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Abstract

In this work we make a careful and detailed analysis of some aspects present in option pricing,
taking into account transaction costs and stochastic volatility. We make use of a finite difference
method for the solution of the nonlinear partial differential equation models.

Initially we do a brief introduction on the finite difference method and some basic transaction costs
models on option pricing.

Then we show the derivation of a mathematical model for option pricing with transaction costs
and stochastic volatility, based on a modified Hull-White process containing general drift in terms

of asset and volatility. After that we show that, with minor changes to this model, we can obtain
another model for the case of an option with r correlated assets and deterministic volatilities.

Finite difference models were developed for pricing “plain vanilla” options, exotic “up & out call”
barrier options and “basket” options with two assets. The goal was to show not only some cases
in which the models can be applied but also that they are able to deal with many other “payoffs”
with European characteristics and also for » assets. Various graphical outputs were implemented in
Matlab® pricing scripts, so that we could clearly see the power of the models in the evaluation of
options Greek’s, fundamental for financial market professionals in their risk analysis and portfolios
hedge.

To make possible a comparison and evaluation of the quality, efficiency and accuracy of the mod-
els, Monte Carlo simulations were developed to price the same types of options considered by the
finite difference models.

Various validation and robustness tests were developed, analyzing particular cases of “payoffs” and
comparing the solution provided by the models with closed formula analytical solutions and the
results from other work found in the finance literature.

Finally, several simulations were performed and the results were presented in tables, with error
estimates relative to other pricing methods. All Matlab® scripts used in this work are presented in
the C Annex.
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Capitulo 1

Introducio

1.1 Motivacéo para este trabalho

No mercado financeiro, cada vez mais sdo langados produtos derivativos cujo aprecamento cor-
reto levando-se em conta os custos de transacdo depende de solugdes de equagSes complexas ou
simula¢Ges numéricas que podem ser muito demoradas. Além disso tais produtos podem ser ex6-
ticos, compostos por vdrios ativos, ou ainda apresentar volatilidade estocdstica. Este tltimo caso
€ um problema de longa data em finangas e sua solugdo torna-se importante quando dados de alta
frequéncia sdo considerados. Nestes casos a volatilidade € estocdstica e portanto € necessério tra-
balhar com modelos que levam em conta volatilidade como uma varidvel estocdstica [1].

Além da solu¢do matemdtica do problema, para a implementa¢fo prdtica no mercado financeiro,
necessita-se obter o preco considerando os custos de transa¢do. Surge entdc a necessidade da ob-
tencio de modelos matemadticos capazes de fazer o aprecamento de derivativos cujo ativo nego-
ciado requer o pagamento de taxas de transacdo que sdo proporcionais 4 quantidade e 2o valor dos
ativos base.

Neste trabalho pretendemos investigar com cuidado, ferramentas de apre¢amento de alta relevan-
cia para profissionais do mercado financeiro que trabalham com op¢des ou andlises de risco de
investimentos.

Vamos estudar alguns casos de aprecamento de opg¢Ges, pela da solu¢do numérica da equacio dife-
rencial parcial ndo linear, levando-se em conta custos de transagdo, volatilidade estocdstica e ainda
a presenca de dois ativos base no produto.

Os modelos parecem bastante préximos da realidade do mercado, pois podem levar em conta os
custos de transagdo em fung¢do do valor dos ativos, assim como uma volatilidade estocdstica, como
€ o caso de um mercado completo, onde ela € um ativo negocidvel. Os modelos também podem
auxiliar a andiise do VaR de uma carteira, ou ainda possibilitar de forma bastante simples e direta
o cédlculo de A e I hedge.

1.2 Objetivos do trabalho

Este trabalho apresenta um método explicito de diferencas finitas para a solu¢do de uma equagio
diferencial parcial complexa aplicada em finangas, cuja solucdo determina o prego de opgdes in-
cluindo os custos de transagdo e volatilidade estocdstica. Uma pequena alteragdo na equagio di-
ferencial deste modelo permite o céalculo do prego de opgdes exéticas compostas por dois ativos e
volatilidades deterministicas. Neste trabalho consideramos um modelo de mercado no qual a tran-
sa¢do de ativos requer o pagamento de taxas que sdo proporcionais ao valor e a quantidade do ativo
negociado, e esse ativo pode ser aproximado usando-se um modelo de volatilidade estocdstica.

Casos de opgdes de compra europeias tipo “plain vanilla” e exéticas com barreiras tipo “up&out
call”serdo simuladas numericamente e os resultados comparados com os resultados de trabalhos
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Revisao Bibliografica

2.1 Equacio diferencial parcial (EDP) para volatilidade estocdstica

Uma das maneiras de se fazer o aprecamento de op¢Ges com volatilidade estocdstica pelo processo
de diferengas finitas € apresentado em [2] resolvendo a equacio diferencial parcial (EDP) de Hes-
ton ao longo de uma malha bidimensional que representa o prego do ativo e a volatilidade deste
ativo. O texto mostra como construir malhas uniformes e ndo uniformes para a discretizacdo do
valor dos ativos e da volatilidade e apresenta férmulas de aproximacio por diferencas finitas para
as derivadas contidas na EDP de Heston.

Sao apresentados os métodos mais comuns que incluem esquemas explicito, implicito e o de Crank-
Nicolson como um caso especial. O autor mostra ainda as condi¢des de contorno da EDP para uma
opg¢io de compra europeia “vanilla”. O texto apresenta também um método ADI (Alternate Direc-
tion Implicit) que produz resultados precisos para um pequeno niimero de intervalos de tempo de
integragdo. O autor ndo comenta nada sobre custos de transacio.

A equacio a seguir é a EDP de Heston para volatilidade estocdstica

oV 1 9%V vV 1 L,V 1%
ar 125 g5z HPOVS a5t v0 3 tr-D)S oo+ k(6

v)—A(S,v.t) ]——rV 0

onde v € a varidncia, § € o valor do ativo base, £ & a correlagdo entre o valor do ativo e a varian-
cia, 0 € a volatilidade da varincia, r € a taxa de juros livre de risco, D € a taxa de dividendos,
K € a velocidade de reversdo 4 média, & € a varidncia média e A(S,v,¢) representa um prémio de
risco da volatilidade.

Podemos usar uma notagdo compacta da EDP, onde L € um operador linear,

v

=LV
Y (1)
1, & d 1,9 d 2
= S =il 2 oix(e-v)2 -
L AY aS2+;}O'v avaS+2VG e +( )SaS+K( )av r

2.2 Malhas de discretizacao para diferencas finitas

Malhas uniformes sdo aquelas nas quais as distincias entre 0s pontos discretizados s#o constantes,
podendo diferir para cada uma das varidveis. Estas malhas possuem duas vantagens: sdo mais f4-
ceis de se construir e como os incrementos sdo iguais, as aproximagdes das derivadas do operador
L por diferencas finitas sdo mais simples de se obter.

Malhas néo uniformes sdo mais dificeis de se obter e as aproximacdes das derivadas do operador
L por diferengas finitas também serdo mais complicadas. As malhas de discretizagio podem ser
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2.4 Custos de transacio

Custos de transacdo sdo os custos resultantes da compra e venda dos ativos base, relacionado ao
“spread”entre os precos de compra e venda. A andlise de Black-Scholes supde o rebalanceamento
continuo do portfélio sem custos de transagdo. Na pratica essa premissa € incorreta. Dependendo
do mercado em questio os custos de transacdo podem ou ndo ser importantes. Num mercado com
altos custos de transacdo, acSes nos mercados emergentes por exemplo, seria muito custoso fazer
0 “hedge” frequentemente. Em mercados mais liquidos, papéis do governo em paises do primeiro
mundo por exemplo, os custos sdo menores e os portfélios poderdo ser rebalanceados com maior
frequéncia.

Os modelos de custos de transacdo foram iniciados por Hayne Leland [6]. Existem outros modelos
de custos de transacio, e um modelo mais elaborado mais ainda bastante simples, ¢ modelo de Ho-
ggard-Whalley-Wilmott, que também ¢é baseado na estratégia de “hedge” e no modelo de Leland.
A andlise de Black-Scholes assume que as operagdes de “hedge ”sdo realizadas continuamente, ou
seja em intervalos de tempo que tendem a zero. Devido & diferenca entre os pregos de compra e
venda do ativo base, as operacGes de “hedge "terdo um custo infinito.

Os custos de transacdo sdo sempre um gasto de dinheiro para os operadores que estejam fazendo
“hedge”, eles sempre vdo perder na diferenca entre compra e venda. Desta forma espera-se que
uma posi¢do comprada seja avaliada abaixo do valor de Black-Scholes € que uma posi¢io vendida
seja avaliada acima do valor de Black-Scholes. Independentemente da posi¢do ser comprada ou
vendida, os custos das operagGes de “hedge”devem ser deduzidos do valor da op¢do. Desta forma
o sinal do “payoff” € importante. E natural pensar que uma posicio comprada tenha um “payoff”
positivo e uma posi¢do vendida tenha um “payoff” negativo.

2.4.1 O modelo de Leland 1985

O trabalho base de modelamento dos custos de transagfo foi feito por Leland (1985). Ele adotou
uma estratégia de fazer o “hedge” a cada intervalo 8¢ independentemente se essa estratégia € étima
ol nio.

Os custos de transa¢do sdo proporcionais ao valor dos ativos base negociados, portanto se V acgdes
forem compradas (v>0) ou vendidas (v<0) pelo preco S, entdo o custo serd KIVIS ,onde x &
uma constante que representa o custo.

Leland reconheceu que os custos de transagao, igualando o valor do portfélio ao retorno esperado
do mesmo portfélio corrigido por uma taxa de retorno livre de risco, devia ser avaliado através de

8 1/2
- } K
c=0| 1, |——

( ot O'J

2.4.2 O modelo de Hoggard, Whalley e Wilmott 1992
A estratégia de Leland pode ser aplicada a “payoffs” arbitrdrios e a portfélios de op¢des mas o

uma volatilidade ajustada.
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O parimetro H, é uma medida do maximo risco esperado para o portfélio. Quando o “hedge per-
feito” OV /38 e o “hedge atual” Q) se movem sobre uma linha em que a equacdo acima € violada,
a posicdo do portfélio deve ser rebalanceada. A equac@o define entdio uma Largura de Banda (Ban-
dwidth) da posi¢fio de “hedge”.

O modelo de Whalley e Wilmott 1993 e Herontte 1993 leva em conta essa estratégia de “hedge”.
Portanto o investidor deve prescrever uma quantidade H, e rebalancear o “hedge” em Q@ =0V /95 .

O valor da opgo deve entdio satisfazer a seguinte equacio diferencial parcial ndo linear:

2 AN 112
D r—D)Sa—V lolsza—‘;—rx/:‘jsr k+(ky +k S)H
ot a5 2 EA) H, S

onde
a4
a5*
Existem outros modelos de custos de transagio que podem ser vistos em [6]. Neste trabalho mode-
laremos os custos de transagfio de uma forma parecida ao modelo de Hoggard, Whalley ¢ Wilmott
1992.

2.5 Multi-asset options

Uma equagdo convectiva-difusiva de n dimensGes contém termos convectivos e difusivos como
o préprio nome jd diz. Essas equages receberam muita atengiio na literatura de engenharia nos
iiltimos 50 anos pois elas modelam virios tipos de problemas fisicos. Um dos principais em dina-
mica dos fluidos é a equacdo de Navier-Stokes e seus casos particulares. Em engenharia financeira
podemos ver a equacdo de Black-Scholes como um caso particular de uma equagfo convectiva-
-difusiva |7].

v 1 PV v
EN —Z,p,, ©1013s,05, +2{r=D)Sigg -V =0

i'j]

Neste caso temos r ativos base e U é o valor da opgio. Podemos observar a presencga de termos cru-
zados se os ativos apresentarem correlacio entre eles e o esquema de diferencas finitas resultante
deve produzir aproximagdes precisas para estes termos. Podemos desta forma modelar opgGes de
mais de um ativo.

A seguir podemos ver um exemplo desta equagao para dois ativos correlacionados.

o’V I’V 1 'V )4

FrM A S T L T '35
1

+(r—D2)Sz—ai—rV=0

BV 1 o250 Y o
2

2t 29 8 F+(r=D))s



Opc¢oes europeias com barreira “up&out call”

Vgt (Spot)= S, (N ()~ N(ds) - b(N(d,) - N(dy))).-..

—Ke T (N(dz)_ N(d4)"*a(N(d5)_ N(dv)))

onde
Y R Y (o
RN =y RN =)
1n(§Kﬂ]+(r—q——02)(T~r) ln(%){r—ﬁ—az)(i"—t)
T ey o JT-1)
1n(%J+(r—q+—oz)(T—r) ln[%?]+[r—q—;al](r-z)
SN (2= B =Y (o
) ln(§§]+(r—q—~ -GZJ(T—I)‘d ln(SSif]+(r—q+ O’ZJ(T—I)
4 _1+(2(r_¢,zﬁ)(r_!) {24 q)la;)g R
(8, (5
[S“Jl et

17



19

Capitulo 3

Desenvolvimento dos Modelos Matematicos

3.1 Modelagem matematica dos casos a serem estudados

Para analisar alguns casos de aprecamento de derivativos vamos estudar modelos matemdticos que
resultem em equagdes diferenciais parciais e propor um método de solu¢do numérica, que leve em
conta volatilidades deterministicas e estocasticas. Os modelos matemdticos propostos baseiam-se
em um processo estocdstico bivariado, composto pelo preco do ativo S, e pela varidncia v, .

Os modelos de diferencas finitas estudados foram todos do tipo explicito para que se pudesse traba-
Ihar mais facilmente com a néo linearidade dos modelos, causada pelos termos de custos de transa-
¢do. Alguns outros métodos do tipo implicito ou “predictor-corrector” poderiam ter sido estudados,
mas nao haveria tempo hdbil para implementd-los e colher resultados para as conclusGes deste
trabalho e portanto foram deixados para estudo futuro, ndo fazendo parte do escopo deste trabalho,

Paralelamente aos modelos de diferencas finitas, alguns modelos baseados em simulacao de Monte
Carlo foram implementados para verificar a qualidade dos modelos estudados, Para compara¢ées
dos resultados dos modelos com volatilidade deterministica, foi usada uma simulacdo baseada no
esquema de Euler para o modelo de Black-Scholes. Para as comparagdes dos resultados dos mode-
los com volatilidade estocéstica, foi usada uma simulacio baseada no e esquema de Milstein para
o modelo de Heston [2]][9].

3.2 Limitacdes dos modelos propostos

Os modelos de diferencas finitas propostos tendem a ser mais rapidos na obtengdo de uma solugio
do que modelos baseados em simulacdes de Monte Carlo, mas também podem apresentar alguma
dificuldade na hora de gerar as condi¢es iniciais e de contorno que sejam adequadas ao problema
a ser estudado. Existem alguns casos especificos em que uma solugdo analitica pode ser obtida,
mas via de regra ndo podemos contar com essa hipdtese na solucdo de uma op¢do mais complexa.

Normalmente, a precisdo da solu¢@o a ser obtida com modelos de diferengas finitas estd na escolha
de uma malha de discretizacfo adequada, que em alguns casos pode ser refinada a ponto da solucio
necessitar de uma maquina com muita memdria, ou tornar-s¢ muito demorada.

No caso dos modelos explicitos também existe a questdo da discretizacdo do tempo de integracdo
para que ndo haja problema na convergéncia numérica, o que pode levar a intervalos de integracio
muito pequenos, aumentando ainda mais o tempo da solu¢éio. Um ponto positivo dos modelos ex-
plicitos € o fato de requererem menor quantidade de memdria computacional e ndo ser necessdria
a solugdo de sistemas lineares a cada passo de integracdo da equacio diferencial.

Alguns casos estudados levam em conta uma opg¢do composta por dois ativos. Quando o mimero de
ativos cresce a solugdo por diferencas finitas passa a ser mais complicada e demorada, sem mencio-
nar a dificuldade em estabelecer as condi¢es iniciais e de contorno. Nestes casos uma solugdo do
tipo simulacdo de Monte Carlo parece muito mais simples de ser implementada.
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oV oV
(ﬁ‘A) 2 (5’5“‘] 0

Isso permite eliminar os termos de “drift” e a dindmica do portfdlio passa a ser

2
dll = (av L 2528 lﬁz 2 +p0'2[J’S

a 2 252 ]&“KSS|VS|_K};0'|VG| 34

dSdo

Vamos agora estimar os custos associados a transac¢io do ativo.

Se a quantidade do ativo comprados no instante ¢ for

Vv
A = S.o.t 35
=5g(8.0.0) G5
apGs um periodo Jr e refazendo o hedge, a quantidade de ativos comprados serd
A= %%(S+6S,o+60‘,t+ 1)

Como o intervalo de tempo 8¢ é pequeno, as variagdes no valor do ativo e do indice de volatilidade
também sdo pequenas e portanto podemos aproximar o valor por uma expansio de Taylor.

oV aZV azv azv
Ay = —S(S,O',t) +6t 3735 (S.0.6)+ 5SF(S,O',I)+ Sc 535 (S.0.t)+
sendo que
6S=056X,+0(8t) ¢ 60 = fodX,+0(5t)
e portanto
oV v 2y
A= 35 —(8,0.1)+ 086X, T —(S,0.1)+ p6sX, —— 3035 (S.0.t) (3.6)

Subtraindo 3.5 de 3.6 encontramos a quantidade de ativos negociados durante o intervalo de tempo 07 .

2 2

'V 1%
A5 —A =v,=0658X, e —(8.0.t)+ BodX, aO_aS(S,o-.r) 3.7

Nao sabemos de antemdo a quantidade de ativos que serdo negociadas, mas podemos calcular o
valor esperado desta varidvel e portanto o custo esperado de transaciio.

Como X, e X, sio movimentos Brownianos correlacionados, podemos considerar Z, e Z, duas
variaveis normais independentes com média ( e varidncia 1 e portanto as distribuigdes X, e X,
serao:

56X, = Z b1
8X, = pZ,\6t +J1- p*Z,[61
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apGs um periodo 6t e refazendo o hedge, a quantidade de indice de volatilidade comprados serd:

A= -QZ(S+ 85,0 + 60t +6t)
Jdc

1+61

Como o intervalo de tempo 07 € pequeno, as variagdes no valor do ativo e do indice de volatilidade
também sdo pequenas e portanto podemos aproximar o valor por uma expansdo de Taylor.

oV Vv

Boin o (Sot)+5ra Py (S,0.t) e g (Sor)+6ag =(S,0.,1)+
sendo que
6S=0S86X,+0(dt) e 60 = PodX,+0(8t)
€ portanto
vV 9’V
A,+5,_a (S O.1)+0S6X, —— Y —(S,0, :)+ﬁ’a<3‘xZa ~(8,0.1) (3.12)

Subtraindo 3.11 de 3.12 encontramos a quantidade de indice de volatilidade negociados durante o
intervalo de tempo 0t .

9’V
9695

Nao sabemos de antemdo a quantidade de indice de volatilidade que serdo negociadas, mas pode-
mos caleular o valor esperado desta varidvel e portanto o custo esperado de transacio.

A

2
A, =v, =0585%,2Y_(5,0.1)+ ﬁO'é'ng—O_‘;(S,cr,t ) (3.13)

1+t

Como X, e X, sdio movimentos Brownianos correlacionados, podemos considerar Z, e Z, duas
varidveis normais independentes com média O e varidncia 1 e portanto as distribuigdes X, e X,
serdo:

85X, =Z\61
8X, = pZ[St +4J1 - p*Z,\/5t

Substituindo estas expressﬁes na quantidade de indice de volatilidade negociados V, teremos:

v, —GSZJ— (Sot)+ﬁdeJ_a ~(8.,0.1)+ foy/1- pZJ_ ~(5,0.,¢)

dodS

Fazendo as substituigdes

)+/30p~/_

o, = (Scrt)

(3.14)

]_

)
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34 Obtencio do modelo com volatilidade deterministica e custos de transacio para dois
ativos base

Vamos modelar uma opgéio com dois ativos usando um movimento Browniano Geométrico com

volatilidade constante, representado pelas equacles a seguir:

ds,, = ﬂ(Slr)dt+0151:dX1 (z)
(3.18)
ds,, :#(Szr )dt +0,8,,dX, (1‘)

onde os dois movimentos Brownianos Geométricos X, € X, sdo correlacionados entre si com o
coeficiente p

E[dX,(t)dX,(t)]= pbt (3.19)

3.4.1 Deducdo da equacio diferencial parcial quando a op¢do é composta por dois ativos
Considere um portfélio IT que contém a opgio, com valor V(S,.8,.t ) ¢ quantidades A e A, de
§, e §, respectivamente. Ou seja

M=V =-AyS ~Ag,S, (3.20)

Aplicando o Lema de It5 para obter a dindmica do valor da 0pgédo obtemos a variagio do valor do
portfélio IT como:

oV 1 VvV 1 o’V o’V
dll=| —+-028? 22— +=-062522 " 1 p56.55. -2 1
(az 2 DR N B T oyl

oV 1%
+(5S__ A51 ]dSl + [_8_5__ Asz ]dsz i K51S1 ’VSll ol KszSleszI
1 2

onde K51S1|V31] e KSZSZIV”I representam os custos de transa¢do associados 4 uma quantidade v
do ativo §; e v, doativo S, , durante o intervalo de tempo §¢ . Os custos de transagdo entre S e
S, sdo diferentes. Selecionamos Ay, e A,, como a solugo das equagdes

oV av
[“EE_Am]:O € (é}‘_/—\mJ:O
1 2

Isso permite eliminar os termos de “drift” e a dindmica do portfélio passa a ser

v 1 VvV 1 % o’V
dll = (—-— + 0L St =+~ 035 =+ p0,0,S,S, 35,95,

ar 2 BSIZ 2 zaS;' ]&_K51S1|Vsr’_xszszl"sz| 3.2D

Vamos agora estimar os custos associados & transagdo do ativo S, .

