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”When you are explaining a why you have to be in some

framework that you will allow something to be true; otherwise

you are perpetually asking why”

Richard Feynman



Abstract

A study about a new concept of a flow sensor is presented. The sensor

configuration is based on the article by James P. Wissman, Kaushik Sam-

path, Simon E. Freeman and Charles A. Rohde Capacitive Bio-Inspired Flow

Sensing Cupula by with the surface neuromast bio-inspired polydimethyl-

siloxane (PDMS) compliant cupula. Nevertheless, the sensor bending mea-

suring system was changed to a double core optical fiber interferometric

bending sensor (other than a capacitive system, prior utilized by James P.

Wissman et al.) proposed by Qu H., Yan G. and Skorobogatiy M. in the

article Interferometric fiber-optic bending/nano-displacement sensor using

plastic dual-core fiber and adapted to the geometry proposed. This change

is done with the intention to overcome the problems created by the liquid

metal gallium alloy inside the sensor, such as the internal liquid metal flow

in the sensor and the interaction of this fluid with the viscoelastic cupula,

that affects the sensing capability. A series of 8 configurations of sensors

were tested in 2D fluid-structure interaction simulations using COMSOL

Multiphysics® software under laminar flow regime. The 8 sensors vary in

height (1.5 mm and 3 mm), to minimize the flow distortion after the sensor,

width (0.5 mm and 1 mm), to better fit the optical fibers inside the sen-

sor, and material utilized in the optical fiber double core (fused silica glass

and polycarbonate), with the goal of creating the most compliant sensor

possible. Afterwards, the best performing sensor, chosen through a para-

metric analysis, is selected to be tested numerically in a 3D fluid-structure

simulation. The results of the 2D simulations indicate that the polycar-

bonate optical fiber sensor with width of 0.5 mm and height of 3 mm gives

the higher deflection in comparison with other 7 sensors, under all laminar

regime flows, for Reynolds number from 0.01 to 2000. This sensor is chosen

to be modeled in 3D to run the same kind of laminar flow fluid-structure

1



interaction analysis.

The final 3D modeled sensor shows promising numerical results for its

sensing capability under two different interferometric techniques: the first

one is the fringe detection method in which the threshold of detection is from

Re ≈ 1200 (corresponding in the proposed system to a mean flow velocity

of 0.4 m/s) and the detection of the intensity of the interference signal

technique, which gave the detection threshold of Re ≈ 15 (corresponding

in the proposed system to a mean flow velocity of 5 · 10−3 m/s). Overall,

the mechanical behavior of the sensor and the detection threshold shows

that sensor configuration is viable, being needed yet laboratory testing and

turbulent condition dynamic simulations.



Sommario

È qui presentato uno studio riguardo una nuova idea di sensore di flusso

d’acqua. Il sensore proposto si basa sull’articolo di James P. Wissman,

Kaushik Sampath, Simon E. Freeman and Charles A. Rohde Capacitive Bio-

Inspired Flow Sensing Cupula, il quale presenta una cupola deformabile in

PDMS, ispirata dai neuromasti superficiali dei pesci, rendendolo bio-ispirato.

L’impianto che si occupa della misurazione della deformazione viene modifi-

cato da un sistema capacitivo a un sistema interferometrico costituito da due

fibre ottiche, proposto da Qu H., Yan G. and Skorobogatiy M. nell’articolo

Interferometric fiber-optic bending/nano-displacement sensor using plastic

dual-core fiber, e che è stato adattato alla geometria consigliata. Una serie

di otto impostazioni per il sensore è testata con simulazioni 2D d’interazione

fluido-struttura (fluid-structure interaction) utilizando il software COMSOL

Multiphysics® software [1], sotto regime laminare di flusso d’acqua. Le otto

impostazioni del sensore variano in altezza (1.5 mm e 3 mm) per minimizzare

la distorsione del flusso una volta superato il sensore, spessore dei sensori

(0.5 mm e 1 mm), per far adattare meglio le fibre ottiche presenti nel sensore,

e materiale utilizzato per le fibre ottiche (vetro di silice fuso e policarbon-

ato), con l’obiettivo di creare un sensore più flessibile. Dopodiché il sensore

più performante, scelto tramite un’analisi parametrica, viene selezionato per

essere testato numericamente in una simulazione 3D di struttura del fluido.

I risultati delle simulazioni in 2D indicano che fibre ottiche in policarbonato

di 0.5 mm di spessore e 3 mm di altezza danno maggior deflessione parago-

nate con quelle degli altri 7 sensori, tutti sotto regime laminare con numero

di 0.01 < Re < 2000. Questo sensore è scelto per essere modellizzato in 3D

ed essere sottoposto allo stesso tipo di analisi d’interazione fluido-struttura

sotto regime laminare.

Il sensore definitivo modellizzato in 3D mostra risultati numerici promet-
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tenti per via delle sue capacità di rilevamento sotto due diverse tecniche

interferometriche: la prima consiste nel metodo di rilevamento delle frange

d’interferenza aventi come soglia minima Re ≈ 1200 (corrispondente, nel

sistema proposto, ad una velocità media del flusso di 0.4 m/s), mentre la

seconda consiste nel rilevamento dell’intensità del segnale d’interferenza con

Re ≈ 15 (corrispondente nel sistema proposto ad una velocità media del

flusso di 5 · 10−3 m/s). In definitiva, il comportamento meccanico del sen-

sore e la soglia di rilevamento mostrano che la configurazione del sensore è

attuabile, nonostante necessiti ancora di test in laboratorio e di simulazioni

dinamiche sotto regime di moto turbolento.
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Chapter 1

Introduction

Mimicking nature to inspire new designs, materials, functionalities and

behaviors, what is also as biomimicry [4], is widespread field of innovation

and research in the academia, although it is still knowing its first days in the

industry if compared to other areas [5]. Intelligent materials, sensors and

actuators are already broadly explored as a research topic, with fields in-

cluding bio-inspired color-changing sensing materials and bio-inspired shape-

morphing actuating materials [6], shark drag-reducing scales in turbulent

condition [7] and thunniform more efficient swimming capabilities of fish [8],

among many others examples and applications.

A great variety of mechanisms to sense inputs from the environment are

found in animals, such as, for light as an input, there is the retina of the

human eye, that can convert the light input - electromagnetic radiation from

the environment - into electrochemical impulses in the neurons through a

complex system constituted by three layers: the first one the photoreceptors

of light constituted of cones and rods cells, followed by the bipolar layer

and the ganglion cell layer [9]; for the input as the strain of a joint, the

chordotonal organ of some insects, like cockroaches, give information about

the velocity, positioning and stretching of this joint through hundreds of

individual sensory cells [10]; and, for the input as the flow and pressure

of the water surrounding fish, hair-cells are sensible to it through a series

of cilia connected to neurons, that when moved, create a electrochemical

signal [11].

About this last detection mechanism, the method of flow detection for

biosensors in nature and on the bio-inspired sensors are different: in the fish



biosensor, as explained above, the motion can be detected by electrochem-

ical responses [12–14], as for the bio-inspired systems the method can be

based on a series of methods, that can include: piezoresistivity [?, 11, 15];

optic [16]; capacitive systems [2, 17]; and, piezoelectric [18, 19]. This latter

piezoelectric kind of bio-mimetic sensor is based on a compliant polymer

cupula structure, which is explored by Asadnia et al [19]. In their article,

the sensor - which was based in the hair-cell biosensor, described by [11] -

consisted of a piezoelectric motion-detection system, where the piezoelectric

material used was the polyvinylidene fluoride (PVDF) in nanorod structures,

attached to a rigid substrate in a specific configuration with polydimethyl-

siloxane (PDMS) supporting rods and a cupula made out of a hydrogel based

on hyaluronic-acid (HA). This system had the detection limit for flow ve-

locity of 8 µm/s, which is a result that overcome the capability of spiders

and insects to sense flow, which is about 30 µm/s [20]. As for the article

by James P. Wissman, Kaushik Sampath, Simon E. Freeman and Charles

A. Rohde Capacitive Bio-Inspired Flow Sensing Cupula [2], which inspired

the present thesis, they intended to create a compliant bio-inspired sensor

that would mimic the sensitive capabilities of the surface neuromasts [21],

structures present on the lateral line of fish, that help them to sense the

water flow and orient aptly to it, a process called rheotaxis [12]. These

lateral line neuromasts can be of two types: the surface neuromasts and

the channel neuromasts, both of which consist in thousands of hair-cell like

structures involved in a gelatinous cupula [16]. This lateral line neuromast

can have the impressive capability of sensing waves with amplitudes down

to 0,01 µm [22].

The way the autors from article [2] mimetized the surface neuromasts

consists in a polydimethylsiloxane (PDMS) cupula with three separate in-

ternal cavities filled with liquid gallium alloys that served as capacitors in a

capacitive system that would perceive the deformation of the cupula. The

geometry of the sensor is depicted in Figure 1.1. This system uses a rela-

tion between the velocity of the incoming flow that deforms the compliant

cupula, which induces a change in capacitance of the system, thus allowing

the indirect measuring of the flow velocity through the capacitance. This

system had a good overall performance, having a limit of detection of 60

mm/s in direct current of flow. Nonetheless, the combination of PDMS

with a liquid metal capacitive system when exposed to a long duration test
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(a) Isometric view of the sensor used
by [2]. The three internal cavities are
filled with gallium alloys.

