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Resumo

Theodoro, Edson Aparecido Rozas (2007). Estimação dos Parâmetros de

Modelos de Carga em Sistemas Elétricos de Potência utilizando a Metodologia

de Sensibilidade de Trajetória. Trabalho de Conclusão de Curso - Escola de

Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007.

Neste trabalho propõe-se uma metodologia de estimação dos parâmetros

de modelos de carga em sistemas elétricos de potência baseada na técnica

de sensibilidade de trajetória e em conceitos de sincronização. Dentre as

diversas metodologias existentes para realizar a estimação de parâmetros, a

técnica de sensibilidade de trajetória é uma das poucas adequada à estimação

dos parâmetros com o sistema em operação normal, através da aquisição de

medidas de perturbações reais, permitindo uma completa representação das

não linearidades presentes na carga dos sistemas elétricos de potência. Foram

utilizadas algumas alternativas visando a melhoria desta técnica, dentre as

quais destaca-se o uso da teoria de sincronização de sistemas no processo de

estimação de parâmetros. A metodologia proposta é inicialmente estudada

e aplicada a um modelo massa-mola, com o objetivo de explorar suas pecu-

liaridades básicas, e em seguida a um sistema caótico, o circuito de Chua,

visando detectar as suas potencialidades e limitações frente a um sistema

cuja dinâmica é altamente complexa, sendo por fim aplicada à estimação de

parâmetros num modelo estático de carga, representado por um modelo ZIP.

Palavras-Chave: estimação de parâmetros, sensibilidade de trajetória,

sincronização de sistemas, sistemas caóticos, modelos de carga.
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Abstract

Theodoro, Edson Aparecido Rozas (2007). Estimation of Parameters of Load

Models in Electric Power Systems. Monograph (Undergraduate study) - Es-

cola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,

2007.

This work proposes a methodology to estimate the parameters of load

models in electric power systems based on trajectory sensitivity analysis and

synchronization concepts. Among the existing methodologies, sensitivity tra-

jectory technique is one of the few methods that can treat parameter estima-

tion based on data acquired during normal operation. Some alternatives to

improve the parameter estimation technique were used. In particular, spe-

cial treatment was given to system synchronization theory. The proposed

methodology was initially applied to a simple system to illustrate the char-

acteristics of the method, and it was also applied to a chaotic system, the

Chua’s circuit, to detect potentials and limitations when exposed to a com-

plex dynamic system. Finally it was applied to parameter estimation of static

load models, represented by a ZIP model.

Key-Words: parameter estimation, sensitivity trajectory, system syn-

chronization, chaotic systems, load models.
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tema massa-mola. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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5.12 Sáıdas antes e depois da estimação de 8 parâmetros do circuito de Chua
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5.13 Sáıdas antes e depois da estimação de 8 parâmetros do circuito de Chua
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2.2 Técnicas de estimação de parâmetros “on-line” . . . . . . . . 8

3 Estimação de parâmetros utilizando a técnica de sensibili-

dade de trajetória 11
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Caṕıtulo 1

Introdução

1.1 Importância da estimação dos parâmetros

de modelos de carga em sistemas elétricos

de potência

Com a crescente complexidade dos sistemas elétricos de potência (SEP’s),

estudos de análise de contingência, proteção e estabilidade requerem cada vez

mais o uso de simulações numéricas para prever o comportamento do SEP

em regime transitório, e é com base em tais resultados que os engenheiros

tomam decisões, tais como a imposição de limites de operação, ajuste dos

esquemas de proteção e aĺıvio de carga.

Logo, para que os SEP’s cumpram sua função de fornecimento de energia

elétrica com confiabilidade e economia, é necessário que tais simulações des-

crevam satisfatoriamente o comportamento do sistema real. Para tanto, os

parâmetros utilizados nos modelos matemáticos que descrevem o SEP devem

estar identificados corretamente.

A modelagem da carga de um SEP é uma tarefa árdua, pois, é imposśıvel

obter um total conhecimento sobre sua composição, uma vez que a carga do

sistema é composta por diferentes tipos de consumidores: residenciais, comer-

ciais e industriais, cada um com diferentes caracteŕısticas de equipamentos e

utilização.

1



2 Introdução

Na literatura, existem modelos estáticos e dinâmicos de carga padroniza-

dos para a simulação dinâmica de SEP’s considerando diferentes tipos de

estudos, como a modelagem estática para estudo de estabilidade de tensão,

baseada na composição de cargas, apresentada em [Morison et al., 2003] e

[IEEE Task Force, 1995], e a modelagem dinâmica de motores de indução

trifásicos em [Lesieutre et al, 1995].

Entretanto, verificam-se diversas incertezas em relação ao conhecimento

desses parâmetros, na medida em que as cargas são compostas pela agregação

de um grande número de elementos distintos, sobre as quais o operador do

SEP não tem nenhum tipo de controle.

Muitos são os relatos onde a incerteza nos parâmetros da carga fizeram

com que as simulações não previssem a condição de instabilidade do SEP. Um

caso, relatado em [Henriques et al., 2002], foram os blecautes parciais ocor-

ridos no estado do Rio de Janeiro, na região sudeste do Brasil, em 24 e 25 de

abril de 1997, como resultado de um colapso de tensão causado pelo grande

número de equipamentos de ar-condicionado conectados à rede elétrica du-

rante os dias de verão, o que revelou uma inadequação na modelagem da

carga utilizada durante os estudos de estabilidade do SEP.

Dessa forma, observa-se que o uso de parâmetros inadequados na mod-

elagem das cargas durante as simulações, pode levar à inúmeras conclusões

erradas na operação do SEP, fazendo até mesmo com que opere além das mar-

gens de segurança, como citado em [Hiskens, 2006] e [Hisken e Akke, 1999],

onde a influência dos parâmetros do SEP sobre o seu comportamento tran-

sitório, durante distúrbios, foi analisada.

Por outro lado, um conhecimento mais exato dos parâmetros utilizados

nos modelos provê diversos benef́ıcios tais como a possibilidade de aumento

nos limites de transferência de potência, respeitando as margens de estabi-

lidade, prevenção de contingências e precisão no planejamento da expansão

assim como na operação ótima do SEP, resultando em enormes benef́ıcios

econômicos ao sistema.
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1.2 Caracteŕısticas desejáveis no processo de

estimação de parâmetros da carga

Diversas são as metodologias de estimação de parâmetros aplicáveis aos mo-

delos dinâmicos de carga em SEP’s propostas na literatura, porém poucas

são realizáveis com o sistema em operação normal, ou seja, sem a necessidade

do isolamento da carga do resto do sistema. Desta forma, com a utilização

desse tipo de técnica, é posśıvel aproveitar as informações do comportamento

dinâmico do SEP (séries temporais) no processo de estimação e evitar a

realização de testes espećıficos na carga do sistema.

Desta maneira, são desejáveis as seguintes caracteŕısticas no processo de

estimação de parâmetros de modelos dinâmicos de carga em SEP’s:

1. Realização de testes com o sistema em operação normal, ou seja, que

não requeiram o desligamento da carga do resto do sistema.

2. Seleção de variáveis para medidas de fácil acesso, ou seja, os parâmetros

devem ser estimados com medidas dispońıveis nas barras do SEP.

3. Robustez em relação as incertezas presentes no processo de aquisição

de dados do sistema real. A metodologia deve ser capaz de aproximar

os parâmetros estimados aos valores corretos utilizando medidas que

contenham incertezas.

4. Tratamento adequado das não linearidades presentes no sistema real,

ou seja, o processo de estimação deve ser capaz de representar as não

linearidades presentes na modelagem da carga.

1.3 Objetivos do trabalho

1.3.1 Objetivo geral

O presente trabalho tem por objetivo principal elaborar uma metodologia

para a estimação de parâmetros da carga de SEP’s baseada na técnica de

sensibilidade de trajetória e em conceitos de sincronização de sistemas.
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1.3.2 Objetivos espećıficos

Espera-se atingir o objetivo principal deste trabalho através do alcance dos

seguintes objetivos preliminares:

1. Verificar quais parâmetros poderão ser estimados a partir das medidas

dispońıveis nas barras do SEP;

2. Estimar os parâmetros da carga perante incertezas nas medidas do

sistema real;

3. Obter um conhecimento mais exato do comportamento transitório do

SEP, após a estimação dos parâmetros da carga.

1.4 Estrutura metodológica do trabalho

Este trabalho consiste na elaboração de uma metodologia de estimação de

parâmetros de modelos dinâmicos de carga em SEP’s. Com este objetivo

diferentes técnicas relatadas na literatura foram estudadas, dentre as quais,

a técnica de sensibilidade de trajetória foi selecionada para o desenvolvimento

do mesmo.

A técnica de sensibilidade de trajetória permite um adequado tratamento

das não linearidades presentes nos modelos dinâmicos da carga e não requer

a realização de testes espećıficos, tais como os testes “em vazio”e de “rotor

bloqueado”, baseando todo o processo de ajuste dos parâmetros na diferença

existente entre o comportamento dinâmico das respostas do sistema real e do

modelo matemático.

Ressalta-se também que a metodologia aqui desenvolvida não se presta

apenas à aplicações em SEP’s, mas pode ser utilizada na estimação de pa-

râmetros de qualquer sistema dinâmico nas mais diversas áreas da ciência.

Em prinćıpio, os parâmetros de qualquer sistema dinâmico, modelado por

equações diferenciais ordinárias conhecidas, podem ser estimados pela meto-

dologia proposta.

Por fim, uma vez identificados os parâmetros presentes nos modelos da

carga do SEP, realiza-se uma análise comparativa da influência do processo
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de estimação de parâmetros na operação do sistema, com o objetivo de de-

terminar quais destes parâmetros possuem uma maior ou menor importância

no comportamento dinâmico do mesmo.

1.5 Organização do trabalho

Este trabalho está estruturado em sete caṕıtulos, sendo o caṕıtulo 1 dedicado

à introdução e a discussão da importância da estimação dos parâmetros dos

modelos dinâmicos da carga em SEP’s.

No caṕıtulo 2, apresenta-se uma breve revisão bibliográfica sobre as di-

ferentes metodologias de estimação de parâmetros de modelos dinâmicos de

carga relatadas na literatura.

No caṕıtulo 3, discute-se a base teórica da técnica de sensibilidade de

trajetória para a aplicação em sistemas não lineares. Uma primeira aplicação

da técnica é realizada sobre um modelo massa-mola, visando a estimação de

seus parâmetros.

No caṕıtulo 4, apresenta-se a base teórica de alguns dos conceitos básicos

sobre sincronização de sistemas, e propõe-se uma forma de melhorar a meto-

dologia de estimação de parâmetros utilizando-se de tais conceitos.

No caṕıtulo 5, aplica-se a metodologia de estimação de parâmetros, ba-

seada na técnica de sensibilidade de trajetória e conceitos de sincronização,

em sistemas caóticos. O circuito de Chua é tomado como exemplo para o

estudo da metodologia proposta.

No caṕıtulo 6, são apresentados os resultados da metodologia de es-

timação de parâmetros para modelos de carga em SEP’s. Um modelo estático

de carga, representado por uma carga ZIP, é escolhido como objeto de estudo

para a aplicação da metodologia.

Por fim, no caṕıtulo 7, discutem-se os resultados obtidos ao longo do

trabalho, assim como as conclusões traçadas sobre o mesmo.





Caṕıtulo 2

Uma breve revisão bibliográfica

2.1 Introdução

Neste caṕıtulo apresentam-se as principais caracteŕısticas das diferentes me-

todologias de estimação de parâmetros, encontradas na literatura, aplicadas

a determinação dos parâmetro de modelos de cargas dinâmicas conectadas

aos SEP’s.

Cargas dinâmicas são modeladas por duas componentes, sendo uma di-

nâmica (modelada por equações diferenciais) e outra estática (modelada por

equações algébricas). Neste trabalho a parte estática da carga será represen-

tada por uma carga ZIP (impedância-corrente-potência constante) e a parte

dinâmica por um motor de indução trifásico (MIT).

Tradicionalmente os testes de “rotor bloqueado”, “em vazio”e “de cor-

rente cont́ınua”são utilizados na identificação de parâmetros de MIT´s. Po-

rém tais testes não satisfazem o requisito de identificação on-line, ou seja,

não podem ser realizados com a máquina conectada ao sistema.

