporte ao algoritmo de recomendação, foi introduzida a estrutura de
anéis nos clusters gerados. Esses anéis são regiões dos clusters ao redor de seu centroide,
determinadas com base no raio do cluster.

5.4 Player

Figura 9 – Módulo player

O player possui três componentes: controller, responsável pelo controle e integração
dos demais componentes, bem como a comunicação com o restante do sistema, view,
responsável pela interface gráfica, e playback, responsável pela reprodução de áudio.

A view foi implementada através da biblioteca GTK+1, utilizando builders para
definir o layout através de XML e também utilizando folhas de estilo (CSS) para alguns
efeitos da interface. Os ícones foram obtidos gratuitamente da coleção Material Design do
Google, disponível no site flaticon2.

O playback foi implementado através da biblioteca GStreamer3, utilizando especifi-
camente o plugin playbin4. Isso foi encapsulado na classe Streamer.

O controle foi realizado com base no padrão de delegação, como mencionado
na seção 5.2. View e Streamer possuem uma referência para o Controller e enviam
1 <http://www.gtk.org/>
2 <http://www.flaticon.com/packs/material-design>
3 <http://gstreamer.freedesktop.org/>
4 <http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-base-plugins/html/

gst-plugins-base-plugins-playbin.html>
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mensagens a ele quando capturam eventos através de um protocolo predefinido. O trecho
de código abaixo ilustra os métodos delegados da View para o Controller.

1 def_delegators : @controller ,

2 : on_play_icon_view_item_activated ,

3 : on_replay_icon_view_item_activated ,

4 : on_skip_icon_view_item_activated

A figura 10 apresenta uma captura de tela da interface do player.

Figura 10 – Captura de tela da interface do player

5.5 Recomendação

Figura 11 – Classe Recommender

A recomendação foi implementada através da classe Recommender, que possui como
atributo o ClusterSet de todas as músicas indexadas e recebe um evento para recomendar
a próxima música. Essa classe possui também diversos outros atributos para manter o seu
estado, como o índice do cluster e do anel em que se encontra, e uma lista de músicas já
tocadas para evitar recomendações muito frequentes da mesma música.



5.5. Recomendação 41

A gem probability5 foi utilizada para implementar as chances de troca espontânea
de anéis ou clusters.

5 <http://ariejan.github.io/probability/>
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6 Testes e avaliação

Neste capítulo, são apresentados os testes realizados e seus resultados. A seção
6.1 descreve os testes realizados; a seção 6.2 apresenta os resultados obtidos e a seção 6.3
apresenta a análise dos resultados.

6.1 Descrição
Para realização dos testes, foi utilizado o dataset de trechos de músicas disponi-

bilizado pela Universidade de Dortmund1. O dataset contém 1886 trechos de músicas de
diferentes gêneros em formato mp3. A tabela 5 apresenta a quantidade de trechos para
cada gênero.

Tabela 5 – Quantidade de trechos de cada gênero no dataset utilizado

Gênero Quantidade de músicas %
alternative 145 7,7
blues 120 6,4
electronic 113 6,0
folkcountry 222 11,8
funksoulrnb 47 2,5
jazz 319 16,9
pop 116 6,1
raphiphop 300 15,9
rock 504 26,7
total 1886 100,0

O processo de extração de características e agrupamento das músicas desse dataset
resultou em 43 clusters.

Foram realizados dois tipos de testes. O primeiro tipo, denominado objetivo,
consistiu em automaticamente aceitar ou pular uma música sugerida pelo sistema com
base em seu gênero. Foram realizados dois testes desse tipo a partir da simulação de casos
de uso, como realizado em (PAMPALK; POHLE; WIDMER, 2005).

Para a simulação dos casos de uso, foi assumido que o usuário gostaria de escutar
uma hora de música, o que são aproximadamente 20 músicas aceitas. Os casos simulados
foram:

1. São aceitas apenas músicas do mesmo gênero;
1 <http://www-ai.cs.uni-dortmund.de/audio.html>
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2. São aceitas inicialmente músicas de um gênero A, em seguida músicas tanto do
gênero A quanto de um gênero B similar e, por fim, são aceitas apenas músicas do
gênero B (transição de gêneros).

Como base de comparação, a heurística A apresentada em (PAMPALK; POHLE;
WIDMER, 2005) foi implementada. Um pequeno módulo de seleção aleatória (shuffle)
também foi implementado para comparação de resultados.

O segundo tipo de testes, denominado de subjetivo, envolveu a participação de dois
usuários. Eles foram apresentados a uma música inicial e foram instruídos a aceitar ou
pular as músicas subsequentes sugeridas pelo sistema com base na similaridade percebida
por eles entre a música sugerida e a música inicial. Foram realizados quatro testes, com
músicas iniciais de diferentes gêneros.