Se a quantidade de ativos “comprados” no instante ¢ for

Vv

Ay
‘T3S,

(S,,5,.¢) (3.22)
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€ observando que
2

vy *vY v 2v Y
2 =085t — | +2 S.5,6 262828
o r(asf) Mt I(BSZJ(BSIBSJ”) 2% ’(asla&]

v Y *v Y
B, _0282&(85 3 J —pzoisjﬁr(asl E)Sz]

chegamos a seguinte expressdo para descrever a variagio da quantidade de ativos num intervalo de

tempo Jr .
Vo =0gZ, + B Z, (3.26)

Lembrando que o valor esperado do médulo de uma variavel aleatdria normal, com média 0 e va-

ridncia 1 é:
2
E[|Z|]=\/;

é facil observar que o valor esperado dos custos de transacio associados 4 compra e venda do ativo

2
B vl ]= | 2SN B

e portanto a expressio completa para os custos de transacdo de S, serd:

#vY v oV rv_Y
E[ x5 |vg|]= KSIS \/Gu 52&[ 35 J +2R0050 5’( as? J[asl as, JJF%SZ&[BS, as, ]

(3.27)

S, serd:

Analisamos agora os custos de transagfio associados & compra ¢ venda do ativo S, e procedendo
exatamente da mesma maneira teremos:

Se a quantidade do ativo indice de volatilidade “comprados™ no instante ¢ for

aV
A, = a—&?(S,,Sz,r) (3.28)

apds um periodo &7 e refazendo o hedge, a quantidade de ativos comprados serd

Vv

A
6t a 52

——(8,+885,.8, +88,.1+5¢)

Como o intervalo de tempo 6t € pequeno, as variagSes no valor dos ativos também sdo pequenas
¢ portanto podemos aproximar o valor por uma expansdo de Taylor,

oV o’V *V o*V
z+5r aS (SI’SZ’I)+5ta a (SI’SZ"r) 5 (SI°Sz’t)+5S (
2

S,.5,,
la a aS2 1 21)

A
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Da mesma forma como foi para o ativo S, & fécil observar que o valor esperado dos custos de tran-
sa¢ao associados & compra e venda do ativo S, sera:

2
E[KSZSZIVS?.I] = \/;Kszsz\}aﬁz "‘ﬁszz

¢ portanto a expressdo completa para os custos de transacfo de S, serd:

v Y v (v *V
E[ k5,8, [ve| ] = K’SZ \/ 2Sz&r[ 35 BSZJ +2p010'2S1525r[ 35,95, ][ 55 J 2526{ T ]
(3.33)

Para que ndo haja arbitragem, deve haver uma taxa de juros livre de risco que satisfaca as 3 equa-
¢Oes a seguir, simultaneamente:

I=v- Ag S — AszS.z

dIT = rI15¢ sl
AV 1 L,V 1 .,V o'V
=(g+_ R 957 957 2 0-25-2 as? a5z PO, 2m]&_KmSl‘VSII—KSZSzIVSZ’
1 2

Portanto a expressdo final da dindmica da op¢do com custos de transagdo para dois ativos fica:

3’V 1

o’V Vv oV av
_0'252 ) 1 (

W1 s
—+=0, +p6,0,88, ———+{(r—D,)S,=—+(r—-D,)S, ——rV
o T2 38 357 HPOOSS geae as, "\ 2)2852 §

2 bl PV ?vY v a2V Y
W Mllad= 2 3.35
\}xaf"“s\/ S (asz) * p“”s(asz 35,05, ) 9% 3505, =
2 v Y v (v VY
S ) SZ 2 = -1 R 202 MV e
Vror °° \/ (asa ] ¥ pG'GZS‘SZ(aslaSJ(asjJMZSZ[asi] P

Os 1iiltimos 2 termos desta Equacdo Diferencial Parcial nfio Linear sdo resultantes dos custos de
transagdo. A solugdo numérica desta equagdo vai permitir conhecer o prec¢o da opcdo em fungdo
dos valores dos ativos S, e S,
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azf 1 fs,j+1.k 0 zﬁ.j.k + fi._imu

= = GammaG
do’ (Ac)
o f b St ok = Jonrjorx = For s + Jirjas o Lo
dSdo 4ASAG
a_f___ ff.j.k-1 _ﬁ.j.:.- = Theta
or At

b) Discretizacdo dos termos relativos aos custos de transagdo. Estes termos podem ser discretizados
facilmente, usando-se a discretizagdo das Gregas feitas anteriormente e usando os valores discreti-
zados do ativo S, e da volatilidade &

Temos portanto:

2 ’f 20 O  m : FrY |
Cost_ =k S, S? 2
P \/" (asZJ +2000,8 55 3500 TP % 3500

O 3|, et (C1RTS L) s LS g z[azf
Costa =ke0 s mor \/"!S [asa J”pﬁ S50t asac P

onde Sr‘ = __I_Smax ¢ 6 O-mm + j (O-max - O-rnin)
L+1 M+

¢) Discretizagdo para o célculo das Gregas quando o ponto para cdlculo estd sobre uma das fron-
teiras do dominio, ou seja, deseja-se calcular uma derivada sobre uma das fronteiras do dominio.
O nosso dominio possui duas fronteiras para o valor do ativo base e duas fronteiras para o valor da
volatilidade. No caso do ativo base esse problema ndo vai existir, pois os valores da opgdo quando
§=0ou $=S,_, serdo calculados pelas condi¢des de contorno para o valor do ativo, logo teremos
para o ativo sempre as expressdes:

Of  Jiyu = Jraya
= e TR Dell,
= s = DeltaS
azf_ Forgu = 2iga t fraga = Gamma$
38 (AsY
a_f f’”" ~Jugu = Theta
ot At

No caso da volatilidade devemos modificar a maneira de calcular as derivadas para que um erro
de mesma ordem de grandeza seja obtido quando o ponto de cdlculo estiver sobre a fronteira do
dominio e portanto vamos adotar as expressdes a seguir para o caso da volatilidade:

a_f = ““3fi,1.k +4ﬁ,2.k - fis.f.- = 3j;.M.k o 4fi,M—1.k + ff,M—z.A-
ele] 2Ac 2A0

= Deltac
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3.6 Discretizacio da EDP do modelo com volatilidade deterministica para implementacio
do método de diferencas finitas

Consideremos agora a EDP (3.35) para um modelo de op¢do de 2 ativos com volatilidades deter-
ministicas e custos de transacao.

af 5252 f 1 ,,0°f o’ f af af
o F20S Gty S g +POOSS, s +H(r= DS g a5, T Da)S5—rs
2 3 f 3f Ff 25 Y
—k 52 2 Y 252 3.39
S'S‘\/n&\/ (asf] TEPOC S as0s, T 022\ 3s 0, ) T el

2 a7 Y 3f ¥y 32 fY
—k 2?2 200,0,5,8, —= S, =0
5292\ 75 \/" (as as, ] TEPOOSN 5T s s, T 97| 382

Analogamente ao modelo anterior, considerando f o valor da op¢do, a discretizagcdo serd feita num
dominio tridimensional, onde o valor do ativo 1 serd discretizado na direcfio i, o valor do ativo 2
serd discretizado na dire¢do j e o tempo de integragdo serd discretizado na diregdo k. Temos por-
tanto os ativos S, e S, variando de 0 até um valor mdximo S, , S,.., € 0 tempo variando de trds
para frente de T final até ¢ inicial (ou zero).

Este esquema pode ser resumido pelas seguintes expressoes:
F(8,.8,.1) > f(iAS,, jAS, kAr)
$,=0,1dS,,2dS,,......iAS, ,.....,LAS, =S,
3, =0,1d5,,24dS,,..... jJAS, ... .MAS, =S, ..
1=0,1dt,2de,.... . kAL, ... ,NAI =T

Meétodos de discretizacfio em funcdo da posicdo do ponto em relagio ao dominio

a) Discretiza¢do para o cdlculo das Gregas quando o ponto de cdiculo estd dentro das fronteiras
do dominio, ou seja, em nenhum momento deseja-se calcular uma derivada sobre a fronteira do

dominio,
O _Jwgs=Serjs = Deltas$,
as, 2AS,
af f:ﬁu f.j- Lk DeltaSz
852 2AS,

azf fr'+1jk “zﬁjk"'ﬁ-l;‘,fc

35° S (ASzljz === Gammas$,
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azf _ (_3fr‘+l,!,k i 4ff+1.z,.<- i ﬁH,S,A' ) B (_3f; 1k T 4ﬁ—1,2,x = f—1,3.k)

= = CrossGammas, S,
95, 35, 4AS,AS,
o' f - (3ﬁ+1,.u &~ nmas t fimas ) b (3111,.14,& =4 imant fa—l,M—z,x-) LGOS GEHASS;
a5, 95, 4AS,AS,
32f ol (_3f1.j+1,k + 4fz.j+u i fa,jﬂ.k ) B (_3f1,j-|.k + 4f2.j- i fS.j—l.A ) = CrossGammas,s,
95, 35, 4AS,AS,
0 / — (3fL,j+:,x- - 4fL—-I.j+1.R + fL-2._f+1,k ) B (3fL,j—I,k = 4fL—|.j- et fI_mZ.jAI,A ) = CrossGammas,S,
08, 95, 4AS,AS,

Cada caso de DeltaS; ou GammaS, possui duas versdes, que refletem o fato de estar na fron-
teira inicial ou final do dominio, desta forma o erro de discretizagdo (ou do cdlculo das deriva-
das) serd de mesma ordem de grandeza dentro de todos os pontos do dominio. Para o casos do
CrossGammasS;S; existem 4 possibilidades, uma para cada aresta do retangulo do dominio.

A discretizago dos termos relativos aos custos de transagdo quando o ponto de célculo estd sobre
uma das fronteiras permanece da mesma forma, apenas que a maneira de calcular as Gregas deve
ser substituida pelas expressdes anteriores.

A equagio final de diferencas finitas, para o caso de pontos calculados dentro das fronteiras é:

fLM_l _ f,;,-_k —(r -D, )S{ ﬁn.j,&- — [ 1jk JAI B 0'123;2 [ ﬁ+1,_j,k "fo.j.x + f;—l.j,k JAI

2AS, 2 (As,)
i [ IS f . =2F .+,
—(f"—" Dz)Sj(f;"Hl‘& f:,,;—l,f\ JAI_ 2+ f;,;+1.i j;..;,l.z ﬁ.}- Lk At (340)
248, 2 (Asz)
fi+1 i+1.4 _fm -1k~ Ji-] 414 +fz:—l i1k
—-po,0,S.S [ = L A L= At +rf, At + Costg Af + Cost g, At
1~ 2 i 4AS1A52 Jok 51 52

onde

B Ff ¥ (&Y
COStslszlSi J (Ki] +2p0-10-2 i JaSJ; aSéf,‘S' +O-228J(8Sé]; ]

Cost, = ksz \/ [
J

S =—8 :;5,=——=~
i L+1 Imax ** j M+1 2max

2 2 p\2
S8 —= of Of +0'25j(af

2
J TEPOIOR 557 35 oS, as;] eeD

Para os casos em que 0$ pontos calculados estfo sobre uma das fronteira, a equagdo de diferencas
finitas deve ter as Gregas substituidas, de acordo com a posi¢o dos pontos a serem calculados. Nio
vamos mostrar aqui neste trabalho como a equacao ficaria, mas € trivial. Estas expressdes foram
implementadas em um cédigo Matlab® para as verificagGes e simulagdes realizadas neste trabalho.
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3.7.1.2 Condiciio de contorno para op¢éio de compra “plain vanilla”

Serd usada segunda derivada nula para o valor da op¢fio, no inicio e no final do dominio, ou seja:

azf ol 2f1.j,1.- B 5f2.j$ + 4fs.j.k _'f4,,f.k
os* (Asy

=0=5=0

azf = —sz..j.k + SfL—l.jJ.- = 4fL-‘2,j.k 3 fL-3.j.&
as* (AS)*

=0=85=S

max

Portanto as condi¢Ges a seguir devem ser obtidas para quaisquer valores da volatilidade

Sty =t fags

Jiju = 2
S Srga =t s
fM NE 2

3.7.1.3 Condicéo inicial para opcio de compra com barreira superior “up&out call”

A condigdo inictal para este caso € S, < $b,Vt =V =max(S, — K,0) ou §, =2 5b,Vt =V =0 para
qualquer valor da volatilidade.

Opcao Up&Out Calf - Diferencas Finitas
Yolatilidade Estocastica - Condicao Inicial

Payoff
Condicao Iniclal

1]
Ative Volatitidade

Figura 3.2- Condigito Inicial para o modelo de op¢iio de compra europeia com barreira superior e vola-
tilidade estocdstica
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Oprao Basket Call - Diferencas Finitas
Condicac Inicial

Payoff
Condicao Inlclal
g B 3

S5 52
Ativo 1 Atlvo 2

Figura 3.3- Condigio inicial para o modelo de opgio de compra enropeia “basket call” com dois ativos
- w=04, K=d45

3.7.2.2 Condigfio de contorne para op¢iio de compra europeia “basket call” com dois ativos
Da mesma forma como foi feito para o caso de volatilidade estocdstica, serd empregado aqui uma
condi¢do de segunda derivada nula, mas agora esta condigdo deve ser imposta em todas as frontei-

ras do dominio, ou seja:
o’ f _ 2fij6 =S by T 4S50 = Jayu _

0
05/ (as,)
azf L _sz,j.k +SfL—l,j.k _4fL-2.j,x- + fLAs,j,k =0
oS} (AS, )2
azf - 2fx~ Sfiast4fias— Jiau =0
as; (as, )
82f - 2 fima +5 fins — 4fi.M-2,k + ff.M-a,k =0
E:)Sz2 ( AS2)2

Portanto as condig¢Ges a seguir devem ser obtidas nos pontos situados nas fronteiras do dominio.
Shis =4 s 0t fajx

Sl =0— f;,j,k = 5
S = Stmax — fL,j,k = 5fL_l’j'k ) 4f;'2’f”‘ 1 fl—lj-k
5f,:—4fa.+ fias
$5=0->f,,= Jias 5.3.1 Jiak

S2 il SZmax N f:,M,k (5 Sfr'.M-l & _41031!--2.; + f;,.’tf—j.i
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Portanto as condigGes a seguir devem ser obtidas para os pontos situados nas fronteiras do domfinio:
- 5 fz.j.k - 4fs,j,k + ﬁt.j,k

5, =0 = >
S5fiai—4fa+ 1
S, =0 fi, == 2“” o

F=0sewS +(1-w)S, = Sb

3.8 Simula¢ées de Monte Carlo

Simula¢Ges de Monte Carlo, no contexto de aprecamento de opcdes referem-se a um conjunto
de técnicas para gerar valores tipicos de ativos subjacentes, como os precos de acoes ou de taxas
de juros ao longo do tempo. Normalmente a dindmica dos precos de acdes e taxas de Jjuros sdo
resultantes de um processo estocdstico em tempo continuo. As simulagdes, entretanto, sdo feitas
em intervalos de tempo discretos, portanto, o primeiro passo em qualquer esquema de simulag¢io
¢ encontrar uma maneira de discretizar um processo de tempo continuo em um processo de tempo
discreto. Apresentamos aqui dois esquemas de discretizagdo, Euler e Milstein [3], que irdo ilustrar
o0s modelos de Black-Scholes e Heston usados na comparagfio dos resultados obtidos pelos mode-
los matemdticos de aprecamento de opges propostos neste trabalho.

38.1 Esquema de Euler para o Modelo de Black-Scholes

A din@mica de Black-Scholes no preco de uma agdo sob taxa de juros neutra ao risco é
ds,=rSdt+0aS,aw,

Podemos fazer a discretizagio de Euler para o modelo de Black-Scholes da seguinte forma
S, =S +rSdi+0S~dtZ
dt=t,—1,
Da mesma forma, podemos analisar o logaritmo dos pregos e depois gerar um resultado exponen-
cial. Pelo lema de Itd InS, segue o processo abaixo

dInsS, , = (r—~ %o"’)dt +0Sdw,
A discretizacdo de Euler produz a expressio

InS,, =InS, +(r—%02jdt+0'$,\/§z

e portanto temos

1
S =5, epor— -2—0‘2)dr +0S, \/cTrZ:l
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3.84 Esquema de Milstein para modelo de Heston

Lembrando que o modelo de Heston € descrito pelo processo estocdstico bivariado, composto pelo
preco do ativo S, e da varidncia v, ,
dS, = rS,dt + \[v,S,dW,,

dv,=1c(9—v,)dr+0'\/1:dW2’,

onde E[dW, dW,, |= pd .

Discretizacio da varidncia v,

A equagdo diferencial estocdstica da varidncia € discretizada conforme a expressdo a seguir
Voar =V, K (0=, )dt + B v, dtZ, +— ﬁzdt(z2 1)

ou entao
v, = (\[1 ﬁffz)+xe v)dt—%ﬁzdz

O método de discretizagdo de Milstein para o processo da varidncia produz menos valores negati-
vos do que o método de Euler. Entretanto devemos aplicar o truncamento ou reflexdo da varidncia,
substituindo os valores de v, por v/ ou IV,I , da mesma forma como foi feito para o modelo de Euier,

Discretizacido do valor do ativo S,

O processo do valor do ativo € discretizado conforme a expressdo a seguir:

S

reddt

=S8, +(r—D)S,dt+/v,diS,Z +;det( ~1)

Da mesma forma como feito para o modelo de Black-Scholes, para gerar Z, ¢ Z; com correlacio
£ ,devemos gerara duas varidveis independentes Z, e Z, ,efazer Z, =Z, ¢ Z; = pZ +J1-p°Z, .

Existem dois problemas que surgem nas simulagdes de processos bivariados. O primeiro € a baixa
velocidade de convergéncia. O segundo e mais sério deles € que como a varidncia segue um pro-
cesso de Cox-Ingersoll-Ross, muitos esquemas de simulagdo, incluindo os esquemas de Euler e
Milstein gerardo valores negativos para a volatilidade, mesmo que a condicdo de Feller 256 > &>
seja observada. Isto se deve ao fato da condigfio de Feller ser vélida para processos continuos, mas
as simulagdes sdo feitas em tempo discreto como forma de simular um processo continuo [2].

O modo mais simples de lidar com varifincias negativas € elimins-las no momento em que elas
aparecem, € existem duas formas simples de fazer isso:

- Truncamento - um valor negativo da varidncia v, é automaticamente substituido por zero. Portan-
to v, € substituido por v, em todos os locais da discretizagdo.
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3.9.2 Simulacdo de Monte Carlo para opcoes europeias de compra com barreira “up&out
call” com 2 ativos e volatilidades deterministicas

Z1, > N(0,1)
Z2, - N(0,1)

[r -Dl—"'—zJAr+a,v’.§TZt,
S1,,=Sle ?

[r—DZ -%g}moz JArz2,
52, =52
S, =wSl,+(1-w)S2,
1::4-1 =e a S7A
u,, > U(0,1)

se{S,>Sb||P>u;} > S,=0

V,=¢"" max(S, -~ K.0)
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394 Simulacio de Monte Carlo para op¢io europeia de compra com barreira “up&out
call”’ com volatilidade estocastica

j=L...M
i=0,..,N=-1
Zv, — N(0,1)

ZS, — pZv, ++J1- p*N(0,1)

2
v =v,+x(0-v)dt+B VfdeV:""’Zdt(ZV?“l)
se{v,<0}—>v,=0

S. =S5, [1+(r~ D)dt +Jv.dt ZS, +%vfdr(ZSf —1)]

LA A5h-5,)
P = O'ZS!ZAI
i+
Uiy — U(O,l)

se{S,. >Sb|| P >u,}—>Sj =0
V,=¢"" max(S, - K,0)

1 M
V=El—§vj

3.9.5 Brownian Bridge

Para acelerar o processo de convergéncia nas simulagSes das opgfes com barreiras, foi implemen-
tado o conceito de Brownian Bridge. Quando dois valores de uma trajetdria simulada por Monte
Carlo estiverem bem préximos do valor da barreira, existird sempre uma probabilidade de que a
trajetéria entre estes dois pontos tenha atingido a barreira. Ndo fazer uso desta probabilidade nos
obriga a aumentar drasticamente o nimero de intervalos em cada trajetéria, aumentando muito o
tempo de simulacdo [9].

Isto estd representado pela seguinte parte dos algoritmos apresentados:

_{8h=5,)88-5,}
F,=e i
ui+l - U (0’1)

se{S,>Sb||P.>u}—>S,=0

Um exemplo pode ser visto a seguir numa simulagio de uma Brownian Bridge onde o objetivo foi
comparar o valor teérico de “quebra da barreira” com o esperado pela simulagdo.
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Capitulo 4

Aplicacio da teoria e verificacio dos modelos pela simulaciao
de alguns casos especificos

4.1 Introducio

O objetivo deste capitulo é, a partir da teoria desenvolvida, simular alguns casos de interesse, para
que os modelos possam ser avaliados como ferramenta de aprecamento de derivativos. Como foi
visto no capitulo 3, alguns tipos de op¢Ges podem ser aprecadas facilmente bastando para tal mo-
dificar as condi¢des iniciais e de contorno do problema e usar exatamente o mesmo algoritmo para
solucdo numérica da equacdo diferencial parcial.

Todas as simulacOes apresentadas foram realizadas pelo método de diferencas finitas desenvolvidos
a partir dos modelos desenvolvidos e os resultados foram comparados com simulagdes de Monte
Carlo da mesma opg¢do, com trabathos encontrados na literatura de derivativos ou com a simulacgio
de outros modelos. Excecdo foi feita nos casos de volatilidade estocdstica, onde as simulagdes de
Monte Carlo foram feitas usando o modelo de Heston que ndo pressupde a volatilidade como um
ativo negocidvel. Mesmo assim foram feitas comparagGes entre os modelos para investigar o com-
portamento da solugao.

Os modelos matematicos desenvolvidos foram implementados no Matlab® em vdrios scripts dife-
rentes com muiltiplas saidas graficas e estdo disponiveis no anexo C. As saidas grdficas nos permi-
tem avaliar o comportamento das Gregas em todos os casos, o que € bastante 1til na execugéo do
“hedge” ou avaliacdo de risco dos portfdlios.

No inicio de cada simulacéo foi colocada uma tabela mostrando claramente todos os valores rele-
vantes usados naquela simulagdo em questio, assim como dados auxiliares usados nas simulaces
adicionais para comparacio dos resultados.

Abaixo de cada figura existe um texto descritivo dos resultados mostrados € um resumo dos valores
usados como dados de entrada para a stmulagdo que os gerou.

O resultado de cada simulac@o € mostrado pelas figuras que apresentam os seguintes graficos: con-
dicdo inicial, valor da op¢do, deltas, derivada cruzada e gammas para os casos sem e com custos de
transacdo. Depois destas figuras aparece, dependendo do caso, uma “superficie de resposta” com os
valores com e sem custos de transa¢do em fungdo do valor dos ativos. Nos casos com volatilidade
estocdstica também € mostrada uma “superficie de resposta” com e sem custos de transacdo em
funcdo do valor do ativo e da volatilidade. Também sdo mostradas duas outras figuras dos valores
com e sem custos de transagdo em fung¢do da volatilidade e o valor de exercicio.

Para as simula¢des de Monte Carlo, o resultado também € mostrado por uma “superficie de res-
posta” e a qualidade da simulacdo por ser avaliada por uma outra figura que mostra a distribui¢ao
dos valores do ativo, distribui¢do dos valores da op¢do e um pseudo histograma sobre uma curva
normal dos valores obtidos em cada simulagio. E facil entender observando cada uma das figuras.
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4.2 Simulacéo de uma opg¢io “basket call” com volatilidades deterministicas composta por
dois ativos

O modelo desenvolvido para o aprecamento de uma op¢o com dois ativos € na realidade uma

adaptacdo do modelo de aprecamento de uma op¢ao com volatilidade estocdstica, onde a variancia

foi substituida pelo segundo ativo e a volatilidade da varidncia pela volatilidade do segundo ativo.

Todos os termos da equagio sdo deterministicos, como se pode concluir pelas equacdes 3.17 € 3.35.

O modelo desenvolvido supde que a opgdo € uma média ponderada dos ativos, onde o fator de pon-
deragdo ¢ a quantidade total de cada ativo na carteira. Teoricamente pode-se resolver este problema
para maior nimero de ativos, mas a solu¢do numérica do modelo passard a ser muito demorada e
por que ndo dizer invidvel. Neste caso deve-se optar por outras formas de solugio, como por exem-
plo uma simulacdo de Monte Carlo com os ativos correlacionados.

Uma grande vantagem deste modelo de diferengas finitas é o fato de gerar como resposta uma
“superficie de solu¢do”, o que possibilita ao usudrio determinar de maneira rdpida e para quaisquer
valores dos ativos, o valor das gregas, com uma interpolagdo numérica na regifo de interesse.

A seguir estdo mostrados os resultados da simulagio de uma op¢do de compra europeia tipo “basket
call” com dois ativos, com custos de transagao e volatilidades deterministicas, calculada pelo mo-
delo de diferengas finitas. Os valores encontrados foram comparados com uma simulagio de Monte
Carlo para a mesma opgao.

A anilise foi feita com os seguintes dados de entrada:

Dados gerais

W 04 r 0,1
S10 30 (o] 0.2 D1 0.02 dSI 1.68
S20 50 o2 03 D2 0,03 ds2 1,i2
K 42 P 05

Dados para Diferencas Finitas

kS1 0,05

T ] dt 1/15000 Bte 1/50
kS2 005

Dados para Monte Carlo
Intervalos 200 Trajetérias 5000 Repeticdes 200

Tabela 4.1 - Dados de entrada para simulagdo de uma opgido compra europeia tipo “basket” com dois
ativos ¢ volatilidades deterministicas

A seguir estdo os resultados da simulagio.
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Figura 4.3 - Valores dos gammas sem custos de transacdo para a opgdio de compra europeia tipo “basket”
com dois ativos, volatilidades deterministicas e custos de transacido - w=04, $§10=30, 520=50, K=42,
T=I, r=0,1, DI1=002, D2=0,03, p=0,5, c1=0,2, 62=0,3, dS1=1,68, d52=1,12, kS1=0,005, kS2=0,005,
di=1/12000, dtc=1/50

Opcac Basket Call - Diferencas Finitas
Volatilidades Deterministicas e Custo de Transacao

W o
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Figura 44 - Valores da opcio com e sem custos de transacio para a op¢do de compra europeia fipo
“basket” com dois ativos, volatilidades deterministicas e custos de transagdo, em fungdo dos valores dos
ativos - w=04, S10=30, 520=50, K=42, T=1, r=0,1, D1=0,02, D2=0 03, p=# 5, c1=0,2, 62= 3, dS1=1 68,
dS82=1.,12, kS1=0,005, k52=0,005, dt=1/12000, dtc=1/50

A mesma andlise foi feita por simulagio de Monte Carlo para o caso sem custos de transac¢fo. Desta
forma podemos comparar os valores obtidos pelos dois processos e avaliar a qualidade do modelo
de aprecamento desenvolvido. Nos anexos A e B foram feitas algumas andlises que avaliam a ca-
pacidade de aprecamento do modelo, quando introduzimos custos de transacdo.