Na seção seguinte, apresentam-se alguns dos métodos utilizados para es-

timação on-line de parâmetros de cargas dinâmicas em SEP´, ou seja, com

a carga conectada ao sistema.

7
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2.2 Técnicas de estimação de parâmetros “on-

line”

Os métodos de estimação de parâmetros on-line, possuem a grande vantagem

de realizar a estimação dos parâmetros da carga do SEP sob análise sem a

necessidade de sua desconexão do sistema.

Existem diversas técnicas de estimação on-line, porém as mais comuns

para a estimação dos parâmetros de MIT´s são baseadas na análise do cir-

cuito equivalente da máquina em regime permanente e em métodos de mini-

mização de erros.

Em [Ju et al., 1996] um método seqüencial para a estimação dos parâme-

tros de um modelo simplificado de carga composto por uma parcela estática

(modelo exponencial) e outra dinâmica (MIT) é proposto, uma vez que a

estimação simultânea de todos os parâmetros do modelo é verificada como

sendo uma tarefa de dif́ıcil realização.

Os parâmetros mecânicos do MIT e os parâmetros do modelo exponencial

de carga estática são estimados utilizando um processo de otimização baseado

no método dos mı́nimos quadrados, a partir de uma série temporal de medidas

das potências elétricas ativa e reativa, obtidas para o modelo de carga sob

estudo.

Na referência [Junior et al., 2006] uma estimativa seqüencial dos parâme-

tros elétricos do MIT é realizada, utilizando o modelo discreto da máquina

homopolar no referencial estacionário e modelo discreto do sistema linear

existente entre o fluxo estatórico e a corrente estatórica no referencial que

gira com o rotor.

Os parâmetros elétricos do MIT são estimados a partir da discretização

exata do modelo dinâmico da máquina, obtida ao se considerar sistemas

cont́ınuos excitados por sinais senoidais, e da aplicação do método de máxima

verossimilhança na minimização do erro de estimação. No processo de es-

timação são utilizadas séries temporais de medidas das tensões e correntes

trifásicas do estator da máquina.

No artigo [Akbaba et al., 1995] alguns dos parâmetros elétricos do MIT

são estimados como funções do escorregamento da máquina, a partir de séries
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temporais de medidas da tensão de alimentação, da corrente de alimentação,

da potência de entrada, da velocidade do rotor e do toque mecânico de sáıda.

O método de Levenberg-Marquardt é utilizado para minimizar a norma do

erro de estimação.

Em [Netto et al., 2005], através de um processo seqüencial, todos os pa-

râmetros elétricos do MIT são estimados a partir do modelo homopolar da

máquina no referencial estatórico e do modelo dq da mesma, utilizando o

método de mı́nimos quadrados recursivo em tempo-real para minimizar a

norma do erro de estimação, num sistema em malha fechada com um con-

trolador PI (proporcional-integrativo).

As estimativas são realizadas a partir de séries temporais de medidas das

correntes trifásicas do estator e da velocidade do rotor.

Na referência [Choi et al., 2006-i] todos os parâmetros de modelos com-

postos de carga, sendo estes modelados por uma parcela estática e outra

dinâmica, são estimados simultaneamente utilizando a metodologia de sen-

sibilidade de trajetória e métodos de minimização “quase-Newton”(métodos

de mı́nimos quadrados não lineares).

Os parâmetros elétricos e mecânicos do MIT (parcela dinâmica), bem

como os parâmetros da parcela estática que modelam a carga do SEP, são

estimados simultaneamente a partir da medição de séries temporais das

tensões e correntes trifásicas do sistema, na barra de carga, obtidas durante

a ocorrência de distúrbios no mesmo.

Neste trabalho será utilizada a técnica de sensibilidade de trajetória (dis-

cutida em detalhes no próximo caṕıtulo), na estimação dos parâmetros de

modelos de carga de SEP´s, uma vez que esta apresenta vantagens como

a representação do modelo completo dos sistemas não lineares sob análise,

possibilidade de estimação dos parâmetros em tempo-real e facilidade de

seleção e adaptação das variáveis de minimização dispońıveis para medição

no sistema real.





Caṕıtulo 3

Estimação de parâmetros

utilizando a técnica de

sensibilidade de trajetória

3.1 Introdução

Neste caṕıtulo, apresenta-se a metodologia de estimação de parâmetros ba-

seada na técnica de sensibilidade de trajetória para sistemas lineares invari-

antes no tempo (LTI do inglês Linear Time Invariant system) e para sis-

temas não-lineares. Com o intuito de introduzir a metodologia, analisa-se a

estimação de parâmetros em um pequeno sistema massa-mola.

As funções de sensibilidade de trajetória quantificam a variação das so-

luções das equações diferenciais pela variação de seus parâmetros. Dessa

forma seu estudo relaciona-se com a necessidade de conhecer a dependência

da solução de equações diferenciais em relação a seus parâmetros.

Existem poucos relatos na literatura relacionados a técnica sensibilidade

de trajetória para sistemas dinâmicos não lineares. Os artigos [Hiskens,2000],

[Hiskens e Pai, 2000], [Benchluch e Chow, 1993] e [Gasca et al., 1988] apre-

sentam o desenvolvimento dessa teoria, bem como algumas de suas aplicações

na estimação de parâmetros em SEP’s.

É importante observar que a técnica de sensibilidade de trajetória apre-

11
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senta uma vasta gama de aplicações, e não somente na estimação de parâme-

tros em SEP’s, como verifica-se em [Hiskens, 2006] e [Hiskens e Pai, 2002],

onde o cálculo de sensibilidades é utilizado para avaliar a influência dos diver-

sos parâmetros do SEP sobre seu comportamento dinâmico durante o regime

transitório, bem como para a resolução de problemas de controle ótimo e

estudos de estabilidade.

3.2 Funções de sensibilidade de trajetória

Sendo y(t, p) o vetor solução de uma equação diferencial ordinária dependente

do parâmetro p, a variação desta solução com relação a variação do parâmetro

pode ser aproximada por:

δy(t, p) '
∑

i

(
∂y

∂pi

)

p=p0

.δpi (3.1)

Define-se então as funções de sensibilidade de trajetória como sendo as

derivadas parciais do vetor solução da equação diferencial em relação aos

parâmetros sob análise:

δy

δpi

= λpi
y (3.2)

Dessa forma, tais funções descrevem os efeitos da variação dos parâmetros

na solução da equação diferencial, possibilitando a análise quantitativa das

mesmas e a identificação dos parâmetros que tem maior influência sobre o

comportamento dinâmico da equação diferencial.

Como se observará adiante neste trabalho, a estimação de parâmetros

é sensivelmente afetada pelas equações de sensibilidade descritas em (3.2),

pois quanto maior a sensibilidade da resposta à variação de um determinado

parâmetro, mais rapidamente se dará a convergência deste parâmetro durante

o processo de estimação, ou seja, mais fácil será identificá-lo.

As funções de sensibilidade para sistemas lineares invariantes no tempo

(LTI) podem ser obtidas, em prinćıpio, resolvendo-se as equações lineares

com parâmetros literais e diferenciando o resultado em relação à estes mesmos
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parâmetros.

Tal procedimento é complexo para sistemas LTI de baixa ordem e quase

sempre imposśıvel para sistemas variantes no tempo e sistemas não lineares,

pois nem sempre é posśıvel expressar a solução das equações diferenciais para

as funções de sensibilidade em termos de funções anaĺıticas. Logo, recorre-se

a aproximações numéricas.

Uma breve discussão sobre as funções de sensibilidade de trajetória para

sistemas LTI e para sistema não lineares será apresentada na seção seguinte,

baseada na teoria desenvolvida em [Cruz, 1972].

3.2.1 Funções de sensibilidade de trajetória para sis-

temas lineares invariantes no tempo

Seja o sistema LTI descrito por:

d

dt
x(t), p = A(p).x(t, p) + B(p).u(t) (3.3)

y(t, p) = C(p).x(t, p) (3.4)

sendo x(t0, p) = x0 a condição inicial do sistema, x o vetor de variáveis de

estado, y o vetor de sáıdas, u o vetor de entradas, p o vetor de parâmetros a

serem estimados, A(p), B(p) e C(p) as matrizes que descrevem o sistema no

espaço de estados em função dos parâmetros.

As equações diferenciais que descrevem as funções de sensibilidade de tra-

jetória para as variáveis de estado, ∂x(t)
∂pi

, podem ser determinadas derivando

(3.3) em relação aos parâmetros pi‘s:

d

dt

∂x(t, p)

∂pi

=
∂A(p)

∂pi

.x(t, p) + A(p).
∂x(t, p)

∂pi

+
∂B(p)

∂pi

u(t) (3.5)

As funções de sensibilidade de trajetória da sáıda, ∂y(t)
∂pi

, podem ser obtidas

derivando (3.4) em relação aos parâmetros pi‘s:

∂y(t, p)

∂pi

=
∂C(p)

∂pi

.x(t, p) + C(p).
∂x(t, p)

∂pi

(3.6)
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As condições iniciais do modelo de sensibilidade descrito por (3.5) e (3.6)

podem ser calculadas por:

∂x(t, p)

∂pi

|t=t0 = λpi
x |t=t0

∂y(t, p)

∂pi

|t=t0 = λpi
y |t=t0 (3.7)

3.2.2 Funções de sensibilidade de trajetória para mo-

delos não lineares

Seja o sistema não linear dado por:

d

dt
x(t) = f(x(t), p, u(t)) (3.8)

y(t) = g(x(t), p, u(y)) (3.9)

onde x é o vetor de variáveis de estado, y é o vetor de sáıdas, u é o vetor

de entradas e p é o vetor de parâmetros a serem estimados, sendo f e g

funções não lineares cont́ınuas e lipschitzianas [Vidyasagar, 1993] de x, p e

u, podendo ou não ser diferenciáveis.

Considere pi a i-ésima componente de p e que as funções f e g sejam

diferenciáveis em relação ao parâmetro pi.

As equações diferenciais que descrevem as funções de sensibilidade de tra-

jetória para as variáveis de estado, ∂x(t)
∂pi

, são calculadas derivando-se (3.8) em

relação aos parâmetros pi‘s:

d

dt

∂x(t)

∂pi

=
∂f(x(t), p, u(t))

∂x
.
∂x

∂pi

+
∂f(x(t), p, u(t))

∂pi

(3.10)

As funções de sensibilidade de trajetória da sáıda, ∂y(t)
∂pi

, são calculadas

derivando-se (3.9) em relação aos parâmetros pi‘s:

∂y(t)

∂pi

=
∂g(x(t), p, u(t))

∂x
.
∂x

∂pi

+
∂g(x(t), p, u(t))

∂pi

(3.11)

Sendo f ou g não diferenciáveis com relação ao parâmetro pi, obtém-se
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os valores aproximados para as funções de sensibilidade descritas por (3.10)

e (3.11) da seguinte forma:

∂x(t)

∂pi

≈ x1(t)− x0(t)

∆pi

∂y(t)

∂pi

≈ y1(t)− y0(t)

∆pi

(3.12)

onde x0(t) e y0(t) são as respostas, no tempo, do modelo descrito pelas

equações (3.8) e (3.9) obtidas utilizando p0 e x1(t) e y1(t) são as respostas,

no tempo, obtidas utilizando p1, sendo p0 o vetor de parâmetros nominais e

p1 o vetor de parâmetros cuja i-ésima componente é p1
i = p0

i +∆pi, onde ∆pi

é uma pequena perturbação sobre os parâmetros.

3.3 A técnica de sensibilidade de trajetória

aplicada à estimação de parâmetros

A aplicação da técnica de sensibilidade de trajetória para a estimação de

parâmetros em um sistema dinâmico qualquer pode ser resumida no diagrama

apresentado na figura 3.1.

Matriz de

Sensibilidade

Ajuste dos Parâmetros

Sistema real

Modelo Matemático

+

-

Entrada (u) Saída medida (w)

Saída do 

modelo (y)

Figura 3.1: Diagrama da técnica de sensibilidade de trajetória para estimação de
parâmetros.
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3.3.1 Processo de minimização de erro

Este processo tem por finalidade minimizar a diferença entre as sáıdas do

sistema real e do modelo matemático, ou seja, quanto mais próximo dos val-

ores corretos estiverem os parâmetros estimados pela técnica de sensibilidade

de trajetória mais próximos serão os comportamentos das sáıdas citadas e

menor será o erro associado a essa diferença.

