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Sumario

Neste trabalho foram desenvolvidos estudos acerca do
compertamento, =0b c¢ondigles dinamicas de exposigao, de
elementos tipicos de edificag¢tes, através do "Métodoc dos
Fatores de Resposta Térmica". Para tanto, todas as equagdes
envolvidas no referido método foram detalhadas, e foi ainda,
desenvolvido um "software" para microcomputadores da linha
IBM-PC gque emprega o ms&todo,

O fundamento de "MéEtodo dos Fatores de Resposta
Térmica" esta no fate de se buscar a resposta em termos de
fluxo de calor a uma excitagiac de temperatura sobre um
determinade elemento de uma edificag¢8o. Admite-se gque o0s
elementos sfo planos, homogénecs, isotérmico em Ssuas

superficies e que o fluxo de calor seja wnidirecioanl.
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I-Introdugio

C estude da transferéncia de calor por condugdo em
regime itransitério sempre representou um problema de dificil
80lugdo analitica, a nao ser para algumas geometrias simples
¢ condigfies de contorno bem definidas,

Com a grande difusio dos computadores, ganharam
destaque nesta Aarea, alguns métodos numéErices que exigem a
realizagao de dgrande numero de calculos e iteragdes. Entre
estes métodos pode-se destacar o "M&todo dos Elementos
Finitos", o "Método das Diferengas Fiﬁitas" e 0 "M8&todo dos
Fatores de Resposta Térmica", sendo que .este Qltimo
apresenta algumas vantagens em relagio aos anteriores,
Principalmente gquando aplicade aos elementos de uma
edificagio coms por exemplo paredes e telhados.

As principais vantagens apresentadas pelc "Mé&todo dos
Fatores de Resposta Térmica" s&o:

- boa precisio;

- um unico calcule para cada elementc estudado,
resultando em um tempo de processamento relativamente baixo.

Quanto a8s desvantagens, pode-gse citar o fato de que o
"Método dos Fatores de Resposta TéErmica" possibilita apenas
a realizaq&o: de calculos com £1luxos de calor
untdimensionais.

Em funcido do exposto acinma, sera detalhado agut o

"Meétodo dos @ Fatores de Resposta TeErmica”, que foi




desenvolvido na década de 60 por Arsenault e Mitalas e
posteriormente por Kusuda.

Este método utiliza o principio da superposigiio dque
admite que a resposta té&rmica global d4de um elemento, num
dado instante, € a soma das respostas causadas por varios
rulscs individuais de temperatura nos instantes anteriores,
ou seja, a simulagio de uma condigido de contorno transitéria
de temperaiuras & feita considerando-se um seqgiiéncia de
pulsos consecutivos, e a resposta do elemento sera obtida
pela soma dos fluxos de calor, cansados pelos pulsos,
individualmente. |

Matematicamente, o principio da superposigido sera
modelado através da nutilizagio de conceitos da algebra
matricial e das Transformadas de Laplace.

Neste trabalho, 0 "MBtodo dos Fatores de Resposta
T&rmica" foi adaptado para microcomputadores compativeis
com a linha IBM-PC, Jj& que este método existe estruturado de
maneira a ser usado apenas em computadores de grande porte.
Um exemplo destes programas que usa o referido método,
adaptado para o computador de grande porte CYBER 170-720 4o
IPT (Instituo . de Pesquisas TecnoldSgicas do Estade de Sao
Paule S. A.), encontra-se listado no anexo B.

A adapta§§o rara microcohmputadores nfio fol apenas uma
transcrigéo dés programs j& existentes, mas sim fruto de ﬁm
estudo detalhado das fungfes envolvidas, visando a obtencéo

de resultados confiaveis, com tempos de processamento




reduzidos. No anexo A, & apresentadc o programa FATORES,
resultante deste trabalho.

No capitulo 1Y s3o aprregsentados 05 modelos fisicos e
matematicos empregados na formulagd3oc do prohlema, hem como
as eguagles empregadas na sua resolugsio. No capitulo III &
apresentada a fungdo caracteristica do modelo, edqua¢fes de
recorréncia para sua determinagao, graficeos, bem como sua
derivada, e unidades. No capitulc IV encontra-se uma
descrigdoc do programa desenvolvido, através dos fluxogramas
das principais rotinas. Finalmente, no capitulo V sdo
apresentados os resultados obtidos peio programa FATORES, e
uma comparac¢io 4os mesmos com aqueles obtidos pelo programa

listado no anexo B.




II-Modelagem Matematica

Neste item, o "problema" sera configurado,
primeiramente, para um elemento constituido por uma Unica
camada de um material homogéneo; depois a analise sera
expandida para elemetos com varias camadas e a seguir, sao
apresentadas as equaghes para a determinag&8o dos "Fatores

de Resposta Térmica®.

I1I.1-Conceituagdo do problema

O sistema fisico estudado & constituido por meios que
est8o a temperaturas distintas, rorém uniformés, mais um
elemento de separagio colocadoe entre eles.

Na modelagem do problemna, para se estudar a
transferéncia de calor por conducic em regime transitéric em
edificagbes, admite-se gque 08 elementos s&o planos, que os
fluxos de calor se d%0 na direg8o perpendicular a estes, e
que as prorriedades fisicas de transporte sejam constantes
para os mate;iais constituintes destes elementos. Assin,

podemos escrever a Seguinte equagdo, que caracteriza o

fendmenao:
C aT = kK a°T (1)
7 at axe

O sistema de coordenadas usado para escrever esta

equacdo encontra-se representado na figura 1.
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Figura 1: Sistema de coordenadas usado na eg (1)

Como condigdes iniciais e de contorno, tem-se:
a) supeficies isotérmicas em qualgquer instante:

T(O, t)=To(t), t
T(en t)=TE(t)s t

> O
» O
b) o0 elemento todo estd a uma mesma temperatura, antes de se

iniciarem as obhservagles

T(x, t)=T;(t), t £ O

Fazendo-se a seguinte mudanca de variaveis & = T-Ty, e
aplicando-se a definigdo dJde difusividade tE&rmica, o, a

equagao (1) toma a seguinte forma:

38 = « 3% (2)
at axKE
com as condig¢bes:
B(Olt) =TO-T1 ‘-‘90
'8 (e,t) = Te - Ty = 8,
8 (X0 = O

Aplicando-se a Transformada de Laplace 3 equacgl8o {(2) e

4s condgbfes de contorne e iniciais, resulta:




86(8, ¥X) = «3fe(s, x) 3Ce(s, X)-mca(s, X)=0 (3)

IxE axe
‘e(0,t)=85 (4 com & = parametro da transformada e
(80, 1) =8¢ me - s/«

Resolvendo-se a equagdo (3), obtem-se:

8(s,X) = Cyisenh(mx)+Cocosh(mx) (5

Considerando-se agora a equagdio de Fourier para o

calculo do fluxo de calor, em uma dada posigido X

#(s,X) = - K 38(s8,X)
X

e aplicando-a, com as condigfes (4) a equagdo (5), tem-se:
|ee

‘e

L.