(b) Measures of the sensor by [2] in the xz
plane. All measures are given in millimeters.

(c) Measures of the sensor by [2] in the yz
plane. All measures are given in millimeters.

Figure 1.1: Geometries modeled with COMSOL Multiphysics ® software [1].

- 3,5 hours [2] - had a decrease in the the sensor precision of 15,4 %, due

to the viscoelastic behavior of the PDMS together with the liquid metal

behavior inside the sensor.

A distinct way of measuring the flow velocity - and even the velocity pro-

file - is with optical techniques, which are are no novelty as bio-application

sensors. For example, there are non invasive (a method that can measure

the flow properties without any contact with it) methods such as optical

feedback interferometry, in a study by [23], which has a good precision in

the range of 16.8 mm/s to 168 mm/s and this technique, as shown by [24]

can even reconstruct the velocity profile inside a micrometric duct.

An invasive optical method (a method that can measure the flow prop-

erties with some kind of contact with it) of detection of flow intensity and

vortices was proposed by Klein A., Bleckmann H. in the article [16], in which

the lateral line of fish was bio-mimitized with a series of PVC canals (squared
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cross-section with 4mm sides) and mimetic surface neuromasts structures.

The biomimetic surface neuromasts are composed of a transparent silicon

rod in contact with the flow that bends as the fluid passes through the

channel, this transparent silicon rod has a laser light passing inside it that

is captured at full intensity ( with no flow in the channel, meaning that the

sensor is perpendicular to the wall, at 90º with the wall of the channel) by

a optical fiber on the opposite side of the channel, and, when it bends away

from the 90º (fluid flow exists), the intensity of the light captured in the

other side of the channel is changed, creating thus the detection mechanism.

In a sense, the incorporation of a photonic inorganic method to a biomimicry

sensor shows that under the right geometry and boundary conditions, such

an approach can help to recreate organic organs, leading one step closer

to real world applications of biomimicry sensors. Another invasive optical

technique was used in [25], that can measure in real time the intravascu-

lar blood flow, which, according to the authors, would have a great impact

in the decision making of a medical team, being another achievement for

optical methods in bio-systems.

In between the various applications of optical techniques in the measure

of flow profiles, intensity and real time monitoring it is possible to find that

these techniques have a satisfactory application robustness in bio-systems.

Figure 1.2: Figure adapted from [3]. Shows the geometry of the twin core optical fiber
utilized in the proposed sensor.
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Taking into account the latter considerations, this thesis proposes a new

sensor configuration based on the model by [2] PDMS cupula sensor, chang-

ing the motion detection technique from a capacitive based one to an optical

interferometry based one.

The new concept consists in utilizing a dual core optical fiber method

based on the article by [3] inside the PDMS cupula. This system (Figure

1.2) is made out of two core optical fibers (designed by ”Core 1” and ”Core

2” in the figure) with a silver mirror layer on top which are involved by an

external polymer cladding that is also present in between the two fibers,

making the distance between the neutral axis of the fibers be of a distance

Λ. In the Figure 1.2 is also possible to define the dislocation of the tip of

the sensor d and the radius of curvature R when the sensor is bent. There

are more complex setups which involves multiple optical fibers at its core,

having the ability to detect deflections in two dimensions [26, 27]. That

could be explored in our system in a next step of the study. Nevertheless,

this study will focus on the numerical analysis of this novel kind of coupled

compliant cupula and double core optical fiber interference system, to check

its viability, proposing the geometry and the materials.

We propose four different geometries and two different optical fiber ma-

terials to couple the double core optical fiber interferometer, similar to [3]

and the cupula present by [2] into a coupled interferometric microelectri-

calmechanical system (MEMS) flow sensor. Regarding the materials, we

propose two different optical fibers for the dual-core interferometer: optical

polycarbonate (PC), as used in [3], from the supplier [28], and optical fused

silica glass Corning® 7940 [29]. Next, regarding the geometries, we pro-

pose 4 different geometries, that could fit the proposed sensor and we ran

a parametric analysis to choose the sensor that would result in the higher

phase difference in the interferometric system, thus having the best sensitiv-

ity. As the phase difference is directly proportional to the tip displacement,

a series of stationary flow simulations in COMSOL Multiphysics ® [1] from

0.01 < Re < 1600 are proposed to recognize which configuration result in

the higher tip displacement, hence producing the higher phase difference in

the interferometric system.

These geometries are proposed in a 2D framework in order to simulate

with COMSOL Multiphysics ® [1] with a less computational demanding

approach the mechanical response of the sensor to the incoming water flow
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(a) Dimensions and geometry of the 2D sensor
with 1.5 mm of height and 0.5 mm of width.

(b) Dimensions and geometry of the 2D sensor
with 1.5 mm of height and 1 mm of width.

(c) Dimensions and geometry of the 2D sensor
with 3 mm of height and 0.5 mm of width.

(d) Dimensions and geometry of the 2D sensor
with 3 mm of height and 1 mm of width.

Figure 1.3: All 2D sensor geometries and dimensions, modeled with COMSOL Multi-
physics ® software [1].

inside a millimetric channel. The variable parameters in the geometries are

the height of the sensor and its width. To have a good cover of PDMS on top

of the optical fiber we should have at least 0.5 mm of the PDMS thickness

above the fiber on the 3 mm height sensor and, following that proportion,

0.25 mm of PDMS on top of the optical fiber in the 1.5 mm height sensor.

All the dimensions are listed in figure 1.3 and summarized in the table 1.1.

We consider the silver mirror to have negligible thickness, thus not being

showed in figure 1.3 nor being considered in the table 1.1 dimensions.

Following the parametric analysis of the 2D geometries and materials,

the best performing geometry and material will have the theoretical phase

difference in the 0.01 < Re < 1600 interval of water flow calculated, to

check for the viability of the sensor in this flow interval. Later, in a 3D

new proposed setup, which will be based in the best performing geometry
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From figure
1.3

Width
(mm)

Height of the
sensor (mm)

Height of the
Optical Fiber (mm)

(a) 0.5 1.5 1.25

(b) 1 1.5 1.25

(c) 0.5 3 2.5

(d) 1 3 2.5

Table 1.1: Table specifying the dimensions of the proposed 2D sensors.

and material from the 2D analysis, will be simulated under laminar flow

conditions in COMSOL Multiphysics ® software [1], to check its viability

and behavior.
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1.1 Thesis structure

This thesis is presented with an abstract, a list of Contents, and then, it

is structured in five main chapters and two appendices in the following way:

1. Chapter 1 is the introduction which will show a quick literature review

of some methods utilized in the biomimicry of flow sensitive bio-sensors

and a general framework of the work, presenting: the geometries and

materials tested, the methods and simulations which were carried out

in this work.

2. Chapter 2 includes the theoretical background for the simulations

hereby presented. This will include the principles of the twin fiber

optical interferometer, the governing equations for fluids and solids

used in the framework that COMSOL Multiphysics ® uses for its

simulations and a quick introduction of the finite element method for

stationary systems.

3. In chapter 3, the results of the 2D proposed sensors fluid-structure

interaction simulations will be presented and discussed. The bound-

ary conditions, material properties, mesh settings and results will be

described in detail. Then the parametric analysis of all geometries

will be used in order to find the best candidate to have a higher phase

difference, hence having more sensitivity to measure the water flow.

4. In chapter 4, the geometry of the 3D proposed sensor will be presented.

Fluid-structure interaction simulations in a square cross section duct

are performed in laminar flow to check the phase difference response

of the sensor interferometer in the 3D proposed geometry.

5. Chapter 5 presents the conclusions of the study and proposes future

developments for the present work.

6. In appendix A all the fluid velocity magnitude profiles for the 2D

simulations are presented.

7. In appendix B all the fluid velocity magnitude profiles for the 3D

simulation are presented.
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This thesis also provides a list of figures and a list of tables after the

table of contents, as well as an acknowledgments part prior to the table of

contents.
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Chapter 2

Theoretical Background

In this chapter the physical governing equations for the fluid and solid

continuus mechanics will be described, aiming to give a overall view on the

physics of the simulations run thorough this work. Next, a review on the

finite element method will be presented. In the last section of this chapter,

a overview on the calculation of phase difference between two optical fibers

inside a core is presented, based on the articles by Qu et al. [3] and the one

by Real Vallée and Denis Drolet [30].

In this work the hypothesis that the materials such as PDMS, poly-

carbonate, fused silica glass, and its composites in the sensor, have linear

behavior under laminar flow regime, because the stresses applied are of small

value due to low velocities of the flow and the small surface area in contact

with the flow, thus they are modeled as isotropic Saint Vernant-Kirchhoff

materials. These kind of linear mechanics only require the Young Modulus

and the Poisson’s ratio to be fully described, as it will be showed in this

chapter.

All equations shown in this chapter are written in the index notation (or

Einstein notation) for simplicity and to avoid heavy notation use.

2.1 Fluid Governing Equations

As the fluid is a mass conserving continuum medium, it must respect

the continuity principle, given by:(
∂

∂t

)
ρ+ ∂i(ρvi) = 0, (2.1)



where ρ is the density field of the fluid, vi is the velocity vectorial field and

t denotes time.