Suponha que se queira minimizar a diferença E, que varia no tempo, entre

os comportamentos de sáıda do sistema real e do modelo matemático, como

na figura 3.2.

saída

tempo

E

W (real)

Y (modelo)

Figura 3.2: Comparação do comportamento das sáıdas do sistema real e do modelo
matemático.

Inicia-se o processo de minimização estabelecendo a norma desejada para

o erro, ou seja, minimizar o valor absoluto da diferença entre as sáıdas equi-

vale a minimizar a norma 1:

E(p) =

∫ T

0

| w(t)− y(t) | dt (3.13)

Minimizar a raiz quadrada da diferença entre as sáıdas equivale a mini-

mizar a norma 2:

E(p) =

∫ T

0

n∑
i=0

(wi(t)− yi(t))
1/2dt (3.14)

Minimizar diferença das sáıdas durante todo o intervalo de tempo equivale
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a minimizar a norma infinito:

E(p) = sup t∈[0,T ] | w(t)− y(t) | (3.15)

Nota-se que diferentes normas conduzem o processo de minimização a

diferentes soluções. No presente trabalho utiliza-se a norma 2, por sua faci-

lidade de representação e por ser diferenciável.

O processo de minimização através da norma 2, também conhecido como

método dos mı́nimos quadrados, é expresso por:

J(p) =
1

2

∫ T0

0

(w(t)− y(t))t(w(t)− y(t))dt (3.16)

onde J(p) é o funcional de erro a ser minimizado, w é a sáıda do sistema real

e y é a sáıda do modelo matemático.

Neste caso, não se minimiza a raiz quadrada da integral mas simplesmente

a integral. O fator 1
2

na equação (3.16) é uma constante utilizada apenas para

simplificar os cálculos.

Para realizar as estimativas iniciais do vetor de parâmetros p = p0, o

problema de minimização pode ser resolvido através do cálculo da derivada

parcial de J(p) em relação aos parâmetros e igualando-se a expressão resul-

tante a zero:

∂J(p)

∂p
=
−1

2

∫ T0

0

[(
∂y

∂p

)t

(w(t)− y(t)) + (w(t)− y(t))t

(
∂y

∂p

)]
dt |p=p0

(3.17)

Observa-se que os dois termos componentes da integral são escalares e

iguais, por tanto simplifica-se a equação escrevendo:

∂J(p)

∂p
= −

∫ T0

0

[(
∂y

∂p

)t

(w(t)− y(t))

]
dt |p=p0 (3.18)

A equação (3.18) está em função do parâmetro p. Logo, fazendo G(p) =
∂J(p)

∂p
e expandindo em série de Taylor, em torno do ponto p = pi, e tomando
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apenas o termo de primeira ordem tem-se:

G(p) = G(pi) +
∂G(pi)

∂p
∆p + . . . = 0 (3.19)

G(p) ≈ G(pi) +
∂G(pi)

∂p
∆p = 0 (3.20)

Substituindo ∂G(p)
∂p

por Γ em (3.20) tem-se:

Γ∆p = −G(pi) (3.21)

Isolando ∆p da equação (3.21) em função de ∂J(p)
∂p

, tem-se:

∆p = −Γ−1∂J(pi)

∂p
(3.22)

Realiza-se a atualização dos parâmetros para a i-ésima iteração por:

pi+1 = pi + ∆pi+1 (3.23)

A matriz Γ pode ser calculada derivando-se a equação (3.18) em relação

ao parâmetro p, obtendo-se:

Γ = − ∂

∂p

∫ T0

0

[(
∂y

∂p

)t

(w(t)− y(t))

]
dt |p=p0 (3.24)

Γ =

∫ T0

0

[
−

(
∂2y

∂p2

)t

(w(t)− y(t)) +

(
∂y

∂p

)t (
∂y

∂p

)]
dt |p=p0 (3.25)

Desprezando o termo de segunda ordem, de acordo com a linearização

realizada na série de Taylor anteriormente, tem-se:

Γ ≈
∫ T0

0

[(
∂y

∂p

)t (
∂y

∂p

)]
dt |p=p0 (3.26)

Considerando o processo em intervalos discretos de tempo, as integrais

acima transformam-se em somatórios, e sendo as funções de sensibilidade ∂y
∂p

calculadas pela equação (3.11), atualizam-se os valores dos parâmetros sob
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análise.

Desta forma o processo é realizado de forma iterativa até que a con-

vergência seja alcançada, como mostra a figura 3.3, ou seja, até que os

parâmetros do modelo matemático se aproximem dos valores corretos dos

parâmetros do sistema real.

Início

Definir a estrutura do modelo
e os parâmetros a estimar

Registrar as medidas
do “sistema real”

Definir a função objetivo
J(p)

J(p) > tolerância

Cálculo das equações de 
sensibilidade de trajetória

Cálculo da matriz 
de sensibilidade

Atualização dos parâmetros

SIM

NÃO

Fim

Figura 3.3: Fluxograma da técnica de sensibilidade de trajetória.

3.3.2 Testes preliminares: estimação de parâmetros no

modelo massa-mola

Com o intuito de estudar e implementar a metodologia de sensibilidade de

trajetória, são realizados testes para a estimação de 1 e 2 parâmetros de um

pequeno sistema massa-mola, como em [Cari, 2005]. Estes testes são utiliza-

dos como base para a aplicação da metodologia em sistemas mais complexos.

a) Estimação de 1 parâmetro

Seja o sistema massa-mola mostrado na figura 3.4:



20 A técnica de sensibilidade de trajetória

Z

u

1

k

m

0

Figura 3.4: Representação do sistema massa-mola.

Considerando a mola ideal, a não existência de resistência do ar e de atrito

entre a massa e o piso sobre o qual se movimenta, e supondo que a mesma

possa ser tratada como uma part́ıcula, a equação diferencial que descreve a

dinâmica do sistema é a seguinte:

m.z̈ = u− k.z (3.27)

onde m é a massa do corpo, u é a força aplicada na direção do movimento

sobre o mesmo, k é a constante de elasticidade da mola e z é a posição do

corpo de massa m num determinado instante de tempo. Representando a

equação (3.27) no espaço de estados tem-se:

ẋ1 = x2

ẋ2 =
u

m
− k

m
x1 (3.28)

onde x1 = z e x2 = ż representam as variáveis de estado do sistema massa-

mola.

Neste primeiro teste, fazendo p = k
m

o parâmetro a ser estimado e ad-

mitindo ser posśıvel a medição da posição do corpo de massa m, a equação

de sáıda do sistemas será ỹ = x1.

Na figura 3.5, mostra-se a metodologia de sensibilidade de trajetória apli-

cada ao sistema massa-mola, considerando p̂ o parâmetro correto do sistema

real e p o parâmetro do modelo matemático a ser estimado.
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Figura 3.5: Diagrama da metodologia de sensibilidade de trajetória aplicada ao sistema
massa-mola.

Existem duas maneiras de obter a resposta dinâmica do sistema repre-

sentado na figura 3.4: por meio de uma condição inicial ou uma entrada

diferente de zero.

Neste primeiro teste considera-se que a posição inicial do sistema real e

do modelo matemático são diferentes de zero, x̂1(0) = x1(0) = 1, a velocidade

inicial de ambos são iguais a zero, x̂2(0) = x2(0) = 0, a entrada u é igual a

zero e o parâmetro correto do sistema real é p̂ = 2.

A sáıda do modelo matemático foi obtida explicitamente através da inte-

gração anaĺıtica da equação (3.27), obtendo-se:

y(t) = cos(
√

p.t) (3.29)

Aplicando a metodologia de sensibilidade de trajetória, descrita na figura

3.3, tem-se:

• Cálculo do Funcional do erro J(p):

J(p) =
∫ T

0
(w − y)t(w − y) dt

J(p) =
∫ T

0
[cos(

√
p̂.t)− cos(

√
p.t)]2 dt

• Cálculo da Função de Sensibilidade ∂y
∂p

:
∂y
∂p

= − t.sen(
√

p.t)

2
√

p

• Cálculo de Γ:

Γ =
∫ T

0

[(
∂y
∂p

)t (
∂y
∂p

)]
dt |p
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Γ =
∫ T

0

[
t2.sen2(

√
p.t)

4p

]
dt |p

• Cálculo de ∂J(p)
∂p

:

∂J(p)
∂p

=
∫ T

0

[(
∂y
∂p

)t

(w − y)

]
dt

∂J(p)
∂p

=
∫ T

0

−t.sen(
√

p.t)

2
√

p
(cos(

√
p̂.t)− cos(

√
p.t)) dt

• Cálculo de ∆pi+1:

∆pi+1 = Γ−1.∂J(p)
∂p

Utilizando o método de Runge-Kutta de 4a ordem no cálculo da função de

sensibilidade de trajetória, obteve-se a convergência da metodologia, após 9

iterações, para parâmetros iniciais com desvios de até ±80% do valor correto,

considerando uma tolerância de 0,001 para o funcional do erro.

Na figura 3.6 mostram-se as sáıdas antes e depois da estimação do parâmetro.
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Figura 3.6: Sáıdas inicial e final do processo de estimação de 1 parâmetro no sistema
massa-mola, considerando um desvio inicial de -80% no valor correto do parâmetro.

O resumo dos resultados da estimação de 1 parâmetro no sistema massa-

mola está mostrado na tabela 3.1.

Tabela 3.1: Estimação de 1 parâmetro no sistema massa-mola.

Parâmetro V. inicial V. final V. real Erro (%)

p = k
m

0,4 1,9996 2 0,02
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b) Estimação de 2 parâmetros

Realizando um segundo teste, tentou-se estimar os parâmetros k e m si-

multaneamente, utilizando as mesmas condições anteriores. Porém não foi

posśıvel realizar a identificação de ambos os parâmetros, uma vez que suas

funções de sensibilidade de trajetória são linearmente dependentes, o que

torna a matriz Γ singular, ou seja, não inverśıvel, impossibilitando a uti-

lização da técnica de sensibilidade de trajetória, como pode ser verificado na

explanação abaixo.

Sendo o vetor de parâmetros p = [k m]t e a sáıda do modelo matemático

descrita por y(t) = cos
(√

k
m

)
, como no caso anterior.

A matriz de sensibilidade Γ pode ser calculada conforme a equação (3.26),

sendo ∂y
∂p

calculado como a seguir:

∂y

∂p
=

[
∂y

∂k

∂y

∂m

]
=


− t

2
√

k
m

sen

(√
k

m
.t

)
t
√

k

2m
3
2

sen

(√
k

m
.t

)


Fazendo H = t
2
sen

(√
k
m

)
tem-se:

∂y

∂p
=


− H√

k
m

H
√

k

m
3
2




Desta forma, calculando a matriz de sensibilidade Γ:

Γ ≈
(

∂y

∂p

)t (
∂y

∂p

)
= H2

(
1

m.k
1

m2

1
m2

k
m3

)

Calculando o determinante de Γ tem-se:

| Γ |= H2

m4
− H2

m4
= 0

Assim observa-se que é imposśıvel realizar a estimação dos parâmetros

k e m simultaneamente. Entretanto tal conclusão não exclui a existência

de um outro teste, sob outras condições, que permita a identificação de tais
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parâmetros.

Com o objetivo de contornar o problema anterior, realiza-se um novo

teste, considerando a resposta dinâmica do sistema sendo obtida através de

uma entrada diferente de zero, u = 4, e considerando as condições iniciais do

sistema iguais a zero, x̂1(0) = x1(0) = 0 e x̂2(0) = x2(0) = 0.

A sáıda do modelo matemático, y(t), pode ser obtida analiticamente, a

partir da equação (3.27), através da fórmula da variação das constantes,

descrita em [Brauer e Nohel, 1969], exibida nas equações (3.30) e (3.31):

x(t) = eA.t.x0 +

∫ t

0

eA(t−τ).B.u(τ)dτ (3.30)

y(t) = C

∫ t

0

eA(t−τ).B.u(τ)dτ (3.31)

onde A =

(
0 1
k
m

0

)
, B =

(
0
1
m

)
e C =

(
1

0

)
são as matrizes corres-

pondentes à representação do sistema massa-mola na forma de variáveis de

estado.