- #n senh(me)~(mK) + 85 cosh(me)
- &5 tosh{me) - 6o m K senh{me)

It

que pode ser escrita sob a seguinte forma matricial:

8 5 cosh(me) senh{me) (mkK) 8
ﬂg m kK senh(me) cosh(me) e®
e
e = A B 8 (6), com
20 C Di I ot
O e
cosh{me); C senh(me)- (mk)

A
B

nou

m K senh{me); D cosh(me)

I11.2-Elemento com miltiplas camadas

Se for considerado um elemento de varias camadas d4de

materiais e espessuras diferentes, conforme representado na




figura 2, que & comum na pratica, e desprezando-se as
'resisténcias térmicas de contato entre as distintas camadas,

tem-se, aplicando-se a equagdo (6):

Y
A
)

{h
Sl o n+1

A A e
1 2 n.

Figura ¢2: Elemento com N camadas

§ )] =1A B & |; |8 | = |A_ B Sl .2
#1 = Jol pt Z2 BE - 1c2 p2 =3
1 o a c e g 2 3
HEIREIT B )
;nl Icn"'l Dn+1 !Bn+1
n n+1i n+i n+1
ou )
a = A B A B . o A B a
31 Cl Dl CF_’ DE Cn+1 Dn.*i 3n+1
1 1 1 c Z n+i n+i n+i
ou ainda
8 = A B B
=l = Dl sl
i n+i
gque pode ser reescrita como:
a = |DB -1-B} |8 {7
P 1B -A“B| |8t
MN+1 n+i

I1.3-Procedimento de calculo

Até aqui, <foi apresentado o fundamento matematico que
modela o <fenomeno de transferéncia de calor unidimensional
em regime transitoério de uma forma relativamente genériéa.
sendo gque daqul em diante serda¢ aplicados o8 conceitos do

"M&todo dos Fatores de Resposta Térinica".




O referido método apresenta a respoesta do sistema
estudado, em termos de fluxo de calor, a uma perturbagio de
temperatura na forma de um pulso triangular (Kusuda
demonstrou gue este formato para ¢ pulso apresentava um
tempo de processamento menor do que se o0 mesmo fosse
retangular) unitario conforme representadoe na figura 3. 0Os
"fatores de resposta té&rmica" 880 esta resposta em fluxo,
citada anteriormente, e terfio a forma de uma sé&rie infinita,

cujos elementos s&o0 os valores das funegdes resposta em

intervalos regulares de tempo.

O pst £ 0
tr3 pr 0O ¢ t €3

=] -t 3 pr 3 < t £ 23 (8)
O ps t > 23

Figura 3: Representagdo do
rulso triangular unitario

Ccu aplicando-se a Transformada de Laplace a equagdo
{8), tem-se:

ro ] P~

_ Bt ©
dlif’a'sa pF 0<t ¢ a
® J1-3s8¢1-e"S pr 3 <t €23 (9)
1-3a2(1-e"89¢2 Prt > 23

O procedimento a seguir sera substituir ® por (9) na
equagido (7) e aplicar o teorema da inverio para obter 0s

fluxes de calor

Primeiramente faremos ©y = © € 6p,4 = O para

determinar 2y e #p.i;. Ou sgja, determinar a resposta em



fluxe a wma perturbagio de temperatura na supeficie 1.
Depois repete-se o0 procedimenio porém com'gh+1 Y e'gi R @
Como a resposta da superficie 1, 2, rara uma
perturbagdc na superficie n+l & igual, mas de =sinal
contrario &8 resposta da superficie n+l para uma perturbagao
na superficie 1, teremos 3 fatores gque caracterizario as
respostas do sistema, Na figura 4 temos a representacao 4o
pulso e das respostas em fluxo.

a

=, |
) / W it
A

=

1 of

/ '—’_,‘__...__ =k / | al
/ A \ " s /
/ i“"\___\‘_—__. e
2 - T ;

r

O 3 23 33 43 59 63 t,

Figura 4: Representagdo de um pulso de temperatura e
sua respostas em fluxo.

11.3.1-0 Teorema da Invers&o

O teorema da inversio item a seguinte forma:

£{x,t) = _t  lim IX+ iL ots F(x, s)ds com

i = unidade imaginaria
f{x,8) = transformada de Laplace da funcgio
g: parametro arbitrarieo, suficientemente alto, para que a

integral: [ o e € f(e)ae exista,
Q

Por outro lado, do teorema dos residuos de Cauchy,

tem-se:




n
[ f(z)dz = 2 §1 + 2 Res (a )
J=1 J

Usa-se entio a curva representada na figura 5 para o

teorema da inversfo.

Xatlb

C\q/lx-”-

Figura 5: Curva usada no teorema da inverséo

v

Do teorema da inversdo tem-se:
1im Jﬁ"f 1L etS £(x, s)ds + 1im I els f(x, s)ds =
I_.—MD X s lL R—aCD C

' n

= 21 lim X Res (aJ)
n o j=t

Pode-se demonstrar gque heste caso a integral para

circulo de raio R & nula, portanto tem-se:
n
£(xX,t) = 1lim Z Res (aJJ £10)
n-ow j=i

onde os residuos correspondem a funcio eStf(x.s).

o]
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II1.3.2~-Aplicaciio do teorema da inversfic ao fendmehno modelado

Retomando-se a equagdo (6), pode-se escreve-la na

seguilnte forma:

& =R O com R = ID —1|
B




Para se obter a resposta em f£luxo na superficie 1 para
'uyma perturbagsic nesta superficie, faz~-se R=D. Ja para a
resposta em filuxo na supeficie n+l, para esta mesma

rperturbagio, faz-se R=1.

7y DB 87 (11)

Pney = 7B @y (12)

Se a perturba¢iio for na supeficie n+l1, tem-sgse:
Fi = ~1/B E-nq.l (13)

Pnei = ~AB Bp.q  (14)

Pode-se agora, aplicar a equagfo (10) as egunag¢fes (i1),
(12) e (14) (como [j& fol dito anteriomente, e como '51 =
§h+1, as equagles -(12) e (13) sdo iguais a menos do sinal) e
determinar as respostas em fluxo ao puslo triangular

unitario.

Entdo a fungdio a ser usada no teorema da inversio sera:
eSt R B(s) (15)
B
com 6(s) dada pela equaciio (9), que apresenta polos de
ordem 2 na origem, resultantes do fator 1738, Neste ponto,
pPara se calcular o residue da fun¢do, aplica-se a equagdo
{16) com "a = QO".
Res (a) =__1 (8% rcz-a)k £czn (16)
(k-1)1 TaF-1z Z=0

onde K = cordem 4o polo,

il




Para os demais polos da eguagio (15), pode-se

considera-la com a forma:

£(zZ) = P(z 17
(=z) EK#éF%T (17

com P(zZ) sendo um polindmio; e Q(z) outro polindmio de
raizes aj, com J =1,...,Ne aj;7 0, Y J. Dessa forma, a
equacio (17) apresentara polos simples (K=1) nos pontos =z =
aj, cujos resididos sdc calculados por:

Res(ad) = lim (z—aJ)P(z)
zoaj  Z9Q(Z)

que pode ser reescrita como:

Res(ay) = Play)
aj*(ae dz)z=a,

n
Logo =

n
Res(aj) = L Res{Q) + = Res(aJ)3
J ; =

1 J=1

FPortanto a fungdo # sera dada por:

- on T
g = lim [ d(s°8elSR/B)] » E_LeRetSJ (18)
8520 ds 7 LaBds Sz "@J

onde —QJ (QJ > 0) s8o0 as raizZes reais da equagio B(s)= O.

