
UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE SÃO CARLOS

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

PROPOSTA DE SISTEMA
EMBARCADO PARA AUXÍLIO E
MONITORAMENTO DO IDOSO

Autor: Alexandre Moretti Bernardo

Orientador: Prof. Dr. Evandro Luís Linhari Rodrigues

São Carlos

2015

Universidade de São Paulo

Escola de Engenharia de São Carlos

ALEXANDRE MORETTI BERNARDO

PROPOSTA DE SISTEMA
EMBARCADO PARA AUXÍLIO E
MONITORAMENTO DO IDOSO

Trabalho de Conclusão de Curso apresentado

à Escola de Engenharia de São Carlos, da

Universidade de São Paulo

Curso de Engenharia Elétrica com ênfase em

eletrônica

ORIENTADOR: Prof. Dr. Evandro Luis Linhari Rodrigues

São Carlos

2015

Dedicatória

Dedico o trabalho aqui apresentado a toda minha família, que se empenharam em

me auxiliar em todas as etapas de minha vida, especialmente na minha permanência em

São Carlos, me incentivando a buscar e lutar por meus sonhos e objetivos.

Alexandre Moretti Bernardo

Agradecimentos

Agradeço primeiramente a Deus por ser essencial em minha vida, estar presente

em todos os momentos, auxiliado e concedido forças para superar todos os obstáculos e

desafios.

Ao meu pai Luiz Donizeti Bernardo, minha mãe Vitalina Moretti Bernardo e meu

irmão Samuel Moretti Bernardo pelo apoio em todos os momentos de dificuldade e pela

compreensão sobre as privações que a dedicação à Universidade requer.

Ao professor Orientador Evandro, pelo apoio ao desenvolvimento do projeto e pelo

seu empenho em extrair o melhor de seus alunos, incentivando e aconselhando-nos

durante toda a graduação.

Aos meus amigos que foram fundamentais durante todo esse período, estudamos

para muitas provas, fizemos muitos trabalhos, enfrentamos grandes desafios e nos

divertimos juntos. Passamos por momentos de dificuldade e de alegria que fortaleceu nossa

amizade.

Aos amigos do Warthog Robotics, por todas as madrugadas passadas em claro nas

vésperas de campeonatos, por ensinar o verdadeiro significado de engenharia,

determinação e paixão por fazer os projetos funcionarem. Também agradeço a este grupo

e a seus integrantes pela grande experiência em liderança da divisão de eletrônica,

contribuindo para minha formação.

Aos professores que se importaram com o aprendizado de seus alunos durante a

graduação. Agradeço também aos meus professores da Escola Estadual Júlia Calhau

Rodrigues que apesar de todas as limitações e dificuldades de uma escola pública, se

emprenharam em incentivar os sonhos de seus alunos e deram o seu melhor para permitir

que atingíssemos nossos objetivos.

Agradeço também a todos os funcionários do Departamento de Engenharia Elétrica

e Computação (SEL/EESC/USP), em especial às secretárias de graduação, Jussara

Ramos Zoia e Aura Aparecido Brizolar, aos técnicos Rosenberg Júlio da Silva, Petrússio

Gonçalves da Silva.

À Safira e ao José por contribuírem pelos necessários momentos de descontração.

Por fim, a todos que contribuíram, direta ou indiretamente, para a realização deste

trabalho.

“E ainda que tivesse o dom de profecia, e conhecesse todos os mistérios e toda a ciência,

e ainda que tivesse toda fé, de maneira tal que transportasse os montes, e não tivesse

amor, nada seria” (I Coríntios 13:2)

 “A tarefa não é tanto ver aquilo que ninguém viu, mas pensar o que ninguém ainda

pensou sobre aquilo que todo mundo vê” (Arthur Schopenhauer)

“Ter problemas na vida é inevitável, ser derrotado por eles é opcional”.

(Roger Crawford)

Resumo

O envelhecimento com saúde é o triunfo do desenvolvimento de um país. Garantir

que essa parcela da população tenha os devidos cuidados sem que sejam privados de sua

liberdade e independência torna-se um desafio. Para satisfazer essa necessidade, este

trabalho aborda a criação de três mecanismos para identificar eventuais riscos ou

problemas de saúde do idoso. O primeiro sistema é uma pulseira munida de um

acelerômetro e barômetro capaz de detectar queda. O segundo sistema é composto por

um sensor que monitora possíveis vazamentos de gás na residência do idoso. O terceiro

sistema é composto por uma caixa de remédios com alarme para informar os horários da

ingestão dos medicamentos com compartimentos separados e identificados por LEDs (Light

Emitting Diode). Os três sistemas propostos são gerenciados pela placa de

desenvolvimento Intel Galileo que em caso de detecção de riscos como queda ou

vazamentos de gás envia uma mensagem para o celular do responsável. Neste trabalho é

apresentado as características dos sistemas propostos bem como suas vantagens e

limitações. Para a proposta, a placa Intel Galileo acentuada limitação de recursos como

processamento e memória RAM para aplicações em visão computacional, mas mostrou-se

como uma solução bastante versátil, sendo possível encontrar soluções que não

necessitem de alto poder de processamento e memória. Todos os transdutores utilizados

para aquisição dos dados dos sistemas mencionados, foram caracterizados. O módulo

barômetro, utilizado para medir variação de altura apresentou erros acima dos valores

indicados pelo fabricante, mas que foram minimizados por meio de algoritmos de filtro. Os

módulos acelerômetros apresentaram precisão acima do necessário para detectar impacto

mecânico. O módulo sensor de gás apresentou funcionamento conforme especificado pelo

fabricante quando submetido a incidência de gás, simulando um possível vazamento.

Apesar das limitações os protótipos foram concluídos e apresentaram as características

requeridas, isto é, gerenciar a ingestão de medicamentos, indicar situações de risco como

vazamento de gás ou queda do idoso, bem como envio de mensagens ao responsável e

transmissão de vídeo do local do acidente.

Palavras chave: Auxílio ao idoso, sistemas embarcados, Intel Galileo,

processamento de imagens, Linux, transdutores.

Abstract

Healthy ageing serves as a reference of how developed a country is. Guaranteeing

the wellbeing of the elderly while maintaining their independence is a challenge. In order to

address this issue, this work presents the development of three devices that aim to prevent

accidents that are most common among older people; a bracelet which uses an

accelerometer and a barometer to identify if the user is falling down; a system to be installed

at home to detect gas leakages; and a medicine dispenser with separate compartments

identified with LEDs (Light Emitting Diode) that informs the user about the time to take the

pills with the use of an alarm. These three devices have the feature of sending messages to

mobile phones if there is a risk situation so that the elder is helped as soon as possible.

They are implemented using the Intel Galileo microcontroller board, which has low

processing speed for computational vision applications, but is versatile enough to meet the

requirements to make this project possible. This text describes the development of the

mentioned equipments along with their limitations, it also includes the characteristics of the

transducers used for acquiring data. The barometer used, which measures changes in

height, did not meet its specifications, showing larger variations, but filter algorithms were

used to solve this problem. The accelerometer is more precise than necessary to detect

mechanic impact, and, as such, is the most suitable sensor for this application. The gas

sensor behaved as specified by the manufacturer in the presence of gas, simulating a

leakage. In spite of its limitations, the prototypes do what they are supposed to: managing

medicine intake, detecting gas leakage and falls, sending messages and video transmission

in case of risk situations.

Keywords: Assistance to the elderly, Embedded systems, Intel Galileo, IP cameras,

Linux, transducers.

Lista de Figuras

Figura 1: Gráfico do investimento em tecnologias voltadas a área da saúde [5]. 29

Figura 2: Classificação das empresas que apresentam maior investimento em tecnologia

voltada à saúde [5]. ... 30

Figura 3: Diagrama de alto nível do projeto ... 32

Figura 4: Representação da aplicação do conceito de internet das coisas [17]................ 40

Figura 5: Desenho esquemático de um Sensor de Pressão Piezoresistivo. 41

Figura 6: Diagrama de fases do processamento de imagens [23]. 43

Figura 7: Camadas da Comunicação Wireless .. 44

Figura 8: a) e b) são imagens da placa Intel Galileo (Gen1) [27]. 48

Figura 9: Esquemático da placa [6] .. 48

Figura 10: Visão geral dos conectores e peças que cercam o processador Quark para

formar o Galileo [28]. ... 49

Figura 11: BitBake, ferramenta de build mantida pelos projetos Yocto e OpenEmbedded.

[30]. ... 52

Figura 12: Câmera IP utilizada no projeto proposto ... 54

Figura 13: Diagrama de blocos do acelerômetro [35] ... 55

Figura 14: Módulo ADXL335 [36] ... 55

Figura 15: Diagrama de blocos do transdutor MPU6050 [37] ... 56

Figura 16: Módulo MPU6050 [38] .. 56

Figura 17: Diagrama de conexão do módulo BMP180 [39] .. 58

Figura 18: Módulo BMP180 [40] .. 58

Figura 19: Módulo GSM ... 60

Figura 20: Variação da resistência em função da concentração de gases [42] 60

Figura 21: Módulo sensor de gás [43] .. 61

Figura 22: Módulo ESP8266 – 01 [45] ... 62

Figura 23: Módulo ESP8266 – 12 [47] ... 63

Figura 24: Arduino Mega2560 [49] ... 64

Figura 25: Conversor de tensão ... 65

Figura 26: Vista superior e inferior do Display Touchscreen utilizado no projeto 66

Figura 27: Fluxograma referente ao Algoritmo 1 - aquisição de imagens da camera IP ... 75

Figura 28: Fluxograma para do algoritmo para detecção de movimento 77

Figura 29: Fluxograma completo de detecção de movimento e escrita em arquivo. 81

Figura 30: Fluxograma de leitura e atuação do acelerômetro ADXL335 86

Figura 31: Fluxograma de leitura e atuação do acelerômetro MPU-6050......................... 88

Figura 32: Fluxograma utilizado para elaboração do Algoritmo 7 - Cálculo da variação da

altitude em função da pressão atmosférica .. 91

Figura 33: Fluxograma do programa do módulo ESP8266 utilizado para comunicação dos

transdutores à placa de desenvolvimento Intel Galileo. ... 94

Figura 34: Fluxograma do módulo detector de gás .. 96

Figura 35: Diagrama do programa teste para gerenciamento da medicação 99

Figura 36: Programa Arduino funcionando como um processo Linux 101

Figura 37: Fluxograma completo da placa de desenvolvimento Intel Galileo, incluindo

comunicação entre o processo Arduino e o Linux .. 104

Figura 38: Diagrama de blocos do funcionamento completo do sistema 105

Figura 39: Exibição do site gerenciado pela placa Intel Galileo 106

Figura 40: Imagem antes e após a aplicação do processamento de imagem 107

Figura 41: Resultado do processamento de imagem com o algoritmo apresentado em

Algoritmo A – 4 (Apêndice) .. 108

Figura 42: Resultado do Algoritmo 2 .. 109

Figura 43: Comando Linux (TOP) para exibir características do desempenho 110

Figura 44: Página Web criada para exibir câmera que capturou último movimento e

também para interface de comunicação entre os módulos monitores e o envio de

mensagens por WhatsApp ... 111

Figura 45: Sistema detector de quedas ... 112

Figura 46: Gráfico da variação da pressão atmosférica e consequentemente altitude para

o sensor posicionado de forma estática ... 113

Figura 47: Módulo detector de gás ... 115

Figura 48: Módulo de auxílio a ingestão de medicamentos .. 116

Figura 49: Diagrama de blocos do sistema detector de vazamento de gás 117

Figura 50: Diagrama representativo da câmera IP, componente deste trabalho 118

Figura 51: Diagrama de blocos do módulo detector de quedas. 118

Figura 52: Diagrama de blocos do módulo de desenvolvimento Intel Galileo 119

Figura 53: Esquemático do circuito conversor de tensão. Fonte:

https://cdn.sparkfun.com/assets/b/0/e/1/0/522637c6757b7f2b228b4568.png 171

Lista de Tabelas

Tabela 1: Resumo elétrico da placa Intel Galileo ... 51

Tabela 2: Consumo do módulo ESP8266-01 para cada modo de operação. 63

Tabela 3: Especificações Técnicas do Arduino Mega2560 .. 64

Tabela 4: Características do display touchscreen DMT4820M043_02WT 65

Tabela 5: Conexão entre Arduino Mega2560 e Shield GSM .. 82

Tabela 6: Respectivas conexões entre Arduino Mega2560 e acelerometro ADXL335 85

Tabela 7: Respectivas conexões entre Arduino Mega2560 e acelerômetro MPU-6050 ... 87

Tabela 8: Respectivas conexões entre Arduino Mega2560 e barômetro BMP180 90

Tabela 9: Conexão do módulo ESP-01 para gravação .. 93

Lista de Algoritmos

Algoritmo 1: Aquisição de imagens da câmera IP .. 74

Algoritmo 2: Trecho do código utilizado para aquisição dos dados (frames) da câmera IP

 .. 76

Algoritmo 3: Trecho do código incluído no Algoritmo A - 4 utilizado para atualização da

imagem de referência a cada 100 frames .. 76

Algoritmo 4: Trecho de algoritmo implementado para detecção de movimento................ 78

Algoritmo 5: Escrita em arquivo indicando a câmera que detectou movimento 79

Algoritmo 6: Trecho para cálculo da variação da aceleração ADXL335 85

Algoritmo 7: Leitura e cálculo da variação de aceleração .. 88

Algoritmo 8: Trecho do algoritmo utilizado para comunicação entre o sensor de gás e a

central de processamento Intel Galileo .. 97

Algoritmo 9: Algoritmo utilizado para indicação do medicamento a ser ingerido 100

Algoritmo A - 1: Programa Arduino utilizado para acessar linux utilizando comunicação

USB ... 137

Algoritmo A - 2: Programa Arduino utilizado para obter endereço IP dinâmico 137

Algoritmo A - 3: Programa utilizado para calcular o tempo de processamento de uma

imagem obtida por uma câmera IP .. 138

Algoritmo A - 4: Algoritmo implementado para detecção de movimento da webcam...... 140

Algoritmo A - 5: Algoritmo implementado para detecção de movimento em imagens

capturadas pela câmera IP .. 142

Algoritmo A - 6: Código implementado para calcular tempo de aquisição e processamento

de imagens de câmera IP .. 144

Algoritmo A - 7: Algoritmo implementado e otimizado para detecção de movimento e

escrita em arquivos. ... 148

Algoritmo A - 8: Código implementado para calcular velocidade de processamento do

Algoritmo A - 7. .. 152

Algoritmo A - 9: Código implementado para envio de mensagem SMS 154

Algoritmo A - 10: Código implementado para leitura e atuação do acelerômetro ADXL335

 .. 156

Algoritmo A - 11: Código implementado para leitura e atuação do acelerômetro MPU6050

 .. 158

Algoritmo A - 12: Algoritmo implementado calcular altitude com base na informação da

pressão atmosférica fornecida pelo sensor BMP180 ... 159

Algoritmo A - 13: Código implementado no módulo ESP8266 e utilizado para conexão e

comunicação com a placa Intel Galileo .. 161

Algoritmo A - 14: Programa implementado para o módulo detectar vazamento de gás . 163

Algoritmo A - 15: Algoritmo completo implementado na placa Intel Galileo, incluindo

comunicação entre o processo Arduino e Linux ... 170

Lista de abreviações

3D – Três dimensões

ADC – Analog-to-digital converter (Conversor analógico para digital)

ARM – Família de microcontroladores (Advanced RISC Machines)

CAD - Computer-Aided Design

CGI - Common Gateway Interface

CI – Circuito Integrado

CSD - Circuit Switched Data

DLL - Dynamic Linked Library

DNS - Domain Name System

EEPROM – Electrically Erasable Programmable Read-Only Memory

fps – frames por segundo

GND – Ground

GPIO - General-Purpose Input/Output

GPRS - General packet radio service

Grub - GRand Unified Bootloader

HLR - Home Location Register

I/O – Input/Output

I²C – Protocolo de comunicação (Inter-Integrated Circuit)

IBGE – Instituto Brasileiro de Geografia e Estatística

ICSP - In Circuit Serial Programming

IDE - Integrated Development Environment

IoT – Internet of Things (Internet das coisas)

IP - Internet Protocol

IPL - Image Processing Library

LAN - local area network

LCD – Liquid crystal display

LED - Light Emitting Diode (Diodo Emissor de Luz)

MEMS - Micro-Electro-Mechanical Systems

Mjpeg - Motion JPEG

MS - Mobile Station

MT - Mobile Terminal

OpenCV - Open Source Computer Vision

Opkg - Open Package Management

PC – Personal Computer

PCIe - Peripheral Component Interconnect Express

ppm – partes por milhão

PWM - Pulse Width Modulation

RAM - Random-Access Memory

RF – Radio Frequência

RISC - Reduced Instruction Set Computing

RTC - Real-Time Clock

RTOS - Real-Time Operating System

Rx - Recebimento

SDIO - Secure Digital Input Output

SDK - Software Development Kit

SMS - Short Message Service

SO – Sistema Operacional

SPI - Serial Peripheral Interface

SRAM - Static Random-Access Memory

SSH - Secure Shell

SUS – Sistema Único de Saúde

TCP - Transmission Control Protocol

Tx - Transmissão

UART - Universal Asynchronous Receiver/Transmitter

UDP - User Datagram Protocol

UEFI - Unified Extensible Firmware Interface

URL - Uniform Resource Identifier

USB - Universal Serial Bus

USSD - Unstructured Supplementary Service Data

VGS – Tensão entre Gate e Source do transistor

VLR - Visitor Location Register

WLAN - Wireless Local Area Network

XLP – Extreme Low Power

Sumário

1. Introdução .. 29

1.1. Motivação .. 31

1.2. Propostas .. 31

1.3. Objetivos .. 33

1.4. Justificativas ... 34

1.5. Organização do Trabalho ... 35

2. Embasamento teórico .. 37

2.1. Sistemas embarcados ... 37

2.1.1. Arduino ... 37

2.1.2. Sistemas embarcados para instrumentação ... 38

2.2. Sistemas operacionais .. 38

2.3. Sistema operacional embarcado – Linux (Software) ... 38

2.4. Internet das coisas (IoT) .. 39

2.5. Instrumentação ... 40

2.5.1. Transdutor – Acelerômetro ... 40

2.5.2. Transdutor - Pressão barométrica .. 41

2.5.3. Transdutor de Gás (GLP) .. 41

2.5.4. Instrumentação via web .. 42

2.6. Visão computacional .. 42

2.7. Comunicação Wireless .. 43

2.8. Comunicação GSM .. 45

3. Materiais e métodos ... 47

3.1. Materiais .. 47

3.1.1. Placa de Desenvolvimento Intel Galileo (Hardware) 47

3.1.2. Projeto Yocto .. 52

3.1.3. Linguagem de programação Python ... 52

3.1.4. Biblioteca dedicada à visão computacional – OpenCV 53

3.1.5. Câmeras IPs .. 53

3.1.6. Transdutores – Acelerômetros ADXL335 e MPU-6050 54

3.1.7. Transdutor – Barômetro BMP180 .. 57

3.1.8. Módulo GSM SIM900 .. 59

3.1.9. Transdutor - Sensor de gás MQ-2 ... 60

3.1.10. Módulo Wi-Fi ESP8266 .. 61

3.1.11. Arduino Mega2560 ... 64

3.1.12. Conversor de Tensão ... 65

3.1.13. Display Touhscreen DWIN ... 65

3.2. Métodos ... 67

3.2.1. Desenvolvimento utilizando a placa Intel Galileo 67

3.2.2. Medidas de corrente consumidas pelos módulos .. 72

3.2.3. Uso de Câmeras IPs. ... 72

3.2.4. Estudo e aplicação do OpenCV .. 72

3.2.5. Sistema de detecção de movimento .. 73

3.2.6. Envio de mensagem ao responsável ... 82

3.2.7. Implementação dos acelerômetros .. 84

3.2.8. Implementação do Barômetro ... 89

3.2.9. Módulo ESP8266 .. 92

3.2.10. Módulo ESP8266 para sensor de gás .. 95

3.2.11. Sistema de alarme e indicação de medicamento 98

3.2.12. Integração Placa de desenvolvimento Intel Galileo e Linux 101

3.2.13. Comunicação entre os programas Arduino e Linux 101

4. Resultados e Discussões .. 105

4.1. Resultados .. 106

4.1.1. Atuação das funcionalidades de Arduino ... 106

4.1.2. Uso da biblioteca OpenCV ... 107

4.1.3. Sistema de detecção de movimentos... 107

4.1.4. Desempenho da placa Intel Galileo .. 109

4.1.5. Sistema detector de quedas ... 111

4.1.6. Sistema detector de vazamento de gás .. 114

4.1.7. Sistema de auxílio a ingestão de medicamentos 115

4.1.8. Integração .. 116

4.2. Discussões .. 120

4.2.1. Placa Intel Galileo (Hardware) ... 120

4.2.2. Placa Intel Galileo (software - Arduino) ... 120

4.2.3. Placa Intel Galileo (Software - Linux). ... 121

4.2.4. Linguagem de programação Python ... 121

4.2.5. Módulo (Shield) GSM .. 122

4.2.6. Câmeras IPs .. 122

4.2.7. Transdutores – Acelerômetros .. 122

4.2.8. Transdutor – Barômetro .. 122

4.2.9. Transdutor – Sensor de Gás .. 123

4.2.10. Módulo ESP8266 .. 123

4.2.11. Módulo Arduino Mega2560 .. 123

4.2.12. Display Touchscreen ... 123

4.2.13. Integração .. 124

5. Conclusão e trabalhos futuros .. 125

5.1. Conclusão ... 125

5.2. Trabalhos futuros ... 126

6. Bibliografia ... 129

Apêndice ... 137

Anexo ... 171

28

29

1. Introdução

A industrialização trouxe consigo diversos avanços tecnológicos na área da saúde.

A introdução da informática e o surgimento de aparelhos modernos e sofisticados trouxeram

benefícios no tratamento e diagnósticos de doenças [1].

O termo designado para tecnologias que contribuem para a área da saúde e bem-

estar é “E-saúde” (do inglês E-Health). Este termo é relativamente recente, datando de 1999

[2] e apresenta cerca de 51 definições “exclusivas” [3]. De forma genérica o E-Health inclui

dispositivos que registram o estado de saúde por meios eletrônicos, telemonitorização,

dispositivos que rastreiam as condições do paciente remotamente, aplicativos móveis de

saúde e sistemas de informação hospitalar [4].