Tem-se portanto a sáıda do modelo matemático sendo descrita pela equação

(3.32):

y(t) =
u

k

[
1− cos

(√
k

m

)]
(3.32)

Calculando as funções de sensibilidade de trajetória, na forma matricial,

tem-se:




˙λk
x1

˙λk
x2

˙λm
x1

˙λm
x2




=




0 1 0 0

− k
m

0 0 0

0 0 0 1

0 0 − k
m

0




.




λk
x1

λk
x2

λm
x1

λm
x2




+

+




0 0

− 1
m

0

0 0
k

m2 0




.

(
x1

x2

)
+




0

0

0

− 1
m2




.u
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(3.33)

onde λk
x1

= ∂x1

∂k
, λk

x2
= ∂x2

∂k
, λm

x1
= ∂x1

∂m
e λm

x2
= ∂x2

∂m
são as funções de sensibili-

dade de trajetória.

Fazendo uso do método de Runge-Kutta de 4a ordem no cálculo das

funções de sensibilidade de trajetória, obteve-se a convergência da metodo-

logia, após 9 iterações, para parâmetros iniciais com desvios de até ±99% do

valor correto dos mesmos, sendo este desvio dado numa mesma direção em

ambos os parâmetros e considerando uma tolerância de 0,001 para o funcional

do erro, conforme pode ser verificado na figura 3.7.
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Figura 3.7: Sáıdas inicial e final do processo de estimação de 2 parâmetros no sistema
massa-mola, considerando um desvio inicial de -99% no valor correto do parâmetro.

A tabela 3.2 apresenta os resultados para a estimação simultânea de 2

parâmetros do sistema massa-mola.

Tabela 3.2: Estimação de 2 parâmetros no sistema massa-mola.

Parâmetro V. inicial V. final V. real Erro (%)
k 0,0800 7,9534 8 0,58
m 0,0200 1,9884 2 0,58

Observa-se um aumento representativo no desvio máximo inicial dos pa-

râmetros, quando da estimação simultânea de dois parâmetros em relação

à estimação de um único parâmetro, decorrente do aumento do número de

equações de sensibilidade, o que traz uma quantidade maior de informação,
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a respeito da dinâmica do sistema, ao processo de estimação fornecendo um

melhor condicionamento numérico.



Caṕıtulo 4

Conceitos de sincronização de

sistemas aplicados à estimação

de parâmetros

4.1 Introdução

Neste trabalho o processo de estimação de parâmetros a ser desenvolvido,

basicamente considera a diferença entre as sáıdas do sistema real e do modelo

matemático como medida da distância entre os parâmetros de tais sistemas,

atualizando, iterativamente, os parâmetros do modelo matemático até que as

sáıdas de ambos se tornem próximas.

Porém existe uma condição mı́nima de proximidade exigida entre os

parâmetros iniciais do modelo matemático e do sistema real, uma vez que

se estes forem muito distantes o processo de estimação poderá não convergir.

Um resultado clássico da teoria qualitativa de Equações Diferenciais Or-

dinárias [Brauer e Nohel, 1969] fornece subśıdios ao processo de estimação

de parâmetros, na forma como descrito a seguir .

Teorema 4.1.1. Suponha f(t,x,λ) cont́ınua para (t,x) ∈ D e λ ∈ V, onde t é o

vetor de tempo, x é o vetor de variáveis de estado, λ é o vetor de parâmetros,

D é um conjunto aberto em Rn+1, sendo n a dimensão do vetor de variáveis

de estado, e V é uma vizinhança de λ0 em Rk, sendo k a dimensão do vetor

27
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de parâmetros. Considere o sistema:

ẋ = f(t, x, λ0)

x(t0) = x0 (4.1)

onde t é o tempo, x é a variável de estado e λ0 é o parâmetro correto.

Se o sistema 4.1 tem uma única solução não continuável x(t, t0, x0, λ)

definida em (ω−, ω+), então para todo vetor (s, η, λ) próximo a (t0, x0, λ0) o

problema de valor inicial:

ẋ = f(t, x, λ)

x(s) = η (4.2)

tem solução (t, s, η, λ) definida em um intervalo [a,b] que é cont́ınua em

(t, t0, x0, λ0). Para a demonstração do teorema veja [Brauer e Nohel, 1969].

Assim, o teorema anterior afirma que, se dois sistemas de equações dife-

renciais, que descrevem o mesmo fenômeno, possuem condições iniciais pró-

ximas e parâmetros próximos então suas sáıdas também serão próximas.

Tal resultado apresenta grande utilidade prática, uma vez que as condições

iniciais e os parâmetros de um sistema f́ısico são adquiridos, via de regra, por

um processo de medição o que implica em pequenos erros.

Estendendo um pouco o resultado anterior, considerando a continuidade

em relação ao parâmetro λ, pode-se enunciar o seguinte teorema:

Teorema 4.1.2. Dado ε > 0 tão pequeno quanto se queira e sendo t1 > t0,

∃δ > 0 tal que se || λ− λ0 ||< δ então || (x(t, t0, x0, λ)− x(t, t0, x0, λ0) ||< ε

para todo t0 ≤ t < t1 [Brauer e Nohel, 1969].

Desta maneira, o teorema anterior afirma que dada duas soluções, x(t, t0, x0, λ)

e x(t, t0, x0, λ0), estas ficarão próximas, dentro de um tubo de raio ε, se os

parâmetros λ e λ0 tem valores próximos, dentro de uma bola de raio δ, como

apresentado na figura 4.1.
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Figura 4.1: Continuidade da solução com relação aos parâmetros .

4.2 Sincronização de Sistemas

A estimação correta dos parâmetros de um sistema dinâmico está ı́ntima-

mente dependente de quão bem o modelo matemático representa a dinâmica

do mesmo, caso contrário o processo de estimação pode não convergir ou

mesmo convergir para valores diferentes dos corretos, resultando em uma

representação não fidedigna do sistema real.

Considerando que o modelo matemático represente de maneira satisfatória

o sistema real sob análise, propõe-se uma alternativa para aumentar a ro-

bustez do processo de estimação de parâmetros, baseada em técnicas de sin-

cronização de sistemas.

Na literatura, diversas são as técnicas de sincronização existentes, bem

como diversas são as suas aplicações, como em [Gameiro e Rodrigues, 2001],

onde foram desenvolvidos métodos matemáticos para a sincronização de sis-

temas caóticos aplicados a codificação e decodificação de mensagens, em

[Rodrigues, 1996] onde foram desenvolvidos métodos de sincronização para

aplicação em lasers acoplados, e em [Huang e Guo, 2004], onde as técnicas

de sincronização, baseadas em uma função de Lyapunov envolvendo o erro de

sincronização, foram utilizadas para estimar parâmetros em sistemas caóticos.

Os conceitos de sincronização aqui estudados garantem que as trajetórias

de dois sistemas de equações diferenciais, dependentes dos parâmetros, serão
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próximas, ou seja, a diferença entre suas respectivas soluções tende à zero a

medida que o tempo tende à infinito, uma vez que estes estejam acoplados

de forma apropriada.

Neste trabalho faz-se uso de um tipo de acoplamento unilateral de forma

que o modelo matemático seja acoplado ao sistema real, enquanto este per-

manece independente do primeiro. Este tipo de acoplamento é conhecido

na literatura como sincronização mestre-escravo, tendo sido utilizado em

[Cari et al., 2006-i], na estimação dos parâmetros da máquina śıncrona, e

em [Pecora e Carroll, 1990], na sincronização de sistemas caóticos.

Com tal intuito, uma das sáıdas medidas, ŷ, do sistema real é realimen-

tada como entrada do modelo matemático, assim espera-se melhorar a ro-

bustez do processo de estimação de parâmetros, fazendo com que as sáıdas

de ambos os sistemas possam se aproximar, mesmo que suas condições iniciais

estejam distantes.

Dessa forma, o processo de estimação de parâmetros pode ser considerado

um problema de sincronização de sistemas.

4.2.1 Aplicação dos conceitos de sincronização de sis-

temas à técnica de sensibilidade de trajetória

Nesta seção apresenta-se o estudo da técnica de sensibilidade de trajetória

aliada aos conceitos de sincronização estudados aplicada à estimação de

parâmetros no sistema “massa-mola”.

Sendo o modelo massa-mola o mesmo apresentado no caṕıtulo anterior

deste trabalho, aplica-se a metodologia de sensibilidade de trajetória agre-

gada de uma entrada de sincronização medida do sistema real, x̂1, ao modelo

matemático, ou seja, realiza-se uma sincronização mestre-escravo do mesmo.

Sob as mesmas condições anteriormente discutidas, se realizará a estima-

tiva simultânea dos parâmetros k e m do sistema.

Com o objetivo de ilustrar as modificações provindas da agregação da en-

trada de sincronização à metodologia de sensibilidade de trajetória, o sistema
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de equações (4.3) descreve a dinâmica do sistema com sincronização:

ẋ1 = x2

ẋ2 =
u

m
− k

m
.x̂1 (4.3)

As equações (4.4)-(4.7) apresentam as funções de sensibilidade de tra-

jetória para o sistema com sincronização:

˙λk
x1

= λk
x2

(4.4)

˙λk
x2

= − x̂1

m
(4.5)

˙λm
x1

= λm
x2

(4.6)

˙λm
x2

=
k

m2
.x̂1 − u

m2
(4.7)

onde λk
x1

= ∂x1

∂k
, λk

x2
= ∂x2

∂k
, λm

x1
= ∂x1

∂m
e λm

x2
= ∂x2

∂m
são as funções de sensibili-

dade de trajetória.

A figura 4.2 mostra a aplicação da metodologia de sensibilidade de tra-

jetória utilizando conceitos de sincronização de sistemas no processo de es-

timação de parâmetros do modelo massa-mola.
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Figura 4.2: Diagrama da metodologia de sensibilidade de trajetória utilizando conceitos
de sincronização de sistemas aplicada ao sistema massa-mola.

Sendo então k̂ = 8 e m̂ = 2 os parâmetros corretos do sistema e con-

siderando um desvio de +50% para o parâmetro inicial m e −50% para o

parâmetro inicial k do modelo matemático, tem-se nas tabelas 4.1 e 4.2 os
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resultados para a estimação simultânea dos parâmetros k e m, utilizando a

técnica de sensibilidade de trajetória tradicional e agregando uma entrada

de sincronização ao modelo matemático respectivamente.

Tabela 4.1: Resultados para a técnica de sensibilidade de trajetória convencional.

Iteração k m J(%)
0 4 3 2,6581
1 6,8021 5,3404 1,0516
2 10,2123 8,9908 0,7289
3 12,8784 14,6490 0,6060
4 12,8953 20,1661 0,5361
5 12,0460 21,2769 0,5277
...

...
...

...
12 12,0221 21,3088 0,5277

Tabela 4.2: Resultados para a técnica de sensibilidade de trajetória utilizando conceitos
de sincronização de sistemas.

Iteração k m J(%)
0 4 3 78,5038
1 10,0002 1,4999 78,5352
2 8,5002 1,8749 3,1424
3 8,0313 1,9921 0,0109
4 8,0001 1,9999 1, 65.10−7

Assim, verificou-se que a metodologia de sensibilidade de trajetória tradi-

cional fez com que os parâmetros do modelo matemático convergissem para

valores errados, o que não ocorreu com a agregação dos conceitos de sin-

cronização ao processo de estimação convencional, resultando numa estima-

tiva correta dos parâmetros do sistema.



Caṕıtulo 5

Aplicação da metodologia de

sensibilidade de trajetória na

estimação de parâmetros em

sistemas caóticos

5.1 Introdução

Neste caṕıtulo apresenta-se, como caso de estudo, a aplicação da técnica de

sensibilidade de trajetória para a estimação de parâmetros de um sistema

caótico, o circuito de Chua, onde serão analisadas as diferentes dificuldades

encontradas durante o processo de estimação.