C primeiro termc da equagfo (18) resulta em:

i
| U-3(dR-ds+R tj- R/B.dB/ds)s=0
pr O < ty £ 3

1im [ d(s®6etSR/B)1= o -U/3(dR“ds- R-B.dB/ds)s:=0
850 ds ‘pr 3 ¢ t; ¢ 23 (19)

o
P’ ot > 238



Para == ©O, os fatores A,B,C e D podem sSer esacritos na

seguinte forma:

m = J(8/«); pois s—>Q =—> m—> 0

A = gosh (me) = cosh(0) = 1 {20)

B = lim senh(me) = 1lim e.cosh(me) = € (21>
>0 mK m-0 k k

C = mk senh(me) = O.senh(0) = ¢ {e2)

D = cosh{me) = cosh{(0) = 1 (23)

Por outro lado, pode-se ter m=0C gquando a camada en
questdo tiver inércia térmica desprezivel, Jja que /LC¢-O

@ o o e portanto m = O

Desta forma, se a estrutura estudada for constituida de

camadas de indrcia térmica desprezivel, tem-se:

A& B =1 e 7k 1 e 7K §... 1 e 7K

et o M ijto 21° o Ny n
que resulta:

A= 13 B = eq1-Ky+ep Ko+...+vepnkpy = 17U

C = O s il

sendo U o coeficiente global de transferéncia de calor

associado & estrutura, entre suas superficies limite.

Para se ‘avaliar o 2¢ termo da equagdo (18), deve-se
calcular as raizes de B(s) = 0. A uUnica possibilidade para
que 1530 ocofra &€ gue § seja um nimero complexo puro.ﬁu
seja, para isso deve-se ter s = - QJ (QJ > O), po1s

m= §(s o) = (-1 o) = i (& /)

Assim os coeficientes terdo a seguinte forma:



A = cosh (me) = cosh({(3; eZ/«)i) = cos J(&; e/x) (24)
B = senh(me) = senh(J(i &; e2/x)) = i sen(J(&dy e a))=
mk (37K N EC REP)
= sen(J (3, e x)) (25)
J{@ 70K
C = mk senh(me) = k J(&j7x) i€ sen J(§jec x) =
= ~Kf(3 /=) sen J(3jel/a) (26)
D= A (27)

O valor da derivada d4B“ds sera calculado através do

Seguinte procedimento:

d {A B| =| dA -ds 4B -ds| |A_ B AR ET
ds|C D aclras aplras| [c8 pc ch pn
1 1 2 n n
" A B dA ~ds dB ~ds| ...|A B |+
cl pt dc%sds aDc/ds cir pn
S 2 2 n n
. A B A B{ ... {dA 7ds 4B -ds
cl Dll ICZ Dal achras aptds
11 2 2 n n

sendo gue a derivada de cada coeficiente & dado por:

da-dz = senh(me).e.%.EJ(z/a)]'l.l/m = senh (me).ea
2 m «

P’z = - &y dA“dz = _e® sen (J(3j.e°7x)  (28)
e J(@j.2%7)

Para 08 demais coeficientes sera apresentada apenas a
forma final de suas derivadas, Ja gue para odbte-las, basta

sSeguir o procedimento aplicado acima.

dB/dz = e3,  cosf(d,.el a)-senll(d;.e a)1 J(&,.e%/a) (29)
2 K « (3. e/=)*©
acsdz = - e senll(dy.e > x)1/7(d . efrx)+cosf($y.e5/x) (30)

e kK «x

14
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'aD/dz = dA“dz (31>

Assim 0o 2¢ termo da equagdo (17) toma a seguinte forma:
[
= ¥(y) eet
J=1
psr 0 ¢ ty £ 2

l

[ U} ©
) g etsS R = | E ¥(3)(1-2 e729) et

J=1 aBds s=-&j | =1 (32)
| pr d< ty £ 23
i
| = ¥(5)(1-2 72392 e70t
| J=1
\p/ t > 23

com

¥ () = 4 R (33)

§j°a3|aB ds X

Montando as equagfes (19) e (32) na forma de uma série
temporal infinita, tem-se:

ty = 03, 13, 23,..., 13,.

8

FRo=/R + dRsds - R.dBsds v X W3y et
LF Ba BZ.3 |[s=0 J=1

1l =1 (34)

FRyz= - |dR-ds - R.dB-ds .
B.3 Bz.a | 8:0 J

pr 1 =2 (35}

¥(33)(1-2 e”949) e~ ot
1

n M8

o
A MR e e$39H2 et ps 1 23 (36)
J=
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aando se faz R = S Y R =
R=D—FR = X
R = A—»FR = Z

considerando-se, agora, uma situvagsio em gue as temperaturas
variam dinamicamente ao longo do tempo, pode-se entao
representar estas variagdes através da superposigio de
pulsos iriangulares de amplitude igual ao valor da
temperatura em um dado instante, como representado na figura
6.

=7

-l
Syt

.\l |

B G A
/\ /\: < I (

\/\i/\'/\
ey 3/} i e e i

T L) T
O 3 23 38 493 53 t

Figura 6: Representagio de uma fung&c temporal
por pulsos triangulares

EntZ%c o <+fluxo de calor no instante t & dado pela soOma
dos fluxos, nesta superficie nos instantes anteriores:
m ol
(#idt = Z (ﬂi}t—J: e escrevendo a equagdo (7) na sua forma
=R
*anti-transformadga":

= {37)

1B -a-B| |jel

= 'D/B —1/3! ie
n+i

&
N+1

,tem-se como forma final para os fluxos de calor nas
superficies 1 e n+1 (considerando-se as variagfes de

itemperatura nas duas supertficies):



o0 oo ’
(#1)t = 2 X3(81)t-3 - Z Yj(Bp.1dt-y3 (38
J=0 =0

o] w

(#pet1dt = 2 Y3(842¢-3 - Z 23(Bp.tlt-j3 (39
J=0 J=0

Quando o valor de J & muito elevado, pode-se provar que

os fatores de resposta i1é&rmica apresentam a seguinte
propriedade:

lﬁj = Eb - Z] =
Xjr1a  Yjer  Zje1

RC = razao comum = constante (40)
Comeo as equagfies (38) e (39) ni%c estfo dispostas de uma

maneira K pratica para serem manipuladas, por empregarem

somatérias infinitas, define-se 08 "fatores d4des respostia

térmica modificados", dados por

(41)

—
1“ﬁ
oo
=<
O

X1 - RC.¥3-g
Y] = RC.Y3-1 (42) p72 X > O
Z7 - RC.Z23.4

—
h:P:
" un

Com a  aplicagio destes "fatores modificados", as

equagles (38) e (39) se reduzem a:

3 N
(#1)t = (#F1)3-3.RC + 2 L X3°(81)¢-3 - Y3’ (Opnetdt-j 1 {43)
J=0
N
(Pne1dt = (Ppetdi-1-RC +_EEYJ’(91)t~J = ZJ'(9n+1)t_J] £44)

J=0




sendoa N © nimero de fatores de resposta

'ating'ir—se a razio comum RC.

calculados

ate

i8




‘I11-Estudo da Fungdo B(s)

O calculo dos fatores de resposta térmica mostrava-se
"maito demorado” devido, principalmente, a¢ mé&todo iterativo
empregado para se determinar as raizes da equaglo B(s) = O,
Ja que para se determinar o valor da fun¢do era necessario
realizarem-se varios produtos matriciais,

Para se solucionar esta dificuldade penscu-se&¢ em se
fazer o produto matricial para um determinado ndmero de
camadas pré-estabelecido, por exemplo 4, gque cobriria as
principais situagfes encontradas na pratica, e c¢om isso
determinar uma fungao matematica, y = B(s), que agilizaria
08 calculos, além de permitir o uso do md3todo de NEWTON-
RAPHSON para se obter com menos iteragfes a precisao
desejada, poisa poderia-se obter a derivada de B em fungao de

s (dB“ds) que & usada no referido método.