As for the moment transport inside a fluid, the general balance of mo-

mentum can be written as,

ρ

[(
∂

∂t

)
vi + ∂j(vjvi)

]
= ρbi + ∂iσij , (2.2)

where bi are the external forces applied to the fluid and the σij is the tensor

of stresses. In the fluid it can be written as,

σij = −p(ρ)δij +

[
ηB(ρ)− 2

3
η(ρ)

]
(∂kvk)δij + η(∂ivj + ∂jvi), (2.3)

in which η is the shear viscosity, ηB is the bulk viscosity, δij denotes the

Kronecker delta and p(ρ) the pressure that depends on the density. These

two equations can be combined to give the Navier-Stokes equations [31],

ρ

[(
∂

∂t

)
vi + ∂j(vjvi)

]
= −∂ip+ ∂i

[
(−ηB +

2

3
η)∂kvk

]
+ 2∂i(η∂kvk) + ρbi

(2.4)

2.2 Solid Governing Equations

To describe the mechanical behavior of a solid, from the continuum me-

chanics point of view, the conservation of four main quantities need to be

achieved: the mass conservation (2.1), the momentum conservation (2.2),

the angular momentum conservation and the conservation of energy [32].

The latter two can be written as, respectively,

σij = σji, (2.5)

σijdij + ρr − ∂iqi = ρ

[(
∂

∂t

)
ui + vi∂iuj

]
, (2.6)

where dij will be rate of deformation tensor with the unit of [1
s ], r will be a

heat source with [Wkg ], ρ in the density with [ kg
m3 ], qi is the spatial heat flux

vector with the units of [ W
m2 ], ui is the displacement vector [m] and vi is the
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velocity vector [ms ]. Therefore, both sides of the equation will have the units

of energy flux per volume [ W
m3 ].

Combining these field equations for continuum mechanics with a consti-

tutive mode it is possible to model the mechanical behaviour of a material.

In the case of this work, the linear elasticity for a Kirchhoff material will be

used and described.

2.2.1 Green Strain Tensor (E)

The Green strain tensor is defined as the squared infinitesimal defor-

mation on the current configuration minus the squared length of the initial

configuration [32], as follows,

dxidxi − dXidXi = 2dXiEijdXj , (2.7)

where dxi is a vector which denotes the deformed system and dXi is the

vector that describes the original state of the material. On the right side

of the equation the Eij represents the Green strain tensor. This tensor can

also be expressed with the spatial derivatives of the displacement vectors,

which is the form used by the COMSOL Multiphysics® software [1]. This

last form is,

Eij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

)
, (2.8)

being ui the displacement vector. An important relation occurs between

the Green strain tensor with the rate of deformation tensor Fij , which is

described analytically as,

dxi = FijdXj . (2.9)

This relation takes place when the left part of equation (2.7) is substituted

by the rate of deformation tensor definition (2.9), resulting in the following,

dxidxi − dXidXi = 2dXiEijdXj , (2.10)

dXj(Fji)
TFikdXk − dXjδkjdXk = 2dXjEjkdXk, (2.11)

dXj

(
(Fji)

TFik − δjk − 2Ejk
)
dXk = 0, (2.12)
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then, as this last expression should work for any given dX, the final relation

between these tensor is achieved:

Ejk =
1

2

(
(Fji)

TFik − δjk
)
. (2.13)

2.2.2 Second Piola-Kirchhoff Stress Tensor (PK2)

A convenient way to describe the Second Piola-Kirchhoff stress tensor

is by first introducing the Cauchy Stress tensor (σij), which describes the

stresses applied on an infinitesimal surface Γ of the domain Ω ⊂ R3. Its

formulation is,

niσijdΓ = tjdΓ, (2.14)

where ni is the normal vector to the infinitesimal surface area dΓ and tj

is the traction vector acting on the infinitesimal surface dΓ. All the terms

in the Cauchy tensor are placed in the present configuration. With the

definition of the Cauchy Stress tensor, an elegant form of the PK2 tensor

(S) can be written, which takes into account the rate of deformation tensor

(F ), its determinant (J) and the Cauchy tensor, as follows,

Sij = J(Fik)
TσklFlj . (2.15)

2.2.3 Saint Vernant-Kirchhoff Material

The Saint Vernant-Kirchhoff material constitutive model for linear elas-

tic behavior utilizes the Green strain tensor (2.13) and the PK2 tensor (2.15)

with a fourth-order tensor Cijkl which describes all the possible elastic con-

stants needed for the anysotropic response of the material. The major for-

mulation of the constitutive model is,

Sij = CijklEkl. (2.16)

Due to major and minor symmetries in the system the 81 elements

fourth-order tensor Cijkl, can be fully described by just 21 independent

constants. These latter constants, know as the elastic moduli of the mate-

rial, can be further condensed if the material has a symmetric response to

stresses. As do the isotropic materials, that have the same elastic response
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for stresses applied in any direction. Thus, this material has new symmetries

that can simplify the elastic moduli tensor.

Using these symmetry relations combined with two materials mechanical

properties: the Young Modulus E and the Poisson’s Ratio ν, it is possible

to describe fully the mechanical behavior of a isotropic linear elastic ma-

terials. To further simplify the description, the Lamé constants (λ, µ) are

introduced, these constants are often used for elastic theory [33] and are

written based on the Young Modulus and the Poisson’s ratio as [32,33],

µ =
E

2(1 + ν)
, (2.17)

λ =
Eν

(1 + ν)(1− 2ν)
. (2.18)

With the Lamé constants it is possible to write the elastic moduli tensor

Cijkl for isotropic elastic materials as the expression [32],

Cijkl = λδijδkl + µ(δijδkl + δijδkl), (2.19)

where the δij denotes the Kronocker Delta and the product between δijδkl

denotes a external product (notice that the index do not permit a contrac-

tion), creating the identity fourth-order tensor.

The PK2 tensor can also be described in this reduced form for isotropic

elastic materials, which would be [32]:

Sij = λEkkδij + 2µEij , (2.20)

where Ekk denotes the Einstein convention for the trace of the tensor Eij .
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2.3 Finite Element Method

The continuum mechanics partial differential equations (2.1, 2.2, 2.5,

2.6) cannot be solved analytically with ease, thus requiring numerical meth-

ods to provide results for different geometries and configurations [34]. The

finite element method is the numerical method applied to major part of

the mechanical analysis softwares, which includes the software used in the

present work, COMSOL Multiphysics® [1].

This method will discretize the continuum domain into a grid of the

points, the so-called nodes, by transforming the displacement field ui(Xj)
1

to a uαi (Xα
j ), in which α denotes the node index, for a α-node system. For

computational purposes uαi (Xα
j ) can be written as a column matrix [31],

uαi (Xα
j ) =


u1
i

u2
i
...

un-node
i

 =



u1
1

u1
2

u1
3
...

un-node
1

un-node
2

un-node
3


. (2.21)

This discrete displacement field still need to be interpolated to form a

continuous differentiable and integrable function. For this reason the so-

called shape-function S is applied to the nodes defining a new interpolated

displacement field ũi. This function S must respect the displacement of

each node alone, thus being required the Kronecker delta along the shape-

function. The new approximated displacement field can be summarized

as [31],

1Here the indexes i and j denote the index convention for a first order tensor, or a vector,
being the vectorial function ui dependent on the vector Xj (the original undeformed system
coordinate system, as seen in subsection 2.2.1), where the indexes go from 1 to 3. For the
orthonormal base ei = (ex, ey, ez), u1//~ex, u2//~ey and u3//~ez.
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ui(Xj) ≈ ũi(Xj) = Siαuα =

S
1 0 0 Sn−node 0 0

0 S1 0 . . . 0 Sn−node 0

0 0 S1 0 0 Sn−node





u1
1

u1
2

u1
3
...

un-node
1

un-node
2

un-node
3


,

(2.22)

where, the node approximated by the ũi function must be the the original

node only, thus introducing the Kronecker delta,

uαi = ũi(X
α
j ) =

n−node∑
β=1

Sβ(Xα
j )uβi =

n−node∑
β=1

δαβu
β
i . (2.23)

Next, having the definition of the discrete displacement field, the defor-

mation gradient (eq. (2.9)) can be rewritten as a function of it, as follows,

Fij ≈ F̃ij = δij +
∂ũi
∂Xj

= δij +
n−node∑
α=1

∂Sα

∂Xj
uαi . (2.24)

Now, it is possible to write the elastic strain energy (??) w as a function

of the gradient of deformation F̃ij because the Green strain is a function of

the gradient of deformation as Eij(F̃ij) and the elastic strain can be written

as a function of the Green strain. Therefore, w(Eij(F̃ij)) = w(F̃ij)[
J
m3 ],

which integrated on the volume of the original domain Ω0 and subtracted

by body forces bi[
J
m2 ] applied at the initial surface ∂Ω0 integrated on this

surface will result in the total potential energy of the system U . This total

energy is a functional of the displacement field uα, thus the Euler-Lagrange

equation is applicable to find the geodesic function uα that minimizes the

energy of the functional.

The total potential energy functional U [uα] can be expressed,

U [uα] =

∫∫∫
Ω0

w(F̃ij(uα))dV0 −
∫∫

∂Ω0

biSiαuαdA0, (2.25)

where V0 denotes the initial value of the volume and A0 the initial surface

area of the Ω domain.
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The next step will be to minimize of the total potential energy of the

system. This is done in order to find the equilibrium state of a station-

ary mechanical system, whose energy is described by the equation (2.25).