Nota-se uma crescente busca tecnológica neste setor, incentivada pela

possibilidade de desenvolver sistemas que auxiliem a saúde da população [5]. O gráfico da

Figura 1 apresenta os investimentos em tecnologias voltadas para saúde no mercado norte

americano de 2010 a 2014.

Figura 1: Gráfico do investimento em tecnologias voltadas a área da saúde [5].

Essa recente busca tecnológica tem motivado startups e empresas de tecnologia

voltadas a área de saúde e E-Health que levantaram US$ 2,2 bilhões de dólares no primeiro

semestre de 2014, e os investimentos corporativos têm grande parte nesse feito [5]. Além

de startups, grandes empresas de diversos setores têm investido no desenvolvimento de

30

tecnologias relacionadas a saúde. A Figura 2 apresenta a classificação de empresas com

maior investimento no setor. Quantitativamente se destaca a empresa Google, que em 2015

investiu cerca de U$32,5 milhões em apenas uma empresa (startup Oscar) que

desenvolveu um aplicativo que permite aos usuários entrem em contato com médicos

especialistas a qualquer momento e sem custos [6].

Figura 2: Classificação das empresas que apresentam maior investimento em tecnologia voltada à saúde [5].

 Como forma de contribuição tecnológica para o setor, este trabalho apresentará um

sistema “E-Health” utilizando sistemas operacionais embarcados e transdutores no

monitoramento e auxílio à manutenção da saúde do idoso.

O uso de sistemas embarcados permite o processamento de informações de forma

dedicada, reduzindo o custo quando comparado a sistemas de proposito mais genérico, ao

mesmo tempo em que permite alterações e implementações de forma remota. O uso de

transdutores associados ao sistema operacional no sistema embarcado, expande a

aplicabilidade da plataforma utilizada. Gera-se, portanto, um projeto facilmente mutável em

função das informações adquiridas e inclui o monitoramento de acidentes ao conceito de

internet das coisas (IoT).

31

1.1. Motivação

O aumento da longevidade é um indicador de que todos os setores da sociedade

estão se desenvolvendo e melhorando a qualidade de vida da população. A população

idosa do Brasil é composta de 26 milhões de pessoas, o que corresponde a 13% da

população total. A expectativa de vida média da população brasileira é de 74,6 anos

segundo IBGE [7].

Apesar dos avanços, esta parcela da população carece de atenção especial. No

Brasil, 70% dos idosos possuem pelo menos uma patologia crônica [8], ou seja, necessitam

de tratamento farmacológico e uso regular de medicamentos. A necessidade de grande

ingestão de medicamentos, acrescida das limitações ocasionadas pela idade, gera um

campo de risco extremamente alto onde os idosos podem ingerir medicamentos errados.

Além do grande número de medicamentos, segundo o Sistema Único de Saúde, um terço

dos atendimentos por lesões traumáticas nos hospitais do país ocorre com pessoas com

mais de 60 anos e cerca de 75% dessas lesões acontecem dentro da própria casa, onde

muitas vezes os primeiros atendimentos tardam a ocorrer e agravam a situação do idoso.

Para evitar acidentes como a ingestão indevida de medicamentos, ocasionados por

confusões de nomes ou horários, ou para a monitoração de quedas do idoso, o uso de

tecnologias apropriadas pode gerar resultados importantes e melhorar a qualidade de vida

e a longevidade da população.

1.2. Propostas

Para identificar possíveis quedas é proposto a utilização de uma pulseira com um

acelerômetro e barômetro capaz de detectar quedas, nessa situação, aciona-se um alarme

por alguns segundos, caso o idoso não desative o aparelho, este enviará a mensagem via

SMS ou mensagem de texto por meio do aplicativo WhatsApp ao responsável, evitando

assim falsas identificações de quedas. O sistema faz uso de câmeras com algoritmos de

detecção e identificação da localização do idoso. Caso seja identificado, por meio dos

transdutores, que o idoso caiu, uma central de processamento de dados envia uma

mensagem ao celular de um familiar ou responsável. Este por sua vez pode acessar as

câmeras e verificar se realmente ocorreu uma situação de emergência ou se houve apenas

um falso alarme. Este mesmo sistema pode ser utilizado para fazer toda a vigilância e

segurança da casa, monitorando ações suspeitas.

Para auxiliar o idoso a ingerir o medicamento de maneira adequada, é proposto a

criação de um sistema de gerenciamento de medicamentos. Esse sistema indica o

32

momento da ingestão do medicamento e possibilita o envio de mensagem de celular ao

farmacêutico ou ao responsável da família quando o medicamento estiver acabando,

evitando assim, problemas decorrentes da não ingestão do medicamento.

Para detectar possíveis vazamentos de gás foi utilizado um módulo sensor de gás

que deve ser instalado próximo ao fogão do idoso. Caso a válvula de gás seja deixada

aberta, o módulo é capaz de enviar um comando a central de processamento (placa Intel

Galileo) e este envia uma mensagem para o celular do responsável indicando o possível

vazamento de gás.

A placa de desenvolvimento Intel Galileo juntamente com o sistema operacional

proporciona a integração de todos os sistemas por meio de conexões via web e acesso

remoto. Dessa forma, o familiar pode acompanhar qualquer problema ou suspeita de

problema pela internet.

O diagrama do projeto com seus respectivos módulos é apresentado na Figura 3.

Para a central de processamento foi utilizado a placa de desenvolvimento Intel Galileo. O

sistema detector de queda, as câmeras IPs e o sistema de monitoramento de vazamento

de gás utilizam comunicação via Wireless. O sistema de gerenciamento de medicamentos

é conectado diretamente a central de processamento.

Sistema Detector de

Queda

Câmera IP para detectar

posição do acidente

Sistema de

gerenciamento de

medicamentos

Central de

Processamento Intel

Galileo

Monitoramento de

vazamento de gás

Figura 3: Diagrama de alto nível do projeto

33

1.3. Objetivos

 Este trabalho foi idealizado de forma a cumprir três objetivos principais:

Fomentar o uso tecnologias distintas para o desenvolvimento de um sistema de

auxílio a saúde do idoso, apresentando todas as etapas e configurações realizadas

oferecendo a base para futuros desenvolvedores desta temática.

Apresentar um sistema tecnológico atual que possa contribuir para a supervisão da

qualidade de vida das pessoas, em especial idosos, permitindo que eventuais problemas

possam ser detectados automaticamente além de auxiliar em tarefas como a ingestão de

remédios e do controle de reserva destes.

Para alcançar os objetivos principais, foram estipulados objetivos secundários para

servir de base e direcionamento do projeto principal:

1 – Desenvolver aplicações utilizando a placa de desenvolvimento Intel Galileo;

2 – Apresentar funcionalidades e configurações utilizadas no projeto em forma de

tutorial, com a finalidade de contribuir para futuros projetos que se utilizem desse sistema;

3 – Estudar e apresentar uma forma de comunicação entre o Arduino e o sistema

operacional embarcado;

5 – Utilizar diferentes plataformas, linguagens de programação, sistemas de

comunicação e sensores, bem como a comunicação entre estes;

 4 – Apresentar e utilizar dispositivos transdutores, assim como princípios de

funcionamento e aplicabilidade destes;

 5 – Implementar formas de comunicação entre os módulos e envio de mensagem

de texto de alerta ao celular do responsável;

 6 – Apresentar a viabilidade técnica de um sistema de indicação do medicamento

a ser ingerido;

7 – Realizar testes individuais de funcionamento e posteriormente a integração de

todo o projeto culminando em um protótipo funcional;

34

1.4. Justificativas

O desenvolvimento deste projeto apresenta-se como uma solução tecnológica para

auxiliar e monitorar a saúde do idoso. Atualmente existem alguns projetos similares [9, 10],

mas que se destinam a um público alvo diferente, ou que não apresentam todas as funções

que o sistema proposto oferece, em função do uso de sistemas embarcados, bem como

aplicação de conceitos de Internet das Coisas (IoT) [11].

O projeto apresentado em Sistema Detector de Quedas (SDQ) [9] e monitoramento

de quedas para pessoas com deficiência motora [10] propõe uma solução de detecção de

quedas utilizando acelerômetro e em [9] a implementação com o envio de mensagem por

SMS. Diferentemente das soluções apresentadas, este projeto, utiliza além do

acelerômetro, um barômetro que permite redundância (por sistemas distintos) na detecção

de quedas. Este trabalho também permite o acesso remoto a câmeras IP, agilizando a

identificação da gravidade do ocorrido. Além desse sistema, este projeto também abrange

a detecção de possíveis vazamento de gás e de gerenciamento da ingestão de

medicamentos. Outro diferencial é apresentado por utilizar mensagens de celular por meio

do aplicativo WhatsApp, que garante redução de custos, quando comparado ao envio de

SMS.

Devido a longevidade alcançada, principalmente nos países desenvolvidos, um

sistema de auxílio ao idoso torna-se cada vez mais útil. A solução tecnológica proposta

permite que o idoso tenha liberdade em manter seus afazeres em sua casa ao mesmo

tempo em que garante tranquilidade ao responsável que será avisado caso o idoso sofra

algum acidente ou haja algum potencial risco como vazamento de gás ou falta de

medicamento.

A viabilidade deste projeto decorre do atual cenário tecnológico disponível, com

sistemas embarcados e sensores que fornecem um campo de desenvolvimento ágil e

versátil. Permitem, portanto, a elaboração de protótipos dedicados a soluções de problemas

observados no cotidiano.

A proposta deste trabalho é de grande importância, pois apresenta uma aplicação

tecnológica original que busca contribuir para saúde da população mais idosa. Este trabalho

poderá ser utilizado como base para elaboração de um produto que contribuirá para a

manutenção da saúde e integridade física do idoso.

35

1.5. Organização do Trabalho

 Este projeto contempla o uso de diversas ferramentas e componentes detalhados

ao longo deste trabalho. Dessa forma, inclui-se neste trabalho todo o processo de

aprendizagem, desenvolvimento, escolhas e configurações dos dispositivos e ferramentas

utilizados. Para contemplar todas as etapas de projeto, este trabalho apresenta o

embasamento teórico, desenvolvimento e resultados de cada módulo. Posteriormente é

apresentado o resultado da integração do sistema e a conclusão. Para atingir esse objetivo

esse trabalho está disposto em 5 capítulos, incluindo essa introdução, disposto conforme a

descrição que segue:

Capítulo 2: Introduz os conceitos e fundamentos teóricos que serviram de base para

o desenvolvimento do projeto. Divide-se este capitulo em cada módulo e ferramenta

utilizada.

Capítulo 3: Em materiais são apresentadas as definições de projeto, isto é, as

ferramentas utilizadas para o desenvolvimento do projeto. Em método é apresentado todo

o desenvolvimento do projeto, incluindo testes individuais, elaboração de algoritmos e

procedimentos. Neste capitulo, descreve-se a implementação de cada módulo, preparando-

o para compor o projeto final.

Capítulo 4: São apresentados os resultados e considerações de cada módulo

abordado no Capítulo 3.

 Capítulo 5: Conclusão do projeto, é o capitulo em que são detalhados os conceitos

e lições aprendidos no desenvolvimento do projeto. Neste capitulo também são

apresentadas as possibilidades tanto da evolução do projeto como também de derivações

deste.

36

37

2. Embasamento teórico

Nesta seção serão apresentados os tema e linhas de pesquisa e desenvolvimento

que foram utilizados como base para o desenvolvimento do projeto.

2.1. Sistemas embarcados

Sistemas embarcados consistem em uma combinação de Hardware, Software e

possíveis componentes adicionais (mecânicos), desenvolvidos para a execução de uma

função dedicada [12], [13]. Esses sistemas computacionais aplicados diferem de sistemas

computacionais de propósito geral, como computadores pessoais (PC – Personal

Computer) ou supercomputadores, apresentando maiores limitações de funcionalidade de

hardware e de software [14], [15].

O adjetivo embarcado reflete o fato de esses sistemas serem usualmente parte

integrante de um sistema maior. No entanto, apesar de muitos sistemas embarcados

poderem coexistir em um sistema, eles podem, por si só, representar o sistema completo e

operarem individualmente [12].

O uso de sistemas embarcados vem aumentando drasticamente em nosso dia-a-

dia de forma não imaginada nas décadas passadas, sistemas embarcados estão

transformando o modo de vida, trabalho e diversão das pessoas [12], [15].

Atualmente, é difícil encontrar na vida diária segmentos que não envolvam sistemas

embarcados de alguma forma. Eles estão espalhados em diferentes áreas como indústria

automotiva, eletrônica de consumo, aviônica, controle industrial, instrumentos médicos e

dispositivos de rede (hubs, gateways, roteadores etc.) [15].

2.1.1. Arduino

Os Arduinos são módulos de desenvolvimento de código aberto que se baseiam em

hardware e software flexíveis. O Arduino possui uma vasta comunidade na internet com

bibliotecas prontas para diversas aplicações, o que agiliza e facilita a criação de projetos.

Existem diversas placas Arduino que matem um padrão de conexão compatível com

shields. Shield é Hardware específico e dedicado que seguem o padrão Arduino de conexão

e podem ser conectados a placa base Arduino.

Para a programação, a plataforma Arduino fornece um ambiente de

desenvolvimento integrado (IDE) baseado no processamento do projeto que inclui suporte

para as linguagens de programação C, C++ e Java.

38

O uso das bibliotecas prontas pode reduzir o desempenho do sistema uma vez que

gera um nível de abstração elevado. Em alguns projetos essa velocidade pode ser crítica e

nesse caso é necessário programar em baixo nível criando rotinas dedicadas e otimizadas

a aplicação.

2.1.2. Sistemas embarcados para instrumentação

Na década de 90 o pesquisador Mark Weiser, do centro de pesquisa da Xeroz em

Palo Alto, lançou o conceito de Computação Ubíqua (também conhecido como Computação

Pervasiva). Neste conceito ele prevê uma nova tendência nos sistemas computacionais,

inicialmente baseados em mainframes e posteriormente nos computadores pessoais, na

qual os computadores estarão de tal forma embutidos no ambiente que os usuários terão

uma interação com estes sistemas de uma maneira muito mais natural do que a atual. Uma

das metas da Computação Ubíqua é habilitar dispositivos que permitam perceber as

mudanças do ambiente e automaticamente se adaptarem a atuarem baseados nestas

mudanças e nas necessidades e preferências do usuário. Esta tendência tem se tornado

realidade graças ao avanço tecnológico nas mais diversas áreas como: computação

distribuída, redes de sensores, interface homem-máquina, computação móvel, entre outras

[16].

2.2. Sistemas operacionais

Os sistemas operacionais surgiram com o desenvolvimento da computação, como

base para sistemas computacionais, promovendo desenvolvimentos mais modulares e a

abstração entre hardware e código de aplicação [12].

Segundo Noergaard [14], sistemas operacionais (OS’s) são um conjunto de

bibliotecas de software que atendem dois propósitos principais:

 Prover uma camada de abstração, tornando o software mais independente do

hardware, facilitando o desenvolvimento do software de aplicação.

 Gerenciar os vários recursos de software e hardware garantindo confiabilidade e

eficiência na operação do sistema.

2.3. Sistema operacional embarcado – Linux (Software)

Os sistemas operacionais embarcados estão se popularizando devido ao avanço

tecnológico que permite grande poder de processamento e dimensões reduzidas. Segundo

os dados de 2006, 71% dos sistemas embarcados utilizam um SO, RTOS (Real-Time

Operating System) ou kernel. Este fato é compreensível, visto que, de acordo com a

39

pesquisa, a maioria dos participantes utiliza microprocessadores de 32 bits, os quais se

adequam melhor a sistemas operacionais (54%) [15].

Entre os principais motivos para o uso de sistemas operacionais estão a

necessidade de gerenciamento de multitarefas, exigências de processos em tempo real,

velocidade no desenvolvimento, modularidade, reuso e robustez são apontados como

fatores decisivos na escolha pela utilização de um sistema operacional [15].

Nesse aspecto o Linux tem se destacado por tratar-se de um sistema aberto

permitindo alterações e desenvolvimento de projetos com o auxílio do mesmo. O Linux

também possui grande número de adeptos, proporcionando maior segurança no

desenvolvimento de novos projetos à medida em que possíveis empecilhos ou desafios

podem já ter sido enfrentados e solucionados por outros usuários.

2.4. Internet das coisas (IoT)

A Internet das Coisas ou Internet of Things (IoT), em inglês, é um termo utilizado

para descrever um paradigma tecnológico no qual os objetos físicos estão conectados em

rede e são acessados por meio da Internet.

Uma “Coisa”, no contexto da Internet das Coisas, é um objeto conectado que pode

ser, por exemplo, uma pessoa com um monitor cardíaco, um animal rastreado em uma

fazenda, um tanque industrial com sensores de nível, um carro com sensores que avisam

a pressão dos pneus, uma lâmpada de iluminação pública de uma cidade, uma tomada em

sua casa ou qualquer outro objeto natural ou construído pelo homem.

Atualmente as tecnologias de Internet das Coisas envolvem dispositivos conectados

à aplicações por meio da Internet.

A Internet das Coisas possui várias tecnologias em comum com as tecnologias de

comunicação machine-to-machine (M2M), usual em produtos industriais, de medição de

energia, água, gás e óleo. Entretanto, o conceito de Internet das Coisas vai além da

comunicação M2M pois propõe um futuro no qual todos os objetos estão conectados e

comunicando-se de forma inteligente. Em outras palavras, o mundo físico com a Internet

das Coisas dá origem a um grande sistema de informações [17].

40

Figura 4: Representação da aplicação do conceito de internet das coisas [17]

2.5. Instrumentação

O conceito de internet das coisas tem por objetivo integrar objetos físicos em uma

rede e disponibilizar acesso a estes por meio da internet. Nesse aspecto o uso de transdutor

é fundamental para a conversão da grandeza de interesse em sinais mensuráveis e

amostráveis. Atualmente existem diversos tipos de transdutores como os transdutores

mecânicos (relógios comparadores e extensômetros), elétricos (resistivos, indutivos, etc.),

acústicos (transdutores de corda vibrante), ópticos (mira telescópica, interferometria a laser,

etc.), entre outros.

2.5.1. Transdutor – Acelerômetro

Os acelerômetros são sensores ou transdutores que medem acelerações. A

aceleração é uma medida da variação da velocidade no tempo e pode ser obtida segundo

uma, duas ou três direções, utilizando acelerômetros uni, bi ou triaxiais, respectivamente.

Tipicamente, os acelerómetros são constituídos por uma massa de reação suspensa por

uma estrutura estacionária. Este aparelho pode ser visto como um transdutor massa-mola,

que se encontra no interior de um sensor. Sempre que este acelera, a inércia faz com que

a massa resista. A força exercida pela massa é equilibrada pela mola e, como o

deslocamento permitido pela mola é proporcional à força aplicada, a aceleração do corpo

é proporcional ao deslocamento da massa. A magnitude da aceleração aplicada é vista, por

instrumentos ou circuitos, como um impulso elétrico. O impulso eléctrico é depois

processado por circuitos externos, podendo ser usado em inúmeras aplicações. Pode-se

utilizar acelerômetros para medir não apenas acelerações (dinâmicas), como também

41

inclinação, rotação, vibração, colisão e gravidade (acelerações estáticas), constituindo

assim um aparelho de elevada utilidade para projetos na área da eletrônica e robótica [18].

2.5.2. Transdutor - Pressão barométrica

Um sensor de pressão piezoresistivo consiste de uma fina membrana de silício

monocristalino suportado por uma espessa borda de silício como mostra a Figura 5.

Figura 5: Desenho esquemático de um Sensor de Pressão Piezoresistivo.

No sensor o diafragma atua como um amplificador de stress mecânico. O Silício não

é usado apenas como um substrato para difusão de piezoresistores, é também um material

elástico e, por isso, utiliza-se a Lei de Hooke para relacionar as tensões e as deformações

no diafragma. Quando uma pressão é aplicada sobre o dispositivo, o fino diafragma se

curvará para baixo ou para cima, indicando tração ou compressão nos piezoresistores. A

mudança de resistência causada por este stress pode ser facilmente medida [19].

2.5.3. Transdutor de Gás (GLP)

Os sensores de gás GLP comumente utilizados são sensor semicondutor de dioxido

de estanho (SnO2). Este sensor apresenta menor condutividade em ar puro. Quando

exposto a um local com gás GLP sua resistência aumenta. Dessa forma, um simples circuito

eletrônico é capaz de detectar as variações de tensão provenientes da variação da

resistividade do material

42

2.5.4. Instrumentação via web

Um sistema de instrumentação e medida por aquisição de dados pode ser definida

como o conjunto de dispositivos que compõe uma cadeia pela qual os sinais físicos (de

acordo com as suas características no tempo e na frequência) podem ser medidos, graças

à sua conversão para sinais elétricos e, posteriormente para o formato digital adequado à

apresentação e processamento em um sistema computacional [20] [21]. Obviamente, esta

é uma definição moderna deste tipo de sistema, decorrente de uma série de avanços

tecnológicos que diretamente ou indiretamente mudaram o conceito de instrumentação.

Desses avanços pode-se destacar as tecnologias de conversão analógico-digitais, a

popularização da presença dos computadores pessoais em sistemas de instrumentação.

Nesse sentido, a Internet surge como interface de acesso remoto e disseminação de

sistema embarcados dedicados à instrumentação, cada vez mais populares devido à

redução dos custos dos dispositivos microeletrônicos e ao emprego de novas tecnologias

de comunicação sem fio.

Dentro desse contexto surge um novo paradigma de sistemas de instrumentação

baseado no conceito de Instrumentação Virtual, que pode ser definido como um sistema

composto por um computador pessoal qualquer, um software dedicado à instrumentação e

placas de aquisição de dados com seus respectivos drivers [22].

2.6. Visão computacional

O processamento digital de imagens envolve processos cujas entradas e saídas são

imagens e, além disso, envolve processos de extração de atributos de imagens até e,

inclusive, o reconhecimento de objetos individuais [23]. O processamento de imagens é

composto por diversas fases. Estas fases estão apresentadas no diagrama de Figura 6.

43

Figura 6: Diagrama de fases do processamento de imagens [23].