As simulagdes de Monte Carlo foram implementadas de forma a fornecer algumas saidas grdficas
que permitam uma avaliacdo do dimensionamento das simulagdes, ou seja, que permita determinar
a quantidade de trajetdrias, intervalos em cada trajetéria e niimero de repeti¢fes para o cdlculo de
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Opcao Basket Cali 2 Ativos ~ Simulacao de Monte Carlo
Volatifidades Deterministicas sem Custo de Transacao
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Figura 4.6 - Valores da opgiio sem custos de transacdo para a opgio de compra europeia tipo “basket”
com doix ativos e volatilidades deterministicas em fungio dos valores dos ativos, calculados por sintit-
lagiio de Monte Carlo - w=04, K=42, T=1, r=0,1, DI1=0,02, D2=0,03, p=0,5, c1=0,2, 62=0,3, Trajets-
rias=5000, Intervalos=200, Repeticies=200 para cada ponto da superficie

A tabela a seguir mostra um comparativo entre os valores da opgdo, obtidos pelo processo de dife-
rencas finitas e simulacdo de Monte Carlo.

Ativo 2
44 46 48 St} 52 54 56
23539 2,893 24859 4,1383 f Bdd3 5,604 64029
24 2,349 2,867 J8ul F.1342 J8304 5988 hdl3
1),21 Fif ()" )¢ 1) ) 12°
2.658 3.2337 38679 4,5575 5,299 60887 6,9226
26 26576 J.2342 3.8664 4 5546 5.2988 6 1864 049216
002" ¢ (027¢ (i (a0 (1IN i (03]
2,984 36041 4,2765 506027 5.7789 f.6009 74647
28 2.9927 16035 42785 4 996K 5.7786 #6087 74754
(0,125 (0120 [T )12 (e 012 .14
33475 00018 47118 54736 62831 71361 80284
Afivo 1 30 3347 LN G 4. 7154 54726 62818 7,1297 80303
()17 XL ()18 1,002 (10025 {11 020
37337 44266 51733 5.9695 6811 7.6934 86126
32 3.7436 447162 3.169 38715 68175 7.0U3 86012
(),26% (),24 (.10 (2" ) 3¢
41476 48783 5.6605 4898 7.3617 82719 92163
34 £,1456 £ 8846 5.658h0 B8 7.3569 82629 92213
11005¢ ¢ (0,135 {2,003, ) /! f
4389 5,3563 61727 7L334 7.9342 8.8705 98383
36 4,58t 5,353 61728 7.0346 79302 887015 Q8473
(I8 (1Nt e X [EALN) IRLLE (105

Vulores calculados com o modelo de diferengas fimilas
Vulores caleudados por simulagdo de Monte Carlo
Frro entre oy dois metodos

Tabela 4.2 - Valores da opeiio sem custos de transagdio para a apcdo de compra europeia tipo “basket”
com dois ativos ¢ volatilidades deterministicas em fungio dos valores dos ativos - Comparagio entre o
méiode de diferencas finitas proposto e simulagio de Monte Carlo - Erro médio 0,012%
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Figura 4.8 - Valores da op¢do e dos deltas sem custos de fransagio para a opedio de compra enropeia com
barreira com dois ativos, volatilidades deterministicas e custos de fransagio - w=045, $10=30, 520=50,
K=42, 8b=85, T=1, r=0,1, DI=0,02, D2=0,03, p=0,5, 6I=02, c2=0,3, dS1=1,25, dS2=1 0, kS1=0005,
kS$2=0,005, dt=1/15000, d1c=1/50
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Figura4.9 - Valores dos gammas sem custos de transag@o para a opgio de compra enropeia com barreira
e dois ativos, volatilidades deterministicas ¢ custos de transacio - w=0 45, 510=30, 520=50, K=42, Sb=85,
T=l, r=0,1, DI=0,02, D2=0,03, p=05, c1=0.2, 62=0,3, dSI=125, dS2=10, kSI1=0,005, kS2=0005,
dt=1/15000, dtc=1/50
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Figura 4.11 - Valor da opedio sem custos de transagiio para a opedo de compra europeia com barreira com
dois ativos, volatilidades deterministicas - w=045, $10=30, 520=50, K=42, Sb=85, T=I, r=0,1, D1=0,02,
D2=0,03, p=0,5, 61=0,2, 62=0,3, Trajetsrias=50000, I ntervalos=300, Repeticoes=1000

A simulag@o de Monte Carlo pode ser repetida diversas vezes em fun¢iio dos valores dos ativos
para determinar uma “superficie de solug¢do” como foi feito no modelo de diferencas finitas. Calcu-
lando os valores no mesmo intervalo adotado para o calculo anterior, teremos.

Opcao Basket Up&ROut Call 2 Ativos - Simutacao de Monte Carlo
Volatilidades Deterministicas sem Custo de Transacao
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Figura 4.12 - Valores da opedo sem custos de transagio para a opgédo de compra europeia com barreira
e dois ativos e volatilidades deterministicas em fung@o dos valores dos ativos, calculados por simulagio
de Monte Carlo - w=0A45, S10=30, $20=50, K=42, Sb=85, T=1, r=0 LI, DI1=0,02, D2=0,03, p=05, cI=02,
62=0 3, Trajetorias=10000, Intervalos=300, Repeticoes=200
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Figura 4.13 - Condigdo Inicial para o modelo de opcao de compra europeia “vanilla” celculada com
o modelo de volatilidade estocdstica - 50=50, K=50, T=1, r=0,1, D=005, p=0,5, p=0,3, ci=0.2, 62=0 A4,
dS=08, do=0 8016, kS=0,005, ko=0,005, dt=1/15000, Stc=1/50
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Figura 4.14 - Valores da opcio e dos deltas sem custo para o opedo de compra europeia “vanilla” calcu-
lada com o modelo de volatilidade estocdstica - S0=50, K=50, T=1, r=0,1, D=0,05, p=0,5, p=0.3, c1=02,
02=04, dS=038, do=0,0016, kS=0,005, ko=0,005, dt=1/15000, 5tc=1/50
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Opcao Call - Diferencas Finitas
Volatilidade Estocastica e Custo de Transacoes
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Figura 4.17 - Valor da opcdo com e sem custos de transagio em fungdo da volatilidade e valores do ativo,
para o modelo de opcdio de compra europeia “vanilie” calculada com o modelo de volatilidade estocdstica
- 80=50,K=50,T=1,r=0,1, D=0 05, p=0,5, =0,3, Ginicial=0 2, ofinal=0 4, dS=0 8, dc=0 0016, kS=6,005,
ko=0,005, dt=1/15000, Stc=1/50

A mesma andlise foi feita por uma simula¢do de Monte Carlo usando o modelo de Heston, im-
plementado pelo método de Milstein, para o caso sem custos de transacio, Desta forma podemos
comparar os valores obtidos pelos dois processos e avaliar a qualidade do modelo de aprecamento
desenvolvido. Nos anexo B foram feitas algumas an4lises que avaliam a capacidade de aprecamen-
to do modelo, quando introduzimos custos de transagao.

Para gerar a superficie de pontos pela simulagdo de Monte Carlo, foram feitas 49 simulagdes di-
ferentes, cada uma delas com um par de valores diferentes para o ativo e a varidncia V(S,62). O
valor da op¢do para cada uma das simulagdes foi tomado como a média de 50 repeti¢des de uma
simulagdo gerarda a partir de 10000 trajetérias de 200 intervalos df. Vdrios valores da velocidade
de reversdo a média foram testados e o valor k=2 foi o adotado para esta andlise.

Os resultados estdo apresentados a seguir.
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Figura 4.21 - Andlise das trajeforias ¢ distribuicdo do valor do ative para o modelo de Heston nay si-
mulagdes de Monte Carlo para o modelp de opgdo de compra europeia “vanilla” com volatilidade es-
tocdstica (valores da iltima simulacdo $=68, 0=04) - K=50, T: =1, r=0,1, D=0 95, p=05, =0,3, k=2,
Trajetorias=10000 , Intervalos=200
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4.5 Anilise de uma opgfio de compra europeia com barreira “up&out call” e volatilidade
estocastica

A seguir apresentamos os resuitados do apregamento de uma opgdo de compra europeia com bar-
reira utilizando o modelo de diferengas finitas com volatilidade estocsstica. Os resultados obtidos
pelo modelo de diferengas finitas sem custos de transagao foram comparados com uma simulagio
de Monte Carlo da mesma op¢io, usando o modelo de Heston com o método de Milstein.

A andlise foi feita com os seguintes dados de entrada:
Dados gerais

So 50 B 0.3 D 0,05

5b 85 Oinicial 0.2 ds 0,68
K 50 Ofinal 04 do 00016
r 0.1 p 0.5

Dados para Diferencas Finitas

kS 005
T | dt 1/15000 bte 1/50
ko 0,05
Dados para Monte Carlo
Iniervalos 300 Trajetérias 10000 Repetigdes 50 K 1

Tabela 4.7 - Dados de entrada para simulagio de uma opedo compra europeia com barreira “up&out
call” caleulada com o modelo de volatilidade estocdstica

Opcao Up&Cut Call - Biferencas Finitas
Condicao Inicial

Payoff
Condicao Inicial
& -]

3

LR}

s &
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Figura 422 - Condi¢do inicial para o modelo de op¢do de compra europeia com barreira “up&ount call”
calculada com o modelo de volatilidade estocdstica - 50=50, K=50, T=1, r=0,1, D=005, p=05, =03,
Ginicial=0 2, ofinal=0 4, dS=0,68, do=0,0016, kS=0 005, ko=0,005, de=1115000, Stc=1/50
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Figura 4.25 - Valor da opgdo com e sem custos de transagiio em funcio da volatilidade e valores de
exercicio, para ¢ modelo de opgdo de compra europeia com barreira “up&out call” e volatilidade estocds-
tica - 80=50, K=50, T=1, r=0,1, D=005, p=0 5, p=0,3, c1=0,2, 62=0 4, dS=0,68, do=0,0016, kS=0,005,
kc=0,005, di=1/15000, dtc=1/50

Opcao Up&Out Call - Diferencas Finitas
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Figura 426 - Valor da opedo com e sem custos de transagdo em fungiio da volatilidade e valores do ative,
para o modelo de opcde de compra europeia com barreira “up&out call” e volatilidade estocdstica -
S0=50, K=50, Sb=85, T=1,r=0,1, D=0,05, p=0 5, =03, c1=0,2, 62=0 4, dS=0 85, do=0 0016, kS=0 005,
ko=0,005, dt=1/10600, Stc=1/50
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Opcac Up&Out Cali - Simulacao de Monte Carlo vs Diferencas Finitas
Modelo de Heston - Metodo de Miistein - Variaveis Antiteticas
Diferencas Finitas com Voiatilidade Estocastica
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Figura 4.28 - Valor da opcdio sem custos de transagio em funedo do valor do ativo e volatilidade para o
modelo de opedo de compra europeia com barreira “up&out call” ¢ volatilidade estocidstica - Compara-
tivo com a simulagdo de Monte Carlo usando o modelo de Heston - K=50, 5b=85, T=1, r=0,1, D=005,
o=04,p=0,5, p=03, k=1
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Figura 429 - Andlise das trajetrias e distribui¢do do valor da volatilidade para o modelo de opgio de
compra europeia com barreira “up&out call” ¢ volatilidade eswocdstica, calculadas por simulagio de
Monte Carlo usando o modelo de Heston - K=50, Sb=85, T=1, r=0,1, D=0 05, c=04, p=05, B=0,3, k=2,
Trajetorias=5000, Intervalos=200 (valores da iiltima simulacdo S=68, 5=04)
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Capitulo 5

Discussiao dos resultados

Como ja vimos anteriormente, foram feitos vérios testes de verificacdo e aceitagdo dos modelos
desenvolvidos, comparando os resultados obtidos com as solugdes de outros modelos, com tra-
balhos encontrados na literatura ¢ simulacdes de Monte Carlo especialmente desenvolvidas para
esse propésito. E necessdrio, antes de comecgar a colher resultados obtidos através das ferramentas
desenvolvidas, conhecer suas capacidades e limitagdes.

A primeira parte do anexo A mostra uma comparagio entre os resultados dos modelos de apreca-
mento para dois ativos com volatilidades deterministicas e outros modelos para um ativo usando
o modelo de Hoggard, Whalley e Wilmott (1992) para os custos de transacdo. Usando como dado
de entrada o valor de um dos ativos como zero, devemos esperar que os resultados do aprecamento
sejam iguais para os dois modelos, tanto com ou sem custos de transacdo. De fato, observando as
tabelas comparativas dos anexos Al e A2, podemos observar que a implementagdo do modelo em
duas dimensdes ndo restringe sua aplicagdo para apenas um ativo. Os erros obtidos entre as duas
solu¢des foram bastante baixos, comprovando a afirmacdo acima.

A segunda parte do anexo A mostra testes de simetria da solu¢do quando os dados de entrada tam-
bém sdo simétricos. Esse teste foi necessdrio para avaliar se havia al gum erro de discretizagdo das
derivadas no modelo de diferencas finitas. Analogamente, observando as tabelas comparativas dos
anexos A3 e A4, podemos ver que ndo h4 diferenca de valores entre pontos simétricos na “superfi-
cie de resposta”. Podemos observar também que para o aprecarmento sem custo, o erro em relagio
a simulagGes de Monte Carlo foi bastante pequeno, principalmente no caso da opgio “vanilla”. No
caso da op¢do com barreira “up&out call”, o tratamento da “quebra da barreira” pela Brownian
Bridge parece introduzir um pequeno erro. De qualquer forma os resultados foram muito bons.

O anexo B mostra a comparagio dos resultados entre o modelo de diferencas finitas desenvolvido
para o caso de volatilidade estocdstica e um outro trabalho [1]. Neste trabalho os autores usaram
um modelo de elementos finitos para integracio da EDP caracterfstica do problema, o que nos
induz a concluir que a solugdo apresenta uma boa precisdo. Nesta andlise usamos uma de malha
de discretizagdo bastante refinada 300x300 associada a um passo de integragdo bastante pequeno
1/40000s para que a solu¢do ndc apresentasse instabilidade. Quatro casos foram comparados, com
€ sem custos de transacdo e quando as volatilidades sdo 6=0,05 e 6=0,2. Observando as tabelas
comparativas do anexo Bl podemos observar que o modelo desenvolvido apresenta uma GStima
precisao quando comparado com a solugio por elementos finitos, tanto no apregamento com, como
no sem custos de transagdo. Apenas dois valores apresentaram erro elevado (7.5% e 4,3%) mas
imagino que no primeiro casos isso se deve a um problema de arredondamento na apresentacio dos
resultados e no segundo caso a um erro de di gitacio em [1].

Mais dois testes foram realizados, comparando o modelo de aprecamento com volatilidade estocds-
tica e 0s outros modelos para volatilidade deterministica e custos de transacio, usando o modelo de
Hoggard, Whalley e Wilmott (1992). Nestas andlises usamos o valor zero para a volatilidade da vo-
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implementamos o modelo de Heston, usando o método de Milstein com varidveis antitéticas. Essas
simula¢@es sdo bem pesadas, sobretudo quando queremos obter a “superficie de resposta” para
estes casos de volatilidade estocdstica.

Aqui encontramos um problema maior, o ajuste do pardmetro « (velocidade de reversdo 4 média da
varidncia para o modelo de Heston). Adotamos uma estratégia para o ajuste deste pardmetro, para
que pudéssemos comparar os resultados obtidos entre 0s modelos desenvolvidos e as simulacSes
de Monte Carlo com volatilidade estocdstica. Foram analisados 5 casos, adotando para x os valores
de0,5,1,2,4,8 e em cada simulag¢do. Para cada « foi gerada uma “superficie de resposta” e o erro
quadratico médio foi calculado entre cada superficie e a superficie gerada pelo método de diferen-
¢as finitas. Desta forma obtemos uma curva de erro quadrdtico médio em fungdo de x e podemos
estimar qual K produzird o erro minimo. ApGs a determinagdo do ¥ étimo refazemos a simula¢io
adotando valores maiores para os pardmetros nimero de trajetérias, intervalos e repetiges, plotan-
do as superficies geradas pelos dois métodos no mesmo grifico.

Observando as tabelas comparativas 4.6 e 4.8 verificamos que os valores obtidos por diferengas fi-
nitas e Monte Carlo ndo sao tdo préximos quanto eram nos modelos de volatilidade deterministica,
tanto para a op¢ao “vanilla” quanto para a opgdo com barreira “up&out call”, entretanto através
do gréfico das superficies podemos observar que apresentam exatamente o mesmo comportamento.

Existe uma explicacdo para esta diferenga entre as duas simula¢Ges. Na realidade ndo estamos
simulando 0 mesmo modelo. © modelo de Heston, usado nas simulagSes de Monte Carlo, ndo
pressupde a volatilidade com um ativo negocidvel e h4 uma pequena diferenga entre termos con-
vectivos da EDP de cada modelo. Na EDP do modelo de Heston existe o termo K(G— v)aV /v,
a0 passo que no modelo de diferengas finitas desenvolvido temos um termo ligeiramente diferente
redV /do |
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Capitulo 6

Conclusoes

O objeto deste trabalho fol estudar o aprecamento de alguns tipos de derivativos, considerando
volatilidades deterministicas e estocdsticas, com custos de transa¢do. Foram desenvolvidos dois
modelos matemdticos para o aprecamento de op¢des, e solugo da equagao diferencial parcial ndo
linear foi obtida numericamente por um processo de diferencas finitas.

O primeiro modelo visa fazer o aprecamento de opgGes europeias, considerando a volatilidade
como um ativo negocidvel e considerando os custos de transagfio. Estudamos a solu¢iio de uma op-
cdo de compra “plain vanilla” e uma outra op¢do com barreira do tipo “up&out call”. O objetivo
foi mostrar como podemos adaptar as condigdes iniciais e de contorno para resolver vdrios tipos
de problemas.

O segundo modelo visa fazer o aprecamento de opcdes europeias do tipe “basker”, considerando
2 ativos no portfélio, volatilidades determinfsticas e custos de transagdo. Da mesma forma como
foi feito para o caso anterior, estudamos a solug@o de uma opcao de compra “plain vanilla” e uma
outra op¢do com barreira do tipo “updout call”.

Os modelos matemdticos propostos foram desenvolvidos no capitulo 3 e as EDPs resultantes (3.17
e 3.35) foram discretizadas por um processo de diferencas finitas explicito. Neste desenvolvimen-
to procuramos mostrar como tratar as condi¢Ges iniciais para cada tipo de opcdo de uma forma
bidimensional, jd que as EDPs resultantes dos modelos estudados apresentam duas dimensdes no
espa¢o. Procuramos também mostrar como tratar as derivadas parciais e as condi¢Ses de contorno
para os pontos situados sobre as fronteiras do dominio, de tal forma que a ordem de grandeza do
erro de diferenciacdo seja constante em todo o dominio [12].

As equacdes discretizadas foram implementadas em scripts Matlab® e inicialmente vdrios casos
foram simulados para se fazer uma validac¢do dos modelos em termos de robustez, confiabilidade e
precisdo dos resultados. Essas validagdes foram realizadas comparando-se os casos simuiados com
solu¢des analiticas de problemas unidimensionais, com resuitados apresentados na literatura de
derivativos e também com simulag¢des de Monte Carlo especialmente desenvolvidas.

Os resultados obtidos foram muito bons, como pode ser visto nas tabelas A1.2,A22,A32,A42.
Os erros mdximos foram da ordem de 3% para a opg¢do com barreira. Podemos concluir que os
modelos desenvolvidos podem ser usados no aprecamento de derivativos com vantagens sobre
métodos como por exemplo as simulacdes de Monte Carlo.

Observando as tabelas B1.2 ¢ B1.3 podemos concluir que 0 modelo desenvolvido para o apreca-
mento de opgdes com volatilidade estocdstica reproduz com precisdo os valores obtidos por ele-
mentos finitos em } 1], tanto para a andlise com como sem custos de transagéo.

Apds os testes de validagdo foram simulados outros quatro casos de interesse, cujas varidveis de
entrada representavam um problema geral e novamente os resultados foram comparados com si-
mula¢des de Monte Carlo para 0 mesmo problema. Os resultados para as opg¢des do tipo “basket”
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Capitulo 7

Pesquisas futuras

7.1 Discretizacdo implicita

A discretizagdo da equagdo diferencial parcial para o processo de diferencas finitas foi feita explici-
tamente, devido a ndo linearidade do modelo quanto aos custos de transagdo. Desta forma estamos
sempre usando as informages do passo anterior para calcular o novo passo ¢ a ndo linearidade do
modelo passa a néo representar nenhum problema.

Entretanto a discretizagdo explicita apresenta algumas limita¢des. Dependendo do grau de refi-
namento da malha a ser usada, do passo de integragdo e, no casos destes modelos, dos custos de
transagdo, a solugio pode tornar-se bastante instdvel. Uma forma de contornar esse problema é
adotar um passo de integragio bem pequeno, evitando assim a instabilidade, mas tornando a solu-
¢a0 muito demorada.

A simulac@o do modelo da op¢do de compra europeia “call” com volatilidade estocdstica, para
uma malha de 300x300 demorou mais de 3 horas para ser realizada. Foi necessdrio usar um passo
de 1/40000s para que a solu¢do ndo apresentasse instabilidade.

Uma forma de contornar este problema seria fazer uma discretizagdo implicita do método de di-
ferencas finitas. Mas como acomodar a ndo linearidade do modelo? Imagino fazer algo do tipo
“predictor-corrector”, ou seja, podemos escrever um método de Crank-Nicolson calculando as
parcelas de custo com a informagao do passo anterior e determinar uma solugdo intermedidria para
0 passo seguinte. Com esta solugdo intermedidria avaliamos novamente as parcelas dos custos de
transacdo e calculamos novamente o passo seguinte. O custo para contornar a ndo linearidade serd
resolver o problema todo duas vezes, solucfio intermedidria e solucdo final.

E preciso testar para verificar se ndo haverd muito erro numérico acumulado for¢ando a reducio
do passo de integra¢do novamente. Vale observar que neste caso haverd a necessidade da solugdo
de sistemas lineares, e como os problemas resolvidos neste trabalho sdo bidimensionais no espa-
¢o, 0s sistemas lineares serdo grandes. S6 haveria um ganho se o passo de integracdo pudesse ser
aumentado consideravelmente.

7.2 Implementacio de um método ADI

Se o método de discretizagdo fosse implicito, os sistemas lineares a serem resolvidos seriam muito
grandes. No caso da solugdo apresentada no anexo B1, deverfamos resolver a cada passo um sis-
tema linear 90000x90000. Mesmo que sejam usados métodos de solugdo para sistemas esparsos,
a solugiio seria muito demorada, inviabilizando talvez a solugdo destes problemas de aprecamento
por diferencas finitas, elementos finitos ou outro método numérico semelhante.

Uma alternativa a este problema seria implementar um método ADI (Alternating Direction Impli-

cit). Este método tem por objetivo reduzir a dimensionalidade do problema e, no exemplo citado
acima, passariamos a resolver 2x300 vezes um sistema linear 300x300. Pode nio parecer mas é
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Se desejarmos uma precisdo razodvel, o nimero de trajetdrias, intervalos e repeticSes vai sem dui-
vida desencadear uma simulagio muito demorada. Ao longo deste trabalho foram feitas algumas
simulagGes que [evaram cerca de 28 horas de processamento.