Os sistemas caóticos apresentam uma dinâmica extremamente complexa

e altamente dependente das condições iniciais, com isso espera-se verificar as

potencialidades e deficiências da metodologia sob estudo.

Na literatura, existem relatos da aplicação da técnica de sensibilidade

de trajetória, utilizando conceitos de sincronização, aplicada à estimação de

parâmetros do sistema caótico de Lorenz, como no artigo [Cari et al., 2006-ii].

Porém, matematicamente, o circuito de Chua mostra-se mais complexo que

o anterior, como discutido em [Shil´nikov, 1993], sendo a estimação de seus

parâmetros um desafio.

33
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O circuito de Chua, proposto pelo Professor Leon O. Chua, durante

sua visita à Universidade de Waseda no Japão em 1983, como citado em

[Matsumoto, 1984], constitui-se de três elementos armazenadores de energia,

um resistor não linear ativo local, como descrito em [Chua et al., 1993-i], pos-

suindo assim as condições mı́nimas necessárias para que um circuito eletrônico

exiba um fenômeno caótico como foi comprovado em [Kennedy, 1993-i] e

[Kennedy, 1993-ii], sendo este o sistema caótico mais simples de ser realizado

fisicamente em laboratório, tal como mencionado nos artigos [Madan, 1992]

e [Cruz e Chua, 1993].

5.2 O circuito caótico de Chua

O circuito de Chua tem sido amplamente estudado como uma fonte geradora

de caos, tanto por suas complexidades e peculiaridades matemáticas, como

descrito em [Shil´nikov, 1993], como por ser o único sistema, até então conhe-

cido, a exibir caos: (i) observado em laboratório, (ii) confirmado por simula-

ções computacionais e (iii) provado matematicamente, como apresentado em

[Matsumoto et al., 1988] e [Chua, 1992].

Este circuito é composto por dois capacitores, um indutor real, um resistor

e um elemento (resistor) não linear ativo, que recebe o nome de diodo de

Chua, conforme apresentado na figura 5.1.

NR

R

C1 C2

r0

L

-B

B

Gb

Ga

Gb

Vnr

Inr

Figura 5.1: O circuito de Chua e a caracteŕıstica VxI do diodo de Chua.

O diodo de Chua, composto por uma malha de resistores e amplificadores

operacionais como apresentado em [Kennedy, 1993-ii] e [Madan, 1992], é o e-

lemento ativo responsável por alimentar o comportamento caótico do sistema,
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sendo sua caracteŕıstica tensão-corrente elétrica composta por três diferentes

regiões de resposta, conforme a figura 5.1.

O circuito de Chua tem sido utilizado, desde sua criação, como uma fonte

de estudos para comportamentos caóticos, tendo uma importante aplicação

na aproximação e descrição do comportamento caótico de diversos outros

sistemas caóticos, como apresentado em [Chua et al., 1993-ii] e[Chua, 1992].

A dinâmica do circuito de Chua, obtida através da aplicação das leis de

Kirchhoff ao sistema, é descrita pelo seguinte conjunto de equações diferen-

ciais:

C1
dvC1

dt
=

1

R
(vC2 − vC1)− INR (vC1) (5.1)

C2
dvC2

dt
=

1

R
(vC1 − vC2)− iL (5.2)

L
diL
dt

= −vC2 − r0.iL (5.3)

INR (vC1) = Gb.vC1 +
1

2
(Ga −Gb) . {| vC1 + B | − | vC1 −B |} (5.4)

onde vC1 e vC2, são as tensões sobre os capacitores com capacitâncias C1 e C2,

iL é a corrente que atravessa o indutor com indutância L, r0 é a resistência

associada a este indutor, R é a resistência acoplada entre os capacitores, Ga,

Gb e B são as inclinações e o ponto de transição da curva de resposta tensão-

corrente do diodo de Chua, sendo a resposta dinâmica do mesmo descrita

pela equação (5.4).

Fazendo então, a seguinte mudança de variáveis x
def
= vC1

B
, y

def
= vC2

B
, z

def
=

i3.R
B

, α
def
= C2

C1
, β

def
= R2.C2

L
=, γ

def
= R.r0.C2

L
, a

def
= R.Ga, b

def
= R.Gb e τ

def
= t

|R.C2| ,

terem-se o seguinte sistema de equações diferenciais adimensionais:

dx

dτ
= α(y − x− f(x)) (5.5)

dy

dτ
= x− y + z (5.6)

dz

dτ
= −β.y − γ.z (5.7)

f(x) = b.x +
1

2
(a− b) {| x + 1 | − | x− 1 |} (5.8)
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5.2.1 Aplicação da técnica de sensibilidade de trajetória

na estimação de parâmetros

Seja o circuito de Chua, descrito pelas equações (5.5)-(5.8), com parâmetros

corretos iguais a: Ĉ1 = 1 nF , Ĉ2 = 6, 5792 nF , L̂ = 100, 8 mH, R̂ =

0, 4087 Ω, r̂0 = −0, 00167 Ω, Ĝa = −2, 8922 mho, Ĝb = −1, 5962 mho e

B = 1 V , ou seja, α̂ = 6, 5792, β̂ = 10, 9024, γ̂ = −0, 0445, â = −1, 1820 e

b̂ = −0, 6524.

Neste primeiro teste, utiliza-se a técnica de sensibilidade de trajetória

tradicional para estimar o parâmetro β, do modelo adimensional do circuito

de Chua, conforme apresentado na figura 5.2, onde o vetor de sáıda, w̃ =

[x̂ ŷ ẑ], é composto por todas as variáveis do estado do sistema, ou seja, as

tensões sobre os capacitores e a corrente que flui pelo indutor do circuito.
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Figura 5.2: Técnica de sensibilidade de trajetória aplicada à estimação de parâmetros
no circuito de Chua.

Utilizando as seguintes condições iniciais [x0 y0 z0]
t = [0, 15 0, 9 0, 8]t e

aplicando o método de Runge-Kutta de 4a ordem para integrar o sistema de

equações diferenciais (5.5)-(5.8), obtêm-se os comportamentos das variáveis

de estado x, y e z como apresentado na figura 5.3.
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Figura 5.3: Comportamento das variáveis de estado do circuito de Chua.

Derivando as equações de sensibilidade de trajetória em relação ao parâmetro

β tem-se:

˙
λβ

x = α(λβ
y − λβ

x −
{

b.λβ
x +

[(
a− b

2

)
.g(λβ

x, x)

]}
(5.9)

g(λβ
x, x) = | λβ

x | .sign(x + 1)− | λβ
x | .sign(x− 1) (5.10)

sign(σ) =

{
1 se σ ≥ 0

-1 se σ < 0

}
(5.11)

˙
λβ

y = λβ
x − λβ

y + λβ
z (5.12)

˙
λβ

z = −y − β.λβ
y − γ.λβ

z (5.13)

onde λβ
x = ∂x

∂β
, λβ

y = ∂y
∂β

e λβ
z = ∂z

∂β
são as funções de sensibilidade de trajetória

do sistema em relação ao parâmetro β.

Aplicando a técnica de sensibilidade de trajetória tradicional, verifica-se

que a metodologia converge para um desvio máximo de ±1, 7% no parâmetro,

utilizando o método de Runge-Kutta de 4a ordem para realizar o cálculo das
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funções de sensibilidade de trajetória, após 23 iterações, considerando uma

tolerância de 0,0001 para o funcional do erro.

Na figura 5.4 mostra-se a tensão sobre o capacitor 2 antes e depois da

estimação do parâmetro β.
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Figura 5.4: Sáıdas inicial e final do processo de estimação de 1 parâmetro no circuito de
Chua, considerando um desvio inicial de +1,7% no valor correto do parâmetro.

Verifica-se então, que a metodologia de sensibilidade de trajetória apre-

senta algumas deficiências: (i) é uma análise local fazendo o algoritmo muito

senśıvel as condições iniciais dos parâmetros sob análise e (ii) parâmetros com

baixa sensibilidade, em relação aos demais, não são numericamente identi-

ficáveis, como citado em [Hiskens, 2001]. Dessa forma, não é posśıvel estimar

1 parâmetro, no circuito de Chua, a menos que tenha conhecimento de seu

valor correto acrescido de uma pequena imprecisão.

A tabela 5.1 apresenta os resultados obtidos para a estimação de 1 parâ-

metro no circuito caótico de Chua.

Tabela 5.1: Estimação de 1 parâmetro no circuito de Chua (utilizando sensibilidade de
trajetória).

Parâmetro V. inicial V. final V. real Erro (%)
β 11,0877 10,9123 10,9024 0,09

Ao se tentar estimar 2 parâmetros, ao mesmo tempo, utilizando a técnica

de sensibilidade de trajetória convencional, a metodologia diverge mesmo

para desvios iniciais de 0,1% nos parâmetros, revelando sua inadequação à

estimação de parâmetros em sistemas caóticos.
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5.2.2 Aplicação da metodologia de sensibilidade de tra-

jetória utilizando o acoplamento de variáveis de

entrada na estimação de parâmetros

Neste segundo teste, agrega-se à técnica de sensibilidade de trajetória o

acoplamento de uma variável de entrada para estimar o parâmetro β iso-

ladamente, e os parâmetros β e γ simultaneamente. Para tanto, uma das

variáveis de estado medida no sistema real é utilizada como entrada do mo-

delo matemático, eliminando do mesmo a equação diferencial que a repre-

senta, promovendo desta forma um melhor condicionamento do processo de

estimação de parâmetros, como descrito em [Cari et al., 2006-i].

A variável escolhida para realizar o acoplamento de entrada do modelo

matemático é a tensão sobre a capacitor 2, x̂, uma vez que com isso elimina-

se a equação (5.5) do modelo matemático, eliminando simultaneamente a não

linearidade, f(x), contida na mesma, conforme apresentado na figura 5.5.
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Figura 5.5: Metodologia de sensibilidade de trajetória utilizando o acoplamento de
variáveis de entrada na estimação de parâmetros no circuito de Chua.

As equações de sensibilidade de trajetória em relação ao parâmetro β,

agora, resumem-se apenas as equações (5.12) e (5.13).

Utilizando como vetor de sáıda ỹ = [y z], sob as mesmas condições inicias

anteriores, e o método de Runge-Kutta de 4a ordem para realizar o cálculo

da função de sensibilidade de trajetória, após 13 iterações, considerando uma
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tolerância de 0,0001 para o funcional do erro, verifica-se que a metodologia

converge para parâmetros iniciais com desvios de até ±80%, como pode ser

observado na tabela 5.2.

Tabela 5.2: Estimação de 1 parâmetro no circuito de Chua (utilizando sensibilidade de
trajetória e o acoplamento da variável de entrada).

Parâmetro V. inicial V. final V. real Erro (%)
β 21,8048 10,7860 10,9024 1,07

A figura 5.6 apresenta o comportamento da tensão sobre o capacitor 2,

antes e depois do processo de estimação de parâmetros.
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Figura 5.6: Comportamento das sáıdas antes e depois da estimação de 1 parâmetro
do circuito de Chua (utilizando sensibilidade de trajetória e acoplamento da variável de
entrada), considerando um desvio inicial de +80% no valor correto do parâmetro.

Estimando-se simultaneamente os parâmetros β e γ, utilizando as equa-

ções de sensibilidade de trajetória em relação ao parâmetro β, como sendo

(5.12) e (5.13), e em relação ao parâmetro γ como a seguir:

λ̇γ
y = −λγ

y + λγ
z (5.14)

λ̇γ
z = −β.λγ

y − z − γ.λγ
z (5.15)

onde λγ
y = ∂y

∂γ
e λγ

z = ∂z
∂γ

são as funções de sensibilidade de trajetória do

sistema em relação ao parâmetro λ.

Utilizando o método de Runge-Kutta de 4a ordem para avaliar as funções

de sensibilidade de trajetória, após 34 iterações, considerando uma tolerância
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de 0,0001 para o funcional do erro, verifica-se que a metodologia converge

para parâmetros iniciais com desvios de até ±70%, sendo este desvio dado

numa mesma direção para todos os parâmetros sob análise, conforme verifica-

se na figura 5.7.
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Figura 5.7: Comportamento das sáıdas antes e depois da estimação de 2 parâmetros
do circuito de Chua (utilizando sensibilidade de trajetória e o acoplamento da variável de
entrada), considerando um desvio inicial de -70% nos valores corretos dos parâmetros.