A primeira fase, aquisição da Imagem Digital, é caracterizada pelo uso de

dispositivos físicos dotados de sensores sensíveis a certos espectros de energia

eletromagnética e, posteriormente, digitalizar o sinal elétrico obtido. O Pré-processamento

é a fase onde são realizadas transformações sobre a imagem visando um melhoramento

na imagem para o sucesso das etapas posteriores. Este melhoramento pode ser obtido,

por exemplos, realçando contrastes ou reduzindo ruídos. A segmentação é responsável por

dividir a imagem em regiões disjuntas com algum significado para a aplicação, esta fase é

totalmente dependente do domínio do problema. Na etapa da caracterização (ou

descrição), procura-se extrair características das regiões segmentadas que tenham

relevância para o processo. Por fim, a classificação, é o processo que identifica a imagem.

2.7. Comunicação Wireless

Torna-se cada vez mais popular e aplicado o conceito de conectividade dos

equipamentos. Sua conectividade deve permitir a integração de equipamentos sem o uso

de cabos que os limitam e dificultam sua instalação. Nesse sentido, a comunicação sem fio

(wireless) é almejada na maioria dos projetos.

A LAN sem fio (WLAN ou Wi-Fi) é um sistema de transmissão de dados projetado

para fornecer acesso à rede independente de localização entre dispositivos de computação,

utilizando ondas de rádio em vez de uma infraestrutura de cabo.

A aceitação generalizada de WLANs depende da padronização da indústria para

garantir a compatibilidade e confiabilidade do produto entre os vários fabricantes.

44

A especificação 802.11 [24] como um padrão para redes sem fio foi ratificada pelo

Instituto de Engenheiros Elétricos e Eletrônicos (IEEE) no ano de 1997. Esta versão de

802.11 prevê 1 Mbps e 2 Mbps taxas de dados e um conjunto de métodos de comunicação

fundamentais e outros serviços. Como todos os padrões IEEE 802, os padrões 802.11 foca

os dois níveis inferiores do modelo ISO, a camada física e da camada de enlace (Figura 7).

Qualquer aplicativo LAN, sistema operacional de rede, protocolo, incluindo TCP / IP e Novell

NetWare, será compatível com a WLAN 802.11.

A principal motivação e beneficiar de LANs sem fio é o aumento da mobilidade dos

usuário e dispositivos conectados à rede.

Figura 7: Camadas da Comunicação Wireless

As outras vantagens para WLAN incluem configuração de rede de baixo custo para

locais de difícil fio tais como edifícios mais antigos e estruturas de parede sólida e reduzido

custo de propriedade, especialmente em ambientes dinâmicos, exigindo modificações

frequentes, graças a cablagem e instalação de custos mínimos por dispositivo e usuário.

WLANs liberta os usuários da dependência de acesso hard-wired para o backbone da rede,

dando-lhes a qualquer hora, em qualquer lugar de acesso à rede. Esta liberdade para

45

vaguear oferece inúmeros benefícios para o usuário para uma variedade de ambientes de

trabalho.

2.8. Comunicação GSM

O GSM (sistema global de comunicações móveis) é o sistema de telecomunicações

móveis de maior sucesso no mundo digital de hoje. Ele é usado por mais de 800 milhões

de pessoas em mais de 190 países [25].

 O GSM especifica diferentes mecanismos de transmissão de dados, o GSM original

permite a comunicação utilizando taxas de dados de até 9600 bits/s para serviços que não

incluem áudio.

Uma característica fundamental do sistema GSM é a localização automática,

mundial de usuários. O sistema detecta a localização do atual do usuário e o mesmo

número de telefone é válido em todo o mundo. Para fornecer este serviço, GSM realiza

localização periódica e atualiza mesmo se um usuário não usa a estação móvel (desde que

o MS (Mobile Station) ainda esteja conectado à rede GSM e não esteja completamente

desligado). O HLR (Home Location Register) sempre contém informações sobre a

localização atual (apenas a área de localização, não a localização geográfica precisa), e o

VLR (Visitor Location Register), atualmente responsável pelo MS, informa ao HLR sobre

mudanças de local. Assim que uma MS se move para o intervalo de uma nova VLR (uma

nova área de localização), o HLR envia todos os dados necessários para a nova VLR [25].

46

47

3. Materiais e métodos

A organização deste trabalho bem como o método de abordagem do estudo dos

blocos constituintes do trabalho serão apresentados e detalhados individualmente.

Posteriormente será apresentado os resultados da integração dos módulos.

3.1. Materiais

Nessa seção serão apresentados os materiais utilizados e estudados no

desenvolvimento do projeto, evidenciando suas características.

3.1.1. Placa de Desenvolvimento Intel Galileo (Hardware)

A placa de desenvolvimento Intel Galileo é uma placa de microcontrolador baseado

no “Intel Quark SoC Processor X1000”. Contém um processador Intel Pentium de 32 bits e

é a primeira placa baseada na arquitetura Intel projetada para ser compatível com

hardware, software e shields Arduino Uno R3. Possui pinos digitais 0-13, entradas

analógicas 0-5, conexões ICSP, e os pinos da porta UART (0 e 1). Todos os pinos são

posicionados de acordo com o padrão Arduino 1.0 de conexão.

O Galileo foi projetado para suportar shields que operam em 3.3V ou 5V. A tensão

de funcionamento do núcleo do Galileo é 3.3V. No entanto, um jumper na placa permite a

alteração de tensão para 5V nos pinos de I/O, isso fornece suporte para shields Uno de 5V.

Ao mudar a posição do jumper, pode-se operar com 3.3V nos pinos de I/O.

O Galileo também é compatível com o Arduino Software Development Environment

(IDE), o que torna seu uso um processo fácil e dinâmico. Além de hardware Arduino e

compatibilidade de software, o Galileo tem vários padrões da indústria PC, portas I/O e

recursos para expandir o uso nativo e capacidades para além da base Arduino. O Galileo

possui slot mini-PCI Express de tamanho completo, porta 100Mb Ethernet, slot Micro-SD,

porta serial RS-232, porta USB Host, porta USB device, e 8Mbyte de memória flash de

fábrica na placa[26]. As Figura 8a e 4b apresentam as vistas superiores e inferiores da

placa de desenvolvimento Intel Galileo. A Figura 9 apresenta um diagrama esquemático da

placa, identificando seus periféricos.

48

a) Vista superior

b) Vista inferior

Figura 8: a) e b) são imagens da placa Intel Galileo (Gen1) [27].

Figura 9: Esquemático da placa [6]

Na seção seguinte (Conexões) será apresentada uma visão geral dos conectores e

peças que cercam o processador Quark para formar o módulo de desenvolvimento Intel

Galileo.

 Conexões:

A Figura 10 apresenta em destaque todas as conexões disponíveis na parte superior

da placa Intel Galileo. Na parte inferior, há slot para Mini PCIe.

49

Figura 10: Visão geral dos conectores e peças que cercam o processador Quark para formar o Galileo
[28].

A parte superior da Galileo é o lugar onde estão a maior parte das conexões:

 Ethernet - Conecta o Galileo a LAN 10/100 Mb/s.

 RS-232 – Utiliza um conector de 3,5 milímetros, sendo necessário um cabo com

conexão P2 (comumente utilizado para áudio)

 USB Device – Utilizado para conexão com computador para programação do

Galileo como Arduino.

 USB 2.0 Host - Este suporta uma interface com dispositivos USB, como teclados,

dispositivos de armazenamento, etc. Com um hub USB, até 128 dispositivos podem ser

conectados a esta porta.

 Possui os conectores padrão do Arduino:

 8 pinos de alimentação (3.3V, 5V, GND, Reset, etc.)

 6 pinos de entrada analógica (A0-A6)

 8 pinos I/O digital header (D0-D7), incluindo UART nos pinos 0/1, PWM nos pinos

3, 5 e 6

 10 pinos I / O digital header (D8-SCL), incluindo os pinos I2C e PWM.

 2x3 pinos header ICSP e SPI.

 Botão de reinicialização - Pressionar este botão irá reiniciar todo o Galileo

(incluindo o Linux). Tempo de boot é cerca de 30 segundos.

 Pin 13 LED - Tal como acontece com a maioria dos Arduinos, o Galileo dispõe de

um pequeno LED (on-board) conectado ao pino 13.

 Botão Reset Arduino - Isto irá reiniciar apenas o Arduino em execução no Galileo.

50

 Cartão μSD - O Galileo suporta até 32GB cartões SD. Este cartão é utilizado para

iniciar a imagem completa do sistema operacional.

 5V In - Este é um conector de 2,1 milímetros jack de centro-positivo para uma fonte

de 5V regulados.

 Memória DRAM: Possui 256 MBytes de memória DRAM, habilitada pelo firmware.

 Memória EEPROM: Possui 11 kByte de EEPROM, que pode ser programado por

meio da biblioteca de EEPROM

 O Intel® Quark SoC X1000

O Galileo possui um processador Quark SoC X1000. Este é um processador de 32-

bit construído sobre a arquitetura x86. O Quark X1000 apresenta as seguintes

características:

 Velocidade máxima de clock de 400 MHz;

 16KB de cache L1;

 512KB SRAM;

 Núcleo único;

 SDIO, UART, SPI, USB, I2C, Ethernet, RTC integrados;

O foco da Quark X1000 é a computação embarcada. É destinado a ter um baixo

consumo de energia (15W), detém, portanto, um processador com arquitetura baseada em

x86 para atender a uma grande variedade de projetos como por exemplo, dispositivos

portáteis, aplicação do conceito de Internet das Coisas (IoT) nos projetos, veículos

autónomos, entre outros.

 Arquitetura: x86 vs ARM

A diferença fundamental entre as arquiteturas ARM e x86 é o tamanho do conjunto

de instruções. A arquitetura ARM apresente o conjunto de instruções RISC (Reduced

Instruction Set Computing). Este conjunto de instruções é mais simples e restrito, é

necessário, portanto, maior conhecimento em programação para o desenvolvimento de

aplicações sofisticadas. Os processadores com arquitetura x86 apresentam o conjunto de

instruções CISC (Complex Instruction Set Computing) que por sua vez apresenta maior

número de instruções o que facilita a implementação dos projetos. Em termos de

processamento, o desempenho dos processadores x86 é melhor, pois um processo que

51

leva um ciclo de clock em um x86, pode levar três em um processador ARM. Entretanto,

um grande conjunto de instruções requer mais hardware e consequentemente há um maior

consumo de energia.

Produtos da Intel Atom e Quark tentar combater o alto consumo de energia. Eles

estão direcionados para o mercado móvel. Mas eles ainda são de arquiteturas x86,

consumindo, portanto, mais energia.

 Resumo elétrico da placa:

A Tabela 1 apresenta o resumo elétrico da placa Intel Galileo. Essas informações

são base para a construção e adequação do projeto.

Tabela 1: Resumo elétrico da placa Intel Galileo

Tensão de entrada 5V

Pinos Digitais I/O 14 (dos quais 6 oferecem saída PWM)

Pinos de entrada analógica 6

Total de Corrente de saída DC em todas as linhas
de I/O

80 mA

Corrente DC 3.3V por porta 800 mA

Corrente DC 5V por porta 800 mA

 Medição de consumo de corrente elétrica dos módulos

Para aferir o valor da corrente dos módulos, foi utilizado o multímetro digital Minipa

– ET-2940.

 Fonte de alimentação utilizada

A fonte de alimentação utilizada, foi uma fonte chaveada genérica modelo ODL-

0520, capaz de fornecer 5V de saída e 2A.

52

3.1.2. Projeto Yocto

O projeto Yocto é um projeto de colaboração de software livre que fornece modelos,

ferramentas e métodos que suportam sistemas customizados baseados em Linux para

produtos integrados, independentemente da arquitetura de hardware [29].

O Yocto inclui em sua arquitetura o build system Poky, que, por sua vez, é derivado

do build system OpenEmbedded. O OpenEmbedded é composto de dois elementos

principais, como mostrado na Erro! Fonte de referência não encontrada.: BitBake e

Metadata. O BitBake é uma ferramenta de build muito flexível mantida pelos projetos Yocto

e OpenEmbedded, comandada pelas instruções presentes no Metadata e com a finalidade

de gerar, entre outros, as imagens finais do sistema de arquivos, kernel, bootloader e SDKs

[30].

Figura 11: BitBake, ferramenta de build mantida pelos projetos Yocto e OpenEmbedded. [30].

3.1.3. Linguagem de programação Python

Python é uma linguagem de altíssimo nível (em inglês, Very High Level Language)

orientada a objetos, de tipagem dinâmica e forte, interpretada (híbrida) e interativa. Entre

as linguagens dinâmicas, Python se destaca como uma das mais populares e poderosas

[31].

A linguagem interpretada requer outro programa, o interpretador. Esse método tem

uma séria desvantagem em relação ao tempo de execução, que é de 10 a 100 vezes mais

lento que nos sistemas compilados [32]. Isso ocorre devido a decodificação das sentenças

em linguagem de máquina. Além disso, independentemente de quantas vezes uma

sentença for executada, ela deve ser decodificada a cada vez.

53

A linguagem híbrida traduz os programas de linguagem em alto nível para uma

linguagem intermediária projetada para facilitar a interpretação. Sistemas de

implementação híbridos são mais rápidos do que a interpretação pura porque as sentenças

da linguagem fonte são decodificadas apenas uma vez [32].

Deve-se considerar, contudo, que as linguagens interpretadas ou híbridas

apresentam desempenho inferior a uma linguagem compilada. Isto é consequência do

processo de tradução previamente realizado para a linguagem de máquina. O compilador

é capaz de fazer otimizações significativas nesse processo de tradução para linguagem de

máquina.

No projeto apresentado optou-se pela utilização de Python por ser uma linguagem

hibrida e por apresentar grande facilidade de programação, permitindo a rápida

implementação do sistema proposto. Esta linguagem de programação também possui

grande número de fóruns e bibliotecas que auxiliam no desenvolvimento das aplicações. O

processamento requerido para a aplicação será avaliado no desenvolvimento do projeto.

3.1.4. Biblioteca dedicada à visão computacional – OpenCV

A biblioteca OpenCV foi desenvolvida pela Intel e possui mais de 500 funções [33].

Foi idealizada com o objetivo de tornar a visão computacional acessível a usuários e

programadores em áreas tais como a interação homem-máquina em tempo real e a

robótica. A biblioteca está disponível com o código fonte e os executáveis (binários)

otimizados para os processadores Intel. Um programa OpenCV, ao ser executado, invoca

automaticamente uma DLL (Dynamic Linked Library) que detecta o tipo de processador e

carrega, por sua vez, a DLL otimizada para este. Juntamente com o pacote OpenCV é

oferecida a biblioteca IPL (Image Processing Library), da qual a OpenCV depende

parcialmente, além de documentação e um conjunto de códigos exemplos.

A biblioteca está dividida em cinco grupos de funções: Processamento de imagens,

análise estrutural, análise de movimento e rastreamento de objetos, reconhecimento de

padrões, calibração de câmera e reconstrução 3D.

3.1.5. Câmeras IPs

As câmeras IPs estão se popularizando devido a sua facilidade de uso. Seu

funcionamento independe de um computador local, basta que haja um roteador Wi-Fi no

ambiente a ser instalada. Se este roteador possuir acesso à internet, então, será possível

utilizar de recursos e configurações para visualizar a imagem da câmera IP de qualquer

54

lugar por meio de um computador, smartphone, Iphone, Tablet ou outros que utilizem

navegadores de internet e possuam acesso a esta. Além da facilidade apresenta, as

câmeras IPs ainda permitem rotação de 320º na horizontal e de 120º na vertical [34].

Também apresentam LEDs infravermelho que permitem a captura de imagens em

ambientes escuros. A Figura 12 apresenta a câmera utilizada no projeto proposto.

Figura 12: Câmera IP utilizada no projeto proposto

3.1.6. Transdutores – Acelerômetros ADXL335 e MPU-6050

Para o desenvolvimento do projeto forma analisado dois acelerômetros. A partir de

testes foi constatado o acelerômetro mais indicado para aplicação e este foi integrado ao

protótipo final. As características desejáveis são: alta precisão, alta velocidade de

comunicação, imunidade a ruído.

A primeira das opções de um acelerômetro foi o CI ADXL335 que é um pequeno

acelerômetro, de baixa potência, e capaz de efetuar medidas de 3 eixos com sinal

condicionado a saídas de tensão. A aceleração medidas permite variação de amplitude

mínima em grande escala de ± 3g.

Ele pode medir a aceleração da gravidade estática em aplicações de detecção de

inclinação, bem como aceleração dinâmica resultante do movimento, vibração, ou para o

caso desta aplicação, a medida de choque mecânico. O diagrama de blocos de

funcionamento é apresentado na Figura 13, permitindo observar a saída referente a cada

eixo coordenado [35]. A Figura 14 apresenta o módulo ADXL335 utilizado no projeto.

55

Figura 13: Diagrama de blocos do acelerômetro [35]

Figura 14: Módulo ADXL335 [36]

A segunda opção foi o CI MPU6050 que apresenta saída processada, com

comunicação I²C como mostra a Figura 15.

 O sensor de MPU-6050 contém um acelerômetro e um giroscópio MEMS (Micro-

Electro-Mechanical Systems) em um único chip. Ele é muito preciso, pois ele contém 16-

bits de conversão análgico/digital para cada pino. Captura variações nos eixos x, y, e z de

canal ao mesmo tempo [37]. O módulo Arduino oferece apenas a comunicação I²C-Bus

para fazer a interface.

56

Figura 15: Diagrama de blocos do transdutor MPU6050 [37]

Figura 16: Módulo MPU6050 [38]

Características do Giroscópio do CI MPU6050 [37]

O giroscópio MEMS de eixo triplo no MPU-60X0 inclui uma ampla gama de recursos:

 Saída digital para os eixos X, Y, e Z.

 Sensores de frequência angular (giroscópios) com escalas programáveis pelo

usuário na faixa de ± 250, ± 500, ± 1000, e ± 2,000 °/seg.

 Sinal de sincronismo externo ligado ao pino Fsync suporta imagem, vídeo e GPS

sincronização

 ADCs integradas de 16 bits permitir amostragem simultânea de giroscópios

57

 Viés aprimorada e estabilidade de temperatura.

 Reduz a necessidade de calibração do usuário

 Melhor desempenho de ruído de baixa frequência

 Filtro Passa-Baixa Digital programável

 Giroscópio operacional atual: 3.6mA

 Atual de espera: 5μA

 Fator de escala de sensibilidade calibrado de fábrica

 Auto-teste do Usuário

Características do acelerômetro do CI MPU6050 [37]

O acelerômetro MEMS de eixo triplo em MPU-60X0 inclui uma ampla gama de recursos:

 Saída Digital do acelerômetro de eixo triplo, com um intervalo de escala programável

de ± 2 g, ± 4 g, ± 8g e ± 16g

 ADCs integradas de 16 bits permitir amostragem simultânea de acelerômetros e não

exige multiplexadores externos.

 Acelerômetro atual de funcionamento normal: 500μA

 O modo de baixa energia do acelerômetro apresenta: 10μA em 1.25Hz, 20μA em 5

Hz, 60μA em 20Hz, 110μA em 40Hz.

 Orientação de detecção e sinalização

 Interrupções programáveis pelo usuário

 Auto-teste do Usuário

3.1.7. Transdutor – Barômetro BMP180

Para o projeto apresentado optou-se pela utilização do barômetro BMP180. Este

circuito integrado consiste de um sensor piezo-resistivo. O BMP180 é uma nova geração

de sensores altímetros de alta resolução munidos de interface I²C otimizado para altímetros

e variômetros com uma resolução de 17 cm de altitude. O módulo inclui um sensor de

pressão de alta linearidade, baixa potência e grande estabilidade térmica por possuir sensor

de temperatura para a compensação desta [39]. A Figura 17 apresenta o diagrama de

funcionamento do sensor e sua respectiva comunicação. A Figura 18 apresenta o módulo

BMP180 utilizado no projeto.

58

Figura 17: Diagrama de conexão do módulo BMP180 [39]

Figura 18: Módulo BMP180 [40]

 Considerações:

Tempo: Mudanças de pressão devido ao mau tempo irá afetar suas leituras de

altitude.

Altitude máxima: O BMP180 apresenta altitude máxima de medida de 3000 m.

Altitude mínima: Da mesma forma, este sensor não é adequado para grandes

pressões. O limite superior é de 1100 hPa, que é aproximadamente 152 metros abaixo do

nível do mar.

59

3.1.8. Módulo GSM SIM900

O módulo GSM SIM900 apresenta-se como solução para o envio de mensagem de

texto para o celular do responsável. O uso de um módulo GSM facilita o projeto por possuir

o correto casamento de impedância do circuito, principalmente da parte de transmissão e

recepção de sinais [41]. A Tabela 2 sintetiza as características do módulo Sim900.

Tabela 2: Síntese das características do CI Sim900

Característica Descrição

Alimentação 3,2V ~ 4,8V

Frequências de transmissão

Sim900 Quad-band: GSM 850MHz, EGSM 900MHz, DCS

1800MHz, PCS 1900MHz. Sim900 utiliza a busca pelas

frequências automaticamente.

Potência de transmissão
Classe 4 (2W) para GSM 850 e EGSM 900

Classe 1 (1W) para DCS 1800 e PCS 1900

Dados GPRS
Transferência de dados máxima (GPRS downlink) 85,6 kbps

Transferência de dados máxima (GPRS uplink) 42,8 kbps

CSD Suporte a transmissão CSD

USSD
Suporte a Unstructured Supplementary Services Data

(USSD)

SMS
MT, MO, CB, Texto e modo PDU

Armazenamento de SMS: cartão SIM

Interface SIM Suporte ao cartão SIM: 1,8V e 3V

Antena Externa Sim

Comunicação

Porta serial:

Interface de controle completa com linhas de comando

assíncronas

Frequência de comunicação: 1200bps a 115200bps

Suporte a comandos AT

Porta de Debug

Interface de comunicação DBG_TXD e DBG_RXD

Esta porta pode ser utilizada para debug e atualização do

firmware.

RTC Suporte a RTC

60

A Figura 19 apresenta o módulo de desenvolvimento a ser utilizada no projeto,

munido do CI SIM900.