Uma das maneiras de tentar reduzir o tempo de simulagdo sem prejuizo da precisdo seria a ado¢do
de varidveis de controle nas simulaces de Monte Carlo, que na realidade ndo era o foco principal
deste trabalho. Neste trabalho em todas as simulagSes de Monte Carlo foram empregadas varidveis
antitéticas.

7.7 Custos de transac@o nas simulacdes de Monte Carlo

Foi necessdrio recorrer a um modelo de custos de transacdo (Hoggard, Whalley e Wilmott (1992)),
também implementado em diferencas finitas, para avaliar os modelos desenvolvidos neste trabalho.
Teria sido bem melhor se 0 método de comparacdo fosse de outra natureza.

N&o pensei muito, nem investiguei esse assunto, mas me parece possivel fazé-lo. Imagino que a
cada intervalo preestabelecido 8t, devemos deduzir do valor na trajetdria simulada, a parcela dos
custos de transago. Precisamos avaliar as Gregas a cada intervalo 8t, o que ndo € muito trivial, mas
me parece um desafio interessante.

7.8 Brownian Bridge para as simulacdes de Monte Carlo das opc¢des com barreiras

O problema da convergéncia das simulagdes de Monte Carlo para as opg¢Oes com barreiras me
preocupava hd algum tempo. Tentei fazer algumas simulagGes, mas sem sucesso prdtico. Precisava
aumentar em muito o nimero de intervalos na discretiza¢io para aproximar os resultados do valor
exato calculado pelas férmulas analiticas [6][10].

Nao fazia parte do escopo deste trabalho mas uma probabilidade teérica de Brownian Bridge foi
usada nos algoritmos das simulag¢Ges de Monte Carlo com bastante sucesso.

Algumas simula¢Ges de Brownian Bridge puras foram feitas, para comparar a probabilidade simu-
lada com a probabilidade te6rica de uma Trajetdria Browniana cruzar uma barreira.
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Anexo A

Al  Anilise do modelo de aprecamento de uma op¢io de compra europeia “vanilla” para
dois ativos com volatilidades deterministicas

Antes de iniciar qualquer trabalho de simulagfo e andlise de resultados com os modelos imple-
mentados, alguns testes foram realizados para verificar sua aplicabilidade e confiabilidade e estio
descritos a seguir.

Anilise do modelo desenvolvido para uma op¢dio de compra europeia “vanilla” com dois ati-
vos, ¢ volatilidades deterministicas, no aprecamento de uma opc¢iio semelhante de um ativo
Inicialmente verificaremos a aplicabilidade do modelo desenvolvido para dois ativos no caso onde
w=1, ou seja, o aprecamento de uma opgdo composta por um ativo apenas. Os resultados obtidos
desta forma poderdo ser comparados com solugdes analiticas fechadas encontradas na literatura IR
Ou entdo a outras simulagSes numéricas para o caso de um ativo apenas. A utilizacio w=1, deve
fazer com que o modelo desenvolvido para dois ativos se comporte como um modelo de um ativo
apenas. Na realidade isso deve valer tanto para w=1 como para w=0,

Vamos fazer uma simulagao considerando w=1, ou seja 100% do ativo 1 e 0% do ativo 2 e ainda
considerar a correlagio entre os ativos nula, p=0. Fazendo-se isto espera-se que o modelo imple-
mentado se comporte como se fosse um modelo unidimensional para um ativo apenas. Os resulta-
dos encontrados devem ser rigorosamente os mesmos. Desta forma poderemos verificar a robustez
do modelo desenvolvido.

Vamos considerar uma anélise com os seguintes dados de entrada:

Dados gerais

w 1 r 0,1
S10 50 al 04 Dl 0,05
S20 50 G2 04 D2 0,05
K 50 [ 0.0

Dados para Diferencas Finitas

dt 1/12000 ds1 08 kSl 005

T 1
dte 150 dsz 0.8 kS2 0,05

Tabela A1.1 - Dados de entrada para simulagio de uma opgiio compra europeia tipo “basket” com dois
ativos e volatilidades deterministicas - Comparaciio com um modelo de um ativo

A seguir estdo mostrados os resultados da andlise descrita.
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Para comparagio dos valores da opgdo com custos de transagdo, vamos usar um modelo de dife-
rengas finitas desenvolvido para um ativo apenas, considerando o modelo de Hoggard, Whalley e
Wilmott (1992) para os custos de transacdo. Nesta andlise serd considerado apenas o custo propor-

cional ao valor do ativo, conforme implementado nos modelos para dois ativos.

A seguir encontram-se os resultados para o aprecamento de uma op¢do de compra europeia “va-

nilla” com custos de transagfo.
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A2 Anilise do modelo de aprecamento de uma opc¢do de compra europeia com barreira
“up&out call” para dois ativos com volatilidades deterministicas

Antes de iniciar qualquer trabalho de simulagdo e andlise de resultados com 0s modelos imple-
mentados, alguns testes foram realizados para verificar sua aplicabilidade e confiabilidade e estio
descritos a seguir.

Andlise do modelo desenvolvido para uma opcao de compra europeia com barreira, dois
ativos e volatilidades deterministicas, no aprecamento de uma op¢io semelhante de um ativo

Da mesma forma utilizada para a opcdo “vanilla”, para que possamos fazer uma comparagfo entre
os resultados obtidos pelo modelo de aprecamento desenvolvido para dois ativos com a solugio
analitica fechada, vamos fazer uma simulag¢io considerando uma op¢do de compra com barreira
superior, do tipo “up&out call”, com w=1, ou seja 100% do ativo 1 e 0% do ativo 2 e ainda con-
siderar a correlag@io entre os ativos nula, p=0. Os resultados obtidos desta forma poderdo ser com-
parados com solugdes analiticas fechadas encontradas na literatura [1, ou entdo a outras simulacdes
numericas para o caso de um ativo apenas. Fazendo-se isto espera-se que o modelo implementado
se comporte como se fosse um modelo unidimensional para um ativo apenas. Os resultados en-
contrados devem ser rigorosamente os mesmos. Desta forma poderemos verificar a robustez do
modelo desenvolvido.

Vamos considerar uma anélise com os seguintes dados de entrada:

Dados gerais

w 1 r 0.1 Sk 85
S10 50 ol 04 D1 0.05
S20 50 a2 04 D2 0,05

K 50 P 00

Dados para Diferencas Finitas

dt 1/15000 ds1 0,68 kSi 0,05

T !
dte 1/50 ds2 0,68 k82 005

Tabeln A2.1 - Dados de entrada pora simulagio de wma opedo compra europeia comn barreira tipo
“basket” com dois ativos e volatilidades deterministicas - Comparagiio com um modelo de um ativo

A seguir estdo mostrados os resultados da andlise descrita.
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Para comparagdo dos valores da op¢do com custos de transagdo, vamos usar um modelo de dife-
rengas finitas desenvolvido para um ativo apenas, considerando o modelo de Hoggard, Whalley e
Wilmott (1992) para os custos de transagio. Nesta analise serd considerado apenas o custo propor-
cional ao valor do ativo, conforme implementado nos modelos para dois ativos.

A seguir encontram-se os resultados para o apregamento de uma opgdo de compra europeia com
barreira do tipo “up&out call” com custos de transacio.
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A3 Andlise de simetria do modelo desenvolvido Para uma op¢io de compra europeia “va-
nilla” com dois ativos e volatilidades deterministicas

Fazemos agora uma andlise de simetria do modelo de aprecamento desenvolvido para uma op-
¢d0 de compra europeia “vanilla”, cujo objetivo é comprovar se para quaisquer dados de entrada
simétricos, obtemos também uma saida simétrica, comprovando nio haver nenhum problema na
discretizagdo da equagfo diferencial (3-35). Foi adotada uma carteira com w=0,5,50% de cada um
dos ativos e todas as caracteristicas de cada ativo foram adotadas i guais.

Os resultados obtidos desta forma poderio ser comparados com simulag¢des de Monte Carlo para
0s mesmos valores de entrada. Fazendo-se isto espera-se que o modelo implementado se comporte
de maneira simétrica em relagdo aos valores dos ativos.

Vamos considerar uma andlise com os seguintes dados de entrada:

Dados gerais
w 05 r 0.1
S1p 50 ol 04 Di 0,05
S20 50 a2 04 D2 0.05
K 50 p 0.5

Dados para Diferencas Finitas

T 1 dt 1712000 dsi 133 kS1 0,05
Ste 1/50 ds2 1,33 kS2 0.05
Dados para Monte Carlo
Intervalos 200 Trajetérias 10000 Repetigdes 100

Yabela A3.1 - Dados de entrada para simulagdo de uma opgdo compra europeia tipo “basket” com dois
ativos e volatilidades deterministicas - Verificacio de simetria dos resultados

A seguir estdo mostrados os resultados da andlise descrita.
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Comparamos os valores da opgio sem custos de transacdo, fazendo uma simula¢io de Monte Carlo

com os mesmos valores utilizados.
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A4 Anilise de simetria do modelo desenvolvido para uma op¢éio de compra europeia com
barreira “up&out call”, dois ativos e volatilidades deterministicas

Fazemos agora uma andlise de simetria do modelo de aprecamento desenvolvido para uma opgéo
de compra com barreira do tipo “updout call”, cujo objetivo é comprovar se para quaisquer dados
de entrada simétricos, obtemos também uma safda simétrica, comprovando ndo haver nenhum pro-
blema na discretizacdo da equagio diferencial (3-35). Foi adotada uma carteira com w=0.5, 50%
de cada um dos ativos e todas as caracteristicas de cada ativo foram adotadas i guais. Os resultados
obtidos desta forma poderdo ser comparados com simulagdes de Monte Carlo para os mesmos
valores de entrada. Fazendo-se isto espera-se que o modelo implementado se comporte de maneira
simétrica em relagdo aos valores dos ativos.

Vamos considerar uma andlise com os seguintes dados de entrada:

Dados gerais
w 0.5 r 0.1 Sb 85
S10 50 Gl 04 D1 0,05
S20 50 g2 04 D2 0,05
K 50 p 05

Dados para Diferencas Finitas

N : dt 1/12000 dsl 1.36 kS1 0,05
Ste 1/50 dS2 1,36 kS2 0,05
Dados para Monte Carle
intervalos 300 Trajetérias 10000 Repeticdes 100

Tabela A4.1 - Dados de entrada para simulagdo de uma opgio compra europeia tipo “basket” com barrei-
ra, dois ativos e volatilidades deterministicas - Verificagéo de simetria dos resultados

A seguir estdo mostrados os resultados da andlise descrita.
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Figura A4.3 - Valor dos gammas sem custo para o modelo de op¢iio de compra europeia com barrei-
ra “up&out call”, com dois ativos, volatilidades deterministicas e dados de entrada simétricos - w=0.5,
510=820=50,K=50,8b=85,T=1,r=0,1, DI=D2=005, p=05,61=02=04,dS1=dS2=1 36, kSI=kS2=0 005,
di=1115000, dtc=1/50

Opcao Basket Up&Out Call ~ Diferencas Finitas - w=0,5
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Figura A4.4 - Valor da opedo com ¢ sem custos de transacdo em fungdo dos valores dos atives, para o
modelo de opgdo de compra europeia com barreira “up&out call’” com dois atives, volatilidades deter-
ministicas e dados de entrada simétricos - w=0 5, $10=520=50, K=50, Sb=85, T=1, r=0,1, D1=D2=0 05,

p=0S5, aI=02=04, dS1=dS2=1 36, kS1=kS52=0005, dt=1/15000, dtc=1/50

Comparamos os valores da op¢ao sem custos de transa¢io, fazendo uma simulagdo de Monte Carlo
com os mesmos valores utilizados.
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Anexo B

Bl  Anilise do modelo para uma op¢io de compra europeia “vanilla” e volatilidade estocsis-
tica - Comparacio com outro trabalho

Para que possamos verificar a qualidade do modelo desenvolvido para o aprecamento de opgdes
de compra europeias com volatilidade estocdstica, vamos comparar os resultados obtidos por este
modelo com simulagSes encontrados na literatura, onde a solucdo da equacdo diferencial parcial
foi obtida por um processo de elementos finitos | 1], com e sem custos de transacdo. Com esta
andlise desejamos verificar a capacidade do modelo desenvolvido no aprecamento de opgdes com
volatilidade estocdstica e custos de transagao. Curiosamente, no trabalho referido, o intervalo entre
“hedges™ foi considerado igual ao periodo de vencimento e portanto fizemos 0 mesmo.

Vamos considerar uma andlise com os mesmos dados de entrada usados em [1]:

Dados gerais
So 100 r 0.05 Ginicial 0,05 P 08
K 100 D 0 ofinal 02 B 04
Smax 200
Dados para Diferencas Finitas
L | dt 1/40000 ds 0,666 kS 0,02
Ste /1 do 0,0005 ko 0,02

Tabela B1.1 - Dados de entrada para simulagio de uma opgdo compra europeia “vanilla” com volatilida-
de estocdstica - Comparagido com outro trabalho

A seguir estdo mostrados os resultados da andlise descrita.
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B2 Analise do modelo de volatilidade estocastica em rela¢io a modelos com volatilidade
deterministica para uma opcio de compra europeia “vanilla”

Vamos comparar os resultados obtidos com o modelo de volatilidade estocdstica e 0 modelo de
volatilidade deterministica, considerando o modelo de Hoggard, Whalley e Wilmott (1992) para os
custos de transac¢do. Para esta andlise vamos adotar =0 e ko=0. Fazendo =0 estamos admitindo
volatilidade nula para a varidncia e fazendo ko=0 estamos calculando apenas o custo devido ao
valor do ativo. Desta forma o modelo de volatilidade estocdstica deve apresentar um comportamen-
to semelhante a0 modelo de volatilidade deterministica, permitindo assim comparar os resultados
obtidos por eles. Para os custos de transagdo no modelo de Hoggard, Whalley e Wilmott (1992)
vamos considerar apenas ¢ custo proporcional ao valor do ativo, ou seja, k/=0, k2=0 e k3=0,005.

Vamos considerar uma andlise com os seguintes dados de entrada:

Dados gerais
S0 50 r 0.1 Ginicial 02 p 0
K 50 D 0,05 cfinal 04 B
Smax 100

Dados para Diferencas Finitas - Modelo com Volatilidade Estocastica
dt 1/10000 ds 08 kS 0.005
Stc 1/50 do 0,0016 ko 0

T 1

Dados para Diferencas Finitas - Modelo com Volatilidade Deterministica

N . di 1/10000 kil U] Gl 02
Stc 1/50 k2 0 o2 04
ds 0.5 k3 0,005

Tabela B2.1 - Dados de entrada para simulagiio de wmna opgdio compra europeia “vanilla” com volatilida-
de estocdstica - Comparacde com outre modelo com volatilidade deterministica

A seguir estdo os resultados da simulagdo proposta para o caso de uma opg¢do de compra europeia
“vanilla”.
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A tabela a seguir mostra um comparativo entre as solugdes obtidas com o modelo de volatilidade
estcdstica e o modelo de volatilidade deterministica usando o modelo de Hoggard, Whalley e Wil-
mott (1992) para os custos de transagio.

=02 a=014
Modelo de Modeio de Modelo Modelo de Modelo de Mudelo
B s B il i e M e, |
sem custo Cd comt Custo COM CHSTo Sem cusfo @ CONE CUSY cOmn clisto
44 20333 21146 1.5510 i6311 5.3378 5.5071 4.8489 5.0190
46 28570 2.9383 2.3202 24081 6.3356 6.5109 58273 6.0041
48 3.8328 3.9247 3.2819 3.3753 74152 7.5955 6.8942 7.0764
50 4.9705 5.0545 44279 45110 8.5720 8.7506 80444 8.2250
52 6.2506 6.3368 5.7402 5.8242 9.8007 09822 9.2724 94562
54 7.6565 7.7340 7.1953 7.2676 11.0962 112744 105721 10.7528
56 9.1696 9.2392 8.7677 8.8295 124532 126273 11,9377 12.1147

Tabela B2.2 - Valores da opgdio com e sem custos de transagdo, para o modela de opgiio de compra
europeiq “vanilla”, com volatilidade esiocdstica, em funcéo dos valores do ativo e volatilidades médias
de 61=02 e 62=04, S0=50, k=50, T=1, r=0,1, D=0,05, p=0, p=0, dS=03, do=0,0016, kS=0,005, ko=0,
di=1/16000, dtc=1/50 - Comparative com modelo de volatilidade deterministica usando o modelo de Ho-
ggard, Whalley ¢ Wilimott (1992) para os custos de ransagio - 50=50, K=50, T=1, r=0,1, D=0,05, c=0,2
e =04, dS=0,5, kI=0, k2=0, k3=0,005, dt=1/10000, Stc=1/50
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Figura B3.2 - Valores da opgio e dos deltas sem custo para o modelo de opedo de compra europeia com
barreira “up&out call” de volatilidade estocdstica, analisando um caso de volatilidade deterministica
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Figura B3.5 - Valor da opedo com e sem custos de transagiio em Juncdo da volatilidade e valores do ati-
vo, para o modelo de opgdo de compra europeia com barreira “up&out call” de volatilidade estocdstica,
analisando um caso de volatilidade deterministica - $0=50, K=50, T=1, r=0,1, D=0,05, p=0, p=0, c1=02,
02=04, d5=0,68, do=0,0016, kS=0,005, kc=0, di=1/10900, Ste=1/50

Agora vamos analisar o mesmo problema com o modelo de volatilidade deterministica, conside-
rando o modelo de Hoggard, Whalley e Wilmott (1992) para os custos de transagéo.

Up&Out Call - Diferencas Finitas UpROut Cali - Diferencas Finitas
Hoggard, Whaley & Wilmott (1992) - Hoggard, Whaley & Wilmott {1992)
L3
; ;
E 0 E 30
3. €
[
-3 o
] §
] - 0
£ a2l
E 08 - % ® ;li o . s *
1 L ™o 20
Tempo Valer do Ativo Tempo Valor do Ativo

UpB&Out Calf - Diferencas Finitas
Hoggard, Whaley & Wilmott (1992)

3% Cal som Cugte
Cul

o
ga

= J
3 15 |
g
3 (L]
Al ;

e e —— = e —

] e 20 3 <0 50 [ o 80

Valor de Ative

Figura B3.6 - Valor da opgéio com e sem custos de fransagdoe em funcdo do valor do ative, para o modelp
de opgio de compra europeia com barreira “up&ont call” de volatilidade deterministica, usando o mode-
lo de Hoggard, Whalley e Witmott (1992) para os custos de transagio - $0=50, K=50, T=1, r=0,1, D=0,05,
o=04,dS=0,5, kI=0, k2=0, k3=0 005, dt=1/10000, Stc=1/50
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Anexo C - Cédigos Matlab®

C1 Opcgiio europeia “call” com modelo de Hoggard, Whalley e Wilmott (1992) para os cus-
tos de transacio

$Aprecamento de Opcao Europeia Call pelo metodo de diferencas finitas
tusando um algoritmo explicito e o modelo de Hoggard, Whalley e Wilmott
$para o custo de transacoes.

t8Adotados os sequintes valores de entrada
%(St,K.r,D,T,Sigma,Smax,dS,dt,dtc,kl,kZ,k3)

%Referencia - Paul Wilmott, Quantitative Finance

clear all;close all;clc;

format short;

tDados de entrada para os calculos
50=50;%valor do ativo

K=50;%5trike

r=.1;%Taxa de juros livre de risco
D=,05;%Taxa de dividendos
t=0;T=1;%Tempo para ¢ vencimento
Sigma=.2;%Volatilidade

Smax=100;%Valor maximo do ative
ds=.5;%Discretizacao do valor do ativo
dt=T/10000;%Discretizacac do tempo
k1l=.0;%Custo fixo por transacao
k2=.0;8%Custo proporcional ac volume
k3=.005; %Custo proporcional ao valor
dte=T/50;%Intervalo entre operacoes de hedge

tDados para obtencao de resultados interpolados
vectorInterp8=[S0-20:2:80+20];%Vetor dos valores do ativo para interpolacao

ticID = ti¢;%Inicia o timer

%Ajuste do grid e dos incrementos
M = round(Smax/ds);

ds = Smax/M;

N = round{T/dt);

dt = T/N;

¥Inicializacao de variaveis

Valor = zeros(M+1,N+1);
Delta = zeros(M+1,N+1);
Gamma = zeros(M+1,N+1);
Theta = zeros(M+l,N+1);

%Definicao da Condicoes de Contorno
vetor § = linspace(O,Smax,M+1)’;
Valor(:,N+1l) = max(vetox_S-K,0);
ValorC=Valor;

i5Calculo do valor da opcac sem custo
for j=N:-1:1
for i=2:M
Delta(i,j)=(Valor(i+1,j+1)-Valor(i—1,j+1));
Gamma(i,j)=(Valor(i+1,j+1)—2*Valor(i,j+l)+Valor(i-1,j+1));
Theta(i,j)=r*Valor(i,j+1)-Delta(i,j)/2*(r—D)*(i-1)—
Gamma({i,j)/2*Sigma~2+(i~1)~2;
Valor(i,j)=Valor(i,j+1)-dt*Theta(i,j);
end
$Condicao de contorno nas extremidades
%Segunda derivada nula
Valor(1,j)=(5*Valor(2,j)—4*Valor(3,j)+Valor(4,j))/2;
Valor(M+1,j)=(5*Valor(M,j)—4*Valor(M—l,j)+Valor(M—2,j))/2;
end

$Calculo do valor da opcac com custo
for j=N:-1:1
for i=2:M
Delta(i,j)=(ValorC(i+1,j+1)—ValorC(i-l,j+1));
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weight’',’b’,‘color’,‘k');
%legend(‘\fontname{Verdana}\fontsize{11}\bf\itValor Up&Out Call sem custo de
transacao’, ’\fontname{Verdana}\fontsize{11}\bf\itValor Up&Qut Call com custo de
transacao’, '\fontname{Verdana}\fontsize{11}\bf\itPayoff da Up&Out Call’,2}
legend(‘valor da Call sem Custo’,’Valor da Call com Custo’, 'Payoff da Call’,2)

elapsedTime = toc(ticID);%Para o timer

$Mostra os valores calculados com este algoritimo vs formula fechada para

%a solucao deste problema - ref. Wilmott

P R (NN e e ]
fprintf(‘\n Aprecamento de Opcao Call pelo metodo de Diferencas Finitas'’)
fprintf(‘\n Algoritmo explicito e modelo de Hoggard, Whalley e Wilmott (1992)°)
fprintf(‘\n para o custo de transacoes’)

Tt (D o ")
fprintf{‘\n valores usados para este calculo’)

fprintf(’\n ds [intervalo do valor do ativo] i %-.2f',d8)

fprintf(‘\n dt [intervalo de tempo de integracao] : %-.6f',4dt)

fprintf(‘\n st [valor do ativeo) : %-.2f',80)

fprintf(’'\n K [strike] ¢ 5-.2f,K)

fprintf({‘\n Smax [valor maximo do ativo] : %-.2f’,Smax)
fprintf(‘\n T [tempo de vencimento] : %-L2F0,T)

fprintf('\n r [taxa de juros livre de risco] : %-.2f',r)

fprintf(‘\n D [taxa de dividendo] : 8=.2f7,D)

fprintf(‘\n Sigma [volatilidade] t %-.2f',8igma)
Eprintf (/' \n ———m e '
fprintf(‘\n Valores de custo para o modelo de Hoggard, Whalley e Wilmott’)
fprintf(‘\n dtc [intervalo de tempo de hedge) ¢ %-.4f' ,dte)

fprintf(‘\n kil {custo fixo por transacao] i %-.4f',k1)

fprintf(‘\n k2 [custo proporcional ao volume) : 8-,4f7,k2)

fprintf{‘\n k3 [custo proporcional ao valor] t %e.4f7 ,k3)