Mathematically, the functional derivative of U [uα] with relation to uα, when

equaled to zero will give the equilibrium state of the mechanical system. This

idea is be summarized as,

−δU [uα]

δuα
= 0, (2.26)

which is equivalent, in physical terms, to the Fi = −∂iU (where F is a force

vector and U is a generic potential field), where a force can be derived from

the potential energy field, resulting in a force, that in this work will be a

vector named fi,α, explaining why the expression (2.26) takes the negative

sign.

Next, taking the derivative of (2.25),

fi,α(uα) = −δU [uα]

δuα
= −

∫∫∫
Ω0

∂w

∂F̃ij

∂F̃ij
∂uα

dV0 +

∫∫
∂Ω0

biSiαdA0, (2.27)

where the derivative of the elastic strain energy is splitted into two deriva-

tives by the chain rule, expliciting the derivative of the gradient of defor-

mation tensor by the displacement field, which by itself is equal to the first

derivative of the PK2 tensor with respect to the deformed configuration

Xi [31],

∂w

∂F̃ij
=
∂Siα
∂Xj

. (2.28)

To conclude this derivation, presented more formally by [31], the final

form of the minimization of energy with the PK2 tensor is,

fi,α(uα) = −
∫∫∫

Ω0

Pij(F̃ij(uα))
∂Siα
∂Xj

dV0 +

∫∫
∂Ω0

biSiαdA0, (2.29)

where,

Pij(F̃ij(uα)) =
∂w

∂F̃ij
. (2.30)

To make the functional derivative (2.26) be equal to zero, it must be
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evaluated in a displacement field uα,0 that will be the solution to the equi-

librium state of the mechanical system. To do so, numerical methods to find

the zero of the function fi,α(uα) (out-of-balance forces must be null to have

the equilibrium system) are required, as the Pij function is nonlinear and

has to be solved iteratively. A number of numerical methods can be used

to solve this type of problem, between then there is the Newton-Raphson

method, the line search method and others. The topic of numerical methods

to find roots of functions won’t be further discussed as it is not on the scope

of this work.

2.4 Double Core Optical Fiber Interferometer Prin-

ciples

The double core optical fiber system relays on the interference pattern

created by a monochromatic laser beam split into two phase coherent beams

that are guided by each optical fiber and reflected at the top silver mirror

and, then, reunited, giving the interference pattern. This interference pat-

tern is only created if there is a phase difference between the split beams

when they return to the base of the optical fiber (given by coordinate O in

the Z axis in figure 1.2), otherwise a constructive interference pattern would

be observed.

The phase difference created due to the change in optical path experi-

enced by each fiber, ∆φ1 = k∆L, being ∆φ1 the phase delay, k the wavenum-

ber (defined by k = 2π
λ , where λ is the wavelength), and ∆L the change in

the path or length of the fiber, that occurs when the whole system is bent.

This path difference ∆L can be translated to the Green Strain tensor in the

Y Y direction (direction parallel to the neutral axis of the fiber), as shown

next,

∆φ1 = kn0∆L = kn0E22L = kn0EY Y L, (2.31)

where n0 is the refractive index of the material and L is the length of the

optical fiber [30]. Furthermore, there is the photoelastic effect which must

be taken into account, in which the refractive index is changed with the

strain applied to a material. The general equation of photoelasticity can be

written as [30],
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δni = −n
3
0

2
pijεj , (2.32)

where δni is the change in refractive index of a fiber, represented as a vector

by the i subscript, pij is the photoelastic tensor for a isotropic material (in

this case polycarbonate) and εi is the strain in Voigt notation, with the

subscript i varying from 1 to 3, just XX, Y Y and ZZ, directions. For the

two-core optical bending sensor, this tensorial equation can be simplified as

a difference between the refractive index change in both fibers [3],

∆n = −Cn
3Λ

2R
, (2.33)

in which ∆n denotes the difference in the refractive index between the two

fibers, C denotes the photoelastic constant for the problem (a combination

of components of the tensor pij), R is the radius of curvature of the fibers

and Λ is the distance between the two optical cores.

Writing both contributions to the final phase difference, the final expres-

sion to the phase difference between the two cores of optical fibers (∆φ1 and

∆φ2) can be approximated to [3],

∆φ = ∆φ1 −∆φ2 ≈ 2kn0L[(
∆n

n0
) + (

∆L1 −∆L2

L
)], (2.34)

being ∆L1 and ∆L2 the changes in length in the y direction for optical fibers

1 and 2, respectively (cores 1 and 2 in figure 1.2). If we want to use the

Green strain directly in 2.34, it can be rewritten as,

∆φ ≈ 2kn0L[(
∆n

n0
) + (E1

22 − E2
22)], (2.35)

where the subscript in E22 denotes the direction Y Y and the super index

the optical fiber. To further adapt the equation 2.35 to the variables present

in this thesis, it would be interesting to calculate ∆n bypassing the radius

of curvature, utilizing just the Green strains. In order to so, the equation

2.32 can be directly used with the component of the photoelastic tensor pij

being C, introduced in [3] for polycarbonate fibers. Thus, ∆n would be,

∆n = (δni)fiber1 − (δni)fiber2 = −Cn
3

2
(E1

22 − E2
22). (2.36)
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With these equations it is possible to calculate the theoretical phase

difference of the twin optical fiber curvature sensor. To unify everything in

one final equation, we have,

∆φ ≈ 2kn0L(E1
22 − E2

22)

[
1− Cn2

2

]
. (2.37)
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Chapter 3

2D Geometries Sensor

Simulations

In this chapter four geometries with two different materials for the op-

tical fibers are numerically tested in a fluid-structure finite-element method

analysis, utilizing COMSOL Multiphysics® [1], varying the height of the

sensor and its width. The objective is to find the most compliant cupula

with this pre-defined geometries and to analyze the way that would minimize

the perturbation of the flow for microfluidic systems. The new geometries

are proposed to include the bio-inspired cupula sensor from [2] with the

interferometric double core optical fiber bending sensor proposed by [3] in a

3.1 Material properties and simulation parame-

ters

The polydimethylsiloxane (PDMS) cupula utilized uses the same me-

chanical properties from [2] with some extra parameters added, such as the

Poisson’s Ratio of 0.495 [35], the density of, approximately, 970 kg/m3 [36]

and the Young Modulus of 750 kPa as used in the simulations by [2]. The

same mechanical properties for the PDMS cupula are used in every simula-

tion.

For the optical fiber component, two different materials were used: the

optical polycarbonate (PC), as used in [3], from the supplier [28], and optical

fused silica glass Corning® 7940 [29]. All their mechanical properties are

summarized in the table 3.1.



Material
Density
(kg/m3)

Poisson’s
Ratio

Young
Modulus
(MPa)

PDMS 970 0.495 0.75

Fused Silica
Glass

2201 0.179 72.1x103

Polycarbonate 1200 0.37 2.35x103

Table 3.1: Table with all utilized mechanical properties in the simulations, for each
material.

Regarding the simulation parameters, COMSOL Multiphysics® [1] was

the chosen finite element method software, as it can integrate different

physics in the same analysis, such as with the fluid-structure interaction

package, that was required to evaluate the strain in the optical fibers and

the tip displacement with different water flux values hitting the sensor. The

COMSOL Multiphysics® physics packages utilized were: Solid Mechanics

with the option for linear elastic materials (also for PDMS which is ex-

posed to small strain deformations), which uses the solid governing equa-

tions, found in section 2.2, and, as shown in chapter 2.2.3, just two material

properties, the Young Modulus and the Poisson’s Ratio, are able to describe

the mechanical behavior of the material; the Laminar Flow (no turbulence

was modeled in the present work) package which solves the fluid-governing

equations, found in 2.1, in laminar regime, and finally the fluid-structure in-

teraction package, which will calculate the final behavior of the sensor when

hit by the water flow.

The channel utilized has the same cross section as the channel used

by [2], a square cross section duct with 11.25 mm of height and 60 mm of

length, show in figure 3.1. The sensor is put 20 mm away from the inlet of

fluid (placed on the left), this way leaving 40 mm of duct before the outlet

to analyze the flow behavior before the outlet. The inlet is set to permit a

mass flow entry defined by the Reynolds number,

F = 2 ·H ·Re · η, (3.1)

where H stands for the height of the duct, Re stands for the Reynolds

number and η stands for the dynamic viscosity of water at 25ºC. The outlet

was set to the boundary condition of pressure equals to atmospheric pressure.
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Figure 3.1: Diagram providing the dimensions (in millimeters) of the channel utilized in
the fluid-structure interaction 2D simulations. Done with COMSOL Multiphysics® [1]

The laminar flow was taken to be the behavior of the flow inside the

square cross-section until Re = 2000, as studied by [37]. To save computa-

tional efforts, the parametric analysis of the eight sensor configurations was

set to occur in laminar flow from the low value of Re = 0.01 (mean flow

velocity of 1.7976 · 10−6 m/s), to be able to find the limit of detection of the

sensor, until the limit of the laminar flow Reynolds number of Re = 2000

(mean flow velocity of 0.35953 m/s).

Regarding the mechanical contacts inside the sensor, both optical fibers

are in contact, thus exerting a frictional force on each other. To model

this contacts in COMSOL, assemblies were created between the internal

parts of the sensor (PDMS cupula and the two independent optical fibers),

and for what concerns the contact forces, they can be added in COMSOL

Multiphysics® defining the friction coefficient of the optical fibers, glass-

glass [?] and PC-PC [38], the values are reported in table 3.2.