I11.1-Eguaciio de Recorréncia para o Calculo de B(sj)

i9

Fazendo-se explicitamente o produto matricial para a

determinagiio de B(s) as seguintes egaugdes foram obtidas:

B(s)

sentf(s).£41-70J(s).g11 p- um elemento &1 camada;

B(s)

fsenly(s).£41.cosEy(s).£p1.gp79gy + senly{s).fzl.

.cosiy(s).£41¥-Js p- um elemento c 2 camadas;
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B(s) = senll(s).f3licosli(s).f1].cosll(s).fpo1+
- gp-gy.senly(s).£11.3enfy(s).£213 + g3.senly(s).f3].
cisenif(s).fpl.cosbf(s).f1] + gprgq.senly(s).£41.

.senlJ(s).£21% p- um elemento ¢-3 camadas;

Observando-se as -equaqﬁes acima, nota-se que se figZer
f3 = Oe gz = 1 para a fungao B(s8), correpondente a um
elemento com 3 camadas, esta se reduzira a fungdo adquela
representativa de um elemente com 2 camadas. A partir dasi,
se for feito fp = 1 e g = O, esta se reduzira a fungao que

caracteriza os sistemas de uma Unica camada.

Contudo, analizando-se ¢ produtc matiricial, rode-se
obter uma "formula de recorrécia" para o8 coeficientes A, B C
e D,

A B|] =} A B A B A B A B
¢ D ¢t ply {c2 pef jc3 p3||ct pt
I 1 c e 3 3 4 4

Assim se o slemento estudado tivesse apenas uma camada,

tem-ée:

4
¥ :'.

¥ Bry = By, onde By; & a fungdio B acumulada até a idsima

camada e Bi & dada pela equagdo {(24)

ATy = A4q, onde Ar; € a fungdoc A acumulada até a iésima

camada e Al & dada pela equagdo (25)

Para um elemento c¢om 2 camadas, tem-se:

i

AyBp + ByDp
e

ATp = AjAp + B4Cp




cu

ATp

Brz

ATtz

(5
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A11Bz + BriPp
e

AtiAp + BpiCp

n

11

No caso do elemento ter 3 camadas:

1]
it

(AgBz + BiD2)D3 + (AgAp + B3Cp)B3z = AppBz + Brpb3

ATaA3 + BraC3

i}
3]

(AtAp + B1CplA3 + (BiDp + A3BpICp

Logo pode-se escrever:
ATJ-lBJ + BTJ-lDJ (45)
[

ATJ-lAJ + BTJ—ch (46)

H

para J » 1

Analogamente, tem-se:
CTJ—lAJ + DTJ_ch (47)
e

CTJ“IBJ + DTJ_lDJ (483

para J > 1

H |
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11]1.2-Derivadas da funcio B(S)

No item 1I1I.3.2 derivou-se o0s coeficientes A,B,C e D a
partir de sua forma complexa, aqui as derivadas serio
apresentadas quando a substituigdo.= = —QJ ¢ feita antes da

derivagio & nio apds a mesma.

111.2.1-Derivagidco dos Coeficientes A/B,.C e D e Alteragfes no
Método de "Newion-Raphson"

Derivando-se o8 coeficientes A, B,C e D, tem-se:

dA- Az :—_g? sen ﬁ{;él.ea/a) (49)
e I(@J.ed7a)

dB/dz = e%. senty(d;.e2/a) 1 1S, eP a) -cosf (S ;. e x) (50)
2 K (Qd.e?”q)d

acsdaz = e senlf(3;.e2 )13 . e%a)+cosf (S . e ) (51)
s :

Comparando-se 08 resultados agqui apresentados com
aqueles doe item 1I1.3.2, percebe~se gque eles diferem no
sinal. Para a aplicag@o do método de "NEWTCON-RAPHSON" deve-

A
seigsar as derivadas obtidas neste item.

Porém, para evitar uma complicagdo 16gica maior no
programa, gue usari:a a derivada agui obtida no método de
*Newton-Raphson" e a derivada obtida no item [1.3.2 para o
restante do programa, alterou-se o sinal da equagio do

referido m&todo, conforme indicado abaixo, e SsSe usou

apenas as derivadas obtidas no item II1.3.¢2.
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Método Original. M&todo Modificado
22 = X - £ pid = X+ £{3)
novo £ (0 novo £ (%)

II1T.2.2-F6rmulas de recorréncia para o calculo de dB-ds

Derivandc-se a equagdo (45) usada no calculo de B({s)},
obtém-se a seguinte forma de recorréncia para sua derivada,
que fornece os mesmos resultados obtidos a partir da equagao

que & a Gefinig¢ado da derivada de um produto matricial:

dBTJ = d'_AI.J:_lBJ + BTJ“ld'D i+ ATJ‘-ld‘Bj + d‘BIJ"‘iDJ (52)
ds ds as as ds
para J » 1
d'BTJ = d’f_Tl e d_,A_TJ = gﬁ"l (53)
as ds ds ds
para j = 1

sendo _QETJ a derivada da funcgao B(s) para um elemento com J
as camadas

‘As derivadas das demais fungdes (A(s),C(=s) e D{(s))

podm ser obtidas seguindo-se o mesmo procedimento.

L

I111.3-Unidade de ¢

Os coeficientes A/BC e D s80 frute de fungles
trigonométricas, por exemplo: A = cos (J(éj.eafa)).
Da analise d1mensional sabe-se gue ¢ argumente da
funglo cosseno déve ser adimensional, oun seja:
[N(oy.e%70) = 1 £3,.e870) = 1

£641.0ef1. fa1™1 = 1




[e®) = L2 (a3~ z T.L°%
[$,3.L8.T.L"2 = 10,10

(60 = 171

Comg neste trabalho foi usado o sistema internacional
de unidades (SI), tem-se: (&l = s7i,

Assim, como busca-se a resposta, en fluxo, emn
intervalos de tempo de uma hora, deve-se usar 3 = 3600 =.

I11i.4-Resultados Graficos

Os graficos apresentados a seguir, foram feitos usando-
S as seguintes propriedades para os materias:

-concreto com argila expandida:

A= 1100kg-m3, ¢ = 0, 82kJ-Kg-C,
~Zinco:

o= T000kg m3, ¢ = O, 39kJKg-C,
~arejia seca i,2 mm de diametro:

2= 1340kg- m3, ¢ = O, 75kJ-kg-C,
~painel de Dborracha expandida:

o= 73kg/m3, ¢ = 1, 68kJ“kg-C,

= O, 40 WG
= 113 Wm-C

O, 27 Wm-C

X & R R
"

= 0,03 Wwm-C

Para se ter uma id&ia da grandeza das raizes quando se
considera calor especifico em J(Kg.*C) no lugar de
KJ/(kg.-C), como foi feito, deve-se dividir por 1000 a

escala do eixo =zZ.

Nas figuras 7 a 16 verificou-se a influéncia do
material e da espessura das camadas no comportamento da
fungdio B{(=z)

Nas figufas 17 a 22 verificou-se a influéncia , em uma

parede composta, da espessura da camada do material de




caracteristicas isolantes (simulou-se espessuras de 1, 5 e
10 cm de borracha sobre uma camada de 5 ¢cm de concreto).