EprintE (M — e e T E
fprintf(‘\n valor calculado pelo formula fechada i %-.4f' ,blsprice)

fprintf(‘\n Valor calculado pelo algoritmo explicito sem custo : %-.4f’,price)
fprintf(‘\n valor calculado pelo algoritmo explicito com custo : %-.4f' ,priceC)
erro=(price-blsprice)/blsprice*100;

fprintf(‘\n Erro percentual deste calculo : %=.3f",erro)

printf (N —m e ")
fprintf(‘'\n Tempo do calculo (com os graficos) : %-.2f [seg]’ ,elapsedTime)
fprintf('\n —eemm—oo e I T ")

fprintf(’\n Resultados - Valores Interpolados sem custo, formula analitica e com

custo’)
interpvValor=[vectorInterps’ interpvalue’ interpCall’ interpvValueC’)
P Nt (NN e "y
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Theta(i,j)=r*ValorC(i,j+1)-Delta(i,]j)/2*(r-D)*(i-1)~Gamma(i,j)/2*Sigma~2* (i-
1)~2+Cost(i,]);
ValorC(i,j)=vValorC(i,j+1)~dt*Theta(i,j);
end
$Condicao de contorno nas extremidades
%sequnda derivada nula
ValoxC(1,J)=(5*Valorc(2,j)-4*valorC(3,j)+vValorC(4,5j))/2;
end

%Retorna o valor interpolando os dados de saida
price=interpl(vetor_8, valor(:,1),80,’spline’);
priceC=interpl(vetor_8, ValorC(:,1),50, 'spline’);
priceUpOutCall=UpOutCall_Ana1ytic(SO,Sb,K,r,D,Sigma,T,t);

$Interpolacac para tabela de resultados
interpvalue=interpl(vetor_s, Valor(:,1l),vectorinterps,’'spline’);
interpvalueC=interpl(vetor s, valorC(:,1),vectorInterps, ‘spline’);
inteerpOutCall=UpOutCall_Analytic(vectorInterpS,Sb,K,r,D,Sigma,T,t);

$Definicac dos eixos dos graficos
vetor_3j = 0:N;

Xt=vetor j.*dt;

vetor_i = 0:M;

xS=vetor_i.*ds;

$Definicac dos graficos

set (0, 'DefaultFigurePosition’,[100 100 %00 640])
tf=16;%Tamanho do font dos titules

af=14; %Tamanho do font dos eixos

$Geracao dos graficos

figure(1)

set(gef, 'Color’,[1,1,1])%Cor do fundo da figura

subplet{2,2,1)

surfc(xt,xS,Valor, 'EdgeColor’, 'None’);

title({'Up&Out Call - Diferencas Finitas';'Hoggard, Whaley & Wilmott (1992) ‘}, ‘fontsiz
e’,tf,'fontname','Verdana','fontangle',’ltalic','fontweight’,'b','color','k');
xlabel(’Tempo’,'fontsize’,af,’fontname','Verdana’,’fontangle','ltalic','fontweight’,'b'
r"color’, 'k’ );

ylabel(‘valor do ativo *, ' fontsize’,af, ' fontname’, 'vVerdana’, ‘fontangle’,’'Italic’, ’font
weight’,’b’, ‘color’,'k’);

zlabel (’Valor da Opcao sem Custo *y'fontsize’,af,’fontname’, 'verdana’,’'fontangle’, Ita
lic’, 'fontweight’,’b’, "color’, 'k’);

axis([0 T 0 5b -Sb/50 max(max(valor))})

alpha(.5);

view(60,25);

subplot(2,2,2)

surfc(xt,xS,valorC, 'EdgeColor’, ‘None');

title({‘Up&Out Call - Diferencas Finitas’; Hoggard, Whaley & Wilmott (1992) ‘},’fontsiz
e’,tf,’fontname','Verdana','fontangle','Italic','fontweight’,'b','color’,’k');
xlabel(‘Tempo',’fontsize’,af,’fontname',’Verdana','fontangle','Italic',’fontweight’,’b'
y‘color,'k");

ylabel(‘valor do Ativo ‘;’'fontsize’,af, fontname’,'verdana’,’fontangle’, Italic’, ’font
weight’,'b’,’coleor’,'k’);

zlabel (‘Valor da Opcao c¢com Custo ‘' fontsize’,af, ' fontname’, 'Verdana‘, 'fontangle’, 'Tta
lic’, *fontweight’, ‘b’,color’, 'k’);

axis([0 T 0 Sb -Sb/50 max(max(Valor))])

alpha(.5);

view(60,25);

subplot (2,2, 3)

plot(xS,Valor(:,1),xS,ValorC(:,1),xS,Valor(:,N+l),'Linewidth’,l);

axis([0 8b -Sb/50 1.1%*(S8b-K)]1); grid on

title({‘Up&Out Call - Diferencas Finitas’;'Hoggard, Whaley & Wilmott (1992) ‘},'fontsiz
e',tf,’fontname’,’Verdana','fontangle','Italic',’fontweight’,'b','color',’k’);
xlabel(‘Valor do Ativo ‘, "fontsize’,af,’fontname-,‘'Verdana’, fontangle’, Italic’,’font
weight’, b, "color’, 'k’ );

ylabel(‘Valor da Opcao ‘,’fontsize’,af, ‘fontname’,'Verdana’,’fontangle’,'Italic’,  font
weight', 'b’,'color’,'k’);

tlegend(’\fontname{Verdana}\fontsize{ll}\bf\itvalor Up&Out Call sem custo de
transacac’, ‘\fontname{Verdana}\fontsize{l1l}\bf\itValor UpsOut call com custo de
transacao’, '\fontname{Verdana}\fontsize{1l1l}\bf\itPayof da Up&Out Call-",2)

legend(‘Valor da UpsOut Call sem Custo’,’'Valor da Up&Out Call com Custo’, 'Payoff da
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C3 Opgao europeia “call” com volatilidade estocastica e eustos de transacio

#Aprecamento de Opcao Europeia Call pelo metodo de bPiferencas Finitas
usando um algoritmo explicito e o modelo de Voltilidade Estocastica

%com Custo de Transacoes

$Ref. Numerical Methods applied to Option Pricing Models with Transacticnal
%Costs and Stochastic Volatility - Mariani, SenGupta e Sewell

tAdotados os seguintes valores de entrada

%(S0,K,r,D,T,Sigma i,Sigma f,Smax,ds,dt,dtc,ks,kSigma)

clear all;close all;cle;

format short;

tDados de entrada para os calculos
80=50;%Valor do ativo

K=50;%Strike

r=.1;%Taxa de juros livre de risco
D=.05;%Taxa de dividendos
T=1;%Tempo para o vencimento

t=0;%Inicio
Beta=.3;%Volatilidade da volatilidade
Rho=.5;%Coeficiente de correlacaoc entre ativo e volatilidade

Sigma_i=.2;%Volatilidade inicial
Sigma_f=.4;%Volatilidade final

Smax=100;%valor maximo do ativo

ds=.8;%Discretizacao do valor do ativo
dsigma=,0016;%Discretizacac da volatilidade
dt=T/15000;%Discretizacac do tempo

k5=.005;%Custo proporcional ao valor do ativo
kSigma=.005;%Custo proporcional ao valor da volatilidade
dte=T/50;%Intervalo entre operacces de hedge

%Dados para cbtencao de resultados interpolados
vectorS=[S0-18:6:50+18];%Vetor dos valores do ativo para interpoclacao
vectorSigma=[Sigma_i:(Sigma_f-Sigma i)/6:8igma_f];%Vetor dos valores da volatilidade
para interpolacao

ticID = tic;%Inicia o timer

$Ajuste do grid e dos incrementos

L = round(Smax/ds);

ds = Smax/L;

M = round((Sigma_f-Sigma i)/dsSigma);
dsigma = (Sigma_f-Sigma_i)/M;

N = round(T/dt);

dt = T/N;

%Inicializacao das variaveis

ValueoOld = zeros(L+1,M+1);Value0ldC= zeros(L+1l,M+1);

ValueNew = zeros(Lt+1l,M+1);ValueNewC = zeros(L+l,M+1);

Deltas = zerog(L+l,M+1l);DeltasSC = zeros(L+1l,M+1l);

DeltaSigma = zeros(L+1,M+1);DeltaSigmaC = zeros(L+1,M+1);
CrossVannaSSigma = zeros(L+1,M+1);CrossVannaSSigmaC = zeros(L+1,M+1);
GammaS = zeros(L+l,M+l);GammaSC = zeros(L+1,M+1);

GammaSigma = zeros(L+l,M+1);GammaSigmaC = zeros{L+1l,M+1);

Theta = zeros(L+1l,M+1);ThetaC = zeros(L+1,M+1);

%Definicac da Condicao Inicial
8 = linspace(0,Smax,L+1)’;
Sigma = linspace(Sigma_i,Sigma_f,M+1)’;
for j=1:M+1
ValueOld(:,j) = max(S-K,0);
Value0ldC(:,j) = max(S5-K,0);
end

¥Definicao dos graficos

set (0, 'DefaultFigurePosition’,[100 100 900 640]}
tf=16; ¥Tamanho do font dos titulos
af=14;%Tamanho do font dos eixos

figure(1l)
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SSigmaC(i,j)“2+2*Rho*Beta*Sigma(j)“2*S(i)*GammaSigmaC(i,j)*CrossVannaSSigmaC(i,j)+Beta‘
2*3igma(j)*2*GammasSigmac(i,j)*2);
ThetaC(i,j)=-(r—D)*S(i)*DeltaSC(i,j)—(r—D)*Sigma(j)*DeltaSigmaC(i,j)-l/Z*Sigma(
j)“Z*S(i)“Z*GammaSC(i,j)ml/Z*Beta‘Z*Sigma(j)“Z*GammasigmaC(i,j)~Rho*Beta*Sigma(j)“Z*S(i
)*CrossVannaSSigmaC(i,j)+r*ValueOldC(i,j)+CostS(i,j)+CostSigma(i,j);
ValueNewC(i,j)=ValueoldC(i,j)-dt*ThetaC(i,j);
end
end
ValueOld=vValueNew;
Value0ldC=ValueNew(C;
for j=l:M+1
%Condicao de contorne nas extremidades
tSequnda derivada nula

Valueold(l,j)={5*Value01d(2,j)-4*Value01d(3,j)+Va1ueOld(4,j))/2;
ValueOld(L+1,j)=(5*Va1ue01d(L,j)—4*Va1ueOld(L—1,j)+Va1ue01d(L—2,j))/2;
ValueoldC(1,j)=(5*va1ueoldC(2,j)—4*ValueOldC(3,j)+Value01dC(4,j))/2;
ValueOldC(L+l,j)=(5*Va1ueOldC(L,j)—4*Va1ueOldC(L—1,j)+Va1ueOldC(L-2,j))/2;

$Primeira derivada unitaria
%Valueold(l,j)=(1—4*Va1ue01d(2,j)+Va1ue01d(3,j))’—3;
%Valueold(L+1,j)=(1+4*ValueOld(L,j)-ValueOld{L—l,j))/3;
tvalueOldC(1, j)=(1-4*Value0ldC(2,])+vValue0ldC(3,3))/-3;
tvalueOldC(L+1,3)=(1+4*Value0ldC(L, j}-ValueOldC(L~1,5))/3;
end

end

elapsedTime = toc(ticID);%Para o timer

figure(2)

set(gcf, 'Color’,[1,1,1])%Cor do fundo da figura

subplot(2,2,1)

surfc(sigma,S,Valueold,’EdgeColor','None');

title({’‘Call - Diferencas Finitas ‘1'8em custo de transacao ‘1, fontsize’ ,tf, 'fontnam
e',’Verdana’,’fontangle','Italic','fontweight’,'b’,’color’,'k');

xlabel({‘\sigma ’;’Volatilidade'},’fontsize',af,'fontname’,'Verdana’,'fontangle’,'Ital
ic’,’fontweight’,'b’,’color','k');

ylabel{{‘s ’;’Ativo '},’fontsize’,af,'fontname','Verdana','fontangle','Italic’,'fontwei
ght',’b’",‘color’,'k’};

zlabel{{‘V ‘;'Valor da call ‘},’fontsize',af,'fontname','Verdana',’fontangle’,'Italic',
‘fontweight’,'b’,‘color’, 'k');

axis([Sigma_i Sigma_f 0 Smax min{min(Value0ld}) max({max(Value0ld))])

alpha(.5);

view(~50,25);

subplot(2,2,2)

surfc(Sigma,S(Z:L),DeltaS(z:L,:),'EdgeColor’,’None’);

title(‘\partialv/\partialS8 ‘,'fontsize',tf,'fontname','Verdana’,'fontangle',’Italic','f
ontweight’,’b’, ‘color’, ‘k’);

xlabel({‘\sigma ‘;'Volatilidade'},'fontsize’,af,'fontname‘,'Verdana’,'fontangle','Ital
ic’, ‘fontweight’, 'b’, 'color’,‘k’);

ylabel({’s *;’Ativo ‘},'fontsize',af,’fontname’,’Verdana’,’fontangle','Italic','fontwei
ght’,*b’,‘color’,'k");

zlabel({‘\partialv/\partialS ‘';'Delta Ativo '}, fontsize’,af, ‘fontname’, 'Verdana‘,’font
angle',’Italic','fontweight’,’b’,'color','k');

axis([Sigma_i Sigma_f 0 Smax min(min(DeltaS)) max(max(DeltasS))])

alpha(.5);

view(-50,25);

subplot(2,2,3)

surfc(Sigma,S(z:L),Deltasigma(Z:L,:),'EdgeColor','None');
title(‘\partialv/\partial\sigma ‘,'fontsize',tf,'fontname','Verdana',‘fontangle’,'Ital
io’,'fontweight’,’b',’color','k');

xlabel({‘\sigma ‘;’'Volatilidade ‘},'fontsize’,af,'fontname',’Verdana’,'fontangle','Ita
lic',’fontweight',’b’,’color','k');

ylabel({‘s ‘;’Ative ’},'fontsize',af,’fontname',’Verdana','fontangle’,’Italic','fontwei
ght’,'b’,color’,'k");

zlabel({‘\partialvV/\partial\sigma ‘;’'Delta Vol ‘}+'fontsize',af,’ fontname’, ’'Verdana’,’
fontangle','Italic’,'fontweight’,'b','color',’k’);

axis([Sigma_i Sigma £ 0 Smax min{min(DeltaSigma)) max(max(DeltaSigma)}])

alpha(.5);

view(-50,25);

subplot(2,2,4)

surfc(Sigma,S(Z:L),Crossvannassigma(z:L,:),'EdgeColor’,'None');
title(‘\partial“2V/\partials\partial\sigma ‘,'fontsize’,tE, "fontname’, 'Verdana’, ' fonta
ngle',’Italic’,’fontweight’,'b','color','k');
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figure(4)

set(gef, 'Color’,[1,1,1])%Cor do fundo da figura

subplot(2,2,1)

surfc(Sigma, S, Value0ldC, 'EdgeColor’, None’ ) ;

title{{‘Call - Diferencas Finitas ‘;‘Com custo de transacao “},"fontsize’,tf,’ fontnam
e','Verdana’,’fontangle‘,’Italic',’fontweight',’b’,’color’,’k');

¥label({‘\sigma ‘;'Volatilidade ’},'fontsize',af,'fontname',’Verdana’,'fontangle','Ita
lier, 'fontweight’,'b’, ‘color’, 'k’):

ylabel({’s ‘;'Ativo ‘},'fontsize',af,'fontname',‘Verdana’,'fontangle’,'Italic’,'fontwei
ght’,'b*, 'color’,’'k");

zlabel({‘V ‘;‘valor da Call '},’fontsize',af,'fontname’,'Verdana','fontangle','Italic’,
‘fontweight’, 'b’,“color’,'k’');

axis([Sigma_i sigma_f 0 Smax min(min{Value0ldC)) max(max(Value0ldC))])

alpha(.5);

view(-50,25);

subplot(2,2,2)

surfc(Sigma,S(Z:L),DeltaSC(Z:L,:),'EdgeColor’,’None');

title('\partialv/\partials ’,'fontsize',tf,’fontname’,'Verdana’,'fontangle’,'Italic','f
ontweight’,’'b’,'color’,'k");

xlabel({‘'\sigma ‘;’Volatilidade '},'fontsize',af,'fontname’,'Verdana','fontangle',’Ita
lic','fontweight‘,’b’,’color’,'k’);

ylabel({’'s ‘; Ativo ’},'fontsize',af,’fontname’,'Verdana','fontangle',’Italic','fontwei
ght’,'b’,*colox’,’k’);

zlabel ({‘\partialv/\partials ‘;’'Delta Ativo ‘}, "fontsize’,af, 'fontname’,’verdana’, rfont
angle’, 'Italic’,’fontweight’,‘b’, 'color’, 'k’ );

axis([Sigma_i Sigma f 0 Smax min(min(DeltaSC)) max(max(DeltasSC))])

alpha(.5);

view(-50,25);

subplot(2,2,3)

surfc(Sigma,S(z:L),DeltaSigmaC(zzL,:),'EdgeColor’,'None');
title(’\partialv/\partial\sigma ',’fontsize',tf,'fontname‘,’Verdana’,’fontangle',’Ital
in’,’fontweight','b','color’,’k’);

xlabel({’'\sigma ‘;‘'Volatilidade '}, fontsize’,af, ' fontname’, 'Verdana’, ’'fontangle’, ' Ttal
ic’,’'fontweight’, ‘b’ , color’, ‘k’);

ylabel({‘s ‘/;'Ativo ‘},'fontsize',af,'fontname','Verdana','fontangle','Italic',‘fontwei
ght’,’'b’, 'color’,’k");

zlabel ({’\partialv/\partial\sigma ‘;’'Delta Vol ‘},'fontsize’,af, 'fontname’, 'Verdana’,f
ontangle’,’Italic, fontweight’,'b’, 'color’, "'k’);

axis([Sigma_ i Sigma_f 0 Smax min(min(DeltaSigmaC)) max{max{DeltaSigmacC))])

alpha{.5);

view(-50,25);

subplot(2,2,4)

surfc(Sigma,S(z:L),CrossVannaSSigmaC(Z:L,:),'EdgeColor','None’);
title(’\partial~2v/\partialS\partialisigma ‘,'fontgize’,tf, 'fontname’, 'verdana’, 'fonta
ngle‘,'Italic','fontweight',’b’,’color’,’k');

xlabel({’\sigma ‘;‘volatilidade '},'fontsize',af,'fontname','Vérdana',’fontangle’,'Ita
lic’, fontweight’, ‘b’, 'color’, 'k’);

vlabel({‘s *;’Ativo ’},'fontsize',af,'fontname','Verdana',’fontangle','Italic',*fontwei
ght’,'b’, 'coloxr’,k’);

zlabel({‘\partial~2V/\partialS\partial\sigma ‘;’Cross-Vanna Ativo.Vel ‘}, ' fontsize’ ,af
,’fontname’,’Verdana','fontangle',’Italic’,’fontweight’,’b’,'color’,'k');

axis([Sigma_i Sigma_f 0 Smax min(min(CrossVannasSigmaC)) max(max(CrossVannaSSigmaC))])
alpha(.5);

view(-50,25);

figure(5)
set(gef,’'Color’,[1,1,1])%Cor do fundo da figura

subplot(2,2,1)

surfc(Sigma,S(Z:L),GammaSC(z:L,:),'EdgeColor','None’);

title(’\partial~2v/\partials~-2 ‘;'fontsize’,tf, ' fontname’, 'Verdana’, fontangle’,’Ttalic
', 'fontweight’,'b’, ‘color’, 'k’ };

xlabel({‘\sigma ‘;‘'volatilidade ‘},’fontsize',af,’fontname',’Verdana',’fontangle','lta
lic’,’fontweight’,’b','color',’k‘);

ylabel({‘’S ‘; Ativo ‘},'fontsize',af,'fontname','Verdana','fontangle’,’Italic','fontwei
ghtf . be 5 Jcolorr' rkr );

zlabel({‘\partial~2v/\partials8~2 ‘;’'Gamma Ativo ‘},'fontsize’,af,’ fontname’, ‘Verdana’, ’
fontangle’,'Italic’,’'fontweight’,’b’, ‘color’, 'k'});

axis([Sigma_i Sigma_f 0 Smax min(min(Gammasc)) max(max(GammasSc))])

alpha(.5);

view(-50,25);

subplot(2,2,2)
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[originalS,originalSigma]=meshgrid(Sigma_i:dSigma:Sigma f,0:dS:Smax);

sMesh para valores a serem interpolados
[interps,interpsigma]=meshgrid(vectorsigma,vectors);

$Interpolacao bidimensional dentro do mesh especificado
interpvValue=interp2(originals,originalSigma,Value0ld, 1nterps interpSigma);
interpValueC=interp2(originals,originalSigma, Valueoldc interps, interpsSigma);

Grafico dos valores interpclados para saida
figure(7)

set(gef, ‘Color’,[1,1,1])%Cor do fundo da figura

surfc(interps, interpSigma, interpvValue)

alpha(.2);hold on

surfc(interps, interpSigma,interpvaluec)

alpha(.2};

title({‘Opcac Call - Diferencas Finitas ‘;‘'Volatilidade Estocastica e Custo de
Transacoes ‘},’fontsize’,tf, fontname’,'Verdana’,’fontangle’,‘Italic’,’fontweight’,‘b’,
‘colox ', 'k');

xlabel({‘\sigma ‘;‘’Volatilidade ‘}, " fontsize’,af, 'fontname’, 'Verdana’, 'fontangle’, ’Ital
ic’,'fontweight’,'b’,’color’, 'k*);

ylabel({‘S ‘; Ativo '}, fontsize’,af, ‘fontname’,'vVerdana’, 'fontangle’,’'Italic’,’ fontwei
ght’,'b", 'coloxr’',"k");

zlabel ({'Valor da Opcac sem Custo ‘;'Valor da Opcao com Custo ‘}, 'fontsize’,af, ' fontn
ame’, 'Verdana', 'fontangle’, 'Ttalic’,’fontweight’,'b’, 'color’,'k’);

view(-45,30);

%Valores para os dados de saida
price_i=interpl(S,Value0ld(:,1),80, 'spline’);
pricec_l interpl(s,Value0ldC(:,1),80, 'spline’);
prlce f= 1nterp1(s ValueOld(:,M+1)},80,'spline’);
priceC_f=interpl(s,value0ldC(:,M+1), SO,'spllne ):
Call i=Call_aAnalytic(S0,K,r,D,Sigma_i,T,t);
Call f=Call Analytic(S0,K,r,D (Sigma £,T,¢);

kSmin=Sigma_i/2*sqgrt(pi(}/2*dtc*(1-Rho*2));
ksSigmamin=Beta/2*sgrt(pi()/2*dtc*(1-Rho"2)};

tMostra os valores calculados com este algoritimo vs formula fechada para

ta solucao deste problema - ref. Sewell

fprintf (' \D e ——————— A
fprintf(’\n European Call - Metodo de Diferencas Finitas’)

fprintf(‘\n Volatilidade Estocastica com Custo’)

fprintf (' \D e e e Yy
fprintf(‘\n valores usados para este calculo’)

fprintf(‘\n ds [intervalo do valor do ativoj : %-.2f£7,d8)

fprintf(‘\n L [numero de intervalos do ativo) : %-.0f’,L)

fprintf(‘\n dSigma [intervalo do valor da volatilidade] t %-.4f’,dSigma)
fprintf(‘\n M {numero de intervalos da volatilidade] : %-.0f’,M)

fprintf({‘\n dt [intervale de tempo de integracao] : $-.6f7,dt)

fprintf(‘\n N [numero de intervalos de tempo] : %-.0f’,N

fprintf(‘\n S0 [valor do atiwvo] : %-,2f7,80)

fprintf(‘\n K [strike] : %-.2f',K)

fprintf(‘\n Smax [valor maximo do ativo] : %-.2f’,Smax)
fprintf(‘\n T [tempo para o vencimento] : 3.2, T

fprintf{‘\n r [taxa de juros livre de risco) : %-.2f/,r)

fprintf(‘\n D [taxa de dividendo] : %-,2{/,D)

fprintf(‘\n Beta {velatilidade da volatilidade] i %-.2f',Beta)
fprintf(‘\n Rho [correlacao ativo-volatilidade] i %-.2f',Rho)
fprintf(’\n Sigma_i [volatilidade inicial] : %~.2f',Slgma i)
fprintf(‘\n Sigma_f [volatilidade final] : %-,2f’,8igma_f)

fprintE (AN — e ")
fprintf(’\n Valores de custo para o modelo estocastico’)

fprintf(’\n dtc [intervalo de tempo de hedge] : %-.4f7,dtc)
fprintf(‘\n kS [custo proporcional ac ativo]) : %-.4f’,k8)

fprintf(‘\n kSigma [custo proporcional a volatilidade] : %-.4f’ ,kS8igma)