Although the friction contact was set between the optical fibers, it was

not added in the optical fiber-PDMS interface because this thesis does not

propose the fabrication method of the sensor, being non realistic to imposed

the pressure in the interface between the optical fiber and the cupula. Hence,

this interface is set to be a adhesion interface with the gap between the fiber
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Material
Friction Coeffient

with itself

Fused Silica
Glass

0.4

Polycarbonate 0.24

Table 3.2: Table containing the values of the coefficient of friction between the optical
fibers inside the sensor.

and the cupula equals to zero.

Other general considerations that were made in the simulations and are

worth mentioning are the fixed constrain boundary conditions (the basis is

fixed, no movement is allowed) that were made in the basis of the sensor

(both in the PDMS part and in the optical fiber part), as show in figure 3.2,

that shows the basis of the sensor in blue, which is were the fixed constrains

were applied. And, regarding the fluid dynamics boundary conditions, the

no-slip condition applied on the walls of the sensor and of the channel to

further simplify the simulation, taking into account that the damping cre-

ated by the no-slip condition weakly diverges from the slip condition, as it

was shown by [39], thus being a good approximation for the simulation at

hand.

Figure 3.2: Diagram representing the fixed boundaries on the bottom of the sensor
inside the microfluidic channel, with the fixed constrains in the bottom of the sensor
in blue. The sensor represented here has 3 mm of height and 1 mm of width. Done in
COMSOL Multiphysics® [1]

The mesh settings were the Physics-Controlled mesh from COMSOL
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Multiphysics®, in which the software calculate the most suited free tetra-

hedral mesh based on the physics packages and multiphysics included in the

problem, which in this case are the solid mechanics physics, laminar flow

physics and fluid-structure interaction multiphysics package. These mesh

settings have nine predefined mesh setups, that go from extremely coarse

mesh to extremely fine mesh, from which was chosen the extra fine mesh, one

preset before the extremely fine. The mesh for each one of the 4 geometries

proposed is shown below, in figure 3.3.

(a) Mesh settings for sensor with dimensions
and geometry of the 2D sensor with 1.5 mm
of height and 0.5 mm of width.

(b) Mesh settings for sensor with dimensions
and geometry of the 2D sensor with 1.5 mm
of height and 1 mm of width.

(c) Mesh settings for sensor with dimensions
and geometry of the 2D sensor with 3 mm of
height and 0.5 mm of width.

(d) Mesh settings for sensor with dimensions
and geometry of the 2D sensor with 3 mm of
height and 1 mm of width.

Figure 3.3: Free tetrahedral mesh for each one of the 4 geometries proposed, performed
by auto-meshing presets included in COMSOL Multiphysics ® software [1].

47



3.2 Fluid-Structure Interaction Results and Dis-

cussion

In this section the results of the simulations of the four geometries pro-

posed in the introduction (1) and in figure (1.3) and two materials for the

optical fiber - what totalizes 8 different sensor configurations - will be pre-

sented and discussed. In order to discern the behavior of the various sensor

geometries when exposed to water fluxes inside a microfluidic channel (the

one presented in figure 3.1), a series of stationary simulations were per-

formed.

To evaluate the behavior of the sensor at low flux velocities, 100 station-

ary simulations were performed for 0.01 < Re < 1 (one hundred independent

simulations, not increasing linearly the water flux with time) and to evaluate

until the end of the laminar regime, 1000 simulations were performed from

1 < Re < 2000. This simulations were not very time consuming as all 8800

simulations took nearly two days to compute, thanks to the 2D framework

and the laminar regime package, which is much less time consuming than

the turbulent flow packages.

The result aimed to be achieve is the tip displacement of the optical

fibers (for each sensor configuration), which is directly proportional to the

strain of this same fiber, as a function of the Reynolds number, and how

this functions grows (first derivative of the tip displacement in respect to the

Reynolds number). Some of the simulations presented convergence problems

for Reynolds numbers close to 2000, which will be discussed. Nonetheless,

the overall growth tendency of the non converging simulations curves is still

observed.

The first results include the velocity profile around and after the pro-

posed sensors, as shown in figure A.2 in appendix A. It can be observed that

for Reynolds number equals to one, the laminar flow around every geometry

of the sensor becomes unperturbed immediately after the sensor, creating a

zone of high velocity on top of the sensor, but not perturbing the overall de-

velopment of the flow after the sensor. This result is observed in the sensor

with both optical fiber materials.

When the Reynolds number gets to higher values, the velocity magnitude

of the flow shows a significant perturbation for the sensors with height of 3

mm, not returning to the original flow profile before the end of the channel,
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as observed in figures in A.1 in appendix A. This simulations with the 3 mm

sensors did not converge for values beyond Re = 413 in the case of the fused

silica glass with 0.5 mm cupula width, and, from Re = 1551 in the case of

the case of the fused silica glass with 1 mm cupula width. The sensors with

1.5 mm cupula height showed a small distortion in the flow directly after

the sensor, at Re = 1999.

In a microfluidic device working in laminar condition, such as the acous-

tic separation of particles suspended in a solution, the laminar regime is of

the utmost importance, for being one of the working principles of the tech-

nique [40, 41]. From this point of view, the sensors with 1,5 mm would be

the most suited to prevent the flow perturbation even at the limits of the

laminar regime (Re = 2000).

Next, the displacement magnitude of the sensors was analyzed for 0.01 <

Re < 1 and then for 1 < Re < 2000 in order to obtain the higher displace-

ment of the optical fiber sensor tip. An overall view of the displacement

of the hole sensor when hit by the stationary water flow with Re = 1 is

reported in figure 3.4 and with the maximum achieved Reynolds number in

the 3.5.

(a) PC twin core sensor with 1.5 mm of height
and 0.5 mm of width.

(b) Fused silica glass twin core sensor with 1.5
mm of height and 1 mm of width.

Figure 3.4: Sensor displacement magnitude, for fused silica glass optical fiber twin core
sensor 3.4a, 3.4b, 3.4c, 3.4d, and for polycarbonate optical fiber twin core sensor 3.4e,
3.4f, 3.4g, 3.4h, under laminar water flow at Re = 1. Simulations and graphics done
in COMSOL Multiphysics ® software [1].

From figures 3.4 and 3.5 it is possible to see, from the order of magnitude

of the displacements, that the polycarbonate optical fiber two core sensor

is more complaint to a stationary water flow than the fused silica two core

optical fiber sensor. From the orders of magnitude, it is observed that
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(c) Fused silica glass twin core sensor with 3
mm of height and 0.5 mm of width.

(d) Fused silica glass twin core sensor with 3
mm of height and 1 mm of width.

(e) PC twin core sensor with 1.5 mm of height
and 0.5 mm of width.

(f) PC twin core sensor with 1.5 mm of height
and 1 mm of width.

(g) PC twin core sensor with 3 mm of height
and 0.5 mm of width.

(h) PC twin core sensor with 3 mm of height
and 1 mm of width.

Figure 3.4: Sensor displacement magnitude, for fused silica glass optical fiber twin core
sensor 3.4a, 3.4b, 3.4c, 3.4d, and for polycarbonate optical fiber twin core sensor 3.4e,
3.4f, 3.4g, 3.4h, under laminar water flow at Re = 1. Simulations and graphics done
in COMSOL Multiphysics ® software [1].
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when Re = 1, the displacements are in between 10−11m < δ < 10−13m

(being δ the displacement magnitude), which are smaller than the Bohr

Radius (≈ 0.53Å), therefore having no physical meaning for the analyzed

macroscopic system. Passing to higher mean velocity flows, the displacement

magnitude arrives to δ ≈ 10−8m, which is a low displacement, but in the

order of magnitude of the resolution of the interferometer two core optical

fiber sensor proposed by [3].

(a) Fused silica glass twin core sensor with 1.5
mm of height and 0.5 mm of width.

(b) Fused silica glass twin core sensor with 1.5
mm of height and 1 mm of width.

(c) Fused silica glass twin core sensor with 3
mm of height and 0.5 mm of width.

(d) Fused silica glass twin core sensor with 3
mm of height and 1 mm of width.

Figure 3.5: Sensor displacement magnitude, for fused silica glass optical fiber twin core
sensor 3.5a, 3.5b, 3.5c, 3.5d, and for polycarbonate optical fiber twin core sensor 3.5e,
3.5f, 3.5g, 3.5h, under laminar water flow at the highest achieved Reynolds number.
Simulations and graphics done in COMSOL Multiphysics ® software [1].

To summarize the data obtained, the graphic 3.6 chart the tip displace-

ment of each optical fiber for each one of the eight sensors, against the

Reynolds number of the water flow, in the x-axis (direction of the flow, de-

fined in Figure 1.2). This first graphic comprehend the small deformation

limit 0.01 < Re < 1, with the units in millimeters. In this graphic a linear
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(e) PC twin core sensor with 1.5 mm of height
and 0.5 mm of width.

(f) PC twin core sensor with 1.5 mm of height
and 1 mm of width.

(g) PC twin core sensor with 3 mm of height
and 0.5 mm of width.

(h) PC twin core sensor with 3 mm of height
and 1 mm of width.