A tabela 5.3, apresenta os resultados para a estimação simultânea de 2

parâmetros, utilizando a técnica de sensibilidade de trajetória agregada do

acoplamento de uma variável de entrada.

Tabela 5.3: Estimação de 2 parâmetros no circuito de Chua (utilizando sensibilidade de
trajetória e o acoplamento da variável de entrada).

Parâmetro V. inicial V. final V. real Erro (%)
β 2,7256 10,7644 10,9024 1,27
γ -0,0111 -0,0424 -0,0445 4,86

Com a utilização do acoplamento da variável de entrada à técnica de sensi-

bilidade de trajetória, observa-se um ganho significativo no condicionamento

do processo de estimação de parâmetros, porém existe uma grande desvan-

tagem na necessidade de realizar vários tipos diferentes de acoplamentos de

entrada para estimar todos os parâmetros do sistema, uma vez que se perde a

informação da equação diferencial associada a variável de acoplamento, como

observa-se no teste realizado, onde ao realizar o acoplamento da variável de

entrada x̂, perde-se as informações a respeito dos parâmetros α, a e b.
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5.2.3 Aplicação da metodologia de sensibilidade de tra-

jetória utilizando conceitos de sincronização de

sistemas na estimação de parâmetros

Neste terceiro teste, os parâmetros α, β e γ serão estimados simultanea-

mente. Com esse intuito agrega-se à técnica de sensibilidade de trajetória

tradicional conceitos de sincronização, ou seja, realiza-se um tipo de sin-

cronização mestre-escravo, onde uma variável se sáıda do sistema real é real-

imentada como entrada do modelo matemático, porém conservando-se todas

as equações diferenciais do mesmo, como realizado em [Cari et al., 2006-i] e

[Cari et al., 2006-ii] na estimação dos parâmetros da máquina śıncrona.

Escolhendo como variável de sincronização a tensão medida sobre o capac-

itor 1 do sistema real, x̂, aplica-se a metodologia de sensibilidade de trajetória

utilizando um acoplamento mestre-escravo, como na figura 5.8
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Figura 5.8: Diagrama da metodologia de sensibilidade de trajetória utilizando conceitos
de sincronização de sistemas aplicada ao circuito de Chua.

Derivando as equações de sensibilidade de trajetória, considerando x̂ a

variável de sincronização, para o circuito de Chua, tem-se:

λ̇α
x = y − x̂− b.x̂ +

[(
a− b

2

)
.h(x̂)

]
+ α.λα

x (5.16)

h(x̂) = | x̂ + 1 | − | x̂− 1 | (5.17)

λ̇α
y = −λα

y + λα
z (5.18)
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λ̇α
z = −β.λα

y − γ.λα
z (5.19)

˙
λβ

x = α.λβ
x (5.20)

˙
λβ

y = −λβ
y + λβ

z (5.21)

˙
λβ

z = −y − β.λα
y − γ.λα

z (5.22)

λ̇γ
x = α.λγ

x (5.23)

λ̇γ
y = −λγ

y + λβ
z (5.24)

λ̇γ
z = −β.λγ

y − z − γ.λγ
z (5.25)

Avaliando as equações de sensibilidade de trajetória, utilizando o método

de Runge-Kutta de 4a ordem, após 32 iterações, considerando uma tolerância

de 0,00001 para o funcional do erro, verifica-se que a metodologia converge

para parâmetros iniciais com desvios de até ±65%, considerando o desvio

dado numa mesma direção para todos os parâmetros sob análise, conforme

verifica-se na figura 5.9.
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Figura 5.9: Sáıdas antes e depois da estimação de 3 parâmetros do circuito de Chua
(utilizando sensibilidade de trajetória e sincronização), considerando um desvio inicial de
-65% nos valores corretos dos parâmetros.
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A tabela 5.4 apresenta os resultados do processo de estimação para a

metodologia de sensibilidade de trajetória agregada de sincronização aplicada

à estimação simultânea de 3 parâmetros do circuito de Chua.

Tabela 5.4: Estimação de 3 parâmetros no circuito de Chua (utilizando sensibilidade de
trajetória e sincronização).

Parâmetro V. inicial V. final V. real Erro (%)
α 2,3027 6,5878 6,5792 0,13
β 3,8158 10,8947 10,9024 0,07
γ -0,0156 -0,0465 -0,0445 4,36

Estimando-se os parâmetros a e b simultaneamente aos três parâmetros

já estimados anteriormente, fazendo uso da variável medida x̂ como variável

de sincronização e utilizando as funções de sensibilidade de trajetória em

relação aos parâmetros α, β e γ, como descritas nas equações (5.16)-(5.25),

e em relação aos parâmetros a e b como a seguir:

λ̇a
x = α

(
λa

y −
1

2
{| x̂ + 1 | − | x̂− 1 |}

)
(5.26)

λ̇α
y = −λa

y + λa
z (5.27)

λ̇α
z = −β.λa

y − γ.λa
z (5.28)

λ̇b
x = α.

(
λb

y +
1

2
{| x̂ + 1 | − | x̂− 1 |}

)
(5.29)

λ̇b
y = −λb

y + λb
z (5.30)

λ̇b
z = −β.λb

y − γ.λb
z (5.31)

Utilizando o método de Runge-Kutta de 4a ordem para solucionar as

funções de sensibilidade de trajetória, após 9 iterações, considerando uma

tolerância de 0,00001 para o funcional do erro, verifica-se que a metodolo-

gia converge para parâmetros iniciais com desvios de até ±70%, sendo este

desvio dado numa mesma direção pra todos os parâmetros sob análise, con-

forme observa-se na tabela 5.5.
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Tabela 5.5: Estimação de 5 parâmetros no circuito de Chua (utilizando sensibilidade de
trajetória e sincronização).

Parâmetro V. inicial V. final V. real Erro (%)
α 1,9738 6,5993 6,5792 0,30
β 3,2707 10,8959 10,9024 0,06
γ -0,0134 -0,0428 -0,0445 3,92
a -0,3546 -1,1813 -1,1820 0,06
b -0,1957 -0,6527 -0,6524 0,05

A figura 5.10 apresenta o comportamento da tensão sobre o capacitor 1,

antes e depois do processo de estimação de parâmetros.
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Figura 5.10: Sáıdas antes e depois da estimação de 5 parâmetros do circuito de Chua
(sensibilidade de trajetória e sincronização), considerando um desvio inicial de -70% nos
valores corretos dos parâmetros.

Considerando agora as condições iniciais do circuito de Chua, x0, y0 e z0,

como parâmetros, uma vez que sua dinâmica caótica o faz altamente senśıvel

à variações nas mesmas, e estimando-as conjuntamente aos cinco parâmetros

anteriormente identificados, utilizando como variável de sincronização a tensão

medida sobre o capacitor 1, x̂, e utilizando as funções de sensibilidade de tra-

jetória em relação ao parâmetros α, β, γ, a e b como descritas nas equações

(5.16)-(5.31), e em relação as condições iniciais na forma em que estão apre-

sentadas a seguir:

˙λx0
x = α.λx0

y (5.32)

˙λx0
y = −λx0

y + λx0
z (5.33)
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˙λx0
z = −β.λx0

y − γ.λx0
z (5.34)

˙λy0
x = α.λy0

y (5.35)

˙λy0
y = −λy0

y + λy0
z (5.36)

˙λy0
z = −β.λy0

y − γ.λy0
z (5.37)

˙λz0
x = α.λz0

y (5.38)

˙λz0
y = −λz0

y + λz0
z (5.39)

˙λz0
z = −β.λz0

y − γ.λz0
z (5.40)

Ressalta-se uma informação muito importante, na estimação das condições

iniciais, que é o valor das condições iniciais das funções de sensibilidade

λx0
x (t0), λy0

y (t0) e λz0
z (t0).

No ponto inicial (t0) dada uma variável k e sua condição inicial (k0),

tem-se que:

∂k

∂k0

(t0) ≈ ∆k

∆k0

(t0)

∆k

∆k0

(t0) =
∆k0

∆k0

= 1 (5.41)

Desta forma determinam-se os valores das condições iniciais das funções

de sensibilidade de trajetória de interesse como sendo λx0
x (t0) = λy0

y (t0) =

λz0
z (t0) = 1.

A figura 5.11 exemplifica a formulação matemática apresentada acima.

Tempo

Saída

)()( 000 tktk )(tk

Real

Modelo

Figura 5.11: Determinação da condição inicial da função de sensibilidade de trajetória
em relação a uma condição inicial desconhecida.
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Com o intuito de aproximar a resposta dinâmica do sistema real simulado

por computador através da resolução das equações diferenciais (5.5)-(5.8)

das medições realizadas em um sistema real, introduz-se um rúıdo gaussiano

branco de valor igual a 5% do máximo valor da variável sob medida.

Desta forma, uma vez que o modelo matemático do sistema não descreve

o rúıdo nas medidas, a metodologia de sensibilidade de trajetória apresenta-

se robusta a introdução de rúıdos nas medições das sáıdas do sistema real.

Porém, a condição de convergência do processo de estimação de parâmetros

deve ser modificada neste caso, uma vez que o funcional do erro sempre irá ser

maior que a tolerância especificada devido à presença de erros nas medições,

toma-se então a máxima variação dos parâmetros entre sucessivas iterações

como condição para a convergência, como em [Benchluch e Chow, 1993].

Avaliando então, as funções de sensibilidade de trajetória utilizando o

método de Runge-Kutta de 4a ordem obteve-se a convergência, após 19 itera-

ções, considerando uma tolerância de 0,0001 para a variação dos parâmetros,

verifica-se que a metodologia converge para parâmetros iniciais com desvios

de até ±70%, considerando um desvio dado numa mesma direção para todos

os parâmetros, conforme observa-se na tabela 5.6.

Tabela 5.6: Estimação de 8 parâmetros no circuito de Chua (utilizando sensibilidade de
trajetória e sincronização).

Parâmetro V. inicial V. final V. real Erro (%)
α 1,9738 6,5286 6,5792 0,77
β 3,2707 10,8911 10,9024 0,10
γ -0,0134 -0,0512 -0,0445 14,83
a -0,3546 -1,1811 -1,1820 0,08
b -0,1957 -0,6565 -0,6524 0,63
x0 0,0450 0,1227 0,1500 18,23
y0 0,2700 0,9032 0,9000 0,35
z0 0,2400 0,8020 0,8000 0,25

A figura 5.12 apresenta os comportamentos da tensão sobre o capacitor

1 e da corrente no indutor no ińıcio e no fim do processo de estimação dos 8

parâmetros no circuito de Chua.
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Figura 5.12: Sáıdas antes e depois da estimação de 8 parâmetros do circuito de Chua
(utilizando sensibilidade de trajetória e sincronização), considerando um desvio inicial de
-70% nos valores corretos dos parâmetros.

Observa-se, no entanto, uma grande disparidade entre os valores estima-

dos e os corretos para o parâmetro γ e para a condição inicial x0, revelando

a ineficiência da metodologia em atingir a sincronização, uma vez que o pro-

cesso de sincronização implica na igualdade entre os parâmetros estimados e

os parâmetros corretos do sistema real.

Desta forma, pode-se concluir que um algoritmo de estimação de parâ-

metros conduz a uma estimativa correta dos mesmos se este satisfaz a duas

condições:

1. A sincronização entre as sáıdas do sistema real e do modelo matemático

implica na proximidade ente os parâmetros de ambos os modelos

2. O algoritmo de ajuste dos parâmetros provê a sincronização entre as

sáıdas do sistema real e do modelo matemático.

Utilizando a metodologia de sensibilidade de trajetória agregada dos con-

ceitos de sincronização de sistemas, constata-se que a primeira hipótese pode

ser satisfeita a partir de uma nova concepção de sincronização, conforme

apresentado na definição 5.42 dada a seguir:
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Definição 5.2.1. As sáıdas do sistema real, w̃(t), e do modelo matemático,

ỹ(t), C1-sincronizam, num dado intervalo de tempo [Ta, Tb], com precisão ε

se:

sup Ta≤t≤Tb
| w̃(t)− ỹ(t) | + sup Ta≤t≤Tb

| ˙̃w(t)− ˙̃y(t) | < ε (5.42)

Verifica-se deste modo que ocorrendo a diminuição da diferença entre

as sáıdas do sistema real e do modelo matemático, bem como da diferença

entre as derivadas de suas sáıdas, pode-se concluir que ambos os sistemas

sincronizam, segundo a definição 5.42.