Figura 19: Módulo GSM

3.1.9. Transdutor - Sensor de gás MQ-2

O sensor utilizado foi o MQ-2. Trata-se de um sensor semicondutor de dióxido de

estanho (SnO2) que apresenta menor condutividade em ar puro. Quando este sensor é

exposto a um local com gás GLP sua resistência aumenta. Dessa forma, um simples circuito

eletrônico é capaz de detectar as variações de tensão provenientes da variação da

resistência do material. O sensor de gás MQ-2 tem alta sensibilidade para GLP, propano e

hidrogênio, também poderia ser usado para metano e outros vapores combustível [42]. A

variação da resistência (
𝑅𝑠

𝑅𝑜
) em função da concentração em partes por milhão das

substâncias sensibilizadoras são apresentados no gráfico da Figura 20.

Figura 20: Variação da resistência em função da concentração de gases [42]

61

Seu nível de detecção abrange de 300 a 10.000 ppm (partes por milhão), ajustáveis

por um potenciômetro na parte de trás do módulo. Um chip comparador LM393 é

responsável por ler as informações do sensor e converter essas informações em sinais para

o microcontrolador.

A tensão de alimentação do módulo é de 5V e a comunicação com o

microcontrolador pode ser feita de duas maneiras: pela saída digital D0 ou pela saída

analógica A0, conforme indicado na Figura 21. Pode-se utilizar a saída digital para atuações

binárias como acionamentos de mecanismos. Já a saída analógica informa o nível de

concentração de gases detectados pelo sensor. Quanto maior a concentração, maior o nível

de sinal na saída analógica A0.

Figura 21: Módulo sensor de gás [43]

3.1.10. Módulo Wi-Fi ESP8266

A seguir será apresentado algumas de suas principais características do módulo

ESP8266 [44]:

 É um System-On-Chip com Wi-Fi embutido;

 Possui conectores GPIO, barramentos I²C, SPI, UART, entrada ADC, saída

PWM e sensor interno de temperatura;

 CPU que opera em 80MHz, com possibilidade de operar em 160MHz;

 Arquitetura RISC de 32 bits;

 32KBytes de RAM para instruções;

 96KBytes de RAM para dados;

 64KBytes de ROM para boot;

 Possui uma memória Flash SPI Winbond W25Q40BVNIG de 512KBytes;

 O núcleo é baseado no IP Diamand Standard LX3

 Fabricado pela Espressif;

 Existem módulos de diferentes tamanhos e fabricantes.

62

Os módulos ESP8266 estão disponíveis atualmente em 12 modelos distintos, sendo

nomeados de ESP8266-01 a ESP8266-12. Os módulos ESP8266-01 a ESP8266-10 tem

por objetivo transmitir dados seriais UART para wireless (Wi-Fi) por meio de conexões

TCP/UDP. O módulo ESP8266-12 utilizado no projeto proposto também é capaz de realizar

esta função, porém, ainda é disponibilizado uma porta com conversor AD utilizado para

realizar a aquisição de dados do sensor de gás.

O modelo ESP8266-01 é o mais comumente utilizado e mais amplamente

comentado até o momento [44]. A principal aplicação deste modelo é de utiliza-lo como

ponte Serial-Wi-Fi, seja com o Arduino, propriamente, seja com qualquer outro

microcontrolador com porta de comunicação serial.

A Figura 22 apresenta o modelo ESP8266-01 e posteriormente é apresentado uma

breve descrição de seus pinos.

Figura 22: Módulo ESP8266 – 01 [45]

 Vcc: Tensão de alimentação 3,3V. Este módulo consome até 300 mA;

 GND: Sinal de Terra GND;

 Tx: Sinal de Tx do módulo, a ser conectado no Rx do microcontrolador

 Rx: Sinal de Rx do módulo, a ser conectado no Tx do microcontrolador

 RST: Sinal de Reset/Restart acionado em nível baixo (GND);

 CH_PD: Sinal de habilitação do chip (chip enable), usado para gravação de

firmware ou atualização. Deve ser mantido em nível ALTO para operação normal;

 GPIO0: Pode ser controlado pelo firmware, e deve ser colocado em nível

baixo (GND) para modo update, ou em nível alto para operação normal;

 GPIO2: I/O que pode ser controlada pelo firmware;

 LED: Quando está ligado, fica aceso em cor Vermelha, e aciona a cor Azul

para indicar atividade. Pisca uma vez para indicar momento de boot.

63

Uma questão relevante sobre o funcionamento deste modulo é o fato de apresentar

um considerável consumo de energia, o que pode ser prejudicial em sistema com

alimentação restrita. A Tabela 2 [46] quantifica o consumo de corrente para cada modo de

operação do módulo.

Tabela 2: Consumo do módulo ESP8266-01 para cada modo de operação.

Modo Típico Unidades

Transmit 802.11b, CCK 1Mbps,

POUT=+19.5dBm
215 mA

Transmit 802.11b, CCK 1Mbps,

POUT=+19.5dBm
215 mA

Transmit 802.11b, CCK 11Mbps,

POUT=+18.5dBm
197 mA

Transmit 802.11g, OFDM 54Mbps, POUT

=+16dBm
145 mA

Transmit 802.11n, MCS7, POUT=+14dBm 135 mA

Receive 802.11b, packet length=1024 byte, -

80dBm
60 mA

Receive 802.11g, packet length=1024 byte, -

70dBm
60 mA

Receive 802.11n, packet length=1024 byte, -

65dBm
62 mA

Standby 0.9 mA

Deep sleep 10 uA

Power save mode DTIM 1 1.2 mA

Power save mode DTIM 3 0.86 mA

Total shutdown 0.5 uA

A Figura 23 apresenta o módulo ESP8266 -12, este módulo disponibiliza 9 portas

de GPIO e um conversor ADC além das funções do Módulo ESP866 – 01 já apresentadas.

Figura 23: Módulo ESP8266 – 12 [47]

64

3.1.11. Arduino Mega2560

O Arduino Mega2560 é uma placa de desenvolvimento com microcontrolador

ATmega2560. Possui 54 canais de entrada/saída, desses, 15 de PWM, 16 entradas

analógicas, 4 portas de comunicação UARTs, oscilador de 16MHz, conexão USB,

alimentação externa, regular de tensão integrado e ICSP header. Esta placa propicia o

rápido desenvolvimento e teste de sensores e demais módulos, pois, é disponibilizado

distintas formas de comunicação (UART, SPI, I²C). Todavia, apresenta como desvantagem

um desempenho reduzido ao se utilizar a programação Arduino pois o uso de bibliotecas

prontas agiliza o processo de desenvolvimento, porém, o maior nível de abstração implica

numa redução de desempenho.

A Tabela 3 apresenta algumas especificações técnicas relevantes para o projeto

[48]. A Figura 24 apresenta a visualização da placa Arduino Mega2560.

Tabela 3: Especificações Técnicas do Arduino Mega2560

Microcontrolador ATmega2560

Tensão operacional 5V

Tensão de entrada (recomendada) 7-12V

Memória Flash 256 kB

SRAM 8 kB

EEPROM 4k

Frequência de clock 16 MHz

Comprimento 101,52 mm

Largura 53,3 mm

Peso 37 g

Figura 24: Arduino Mega2560 [49]

65

 Medição de consumo de corrente elétrica dos módulos

Para aferir o valor da corrente dos módulos, foi utilizado o multímetro digital Minipa

– ET-2940.

 Fonte de alimentação utilizada

A fonte de alimentação utilizada, foi uma fonte chaveada genérica capaz de fornecer

12V de saída e 1A. O módulo Arduino Mega2560 possui regulador de tensão que ajusta a

tensão de entrada para a tensão de 5V, o que justifica a utilização de uma fonte de 12V.

3.1.12. Conversor de Tensão

O módulo Arduino Mega2560 apresenta comunicação com tensão de 5V para nível

lógico alto. Os módulos de barômetro, acelerômetro e ESP8266 requerem comunicação de

3,3V para nível lógico alto, desta forma, fez-se necessário o uso de um sistema de

acondicionamento de sinal. Seu funcionamento se baseia em um divisor resistivo para

aplicações unidirecionais e uso de transistores para aplicações bidirecionais. Seu circuito

esquemático é apresentado no anexo deste trabalho.

Figura 25: Conversor de tensão

3.1.13. Display Touhscreen DWIN

Para permitir futuro desenvolvimento do projeto foi utilizado um display touchscreen

DMT4820M043_02WT da empresa DWIN. Sua escolha ocorreu devido a sua facilidade de

uso e baixo custo. Suas características [50] estão apresentadas na Tabela 9.

Tabela 4: Características do display touchscreen DMT4820M043_02WT

Característica Valor

Tamanho do display 4,3 polegadas (109 mm)

Cores 16 bits (65536 cores)

Resolução 480 x 272 pixels

Área touchscreen 95,0 mm x 53,9 mm

Área display 96,0 mm x 55,8 mm

Tensão 5V

Corrente (display ligado) 210 mA

Corrente (display desligado) 100 mA

Periféricos Buzzer, RTC

66

a) Vista inferior do Display Touchscreen.

b) Display Touchscreen utilizado no projeto

Figura 26: Vista superior e inferior do Display Touchscreen utilizado no projeto

67

3.2. Métodos

Nesta seção serão descritos os métodos empregados no projeto até o

desenvolvimento do protótipo. Cada módulo citado anteriormente foi testado

individualmente, considerando suas particularidades. Os softwares foram implementados

tendo como base técnicas de engenharia de software até sua etapa de teste.

3.2.1. Desenvolvimento utilizando a placa Intel Galileo

A primeira etapa desenvolvida para aplicação da placa Intel Galileo foi garantir o

correto funcionamento do módulo. Inicialmente deve-se atualizar o firmware da placa para

corrigir eventuais problemas de fábrica e garantir que o módulo opere com o melhor

desempenho e integridade. A versão da IDE Arduino recomendada pelo fabricante é

Arduino Software 1.5.3 ou posterior. Entretanto, a versão 1.5.3 (para Microsoft Windows)

apresentou incompatibilidade com o idioma do sistema operacional, sendo necessário

alterá-lo para Inglês. A versão Arduino Software 1.6 corrigiu esse problema e funciona em

qualquer idioma de sistema operacional. Nesta nova IDE, deve-se instalar a placa

acessando o menu “Ferramentas->Placa->BoardManager...” e instalar “intel i586 Boards”.

Com a placa em suas perfeitas condições e atualizada, foi realizado um estudo

sobre as distribuições e versões de Linux disponíveis, atentando-se para aquelas que

dispõem dos programas propostos para o funcionamento do projeto como Python, OpenCV

e que permitem o funcionamento concomitante dos programas Arduino.

Definido a distribuição Linux a ser utilizada, foi realizado e apresentado todos os

procedimentos de configuração da placa como, configuração de rede com IP estático,

Servidor DNS, acesso SSH, Nameserver e apresentada as formas de acesso ao Linux

instalado na placa Intel Galileo.

Para aferir o funcionamento da placa bem como sua interação com câmeras IPs, foi

realizada a implementação de uma página Web (Web Server), utilizando programação

Arduino (Sketch), com a finalidade de se analisar a velocidade e qualidade de exibição das

imagens da câmera por meio de um link PHP.

 Distribuição das imagens Linux disponíveis para Galileo:

Existem várias imagens baseadas em Yocto compiladas para a placa de

desenvolvimento Intel Galileo. A compilação Yocto pode ser ou à base de uclibc ou eglibc.

Ambos são implementações da biblioteca libc fundacional encontrados em sistemas

baseados em Linux embarcado. A uClibc é menor (razão que é padrão - de modo que toda

68

a imagem com firmware UEFI e Grub são instalados em 8 MB de memória flash SPI da

Galileo), enquanto eglibc é maior, com recurso completo e tem maior grau de

compatibilidade com libc.

Geralmente, apenas imagens baseadas em uClibc trabalha com Arduino IDE, com

algumas exceções que serão mencionadas. Imagens baseadas em EGLIBC, por outro lado,

em geral, são mais fáceis de usar quando você quer compilar software Linux, devido a uma

maior compatibilidade com o padrão libc.

Neste projeto foram testados quatro sistemas operacionais (distribuições Linux)

distintos, sendo a versão do Linux Yocto de fábrica, a “Bigger Linux Image” fornecida pela

Intel e definida como a imagem completa, uma versão conhecida como IoTDev Kit Intel e

uma versão alternativa compilada por um usuário com base Debian.

Dentre as opções testadas a que apresentou maior estabilidade e facilidade de

implementação foi a IoTDev Kit. As demais imagens apresentaram algumas limitações ou

dificuldade principalmente na execução de programas com o uso da biblioteca OpenCV. A

imagem IoTDev Kit apresentou o Linux Yocto de forma mais completa, por apresentar os

comandos básicos do Linux e funcionalidades úteis como SSH, Python, Node.js e OpenCV

[28]. Esta imagem também permite o funcionamento da programação Arduino em conjunto

com o Linux.

 Acessando a Galileo

 Existem diversas formas de se acessar o sistema de arquivos Linux da Galileo.

Pode acessar por comunicação serial, ou acessar pela porta USB ou via SSH com IP

dinâmico.

 O acesso por comunicação serial requer o uso do cabo P2/DB9 e de algum

programa de comunicação serial instalado no computador a ser conectado.

 Para acessar o Linux utilizando a plataforma Arduino e a comunicação USB, pode-

se criar um programa (sketch) de interface e posteriormente conectar-se utilizando

programas de comunicação serial. O programa utilizado como exemplo é apresentado no

Apêndice deste trabalho (Algoritmo A - 1).

 Outra forma de acesso ao Linux é por meio de uma conexão SSH, neste caso,

deve-se encontrar o IP dinâmico da placa, para isso, pode-se implementar um programa

Arduino (sketch) para apresentar as configurações de rede, dentre elas o IP dinâmico. De

posse do IP dinâmico, será possível realizar conexão via SSH. No primeiro acesso o usuário

69

é “root” e não há senha. O referido programa é apresentado Apêndice deste trabalho

(Algoritmo A - 2).

 A opção utilizada no projeto foi realizar a primeira conexão por meio da

comunicação utilizando o cabo serial (P2/DB9). Com acesso ao Linux, foi realizado toda a

configuração de rede, alterando o acesso para IP estático. Configurado como IP estático,

todos os demais acessos foram realizados utilizando SSH.

 Configurações de Rede

 A configuração de rede é um pouco diferente da realizada no padrão Linux Debian.

Não existe o arquivo “interfaces”, neste caso é necessário configurar o sistema Connman

conforme se segue.

 Acesse o diretório “/usr/lib/connman/test” e execute “./get-services”. Esse comando

irá informar as configurações da rede, mas a informação que desejamos é o nome do

serviço ethernet descrito nas informações geradas (ethernet_XXXXXXX_cable).

cd /usr/lib/connman/test

./get-services

 Configurando Nameservers

No diretório “/usr/lib/connman/test” execute o comando “./set-nameservers” dessa

forma será informado a sintaxe do comando para configuração (/set-nameservers <service>

[nameserver*]). Foi inserido, portanto, os respectivos dados, por exemplo:

cd /usr/lib/connman/test

./set-nameservers ethernet_c8a030ab323a_cable 143.107.225.6 143.107.182.2
8.8.8.8

 Configurando IP estático

No diretório “/usr/lib/connman/test” execute o comando “./set-ipv4-method”, dessa

forma será informado a sintaxe do comando (./set-ipv4-method <service> [off|dhcp|manual

<address> [netmask] [gateway]]).

Deve-se executar o comando de acordo com suas configurações, por exemplo:

cd /usr/lib/connman/test

./set-ipv4-method ethernet_c8a030ab323a_cable manual 10.235.10.XX
255.255.255.0 10.235.10.1

70

 Configuração Servidor DNS

Para utilizar corretamente o opkg (repositórios) é necessário corrigir o servidor DNS,

para isso acesse o arquivo resolv.conf

vi /etc/resolv.conf

E inclua o endereço dos servidores, para o exemplo foram utilizados os seguintes

endereços:

nameserver 143.107.225.6
 nameserver 143.107.182.2
 nameserver 8.8.8.8

Todavia, a cada reinicialização este arquivo é reescrito, dessa forma para solucionar

essa limitação criei um script de inicialização para configurar automaticamente o servidor

DNS.

 Script de inicialização

O script de inicialização segue um padrão diferente do utilizado no Linux de

distribuição Debian.

Deve-se criar um script de acordo com a função desejada. Para o caso da

configuração do servidor DNS foi criado um arquivo denominado resolv1.conf com a

configuração correta do Nameserver. Ao ser executado esse script exclui o arquivo

resolv.conf e copia o arquivo resolv1.conf alterando o nome para resolv.conf, dessa forma,

como o Linux possui seu sistema de configuração baseado em arquivos, a substituição dos

arquivos resultará na configuração correta do Nameserver.

O script de inicialização foi denominado de copy_ns e salvo em /home/root. A

primeira linha é o cabeçalho indicativo de script. A Linha 2 exclui o arquivo resolv.conf. A

terceira linha copia o arquivo resolv1.conf para o local “/etc/” com o nome de resolv.conf.

Arquivo resolv1.conf

nameserver 143.107.225.6
nameserver 143.107.182.2
nameserver 8.8.8.8

Script de atualização do nameserver denominado de copy_ns:

71

#!/bin/sh
rm /etc/resolv.conf
cp /etc/resolv1.conf /etc/resolv.conf

Após a criação do é necessário transformá-lo em um executável, para isso, pode-se

utilizar o comando Linux “chmod +x”:

Posteriormente deve-se executar o comando “chmod 777” para garantir completa

permissão ao arquivo

chmod +x copy_ns
chmod 777 copy_ns

Nesta etapa o script já está funcionando e para executá-lo e testá-lo basta utilizar

um terminal com o seguinte comando:

./copy_ns
Com o script funcionando foi necessário incluí-lo na inicialização do sistema. Para

isso, foi necessário criar um script de inicialização que executa o script copy_ns quando o

sistema é inicializado. Este script de inicialização deve ser criado no diretório

“/lib/systemd/system”. Para o caso exemplificado, o script de inicialização foi denominado

myscript.service e seu conteúdo é apresentado a seguir:

Script de inicialização denominado myscript.service e salvo no diretório

“/lib/systemd/system”.

[Unit]
Description=Script de inicializacao
After=getty.target

[Service]
ExecStart=/home/root/copy_ns

[Install]
WantedBy=multi-user.target

Neste arquivo é identificado a descrição da inicialização, sua ordem de execução

(neste caso o script deve ser executado depois de getty.target). Também é apresentado o

que esse script deve executar, que para o caso exemplificado é o script copy_ns. Por fim é

indicado que o script deve ser executado para todos os usuários.

72

Após salvar as alterações no script “myscript.service” deve-se executar os seguintes

comandos para inclui-lo na lista de inicializações, iniciá-lo e habilitá-lo respectivamente:

systemctl daemon-reload
systemctl start myscript.service
systemctl enable myscript.service

 Configuração da porta para acesso SSH

Para alterar a porta de conexão padrão 22 é necessário editar o arquivo

“/lib/systemd/system/sshd.socket” modificando o parâmetro 22 para o número desejado na

linha ListenStream.

Para reiniciar o ssh basta utilizar o seguinte comando “systemctl daemon-reload” ou

reiniciar a placa.

3.2.2. Medidas de corrente consumidas pelos módulos

Para realizar a medida da corrente consumida pelos módulos, foi aberto o circuito

de alimentação e medido a corrente na saída da fonte chaveada, utilizando o multímetro

Minipa ET-2940, na escala de Ampere.

3.2.3. Uso de Câmeras IPs.

Para realizar testes com a câmera foi necessário realizar pesquisas sobre comandos

CGI (Common Gateway Interface) [51]. Estes comandos permitem acessar e controlar as

câmeras IPs utilizando comandos por URL. Este conhecimento é fundamental para realizar

o acesso e a aquisição de imagens por meio da linguagem de programação escolhida.

As funcionalidades e acesso a câmera IP disponível foram estudadas e suas

funcionalidades básicas foram testadas e executadas utilizando comandos por URL. Essas

funcionalidades estarão presentes no código Arduino que controlará a câmera.

3.2.4. Estudo e aplicação do OpenCV

Inicialmente os programas foram implementados em um computador para permitir

que os resultados gráficos fossem analisados. Posteriormente os códigos foram portados

para a placa Intel Galileo, porém funções de exibição gráfica foram removidas (funções

como “imshow()” foram removidas da execução do código).

73

O primeiro programa, implementado em computador, aplicou um filtro detector de

borda e exibiu uma imagem original e outra apenas com os contornos. Este processamento

e apresentação de vídeo foi realizado em tempo de execução.

O segundo programa apresentou subtração de imagens e mecanismos para

detecção de movimento e indicação gráfica das regiões que se moveram, permitindo assim,

identificar possíveis ruídos que posteriormente seriam tratados. Este programa serviu de

base para identificação do posicionamento do idoso.

O terceiro programa realizou a mesma função do anterior, porém utilizando a

câmera IP e atualizando a imagem de referência para compensar alterações ambientais

que não se configuravam como movimento.

Com o correto funcionamento do programa em um computador este pode ser

migrado para a placa de desenvolvimento Intel Galileo.

Estes desenvolvimentos foram acompanhados de testes de desempenho para aferir

as limitações da placa.

3.2.5. Sistema de detecção de movimento

Para o projeto proposto foi necessário o reconhecimento de movimentos utilizando

câmeras. Para esta finalidade o kit de desenvolvimento Intel Galileo com Linux IoT instalado

apresentou um ambiente favorável ao desenvolvimento por apresenta Python e OpenCV já

instalados. Fora necessário, entretanto, a instalação de outras bibliotecas como a biblioteca

numpy, urlib2, imutils e argparse.

 O primeiro desafio dessa implementação foi a aquisição de vídeo de câmeras IPs

utilizando a biblioteca OpenCV. Inicialmente, exibir e processar vídeo de uma câmera USB

local era simples, bastava utilizar o comando:

camera = cv2.VideoCapture(0)

Em que “camera” era a variável que receberia o vídeo.

Entretanto, contrariando algumas informações disponíveis na internet, não fora

possível obter o vídeo diretamente da câmera IP com o comando citado. Para solucionar

essa limitação foi utilizado um algoritmo para analisar o fluxo de frames sem depender da

biblioteca OpenCV.