Eprintf (\D e 4
fprintf(‘\n Valor Black-Scholes vol deterministica - Sigma Min : %-.4f,Call_i)

$-.4f’,Call_f)
$~.4f7,price_i)
%-,4f',price_f) '

fprintf({‘\n Valor Black-Scholes vol deterministica - Sigma Max

fprintf(’\n Valor calculado vol estocastica sem cugto - Sigma Min
fprintf(‘\n Valor calculado vol estocastica sem custc - Sigma Max
fprintf(‘\n Valor calculado vol estocastica com custe - Sigma Min %-.4f',priceC_i)
fprintf({‘\n Valor calculado vol estocastica com custo - Sigma Max %-.4f',priceC_f)
PNt (AN — e e ————— e )
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C4 Opcio europeia com barreira “up&out call” com volatilidade estocastica e custos de
transacio

$Aprecamento de Opcac Europeia Up&Out Call pelo metodo de Diferencas Finitas
fusando um algoritmo explicito e o modelo de Voltilidade Estocastica

%com Custe de Transacoes

%Ref. Numerical Methods applied to Option Pricing Models with Transactional
%Costs and Stochastic Volatility - Mariani, SenGupta e Sewell

$Adctados os sequintes valores de entrada

%(s0,K,r,D,T,Sigma_i,Sigma_ f,Sb,ds,dt,dtec,ks,kSigma)

clear all;close all;cle;

format short;

%Dados de entrada para os calcules

80=50; %vValor do ativo

K=50;%Strike

r=.1;%Taxa de juros livre de risco

D=,05;%Taxa de dividendos

T=1;3%Tempo para o vencimento

t=0;%Inicio

Beta=.3;%Veolatilidade da volatilidade

Rho=.5;%Coeficiente de correlacac entre ativo e volatilidade
Sigma ji=.2;%Vclatilidade inicial
Sigma_f=.4;%Volatilidade final

S5b=85;%Valor da barreira do ativo

ds=.688;%Discretizacao do valor do ativo
dsigma=.,0016;%Discretizacao da volatilidade
dt=T/15000;%Discretizacao do tempo

kS8=.005; $Custo proporcional ac valor do ativo
kSigma=.005;%Custo proporcional ac valor da volatilidade
dtc=T/50;%Intervalo entre operacoes de hedge

%#Dados para cbtencac de resultados interpolados
vector8=[80-18:6:50+18];%Vetor dos valores do ativo para interpolacac
vectorSigma=[Sigma_i:(Sigme_f-Sigma_i)/6:Sigma_f];%Vetor dos valores da volatilidade
para interpclacao

ticID = tic;%Inicia o timer

%Ajuste do grid e dos incrementos

L = round(Sb/ds);

ds = sb/L;

M = round((Sigma_£f-Sigma_i)/dSigma):
dsigma = (Sigma_f-Sigma_1i)/m;

N = round(T/dt);

dt = T/N;

$Inicializacac das variaveis

ValueOld = zeros(L+l,M+1);valueoldC= zeros(L+1,M+1);

ValueNew = zeros(L+1,M+1);ValueNewC = zeros (L+1,M+1);

DeltasS = zeros{L+i,M+1);DeltasC = zeros(L+l,M+1);

DeltaSigma = zeros(L+1l,M+1l);DeltaSigmac = zeros(L+1,M+1);
CrossVannaSsSigma = zeros(L+1,M+l);CrossvVannaSsigmaC = zeros(L+1,M+1);
GammaS = zeros(L+l,Mtl);GammaSC = zeros(L+l,M+1);

GammaSigma = zeros(L+1,M+l);GammaSigmaC = zeros(L+1,M+1);

Theta = zeros(L+1,M+1);ThetaC = zeros(L+1,M+1);

%$Definicao da Condicao Inicial
5 = linspace(0,8b,L+1)’;8(L+1)=0;
Sigma = linspace(Sigma_i,Sigma f,M+1)';
for j=1:M+1
Value0ld(:,]j) = max(S-K,0)};
value0ldC(:,]) = max(S-K,0);
end

Definicaoc dos graficos

set (0, 'DPefaultFigurePosition’, (100 100 900 640])

tf=16;%Tamanho do font dos titulos

af=14;%Tamanho do font dos eixos

S5(L+1)=8b;%Para acertar a interpolacao dos resultados fazendo § monotonico
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ssigmacC(i,j)*2+2*Rho*Beta*Sigma(j)~2*S(i)*GammaSigmaC(i,j)*CrossVannasSSigmaC(i,j)+Beta"
2*8igma(j)"2*GammaSigmacC(i,j)*2);

ThetaC(i,j)=-(r-D}*S(1i)*DeltasSc(i, j)-{r-D)*Sigma(j)*DeltasigmaC(i,j)-1/2*Sigma(
§)*2*8(1i)~2*GammasSC(i,j)-1/2*Beta~2*Sigma(J) ~2*GammaSigmacC(i, j)-Rho*Beta*Sigma(j)~2*5(1i
) *CrossVannaSsigmaC(i, j)+r*value0ldC(i,j)+CostS8({i, j)+CostSigma(i,j);

ValueNewC(i, j)=Value0ldC(i,j)-dt*ThetaC(i,j);

end
end
ValueOld=ValueNew;
ValueOldC=ValueNewC;
for j=1:M+1
%Condicao de contorno nas extremidades
$Segunda derivada nula
ValueQld(l,j)=(5*Value0old(2,j)-4*Value0ld(3,j)+value0ld(4,]))/2;
$Up&OutcCall NAO - valueOld(L+1,j)=(5*Value0ld(L,j}-4*ValueOld(L-1,j)+ValueOld(L-
2,90/2;
Value0ldC(1l,3j)=({5*Value0ldC(2,j)-4*ValueQldC(3, j)+ValueOldC{4,§))/2;
$Up&OutCall NAO - ValueOldC(L+1,j)=(5*Value0ldC(L,j)-4*Value0ldC (L~
1,3)+Value0ldC(L-2,3))/2;
%Primeira derivada unitaria
tValueOld(1l,j)=(1-4*ValueOld(2, j)+Value0ld(3,j))/-3;
%valueOld(L+1, j)=(1+4*ValueOld(L, j)-ValueOld(L-1,5))/3;
$ValueQldC(l,j)=(1-4*ValueeQldC(2, j)+vValue0ldC(3,3))/-3;
$ValueOldC(L+1, j)=(l+4*vValue0ldC(L, j)-vValue0ldC(L-1,73))/3;
end
end

elapsedTime = toc(ticID);%Para o timer

figure(2)

set(gcf,'Color’,[1,1,1])%Cor do fundo da figura

subplot(2,2,1)

surfc(Sigma,S,Value0old, ‘EdgeColor’, 'None’);

title({ Up&Out Call - Diferencas Finitas ‘;’Sem custo de transacac ‘},’'fontsize’, tf,”
fontname’, 'Verdana’, fontangle’,'Italic’, 'fontweight’,'b’,’¢coloxr’, k" );

xlabel({‘\sigma ‘;’vVolatilidade ‘}, fontsize’,af, fontname’, ‘Verdana’, fontangle’,’Ital
ic’, 'fontweight’, 'b’,color’, 'k’ };

ylabel({‘S *;'Ativo '},’fontsize’,af,’'fontname’, Verdana', ' fontangle’, Italic’,’'fontwel
ght’,'b’,’color’, 'k");

zlabel({‘V ‘;'Valor da Up&Qut Call ‘}, fontsize’,af,’fontname’, Verdana’,’'fontangle’,’'I
talic’, 'fontweight’,’'b’,color’,'k');

axis([Sigma_i Sigma_f 0 Sb min(min({ValueOld)) max(max(Value0ld))])}

alpha(.5);

view(-50,25);

subplot(2,2,2)

surfe(Sigma,S5(2:L),Deltas(2:L,:}, 'EdgeColor’, Hone');

title(‘\partialv/\partials ‘, 'fontsize’,tf, fontname’,’Verdana’,’ fontangle’, Italic’,’'f
ontweight’,’'b’, "color’, 'k’ );

®label({‘\sigma ‘;’Volatilidade ‘},’fontsize’,af,’ fontname’, Verdana’, fontangle’, Ital
ic’,’fontweight’,'b’,’color’,’k");

ylabel({’S ‘;'Ativo '},’'fontsize’,af,’ fontname’,’Verdana’,’fontangle’, Italic’, fontwei
ght*,'b’,’color’,'k’};

zlabel({‘\partialv/\partialS ‘;’Delta Ativo '},’fontsize’,af,’ fontname’,’Verdana’, font
angle’,'Italic’, "fontweight’,'b’, 'color’, 'k’);

axis{[Sigma_i Sigma f 0 Sb min(min(DeltaS}) max(max{DeltaS})])

alpha(.5);

view(-50,25);

subplot(2,2,3)

surfc(Sigma,S({2:L),DeltasSigma(2:L,:), 'EdgeColor’, 'None’ )}
title(’\partialV/\partialisigma ‘, 'fontsize’,tf, fontname’, Verdana’,’fontangle’, 'Itali
¢, fontweight','b’, 'color’,’'k");

xlabel({‘\sigma ‘;'Volatilidade ‘},'fontsize’,af, fontname’, 'Verdana’, fontangle’, Ital
icr, "fontweight’,’'b’,'color’,'k’);

yvlabel{{‘S ‘;’'aAtivo '}, 'fontsize’,af, fontname’,’'Verdana’, 'fontangle’, Italic’, 'fontwel
ght’,'b’, 'color ,'k");

zlabel({‘\partialv/\partial\sigma ‘;‘’Delta Vol ’},’fontsize’,af, fontname’, Verdana’, 'f
ontangle’,’'Italic’,’fontweight’,'b’, 'color’,'k’);

axis([Sigma_i Sigma_f 0 Sb min(min(DeltaSigma)) max(max(DeltaSigma))])

alpha(.5);

view(-50,25);

subplot{2,2,4)

surfc(S8igma,S(2:L),Crossvannassigma(2:L,:), 'EdgeColor’, 'Hone’ )}
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$axis{[Sigma i Sigma_f min(min(ValueOldC)) max(max(Value0ldc))])
hold off

figure(4)
set(gcf,'Color’,[1,1,1])%Cor do fundo da figura

subplot(2,2,1)

surfc{Sigma,S,Value0ldC, 'EdgeColor’, 'None’);

title({/Up&Cut Call - Diferencas Finitas ‘;’Com custo de transacao ‘}, ' fontsize’ ,tf, "’
fontname’,’Verdana','fontangle’,’Italic’,’'fontweight’, 'b’,’color’,'k’):

xlabel({’\sigma ‘;‘Volatilidade ‘}, ‘fontsize’,af, ‘fontname’, 'Verdana’, ‘fontangle’, 'ital
ic’,'fontweight’,'b’, ’color’, k’);

ylabel({‘S ‘;'Ativo '}, fontsize’,af, 'fontname’,’ Verdana’, fontangle’, Italic’,’fontwei
ght’,’b*, 'color’,'k’);

zlabel({'V ‘;'Valor Up&Out Call '}, fontsize’,af, fontname’, 'Verdana’,’'fontangle’,’'Ital
ic’,’fontweight’, 'b’,’color’,‘k’);

axis([Sigma_i Sigma_f 0 Sb min(min(ValueOldC)) max(max(Value0ldC)}])

alpha{.5);

view(-50,25);

subplot(2,2,2)

surfc(Sigma,S(2:L),Deltasc(2:L,:), ‘EdgeColor’, 'None’);

title(’\partialV/\partials ‘,'fontsize’,tf, ' fontname’,’'Verdana’, 'fontangle’, 'Italic’,’f
ontweight’,'b’, 'colox’,'k’);

xlabel({‘\sigma ‘;‘Volatilidade ‘}, ' fontsize’,af, ' fontname’,’'Verdana’, ‘fontangle’, 'Ital
iec’,'fontweight’, b, "color’, 'k’ );

ylabel({’S ’;'aAtivo '}, 'fontsize’,af,’'fontname’, vVerdana’, fontangle’, Italic’,’fontwei
ght’,'b’, 'color’,'k’);

zlabel ({'\partialV/\partials ’;’'Delta Ativo ‘},’'fontsize’,af,’fontname’, Verdana’,'font
angle’,Italic','fontweight’,’b’,'colox’,'k’);

axis([Sigma_i Sigma f 0 Sb min(min(DeltaSC)) max(max(Deltasc))])

alpha(.5);

view(-50,25);

subplot(2,2,3)

surfc(Sigma,S(2:L),DeltasigmaC(2:L,:), 'EdgeColor’, ‘None’);
title(‘\partialv/\partiali\sigma ‘,'fontsize’,tf, ' fontname’, 'Verdana’,’fontangle’, 'Ttali
¢’,’fontweight’, 'b’, "coloxr’,’'k');

xlabel({‘\sigma ';’'Volatilidade ‘}, ' fontsize’,af, ' fontname’, 'Verdana’, ' fontangle’, 'Ital
ic’, 'fontweight’,’b’, ‘¢colox’,'k');

ylabel({'s ‘;'Ativo '},’fontsize’,af, fontname’, verdana’, feontangle’, Italic’, fontwei
ght’,'b’,color’, 'k’ );

zlabel ({‘\partialv/\partial\sigma ‘;’Delta Vol ‘}y, 'fontsize’,af, 'fontname’, 'Verdana’,'f
ontangle’, Ttalic’, ' fontweight’,’'b’, color’, 'k’ );

axis([Sigma_i Sigma_f 0 Sb min(min{DeltaSigmacC)) max(max({DeltaSigmacC))])

alpha(.5);

view(~50,25);

subplot(2,2,4)

surfc(Sigma,S({2:L),CrossvVannasSsigmac({2:L,:}, 'EdgeColor’, 'None’);
title(’\partial~2v/\partialS\partial\sigma ‘' fontsize’ ,tf, ' fontname’,’'Verdana’,’fontan
gle’,’Italic’,’'fontweight’, 'b’,'coloxr’,'k’);

xlabel({’\sigma ;’Volatilidade '}, ‘fontsize’,af,’fontname’, ‘Verdana’,’fontangle’, Ital
ic', 'fontweight’,’b’, 'color’,'k’);

ylabel({'S ‘;’Ativo '}, fontsize’,af, fontname’, Verdana',’'fontangle’, Italic’,’fontwei
ght', 'b', ’color’,’k’);

zlabel({‘\partial~2v/\partialsS\partial\sigma ’;’Cross-vanna Ativo.Vol ‘}, ' fontsize’,af,
'fontname','Verdana’,'fontangle’,'Italic','fontweight','b',’color',‘k');

axis([Sigma_i Sigma_f 0 Sb min(min{CrossvannaSSigmacC)) max(max(CrossvVannaSsigmacC))j)
alpha({.5};

view({-50,25);

figure(5)

set(gcf, 'Color’,[1,1,1]1)%Cor do fundo da figura

subplot(2,2,1)

surfc(Sigma,S(Z:L),GammaSC(Z:L,:),’EdgeColor','None');

title('\partial~2v/\partials~2 *y'fontsize’,tf,’'fontname’, 'Verdana’, ' fontangle’,’'Italic
*,'fontweight’,'b’, 'color:, 'k’ };

xlabel({‘\sigma ‘;’'Volatilidade '}, 'fontsize’,af, fontname’,’Verdana’,'fontangle’,’Ital
ic*, rfontweight’,'b’, ‘color’ ,'k');

ylabel({’s ‘;'Ativo '},’fontsize’,af, fontname’,’Verdana',’fontangle’, Italic’,’fontwei
ght’, 'b’, ‘color‘, 'k’ );

zlabel({‘\partial~2V/\partials*2 ‘; 'Gamma Ativo ‘}, fontsize’ ,af,'fontname’,’Verdana’', "’
fontangle’,’'Italic’,’fontweight’,’'b’,color’, 'k’});

axis([Sigma_i Sigma_f 0 Sb min(min(GammasSC)) max(max(GammaSc))])

alpha(.5);




133

%Retorna o valor interpolando os dados de saida

$Mesh para valores coriginais
[originalS,originalSigma]=meshqgrid(Sigma_i:dSigma:Sigma f,0:dS:Sb);

tMesh para valores interpolados

[interps, interpSigma]=meshgrid({vectorSigma, vectors);

%Interpolacac
interpvalue=interp2(originals,originalSigma,Value0Old, interps, interpsigma);
interpValueC=interp2(originals,originalSigma,ValueOldC,interpS,interpSigma);

iGrafico dos valores interpolados para saida

figure(7}

set(gcf, 'Color’,f1,1,1])%Cor do fundo da figura

surfo(interps,interpSigma,interpvValue)

alpha(.2);hold on

surfc(interps, interpsigma, interpvaluec)

alpha(.2);

title({‘Opcaoc Up&Out Call - Diferencas Finitas ‘;’Volatilidade Estocastica e Custo de
Transacoesg ’},’fontsize’,tf,’fontname’,’Verdana’,'fontangle','Italic','fontweight',’b’,
‘color’,'k’y;

xlabel({‘\sigma ‘;’Volatilidade ‘}, fontsize’,af, 'fontname’,’'Verdana’, ‘fontangle’, 'Ital
ig’,'fontweight’,'b’, ‘color’, 'k’ );

ylabel({’S ';'Ativo '}, fontsize’,af, fontname’,’verdana’, 'fontangle’, 'Italic’, fontwei
ght’,’b’, color’,'k’});

zlabeli({‘Valor da Opcac sem Custo ‘;'Valor da Opcac com Custo ‘},'fontsize’ ,af, ' fontn
ame’, 'Verdana’,’'fontangle’, 'Ttalic’, 'fontweight’,'b’,’color’,'k’);

view(-45,30);

tRetorna o valor interpolando os dados de saida
pPrice_i=interpl(s,value0Old(:,1},80, spline’});
priceC_i=interpl(S,Value0ldC(:,1),580, 'spline’);
price_f=interpl(s,ValueOld(:,M+1),80, ‘spline’);
priceC_f=interpl(s,value0ldC(:,M+1),80, spline’);
UpOutCall i=UpOutCall Analytic($¢,sSb,K,r,D,Sigma i,T,t);
UpOutCall_f=UpOutCall Analytic(s0,Sb,K,r,D,Sigma_f,T,t);

tMostra os valores calculados com este algoritimo vs formula fechada para
%$a solucao deste problema - ref. Sewell
fprintf (N e

i

fprintf(‘\n Ups&Qut Call - Metodo de Diferencas Finitas’)
fprintf(‘\n Volatilidade Estocastica com Custo de Transacao’}

IPT it (AN m
_______ ’)

fprintf(‘\n Valores usados para este calculo’)

fprintf({‘\n ds [intervalo do valor do ativo] s %-.2f7,ds)

fprintf(‘\n L [numero de intervalos do ativo] : %-.0£f',L)

fprintf(‘\n dSigma [intervalo do valor da volatilidade] : %-.4f7,dSigma)
fprintf{ '\n M [numero de intervalos da volatilidade] : %~.0f’,M)

fprintf(‘\n dt [intervalo de tempo de integracao] : %-.6£7,dt)

fprintf('\n N [numero de intervalos de tempo] i %-.0f",N)

fprintf(‘\n S0 [valor do ativo]) :t %-.2f7,80)

fprintf(‘\n K [strike] : %-.2f7,K)

fprintf(‘'\n Sb [valor da barreira do ativo] 1 %-.,2f',8b)

fprintf('\n T [tempo para o vencimento] t §-.2£f',T)

fprintf(‘\n r [taxa de juros livre de risco] : %5-.2f7,1)

fprintf(‘\n D [taxa de dividendo) : %-.2£7,D)

fprintf(‘\n Beta [volatilidade da velatilidade] : %-.2fr ,Beta)

fprintf(‘\n Rho [correlacac ativo-volatilidade] t %-,2f',Rho)

fprintf(‘\n Sigma_i [volatilidade inicial] : %-.2f',8igma_i)
fprintf({‘\n sigma f [volatilidade finalj : %-.2f’ ,8igma_F)
fprintf(‘\R ——— LT
fprintf(‘\n Valores de custo para o modelo estocastico’)

fprintf(‘\n dtc [intervalo de tempo de hedge) : %-.4f,dte)

fprintf(‘\n kS [custo proporcional ao ativo] : %-.4f' ,kS)

fprintf(’\n kSigma [custo proporcional a volatilidade] t %-.4f" ,kSigma)

PRt (AN — o

fprintf(‘\n Valor formula fechada vol deterministica - Sigma Min
-.4f",UpOutCall_i)
fprintf(‘\n Valor formula fechada vol deterministica - Sigma Max 3
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C5 Simulacio de Monte Carlo para op¢io europeia “call” com volatilidade estocdstica -
Heston - Milstein

Simulacac de Monte Carlo para uma Opcao de Compra Europeia - Call
Modelo de Heston com Volatilidade Estocastica

gMetodo de Milstein com variaveis antiteticas

clear all;close all;cle;

format short:

S50=50; ¥Preco na data atual

K=50;%Preco de exercicio (strike)

r=,1;%Taxa de juros livre de risco

D=.05;%Taxa continua de divendos pagos pelo ativo base
T=1;%Prazo de vencimento

beta=.3;%volatilidade da velatilidade
rho=,5;%Correlacac ativo volatilidade
kappa=4;%Velocidade de reversaco a media

v8=18;%Variacac do valor do ativo para as simulacces
sigma_i=.2;%Volatilidade media de longo prazo inicial para as simulacoes
gigma_f=.4;%Volatilidade media de longo prazo final para as simulacoes
vectors=linspace(S0-vS,50+vS,7);%Vetor dos valores do ativo
vectorTheta=linspace(sigma_i,sigma_f,7).~2;%Variancia media de lengo prazo

nInt=200; *Numerc de intervalos de tempo

nTraj=1000; sNumero de caminhos

nsSimul=5; sNumerc de simulacoes

dt=T/nInt;%Intervalo de tempo dt para cada trajetoria
ticID = tic;%Inicia o timer

for ds=1:7
for dsigma=1:7
Va=zeros(nInt,nTraj);Vb=Va;
Sa=zeros(nInt,nTraj);Sb=sa;
Va(l, :)=vectorTheta(dSigma);
Vb(1l,:)=vectorTheta(dsigma);
Sa(l,:)=vectors(ds);
Sb(1l,:)=vectors(ds);
for k=l:nSimul
Xv=rand(niInt,nTraj);
Xs=rand (nInt,nTraj);
Zva=norminv(xv,0,1);
Zvb=norminv(1-Xv,0,1);
Zsa=rho*Zva+sqgrt(l-rho~2)*norminv(Xs,0,1);
Zsb=rho*Zvb+sqrt(i-rho~2)*norminv(1-Xs,0,1);
for j=l:nTraj
for i=2:nInt
Va(i,j)=Va(i-1,j)+kappa*(vectorTheta(dSigma)-va(i-
1,j))y*dt+beta*sqrt(va(i-1,J)*dt)*2Zva(i,j)+betar2/4+dt*(Zva(i,j)~2-1);
if va(i,j)<o0
va{i,j)=0;%Tratamento para volatilidade negativa
end
Vb(i,j)=Vb(i-1, j)+kappa*(vectorTheta(dSigma}-Vb(i-
1,j))*dt+beta*sqrt (vb(i~1,j)*dt)*2vb(i,j)+beta~2/4*dt* (Zvb(i, ) 2-1);
if vb(i,j)<o0
Vb(i,j)=0;%Tratamento para volatilidade negativa
end
sa(i,j)=sa(i-1,j)*((1+(r-D)*dt)+sqrt(va(i-1,j)*dt)*Zsa(i,jr)+va(i-
1,j)/2*dt*(Zsa(i, j)"2-1));
Sb(i,j)=Sb{i-1,J)*({1+{r-D)*dt)+sgrt(Vb(i-1,7j)*dt)*2sb(i,J)+Vb(i-
1,3)/2*dt*(Zsb(1,j)"2-1));
end
end
Vab=[Vva Vb];
Sab=[Sa Sb];
Vm{k)=mean(Vab(nInt,:));
Sm{k)=mean(Sab(nInt,:));
k

end
Vmean (dS,dsigma)=mean(Vm);
Smean(ds,dsigma)=mean{Sm);
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set(gcf, 'Color’,[1,1,1])%Cor do fundo da figura

subplot(2,2,1)

normpleot{log(Sms))

title({‘log S (ultima simulacac} ‘;’'Distribuicac dos valores do ativo '}, fontsize’,tf,
'fontname','Verdana’,'fontangle','Italic','fontweight','b’,'color’,'k');

xlabel({’'log 5 ‘;'log do ativo ‘},’fontsize’,af,’fontname','Verdana’,'fontangle’,'ltali
¢’ 'fontweight’,’b’, color’,'k’);

ylabel({‘percentil log 8';’Valor final do ativo ‘}, 'fontsize’,af, ' fontname’, 'Verdana‘, ‘'f
ontangle','Italic’,'fontweight’,'b','color','k');

grid on

subplot(2,2,2)

hist(Sms,100)

xlabel({‘Valor do ativo ‘;’(ultima simulacao) '}, fontsize-,af, rfontname’, 'verdana’,'f
ontangle’,'Italic’,'fontweight','b’,'color','k');
ylabel(‘Freguencia para ativo 'y’ fontsize’,af,’fontname’,
. ' fontweight’,'b’, ‘color’,'k");
title(’Distribuicac do valor do ativo - § ¢
le’,’Italic',’fontweight’,'b’,’color','k');
grid on

subplot(2,2,3)

plot(sSab)

xlabel ("’ Tempo ‘s’ fontsize’,af,’fontname’, 'Verdana’,
"y’coloxr’,'k’);

ylabel{{’Valor do ative ‘;’'(ultima simulacao) '}, fontsize’,af, ' fontname’, Verdana’,‘f
ontangle*,'Italic','fontweight',’b',’color',’k');

title(‘Trajetorias simuladas do ativo - § ‘,'fontsize’,tf,‘fontname',’Verdana','fontang
le’,'Italic’,'fontweight’,'b’,’color','k’);

grid on

‘Verdana’, ' fontangle’,’Italic”