Nas figuras £3 a 28 variou-se a espessura dé camada
de concreto (para 10 cm) e repetiu-se a simulagfio para as
mesmas espsseuras de berracha citadas acima.

Dos graficos apresentados a seguir pode-sze verifificar
claramente a influéncia da inércia té&rmica do elemento no
posicionamento das raizes da fung&ce B(Z) ao longe 4o eixo =.

Pode~-se notar, também, que c¢om ¢ aumento da inérica
t&rmica, as raizes sSe aproxXimam muito rapidamente de zero.
Além disteo, verifica-se que as raizes representativas de

elementos com baixa insrcia t&rmica est8oc muito distanciadas

entre si.

[
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Figura 7: FUNCAO B(z) — 1 CAMADA
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Figura 9:  FUNCAO B(z) — 1 CAMADA
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Figura 11:  FUNCAO B(z) — 1 CAMADA
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Figura 13:  FUNCAO B(z) — 2 CAMADAS

CONCRETO {a= 1 cm) + BORRACHA (am 1 am)
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FUNCAO B(z) — 1 CAMADA

Figura 15:
CONCRETO ¢/ ARGILA EXPANDIDA — a=8 om
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Figura 16: FUNCAC B(Z) — 1 CAMADA
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Figura 17:  CNCAD B(z) — 2 CAMADAS

CONCRETO (@m= 5 am) + BORRACHA (a= 1 om)
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Fiqura 18: FUNCAO B(z) — 2 CAMADAS

CONCRETA (e~ & am) + RORRACHA (aw= 1 am)
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FIGURA TS

i

FUNCAO B(z) — 2 CAMADAS

CONCRETA (wwh em) + BARRACHA (ewf arn)
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Figura 20:

FUNCAO B(z) — 2 CAMADAS
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Figura 21: FUNCAO B(Z) — 2 CAMADAS

CONCRETO (e=8 em) + BORRACHA (a1t om)
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Figura 22: CUNCAO B(z) — 2 CAMADAS

CONCRETQ (a=5 am) + BORRACHA (e=10 om)
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FUNCAO B(z) — 2 CAMADAS

Figura 23:
BONCRETO {ew10 om) + HORRAGHA (ew 1 cm)
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Figura 24: FUNCAQ B(z) — 2 CAMADAS

CONCRETO {am10 om) + BORRACHA (e= 1 om)
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Figura 25: FUNCAO B(Z) — 2 CAMADAS

CONCRETO {em10 em} + BORRACHA (e= & om)
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Figura 26: FUNCAO B(z) — 2 CAMADAS

CONGRETD (a=10 am) + BORRACHA (e= & am)
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Figura 27:  FUNCAO B(z) — 2 CAMADAS

CONCRETO (=10 cm) + BORRACHA (=10 ¢m)
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Fiqura 28: FUNCAO B(z) — 2 CAMADAS

CONCRETO (em1D am) + BORRACHA (am10 am)
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1V-Descricdo do programa "FATORES”

Serdo apresentados aqui o8 fluxogramas das Principais
rotinas de calculo usadas no programa, sendo deixadas de
lado as rotinas de entrada & saida, por nio apresentarem
complexidade ou interesse maior para este trabalho.

Observando-~se a listagem do programa, pode-se perceber
que as rotinas mais usadas foram colocadas nas 1linhas
inicias. Isto se deve ao fato de que este procedimento
acelera a velocidade de execugdo do programa, Jja que gquando
determinada rotina &€ acionada, o computador comega a
procura-la, de maneira sequencial, a partir da primeira
linha de c¢6dificacdio. Assim, caso as rotinas mais acessadas
Se encontrassem no final d4do programa, 0 tempo gaste para
svuas localizagdes seria muito maior.

Sera detalhado aqui apenas o m6dulo principal 4o
programa FATORES por ser este gque cgcontrola as demais
rotinas. Este médulo apresenta a seguinte sequéncia de
caleculos:
= Ipicializaq&o das variave:s;

- Chamada da rotina de entrada de dados;

- Calculo dos deis primeiros termos das egquaglfes (34 ) e
(35);

- Determinagaoc da primeira raiz da equagao B(s) = © pelo

método de Newton~Raphson:

37
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- Execugdo de um procedimento iterativo para a obhtengao das
demais raizes, at& que a variagiio porcentual provocada por
estas nos primeiros fatores de resposta seja menor que

0, O1%;

~ Detrminagido dos demais fatores de resposta usando as
equagfes (35) e (36) até que seja atingida a razfo comum.

- Chamada da rotina de impressiio dos dados.

Na pagina seguinte & apresentada, a titulo de exemplo,
uma tela usada para a entrada de dados no programa.
Observando-a verifica-se qgue a mesma ﬁossibilita a corregdo
‘de qualquer dado que por ventura tenha sido digitado
erromeamenteg, antes da execuglAoc do programa.

A saida datela apresentada a seguir encontra-se no

capituleo V.
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e PROGRAMA PARA CALCOLD DOS FATORES (E RESEOSTA TERMIOA 969633636 96 3 396 96 96 % 3%

Entve com o numero de camnGas do elementn 7 3 L
Propriaedades termicas dos materiais &
L {m) i (W/mK? O (kg/m*3) £ (J/kaK? Ileseraicao

117 .02 7 T 1790 ? 780 ? ARGAMASSA
S 7 .8 7 A750 ? 340 T OALVENARTA 1 TILOLD
30107 .08 7 i ? 1750 ? 780 7 ARGAMASS

DEEEJA CORRIBIR 7 (§/7N)



| ti(z) e Blz) }

Y

) ks funcoes A(i), BUi),C{i) e D(i) sao
REBEIA = SQGR(BETay descritas no 1tem | i .2 & podem ser calcu-
ladas pelas e%uacoes (d4 22850 ,(26) e (2D,
respectivamen
fis formulas usadas para o calculoe de ACH
¢ e BCH sac apresentadas ho item [11.1.
BCN = B(L,REETA)
ACH = A(L,ReETas
¥
aci = ACH
B{1 = ECH
|
Al = A{I,RBETAY
BI = B(Il,RBcIR)
Cl = C{I,REET&)
i
Il = 4l
|
BCH = BCL,DI+
+aC1,.B]
¥
RCH = BCILCI+
+A¢i. A1

Figura 29: Fluxograma da rotina
que calcula A(z) o B{(z)




&1
i

1 C{z) ¢ D() )

F

REETA = SQR(BETA)

4

fis funcoes ﬁ(l} B(1),C0i) e D(i) sa0
descritas no item 11.3,% @ poderm ser calcu-
ladas pelas equacoes (247, (257, (26) e ($n,
respectivamente.

As formulas usadas para o calculo de (CH
¢ DCN sa0 apresentadas no item ill.1.

= iiae-
Tttt
IR ERT]
<t
————.
i et e et —1

M

pre ]
iirma
lsalaglas
gy
===~
T

Figura 38: Fluxograma da rotina

que calecula ¢(z) & I{2)
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L
r

AIRI=XIHI+PASSO
XEIM = XIMi+FasSSO
BETAH = XIHI
i 9 Rotina gue determina un intervalo
] (XINL,XFIH) onde esta contida uma ralz,
Blz) e B(2) sendo testado, tambem, se uw dos dois ex-
tremos do lnterualo 2 uMa raiz.
L o tipas “eonfinamMento” da raiz, e
chamada a rot1na que adtermipacao exat
| desta, atraves do metodo de KEWTON- RHPHSUH.
1 B¥4 = BCH

w

BETh = ¥FIK
f ]
o
f{z) e B{z}
- | o
¥
E¥2 = BCH !