74

A solução foi inicialmente implementada em um código mais simples apenas para

abrir e exibir o vídeo da câmera IP em um computador, conforme é apresentado na Figura

27 e no Algoritmo 1.

import cv2
import urllib2
import numpy as np

stream=urllib2.urlopen('http://143.107.235.59:8086/video.cgi?user=usuário&pwd=senha
&url=video.mjpeg')
bytes=''
while True:
 bytes+=stream.read(1024)
 a = bytes.find('\xff\xd8')
 b = bytes.find('\xff\xd9')
 if a!=-1 and b!=-1:
 jpg = bytes[a:b+2]
 bytes= bytes[b+2:]
 i = cv2.imdecode(np.fromstring(jpg,
dtype=np.uint8),cv2.CV_LOAD_IMAGE_COLOR)
 cv2.imshow('i',i)
 if cv2.waitKey(1) ==27:
 exit(0)

Algoritmo 1: Aquisição de imagens da câmera IP

75

Inclusão das bibliotecas

Estabelece comunicação

com a câmera IP

Lê imagem (carrega

matriz da imagem)

Busca byte de inicio (a)

e byte de fim da imagem

(b)

“a” e “b” são valores

válidos?

Cria matriz imagem,

decodifica e apresenta

resultado gráfico

Pressionado “ESC”?

Finaliza programa

Não

Não

Figura 27: Fluxograma referente ao Algoritmo 1 - aquisição de imagens da camera IP

Todos os quadros de jpeg começam com o marcador “0xff 0xd8” e terminam com

“0xff 0xd9” [52]. Assim, o código apresentado em Algoritmo 1 extrai tais quadros do fluxo

de http e decodifica-os individualmente. Após utilizar esse método, foi possível realizar

normalmente o processamento de imagens com a biblioteca OpenCV.

Para estimar o tempo de processamento de construção dos frames foi utilizado o

algoritmo apresentado no Apêndice deste trabalho (Algoritmo A - 3), que apresenta o tempo

decorrido a cada 100 frames processados.

Com o uso da biblioteca OpenCV, foi possível realizar a subtração de frames e

determinado um limiar de alterações nas imagens para identificar que uma pessoa passou

pela câmera. Inicialmente o teste foi realizado em um computador com plataforma gráfica

76

para visualizar o resultado gráfico do processamento da imagem, posteriormente o código

foi portado para a placa de desenvolvimento Intel Galileo. A Figura 29 apresenta o

Fluxograma completo do código implementado. O Algoritmo 4 apresenta o código para

processamento de imagem e detecção de movimento, sendo este, parte do código

disponibilizado no Apêndice deste trabalho (Algoritmo A - 4).

Este código apresentou o resultado da aquisição de uma webcam instalada em um

computador, porém, este pode ser portado para permitir detecção de movimento utilizando

câmeras IP.

Para realizar a aquisição de imagens da câmera IP utilizando a linguagem de

programação Python, é necessário a inclusão da biblioteca “urlib2” e a implementação do

código para estabelecer comunicação com a câmera IP (Algoritmo 2). O Algoritmo 2

apresenta o código de acesso utilizado para aquisição de frames no formato jpeg, neste, é

necessário fornecer o nome de usuário e a senha de acesso a câmera IP.

A detecção de movimento realizada até esta etapa, utilizou subtração de imagens e

análise do resultado dessa subtração. Para tornar o sistema mais eficaz foi necessária a

atualização da figura de referência (“fisrtFrame”). Para suprir essa necessidade, foi incluído

no código a atualização da figura de referência a cada 100 imagens processadas

(Algoritmo 3). O Algoritmo A - 5 apresentado no Apêndice deste trabalho realiza o

processamento de imagens utilizando acesso a câmera IP e detecção de movimentos

atualizando a imagem de referência a cada 100 imagens processadas.

stream=urllib2.urlopen('http://143.107.235.59:8086/video.cgi?user=usuário&pwd=senha
&url=video.mjpeg')
bytes=''

Algoritmo 2: Trecho do código utilizado para aquisição dos dados (frames) da câmera IP

 if cont > 100:
 firstFrame = None
 cont = 0

 if firstFrame is None:
 firstFrame = gray
 continue

 cont = cont+1
Algoritmo 3: Trecho do código incluído no Algoritmo A - 4 utilizado para atualização da imagem de referência a cada

100 frames

77

Figura 28: Fluxograma para do algoritmo para detecção de movimento

Os trechos de códigos utilizado para processamento de imagem estão em destaque

no Algoritmo 4:

78

loop de verificação
while True:
 # Leitura da camera e escrita occupied/unoccupied
 (grabbed, frame) = camera.read()
 text = "Unoccupied"

 # Redimensionamento do quadro, conversão para tons de cinza, aplicado filtro
 frame = imutils.resize(frame, width=500)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 gray = cv2.GaussianBlur(gray, (21, 21), 0)

 # Inicializa a primeira imagem caso esta já não tenha inicializado
 if firstFrame is None:
 firstFrame = gray
 continue
 cv2.imshow("firstFrame", firstFrame)

 # Compara a imagem atual e a imagem salva em firstFrame
 frameDelta = cv2.absdiff(firstFrame, gray)
 thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)

 # Aplica dilatação e posteriormente detecção de contornos
 thresh = cv2.dilate(thresh, None, iterations=2)
 (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)

 # Verificação dos contornos
 for c in cnts:
 # Se o contorno for pequeno, ignore-o
 if cv2.contourArea(c) < args["min_area"]:
 continue
Calcular a caixa delimitadora do movimento, desenhá-la no frame e atualizar texto
 (x, y, w, h) = cv2.boundingRect(c)
 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
 text = "Occupied"

 # Desenha o texto e as informações de data e hora na imagem
 cv2.putText(frame, "Room Status: {}".format(text), (10, 20),
 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
 cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y
%I:%M:%S%p"),
 (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0,
255), 1)
 # Apresenta os resultados gráficos
 cv2.imshow("Security Feed", frame)
 cv2.imshow("Thresh", thresh)
 cv2.imshow("Frame Delta", frameDelta)

Algoritmo 4: Trecho de algoritmo implementado para detecção de movimento.

79

Após aferir o funcionamento do algoritmo, este pôde ser portado para a placa Intel

Galileo. Neste caso, todas as operações gráficas utilizadas para analisar o resultado foram

excluídas do processo de compilação (comentados).

Após esta etapa, o código foi otimizado com a redução de funções de

processamento de imagem e utilização de classes. Para a comunicação entre o algoritmo

de detecção de movimento e o WebServer, foi necessário realizar escrita em arquivos

utilizando a linguagem de programação Python.

A velocidade de comunicação entre o Linux e o Arduino não foi significativo para

atrasos menores que 1 segundo para a aplicação proposta, dessa forma, optou-se pela

utilização desse método de comunicação por registrar o último evento e não depender de

interrupções para ocorrer a comunicação.

O Fluxograma e o algoritmo são apresentados na Figura 29 e no Apêndice

(Algoritmo A - 7) respectivamente. O Fluxograma exibido na Figura 23 é apresentado em

blocos, pois o módulo Threading permite execução concorrente de parte do código. Essa

execução “simultânea” é uma abstração do módulo e da linguagem Python, sabe-se que se

analisado em um nível mais próximo do hardware as execuções são sequenciais devido a

arquitetura do processador.

O Algoritmo 5 apresenta a escrita em um arquivo de texto e armazenamento deste

no cartão SD. O trecho apresentado escreve “Cam01” em um arquivo de texto disponível

no diretório “/media/mmcblk0p1/”.

 for c in cnts:
 if cv2.contourArea(c) < args["min_area"]:
 continue
 arq = open("/media/mmcblk0p1/test.txt", 'w')
 texto = []
 texto.append('Cam01\n')
 arq.writelines(texto)
 arq.close()

Algoritmo 5: Escrita em arquivo indicando a câmera que detectou movimento

80

Inclusão das bibliotecas

Inicialização da classe

Estabelece conexão

através da URL recebida

Escreve no terminal

“camera initialised”

Definição da função

Inicializa stream de

video

Escreve no terminal

“camera stream started”

Definição da função

Retorna status atual da

execução do Thread

Definição da função

Encerra execução da

thread

Função is_running

retorna 1?

Aguarda

tempo

Retorna true

Não

Sim

Definição da função

Estabelece conexão

através da URL

Inicializa Processo

Construção dos argumentos e

threshold de pixel adjacentes para

detectar movimento de 500 pixels

 def __init__(self, url):

def start(self):

def is_running(self):

def shut_down(self):

if __name__ == "__main__"

81

Definição da função

Inicialização das

variáveis

Inclusão das bibliotecas

Estabelece comunicação

com a câmera IP

Lê imagem (carrega

matriz da imagem)

Busca byte de inicio (a)

e byte de fim da imagem

(b)

Busca byte de inicio (a)

e byte de fim da imagem

(b)

“a” e “b” são valores

válidos?

Cria matriz referente a

imagem

Sim

Não

Converte imagem para

escala de cinza

Variável cont > 100

Imagem de referência é

a imagem em cinza

Incrementa contador

Subtrai imagens atual da

imagem de referência e

salva o módulo do

resultado na variável

frameDelta

Aplica filtro com

threshold de 25 num

intervalo de 255

Aplica filtro detector de

contornos

Contorno < 500 pixel?

Abre arquivo no cartão SD e

escreve o número da câmera

que detectou contorno maior

que 500 pixels

Foi pressionado

tecla para finalizar?

(‘ESC’)

Limpa a variável “camera” e

fecha todas as janelas

Sim

Sim

1

1

Não

2

2
Não

Não

2

def run(self):

- Reinicia contador

- Armazena nova

imagem de

referência

Sim

Figura 29: Fluxograma completo de detecção de movimento e escrita em arquivo.

82

O algoritmo apresentado no Apêndice (Algoritmo A - 7) executa o processamento

de imagem e identificação de movimento (posição da pessoa). Para esse exemplo foram

utilizadas duas câmeras IPs disponíveis no laboratório, porém, o sistema pode ser aplicado

em um número maior de câmeras.

De forma análoga ao anterior, esse código armazena uma imagem (frame) e

compara com os frames subsequentes para verificar se houve alteração, para isso, utiliza

subtração de imagem. Essa imagem de referência é atualizada quando o contador atinge

o número de 100 frames de aquisição. Após esse número uma nova imagem é utilizada

como referência. Essa atualização da imagem de referência é necessária para considerar

variações de luminosidade ou mesmo alguma alteração no ambiente, como por exemplo, a

abertura de uma porta. Para evitar que ruídos de imagem sejam detectados como

movimento, foi implementado um limiar de pixels alterados na imagem que determinarão a

identificação de movimento. Neste código esse limiar foi de 500 pixels. Ao detectar

movimento, o código registra a ação armazenando o respectivo número da câmera em um

arquivo de texto.

3.2.6. Envio de mensagem ao responsável

Foram analisadas e implementadas duas formas de comunicação para envio de

mensagem de texto. A primeira foi utilizando o módulo GSM que permite o envio de

informações independentemente da internet. A segunda foi utilizando a biblioteca Yowsup

da linguagem de programação Python.

 Uso do módulo GSM para envio de mensagem de texto para celular do

responsável

O módulo GSM apresenta como vantagem sua independência da internet para o

envio de mensagem. Seu sistema de comunicação não é limitado a uma rede Wi-Fi, mas

abrange todo local com sinal com alcance da empresa telefônica em questão. Sua conexão

a placa de desenvolvimento Arduino Mega2560 é apresentada na Tabela 4. Esta conexão

é necessária além da conexão direta do acoplamento entre o Arduino Mega2560 e o Shield.

Tabela 5: Conexão entre Arduino Mega2560 e Shield GSM

Arduino Mega2560 Shield GSM

Rx1 (Pino 18) Arduino Tx Shield

Tx1 (Pino 19) Arduino Rx Shield

83

Para enviar a mensagem “Arduino SMS” para o número "+55199927779XX" por

SMS, foi implementado o código apresentado em Algoritmo A - 9 (Apêndice).

 Uso da biblioteca Python (yowsup) para envio de mensagem por

WhatsApp [54]

Inicialmente deve-se instalar a biblioteca pip do python. Esta biblioteca é um

sistema de gerenciamento de pacotes Python. Sua usabilidade e funcionalidade é bem

semelhante aos comandos apt-get em sistemas Debian, ou o opkg no Linux Yocto.

Para instalar a biblioteca pip foi realizado o download do mesmo no repositório

(GitHub) e copiado para o cartão SD da Galileo. Posteriormente foi acessado a pasta com

o arquivo setup.py e executado o comando de instalação:

python setup.py install

Após a instalação do gerenciado pip, o pacote Yowsup pode ser instalado pelo

seguinte comando, usando agora o recém-instalado pip:

pip install yowsup2

O sistema do WhatsApp é todo via WebServices, ou seja, não faz uso de ligações

ou mensagens SMS, usa pura e simplesmente a Internet. Mas a título de criar uma chave

de registro única e vinculada a um número de telefone celular válido, o sistema do

WhatsApp envia uma mensagem com um código de cadastro para o número de telefone a

ser utilizado no serviço.

Foi criado um arquivo com as configurações, dados de códigos, chaves e

denominado de whatsapp.config. Este arquivo contém as seguintes configurações:

cc=55 #Brasil coloca 55
mcc=724 # Mobile Country Code do Brasil
mnc=05 # Mobile Network Code da Claro no Brasil
phone=551999514xxxx #Codigo país + DDD + Numero de telefone
id=0000000000 #Deixa assim, sem problema.
password= ########################.

O password é obtido enviando a requisição ao serviço do WhatsApp, dessa forma

deve-se executar o seguinte comando:

yowsup-cli registration -c whatsapp.config --requestcode sms

84

No comando acima, usamos o yowsup-cli, que é um utilitário em linha de comando

da aplicação yowsup. Neste utilitário, são utilizadas algumas funções como a registration,

que dispara as chamadas necessárias para requisitar o código. Juntamente com essa

função, é preciso passar o arquivo de configuração, por meio dos parâmetros -c

whatsapp.config e depois especificar que queremos um código via SMS com os parâmetros

--requestcode sms.

Ao receber o código por SMS, basta registrá-lo no sistema com o comando:

yowsup-cli registration -R XXX-XXX -c whatsapp.config

Após executado o comando acima, obteremos como resposta algumas informações

do status do registro e o password de acesso ao serviço WhatsApp. Este password pode

ser copiado para o campo password no arquivo whatsapp.config.

Nesta etapa o programa enviou corretamente mensagem ao celular ao executar o

comando:

yowsup-cli demos -s 551999277xxxx "Teste Galileo" -c whatsapp.config

Esta funcionalidade será utilizada para enviar uma mensagem de WhatsApp ao

celular do responsável da família sobre um potencial acidente.

3.2.7. Implementação dos acelerômetros

Os acelerômetros ADXL335 e MPU-6050 foram implementados individualmente e

seus resultados analisados afim de identificar o mais indicado para o projeto, isto é, que

apresentasse resposta rápida e que fosse pouco susceptível à ruídos.

 Acelerômetro ADXL335

O Acelerômetro ADXL335 apresentado é pequeno e de simples implementação pois

sua resposta, conforme apresentado no tópico 3.1.6, é analógica. Desta forma, basta

analisar o nível de tensão e definir o limiar de aceleração que indica impacto mecânico.

O código utilizado foi adaptado dos exemplos disponíveis para comunicação entre

o Arduino e este módulo. Sua distribuição é de domínio público. Neste código o threshold

foi de 1.0 V para os eixos x, ou y ou z. Se qualquer destes apresentarem aceleração maior

que este valor, um alarme é acionado. Para o teste em banca foi utilizado um LED

85

sinalizador. A sensibilidade do sensor é de 300mV/g, logo o limiar para acionamento do

alarme foi de 32,7 m/s² o que empiricamente se mostrou um valor aceitável, correspondente

a desaceleração um choque mecânico. Nota que neste código utilizou-se a variação da

aceleração para determinar se houve um choque mecânico. O tempo de análise da iteração

do código foi de 200 milissegundos. Não fora necessário nenhuma biblioteca especifica,

bastou analisar os valores obtidos no conversor AD. O código completo é apresentado no

Algoritmo A - 10 (Apêndice). O Algoritmo 6 apresenta a lógica principal para obtenção dos

valores analógicos e cálculo da variação destes.

A Tabela 4 apresenta as respectivas conexões entre o Arduino Mega2560 e o

acelerômetro ADXL335.

Tabela 6: Respectivas conexões entre Arduino Mega2560 e acelerometro ADXL335

Pinos Arduino Mega2560 Pinos ADXL335

A3 X-OUT

A4 Y-OUT

A5 Z-OUT

void loop()
{
 if(i == 0){
 X0 = analogRead(xpin); // Valor inicial do eixo “x”
 Y0 = analogRead(ypin); // Valor inicial do eixo “y”
 Z0 = analogRead(zpin); // Valor inicial do eixo “z”
 i++;
 }
 else{
 delay(dt);
 X1 = analogRead(xpin); // Valor final do eixo “x”
 Y1 = analogRead(ypin); // Valor final do eixo “y”
 Z1 = analogRead(zpin); // Valor final do eixo “z”
 i = 0;
// Cálculo da variação da aceleração
 dx = abs(X1-X0)/const_conv;
 dy = abs(Y1-Y0)/const_conv;
 dz = abs(Z1-Z0)/const_conv;

// alarme
 if(dx > 1.0 || dy > 1.0 || dz > 1.0){
 set_alarm = 1;
 }
 if (set_alarm == 1){
 digitalWrite(52, HIGH);
 }
 }
}

Algoritmo 6: Trecho para cálculo da variação da aceleração ADXL335

86

Definição das pinos

conversores Analógico/

Digital

Definição das variáveis

Definição da constante

de conversão tensão

aceleração

Inicializa comunicação

serial com 9600 bps

Define Pino 52 como

saída para indicar

alarme de queda

Constrói tabela para

apresentar as variações

dos três eixos

-Lê os valores (iniciais)

analógicos dos três

pinos referente aos três

eixos

-Flag =1

Flag = 0?

(Fez primeira leitura

da aceleração?)

-Aguarda 200 ms

-Lê os valores (finais)

analógicos dos três pinos

referente aos três eixos

-Flag = 0

Calcula a variação entre

as medidas e converte

resultado em volts

Tensão medida em

qualquer eixo é maior que

1 volt?

Aciona alarme

Não

Sim

Sim

1

1
Não

1

Figura 30: Fluxograma de leitura e atuação do acelerômetro ADXL335

87

 Acelerômetro MPU-6050

O acelerômetro MPU-6050, conforme descrito na seção 3.1.6 apresenta saída

processada, com comunicação I²C. O programa apresentado abaixo (Algoritmo 7) também

avalia a variação da aceleração. O limiar de sensibilidade foi avaliado empiricamente (em

testes de bancada) e o resultado obtido foi o valor apresentado no Algoritmo 7. A

implementação completa do código está apresentada no Algoritmo A - 11 (Apêndice).

Tabela 7: Respectivas conexões entre Arduino Mega2560 e acelerômetro MPU-6050

Pinos Arduino Mega2560 Pinos MPU-6050

Arduino Ground MPU GND

Arduino A4 (SDA) MPU SDA

Arduino A5(SCL) MPU SCL

Arduino 3V3 MPU VCC

const int MPU=0x68; // I2C address of the MPU-6050

int AcSensitivity = 10000;
boolean moved = false;

void loop(){
//Estabelecendo comunicação I²C com o dispositivo
Wire.beginTransmission(MPU);
Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H)
Wire.endTransmission(false);
Wire.requestFrom(MPU,14,true);

// Obtendo dados da aceleração
AcX=Wire.read()<<8|Wire.read();
AcY=Wire.read()<<8|Wire.read();
AcZ=Wire.read()<<8|Wire.read();

//Calculando variação da aceleração
dx = abs(AcX - OldAcX);
dy = abs(AcY - OldAcY);
dz = abs(AcZ - OldAcZ);

//Verificando se houve queda ou movimento
if (dx > AcSensitivity || dy > AcSensitivity || dz > AcSensitivity) {
moved = true;
}
if (moved == true) {
Serial.println("MOVED");
}
OldAcX = AcX;

88

OldAcY = AcY;
OldAcZ = AcZ;
moved = false;
delay(100);
}

Algoritmo 7: Leitura e cálculo da variação de aceleração

Definição do endereço

de comunicação I²C com

MPU-6050

Definição das variáveis

Definição do threshold

de sensibilidade da

queda

Inicializa comunicação com

o módulo MPU6050

Inicializa comunicação

serial com 9600 bps

Realiza leitura dos

valores do acelerômetro

e do giroscópio para os

três eixos

Variação de

qualquer dos eixos é

maior que o

thresholhold?

Escreve no terminal

“MOVED”

Calcula a variação da

aceleração entre a

leitura atual e a última

leitura

Atualiza valores:

medida atual passa a

ser medida anterior.

Delay de 100ms

Sim

Não

Figura 31: Fluxograma de leitura e atuação do acelerômetro MPU-6050

89

3.2.8. Implementação do Barômetro

O barômetro BMP180 foi implementado individualmente e seus resultados foram

avaliados afim de comprovar a precisão indicada pelo fabricante, bem como sua

aplicabilidade para o projeto proposto. Suas limitações e susceptibilidade a interferências

externas também foram analisadas.

O módulo BMP180 apresenta como saída a pressão absoluta em pascais (Pa). Um

Pascal é uma quantidade muito pequena de pressão, aproximadamente, a quantidade que

uma folha de papel vai exercer apoiado sobre uma mesa. Dessa forma, a biblioteca Arduino

fornece valores de saída já convertidos com ponto flutuante em hPa.

 Compensação Térmica

A temperatura afeta diretamente a densidade de um gás. A densidade afeta a massa

do gás e este por sua vez altera drasticamente a pressão atmosférica.

Para compensar a temperatura, o BMP180 inclui um sensor de temperatura

bastante preciso, assim como um sensor de pressão. Para obter o correto valor de altitude,

primeiro deve-se tomar uma leitura de temperatura, em seguida, combiná-la com a leitura

de pressão.

 Determinando Altitude

Como a pressão varia com a altitude, este sensor pode usar utilizado para medir a

altitude (com algumas ressalvas).