,’fontsize',tf,'fontname’,'Verdana','fontang

‘fontangle’, 'Italic’, ' fontweight’, b

fprintf('\n

fprintf(‘\n
fprintf{‘\n
fprintf(‘\n
fprintf(‘\n
fprintf(‘\n
fprintf(‘\n
fprintf(‘\n
fprintf(‘\n
fprintf(‘\n
fprintf(‘\n
fprintf(‘\n
fprintf(’\n
fprintf(‘\n
fprintf(‘\n
fprintf(‘\n
fprintf(‘\n
fprintf({‘\n
fprintf(’\n
fprintf({‘\n
fprintf(‘\n
fprintf(‘\n
fprintf({‘\n
fprintf({‘\n

Eurcpean Call’)
Volatilidade Estocastica sem Custo - Simulacac de Monte Carlo')
Modele de Heston - Metodo de Milstein com variaveis antiteticas’}

Valores usados para este calculo’)

M [numero de intervalos de cada trajetoria] : %-.0£,nInt)

N [numero de trajetorias em cada simulacao] : %~.0f’ ,nTraj)
o] [numero de simulacoes) i %=.0f',nSimul)
dt [intervalc de tempc de cada trajetoria] : %$-.2f7,dt)

S0 [valor inicial do ativo] ¢ %-,2f,80)

K [strike] : %-.2f’ ,K)

K [strike] : %-.21,K)

T [tempo para o vencimento] ¢ %-.2f7,T)

r [taxa de juros livre de risco] : %$=.2f",r)

D [taxa de dividendo] : %-.2f,D)

Beta [volatilidade da volatilidade] : %-.2f’ ,beta)
Rho [correlacac ativo-volatilidade] : %-.2f',rho)
Sigma i [volatilidade media longo prazo inicial) : %-.2f",gigma_ i}
Sigma f [volatilidade media longo prazo final] ¢ %-.2f7 ,sigma_f)
Kappa [velocidade de reversao a media] i %-.2f’ kappa)
_______________________________________________________________________ ’)
Tempo do calculo %-.2f [seg]’,elapsedTime)

valorOpcaoc={0 sqrt(vectorTheta);vectors’ STm]
stdv_valorOpcao=[0 sqrt(vectorTheta);vectors’ stdv STm)

valorvar=[0

sqrt(vectorTheta);vectorS’ Vmean)

valorAtivo=[0 sqrt(vectorTheta);vectors’ Smean ]
xlswrite(‘Call_lAsset_MCMilstein_StochVolB.xlsx’,[STm;Vmean;Smean]);
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end
end
un=rand{nInt,2*nTraj);
for j=1l:2*nTraj
for i=2:nInt
if (sab(i,j)>Sbar | P(i,j)>un(i,q))
Sab(:,j)=0;
end
end
end
Vm(k)=mean(Vab(nInt,:));
Sm{k)=mean({Sab(nInt,:));
k

Bridge=sum({sum(P>un))/nInt/nTraj;¢percentual de barreira pela Brownian Bridge
end
Vmean (d$, dsigma)=mean({Vm);
Smean (ds,dSigma)=mean(Sm);
S5T=8ab(nInt,l:2*nTraj)-K;
for i=1:2*%nTraj

if stT(i)<o0

ST(i)=0;

end
end
STm(ds,dsSigma}=exp(-r*T)*mean(sT);
stdv_5Tm(ds,dSigma)=std (ST);
end

end

elapsedTime = toc(ticID)iPara o timer

$Graficos do ultimo calculo apenas
Vms=sort(Vab(nInt,:));
Sms=gort({Sab(nInt,:));

nZero=1;

while Sms(nZero)==
nZero=nzZero+li;

end

$Definicao dos graficos

set (0, 'DefaultFigurePosition’, [100 100 900 640])
tf=16;%Tamanho do font dos titulos
af=14;%Tamanho do font dos eixos

figure(1l)

set(gcf, 'Color’,[1,1,1])%Cor do fundo da figura

surfc(sqrt(vectorTheta),vectors,STm);

title({’Opcao Up&Out Call - Simulacac de Monte Carlo ‘;'Modelo de Heston - Metodo de
Milstein - Variaveis Antiteticas '},'fontsize’,tf,'fontname’,’Verdana',’fontangle',’Ita
lic’,'fontweight’, 'b’,’color’, k*);

*label({‘\sigma ‘;’Volatilidade ‘},’fontsize’,af,'fontname’,'Verdana’,'fontangle',’Ital
ic',’fontweight','b','color’,’k');

ylabel({‘s ‘;’'Ativo ‘},'fontsize’,af,’fontname','Verdana','fontangle','Italic’,‘fontwei
ght’,'b’,’color’, 'k’};

zlabel({‘'Opcao Up&Out Call ‘:*valor da opcac sem custo ‘), ’fontsize’,af,’fontname’,’'V
erdana’,'fontangle',’Italic','fontweight',‘b’,'color','k’);
%axis([min(sgrt(vectorTheta)) max(sqrt(vectorTheta}) min{vectorS) max(vectorS) 0

cell {max(max({STm)})])

alpha(.25);

view(-45,30);

%¥Graficos relativos a ultima simulacao

figure(2)

set (get, 'Color’,[1,1,1])%Cor do fundo da figura

subplot(2,2,1)

normplot({log(vms))%tNormplot do logaritmo dos valores finas da volatilidade da ultima
simulacao

title({’leg V (ultima simulacao) ‘;'Distribuicao dos valores da volatilidade '}, ' fontsi
ze',tf,’fontname','Verdana',’fontangle’,’Italic’,’fontweight',’b',‘color‘,'k’);
xlabel({’log V ‘';’log da volatilidade ‘},'fontsize',af,'fontname','Verdana’,’fontangle'
,'Italic','fontweight’,’b','color’,’k’);

ylabel({‘'percentil log V ‘;'Valor final da volatilidade '}, 'fontsize’,af, ' fontname', 'ver




fprintf(‘\n
fprintf(‘\n Tempo do calculo
FPrintf (AN —mm e e )

valorOpcao=[0 sgrt(vectorTheta);vectors’ STm]
stdv_valorOpcao=[ 0 sqrt(vectorTheta);vectorS’ stdv_STm]

valorvar={0 sqrt(vectorTheta);vectorS’ Vmean)

valorAtivo=[0 sqrt(vectorTheta);vectorS’ Smean]

xlgwrite(‘UpOutCall lAsset MCMilstein_StochVolB.xlsx',[STm;Vmean;Smean]);
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figure(1)

set(gcf, "Color’,[1,1,1])%Cor do fundo da figura
surfc(sz,sl,Valueold,'EdgeColor','None');

title({'Opcao Basket Call - Diferencas Finitas ‘;’Condicac Inicial ‘}: 'fontsize’ ,tf, -’
fontname','Verdana’,’fontangle','Italic’,'fontweight','b','color',‘k’);

xlabel({‘S2 ';'Ativo 2 ‘},’fontsize',af,'fontname’,'Verdana',’fontangle’,'Italic',‘font
weight‘,'b’,’color','k');

ylabel ({‘S1 ‘;’Ativo 1 ‘},'fontsize‘,af,'fontname','Verdana',’fontangle’,'Italic',’font
weight’,'b','color’,'k’);

zlabel({’Payoff ‘;‘ Condicao Inicial '},'fontsize',af,’fontname’,'Verdana',’fontangle’,
'Italic','fontweight’,'b','color‘,'k’);

alpha(.5});

view(-45,30);

tCalculo do valor da opcaoc com e sem custo de transacao
for k=N:-1:1%Tempo

for i=2:L%Direcao do ativo 2
for j=2:M%Direcac do tivo 1
%Calculo da Gregas para integracac explicita

Deltasl(i,j)=(Valueold(i+l,j)—ValueOld(i-l,j))/2/dSl;
DeltaSZ(i,j)=(Value01d(i,j+1)—Valueold(i,j—l))/2/d82;
CrossGammaSlSZ(i,j)=(Value01d(i+1,j+1)—Valueold(i+1,j—l)—valueold(i—
1,j+1)+value0ld(i~1,j~1))/4/dS1/ds2;
Gammasl(i,j)=(Value01d(i+1,j)—Z*Valueold(i,j)+ValueOld(i-l,j))/dSl*Z;
GammaSZ(i,j)=(Va1ueold(i,j+1)—2*Value01d(i,j)+Valueold(i,j—1))/dsz‘z;
DeltaSlC(i,j)=(Va1ueOldC(i+1,j)—ValueOldC(i—l,j))/2/dsl;
DeltaS2C(i,j)=(ValueOldC(i,j+1)—ValueOldC(i,j-l))/2/dSZ;
CrossGammaSlSZC(i,j)=(ValueOldC(i+1,j+1)-ValueOldC(i+1,j—1)~Value01dC(i-
1,j+1)+vValue0ldC(i-1,5-1))/4/d51/ds2;
GammaSlC(i,j)=(Va1ue01dC(i+1,j)—2*Value01dC(i,j)+Va1ue01dC(i—1,j))/dSl“Z;
GammaSZC(i,j)=(Va1ue01dC(i,j+1)—2*Value01dC(i,j)+Va1ue01dC(i,j—1))/d52“2;

end
end
Integracao no tempo
for i=2:L
for j=2:M

Theta(i,j)=—(r-D1)*Sl(i)*DeltaSl(i,j)-(r—D2)*SZ(j)*DeltaSZ(i,j)—l/Z*Sigmal‘
2*Sl(i)“2*Gammasl(i,j)—1/2*Sigma2“2*52(j)“2*Gamma52(i,j)—Rho*Sigmal*SigmaZ*Sl(i)*SZ(j)*
CrossGammaSlSZ(i,j)+r*Value01d(i,j);

ValueNew(i,j)=Value01d(i,j)—dt*Theta(i,j);

CostSl(i,j)=ksl*sl(i)*sqrt(Z/pi/dtc)*sqrt(SigmalAZ*Sl(i)*Z*GammaSIC(i,j)“2+
2*Rho*Sigmal*Sigma2*Sl(i)*SZ(j)*GammaSlC(i,j)*CrossGammaSlSZC(i,j)+Sigma2“2*82(j)*2*Cro
ssGammasls2c(i, j)~2);

Costs2(i,j)=k82*52(j)*sqrt(z/pi/dtc)*sqrt(Sigmal‘Z*Sl(i)“Z*CrossGamma8182C(
,j)“2+2*Rho*sigma1*sigma2*Sl(i)*sz(j)*GammaSZC(i,j)*CrossGammaSlSZC(i,j)+Sigma2‘2*$2(j
~2%*GammaS2C(i,j)~2});

ThetaC(i,j)=—(r—D1)*Sl(i)*DeltaSlC(i,j)—(r-D2)*52(j)*DeltaSZC(i,j)—llz*Sigm
a1“2*Sl(i)“2*GammaSlC(i,j)-1/2*Sigma2*2*52(j)*Z*GammaSZC(i,j)—Rho*Sigmal*Sigma2*Sl(i)*S
2(j)*CrossGammaSlSZC(i,j)+r*Va1ueOldC(i,j)+CostSl(i,j)+Cost52(i,j);

ValueNewC(i,j)=Va1ue01dC(i,j)—dt*ThetaC(i,j);

end
end |
ValueOld=valueNew;
ValueOldC=ValueNewC;
for j=2:M
Condicao de contorno nas extremidades de 81 - Sequnda derivada nula
Valueold(1,j)=(5*Valueold(2,j)-4*Value01d(3,j)+Value01d(4,j))/2;

i
)

Value01d(L+1,j)=(5*Va1ue01d(L,j)-4*Va1ue01d(L-1,j)+Va1ueold(L—2,j))/2;
ValueOldC(1,j)=(5*value01dC(2,j)-4*Va1ue01dC(3,j)+ValueOldC(4,j))/2; [
ValueOldC(L+l,j)=(5*Va1ueoldC(L,j)-4*Va1ueOldC(L—1,j)+Va1ue01dC(L—2,j))/2;

end I
for i=2:1L

sCondicac de contorno nas extremidades de §2 — Segunda derivada nula
Valueold(i,1)=(5*Value01d(i,2)—4*Value01d(i,3)+Valueold(i,4))/2;
ValueOld(i,M+1)=(S*ValueOld(i,M)—4*Valueold(i,M-1)+Va1ueold(i,M—2))/2;
ValueOldC(i,1)=(5*Value01dC(i,2)—4*Value01dC{i,3)+ValueoldC(i,4))/2;
ValueoldC(i,M+l)=(5*Value01dC(i,M)-4*Value01dC(i,M—1)+Value01dC(i,M—2))/2;
end
Valueold(1,1)=((5*Va1ue01d(2,1)~4*Value01d(3,1)+Value01d(4,l))+(5*Va1ue01d(1,2)-
4*Valueold(1,3)+Va1ueold(1,4)))/4;
ValueOld(L+1,l)=((5*Valueold(L,1)-4*Value01d(L—1,1)+Va1ueOld(Lm
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subplot(2,2,1)
surfc(Sz(Z:M),Sl(Z:L),Gammasl(zzL,Z:M),’EdgeColor',’None');
title(’\partial~2v/\partialsl~2 ‘s ’fontsize’,tf, fontname’,’Verdana','fontangle’,’'Itali
c','fontweight’,’b’,’color’,'k’);

glabel({’s2 ‘;’Ativo 2 ‘},'fontsize’,af,'fontname','Verdana‘,’fontangle’,’Italic','font
weight’,'b’,‘color’, k’);

ylabel({’sl ‘;’Ativo 1 ‘},’fontsize',af,'fontname','Verdana’,'fontangle','ltalic','font
weight’,’b’,'coloxr’, k’);

zlabel({‘\partial~2v/\partialsi~2 ‘;‘Gamma Ativo 1 '}, 'fontsize’ ,af,’'fontname’, 'Verdana
','fontangle',‘Italic’,'fontweight','b',’color’,'k’);

taxis([Sigma i Sigma_f 0 Smax min(min{Sigmas}) max(max(SigmaS))])

alpha{.5);

view(~-45,25);

subplot(2,2,2)

surfc(SZ(Z:M),Sl(Z:L),GammaSZ(Z:L,2:M),’EdgeColor','None');
title(‘\partial“ZV/\partialsZ‘z’,'fontsize',tf,'fontname',’Verdana’,'fontangle','Italic
', fontweight’,'b’, ’color’, 'k’);

xlabel({‘s2’; 'Ativo 2’},'fontsize',af,’fontname’,'Verdana',’fontangle','Italic’,’fontwe
ight’,'b’,’color’,"k’);

ylabel({’sl’; Ativo l'},’fontsize',af,'fontname','Verdana','fontangle','Italic','fontwe
ight’,'b’,’color’, 'k’);

zlabel({‘\partial~2v/\partials2~2': 'Gamma Ativo 2'},’'fontsize’,af, fontname’, ‘Verdana’,
'fontangle',’Italic','fontweight',‘b','color’,'k');

%axis([Sigma_i Sigma f 0 Smax min(min({SigmaSigma)} max({max(SigmaSigma))])

alpha(.5);

view(-45,25);

figure(4)

set(gcf, 'Color’,(1,1,1])%Cor do fundo da fiqura

subplot(2,2,1)

surfc(S2,Sl,ValueOldC,'EdgeColor','None');

title(‘Basket Call com Custo ','fontsize',tf,'fontname','Verdana','fontangle’,’Italic’,
"fontweight’, ‘b, 'color’, 'k’ );

xlabel({‘s2 ’;’'Ativo 2 ‘},’fontsize',af,'fontname','Verdana','fontangle',’Italic','font
weight’, 'b’, 'color’, 'k’);

ylabel({‘sl ‘; Ativo 1 ’},’fontsize’,af,’fontname','Verdana',’fontangle’,'Italic','font
weight',’b','color’,'k');

zlabel({‘V ‘;’Valor Basket Call ‘},’fontsize',af,'fontname','Verdana','fontangle’,’Ital
ic’,'fontweight’,'b’,'color','k');

%axis([0 S2max 0 Slmax min{min({vValue0Old}} max({max({Value0ld}))])

alpha(.5);

view(-45,30);

subplot(2,2,2)

surfc(S2(2:M),Sl(2:L),DeltaSlC(Z:L,2:M),'Edgecolor’,'mone');
title(‘\partialv/\partialsl ',‘fontsize',tf,'fontname','Verdana','fontangle',’Italic’,’
fontweight’,'b’,'color’, 'k’);

xlabel({‘s2 ‘;'Ativo 2 '},'fontsize’,af,'fontname','Verdana',’fontangle’,'Italic’,'font
weight’,'b’,'color‘,'k’}:

ylabel({ sl ‘; 'aAtivo 1 ‘},'fontsize',af,'fontname','Verdana',’fontangle',’Italic‘,‘font
weight, ‘b, ‘color’, 'k’);

zlabel ({‘\partialv/\partialsl ‘:;’Delta Ativo 1 ‘},fontsize’,af, fontpame’,'verdana’,’'f
ontangle','ItaJir','fontweight','b‘,'color‘,'k');

$axis([0 S2max 0 Slmax min(min(DeltasS}) max(max(DeltasS))])

alpha(.5);

view(-45,30);

subplot (2,2, 3)

surfc(SZ(Z:M),Sl(Z:L),DeltaSZC(Z:L,Z:M),’EdgeColor’,’None');
title(‘\partialVv/\partials2 ‘,’fontsize’,tf,’fontname','Verdana',’fontangle','Italic','
fontweight',’b’,'color','k');

xlabel({‘s2 ‘;’Ativo 2 ‘},’fontsize',af,'fontname','Verdana','fontangle','Italic',’font
weight’,'b’, ‘color’, 'k’ );

ylabel({‘sl ‘; Ativo 1 ‘},'fontsize',af,'fontname',’Verdana','fontangle','Italic','font
weight','b’,'color','k');

zlabel({‘\partialV/\partials2 *;’'Delta Ativo 2 '},‘fontsize',af,'fontname','Verdana','f
ontangle','Italic','fontweight’,‘b’,’color',’k');

%axis({Sigma i Sigma f 0 Smax min{min{DeltaSigma)} max{max(Deltasigma)}])

alpha{.5);

view(-45,30);

subplot({2,2,4)

surfc(SZ(Z:M),Sl(Z:L),CrossGammaSlSZC(z:L,2:M),'EdgeColor','None’);
title(’\partial~2v/\partialsl\partials2 ’,’fontsize’,tf,'fontname','Verdana','fontangle
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tValores para os dados de saida
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Valor=[0 vectorInterpS2;vectorInter
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ValorC=[0 vectorInter
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pSl’ interpvValue]
__________________________________________ ’)
fprintf(‘\n Resultados - valores Interpoclados com custo’)
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ValueOld(i,j)=0;%Valor nulo se superar a barreira (Up&oOut Call)
CondInic(i,j)=nan;%Valores NaN para manutencao dos zeros apos a barreira

end
end
end
for i=1:L
for j=1:M
if (ValueOld(i+1l,j)-valueocld(i,j))<0
ValueOld(i,j)=Sb-K;%Substitui os valores maximos pelo valor max da opcao
end
end
end

valueOldC=ValueOld; ¢Duplica a superficie da condicac inicial para calculos com custo

sDefinicac dos graficos das superficies de saida

set (0, 'DefaultFiqgurePosition’,[100 100 900 640])%*Posicao do pixel inicial e tamanhc dos
quadros

tf=16;%Tamanho do font para os titulos dos graficos

af=14;%Tamanho do font para os eixos dos graficos

figure(1)

set{gef, ‘Color’,[1,1,1])%Cor do fundo da figura

surfc(s2,51,vValue0Old, '‘EdgeColoxr’, "None’);

title({‘Opcac Basket Up&Qut Call - Diferencas Finitas ‘;‘'Condicac Inicial ‘},’fontsiz
e’,tf, fontname’,’'Verdana’, ' fontangle’,’Italic’,’fontweight’,’b’,'color’,'k’):
xlabel({’82 ‘;'Ative 2 '}, 'fontsize’,af, fontname’,’Verdana’,’'fontangle’, 'Italic’,’'font
weight’,’b’,’color’,'k');

ylabel ({‘S1 ";’aAtivo 1 ‘},'fontsize’,af,’fontname’,'Verdana’, 'fentangle’,’Italic’,’font
weight’,’'b’,’color’,'k');

zlabel ({'Payoff ‘;’Condicao Inicial ‘},’fontsize’,af, fontname’, 'Verdana’, fontangle’,
*Italic’,’ fontweight’,’b’,’color’, 'k’);

alpha(.5);

view(-45,30);

$Calculo do valor da opcac com e sem custo de transacao
for k=N:-1:1%Intervalos de tempo (de tras para frente)
for i=2:L8%Direcac do ativo 2
for j=2:M%Direcaoc do tivo 1

¥Calculo da Gregas para integracao explicita
Deltasl(i,j)=(ValueOld{i+l,j)~Valueold(i-1,j))/2/ds1;
Deltasz(i,j)=(ValueCld{(i, j+1)-Value0old(i,j-1})/2/ds2;
CrossGammaS1S2(i,j)=(Value0ld(i+l, j+1)-valueold(i+l,j-1}~ValueOld(i-

1,j+1)+valueold(i-1,3j-1))/4/d81/ds2;
GammaS1l(i,j)=(valueOld(i+l,j)-2*ValueOld(i,j}+valueold(i-1,3))/dsi~2;
Gammas2 (i, j)=(Value0ld(i, j+1)-2*ValueOld(i,j)+Valueold(i, j-1))/ds2~2;
DeltaslcC(i, j)=(ValueOldC(i+1l,j)-ValueoldC(i-1,j)}/2/dsl;
Deltas2C(i,Jj)={Value0OldC(i,j+1)-ValueOldC(i,j-1))/2/ds2;
CrossGammaS182C(i,j)=(Value0ldC(i+l, j+1)-Value0ldC(i+l,j~1)-ValueOldC(i-