Figure 3.5: Sensor displacement magnitude, for fused silica glass optical fiber twin core
sensor 3.5a, 3.5b, 3.5c, 3.5d, and for polycarbonate optical fiber twin core sensor 3.5e,
3.5f, 3.5g, 3.5h, under laminar water flow at the highest achieved Reynolds number.
Simulations and graphics done in COMSOL Multiphysics ® software [1].

increase of the tip displacement in the x-axis is observed with the increase

of the Reynolds number.

As for the data that comprehend the simulations between Re = 1 and the

maximum calculated Reynolds number for each configuration, the graphic

3.7 includes the tip displacement for each optical fiber inside the sensor plot-

ted against the Reynolds number. In this graphic a quadratic behavior of

the tip displacement is starting to show its form, as expect from the theoret-

ical calculation from [2]. Yet, from graphic 3.7, the geometry and material

that showed the most promising results regarding the maximization of the

tip displacement, was the 0.5 mm width and 3 mm height sensor with poly-

carbonate optical fibers in its core, which reached δ ≈ 10−7m at Re ≈ 1670.

The second most compliant sensor - on the basis of the bending stiffness -
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Figure 3.6: Plot for the tip displacement of each optical fiber tip for each sensor
configuration, plotted against the Reynolds number. The legend on the right shows
the nomenclature of the sensor width (W) in millimeters, height (H) in millimeters,
fused silica glass (FG) and polycarbonate (PC). Obs: 05 stands for 0.5 mm in the
nomenclature, as well as 1,5 stands for 1.5 mm.

was the 1 mm width and 3 mm height sensor with polycarbonate optical

fibers in its core, which indicates that in our comparison, the polycarbonate

shows better performance as a complaint sensor. The sensors with fused

silica glass optical fibers in its cores showed a low deformation with the flow

increase. This can be explained for the higher Young Modulus of the glass

fiber, almost thirty times higher than the polycarbonate.

To analyze numerically this supposition a parametric analysis is per-

formed in the next section.

3.3 Parametric Analysis

The methodology utilized to choose the best combination of material

for the optical fiber and geometry of the sensor is a parametric analysis

where the amount of tip displacement (in the x-axis) of the sensor related

with the increase in the mean velocity of the incoming flow. This analysis

was performed in the linear deformation range, for low Reynolds number

values, taking the linear coefficient of the linear regression equation of each

simulation, which has the units of mm. The figure 3.8 shows four graphics,

two for polycarbonate core sensor and two for the silica glass core sensor, in

which for a fixed width, the height is varied.
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Figure 3.7: Plot for the tip displacement of each optical fiber tip for each sensor
configuration, plotted against the Reynolds number. The legend on the right shows
the nomenclature of the sensor width (W) in millimeters, height (H) in millimeters,
fused silica glass (FG) and polycarbonate (PC). Obs: 05 stands for 0.5 mm in the
nomenclature, as well as 1,5 stands for 1.5 mm.

width\height (mm) 1.5 3

0.5 5 · 10−6 7 · 10−5

1 4 · 10−6 5 · 10−5

Table 3.3: Table that organizes the linear coefficients of the the parametric analysis
performed on figure 3.8 for polycarbonate optical fiber cores. Each column gives one
height of the sensor and each row one width, creating all the four configuration possible.
The number inside represents the linear coefficient of each curve, in units [mm].

width\height (mm) 1.5 3

0.5 4 · 10−7 3 · 10−6

1 2 · 10−7 2 · 10−6

Table 3.4: Table that organizes the linear coefficients of the the parametric analysis
performed on figure 3.8 for fused silica glass optical fiber cores. Each column gives
one height of the sensor and each row one width, creating all the four configuration
possible. The number inside represents the linear coefficient of each curve, in units
[mm].

The linear coefficients are placed in tables 3.3, for polycarbonate optical

fiber cores, and 3.4, for fused silica optical fiber cores, to help to visualize

the results.

From both tables, it is possible to arrive to the same conclusion that

the 3 mm height and 0.5 mm thick polycarbonate optical core sensor is the

sensor that presents the higher tip-displacement by velocity change ratio,
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(a) Fixed width of 0.5 mm with 1.5 mm and 3 mm varying height for
polycarbonate optical fiber core sensor.

(b) Fixed width of 1 mm with 1.5 mm and 3 mm varying height for
polycarbonate optical fiber core sensor.

(c) Fixed width of 0.5 mm with 1.5 mm and 3 mm varying height for
fused silica glass optical fiber core sensor.

Figure 3.8: Linear regression for tip displacement in the x-axis of the first optical fiber
(from left to right) with the increase of the Reynolds number.

with 7 ·10−5 m for its coefficient, slightly greater than 5 ·10−5 mm coefficient

from 0.5 mm thick and 3 mm high polycarbonate core sensor.

Thus, from the eight possible configurations presented, the one that

presents the greatest tip displacement under different water flows, varying
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(d) Fixed width of 1 mm with 1.5 mm and 3 mm varying height for
fused silica glass optical fiber core sensor.

Figure 3.8: Linear regression for tip displacement in the x-axis of the first optical fiber
(from left to right) with the increase of the Reynolds number.

with the Reynolds number is the 3 mm height and 0.5 mm thick polycarbon-

ate optical core sensor. Next, by choosing the geometry and the materials

of this sensor as the best performing one in the parametric analysis, the

expected phase difference created will be calculated, in the next section.

56



3.4 Expected Phase Difference Output

To calculated the expected phase difference for the sensor chosen in the

latter section, we can use the equation (2.37),

δφ ≈ 2kn0L(E1
22 − E2

22)

[
1− Cn2

2

]
, (3.2)

where k is the wavenumber, given by k = 2π
λ , E22 is the strain along the fiber

lenght n0 is the original refractive index of the optical fibers, L is the length

of the fibers (2.5 mm in this case) and C is given by [3] for polycarbonate as

approximately 0.103. To perform the following calculations, the interferom-

eter setup of [3] will be used, thus a He-Ne laser with wavelength of 632.8

nm and the refractive index of a polycarbonate optical fiber with PDMS

cladding is taken to be approximately 1.5, as the polycarbonate fiber with

PMMA cladding is 1.58 [3] and without cladding the polycarbonate fiber has

its refractive index between to 1.57-1.59 [42]. The change in the expected

phase difference calculated with 1.5 instead of 1.58 was negligible.

In COMSOL Multiphysics®, by selecting the EY Y component of the

Green strain tensor for the material coordinates of each polycarbonate opti-

cal fiber inside the sensor, it is possible to plot the strain in the Y Y direction

for each Reynolds number tested, as shown in figure 3.9.

Figure 3.9: This figure shows two graphics, the first one at the left shows the Green
strain of both optical fibers inside the sensor from 0.01 < Re < 1, and the second shows
the same information until Re ≈ 1600. There are two x-axis, showing the Reynolds
number (above) and the mean flow velocity (below).

Next, from the strain data of each sensor and utilizing the equation 3.2,

it is possible to calculate the expected phase difference of this sensor, in this
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regime. To check the consistency of the data obtained, the expected phase

difference is compared with an approximation proposed by [3], that relays

on the tip-displacements (in the x-direction) of the sensor other than on the

strains directly,

∆φ ≈ 8πn(1− Cn2

2
)(
δ

L
)(

Λ

λ
), (3.3)

where Λ is the distance between the center of each optical fiber, which in

the case of the sensor tested is 125 µm, δ is the tip displacement in the

x-axis direction, which is presented in plot 3.7 and the other parameters

were already explained in the beginning of this section. The expect phase

difference output of the sensor is shown at figure 3.10.

Figure 3.10: This figure shows the graphic of the theoretical phase difference for the
small deformation approximation (red line) and for the numerically calculated 2D system
(blue line), from Re = 0 until Re ≈ 1600. There are two x-axis, showing the Reynolds
number (above) and the mean flow velocity (below).

In figure 3.10 the maximum achieved phase difference was around 0,35

rad (more than π/10) for a water flow with mean flux velocity of 0.5 m/s

and for the minimum, the graphic begins at 0 radians (undeformed sen-

sor, with no water flux hitting it). The phase difference does not arrive

to the minimum detectable phase difference of π/5 for a classical Michel-
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son Interferometer [43] based on fringe detection, requiring a more sensible

technique to perceive this order of phase difference. A suggestion would be

to measure the intensity of the interference signal, which depends on the

phase difference [44], which should be able to sense phase differences up to

δφ = 10−3 [45].

For the 2D model, phase differences of δφ = 10−3 are achieved for Re ≈
160, and for the specific geometry of the channel of this thesis, for mean

flow velocities of V ≈ 5.10−2m/s. If compared with the sensitivity of other

sensors, such as the one from [19] with the detection limit threshold of 8

µm/s, it does not seem a sensible sensor, however the detection limit still

depends on the interferometer utilized. With this said, this calculation is

done with the intention to check for the viability of the hereby proposed

sensor.

Coming up in chapter 4, the simulation of the behavior of this sensor,

in a new 3D configuration, is studied in order to obtain a simulation that

could relate more to a real-world application.