A pressão média da atmosfera ao nível do mar é 1013,25 hPa (ou mbar). Este cai

para zero à medida que sobe em direção ao vácuo do espaço. Porque a curva deste drop-

off é bem compreendida, você pode calcular a diferença de altitude entre duas medições

de pressão (𝑝 e 𝑝0), usando a seguinte equação:

𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 = 44330 ∗ (1 − (
𝑝

𝑝0
)

1
5,255

)

Em que 𝑝 é a pressão medida e 𝑝0 é a pressão de referência.

Há dois modos de operação:

1. Utilizando a pressão do nível do mar (hPa 1.013,25) como a pressão basal

𝑝0 a saída da equação será a sua altitude atual acima do nível do mar.

90

2. Utilizando uma única leitura de pressão em sua posição atual, e definir este

valor como referencial (𝑝0) todas as leituras de pressão subsequentes resultarão em

relação mudanças de altitude a partir da linha de base.

Neste projeto, como será analisado queda, o modo de operação 2 é mais indicado

por detectar variações a partir de um referencial inicial, compensando algumas variações

naturais da pressão atmosférica que alteram o cálculo da altitude.

A Figura 32 apresenta o fluxograma utilizado para a implementação do programa

disponibilizado no Algoritmo A - 12 (Apêndice).

Tabela 8: Respectivas conexões entre Arduino Mega2560 e barômetro BMP180

Pinos Arduino Mega2560 Pinos BMP180

Arduino Ground BMP180 GND

Arduino A4 (SDA) BMP SDA

Arduino A5(SCL) BMP SCL

Arduino 3V3 BMP Vin

91

Inclusão das bibliotecas

de comunicação I²C e

Adafruit_BMP085

Inicializa comunicação

serial com 9600 bps

Foi estabelecido

comunicação com

BM180?

Apresenta

mensagem de erro

Cria variáveis e atribui

100 a variável média

Calcula média de 100

aquisições do transdutor (já

com as devidas

compensações termicas)

Delay de 1,7s

Variação da

altitude em módulo

foi maior que 0,5m

?

Apresenta resultado

no monitor serial:

queda

Apresenta o valor

das variações de

altitudes no monitor

serial

Sim

Sim

Não

Armazena medida

anterior na variável ‘b’

Não

Figura 32: Fluxograma utilizado para elaboração do Algoritmo 7 - Cálculo da variação da altitude em função da
pressão atmosférica

92

 Observações gerais:

Precisão: O nível de ruído teórico da resolução mais alta é de 0,25 m, embora, na

prática, vemos ruído na ordem de 0,5 m. Esta precisão pode ser melhorada tomando um

grande número de leituras e analisando suas médias, entretanto, isso vai abrandar a sua

taxa de amostra e tempo de resposta. Para o projeto proposto um número muito grande de

amostras irá prejudicar a detecção de uma queda, que se caracteriza pela variação abruta

de altura.

Ambiente aberto: O BMP180 precisa de acesso ao ar ambiente para medir a sua

pressão, desta forma, o local onde ele ficará não deve ser vedado do ambiente

externo. Para o protótipo proposto o BMP180 ficou em ambiente aberto.

Não se deve incidir ventilação diretamente sobre o BMP180: A exposição ao ar

ou vento em movimento rápido pode causar variações de pressão momentânea que vão

afetar suas leituras. Deve-se, portanto, proteger o dispositivo a partir de correntes de ar

fortes.

Mudanças bruscas de temperatura: O componente apesar de possuir

compensação térmica pode apresentar erro de medida se houver mudanças bruscas de

temperatura.

Evitar umidade: O BMP180 é sensível à umidade.

Influência da iluminação: O silício dentro do BMP180 é sensível à luz, que pode

entrar no dispositivo através do orifício no topo do chip. Para máxima precisão, deve-se

proteger o chip da luz ambiente [39].

3.2.9. Módulo ESP8266

Com a finalidade de testar a comunicação entre o módulo ESP8266 e a placa Intel

Galileo, foi implementado um site (Web Server) para acionar um buzzer conectado a placa

Intel Galileo. Como o teste se refere ao funcionamento da comunicação entre o módulo

ESP8266 e a placa Intel Galileo, o sistema com buzzer foi testado com o auxílio de um

botão criado no site que, quando pressionado, enviava a seguinte requisição URL e

acionava o buzzer:

143.107.235.59:8152/?LED2;

Buscando simular este feito, foi implementado no módulo ESP8266 – 01 um sistema

de requisição por meio da URL e testado com o acionamento do buzzer.

93

Neste trabalho foi utilizado o Arduino IDE para gravação dos programas no módulo

ESP8266. Para gravar os programas e atualizar o firmware do módulo é necessário que o

pino GPIO0 esteja previamente aterrado. Este pino pode ser terrado antes da placa ser

energizada ou deve-se utilizar o pino de reset para reiniciar a placa com o pino GPIO0

aterrado conforme Tabela 9.

Para a gravação, utilizou-se um módulo conversor USB->UART.

Tabela 9: Conexão do módulo ESP-01 para gravação

Pino do Módulo ESP-01 Conexão USB UART

VCC 3V3

CH_PD 3V3

GPIO0 GND

GND GND

Tx Rx

Rx Tx

A IDE que oferece suporte a programação do módulo ESP8266 é a versão 1.6.5.

Após abrir esta versão do IDE deve-se acessar o menu arquivo/preferência e inserir a

seguinte URL no campo “Additional Boards Manager URLs”

http://arduino.esp8266.com/stable/package_esp8266com_index.json

Após adicionar a URL deve-se baixar a biblioteca referente ao modulo ESP8266.

Para isso deve-se acessar o menu “Sketch/Include->Library/Manage->Libraries” e

pesquisar e instalar a biblioteca ESP8266.

Após realizar esse processo a biblioteca já estará instalada. Deve-se então,

selecionar o modelo do módulo.

A Figura 33 exibe o fluxograma do Algoritmo A - 13 (Apêndice) implementado no

módulo ESP8266 -01 utilizado para comunicação dos transdutores à placa de

desenvolvimento Intel Galileo

94

Inclusão da biblioteca do

módulo ESP8266

Definição de

identificação e senha da

rede a se conectar

Definição do endereço

host de acesso

Conectou a rede?

Inicializa comunicação

serial com velocidade de

115200 bps

Aguarda 10ms para

inicialização

Conecta-se a rede

presente utilizando

identificação e senha

definidos

Delay de 0,5s

Apresenta no monitor

serial informações da

conexão

Aguarda 10s

Define porta de conexão

do endereço host

Conectou-se como

“client” ao endereço

especificado?

Acrescenta string de

comando à URL

-Envia requisição da

concatenação do endereço

host,porta e string de comando.

-Encerra conexão com o

endereço host

Apresenta mensagem de

conexão terminada no

monitor serial

Está conectado ao

servidor web (host)?

1

1

Sim

Não

Não

Sim

Apresenta resposta do

servidor web no monitor

serial

Sim

Apresenta

mensagem de erro

no monitor serial

2

2

2

Não

Figura 33: Fluxograma do programa do módulo ESP8266 utilizado para comunicação dos transdutores à placa de

desenvolvimento Intel Galileo.

Com o programa apresentado no Algoritmo A - 13 do Apêndice foi possível acionar

um buzzer conectado na placa Intel Galileo, confirmando a correta transmissão de

informações.

95

3.2.10. Módulo ESP8266 para sensor de gás

Neste módulo do projeto foi estabelecida a comunicação entre o módulo Wi-Fi

ESP8266-12 e o Arduino Mega2560. O módulo ESP8255-12 foi utilizado para monitorar o

sensor de gás por meio da leitura de resposta (analógica) do sensor, neste caso, a saída

do sensor será lida pino ADC do ESP8266-12. De forma análoga ao descrito no item 3.2.8,

este sistema acionará o buzzer conectado a placa Intel Galileo por meio de requisição URL.

Para gravar o programa na memória flash, deve-se configurar os pinos de acordo

com a Tabela 9.

O sistema de monitor de vazamento de gás funcionará com o mesmo princípio de

comunicação anteriormente descrito. A diferença é apresentada logo no início do laço

principal do programa. Neste trecho é avaliado se o sensor de gás detectou vazamento por

meio da análise da saída analógica do transdutor. Foi definido um limiar para detecção do

gás. Quando o mesmo é detectado, é enviado um comando (requisição) ao servidor web

com o acréscimo "/?GAS;" na URL. Ao receber essa requisição a placa Intel Galileo se

incumbirá de enviar uma mensagem de texto ao celular do responsável. O programa é

análogo ao apresentado no Algoritmo A - 13 (Apêndice), difere apenas na verificação do

valor analógico e na requisição do comando à URL, as diferenças estão apresentadas no

trecho do Algoritmo 8. O algoritmo completo está apresentado no Algoritmo A - 14

(Apêndice).

96

Inclusão da biblioteca do

módulo ESP8266

Definição de

identificação e senha da

rede a se conectar

Definição do endereço

host de acesso

Conectou a rede?

Inicializa comunicação

serial com velocidade de

115200 bps

Aguarda 10ms para

inicialização

Conecta-se a rede

presente utilizando

identificação e senha

definidos

Delay de 0,5s

Apresenta no monitor

serial informações da

conexão

Define porta de conexão

do endereço host

Conectou-se como

“client” ao endereço

especificado?

Acrescenta string de

comando “/?GAS;” à

URL

-Envia requisição da

concatenação do endereço

host,porta e string de comando.

-Encerra conexão com o

endereço host

Apresenta mensagem de

conexão terminada no

monitor serial

Está conectado ao

servidor web (host)?

Sim

1

1

Sim

Não

Não

Apresenta resposta do

servidor web no monitor

serial

Sim

Apresenta

mensagem de erro

no monitor serial

2

2

Não

Aguarda 10s

Sim

Conversor

Analógico/Digital

apresentou valor acima

do threshold?

Não

Figura 34: Fluxograma do módulo detector de gás

97

void loop() {
 if(analogRead(A0) > 600){
 Serial.print("connecting to ");
 Serial.println(host);

 // Conexão WiFiClient para conexão TCP
 WiFiClient client;
 const int httpPort = 8152;
 if (!client.connect(host, httpPort)) {
 Serial.println("connection failed");
 return;
 }

 // Concatenação da URL
 String url = "/?GAS;";
 Serial.print("Requesting URL: ");
 Serial.println(url);

 // Envio de requisição ao servidor
 client.print(String("GET ") + url + " HTTP/1.1\r\n" +
 "Host: " + host + "\r\n" +
 "Connection: close\r\n\r\n");
 delay(10000);

 // Leitura da resposta do servidor
 while(client.available()){
 String line = client.readStringUntil('\r');
 Serial.print(line);
 }

 Serial.println();
 Serial.println("closing connection");
 }
}

Algoritmo 8: Trecho do algoritmo utilizado para comunicação entre o sensor de gás e a central de processamento Intel
Galileo

O código apresentado no Algoritmo A - 14 (Apêndice) estabelece comunicação com

uma rede Wi-Fi presente no ambiente em que se encontra. Para isso são informados a rede

a qual se deve conectar e a respectiva senha (ssid e password). No programa, o módulo

ESP8266 se conecta à rede e executa a função em um site cujo endereço é armazenado

na variável “Host”.

98

3.2.11. Sistema de alarme e indicação de medicamento

Para este projeto foi utilizada as funcionalidades de programação por meio do

Arduino. A parte de programação é simples por se basear em um sistema de relógio com

alarmes e acionamentos de LEDs nos organizadores específicos.

Além do LED para indicar o compartimento do medicamento, também foi utilizado

um display gráfico para a indicação da pessoa que deverá tomar o medicamento tornando

mais intuitivo a ingestão do remédio e possibilitando a configuração do compartimento por

uma interface touchscreen. Neste protótipo, foi executada inicialmente apenas as

funcionalidades básicas de indicação do compartimento do medicamento, sem a criação de

uma interface amigável para o usuário devido ao tempo restrito de execução do projeto.

Entretanto, esta condição permitirá observar a funcionalidade técnica do dispositivo antes

da aplicação de uma evolução.

A transferência dos arquivos e imagens ao display pode ser realizada por meio de

um cartão SD. Para o controle das imagens foi utilizada a comunicação serial entre a placa

Intel Galileo e o Display. As instruções de comando podem ser obtidas no manual de

usuário do display [55].

O Algoritmo 9, utilizado para validação da viabilidade tecnológica verifica se o

horário e data apresentados são iguais a “05/29/15 22:53”, caso seja, o LED 13 da placa

Intel Galileo Pisca e o comando para acesso a primeira imagem do display é executado. A

Figura 35 apresenta o fluxograma do sistema proposto.

99

Hora atual é o

horário de ingerir

medicação?

Início

Executa comando Linux

por meio do programa

Arduino para gerar

arquivo de texto com

hora e data

Programa Arduino lê o

arquivo de texto gerado

Pisca LED 13

Envia instruções para

indicação da pessoa no

display touchscreen

Figura 35: Diagrama do programa teste para gerenciamento da medicação

100

char buf[15];
void setup() {
 pinMode (13, OUTPUT);
 // initialize both serial ports:
 Serial.begin(115200);
 Serial1.begin(115200);
}

void loop() {
 // read from port 1, send to port 0:
 if (Serial1.available()) {
 char inByte = Serial1.read();
 Serial.print(inByte);
 Serial.write(inByte);
 Serial.print(inByte);
 }

 // read from port 0, send to port 1:
 if (Serial.available()) {
 char inByte = Serial.read();
 system("date '+%D %H:%M:%S' > /home/root/time.txt");
 FILE * fp;
 fp = fopen ("/home/root/time.txt", "r");
 fgets (buf, 15, fp);
 fclose (fp);
 Serial.print ("O momento atual eh ");
 Serial.println(buf);

 String stringOne = String(buf);
 String stringTwo = String("05/29/15 22:53");
 if(stringOne == stringTwo){
digitalWrite (13, HIGH); // set o LED
delay (1000); // esperar por um segundo
digitalWrite (13, LOW); // definir o off LED
delay (1000); // esperar por um segundo
 }
 Serial1.write(0x5A);
 Serial1.write(0xA5);
 Serial1.write(0x04);
 Serial1.write(0x80);
 Serial1.write(0x03);
 Serial1.write((byte)0x00);
 Serial1.write((byte)0x00);
 }
}

Algoritmo 9: Algoritmo utilizado para indicação do medicamento a ser ingerido

101

3.2.12. Integração Placa de desenvolvimento Intel Galileo e Linux

A placa de desenvolvimento Intel Galileo, por possuir todas as características de

processamento citadas na seção 3.1.1., permite o uso de sistema operacional embarcado.

O sistema operacional gerencia os programas Arduinos como um processo Linux,

sendo executado em paralelo aos processos Linux habituais [56]. A Figura 36 exemplifica

o que fora explicado apresentando o resultado do gerenciador de processos do Linux.

Neste, é possível observar a execução do programa Arduino como um de seus processos.

Vale ressaltar, no entanto, que existem diferentes imagens Linux compiladas para

placa Intel Galileo. Também é possível criar a própria distribuição utilizando as ferramentas

apropriadas do Linux Yocto, disponíveis e indicados em seu site [57].

Figura 36: Programa Arduino funcionando como um processo Linux

3.2.13. Comunicação entre os programas Arduino e Linux

Atualmente não é possível alterar os programas compilados pela IDE Arduino por

meio do Linux, todavia, é possível prover a comunicação entre os dois sistemas, permitindo

a integração dos mesmos.

A forma mais eficiente de prover a comunicação entre os dois sistemas é por meio

de comunicação padrão entre processos (IPC) para gerenciar a comunicação entre o

Arduino e os processos nativos. Esta abordagem é uma solução funcional, pois os

102

processos Arduino e Linux compartilham a mesma memória o que permite que qualquer

alteração em um processo seja imediatamente visível a todos os outros processos.

Outra forma de prover a comunicação é utilizando leitura e escrita em arquivos, pois

tanto o Linux quanto os processos Arduinos são capazes de acessar o cartão de memória

SD. Neste processo, basta escrever realizar a leitura e escrita em um mesmo arquivo (tanto

com o processo Arduino quanto utilizando o Linux) para estabelecer a comunicação.

A comunicação padrão entre processos (IPC) é o método mais eficiente dos citados

pois o tempo de acesso a memória RAM é menor que o tempo de acesso a memória Flash.

 A Figura 37 apresenta o fluxograma completo do programa implementado na placa

Intel Galileo para recebimento das requisições e atuação do envio das mensagens de texto

ao celular do responsável. O código implementado é apresentado no Algoritmo A - 15

(Apêndice).

Os Scripts executados são apresentados a seguir:

Script “./gas” executa yowsup para envio de mensagem de texto com a mensagem
“Possivel vazamento de gas detectado”.

#!/bin/sh
yowsup-cli demos -s 55199927779XX " Possivel vazamento de gas detectado" -
c whatsapp.config

Script “./acelerometro” executa yowsup para envio de mensagem de texto com a
mensagem “Choque mecanico detectado”.

#!/bin/sh
yowsup-cli demos -s 55199927779XX " Choque mecanico detectado " -c
whatsapp.config

Script “./barometro” executa yowsup para envio de mensagem de texto com a
mensagem “Reducao brusca de altitude detectada”.

#!/bin/sh
yowsup-cli demos -s 55199927779XX " Reducao brusca de altitude detectada "
-c whatsapp.config

Script “./acel_and_bar.sh” executa yowsup para envio de mensagem de texto com
a mensagem “Perigo possivel queda, verifique o sistema de cameras”.

#!/bin/sh
yowsup-cli demos -s 55199927779XX " Perigo possivel queda, verifique o
sistema de cameras" -c whatsapp.config

103

Inclusão das bibliotecas

- Ethernet

- SPI

- SD

Definição manual do

endereços de IP,

Gateway, subnet e MAC

Define comunicação

serial com 115200 bps

Define os pinos de saída

para acionamento de

LEDs e Buzzer

Inicializa WebServer

Verifica requisições

padrões de clients

Construção da página

web

Criação de botões de

comando/acesso

Buzzer, Leds, GAS, BAR,

ACEL, BOTH.

Enviar cabeçalho padrão

de resposta

Client requisitou

LED1?

-Lê arquivo test.txt salvo

no cartão SD

- Aciona LED no pino 2

Delay 3s

Apaga LED do pino 2

Conteúdo do arquivo

test.txt = 0 ?

Carrega arquivo de texto

test.txt

Exibe no site o vídeo da

câmera IP de número 0

seguido dos vídeos das

demais câmeras.

Conteúdo do arquivo

test.txt = 1 ?

Exibe no site o vídeo da

câmera IP de número 1

seguido dos vídeos das

demais câmeras.

Fecha o arquivo test.txt

Sim

Sim

Sim

Não

Não

Não

1

1

2

Houve requisição do

client?

Sim

Não

104

Figura 37: Fluxograma completo da placa de desenvolvimento Intel Galileo, incluindo comunicação entre o processo

Arduino e o Linux

Client requisitou

LED2?

Aciona LED do pino 3

Delay 3s

Apaga LED do pino 3

Client requisitou

LED3?

Aciona LED do pino 13

(LED já disponibilizado

na placa)

Delay 3s

Apaga LED do pino 13

(LED já disponibilizado

na placa)

Client requisitou

“GAS”?

Executa Script Linux

./gas.sh

Client requisitou

“ACEL”?

Executa Script Linux

./acelerometro.sh

Client requisitou

“BAR”?

Executa Script Linux

./barometro.sh

Client requisitou

“BOTH”?

Executa Script Linux

./acel_and_bar.sh

Fecha Conexão

2

3

3

Não

Sim

Não

Não

Não

Não

Sim

Sim

Sim

Sim

Sim

105

4. Resultados e Discussões

Nesta seção serão descritos os resultados do desenvolvimento do projeto até a

criação de um protótipo. Cada módulo citado anteriormente foi testado individualmente. Na

seção 4.2. (Discussões) são apresentadas as observações obtidas a partir dos resultados,

com foco nas aplicações propostas. A visão geral do projeto, com seus componentes

(Diagrama de alto nível) é apresentado no diagrama de blocos da Figura 38. Na seção

4.12.13 é apresentado o diagrama funcional de cada módulo.

Figura 38: Diagrama de blocos do funcionamento completo do sistema

106

4.1. Resultados

Nesta seção serão apresentados os resultados baseados nos materiais e métodos

utilizados.

4.1.1. Atuação das funcionalidades de Arduino

A placa Intel Galileo apresenta funcionalidade de programação como Arduino

adicionadas as operações com sistema operacional. Para efeito de teste foi criado um

programa utilizando a IDE Arduino funcionando como um Servidor de páginas Web. Nesta

página foi possível controlar funcionalidades da placa por meio desta interface, desde

acionamento de um buzzer ou LED ao acesso e exibição de imagens de uma câmera IP

instaladas no laboratório conforme apresentado na Figura 39. Parte deste teste foi utilizado

no projeto, pois o sistema de visão computacional identifica a posição em que a pessoa

caiu e esta imagem deverá ser a primeira a ser apresentada na página web, agilizando

assim, os primeiros socorros caso seja necessário. A Figura 39 é resultado de uma

requisição de vídeo do Arduino para a câmera IP.

Figura 39: Exibição do site gerenciado pela placa Intel Galileo

107

4.1.2. Uso da biblioteca OpenCV

Conforme apresentado na seção 3.2.4 (Estudo e aplicação da biblioteca OpenCV),

os testes iniciais com o uso do programa OpenCV foram realizados em um computador

com Linux (Ubuntu) e uma webcam conectada a este.

Como resultado simples da utilização da biblioteca OpenCV pode-se observar a

Figura 40 a) e b). Na Figura 40 a) é apresentado a imagem capturada pela câmera utilizando

comandos da biblioteca OpenCV. Na Figura 40 b) é apresentado o resultado da aplicação

de um filtro de borda que detecta alta frequência espacial (variação abrupta dos pixels).

a) Imagem original b) Resultado da aplicação de um filtro detector de

borda

Figura 40: Imagem antes e após a aplicação do processamento de imagem

 A versão de Linux que apresentou melhor funcionalidade com o uso de OpenCV e

Python foi a versão IoT dev Kit da Intel, motivo pelo qual esta foi escolhida. As demais

apresentaram erros ao executar o programa ou não possuíam Python já compilado.