-

£

.

FIn

Figura 31: Fluxograma da rotina RAIZES




(WEWTGN/RAEASON )

¥

Flig = 8
INIER =

¢ 8

X = WNEXT
BETA = ¥

f(z) 2 Bl)

dB/42

¥

FURCRD = BCH

w

L J

Fil

r

Figura 32: Fluxograma da rotina NEHTON-RAFHSON
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Rotina para o caleulp dag
ralzes da equacao B(z) - @
pelo metodo de HERTUN-RAPH-
S0 wmedificade, segunde o
exﬁosto no item [I1.2.1.

U processamento e inferrim
pido. gquands = atingida s
precizaon desejada ou O nume-
o maximo de 1teracoes.




£
Ay J g 4

forb 4

}

REETA =
DER

SﬂF BETR)

b=

DAT=da(J,RBETA) /dz
DBI=48(J,RBETH) /dz

d

Lo ]
i va ]
e
e

ot

fg=u) =
et et et

¥

DERIV = DERIV+DEI

L3

fiz funcoes R(l) B(i),0(i) e Dli} sac
descritas no item 11,3,2 e  podem ser calou-
ladas pelas equacoes (dé) 05),' 261 & (27,
respsetivamente,
# funcoes usadas para calucular as deri-
gggas d%sijcaefxclente; ¢itados acima, sao
1 a

Figura 33: Fluxo?rama da rotlna E a

calcula dB/dz p/ 2z = BET
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THIZTD )

iLCHLOS P/zz@

F S

CALCULAR a8
RAIZE’ DE
Riz) =8

E s

|
InFﬁeaqgn l
REQULTADOR

*Pi
Ak
COMTERI

Fin

-+

a8

COHDY:r {ondicao que determina & continvidade au nao
do caleulo das raizes da funcan BlzY = @ em
funcao da influencia da witims 121z calouls
da no valer dos primeiros fatores de respostia
(%a,ye, 2@,

Figura 35t Fluvagrama vzn¥ ificzda
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V- Resultados

S&0 apresentados nas paginas a seguir resultados de
Processamentos realizados com 0 programa FATORES.

Comparandoc-se os resultados obtidos nestes
Processamentos com agqueles obtidos quando se usa 0 programa
listado no anexc B, encontra-se diferengas de menos de 1%,
valor este considerado muito Dbom se forem levados em conta
oS erros computacionais caracteristicos de=
microcomputadores,

Outro aspecto a ser considerado € o menor ndmero de
cAdlculos realizados pelo programa FATORES se coﬁparado com ©

mesmo programa listado no anexe B, ou seja, enguanto o

Programa do anexo B calcula 40 raizes para a equacgiio B(z)
O, sem se importar com a influéncia desta raizes nos fatores
de resposta, 0 programa FATORES calcula apenas o nuamero de
raizes necessario para que a variagio porcentunal do primeiro
fator de resposta (Ja que este &€ 0 elemento mais fortemente
afetado pelaé- raizes) seja fmenor que Q, O1%, Ezte
Procedimento acelera em muito a velocidade de processamento;
por exemplo d cobertura apresentada na praAgina 48 consumiu

arenas 3 segundos de processamento.
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ANEXO - A: Listagem d¢&o Programa "FATORES”



M RAIZ(50}, X(50), Y(50), Z(50), F(10), G(10), L{10), K(10},(10), C({10), DESC$(10)
S50 = .00005

RP = ,0001

TMAX = 15

ECIS = .Q000001
PACCE$ =SPACE$(50)
LTA = 3600

\ITI$ - ngn

RECFR = .0001

XTO 770 : REM CHAMADA DO PROGRAMA PRINCIPAL
EM xaxxaxkxxxxxx subrotina que calcula B(z) e A(Z)
3ETA = SQR({BETA)
SN = SIN (RBETA*AF(1))~”(RBETAxG(1)) : ACN = COS (RBETAXF(1))
JR I = 2 TO NCAM
AC1 = ACN:BC1 = BCN
P1 =RBETAxF(I) :P2 = RBETAXG(I)
Bl = SIN(P1)y-Pe

Al = COS(P1)
CI = -SIN(PL)xP2
DI = Al
BCN = BC1xDI+AC1xBI
ACN = BCixCI+AC1xAl
IEXT 1
(ETURN
IEM xxxixxxxxkkxxx subrotina gue calcula dB-dz P~ 2 = beta
BETA = SQR(BETA)
IJERIV = O
OR J = 1 TO NCAM

P1 =RBETAxXF(1) :P2 = RBETAxG(1) )
IF J<>1 THEN DBT = SIN(P1)-P2 :DAT = COS (P1) ELSE DAT =F{1)Y*x8IN(P1)-2-RB
DBT = (SIN(P1)~RBETA- COS(Pl)XF(i))/BETA/E/G(1)
FOR I = 2 TO NCaM
BC1 = DBT : AC1 = DAT
Pl =RBETAXF(I) :P2 = RBETAxXG(I)
IF I<>J THEN BI = SIN(P1)-P2 :Al = COS (Pi) :CI = - SIN(P1)xP2 ELSE Al
JxSIN(PL)~27RBETA :Bl = (SIN(P1)”RBETA- FI)ACOS(PL))~BETA2-G(1) ' ClI= G(I}
INCPL}“RBETA+COS (P1)AF(I))

Bl = Al
DPBT = BCixDI+ACIxBI
DAT = BC1xCI+ACI1ixAI
NEXT 1
DERIV = DERIV + DBT
EXT J
ETURN -

EM xxxxaxaxixixk subrotina que calcula C(z) e D(=)
BETA = SQR(BETA)
CN = -RBETAXG(1)xSIN (RBETA%xF(1)) : DCN = COS {RBETAXF{1))
CR I = 2 TO NCAM .
DC1 = DCN:CC1 = CCHN

F1 = RBETAxXF(I) :P2 = RBETAxG(I)
BI = SIN{(P1)-P2
Al = COS(P1)
CI = -SIN(P1)xFP2
DI = Al
CCN = CC1lxAI+DCixCI
DCN = CCILxBI+DC1xDI
EXT 1
STURN

IM axaxxAxx SUBROTINA NEWTON-RAPHSON & & & & sk ok & & % % % &
INTER = O : FLAG - 0

iI1LE FLAG = ©

CINTER = CINTER + 1

LY AT B o W




A = ANLAL
BETA = X
GOSUB 40 : REM subrotina que calcula A, B
GOSUB 180 @ REM subrotina gque calcula dB7dz ps zZ=beta
FUNCAO = BCN ,
I¥F DERIV = O THEN CRAIZ = CRAIZ +1 :RAIZ(CRAIZ) = X : FLAG = 1
X¥NEXT = X + FUNCAO“DERIV ]
IF ABS{X-XNEXT) <= PRECIS THEN CRAIZ = CRAIZ +1 : RAIZ{(CRAIZ)- XMNEXT : FL
1
IF CINTER > INTMAX THEN CRAIZ = CRAIZ + 1 :RAIZ(CRAIZ)= XNEXT : FLAG = 1
WEND
RETURN
REM xxxxxx SUBROTINA QUE DETERMINA UM INTERVALO PARA A RATZ  #kok &k Aok &k & & &