Tomando como exemplo o circuito de Chua, descrito pelas equações (5.5)-

(5.7), uma vez que o sistema real e o modelo matemático C1-sincronizem, ou

seja, x − x̂ = y − ŷ = z − ẑ = 0 e ẋ − ˙̂x = ẏ − ˙̂y = ż − ˙̂z = 0, obtém-se as

seguintes equações diferença:

ẋ− ˙̂x = (α− α̂).y − (α− α̂).x− (α.β − α̂.β̂).x +

−1

2
[α.a− α̂.â + α̂.b̂− α.b][| x + 1 | − | x− 1 |]

= 0 (5.43)

ẏ − ˙̂y = 0 (5.44)

ż − ˙̂z = −(β − β̂).y − (γ − γ̂).z = 0 (5.45)

Conclui-se portanto que: α = α̂, β = β̂, γ = γ̂, a = â e b = b̂, provando

a primeira hipótese de que a sincronização implica na correta estimação dos

parâmetros.

Analisando a segunda hipótese, para a metodologia de sensibilidade de

trajetória agregada dos conceitos de sincronização de sistemas, conclui-se que,

embora esta não possa ser facilmente provada pode ser facilmente verificada

através dos resultados obtidos ao final dos diversos testes de estimação de

parâmetros realizados.

Logo, como intuito de melhorar o processo de estimação de parâmetros

introduz-se um termo forçante de sincronização, −k(x − x̂), com o intuito

de obter a sincronização entre o modelo matemático modificado, agora de-

nominado sistema auxiliar, e o sistema real, na equação (5.5) da seguinte
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forma:

dx

dτ
= α(y − x̂− f(x̂))− k(x− x̂) (5.46)

onde x é a variável do sistema auxiliar e x̂ é a variável de sincronização

medida do sistema real.

Assim, todas as funções de sensibilidade de trajetória derivadas da equação

(5.46) em relação aos parâmetros e as condições iniciais terão o acréscimo do

termo −k.λp
x, onde λp

x é a função de sensibilidade de trajetória em relação ao

parâmetro ou a condição inicial, p, de interesse.

Utilizando um valor de k suficientemente grande obtém-se a sincronização

do sistema auxiliar e do sistema real, o que implica na igualdade dos parâmetros

de ambos.

Sendo k = 10 e solucionando as funções de sensibilidade de trajetória

utilizando o método de Runge-Kutta de 4a ordem obteve-se a convergência,

após 9 iterações, considerando uma tolerância de 0,0001 para a variação dos

parâmetros, verifica-se que a metodologia converge e ocorre a sincronização

entre o sistema auxiliar e o sistema real, para parâmetros iniciais com desvios

de até ±65%, sendo este desvio dados numa mesma direção para todos os

parâmetros, conforme observa-se na tabela 5.7.

Tabela 5.7: Estimação de 8 parâmetros no circuito de Chua (utilizando sensibilidade de
trajetória e sincronização com termo forçante).

Parâmetro V. inicial V. final V. real Erro (%)
α 2,3027 6,5435 6,5792 0,54
β 3,8158 10,8906 10,9024 0,11
γ -0,0156 -0,0444 -0,0445 0,27
a -0,4137 -1,1807 -1,1820 0,12
b -0,2283 -0,6539 -0,6524 0,24
x0 0,0525 0,1542 0,1500 2,83
y0 0,3150 0,9009 0,9000 0,10
z0 0,2800 0,8185 0,8000 2,31

A figura 5.13 apresenta o comportamento da corrente sobre o indutor,

antes e depois do processo de estimação de parâmetros.
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Figura 5.13: Sáıdas antes e depois da estimação de 8 parâmetros do circuito de Chua
(utilizando sensibilidade de trajetória e sincronização com termo forçante), considerando
um desvio inicial de -65% nos valores corretos dos parâmetros.

Por fim, pôde-se verificar que aliando os conceitos de sincronização à

técnica convencional de sensibilidade de trajetória, obteve-se um melhor

condicionamento no processo de estimação dos parâmetros do circuito caótico

de Chua, desta forma conclúı-se ser esta a melhor metodologia, dentre as

apresentadas neste trabalho, para realizar a estimação de parâmetros em

sistemas cuja dinâmica é altamente complexa, como no caso dos sistemas

caóticos.





Caṕıtulo 6

Aplicação da metodologia de

sensibilidade de trajetória na

estimação de parâmetros em

modelos de carga de SEP’s

6.1 Introdução

Neste caṕıtulo, será realizada a estimação dos parâmetros de um modelo

estático de carga em um SEP, composto por um modelo de carga ZIP. Para

tanto serão discutidas as principais dificuldades encontradas na determinação

de tais parâmetros, bem como a modelagem dos diversos componentes do

SEP utilizados neste estudo para realizar sua simulação dinâmica.

O conhecimento preciso dos parâmetros da carga do SEP sempre foi

um desafio devido a sua caracteŕıstica dinâmica de composição e utilização.

Mas tal conhecimento torna-se imprescind́ıvel a medida que o comporta-

mento transitório do SEP é fundamentalmente determinado pelas carac-

teŕısticas das cargas do mesmo, como provado em [Marakov et al., 1996] e

[Hiskens e Milanovic, 1995], onde verificou-se que o amortecimento de pe-

quenas perturbações do SEP é prioritariamente ditado pelas caracteŕısticas

dinâmicas de sua carga.

53
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6.2 Dificuldades na determinação da carga de

SEP’s

Em um SEP diversas são as definições do termo “carga”, tal como apresen-

tado em [IEEE Task Force, 1993]:

1. Um equipamento conectado ao SEP que consome potências ativa e

reativa;

2. A potência total ativa e/ou reativa consumida por todos os equipamen-

tos conectados ao SEP;

3. Uma porção do sistema que não é explicitamente representado por um

modelo de sistema, mas é tratado como um simples equipamento con-

sumidor de potência conectado a uma barra do sistema;

4. A potência de sáıda de um gerador ou planta geradora.

Neste trabalho o termo “carga”será utilizado no sentido da definição 3

acima exposta, sendo portanto uma representação simplificada de uma parte

do SEP.

Muitos são os entraves para a correta determinação da carga de um SEP,

uma vez que suas caracteŕısticas tendem a variar com o dia da semana, a

estação do ano, os acontecimentos locais, as falhas não previstas, etc. Tais

variáveis tornam um verdadeiro desafio sua modelagem.

As principais dificuldades na determinação da carga de um SEP encontram-

se relacionados aos seguintes fatos:

1. O grande número de equipamentos que compõe a mesma;

2. A diversidade dos fatores de utilização de seus diversos componentes;

3. A localização das cargas pode ser inacesśıvel pela concessionária;

4. Os parâmetros fornecidos pelos clientes possuem pouca exatidão;

5. A incerteza dos parâmetros das cargas cresce com o tempo uma vez

que o estresse degrada a operação das mesmas.
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6.3 Modelagem de cargas em SEP’s

Na literatura existem quatro principais metodologias para a modelagem de

cargas em SEP’s:

1. Modelagem baseada em medidas: baseia-se na aquisição de me-

didas do comportamento transitório do SEP, utilizando algoritmos nu-

méricos para realizar o ajuste dos parâmetros de um modelo de carga

previamente estabelecido. Este tipo de modelagem está apresentada

nos artigos [Morison et al., 2003] e [IEEE Task Force, 1993].

2. Modelagem baseada em componentes: baseia-se na pesquisa es-

tat́ıstica da composição das cargas do SEP, utilizando modelos genéricos

para representar cada porção da carga. Esta modelagem está exposta

em [Morison et al., 2003] e [IEEE Task Force, 1993], e foi aplicada em

[IEEE Task Force, 1995] para realizar a modelagem de cargas em pro-

gramas de fluxo de potência.

3. Modelagem baseada em redes neurais artificiais (RNA’s): uti-

liza técnicas bio-inspiradas de inteligência computacional para aproxi-

mar o comportamento dinâmico das carga do sistema. Esta técnica foi

utilizada em [Hiyama et al., 1997] para realizar a modelagem de cargas

dinâmicas.

4. Modelagem h́ıbrida: utiliza uma combinação dos métodos discutidos

acima para realizar a modelagem da carga. Esta abordagem foi apli-

cada em [Lee et al., 1999] para modelar cargas estáticas e dinâmicas

em SEP’s

Neste trabalho será utilizada a modelagem de carga baseada em medi-

das do SEP, fazendo uso da metodologia de sensibilidade de trajetória para

realizar a estimação dos parâmetros presentes nesta modelagem, da mesma

forma como realizado em [Choi et al., 2006-i] e [Choi et al., 2006-ii], porém

nestes trabalhos havia o conhecimento prévio de medidas reais do sistema,

sendo desnecessário a realização da simulação do SEP, com isso não foi
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posśıvel avaliar o real erro cometido na estimação dos parâmetros em tais

modelos, já que a única informação dispońıvel do sistema real são as suas

sáıdas. No presente trabalho optou-se realizar a simulação completa do SEP,

uma vez que com isso será posśıvel observar o real erro cometido no processo

de estimação.

6.4 Modelagem do SEP

Na figura 6.1 está apresentado o SEP que será utilizado como objeto de

estudos neste trabalho.

Gerador

Síncrono

pujxT 5,1

pujxL 3
1

pujxL 8
2

puQ

puP

zip

zip

1,0

2,0

puV 09008,0
inf

puVbarra 64,49529,0

puVt 33,80,1

puPG 9,0

puQG 7196,0

Figura 6.1: Sistema elétrico de potência sob estudo.

No caso sob estudo, o SEP é composto por uma máquina śıncrona conec-

tada a um barramento infinito através de um transformador e uma linha de

transmissão dupla em paralelo, tendo uma carga ZIP conectada ao primeiro

barramento do sistema.

Com o objetivo de provocar um distúrbio de proporções suficientes para

excitar as sensibilidades dos parâmetros da carga do sistema, aplica-se um

curto-circuito trifásico franco na segunda linha de transmissão, de forma que

este esteja muito próximo da barra de carga, desconectando-se a linha sob

falta num tempo de 0,09 segundos após a ocorrência da falta e registrando-se

a resposta transitória do sistema.

Na figura 6.1 estão mostradas as condições de operação em regime per-

manente do SEP, obtidas a partir da resolução numérica do fluxo de potência

do mesmo através do software NEPLANTM versão demonstrativa 5.3.
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Com o objetivo de aprofundar o entendimento do funcionamento do SEP

e simular de forma mais exata seu comportamento transitório, discute-se nas

próximas seções a modelagem de todos os componentes do SEP sob estudo.

6.4.1 Modelagem da máquina śıncrona

Neste trabalho utiliza-se o modelo de dois eixos para representar a máquina

śıncrona. Este modelo refere-se a uma máquina de rotor ciĺındrico e despreza

o efeito dos enrolamentos amortecedores, desprezando também os fenômenos

ocorridos durante o peŕıodo subtransitório, levando em conta apenas os

efeitos transitórios.

Esta modelagem despreza as tensões transformatórias e considera ωm =

1, 0p.u. nas equações do estator, resultando no seguinte modelo algébrico-

diferencial:

δ̇r = ωr (6.1)

ω̇r =
ω0

2.H

[
Pm − E

′
q.Iq − E

′
d.Id − (x

′
d − x

′
q)Id.Iq − D

ω0

.ωr

]
(6.2)

Ė
′
q =

1

τ
′
do

[Efd − E
′
q + (xd − x

′
d).Id] (6.3)

Ė
′
d =

−1

τ ′qo

[E
′
d + (xq − x

′
q).Iq] (6.4)

Vq = E
′
q − r.Iq + x

′
d.Id (6.5)

Vd = E
′
d − r.Id − x

′
q.Iq (6.6)

onde δr e ωr são os desvios do ângulo e da velocidade do rotor, ω0 é a

velocidade śıncrona, H e D são as constantes de inércia e de amortecimento

da máquina, Pm é a potência mecânica aplicada ao eixo da máquina, Efd

é a tensão de campo, E
′
d e E

′
q são as forças eletromotrizes equivalentes na

armadura, Id e Iq são as correntes na armadura,xd e xq são as reatâncias

da armadura, x
′
d e x

′
q são as reatâncias transitórias da armadura,τ

′
do e τ

′
qo

são as constantes de tempo transitórias da armadura, r é a resistência dos

enrolamentos de armadura,Vd e Vq são as tensões do estator, lembrando que

os sub-́ındices d e q referem-se aos circuitos de eixo direto e em quadratura
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respectivamente, obtidos a partir da Transformação de Park.