4.1.3. Sistema de detecção de movimentos

Conforme indicado na seção 3.2.5 (Sistema de detecção de movimentos) os

algoritmos propostos para identificação de movimento foram implementados. A Figura 41

apresenta a resposta gráfica para o algoritmo implementado em um computador (Algoritmo

A - 4), sendo obtido a imagem por meio de uma webcam. Este resultado foi utilizado como

base para verificar o funcionamento do algoritmo. Posteriormente este código foi portado

para a placa Intel Galileo.

108

a) Security Feed, imagem resultado apresentada

b) FirstFrame, imagem em escala de cinza e com

aplicação de filtros

c) Thresh, imagem após aplicação da dilatação

d) FrameDelta, apresenta a diferença entre a

imagem atual e a primeira imagem

Figura 41: Resultado do processamento de imagem com o algoritmo apresentado em Algoritmo A – 4
(Apêndice)

A Figura 42 apresenta o resultado do Algoritmo A - 5 (Apêndice) de detecção de

movimento por meio da câmera IP disponível no laboratório. Na “Figura 42 a)” é exibida a

imagem de referência para detecção de movimento (subtração de imagens) e na “Figura

42 b)” é exibida a imagem atual com a inserção do retângulo indicando a região de

movimento.

109

a) Figura de referência

b) Detecção do movimento

Figura 42: Resultado do Algoritmo 2

4.1.4. Desempenho da placa Intel Galileo

Para calcular a velocidade média do processamento das imagens na placa de

desenvolvimento Intel Galileo, foi utilizado inicialmente o código apresentado no Apêndice

(Algoritmo A - 6) e descrito na seção 3.2.5 (Sistema de detecção de movimento). Como

resultado a variação média do tempo retornado foi de 105,4 segundos o que resulta numa

taxa de processamento de aproximadamente 1 fps na placa Intel Galileo.

O programa utilizado para análise de desempenho final está apresentado em

Algoritmo A - 8 (Apêndice) e descrito na seção 3.2.5 (Sistema de detecção de movimento),

este apresentou a variação entre os tempos exibidos de 141,3 segundos, o que equivale a

1,4 fps. O aumento do tempo anteriormente analisado ocorreu devido ao aumento no

número de câmeras, logo, a velocidade por câmera foi de 0,7 fps. A redução no tempo por

câmera foi possível devido a otimização do código Python, utilizando módulos Threading

que gerencia processamento “simultâneo” (em um nível alto de abstração).

A placa Intel Galileo não apresentou poder de processamento suficiente para

aplicações em visão computacional complexas como detecção de aceleração de objetos

na imagem. Observa-se que o sistema em pleno funcionamento para detecção de

movimento utilizando o Algoritmo A - 8 (Apêndice) apresentou uso de 96% da CPU (Figura

43). Parte do programa Arduino é apresentado como um processo Linux e é responsável

pelo consumo de 32% da CPU enquanto que a aplicação de processamento de imagens é

responsável por 64% do uso da CPU, totalizando todo o consumo significativo de

processos. O Sketch utilizado na implementação completa do sistema utilizou 72.971 bytes.

 Em termos de consumo de corrente elétrica, fora medido o valor de 550 mA, apenas

para execução do sistema, sem qualquer periférico conectado à placa.

110

Figura 43: Comando Linux (TOP) para exibir características do desempenho

A página Web criada para realizar testes é apresentada na Figura 44. Quando

acionado o botão LED1, um LED se acende na placa e também é apresentado a imagem

da última câmera que detectou movimento (registrado em arquivo pelo programa em Python

detector de movimento). Os botões GAS, BAR, ACEL, BOTH são respectivamente

utilizados para simular o envio de mensagem por WhatsApp de vazamento de gás, redução

de altura detectado pelo barômetro, choque mecânico detectado pelo acelerômetro e

ambos (redução de altura e choque mecânico detectados). Cada módulo monitor envia uma

requisição para o site apresentado que tem por efeito o mesmo que o acionamento manual

desses botões. Com isso pode-se verificar isoladamente o funcionamento do envio de

mensagem e posteriormente verificar o mesmo automaticamente quando os sensores

foram sensibilizados.

111

Figura 44: Página Web criada para exibir câmera que capturou último movimento e também para interface de

comunicação entre os módulos monitores e o envio de mensagens por WhatsApp

4.1.5. Sistema detector de quedas

A Figura 45 apresenta o resultado do desenvolvimento do sistema detector de

quedas abordado na seção métodos.

Em 1 na Figura 45 é apresentado a placa de desenvolvimento Arduino Mega2560.

Em 2 é apresentado o módulo condicionar de sinais para adequar os níveis lógicos de

comunicação entre os módulos. Em 3 é apresentado o módulo barômetro, responsável

pelas leituras das variações de alturas. Em 4 é apresentado o módulo acelerômetro,

112

responsável por detectar os choques mecânicos característicos de uma queda. Em 5 é

apresentado um LED utilizado para verificar os momentos em que as mensagens de

WhatsApp eram enviadas. Em 6 é apresentado o módulo ESP8266-01 responsável pela

comunicação Wi-Fi e consequentemente pelo envio dos comandos à placa Intel Galileo.

Figura 45: Sistema detector de quedas

 Módulo ESP8266

Para o último programa implementado no módulo ESP8266-01, o sketch usa

294.336 bytes (67%) do espaço de armazenamento para programas. O valor máximo é de

434.160 bytes.

Variáveis globais utilizaram 48.124 bytes (58%) da memória dinâmica, deixando

33.796 bytes para variáveis locais. O valor máximo é de 81.920 bytes.

 Barômetro

Para a aplicação de detecção de queda de uma pessoa, fora constatado que

aumentar o número de aquisições para o cálculo da altura média não apresentou o melhor

resultado, pois, a variação se mantem mesmo para 1000 aquisições e a finalidade do

projeto requer a detecção abrupta dos valores. O melhor resultado empírico, ocorreu para

uma média de 100 amostras e um intervalo de 1,7 após cada resultado da média. Com isso,

a detecção gera um atraso de cerca de 4 segundos. Apesar de ser um tempo considerável,

ainda assim, é aceitável para prestar socorro em caso de acidente. Foi utilizado um

113

threshold de 0,5 metros para indicar uma possível queda. O gráfico apresentado na Figura

46 evidencia a variância obtida para 400 pontos, com o módulo estático. Vale ressaltar que

o ambiente em que o teste foi realizado apresentou variação de temperatura, pois estava

sofrendo ação de ar condicionado, com ventilação e iluminação também variáveis. Apesar

do ambiente não ser controlado, este se assemelha com o ambiente em que se propõe a

utilização do mesmo.

Outro fator a ser considerado do uso do barômetro para essa aplicação é a

existência de degraus ou declives nos ambientes onde o idoso se movimenta. Essa

limitação possui sua ação atenuada pois o sistema detecta a variação da altitude em relação

à última medida e não em relação à altura absoluta. A detecção da variação relativa atenua

problemas em relação a rampas ou declives suaves. Quanto ao uso em ambientes com

degraus ou escada, o sistema pode ser utilizado conjuntamente com acelerômetro,

permitindo detectar choques mecânicos. A mensagem enviada ao responsável indicará

qual sistema foi acionado e caso ambos tenham sido acionados, há uma maior

probabilidade de ter ocorrido um acidente e não ser um falso alarme.

Figura 46: Gráfico da variação da pressão atmosférica e consequentemente altitude para o sensor
posicionado de forma estática

Observações gerais:

Precisão: O nível de ruído teórico da resolução mais alta é de 0,25 m, embora, na

prática, vemos ruído na ordem de 0,5 m. Esta precisão pode ser melhorada tomando um

grande número de leituras e analisando suas médias, entretanto, isso vai abrandar a sua

taxa de amostra e tempo de resposta. Para o projeto proposto um número muito grande de

-1

-0,5

0

0,5

1

0 50 100 150 200 250 300 350 400

V
ar

ia
çã

o
 d

e
 a

lt
u

ra
 e

m
 m

e
tr

o
s

Numero de amostras

Gráfico para análise da variação das medidas

Medidas Coletadas

114

amostras irá prejudicar a detecção de uma queda, que se caracteriza pela variação abruta

de altura.

Ambiente aberto: O BMP180 precisa de acesso ao ar ambiente para medir a sua

pressão, desta forma, o local onde ele ficará não deve ser vedado do ambiente

externo. Para o protótipo proposto o BMP180 ficou em ambiente aberto.

Não se deve incidir ventilação diretamente sobre o BMP180: A exposição ao ar

ou vento em movimento rápido pode causar variações de pressão momentânea que vão

afetar suas leituras. Deve-se, portanto, proteger o dispositivo a partir de correntes de ar

fortes.

Mudanças bruscas de temperatura: O componente apesar de possuir

compensação térmica pode apresentar erro de medida se houver mudanças bruscas de

temperatura.

 Consumo elétrico do módulo

A medida de corrente elétrica foi de 218,3 mA, efetuada conforme apresentado em

materiais e métodos.

4.1.6. Sistema detector de vazamento de gás

O módulo do sistema detector de vazamento de gás é apresentado na Figura 47.

Em 1 é apresentado o sensor de gás GLP, este deve ser alimentado com 5V. Para a

aplicação proposta, foi utilizado a saída analógica do sensor, permitindo assim, maior

controle por meio da programação do valor lido no módulo 3. Em 3 é apresentado o modulo

ESP8266-12 que apresenta conversor analógico-digital integrado. O módulo 3 deve ser

alimentado com 3,3V. Para a adequação das diferentes tensões foi utilizado um divisor

resistivo na interface entre os módulos. O consumo elétrico medido do módulo foi de

200mA.

115

Figura 47: Módulo detector de gás

O sketch usou 294.168 bytes (67%) do espaço de armazenamento para programas.

O valor máximo é de 434.160 bytes. Variáveis globais usaram 48.092 bytes (58%) de

memória dinâmica, deixando 33.828 bytes para variáveis locais. O máximo são 81.920

bytes.

4.1.7. Sistema de auxílio a ingestão de medicamentos

O sistema de auxílio a ingestão de medicamentos apresentou sua viabilidade

técnica, conforme descrito na seção métodos 3.2.11 (Sistema de alarme e indicação de

medicamento). A Figura 48 apresenta a implementação do protótipo do módulo de auxílio

a ingestão de medicamentos. Observa-se que a indicação dos compartimentos pode ser

melhorada utilizando meios que apresentam espalhamento da luz como acrílico ou com a

utilização de mais LEDs indicativos para um mesmo compartimento. Para efeito de

protótipo, bastou observar a correta indicação do compartimento.

Na Figura 48 a) é possível observar em 1 a caixa, exemplo de proposta mecânica

para o projeto. Em 2 é indicado a bateria CR2032 utilizada para manter o correto

funcionamento da data e horário da placa (RTC) cruciais para a aplicação em questão. Em

3 é apresentado a placa Intel Galileo já conectada aos LEDs da caixa. Em 4 é apresentado

um buzzer para acionar o alarme sonoro para indicar que o medicamento deve ser ingerido

(este para maior eficácia deve ser instalado na parte externa da caixa).

Na Figura 48 b) é apresentado a caixa aberta exibindo imagens no display

touchscreen. Esta imagem, para o projeto proposto, exibe a foto da referida pessoa que

deve ingerir o medicamento quando for o horário da ingestão do medicamento, auxiliando

assim, confusões caso haja mais de uma pessoa utilizando o sistema.

116

Na Figura 48 c) é apresentado o acionamento dos LEDs, sendo possível visualizá-

los mesmo com a caixa fechada.

a) Intel Galileo posicionada no módulo de

auxílio a ingestão de medicamentos.

b) Display LCD posicionado acima da placa Intel

Galileo

c) Visualização do compartimento indicado pelo LED mesmo com a caixa fechada

Figura 48: Módulo de auxílio a ingestão de medicamentos

 Consumo elétrico

O Consumo elétrico da placa Intel Galileo, aferido conforme indicado em materiais

e métodos, foi de aproximadamente 530mA. Ao instalar o display touchscreen o consumo

total aumentou para 730mA. Deve-se considerar ainda que a corrente mínima

dimensionada para os LEDs é de 5mA, neste caso, se os 12 compartimentos forem ligados

simultaneamente o consumo eletrico se aproxima do valor máximo fornecido pelo

fabricante.

4.1.8. Integração

Realizados os testes individuais conforme discutido e apresentado nas seções

anteriores, houve a necessidade da integração dos módulos. Seu funcionamento completo

é apresentado no diagrama de blocos da Figura 49, Figura 50, Figura 51 e Figura 52.

117

Foi observado incompatibilidade entre os níveis de tensão de comunicação do

módulo Arduino Mega2560 e os módulos de barômetro, acelerômetro e ESP8266. Para

solucionar essa limitação foi utilizado um conversor de sinais que pode ser construído com

divisor resistivo e transistores. Neste protótipo, foi utilizado um módulo conversor de nível

para esta tarefa.

Ao integrar os módulos testados individualmente, houve uma redução no tempo de

envio das mensagens de texto por WhatsApp de 30 segundos até o recebimento da

mensagem (nos piores casos). Isto ocorre devido ao acumulo de processamentos de

dados. Também se observou que o vídeo exibido no site utilizando o link com a câmera IP

apresenta pequenos atrasos de exibição (atraso menor que 1 segundo) nos momentos em

que a figura de referência é atualizada. Apesar dessas alterações do sistema na integração,

o projeto apresentou todas as funcionalidades exigidas como detectar vazamento de gás,

identificar possíveis quedas (variação de aceleração e altitude), realizar processamento de

imagens de câmeras IPs e implementar base para um sistema de gerenciamento de

medicamentos.

Sistema detector de vazamento de gás

Sensor de gás

detectou

presença GLP ?

Envia requisição ao

Webserver

referente a

vazamento de gás

Sim

Início

Não

Figura 49: Diagrama de blocos do sistema detector de vazamento de gás

118

Câmeras IP’s

Câmeras IP’s distribuidas pela

residência fornecem acesso a

central de processamento e

permite o processamento de

suas imagens

Figura 50: Diagrama representativo da câmera IP, componente deste trabalho

Sistema detector de queda

Acelerômetro

detectou desaceleração

brusca?

Envia requisição ao

Webserver

referente a

desaceleração

Barômetro

detectou alteração de

altitude brusca?

Envia requisição ao

Webserver referente a

variação de altitude

Barômetro e

acelerômetro

detectaram variação

brusca?

Envia requisição ao

Webserver referente a

variação simultânea de

altitude e aceleração

Não

Não

Sim

Sim

Sim

Não

Início

Figura 51: Diagrama de blocos do módulo detector de quedas.

119

Central de Processamento Intel Galileo

[Arduino]

Mantem Página Web de

controle do sistema

(Webserver)

[Linux]

Processa imagem

fornecidas pelas

câmeras IP detectando

presença de movimento

Arquivo de interface

para indicação da

câmera em que foi

detectado movimento

Escrita

Leitura

Recebimento de

requisição do sensor

detector de queda?

[Arduino]

Executa comando na

plataforma Linux.

Sim

[Linux]

Executa Script referente a

requisição.

Script envia uma mensagem

de texto para o celular do

responsável indicando o que

foi detectado

Não

[Arduino]

Executa comando na

plataforma Linux para gerar

data e hora em arquivo de

texto.

[Arduino]

Lê arquivo de texto com

horário atual

Esta no horário da

ingestão do

medicamento?

[Arduino]

- Indica compartimento do

remédio (acendendo LED)

- Indica no display touchscreen a

pessoa que deve tomar o

medicamento

- Aciona Buzzer

Aguarda tempo definido

Sim

Não

[Linux]

Gera arquivo de texto com

horário atual

Figura 52: Diagrama de blocos do módulo de desenvolvimento Intel Galileo

120

4.2. Discussões

Nesta seção serão apresentadas observações e características constatadas com
os testes realizados.

4.2.1. Placa Intel Galileo (Hardware)

A Placa Intel Galileo apresenta um processador de 32bits que permite o uso de

software embarcado. Também possui sistema de conexão e pinos semelhantes ao padrão

Arduino UNO oferecendo compatibilidade com shields Arduino e permitindo a integração

com o Linux embarcado. Essas caraterísticas tornam o desenvolvimento e a integração

entre software e Hardware fáceis de implementar, conforme abordado neste trabalho. A

placa apresenta uma estrutura para desenvolvimento bastante abrangente na medida em

que oferece funcionalidades de um sistema embarcado e as facilidades dos módulos de

desenvolvimento Arduino.

Apesar das grandes facilidades apresentadas, também foram constatadas as

limitações da placa, como o processamento de imagens de aproximadamente 1 fps,

inviabilizando várias aplicações em visão computacional. Conforme apresentado na seção

4.2.4 sua velocidade final para processamento de imagem é de cerca de 15 vezes mais

lento que um computador convencional [53].

4.2.2. Placa Intel Galileo (software - Arduino)

A IDE Arduino permite compatibilidade com as bibliotecas do Arduino UNO,

possibilitando migração dos usuários para uma placa de desenvolvimento com mais

recursos como comunicação Ethernet, USB host, Cartão de Memória e relativamente alto

poder de processamento.

Inicialmente a IDE Arduino 1.5.3 apresentou compatibilidade apenas para o sistema

operacional Windows 7 em inglês. Esse problema foi solucionado meses depois com o

lançamento da versão Arduino IDE 1.6.

Conforme apresentado em Desenvolvimento os programas Arduinos compilados

(chamados Sketch) são salvos no diretório “/sketch” e a partir desse local são executados

como um processo do Linux.

121

4.2.3. Placa Intel Galileo (Software - Linux).

O grande diferencial dessa placa é possui Linux embarcado. Sua compatibilidade e

suporte oferecido em comunidade Yocto presente na internet permitem a construção de

uma distribuição personalizada para determinada aplicação. O uso do bitBaker agiliza e

facilita o processo de escolha e compilação do Linux personalizado.

A distribuição utilizada neste projeto (Intel IoT DevKit) apresentou grandes

diferenças de configurações e usabilidade do padrão de distribuição Debian de Linux.

Algumas configurações mesmo após executadas não surtiram efeito sendo necessário

buscar formas alternativas para solucionar tais problemas. Neste quesito, a Intel apresentou

suporte ao usuário que respondeu prontamente as dúvidas, porém, mesmo o suporte

indicou procedimento que não surtiram efeito, sendo necessário realizar pesquisas em

conjunto com o suporte para solucionar esses problemas.

Neste trabalho foi apresentado 3 formas de comunicação entre os programas

Arduino e o Linux, sendo eles por meio do cartão SD (memória flash compartilhada),

comunicação IPC (Comunicação Inter-Processos) e por envio de comandos do programa

Arduino para o Linux utilizando o comando “system()”. Apesar de conseguir estabelecer a

comunicação corretamente com os meios propostos, uma limitação da integração se refere

a impossibilidade de compilar programas Arduino no próprio Linux Embarcado, essa

funcionalidade permitiria programar o Arduino remotamente.

4.2.4. Linguagem de programação Python

A linguagem de programação Python apresentou grande facilidade de aprendizado

com vários fóruns disponíveis na internet e disponibilidade de várias bibliotecas que

agilizam o desenvolvimento do projeto. O uso desta linguagem permitiu a rápida

implementação do sistema proposto. Apesar do desempenho ser inferior a linguagem

puramente compilada observou-se que o atraso decorre do poder de processamento da

placa, o uso de uma linguagem compilada não contribuiria significativamente para a

velocidade de processamento de imagens desejado. Isso se evidenciou ao comparar o

tempo de processamento de um computador convencional com o tempo da placa Intel

Galileo para o processamento do mesmo código.

 O uso da biblioteca OpenCV permitiu a rápida implementação das funções de

processamento de imagem, pois apresenta funções dedicadas e otimizadas para esta

finalidade

122

4.2.5. Módulo (Shield) GSM

O funcionamento do módulo apresentado ocorreu corretamente na placa Arduino

Mega2560, entretanto, o mesmo programa e biblioteca não foi compatível com a placa Intel

Galileo. Seu funcionamento ocorreu na placa Arduino Mega2560. Nessas condições o

dispositivo detector de queda envia uma mensagem diretamente ao celular do responsável

evitando um ponto de falha (enviar comando para central de processamento e esta

transmitir a mensagem). Todavia, recomenda-se o fornecimento de alimentação de até 2A

o que dificulta a aplicação em sistemas móveis, pois o consumo de bateria torne-se

significativo. O módulo GSM também apresenta como desvantagem o custo da operadora

para envio da mensagem. Por esses motivos e pela possibilidade de implementar a solução

de envio de mensagem de texto utilizando o aplicativo WhatsApp sem qualquer custo, a

solução com módulo GSM não foi implementada no projeto final.

4.2.6. Câmeras IPs

As câmeras IPs apresentaram resolução satisfatória para o projeto, permitindo a

visualização de ambientes com clareza. O uso de LEDs infravermelho permitiu que o

sistema funcione mesmo em ambientes sem iluminação.

A apresentação da imagem no site ocorre diretamente da câmera como link de

vídeo, sem aplicar conversão ou filtro de visão computacional. Esse fato permitiu que o

vídeo apresentasse velocidade de exibição de 20 fps.

4.2.7. Transdutores – Acelerômetros

Ambos os acelerômetros testados apresentaram resultados satisfatórios de

funcionalidade, isto é, precisão e imunidade a ruído requeridos para o projeto. O MPU-6050

foi escolhido para integrar o projeto final por apresentar os quesitos anteriormente citados

com melhores resultados teóricos. O uso de comunicação I²C evita a influência de possíveis

erros de leitura e permite a detecção de erros de conexão de forma mais efetiva.

4.2.8. Transdutor – Barômetro

O manual do fabricante do barômetro indica erro teórico de medida de 17 a 25 cm

de altitude. Entretanto, a análise empírica dos resultados varia cerca de 0,5 m. Como

solução o código apresentado utiliza média de 100 aquisições. Essas 100 aquisições são

realizadas a cada 1,7 segundos, este tempo foi obtido empiricamente e é necessário para

que o cálculo da média não influenciasse a detecção da variação abrupta de altitude. Esse

123

sistema permitiu detectar variações de altitudes de aproximadamente 35 cm. Neste caso o

sistema de detecção apresenta atrasos, porém, para a aplicação desejada, atrasos de 2

segundos não são significativos.

4.2.9. Transdutor – Sensor de Gás

A detecção de vazamento de gás apesar de ser influenciada de forma significativa

pela temperatura apresentou-se bastante efetiva para determinar presença de gás em uma

simulação realizada onde uma válvula de gás foi aberta, simulando um possível vazamento,

e em aproximadamente 7 segundos o sensor detectou vazamento, estando posicionado a

1 metro de distância da saída da válvula.