]

XINI = XINI + PASSO

KFIM = XINI + PASSQ

BETA = XINI

GOSUB 40 : REM subrotina que calcula A(z) & B(=Z)
BX1 = BCN

IF BX1 = O THEN CRAIZ = CRAIZ +1 : RAIZ(CRAIZ} = XINI: XINI=XFIM : PRINT "R
"SCRAIZ, " = ",XINI :RETURN
BETA = XFIM

GO8UB 40 : REM s=subrotina que calcula A(z) e B(z)

BX2 = BCHN

IF BX2 = O THEN <CRAIZ = CRAIZ +1 : RAIZ(CRAIZ) = XFIM:XINI=-XFIM : PRINT "RA
,CRAIZ, " = ", XFIM :RETURN

IF BX1xBX2 > O THEN GOTO 650 ELSE XNEXT = XINI : GOSUB 490 : REM subrotina
¥TON-RAPHSON"

RETURN
REM AxAKRKAKAREKRARKEZAARKAAXx PROGRAMA PRINCIPAL ~QUE CALCULA O0OS FRS AxAkkkAkAxixk

LA
YHILE CONTI$ = "S" OR CONTIg = "s"
FOR I = 1 TC 50

X(I = O
¥Y(I) = ©
Z¢CI) = O
RAIZ(I) = ©
NEXT 1
CRAIZ = ©O

GOSUB 1510 : REM ROTINA QUE FAZ A ENTRADA DE DADOS
GOSUB 2050 : REM subrotina que calcula A, B,C,D e suas derivadas p/ =z = O
XNEXT = , 0000001
XAUX = XO : YAUX = YO : ZAUX = ZO
GOSUB 490 ! REM rotina que determina a primeira raiz por NEWTON-RAPHSCON
BETA = RAIZ(1)
GOSUB 180 :REM rotina que calcula dB“dz p” = = beta
GOSUB 40 :REM rotina que calcula A (2) p~ 2 = beta
YAA = 1xEXP(-BETAXDELTA)~ (DERIVXxBETA” 2xDELTA)
ZAA = ACNxEXP{~-BETAXDELTA)- (DERIVxBETA"2«DELTA)
GOSUB 350 : REM rotina que calcula D (2) p” =z = beta
XAA = DCNxEXP{-BETAXDELTA)~-(DERIVABETA"2xDELTA)
X1 XAA + XO
Yi YAA + YO
Z1 ZAA + ZO
WHILE ABS({(XAUX~-X1)¥X1) > VARP OR ABS ((YAUX-Y1)-Y1) > VARP OR ABS ((ZAUX-Z
) > VARP . : '
¥INI = XNEXT
XAUX = X1 : YAUX = Y1 : ZAUX = 21
GOSUB 640 : REM rotina que calcula as raizes da eguacao
BETA = RAIZ{CRAIZ)
GOSUB 180 :REM rotina que calcula 4B“dz p” Z = beta |
GOSUB 40 'REM rotina que calcula A (2) p~ Z = heta
SOMAY = 1«EXP(-BETAxDELTA)- (DERIVABETA" 2xDELTA)}
SOMAZ = ACNxXEXP(-BETAXDELTA)~(DERIVxBETA" 2xDELTA)
GOSUB 350 : REM rotina gue calcula P (Z) p” Z = beta
SOMAX = DCNAEXP(-BETAxDELTA)- (DERIV&«BETA™2xDELTA)
X1 = X1 + SOMAX

ard wraA e ey

oo




i L + bLUMRAY

b

' Z1 Z1 + SOMAZ

I WEND

v X(1) = X1 :Y(1) = Yi: Z(1) = Z1

SOMAX=0C : SOMAY=0 : 3SOMAZ=0
FOR IND = 1 TO CRAIZ
BETA = RAIZ(IND)
GOSUB 180 : REM subrotina que calcula dB7d2z p- =z = beta
GOSUB 40 :REM rotina que calcula A (2) ps =z = beta
SOMAY = BOMAY + 1xEXP(-2xBETAXDELTA)~(DERIVABETA™2%xDELTA)*(1-24EXP(BETA*
A)) .
SOMAZ = SOMAZ + ACNAEXP( -2 BETAXDELTA)~ (DERIVABETA” 2xDELTA) % (1 -2* EXP({ BET
LTA)) '
GOSUB 350 : REM rotina que calcula D () p” Z = beta
SOMAX = SOMAX + DCNaEXP(-2x«BETAxDELTA)}~ (DERIVxBETA” 2xDELTA)x (1 -2%xEXP(BET

LTA))
NEXT IND
X(2) = XXO + SOMAX
Y(2) = YYO + SCMAY
Z(2) = ZZ0 + SQOMAZ

CRX = X(2)7X(1) : CRY = Y(2)-Y(1) : CRZ = Z(2)7Z(1)
INDFR = 2
WHILE ABS(CRX - CRY) > PRECFR OR ABS (CRY ~ CRZ) » PRECFR OR ABS(CRZ - CR
PRECFR
i INDFR = INDFR +1
FOR IND = 1 TO CRAIZ
BETA = RAIZ(IND)
GOSUB 40 :REM rotina que calcula A (Z) p” = = beta
GOSUB 180 : REM subrotina que calcula dB/dz p- =z = beta
Z (INDFR} = Z(INDFR) + ACNAEXP({-({INDFR)%xBETAxXDELTA)~- (DERIVxBETA" 2xDELT
1-EXP(BETAXDELTA)})"2)
Y (INDFR) = Y(INDFR) + 1xEXP(~(INDFR)xBETA*xDELTA)~ (DERIVxBETA"~2xDELTA)
-EXP(BETA*DELTA) )Y~ 2) i
GOSUB 350 : REM rotina que calcula D (2) p” =z = beta
X (INDFR) = X(INDFR) + DCNxEXP(-(INDFR)xBETAXDELTA)-(DERIVABETA~ 2xDELT
1-EXP(BETA*XDELTA) )™ 2) 0

NEXT IND

CRX = X(INDFR)-X(INDFR-1)

CRY = Y(INDFR)“Y{(INDFR-1)

CRZ = Z(INDFR)~-Z(INDFR~1)
WEND

LOCATE 22, 20 : PRINT ESPACO$

LOCATE 18, 20 : INPUT "DESEJA SAIDA NA IMPRESSORA 7 (S-N) ", IMPR$
IF IMPR$ = "8" OR IMPR$ = "s" THEN GOSUB 197C : GOTO 1430

IF IMPR$ = "n" OR IMPR$ = "N" THEN GOSUB 2400 ELSE BEEP :GOTO 1411
REM GOSUB '1970 : REM ROTINA QUE FAZ A IMPRESSAO DOS RESULTADOS
CLS

LOCATE 19, 30 : PRINT "DESEJA FAZER OUTRO CALCULO 7 (S/N) "

CONTIg =-INKEY$ : IF CONTIg = ""THEN 1450
IF CONTI% = "S8" OR CONTI%$ = "s" THEN GOTO 1480
IF CONTI$ = "n" OR CONTI$ = "N" THEN GOTO 1480 ELSE BEEP :GOTO 1440
WEND
CLS
END
REM xaxx#xxxixxxraxx Subrotina que faz a entrada de dados
CLS