6.2 Resultados

Para o primeiro teste objetivo, era esperado que a taxa de aceitação do shuffle fosse
aproximadamente igual à proporção de músicas do gênero sendo testado, como mostrado na
tabela 5. As taxas médias de aceitação para cada um dos gêneros e algoritmos comparados
neste caso de uso estão apresentadas na tabela 6.

Tabela 6 – Taxas de aceitação por gênero para o primeiro teste objetivo (%)

Gênero Algoritmo desenvolvido Heurística de referência Shuffle
alternative 6,8 41,7 7,4
blues 5,8 10,3 6,6
electronic 7,8 11,2 5,3
folkcountry 12,1 10,1 11,4
funksoulrnb 2,1 23,3 2,6
jazz 27,0 52,6 20,2
pop 5,4 11,5 7,4
raphiphop 9,0 37,0 15,8
rock 31,8 28,3 25,9
todos 6,9 16,8 7,3

Para o segundo teste objetivo, os gêneros de origem e destino (A e B) foram
escolhidos manualmente. A tabela 7 mostra os resultados.

Para os testes subjetivos, apenas o algoritmo desenvolvido neste trabalho foi testado.
As taxas médias de aceitação para cada um dos gêneros testados estão apresentadas na
tabela 8.
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Tabela 7 – Taxas de aceitação por gênero para o segundo teste objetivo (%)
De Para Algoritmo desenvolvido Heurística de referência Shuffle
jazz blues 14,4 12,9 12,6
alternative rock 19,5 16,0 18,8
rock raphiphop 30,6 16,4 29,7
blues pop 7,0 20,1 8,2
funksoulrnb electronic 4,7 12,6 4,8
todos 9,8 11,5 10,1

Tabela 8 – Taxas de aceitação por gênero para os testes subjetivos

Gênero Taxa de aceitação (%)
rock 92,3
raphiphop 42,9
electronic 48,0
funksoulrnb 60,0
todos 55,8

6.3 Análise dos resultados
Pode-se observar, no primeiro teste objetivo, que a taxa de aceitação do algoritmo

proposto foi inferior em relação à heurística de referência na maioria dos gêneros. Pode-se
notar uma taxa de aceitação muito mais baixa em gêneros com os menores números
de músicas, como observado para o gênero funksoulrnb (2,5% do total de músicas), em
que obtivemos uma taxa de aceitação de apenas 2,1%, sendo muito inferior aos 23,3%
da heurística de referência, e comparável aos resultados do shuffle, que obteve 2,6% de
aceitação. Em comparação, o gênero rock (26,6% do total de músicas) obteve melhores
resultados que as outras duas referências.

Já no segundo teste objetivo, o algoritmo proposto obteve resultados similares aos
outros algoritmos, mas ainda com taxas de aceitação baixas quando são envolvidos gêneros
com quantidades baixas de músicas, como é visto na transição de blues para pop, e de
funksoulrnb para electronic.

Em contrapartida, os testes subjetivos obtiveram resultados satisfatórios, mesmo
quando o teste foi iniciado com um gênero de poucas músicas, como mostra a taxa de
aceitação de 60% quando iniciado o teste com uma música do gênero funksoulrnb, que
representa apenas 2,5% do total de músicas.
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7 Conclusões

Como demonstrado pelos testes realizados, o desempenho do algoritmo de recomen-
dação não foi satisfatório nos testes objetivos. Isso pode mostrar uma possível deficiência
na heurística proposta, dados os resultados comparáveis à seleção aleatória, ou ainda a má
escolha de características para extração.

Por outro lado, o algoritmo de recomendação mostrou-se satisfatório a partir
dos testes subjetivos realizados, o que pode indicar que os gêneros não são os melhores
categorizadores para as músicas, ou que a estratégia de agrupamento não foi bem sucedida.
Contudo, uma quantidade maior de testes precisa ser efetuada, aplicada a um grupo maior
de usuários.

Foi observado durante os testes que a heurística proposta não leva em consideração
as músicas aceitas pelo usuário. Isso faz com que, ao mudar de cluster, o algoritmo demore a
voltar para um cluster semelhante, causando muitas rejeições. Para melhoria do algoritmo,
pode ser implementado um mecanismo mais sofisticado de troca de cluster, que leve em
consideração as músicas já aceitas pelo usuário.

Outra continuação possível para o projeto é a implementação da estratégia de
adaptação dos clusters, como planejado originalmente, a partir dos dados de uso. Isso
permitiria que a percepção de similaridade do usuário influenciasse diretamente nos clusters
gerados e, consequentemente, na recomendação de músicas.
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