Maiores detalhes sobre as transformações e hipóteses que sustentam esta

modelagem, bem como as deduções das equações que compõem o modelo

descrito podem ser encontradas em [Ramos et al., 2000] e [Kundur, 1993].

6.4.2 Modelagem do sistema de excitação da máquina

śıncrona

Existem na literatura diversos modelos padronizados para sistemas de ex-

citação de máquinas śıncronas, como apresentado em [IEEE Std, 2005]. Neste

trabalho vamos utilizar o modelo de uma excitatriz estática do tipo ST1A,

conforme vê-se na figura 6.2.

tV

refV

AK
r

RsT1

1

fdE

max_fdE

min_fdE

+

-

Figura 6.2: Sistema de Excitação ST1A.

A equação diferencial que rege o comportamento da tensão do circuito de

campo, obtida a partir do diagrama de blocos exposto na figura 6.2, pode

ser expressa por:

dEfd

dt
=

1

TR

[KA.(Vref − Vt)− Efd] (6.7)

onde Efd é a tensão de campo fornecida à máquina śıncrona, TR e KA são

a constante de tempo e o ganho de tensão do sistema de excitação, Vref e

Vt são a tensão de referência do sistema de excitação e a tensão terminal da

máquina respectivamente.

Maiores informações sobre o modelo ST1A e a dedução de suas equações

podem ser encontradas em [Cari, 2005] e [Kundur, 1993].



Estimação de parâmetros da carga de SEP’s 59

6.4.3 Modelagem do transformador e das linhas de

transmissão

Neste trabalho o transformador e as linhas de transmissão são modelados por

reatâncias puras, uma vez que a corrente de magnetização do transformador

é desprezada e as linhas de transmissão são supostas curtas, e considerando

que as reatâncias indutivas destes componentes são muito maiores que suas

resistências.

Maiores detalhes a respeito das hipóteses que sustentam a modelagem

aqui apresentada podem ser obtidos em [Stevenson, 1986].

6.4.4 Modelagem do barramento infinito

O barramento infinito é modelado como uma máquina de capacidade de

geração e absorção de potência infinita, sendo todo o desbalanço de potência

originado no SEP absorvido por este, tendo também um momento de inércia

infinito, o que garante que a sua tensão terminal e a sua freqüência não

variem mesmo durante a ocorrência de perturbações no sistema.

Um barramento infinito não existe na realidade, porém ao tratarmos um

pequeno subsistema do SEP podemos fazer a suposição de que a sua fronteira

de conexão com o resto do sistema é um barramento infinito, uma vez que

a capacidade de geração do SEP, como um todo, é muito maior que a do

subsistema.

6.4.5 Modelagem da carga do SEP

Na literatura, existem diversos modelos dinâmicos e estáticos padroniza-

dos para realizar a simulação dinâmica de SEP’s, como apresentado em

[IEEE Task Force, 1995] e [IEEE Task Force, 1993].

Neste trabalho será adotado um modelo estático de carga ZIP para mo-

delar a carga do SEP sob estudo, sendo sua descrição algébrica dada por:

Pe = Pzip.

[
a1.

(
V

V0

)2

+ a2.

(
V

V0

)
+ a3

]
(6.8)
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Qe = Qzip.

[
b1.

(
V

V0

)2

+ b2.

(
V

V0

)
+ b3

]
(6.9)

onde Pzip, Qzip são as potências ativa e reativa medidas na barra de carga

em regime permanente, e V , V0 são os valores instantâneo e em regime per-

manente da tensão na barra de carga, respectivamente.

O modelo estático descrito por (6.8)-(6.9) é composto pela soma de três

parcelas distintas: uma dependente do quadrado da tensão, conhecida como

impedância constante (Z), uma dependente da tensão, denominada corrente

constante (I), e uma independente da tensão, chamada de potência constante

(P), sendo então denominado de carga ZIP.

6.5 Aplicação da metodologia de sensibilidade

de trajetória na estimação de parâmetros

da carga ZIP

Para realizar a estimação dos parâmetros da carga ZIP do SEP sob estudo,

realizou-se primeiramente a simulação do sistema utilizando os seguintes

parâmetros em p.u.: H = 3, 5, D = 0, 00328, ω0 = 376, 99, r = 0, xd = 1, 81,

xq = 1, 76, x
′
d = 0, 3, x

′
q = 0, 65, τ

′
do = 8, τ

′
qo = 1, KA = 200, TR = 0, 025,

Efd min = −6, 4, Efd max = 7, Pzip = 0, 2, Qzip = 0, 1, a1 = 0, 3631,

a2 = 0, 4963, a3 = 0, 1406, b1 = 0, 4313, b2 = 0, 7082, b3 = −0, 1395,

xT = 0, 06818, xL1 = 0, 1364 e xL2 = 0, 3636. Sendo as bases para os cálculos

dos valores em p.u. dadas por: Sb = 2200 MV A, Vb = 220 kV e Xb = 22 Ω.

Considerando a ocorrência de uma falta na linha de transmissão 2, muito

próxima a barra de carga do SEP conforme mostrado na figura 6.1, com um

tempo de desligamento da linha de transmissão sob falta de 0,09 segundos,

utilizando o método de Runge-Kutta de 4a ordem para realizar a integração

das equações diferenciais que descrevem o comportamento dinâmico do SEP,

com um passo de integração de 0,001 segundo, tem-se como resultado o com-

portamento apresentado na figura 6.3.
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Figura 6.3: Simulação do SEP.

Com o objetivo de estimar os parâmetros a1, a2, a3, b1, b2 e b3 das equações

algébricas (6.8)-(6.9) que representam a carga ZIP, vamos utilizar a técnica de

sensibilidade de trajetória dotada de um acoplamento de entrada, tomando

como variável de acoplamento a tensão medida na barra de carga V̂barra, e

como sáıda o vetor formado pelas respostas das potências ativa e reativa da

carga ZIP, w̃ = [P̂e Q̂e].

A figura 6.4 mostra a aplicação da metodologia de sensibilidade de tra-

jetória à estimação de parâmetros na carga ZIP.
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Figura 6.4: Estimação dos parâmetros da carga ZIP utilizando a metodologia de sensi-
bilidade de trajetória com acoplamento da variável de entrada.
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Derivando as funções de sensibilidade em relação aos parâmetros de in-

teresse a partir das equações (6.8)-(6.9), obtêm-se:

λa1
Pe

= Pzip.

(
V

V0

)2

(6.10)

λa2
Pe

= Pzip.

(
V

V0

)
(6.11)

λa3
Pe

= Pzip (6.12)

λb1
Pe

= λb2
Pe

= λb3
Pe

= 0 (6.13)

λa1
Qe

= λa2
Qe

= λa3
Qe

= 0 (6.14)

λb1
Qe

= Qzip.

(
V

V0

)2

(6.15)

λb2
Qe

= Qzip.

(
V

V0

)
(6.16)

λb3
Qe

= Qzip (6.17)

onde λa1
Pe

= ∂Pe

∂a1
, λa2

Pe
= ∂Pe

∂a2
, λa3

Pe
= ∂Pe

∂a3
, λb1

Qe
= ∂Qe

∂b1
, λb2

Qe
= ∂Qe

∂b2
, λb3

Qe
= ∂Qe

∂b3
são

as funções de sensibilidade de trajetória.

Verifica-se que, no caso da carga ZIP, as equações que compõe o modelo

de sensibilidade descrito pelas equações (6.10)-(6.17) são algébricas, o que

dispensa o uso de algoritmos de integração em sua resolução.

Na figura 6.5 estão apresentados os comportamentos das funções de sen-

sibilidade de trajetória para a carga ZIP.
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Figura 6.5: Sensibilidades dos parâmetros da carga ZIP.

Aplicando então a metodologia de sensibilidade de trajetória com acopla-

mento da variável de entrada, V̂barra, verifica-se que para uma tolerância de
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1.10−8 para o funcional do erro, a metodologia converge para parâmetros ini-

ciais com desvios de até 100%, considerando este desvio dado numa mesma

direção para todos os parâmetros sob análise, após uma única iteração.

A figura 6.6 exibe o comportamento das potências ativa e reativa da carga

ZIP antes e depois do processo de estimação de parâmetros.
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Figura 6.6: Sáıdas antes e depois da estimação de 6 parâmetros na carga ZIP (utilizando
sensibilidade de trajetória e acoplamento da variável de entrada), considerando um desvio
de -100% no valores corretos dos parâmetros.

A tabela 6.1 resume os resultados obtidos para a estimação dos parâmetros

da carga ZIP.

Tabela 6.1: Estimação de 6 parâmetros na carga ZIP (utilizando sensibilidade de tra-
jetória e acoplamento da variável de entrada).

Parâmetro V. inicial V. final V. real Erro (%)
a1 0,0 0,3631 0,3631 0,0
a2 0,0 0,4963 0,4963 0,0
a3 0,0 0,1406 0,1406 0,0
b1 0,0 0,4313 0,4313 0,0
b2 0,0 0,7082 0,7082 0,0
b3 0,0 -0,1395 -0,1395 0,0
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Por fim, verificamos a possibilidade de se estimar corretamente os parâ-

metros da carga ZIP utilizando a metodologia de sensibilidade de trajetória,

concluindo o objetivo principal deste trabalho



Caṕıtulo 7

Conclusões

No presente trabalho foi apresentada a metodologia de sensibilidade de tra-

jetória aplicada à estimação de parâmetros em sistemas dinâmicos.

A técnica de sensibilidade de trajetória aplicada à estimação de parâmetros

foi apresentada e aplicada à um pequeno sistema massa-mola onde suas pe-

culiaridades foram estudadas frente a uma dinâmica simples.

Observou-se no caso da estimação simultânea de dois parâmetros do sis-

tema, que um determinado tipo de teste pode não ser adequado à aplicação

da metodologia, uma vez que as funções e sensibilidade desse sistema podem

não ser excitadas,porém ao se aplicar um outro tipo de teste ao sistema, foi

posśıvel realizar a estimação dos parâmetros desejada.

Posteriormente a metodologia de estimação de parâmetros foi aplicada

a um sistema caótico, o circuito de Chua, onde suas principais deficiências

foram verificadas frente a uma dinâmica altamente complexa.

Agregou-se à metodologia tradicional o acoplamento de uma variável de

entrada, resultando em uma melhora significativa do condicionamento do

processo de estimação, porém tal melhora exigiu uma perda na quantidade de

informações obtida pela metodologia inviabilizando a estimação simultânea

de todos os parâmetros do sistema.

Com esse objetivo aliou-se à metodologia de estimação o conceito de

variável de sincronização, obtendo assim uma melhora expressiva no condi-

cionamento do processo de estimação, agora, mantendo as informações ne-

65
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cessárias à estimação simultânea de todos os parâmetros do sistema caótico.

No desenvolvimento final deste trabalho, aplicou-se a metodologia desen-

volvida à estimação de parâmetros na carga de um SEP, representada por

uma carga estática ZIP. Não foram encontradas dificuldades nesta tarefa,

uma vez que o modelo estático que descreve a carga é composto por equações

algébricas e constitúı-se num problema de estimação linear dos parâmetros,

o que garantiu a sua convergência em apenas uma iteração.

Como perspectivas futuras aplicar-se-á a metodologia de sensibilidade

de trajetória na estimação de parâmetros de um modelo dinâmico de carga

composto por uma parcela estática, representada por uma carga ZIP, e outra

dinâmica, representada por um motor de indução trifásico, onde espera-se

aplicar os conceitos de sincronização de sistemas, discutidos neste trabalho,

para melhorar o condicionamento numérico do processo de estimação.
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