3.5 Summary

In this chapter the simulation parameters and materials properties are

presented in section 3.1, such as the geometry of the proposed sensors, the

physics packages used, the meshing performed by COMSOL, the boundary

conditions and material mechanical properties. Next, in section 3.2, the

results of the simulations are presented: the tip displacement of the eight

sensor configurations, the graphics of how the sensor bent in each one of

the simulations and the fluid behavior around and after the sensor (just the

discussion, figures in appendix A), and then discussed. Finally a expected

phase difference (section 3.10), output for the interferometric bending sensor

is simulated numerically with the strain difference between the two optical

fibers for all the values of the Reynolds number simulated.

From the results present in this chapter and appendix A it can be ob-

served that the 1.5 mm height sensor have a good performance from the

perspective of microfluidics, but also show a really low tip displacement,

in the Angstrom scale, which is not ideal for the sensing applications. For

this reason, yet having the best fluidics performance (not perturbing the

laminar flow after the sensor), they cannot be chosen for the present flow
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sensing application, thus the 3 mm height PC optical core sensor is the

chosen geometry and material.
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Chapter 4

3D Sensor Simulations

In this section, the chosen sensor configuration from the parametric anal-

ysis (section 3.3) is modeled in a new 3D configuration.. Next, 3D laminar

regime fluid-structure interaction simulations are performed in order to un-

derstand the mechanical behavior of this new 3D sensor, with focus on the

displacement of the sensor, which is translated into a phase difference of the

interferometer bending sensor afterwards.

4.1 Geometry and Dimensions of the proposed 3D

sensor

The materials of the proposed 3D sensor are as the sensor picked from the

parametric analysis: a PDMS cupula that follows the mechanical properties

described in section 3.1 and in table 3.1, as well as the properties for the

polycarbonate optical fibers that composes the two fiber core of the sensor.

No further materials are introduced in the 3D geometry proposed sensor.

The proposed geometry, which is inspired in the sensor geometry of [2]

(present in figure 1.1), intends to minimize the cross section in order to

reduce the perturbations in the fluid flow after the sensor. Therefore, a

rectangular cross section sensor with 20% of the width of the sensor proposed

by [2] is introduced. This new geometry takes the same height of the sensor

chosen in the parametric analysis (3 mm), with a dome in the tip (internal

radius of 250 µm), with both width and depth of 500 µm. The optical fiber

inside still have the same height of 2.5 mm, diameter of 125µm and are

place symmetrically inside the PDMS cupula, line up in the direction of the



(a) Isometric view of the 3D sensor.
(b) Measures of the 3D sensor in the front view
(cross section of xz plane).

(c) Measures of the 3D sensor in a side view
(cross section of the yz plane).

Figure 4.1: Geometries for the new proposed 3D interferometric flow sensor modeled
in the COMSOL Multiphysics ® software [1]. All measures are given in millimeters.

flow. Figure 4.1 gives the precise measures and geometry of the sensor.

For the simulation parameters, all the packages from COMSOL Multiphysics®

[1] that were used in section 3.1 in chapter 3 are used: fluid-structure inter-

action multiphysics package, laminar flow package and solid mechanics for

elastic materials package. The channel is, once over, based on the channel

by [2], with a squared cross section of 11.25 mm x 11.25 mm and a depth

of 60 mm, with the sensor being place in the middle of the width of the

bottom wall of the channel, and 20 mm distant from the inlet of fluid, as

presented in figure 4.2.

The meshing for the 3D model was done in the same way explained in

3.1, with the finer free tetrahedral mesh preset performed by the Physics-

Controlled mesh COMSOL internal function. The outlook of the meshing

for the sensor and the channel can be observed in figure 4.3.
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Figure 4.2: Diagram providing the dimensions (in millimeters) of the channel utilized in
the fluid-structure interaction 3D simulations. Done with COMSOL Multiphysics® [1]

(a) Physics-controlled free tetrahedral mesh
for 3D sensor.

(b) Physics-controlled free tetrahedral mesh
for 3D channel.

Figure 4.3: Meshing outlook in COMSOL, with finer preset selected in Multiphysics®

[1].

The internal configuration of the sensor, regarding the fiber-PDMS in-

terface, still relies on a contact pair between both (assembly), which is set

to be a adhesion interface with the gap between the fiber and the cupula

equals to zero, for the same reason mentioned in section 3.1. The line of

contact between the optical fiber cylinders is modeled as a contact pair in

63



COMSOL, with friction, carrying the same coefficient used in the 2D simu-

lations for the PC-PC interaction (table 3.2). On the bottom of the sensor

(figure 4.4 are placed the fixed boundary conditions, that fixes the sensor

to the bottom wall of the channel. And, finally, the slip condition for the

laminar fluid flow is taken to be a no-slip condition, as explained in more

detail in section 3.1.

Figure 4.4: Diagram providing the dimensions (in millimeters) of the bottom part for
the sensor, in which are applied the fixed boundary conditions. The view is from the
xy cross section. Done with COMSOL Multiphysics® [1]
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4.2 Fluid-Structure Interaction Results and Dis-

cussion

In this section the fluid-structure interaction simulations of the new pro-

posed 3D sensor configuration will be presented alongside with the graphics

of tip displacement - in the y-direction, with is parallel to the flow direction

- and the graphic of the strain in each fiber.

To analyze its behavior, 150 simulations were performed in the lami-

nar regime from Re = 0.01 until Re = 2000, equally divided into same

value intervals of the Reynolds numbers. As the simulations presented

in the previous chapter, the simulation each Reynolds number is indepen-

dent and performed in stationary state. The reduced number of simulation

with relation to the two-dimensional simulations is due to fact that the

three-dimensional simulations are much more time consuming than the two-

dimensional ones,each 150 simulations took 2 days approximately, compared

with 8800 2D simulations that took the same two days.

As state in chapter 3, in section 3.2, the results aimed to be achieved are

the tip-displacement in the y direction (direction of the flow in the three-

dimensional simulation) and the behavior of the fluid around and after the

sensor. In appendix B the fluid velocity magnitude (figure B.1) shows that,

as present in the two-dimensional study, the Re = 1 flow passes gently

around the sensor, creating no perturbation in the laminar regime other than

around the own structure of the sensor, but returning this small distortion

to the original flow immediately after it (subfigures B.1a and B.1b). For

the edge of the laminar regime, when the Reynolds number Re = 2000,

in subfigures B.1c and B.1d it is possible to observe that the flow does

not return to its original form after the sensor. An area of low velocity is

created behind the sensor, thus perturbing the flow. This geometry seems

to perturb the laminar regime flow when the Reynolds number is at high

values, confirming with the 3D simulation what was first visualized in the

2D simulation of the same height and width.

The displacement of the sensor under various flow velocities can be vi-

sualized at graphic 4.6, in which the quadratic relation between the tip

displacement is clear, confirming the theoretical prediction of [2]. The max-

imum displacement is also greater then the one predict in the 2D simulations,

in the order of micrometers. The sensor itself at Re = 2000 can be visualized
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at figure 4.5, where the mechanical cantilever behavior under a distributed

load can be observed.

(a) PC twin core sensor with 1.5 mm of height
and 0.5 mm of width.

(b) PC twin core sensor with 1.5 mm of height
and 1 mm of width.

Figure 4.5: Sensor displacement magnitude, for 3D sensor, under laminar water flow at
Re = 2000. Simulations and graphics done in COMSOL Multiphysics ® software [1].

Figure 4.6: Tip displacement in the y direction (parallel to the flow) plot of the top of
the first optical fiber inside the 3D sensor, for each Reynolds number simulation. Done
with COMSOL Multiphysics® [1].
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4.3 Expected Phase Difference Output

In order to do the same procedure as in section 3.4, the strain inside

each one of the optical fibers is plotted against the Reynolds number of the

flow, in graphic 4.7.

Figure 4.7: Strains of each polycarbonate optical fiber inside the sensor plot for each
Reynolds number simulation. Done with COMSOL Multiphysics® [1].

The value of the strain in each fiber is three orders of magnitude less than

the strain observed in the same 2D sensor, although the tip displacement

is one order of magnitude greater in the 3D sensor. This behavior can be

explained by greater freedom of movement that the fibers have inside the 3D

configuration, with just a line of contact providing friction contact between

the fibers, in the other hand, in the 2D model the fibers are in constant

contact with each other, hence making the sensor to be less compliant and

inducing more strain in the fibers. One possible solution, to increase the

strain in the fibers is to glue the fibers inside the 3D sensor.

This deviation from the unified bending of the structure can be clearly

observed in the expected phase difference output, graphic 4.8, which com-

pares the small deflection approximation when d << L (red line in graphic

4.8), that assumes that the beam in deforming altogether and the real phase

difference output (blue line in graphic 4.8).
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Figure 4.8: This graphic plots the expected phase difference in the optical interferometer
due to the bending of the two optical fiber inside the PDMS cupula, firstly for the small
deformation approximation (d << L, red line), than to the real strain observed in the
fluid-structure interaction (blue line).

Figure 4.9: This graphic plots the expected phase difference in the optical interferometer
due to the bending of the two optical fiber inside the PDMS cupula and showing with
the two black lines the limit of detection of the fringe interferometric sensing technique.
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Figure 4.10: This graphic plots the expected phase difference in the optical interferom-
eter due to the bending of the two optical fiber inside the PDMS cupula and showing
with the two black lines the limit of detection of the intensity of the interference signal.