LOCATE 1, 3 :PRINT "xxxaxxxiix PROGRAMA PARA CALCULO DOS FATORES DE RESPOSTA
TCA 3ok ok ko k& k%, 7
LOCATE 3, 10 : INPUT *“Entre com o numero de camadas do elemento " NCAMXS$
IF NCAMX$ <> "" THEN NCAM = VAL(NCAMX$)
LOCATE 5,13 : PRINT "Propriedades termicas dos materiais :"
LOCATE 6,13 : PRINT "1 (m) K (W mK) D (kKg-m™ 3) C (J7kgK) Descricao"”
FOR I = 1 TO NCAM
LOCATE I+6,1 :PRINT "Camada ";I:;":": LOCATE I+6,13 :INPUT 1X3%
LOCATE I+6,21 :INPUT KXs$
LOCATE 1+6, 32 : INPUT DX3%

LN A e T - a LR 2L T L BN R




LOCALL 1+0b,45 ! INFUL UX$
LOCATE 1+6,57 : INPUT DESCX$

IF KX$ <> "" THEN K(I) = VAL(KX$)
IF LX$ <> "" THEN L(I) = VAL(LX%)
IF DX$ <> "" THEN D(I) = VAL(DX3$)
IF CX$ <> "" THEN C(I) = VAL(CX$)

IF DESCX$ <> "" THEN DESC$(1) = DESCX$

NEXT I
LOCATE I+8,25 : PRINT "DESEJA CORRIGIR 7 (S/N) *
ENT$ = INKEY$ : IF ENT$ = "“THEN 1710

IF ENT$ = "S" OR ENTS

IF ENT$ = "n" OR ENT$

FOR I =1 TO NCAM
RALFA = SQR (K({I)~(D(I)XC(I)))

"s" THEN LOCATE 1+8, 23 :PRINT ESPACO$ :GOTO 1540
"N" THEN GOTO 1740 ELSE BEEP :GOTO 1700

o

F(I)Y = L(I)~RALFA

G(I) = K(I}~RALFA
NEXT 1
LOCATE 22,25 :COLOR 31: PRINT " AGUARDE - CALCULANDG®O " :C0
7,0 }
RETURN

REM xxxrxxxkxxxxxxx subrotina que faz a IMPRESSAC DO CABECALHO DA FOLHA
LPRINT CHRE (140)
LPRINT :LPRINT : LPRINT
LPRINT "sxxxxxxxx*x PROGRAMA PARA CALCULO DOS FATORES DE RESPOSTA TERMICA %xx
wkAxxxAxx? ! LPRINT :LPRINT
LPRINT " Numeroc de camadas do elemento Y NCAM
LPRINT :LPRINT
LPRINT * Propriedades termicas dos materiais :"
LPRINT " L (m) K (W/mC) D (kg /m"3) C {J7kgC) Des
10 n
FOR I = 1 TO NCAM
LPRINT "Camada ";I;": " USING " %, ## 4 . s Fkd4 3 Sk
&";L(I),K(I),D(1),C(I),DESC$(I) g
NEXT I
LPRINT : LPRINT :LFPRINT
LPRINT " n X (Wm2 K) Y (Wrmte2 K) Z {(W-'m2 K)y"
JA = 1
RETURN
REM xxaxxxxxxxxxxx SUBROTINA QUE IMPRIME OS VALORES CALCULADOS
JA = 16
FOR 1II=z1 TO INDFR
I¥F JA » 15 THEN GOSUB 1810

LPRINT USING " ## 34 . FdbdEF +33F . fdkdbdt +dkdk . dpdbdrdtt s 11—

I3,Y(I1),Z¢(10)

JA = JA +1 =
NEXT I1 '

LPRINT :LPRINT :LPRINT " Razao Comum (CR): " USING "#. ##4#" ; CRX
RETURN !
REM &xxxxrxxxxxx SUBROTINA QUE CALCULA OS VALORES DE A, B, D E SUAS DERIVADAS
= 0
ACN = 1 DCN = 1 : CCN = O
BCN = © -
FOR I = 1 TO NCAM : BCN = BCN + L{I)”K{I) : NEXT I

DERIVA = O

DERIVE = O

DERIVD = ©

FOR J = 1 TO NCAM
Pl = L{1)"27¢(2x{K(1)7(D(1)*C(1)))) : P2 = L(1)-K(1)
IF J<>1 THEN DBT = P2 :DAT = 1 :DCT = O ELSE DAT = Pi : DBT - PixPe2-3 :
1-P2x 2
DDT = DAT
FOR I = 2 TO NCAM-
BC1 = DBT : AC1 = DAT : CC1 = DCT : DC1
Pt = L{I)"27(2x(K(I)-(D(IIXC(I)))) : P2
IF I=J THEN BI = PixP2-3 :AlI = Pl :CI =

= DDT
= L(IYZK(I)
Pi-P2x2 ELSE Al = 1 :BI = P2

Ll LR 4



L o= AL

DBT = BC1xDI+AC1xBI
DAT = BC1lxCI+AC1xAl
DDT = CCLABI+DCI1xDI
DCT = CC1lxAl+DC1xCl
NEXT 1
DERIVB = DERIVB + DBT
DERIVA = DERIVA +« DAT
DERIVD = DERIVD + DDT
NEXT J

= DCN/BCN + (DERIVD/(BCNADELTA) - DCNxDERIVB~ (BCN~ 2xDELTA))
YO = 1/BCN - 1xDERIVB/(BCN~2xDELTA)

20 ACN-BCN + (DERIVA-{BCNxDELTA) - ACNADERIVB-(BCN"2+xDELTA))
"KXO = -(DERIVD- ({BCNxDELTA) -DCNxDERIVB-({BCN"2xDELTA})

YYO = 1xDERIVB/(BCN"2xDELTA)

ZZ0 = -(DERIVA-(BCNxDELTA) -ACNxDERIVBZ(BCN"~2xDELTA))

RETURN

REM xxxixkkiarikkkx SUBROTINA QUE IMPRIME OS VALQORES CALCULADOS
JA = 16

FOR 11=1 TO INDFR
IF JA > 15 THEN GOSUB 2600

PRINT USING " ## w3 A + b b +~d. T 11-1
(), Y(II), Z(1II)

JA = JA +1
NEXT 11
PRINT :PRINT :PRINT * Razao Comum (CR): " USING "#.#d4##"; CRX
PRINT :INPUT " PRESSIONE [ENTER] P~ CONTINUAR ", LLL
RETURN

REM Axkaxikxiixixickx subrotina que faz a IMPRESSAQO DO CABECALHO DA FOLHA

CLS )

PRINT "axaxiaxxaxxx PROGRAMA PARA CALCULO DOS FATORES DE RESPOSTA TERMICA xxx
wkkxixax” ! PRINT :PRINT

PRINT " Numero de camadas do elemento :";NCAM

PRINT :PRINT

PRINT * Propriedades termicas dos materiais :@"

PRINT * L {m) K {(W-mC) D {(Rg-m™3) C (J-kgC) Desc
Jfl

FOCR I = 1 TO NCAM y

PRINT "Camada ";I;": " USING " #.d#%# 3. 44 $edhdk b
SSLCI),K(I), B(Y),C(I),DESCS(1)

NEXT 1

PRINT : PRINT : PFRINT

PRINT " n X (Wme K) Y (Wrm 2 K) Z (Wme K)"
JA = 1

RETURN




ANEXO - B: Listagem do Programa "RESFX"
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