1,3+1)+valuecldc(i-1,j~1))/4/dsl/ds2;
GammasS1C({i, j)=(Value0ldC(i+l,j})~2*Value0ldC(i,j)+valueoldC(i-1,3))/ds1~2;

-1})

GammasS2C(i, j)=(Value0ldC(i, j+1)~2*Value0ldC(i,j)+ValueOldC(i,j /dsz~2;
end
end
sIntegracao explicita no tempo
for i=2:L
for j=2:M

Theta(i,]j)=-(r-Dl)*sl(i)*DeltasSl(i,j)-(r-D2)*s82(j)*Deltas2(i,j)-1/2*Sigmal~
2*3l(i)~2*Gammasl(i,j)-1/2*8igma2~2+52(j)~2+*Gammas2 (i, j)-Rho*Sigmal*Sigma2+s1(i)*S2(7j)*
CrossGammaS1S2 (i, j)+r*Value0ld(i,j);

ValueNew(i, j)=ValueOld(i,j)-dt*Theta(i,j);

Costsl(i,3)=ksl*sl(i)*sqrt(2/pi/dtc)*sqrt(Sigmal~2+%81(i)"2*GammasSlc(i,j)2+
2*Rho*Sigmal*Sigma2*S1(i)*S2(j)*GammasS1C(i,j)*CrossGammas182C (i, )+8igma2~2*82(j)*2*Cro
ssGammasSl1S2C{i,j)*2);

Cost82(1,j)=ks82*82(j)*sqrt(2/pi/dtc)*sqrt(Sigmal~2*81(i)~2*CrossGammas152C(
i,j)"2+2*Rho*Sigmal*SigmaZz+*S1(1)*S2(j)*Gammas2C(i,j)*CrogssGammaslsac(i,j)+sigma2-~2%52 (]
)~ 2*GammasS2C (i, j)*2);

ThetaC(i,j)=-(r-D1)*51(i)*DeltaS1C(i,j)-(r~D2}*S2(j)*DeltasS2C(i,j)-1/2*Sigm
al~2*51(i)~2*Gammasic(i,j)-1/2*Sigma2+2*52(j)~2*Gammas2C(i,j)-Rho*Sigmal*Sigma2*51(i)*3
2(j)*CrossGammas152C (i, j)+r*value0ldc(i,j)+Cost81(1i,j)+Cost82(1,5);

ValueNewC{i,j)=ValueQldC(i,j)-dt*Thetac(i,j);

end
end
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title(’\partial“2V/\partialsl\partialsz ',’fontsize',tf,'fontname',’Verdana’,’fontangle
','Italic’,'fontweight’,’b’,'color’,’k');

xlabel({‘s2 ‘;’Ative 2 ‘},’fontsize',af,'fontname’,'Verdana','fontangle’,’Italic','font
weight’,’b‘,'color’,'k');

vlabel({’sl ‘;’Ativo 1 ‘},'fontsize',af,’fontname',’Verdana',’fontangle’,'Italic','font
weight’,'b’,’color’, 'k’);

zlabel({’\partial“zvl\partials1\partialsz‘;'CrOSS-Gamma Ativo 12'},fontsize’,af, ' fontn
ame','Verdana','fontangle','Italic’,’fontweight','b',’color’,'k’);

%axis([Sigma i Sigma f 0 Smax min(min(DeltaSSigma)) max(max(DeltaSSigma}) ]}

alpha(.5);

view(-45,30);

figure(3)

set(gef, 'Color’,[1,1,1])%Cor do fundo da figura

subplot(2,2,1)

surfc(SZ(Z:M),Sl(Z:L),GammaSl(Z:L,Z:M),’Edgecolor','None');
title(‘\partial*2v/\partialsl~2 ','fontsize’,tf,’fontname’,’Vérdana',’fontangle','Itali
c','fontweight',’b','color','k');

xlabel({’'s2 ‘;'Ativo 2 ‘},’fontsize',af,'fontname','Verdana','fontangle’,'Italic','font
weight’, /b, reolor’, 'k’);

ylabel({’sl *;'Ativo 1 ’},'fontsize',af,'fontname’,’Verdana','fontangle','Italic',’font
weight’,'b','color’,’k’);

zlabel ({‘\partial~2v/\partialsl*2';’ Gamma Ativo l'},’fontsize’,af,'fontname','Verdana',
’fontangle','Italic','fontweight','b','color',‘k');

%axis([Sigma i Sigma_f 0 Smax min{min(SigmasS)} max{max(Sigmas)}])

alpha({.5);

view(-45,25);

subplot(2,2,2)

surfc(SZ(2:M),81(2:L),GammaSZ(Z:L,Z:M),'EdgeColor','None');
title(‘\partial~2v/\partials2-2 ‘,‘fontsize',tf,’fontname’,’Verdana’,’fontangle’,'Itali
c','fontweight','b','color','k’);

xlabel({’s2 ';’'Ativo 2 ’},'fontsize',af,'fontname’,’Verdana','fontangle','Italic‘,'font
weight',’b’,'color’,’k’);

ylabel({‘'sl ‘;’Ativo 1 '},'fontsize’,af,'fontname','Verdana',’fontangle','Italic','font
weight’, b, 'color’, 'k}

zlabel({{‘\partial~2v/\partials2~2 ‘7 'Gamma Ativo 2'},’fontsize’,af,'fontname','Verdana'
,'fontangle’,'Italic’,’fontwaight','b','color','k');

%axis([Sigma_i Sigma f 0 Smax min{min(SigmaSigma}) max(max{SigmaSigma))])

alpha{.5);

view(-45,25);

figure(4)

set(gef, ‘Color’,[1,1,1])%Cor do funde da figura

gubplot(2,2,1)

surfc{SZ,Sl,ValueOldC,’EdgeColor’,'None’);

title( 'Basket Up&aOut Call com Custo ’,'fontsize’,tf,'fontname','Verdana',’fontangle','l
talic’,'fontweight’,’b’,'color','k‘);

xlabel({‘'s2 ‘;'Ativo 2 ‘},'fontsize',af,'fontname','Verdana‘,’fontangle’,'Italic','font
weight','b','color','k');

ylabel({‘sl ‘;’Ativo 1 ‘},'fontsize’,af,'fontname’,’Verdana','fontangle',’Italic',’font
weight’,'b’,'coler’, 'k’);

zlabel({'V’;'valor Basket UpsOut call '},'fontsize‘,af,'fontname’,'Verdana’,'fontangle'
,'Italic’,'fontweight',’b’,’color','k');

taxis([0 S2max 0 Slmax min(min(valuetld)) max(max(Valueold))])

alpha(.5);

view(-45,30);

subplot(2,2,2)

surfc(SZ(Z:M),Sl(2:L),DeltaSlC(Z:L,Z:M),'EdgeColor','None’);
title(‘\partialv/\partialsi ‘,’fontsize',tf,’fontname’,'Verdana',’fontangle','Italic','
fontweight','b’,'color','k');

Xlabel({‘s2 ’;'Ativo 2 ’},'fontsize',af,'fontname','Verdana’,'fontangle','Italic',’font
weight','b','color’,'k’);

ylabel({’sl ‘;'ativo 1 ‘},‘fontsize’,af,‘fontname’,'Verdana',’fontangle','Italic','font
weight’,'b',’color','k');

zlabel({‘\partialV/\partialsl ‘; 'Delta Ativo 1 ’},'fontsize',af,’fontname',’Verdana’,'f
ontangle',’Italic','fontweight','b','color’,’k’);

%axig ([0 SZ2max 0 Slmax min(min({Deltas}) max{max(DeltasS))])

alpha(.5);

view(~45,30);

subplot(2,2,3)

surfc(SZ(Z:M),Sl(Z:L),DeltaSZC(Z:L,Z:M),'EdgeColor',’None‘);
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title({‘Opcac Basket Up&Qut Call - Diferencas Finitas ’;’Volatilidades Deterministicas
e Custo de Transacao’},’fontsize’,tf, fontname’,'Verdana’, ‘fontangle’,’Italic’, fontwei
ght’,'b’,’'color’,"k’);

xlabel({’s2 ‘;'Ativo 2 '},'fontsize’,af, fontname’,’'Verdana’, fontangle’,’Italic’,’font
weight',’b’,'color’, 'k’ };

yvlabel({‘sl ‘;'Ativc 1 ‘},’fontsize’,af, 'fontname’, 'Verdana’,’fontangle’,’Italic’, 'font
weight',’b’,'color’,"'k’);

zlabel ({‘Opcac Basket Up&Qut Call sem Custe ‘;‘Opcac Basket Up&Qut Call com Custo

‘}, ‘fontsize’,af, ' fontname’,'Verdana’, ‘fontangle’, ‘Italic’,’fontweight’,’'b’, 'color’,
'k');

view(-45,30);

$Mostra os valores calculados com este algoritimo

fprintf( \n —— "ty
fprintf(‘\n European Basket Up&Cut Call - Metodo de Diferencas Finitas Explicitor)
fprintf(‘\n com 2 Ativos, Volatilidades Deterministicas, com e sem Custo de Transacao’)

fprintf (' \n )
fprintf(‘\n Valores usados para este calculo’)

fprintf(’\n dsl [intervale do valor do ativo 1} 3 %-,2f,d51)

fprintf(‘\n L [numerc de intervalos do ativo 11 : %-.0f7,L)

fprintf(‘\n ds2 [intervalo do valor do ativo 2] t &-.2f",d52)

fprintf({‘\n M [numerc de intervalos do ativo 2] : %-.0f7,M)

fprintf(‘\n dt [intervalo de tempo de integracao] : %-.6f’,dt)

fprintf(’'\n N [numero de intervalos de tempo] : %-.0£7,N)

fprintf(’\n s10 [valor do ativo 1] : %-.2f',810)

fprintf(‘\n S20 [valor do ativo 2] : %-,2£7,820)

fprintf( \n K [strike] : %-.2f' ,K)

fprintf{’\n w [percentual do ativo 1) i %=.2L7,w)

fprintf(‘\n Sb [valor da barreira da cpcao] i %-.2f£',8b)

fprintf(’\n Simax [valor maximo para ativo 1] : %-.2f',S1lmax)

fprintf(‘\n S2max [valor maximo para ativo 2] t $-.2f’,82max)

fprintf(‘\n T [tempo para o vencimento] : &-.2f0,T)

fprintf{‘\n r [taxa de juros livre de risco] : %-.2f",r)

fprintf(‘\n D1 [taxa de dividendo do ativo 1] : %-.2f',D1)

fprintf(‘\n D2 [taxa de dividendo do ativo 2] : %-,2f',D2)

fprintf(‘\n Rho [correlacao entre os ativos) : %-.2f',Rho)

fprintf(‘\n Sigmal [volatilidade do ativo 1] : %-.2f’,8igmal)
fprintf(‘\n Sigma2? {volatilidade do ativo 2] : %-.2f',sigma2)
fprintf(‘\n ~—————— e ——————— )
fprintf{‘\n Valores de custe de transacac’)

fprintf(’\n dtc [intervalo de tempo de hedge] : %-.4f’ ,dte)

fprintf(‘\n kSl [custo proporciconal ao ativo 1] t %-,4f,k8S1)

fprintf(‘\n ks2 [custo proporcional ac ativo 2] : %-.4f' ,k82)

Eprintf (AD —————  ——e )
EprintE(/\n — e e e e ')
fprintf(’\n Tempc do calculo {com 0s graficos} : %-.2f {seg]’',elapsedTime)

EPrintf (AN o e e "y

%Valores para os dados de saida

fprintf(‘\n Resultados - Valores Interpolados sem custo’)

Valor=[0 vectorInterpS2;vectorInterpSl’ interpvalue]

E ey R o) R | B i T It e T T T ——p—— ")
fprintf(‘\n Resultados - Valores Interpolados com custo’)

ValorC=[0 vectorInterpS2;vectorInterpSl’ interpValueC]

At (AN —m e ")
xlswrite('UpOutCall 2Assets FDExplCost.xlsx',[Valor;ValorC]);
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y = (V-valorOp)/stdv_valorOp; tNumeros gerados pela simulcao

[nn,xx] = hist(y,x);%nn(i) numero de pontos em cada intervale xx

X = -4:0.001:4;%Pontos para grafico da densidade da normal padrao

¥ = exp(-0.5*X.*X)/sqrt(2*pi);%Pontos para PDF da distribuicao normal padrao

figure(l)

set(gcf, 'Color’,{1,1,11)%Cor do fundo da figura

subplot(2,2,1)

normplot (log(Sts(l:2*nTraj)))sNormplot do logaritmo dos valores dos ativos de uma
simulacao

title({‘log ST ‘;'Distribuicac dos valores dos ativos "}, fontsize’ ,tf, ‘fontname’, 'Verd
ana’,'fontangle’,’'Italic’, fontweight’,’'b’,’color’, k’);

xlabel ({‘nTraj ‘;’'Numeroc de trajetorias por simulacao ‘}: fontsize’,af, ' fontname’, 'Verd
ana’,'fontangle’,’Italic’,'fontweight’,’b’,’color’, 'k’);

ylabel{{’percentil log ST ‘;‘Valor final do ativo ‘}, 'fontsize’,af, ' fontname’, 'Verdana’,
’fontangle','Italic','fontweight’,'b','color‘,’k’);

grid on

subplot(2,2,2)

normplot (V)

title({'V ‘;’'Distribuicaoc dos valores da opcao ‘}, fontsize’ ,tf, fontname’, 'Verdana’,‘f
ontangle’,'ITtalic’, ' fontweight’, b, color’, 'k’}:

xlabel ({‘V ‘;'valoxr da opcao ‘}, fontsize’,af, 'fontname’, ‘Verdana’,’fontangle’,’'Italic’
, "fontweight’,*b’,'color’,'k’);
ylabel({'Percentil Vv ‘;'Valor da opcao '} fontsize’,af, fontname’, ‘Verdana’,’fontangle
", 'Ttalic’, 'fontweight’,'b’, 'color’, 'k’);

subplot(2,2,3)

plot(sort(Vv))

title(‘Valor da opcao ', 'fontsize’,tf, fontname’, 'Verdana’,’fontangle’, 'Ttalic’,’fontwe
ight’,’b’, 'color’, 'k*);

xlabel({‘nSimul ‘; 'Numero de simulacoes '}, fontsize’,af, ‘fontname’,'Verdana'’,’fontangl
e’,'Italic’, 'fontweight’,’b’, 'color’,‘k’);

ylabel({‘V ‘;'Valor da opcao ‘},'fontsize’,af, 'fontname’, 'Verdana’, 'fontangle’,’ Italic’
; "fontweight’, b, "color’,'k’);

grid on

str_mu=sprintf(’'Media= %-.4f’,valorOp);
str_sigl=sprintf(‘IC(95)= %-.4f’,lowerCI);

str_sig2=gprintf(‘IC(95)= %-.4f’, upperCI);

subplot(2,2,4)

plot(X+valoreCp, Y, '-r’',xx+valorOp,nn/(nSimul*dx), 'ob’)%Grafico PDF normal padrao
fgrid(gca, ‘'minor’)

title(‘Normal vs Simulacoes ‘y'fontsize’,tf, ' fontname’,’Verdana’,’'fontangle’,’'Italic’,"
fontweight’,'b’,’coloxr’, 'k’ );

xlabel({‘'Vv’'; 'Valor da opcac '}, fontsize’,af,’ fontname’, 'Verdana’, ' fontangle’,‘Italic’,
"fontweight’,'b’,'coloxr’, "k’ );

ylabel( ‘PDF ’,’fontsize‘,af,'fontname','Verdana',’fontangle’,'Italic','fontweight’,'b’,
‘color’,'k");

hold on;

plot{[lowerCi lowerCI],[0 .4],'y’,[valorOp valoxOp],[0 +41, 'k’ ,[upperCcI upperCI],[0
-41,'9");

legend( ‘Normal’, 'Pontos Simulados’,str_gigl,str_mu,str_sig2,1)

axis([~-4+valorOp 4+valorOp 0 ,5])
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inferior para o valor da opcao
upperCI=valorOp-tinv(alpha/2,nSimul—l)*stdv_valorOp*sqrt((nSimul—l)/nSimul);%IC
superior para ¢ valor da opcao

[lowerCI valorOp upperCI)%Intervalo de confianca de 95%

elapsedTime=toc(ticID)%Para o timer

%Definicao dos graficos

set(0, 'DefavltFigurePosition’, [100 100 900 6401)
tf=16;%Tamanho do font dos titulos
af=14;%Tamanho do font dos eixos

Sts=sort(St(nlInt+l,:));%Valores do ativo no final de cada trajetoria (ordenados)
nZero=l;%nZero e o primeiro valor ao final da trajetoria nao nulo
while Sts(nZero)==
nZero=nZero+l;
end

dx = .25;%Tamanho de cada intervalo

= (=4+dx/2):dx:(4-dx/2);%Centro de cada inetrvalo

¥ = (V-valorOp}/stdv_valorOp;%Numeros gerados pela simulcao

[on,xx] = hist(y,x);%nn(i) numero de pontos em cada intervalo xx

X = -43;0.001:4;%Pontos para grafico da densidade da normal padrao

Y = exp(~0.5*X.*X)/sqrt(2+pi);sPontos para PDF da distribuicao normal padrao

figure(1)

set(gcf, 'Color’,[1,1,1])%Cor do fundo da figura

subplot(2,2,1)

normplot(log(Sts(nZero:2*nTraj))) Normplot do logaritmo dos valores dos ativos de uma
simulacao

title({’log ST ‘;'Distribuicao dos valores dos ativos ‘}: 'fontsize’,tf, 'fontname’, 'Verd
ana','fontangle’,'Italic',‘fontweight’,'b’,’color’,'k');

xlabel({‘nTraj ‘;’'Numero de trajetorias por simulacao ‘}, ' fontsize’,af,’fontname’, 'vVerd
ana’,'fontangle','Italic','fontweight','b','color',’k');

yYlabel({‘percentil log ST ‘;'Valor final do ativo ‘},'fontsize',af,’fontname','Verdana',
’fontangle','Italic’,'fontweight','b','color’,’k’);

grid on

subplot(2,2,2)
normplot (V)

title({'V ';'Distribuicao dos valores da opcao '},’fonfsize',tf,’fontname’,'Verdana','f
ontangle','Italic','fontweight’,’b’,’color',’k');

xlabel ({’V ;'valor da opcao ‘},'fontsize',af,'fontname','Verdana’,'fontangle',’Italic'
,’fontweight','b','color',’k');

Ylabel({‘Percentil V ‘;'Valor da opcao ’},'fontsize',af,'fontname',’Verdana’,’fontangle
','Italic','fontweight’,’b',’color',’k’);

gubplot (2,2, 3)

plot(sort(v))

title(‘valor da opcao ’,’fontsize',tf,'fontname',’Verdana’,'fontangle','Italic','fontwe
ight’,'b’, ‘color’, 'k’ );

xiabel({‘nSimul ‘;’'Numero de simulacoes ‘},’fontsize’,af,'fontname','Verdana',’fontangl
e','Italic’,’fontweight','b',’color’,'k');

ylabel({'Vv ‘;'valor da opcao ‘},'fontsize',af,’fontname',’Verdana','fontangle',’Italic'
,‘fontweight','b','color‘,'k');

grid on

str_mu=sgprintf(‘Media= B-.4f7,valorop);
str_sigl=sprintf(‘IC(95)= %-.4f7,lowerCry;

str_sigZ=sprintf(‘Ic(95)= %-.4f’ ,uppercI);

subplot(2,2,4)

plot(x+valor0p,¥,'-r’,xx+valor0p,nn/(nsimul*dx),'ob')%Graﬁco PDF normal padrao
tgrid(gca, 'minor')

title( ‘Normal vs Simulacoes ',’fontsize',tf,'fontname‘,’Verdana',‘fontangle','Italic','
fontweight’, 'b’,'color’, 'k’ );

xlabel({'V’;'Valor da opcac ‘},'fontsize’,af,’fontname’,'Verdana‘,'fontangle','Italic',
’fontweight‘,'b’,‘color’,’k');

ylabel (' PDF ',’fontsize',af,’fontname‘,’Verdana’,'fontangle’,’Italic',’fontweight‘,’b',
‘color’,‘k’);

hold on;

plot([lowerCI lowercCI],[0 -41,’g",[valorOp valerOp], [0 +4], 'k, [upperCI upperci],[0
-41,797);

legend( ‘Normal’, ‘Pontos Simulados',str_sigl,str_mu,str_sigz,l)

axis{[~4+valorOp 4+valorOp 0 -51)
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af=11; %Tamanho do font dos eixos dos graficos
ticID=tic;%Inicia o timer

%Geracao dos graficos das Brownian Bridges

figure(1)

set(gcf, 'Color’,[1,1,1})%Cor do fundo da figura

subplot(2,2,1)

plot{[0:DeltaT:T],repl, [0 T],(8b 8b], ‘'k’):

title(’Trajetorias da Brownian Bridge *y'fontsize’, tf, 'fontname’,’Verdana’, 'fontangle’
¢ 'Ttalic’, 'fontweight',’'b’, 'color’, 'k’ );

Xlabel({‘T ‘;'Periodo de geracao da Brownian Bridge '}, ’'fontsize’,af,’fontname’,’Verd
ana’, 'fontangle’,’'Italic’, ‘fontweight’, b, color’, k');

ylabel ({‘W(t} ‘;'Movimento Browniano ‘},’'fontsize’,af,’fontname’, 'Verdana’,’fontangle
','Italic’, "fontweight’,’b’,’color’,’'k’);

axis ([0 T x-5 y+5])

grid on

subplot(2,2,2)

plot{sort(Min), 'b’);hold on

plot(sort(Max), 'r’);held of

title{‘'Brownian Bridge Min-Max ', fontsize’  tf, 'fontname’,‘Verdana’, 'fontangle’, *Itali
¢’,'fontweight’, 'b’, ‘coloxr’,'k’');

xlabel({’nSimul ‘;'Simulacoes da Brownian Bridge ‘},’fontsize’,af,’fontname’,’ 'Verdana
', 'fontangle’, *Italic’, 'fontweight’,'b’, ‘color’, 'k'});

ylabel({‘Max ‘;'Min '} "tontsize’,af,’ fontname’, ‘Verdana‘,’'fontangle’,’Italic’,’fontw
eight’, 'b’,'color’,'k’);

grid on

subplot(2,2,3)

plot([0:DeltaT:T],rep2,[0 T],[Sb Sb], 'r’);

title(‘Trajetorias da Brownian Bridge ‘,'fontsize’,tf, 'fontname’,’Verdana', fontangle’
. 'Italic’, fontweight’,’b’, ‘coloxr’,'k’);

xlabel({‘T ‘;'Periodo de geracac da Brownian Bridge '}, "fontsize’,af, 'fontname’, 'verd
ana’,’'fontangle’, 'Italic’, fontweight’,’'b’,’color’, 'k’);

ylabel ({'W(t) ‘;'Movimento Brownianc ‘},’fontsize’,af,’fontname’, 'Verdana’, fontangle
', 'Italic’, fontweight’,'b’, 'color’, k’);

axig([0 T x-5 y+5]})

grid on

subplot(2,2,4)

plot(sort(cut},'g");

title(’Probabilidade de corte ‘,'fontsize’,tf, 'fontname’,’'Verdana’, fontangle’, Italic
", "fontweight’,'b’,’coloxr’,’k");

xlabel({'nSimul ‘;'Simulacoes da Brownian Bridge '}, 'fontsize’,af,fontname’,'Verdana
', 'fontangle’, 'Italic’, "fontweight’,'b’, 'color’,’k'};

ylabel({‘'Corte ';'Movimentc Browniano '}, 'fontsize’,af, 'fontname’,’Verdana’, ’fontangl
e',‘ITtalic¢’,'fontweight’,'b’,'color’, 'k’ };

grid on

elapsedTime=toc(ticID);%Para o timer
Tempo_de_Grafico=elapsedTime
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