It is observed that the phase difference calculated from the strains gets

to the value of 1.6 radians at the edge of the laminar regime, passing by the

threshold of detection (π/5) for the fringe detection method around Re =

1200 (graphic in figure 4.9). On the other hand this threshold of detection

for the small deflection approximation is around Re = 300, showing a big

difference between the column deflecting altogether and the sensor with two

independent optical fibers.

The other adopted detection technique, which is given by the measure

the intensity of the interference signal, in figure 4.10, which depends on the

phase difference [44], mentioned in section 3.4 of 3, is achieved with Re = 15,

giving more precise measuring of the laminar mean velocity flow, than the

previous technique.

For the fringe detection method, the threshold of detection the pro-

posed sensor is around 0.4 m/s of mean flow velocity, which is several or-

ders of magnitude higher than other alternatives, such as the sensor pro-

posed by Asadnia et al. [19], which has the threshold of detection of 8 µm.

Nonetheless, the intensity of the interference signal measuring method can

give a lower value of threshold detection with respect to the fringe counting

method, as low as V ≈ 5 ∗ 10−3 (Re ≈ 15), which points to a more sensitive
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system that would work in all the laminar regime, from the threshold of

detection.

4.4 Summary

In this chapter, the geometry of the new 3D sensor is introduced with

the simulation parameters in section 4.1. Next, in section 4.2, the results

of the simulations are presented: the tip displacement of the 3D sensor, the

graphics of how the sensor bent in each one of the simulations and the fluid

behavior around and after the sensor (just the discussion, figures in appendix

B), and then discussed. Finally a expected phase difference (section 4.3),

output for the interferometric bending sensor is simulated numerically with

the strain difference between the two optical fibers for all the values of the

Reynolds number simulated.

It is observed in this chapter that the tip displacement is greater than

the one observed in the 2D simulation for the same geometry. In the 2D

simulations the tip displacement arrived until, approximately, 0.14 µm for

Re ≈ 1650, while in this 3D simulation the tip displacement was of 1.9µ for

Re ≈ 1650. This behavior could be described by the plane stress condition

imposed in the 2D simulations, which could affect the output of the final

strain, as the plane stress equations are different (they don’t include the

σx, x-axis referenced on Figure 4.3) than the ones in the Generalized Hooke

Law.
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Chapter 5

Conclusion and Future

Directives

This work has provided results of the mechanical behavior of a compliant

PDMS cupula sensor with a two-core optical fiber interferometric system

for a series of steady state fluid-structure interaction simulations performed

for laminar regime, in the interval 0.01 < Re < 2000. Two-dimensional

simulations were performed for 8 different configurations of sensors, which

varied in height, width and the material of the optical fibers inside the sensor,

being, thus, two different heights, two different widths and two different

materials for the optical fibers. From the results of these simulations, a

parametric analysis was performed utilizing a linear regression model on

how the amount of tip displacement of the first optical fiber varies with

the Reynolds number for small displacements. This analysis showed that

the sensor with 3 mm of height, 0.5 mm in width and polycarbonate as

the material for the optical fiber part, was the more inclined to bend with

the increase in the water flux, thus being the most suited configuration for a

sensor. On the other hand, the analysis of the velocity magnitudes for all 2D

simulations showed that the sensors with 1 mm of height do not perturb the

flow after the sensor itself - just right on the top of it - while the ones with

3 mm of height tend to perturb it further. Nonetheless, the tip deflection

for all 1 mm sensors are in the order of magnitude of Angstroms, fact that

does not permit this geometry to be a good sensing one.

From this first selection, a 3D model was constructed utilizing the same

parameters of the previously selected 2D model, and setting the depth of the



sensor equal to the width. The same steady state laminar regime simulations

were performed for this 3D sensor. From the results, it can be observed a

great deviation in the strains in the fibers from the modeled independent

fibers with friction adopted in between them and the single column adopted

in the small deflection approximation, causing the difference in strain be-

tween the fibers be smaller in the free fibers than in the small deflection

approximation solutions. From this result, a future directive would be to

simulate numerically the fibers glued together or held inside a PMMA ma-

trix like presented in [3]. Nonetheless, the interval of measurement in the

laminar regime of the proposed sensor covers from Re ≈ 1200 (V ≈ 0.4m/s

for the presented duct) for the fringe detection interferometric measuring

technique until Re = 2000, and for the interference signal intensity measur-

ing technique the interval is larger, from Re ≈ 15 (V ≈ 5 · 10−3m/s for the

presented duct) until Re = 2000.

Other future improvement of the present work would be to present dy-

namic simulations of the sensor in a fluid-structure simulation, to understand

how the vortexes created after the sensor could affect its behavior in a long

duration setup.

Overall, the proposed sensor showed promising initial results, having its

viability numerically tested for laminar regime water fluxes in a squared

cross section duct. Further numerical analysis, such as the ones proposed in

this chapter, and laboratory testing are required to test the sensor in real

working conditions.
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Appendix A

Velocity Magnitude Profiles

of 2D simulations

In this appendix the fluid behavior around and after the sensor in the

channel is illustrated. All the fluid 2D simulations are presented in a profile

view, for the values of the Reynolds number 1 and the maximum achieved

for the simulations (always equal or minor to 2000).

(a) Re = 1999 in laminar flow. Dimensions
and geometry of the fused silica glass twin core
2D sensor with 1.5 mm of height and 0.5 mm
of width.

(b) Re = 1999 in laminar flow. Dimensions
and geometry of the fused silica glass twin core
2D sensor with 1.5 mm of height and 1 mm of
width.

Figure A.1: Flow velocity magnitude in the channel, for sensors for the maximum
Reynolds number achieved in each simulation, under laminar water flow. Simulations
and graphics done in COMSOL Multiphysics ® software [1].
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(c) Re = 413 in laminar flow. Dimensions and
geometry of the fused silica glass twin core 2D
sensor with 3 mm of height and 0.5 mm of
width.

(d) Re = 1551 in laminar flow. Dimensions
and geometry of the fused silica glass twin core
2D sensor with 3 mm of height and 1 mm of
width.

(e) Re = 1999 in laminar flow. Dimen-
sions and geometry of the polycarbonate opti-
cal fiebr twin core 2D sensor with 1.5 mm of
height and 0.5 mm of width.

(f) Re = 1999 in laminar flow. Dimen-
sions and geometry of the polycarbonate opti-
cal fiebr twin core 2D sensor with 1.5 mm of
height and 1 mm of width.

(g) Re = 413 in laminar flow. Dimensions and
geometry of the polycarbonate optical fiebr
twin core 2D sensor with 3 mm of height and
0.5 mm of width.

(h) Re = 1551 in laminar flow. Dimen-
sions and geometry of the polycarbonate op-
tical fiebr twin core 2D sensor with 3 mm of
height and 1 mm of width.

Figure A.1: Flow velocity magnitude in the channel, for sensors for the maximum
Reynolds number achieved in each simulation, under laminar water flow. Simulations
and graphics done in COMSOL Multiphysics ® software [1].
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(a) Dimensions and geometry of the fused sil-
ica twin core optical fiber 2D sensor with 1.5
mm of height and 0.5 mm of width.

(b) Dimensions and geometry of the fused sil-
ica twin core optical fiber 2D sensor with 1.5
mm of height and 1 mm of width.

(c) Dimensions and geometry of the fused sil-
ica twin core optical fiber 2D sensor with 3
mm of height and 0.5 mm of width.

(d) Dimensions and geometry of the fused sil-
ica twin core optical fiber 2D sensor with 3
mm of height and 1 mm of width.

(e) Dimensions and geometry of the polycar-
bonate twin core optical fiber 2D sensor with
1.5 mm of height and 0.5 mm of width.

(f) Dimensions and geometry of the polycar-
bonate twin core optical fiber 2D sensor with
1.5 mm of height and 1 mm of width.

Figure A.2: Flow velocity magnitude in the channel, for sensors for Re = 1 under
laminar water flow. Simulations and graphics done in COMSOL Multiphysics ® soft-
ware [1].
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(g) Dimensions and geometry of the polycar-
bonate twin core optical fiber 2D sensor with
3 mm of height and 0.5 mm of width.

(h) Dimensions and geometry of the polycar-
bonate twin core optical fiber 2D sensor with
3 mm of height and 1 mm of width.

Figure A.2: Flow velocity magnitude in the channel, for sensors for Re = 1 under
laminar water flow. Simulations and graphics done in COMSOL Multiphysics ® soft-
ware [1].



Appendix B

Velocity Magnitude Profiles

of 3D simulations

In this appendix the fluid behavior around and after the sensor in the

channel is illustrated. The 3D fluid simulations are presented in a profile

view, for the values of the Reynolds number 1 and 2000.

(a) Isometric view of the channel with the sen-
sor under a flow of Re = 1.

(b) Profile view (yz plane cross section) of the
channel with the sensor under a flow of Re =
1.

Figure B.1: Flow velocity magnitude in the channel, for 3D sensor for Reynolds numbers
of Re = 1 and Re = 2000, under laminar regime water flow. Simulations and graphics
done in COMSOL Multiphysics ® software [1].
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(c) Isometric view of the channel with the sen-
sor under a flow of Re = 2000.

(d) Profile view (yz plane cross section) of the
channel with the sensor under a flow of Re =
2000.

Figure B.1: Flow velocity magnitude in the channel, for 3D sensor for Reynolds numbers
of Re = 1 and Re = 2000, under laminar regime water flow. Simulations and graphics
done in COMSOL Multiphysics ® software [1].