4.2.10. Módulo ESP8266

O módulo ESP8266 apresentou funcionalidades de Arduino, como sua programação

utilizando a IDE Arduino, a utilização de periféricos e comunicação Wi-Fi. Sua principal

desvantagem está no que se refere a consumo de energia conforme apresentado na

Tabela 2. Se consumo não for limitante no projeto, este modulo apresentará grande

destaque na escolha de módulos Wi-Fi.

4.2.11. Módulo Arduino Mega2560

O Arduino Mega2560 ganha destaque por apresentar vários periféricos disponíveis

como portas de comunicação serial, pinos ADC, Pinos de PWM e outros. Por esse motivo

foi utilizado para a elaboração do protótipo proposto. Entretanto, para um futuro produto

este pode ser substituído por um PIC permitindo a redução do tamanho do circuito. Devido

as suas dimensões e consumo não é viável que este seja utilizado num produto final, mas

que seja implementada uma solução dedicada, baseada na funcionalidade comprovada e

apresentada pelo protótipo.

4.2.12. Display Touchscreen

Para a validação do protótipo e apresentação da viabilidade técnica do uso do

Display não foi necessário criar uma interface amigável entre o usuário e o sistema de

medicamentos. Entretanto, para um possível produto, esta implementação é indispensável.

124

4.2.13. Integração

O resultado final do protótipo apresentou todas as funcionalidades descritas nesse

trabalho. Entretanto, vale ressaltar que o tempo de processamento de imagem é de 0,7 fps

para cada câmera. Como o processamento de imagem é utilizado apenas para detectar

alterações dos frames, esse valor não é crítico para até 14 câmeras instaladas

(aproximadamente 10 segundos), pois o envio da mensagem de texto apresentou tempo

de resposta que variou entre 10 a 20 segundos. Dessa forma, garante-se que ao acessar

o site, este apresente o monitoramento da última câmera que detectou algum evento. Para

otimização da aplicação, ou utilização de um número maior de câmeras pode-se utilizar um

algoritmo para restringir as câmeras de análise conforme descrito no item 5.2 (Trabalhos

futuros) desta monografia.

O sistema também apresenta como limitação o alcance do Wi-Fi, entretanto, esta

limitação pode ser superada com o uso de repetidores de sinais instalados na residência.

Estes repetidores permitem a expansão da área de alcance do sinal sem a necessidade de

alterações de projeto.

125

5. Conclusão e trabalhos futuros

5.1. Conclusão

Este trabalho apresentou-se como um dos mais complexos desenvolvidos durante

o curso de graduação por abordar diversas especialidades e o aprendizado do

funcionamento de diferentes dispositivos e ferramentas.

Por meio do estudo de dispositivos comerciais, como acelerômetro e barômetro, foi

possível aprofundar os conhecimentos em transdutores. Também foram aplicados diversos

conceitos de protocolos de comunicação como wireless, I²C e UART. Foi necessário o

aprendizado de tecnologias atuais de comunicação como GSM, placas de desenvolvimento

com microprocessadores de 32 bits com sistema operacional embarcado, linguagem de

programação Python, bibliotecas de processamento de imagens (OpenCV), protocolos de

comunicação wireless (Wi-Fi), uso de bibliotecas e programação do padrão e IDE Arduino,

sistemas de arquivos Linux, uso de bibliotecas para envio de mensagem por WhatsApp e

utilização de um display touchscreen.

Conforme discutido nos itens 4.2.1, 4.2.2 e 4.2.3 a placa Intel Galileo apresentou

alguns problemas e inconsistências de software. Para solucionar esses problemas foi

necessário entrar em contato com o suporte da Intel constantemente. Isso propiciou grande

experiência na medida em que muitos dos defeitos detectados ainda não haviam sido

encontrados por outras pessoas, devido à recente comercialização da placa. Atualmente,

novas versões dos softwares foram lançados com a correção de parte dos problemas

relatados. A busca por informações para solucionar os desafios enfrentados exigiu um

tempo maior que o esperado, acarretando um atraso no desenvolvimento do projeto.

As limitações da placa de desenvolvimento Intel Galileo com foco em sua velocidade

de processamento de imagens foram analisadas. O melhor desempenho para o algoritmo

implementado apresentou tempo de processamento de 0,7 fps por câmera para a detecção

de movimento. Este desempenho impossibilitou o uso de algoritmos de visão computacional

mais sofisticados de detecção de velocidade ou aceleração típicos de queda livre.

Como solução implementou-se um sistema de detecção de queda utilizando

transdutores e comunicação Wi-Fi. Esta solução foi uma proposta para viabilizar o projeto,

mantendo o uso do kit de desenvolvimento Intel Galileo. Para garantir um bom

desempenho, o uso dos módulos com processamento local foi essencial, pois possibilitou

a distribuição do processamento de parte dos dados.

Este projeto contemplou o uso e intercomunicação de diferentes linguagens de

programação como Python, scripts de inicialização e comandos Linux, linguagem de

126

programação dedicada a Arduino, e intercomunicação entre os programas Arduino e Linux.

Por meio do desenvolvimento do projeto, além do aprendizado de novas ferramentas, foi

possível observar como sistemas distintos se comunicam e se complementam para compor

o sistema final.

Por sua organização em forma de tutorial, o presente trabalho poderá auxiliar no

desenvolvimento de ferramentas e soluções apresentadas tanto para sistemas

operacionais embarcados quanto para utilização e integração destes com transdutores e

módulos apresentados. Dessa forma, o trabalho abrange uma contribuição tecnológica por

apresentar os passos dos desenvolvimentos do projeto e de seus respectivos resultados.

O trabalho contemplou todas as etapas de um projeto, desde a identificação de uma

dificuldade cotidiana de uma parcela de pessoas, a proposta de uma solução, identificação

das limitações dessa solução e implementação de sistemas de contorno para as limitações

encontradas. Exigiu, portanto, criatividade, aplicação de conhecimentos adquiridos durante

a graduação e busca e pesquisa por soluções e tecnologias não constituintes da grade

curricular da universidade.

Este trabalho também contribuiu para minha formação, pois exigiu a solução de

diversos desafios que precisaram ser enfrentados. Estes foram superados graças a solida

e diversificada base teórica obtida no curso de graduação que forneceu ferramentas para

o aprofundamento em determinadas áreas e a possibilidade de buscar formas de contornar

as limitações do sistema utilizado.

5.2. Trabalhos futuros

Este trabalho contemplou a construção de protótipos, porém, para sua aplicação

como produto será necessário um estudo da eficácia e análise da adaptação do usuário

com os dispositivos, realizando alterações para tornar sua interface e uso mais amigáveis

ao usuário final.

Por se tratar de um protótipo este trabalho não abordou a implementação de

sistemas eficientes de energia, como fontes chaveadas, necessários para os sistemas

portáteis, ou de sistema de nobreak para manter o sistema funcionando mesmo com

ausência de energia elétrica, entretanto, tais tecnologias devem ser estudadas e

implementadas para um possível produto.

Para residências onde é necessário um grande número de câmeras, pode-se criar

um algoritmo que restringe a análise e processamento de imagens em câmeras próximas

dos locais onde são identificados movimentos. Dessa forma, o processamento de imagens

127

pode se restringe a até três câmeras simultâneas independentemente do número de

câmeras disponíveis na residência.

Utilizando o sistema de processamento de imagens com câmeras IPs, pode-se

implementar um algoritmo para ignorar movimentos em determinada região da câmera.

Esse sistema pode ser útil quando se deseja verificar se apenas a pessoa acamada tenta

sair da cama sozinha, neste caso, a região de movimento a ser ignorada seria a cama.

128

129

6. Bibliografia

[1] UFG – REE – [2006] - Revista Eletrônica de Enfermagem - EVOLUÇÂO HISTÓRICA E

IMPACTO DA TECNOLOGIA NA ÁREA DA SAÚDE E DA ENFERMAGEM - v. 08, n. 03, p.

422 - 430.

Disponível em <http://www.fen.ufg.br/revista/revista8_3/v8n3a13.htm>

Acesso em 01 de novembro de 2015

[2] JMIR , Journal of Medical Internet Research, Della Mea, Vincenzo (2001). "What is e-

Health: The death of telemedicine?" Retrieved 2012-04-15.

Disponível em <http://www.jmir.org/2001/2/e22/>

Acesso em 01 de novembro de 2015

[3] JMIR, Journal of Medical Internet Research "What Is eHealth: A Systematic Review of

Published Definitions". Retrieved 5 February 2012.

Disponível em <http://www.jmir.org/2005/1/e1/>

Acesso em 01 de novembro de 2015

[4] INFOBRASIL, Mobile Health: Utilização de tecnologias móveis na saúde será discutida

durante a InfoBrasil 2015.

Disponível em <http://www.infobrasil.inf.br/noticia/mobile-health-utilizacao-de-tecnologias-

moveis-na-saude-sera-discutida-durante-infobrasil-20>

Acesso em 01 de novembro de 2015.

[5] SAUDEBUSINESS - Investimentos corporativos na tecnologia em saúde batem recorde

– Gordilho, Rafael – 07/11/2014

Disponível em <http://saudebusiness.com/noticias/investimentos-corporativos-em-saude-

digital-e-tecnologia-em-saude-batem-recorde/>

Acesso em 01 de novembro de 2015

[6] THE WALL STREET JOURNAL, Google Backs Startup Oscar Health Insurance,

15/09/2015.

Disponível em: <http://www.wsj.com/articles/google-backs-startup-oscar-health-insurance-

1442374756>

Acesso em 01 de novembro de 2015

http://www.fen.ufg.br/revista/revista8_3/v8n3a13.htm
http://www.jmir.org/2001/2/e22/
http://www.jmir.org/2005/1/e1/
http://www.infobrasil.inf.br/noticia/mobile-health-utilizacao-de-tecnologias-moveis-na-saude-sera-discutida-durante-infobrasil-20
http://www.infobrasil.inf.br/noticia/mobile-health-utilizacao-de-tecnologias-moveis-na-saude-sera-discutida-durante-infobrasil-20
http://saudebusiness.com/noticias/investimentos-corporativos-em-saude-digital-e-tecnologia-em-saude-batem-recorde/
http://saudebusiness.com/noticias/investimentos-corporativos-em-saude-digital-e-tecnologia-em-saude-batem-recorde/
http://www.wsj.com/articles/google-backs-startup-oscar-health-insurance-1442374756
http://www.wsj.com/articles/google-backs-startup-oscar-health-insurance-1442374756

130

[7] IBGE - Tábua Completa de Mortalidade para o Brasil de 2012.

Disponível em <http://www.ibge.gov.br/home/estatistica/populacao/tabuadevida/2012/>

Acesso em 12 de julho de 2015

[8] Gomes, H. O. e Caldas, C. P.; Envelhecimento Humano. Revista Hospital Universitário

Pedro Ernesto Vol 7, Número 1 – Jan/Jun – 2008.

Disponível em <http://revista.hupe.uerj.br/detalhe_artigo.asp?id=195>

Acesso em 01 de novembro de 2015

[9] Adriano de, Peter MarikSistema (Pontifícia universidade católica do paraná) - Detector

de Quedas (SDQ)

Disponível em

<http://www.ppgia.pucpr.br/~laplima/ensino/pfec/concluidos/1sem2008/sdq.pdf>

Acesso em 19 de julho de 2015

[10] Joao Paulo Dupinska de Oliveira, Kaya Sumire Abe, Leandro Vinicius Silva Forneck,

Matheus Rezende Oliveira, (Universidade Tecnológica Federal do Paraná) - Sistema de

Monitoramento de quedas para pessoas com deficiência motora

Disponível em

<http://www.dainf.ct.utfpr.edu.br/~fabro/IF66J/Relatorios_Finais/2012_2/Sistema%20Monit

or%20de%20Quedas/MonografiaFinal_Sistema_Monitor_Quedas_2012_2.pdf>

Acesso em 19 de julho de 2015

[11] INTERNET OF THINGS, Rolf H. Weber, Romana Weber, Editora: Springer Berlin

Heidelberg

[12] Real-Time Concepts for Embedded Systems - Qing Li and Carolyn Yao - CMP Books,

2003

[13] Operating systems – internal and design principles – William Stallings - 7ed - Prentice

Hall

http://www.ibge.gov.br/home/estatistica/populacao/tabuadevida/2012/
http://revista.hupe.uerj.br/detalhe_artigo.asp?id=195
http://www.ppgia.pucpr.br/~laplima/ensino/pfec/concluidos/1sem2008/sdq.pdf
http://www.dainf.ct.utfpr.edu.br/~fabro/IF66J/Relatorios_Finais/2012_2/Sistema%20Monitor%20de%20Quedas/MonografiaFinal_Sistema_Monitor_Quedas_2012_2.pdf
http://www.dainf.ct.utfpr.edu.br/~fabro/IF66J/Relatorios_Finais/2012_2/Sistema%20Monitor%20de%20Quedas/MonografiaFinal_Sistema_Monitor_Quedas_2012_2.pdf

131

[14] Embedded Systems Architecture: A Comprehensive Guide for Engineers and

Programmers - Tammy Noergaard - Newnes, 2005

[15] Borges, Rodrigo Weissmann – Aplicabilidade de Sistemas Operacionais de Tempo

Real (RTOS) para sistemas embarcados de baixo custo e pequeno porte. 2011. Dissertação

(Mestrado em Ciências, Programa de Engenharia Elétrica) – Escola de Engenharia de São

Carlos – Universidade de São Paulo.

[16] Weiser, Mark (1991). "The Computer for the 21st Century”

Disponível em <http://dl.acm.org/citation.cfm?id=329126>

Acesso em 18 de novembro de 2015

[17] Internet das Coisas - IoT/M2M - DEV Tecnologia

Disponível em <http://devtecnologia.com.br/internet-das-coisas-iot/>

Acesso em 18 de novembro de 2015

[18] Lígia J. Figueiredo, Ana R. Gafaniz, Gustavo S. Lopes e Rúben Pereira. Aplicações de

Acelerómetros. IAS 2007 – Instrumentação e Aquisição de Sinais. Monografia. Lisboa,

Portugal, 19 Dezembro 2007

[19] Ranjit Singh, Low Lee Ngo, Ho Soon Seng, “A Silicon Piezoresistive Pressure Sensor”,

IEEE, pp. 1-4, 2002

[20] Richard D. Schneeman, "Implementing a Standards-based Distributed Measurement

and Control Application on the Internet "

Disponível em <http://ieee1451.nist.gov/framework.pdf>

Acesso em 18 de novembro de 2015

[21] WUNNAYA, S. V.; HOO, P.. Remote Instrumentation Access and Control.

(RIAC) Through Inter-network, 1999Proceeding IEEE

[22] BORGES, A. P.. Instrumentação Virtual Aplicada a uma Laboratório com Acesso pela

Internet, 2002. Dessertação de Mestrado, Escola Politécnica da universidade de São Paulo

- Departamento de Sistemas Eletrônicos, São Paulo.

http://devtecnologia.com.br/internet-das-coisas-iot/

132

[23] Gonzalez, R.C. e Woods, R.E. e Eddins, S.L., Digital Image Processing, Pearson, 2010.

[24] IEEE Std 802.11 (ISO / IEC 8802-11: 1999)

[25] Schiller,Jochen; - Mobile Communications – Segunda Edição, Pearson Education

Limited, 2003.

[26] Ramon, M. C.; Intel Galileo and Intel Galileo Gen 2. API Features and Arduino Projects

for Linux Programmers. Apress open.

[27] ARDUINO. <https://www.arduino.cc/en/ArduinoCertified/IntelGalileo>

[28] SPARKFUN. - Galileo Getting Started Guide

Disponível em <https://learn.sparkfun.com/tutorials/galileo-getting-started-guide>

Acesso em 25 de junho de 2015

[29] IBM. Desenvolva Distribuições Integradas e Customizadas do Linux com o Projeto

Yocto.

Disponível em <http://www.ibm.com/developerworks/br/library/l-yocto-linux/>

Acesso em 05 de setembro de 2015

[30] Rossi, Henrique Persico - BeagleBone Black + Yocto

Disponível em <http://www.embarcados.com.br/beaglebone-black-yocto/>

Acesso em 05 de setembro de 2015

[31] Borges, L. E.; Python para Desenvolvedores. Rio de Janeiro, Edição do Autor, Editora

Novatec, 2010.

[32] Robert W. Sebesta. Conceitos de Linguagem de Programação, 9ª edição, Porto Alegre:

Bookman, 2011.

[33] Marengoni, M; Stringhini, S., 2009, Revista de Informática Teórica e Aplicada, Volume

16, Edição 1

https://www.arduino.cc/en/ArduinoCertified/IntelGalileo
https://learn.sparkfun.com/tutorials/galileo-getting-started-guide
http://www.ibm.com/developerworks/br/library/l-yocto-linux/
http://www.embarcados.com.br/beaglebone-black-yocto/

133

[34] Informações fornecidas pelo fabricante da Camera IP Showtec

Disponível em <http://www.showtec.com.br/produtos/cameras-ip>

Acesso em 13 de dezembro de 2014

[35] Analog Devices, Manual de dados do fabricante ADXL335

Disponível em <http://www.analog.com/media/en/technical-documentation/data-

sheets/ADXL335.pdf>

Acesso em 19 de setembro de 2015

[36] TINYDEAL, GY-61 ADXL335 Triple Axis Accelerometer / Analog Sensor for Arduino

Disponível em <http://www.tinydeal.com/gy-61-adxl335-triple-axis-accelerometer-analog-

sensor-blue-p-128418.html>

Acesso em 04 de novembro de 2015

[37] INVENSENSR, Manual de dados do fabricante família MPU-6000

Disponível em <http://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/>

Acessado em 19 de setembro de 2015

[38] BITIFY, blog, Imagem MPU6050

Disponível em <http://blog.bitify.co.uk/2013/11/interfacing-raspberry-pi-and-mpu-

6050.html>

Acesso em 04 de novembro de 2015

[39] BOSH, Manual de dados do fabricante BMP180.

Disponível em <https://www.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf>

Acesso em 26 de setembro de 2015

[40] INSTRUCTABLES. Imagem BMP180 .

Disponível em <http://www.instructables.com/id/TFT-Environment-Monitor-using-BMP180-

DHT11/>

Acesso em 04 de novembro de 2015

http://www.showtec.com.br/produtos/cameras-ip
http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL335.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL335.pdf
http://www.tinydeal.com/gy-61-adxl335-triple-axis-accelerometer-analog-sensor-blue-p-128418.html
http://www.tinydeal.com/gy-61-adxl335-triple-axis-accelerometer-analog-sensor-blue-p-128418.html
http://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/
http://blog.bitify.co.uk/2013/11/interfacing-raspberry-pi-and-mpu-6050.html
http://blog.bitify.co.uk/2013/11/interfacing-raspberry-pi-and-mpu-6050.html
http://www.instructables.com/id/TFT-Environment-Monitor-using-BMP180-DHT11/
http://www.instructables.com/id/TFT-Environment-Monitor-using-BMP180-DHT11/

134

[41] Tutorial – Arduino and SIM900 GSM Modules

Disponível em <http://tronixstuff.com/2014/01/08/tutorial-arduino-and-sim900-gsm-

modules/>

Acesso em 05 de novembro de 2015

[42] Pololu Robotics & Eletronics - Sensor MQ-2 Manual de dados do fabricante

Disponível em <https://www.pololu.com/file/download/MQ2.pdf?file_id=0J309>

Acesso em 17 de outubro de 2015

[43] Arduino e Cia - Alarme sensor de gás com o módulo MQ-2

Disponível em <http://www.arduinoecia.com.br/2015/01/alarme-sensor-de-gas-modulo-mq-

2.html>

Acesso em 22 de agosto de 2015

[44] Curvello, André - Apresentando o módulo ESP8266

Disponível em <http://www.embarcados.com.br/modulo-esp8266/>

Acesso em 29 de agosto de 2015

[45] ELECTROSCHEMATICS. Imagem ESP8266 – 01

Disponível em <http://www.electroschematics.com/11276/esp8266-datasheet/>

Acesso em 04 de novembro de 2015

[46] ITEADSTUDIO - ESP8266 Serial WIFI Module

Disponível em <http://wiki.iteadstudio.com/ESP8266_Serial_WIFI_Module>

Acesso em 29 de agosto de 2015

[47] MAKEHACKVOID. Imagem ESP8266 – 12

Disponível em https://wiki.makehackvoid.com/projects:group_projects:esp2866

Acesso em 04 de novembro de 2015

http://tronixstuff.com/2014/01/08/tutorial-arduino-and-sim900-gsm-modules/
http://tronixstuff.com/2014/01/08/tutorial-arduino-and-sim900-gsm-modules/
https://www.pololu.com/file/download/MQ2.pdf?file_id=0J309
http://www.arduinoecia.com.br/2015/01/alarme-sensor-de-gas-modulo-mq-2.html
http://www.arduinoecia.com.br/2015/01/alarme-sensor-de-gas-modulo-mq-2.html
http://www.embarcados.com.br/modulo-esp8266/
http://www.electroschematics.com/11276/esp8266-datasheet/
http://wiki.iteadstudio.com/ESP8266_Serial_WIFI_Module
https://wiki.makehackvoid.com/projects:group_projects:esp2866

135

[48] ARDUINO. Arduino MEGA 2560

Disponível em <https://www.arduino.cc/en/Main/ArduinoBoardMega2560>

Acesso em 12 de setembro de 2015.

[49] MATHWORKS. Imagem Arduino Mega2560

Disponível em <http://www.mathworks.com/company/newsletters/articles/teaching-and-

learning-resources-project-based-learning.html>

Acesso em 04 de novembro de 2015

[50] DWIN – DMT48270_M043_02_W Product Specification

Disponível em

<http://www.dwin.com.cn/uploads/English%20Documents/DMT48270M043_02W_DATAS

HEET.pdf>

Acesso em 02 de setembro de 2015.

[51] IP Camera CGI MANUAL

Disponível em:

http://corz.org/windows/software/oodlecam/files/IP%20Camera%20CGI%20Manual%20[fr

om%20Tenvis%203815%20SDK].pdf

Acessado em 05 de novembro de 2015

[52] Axis, Axis JPEG Format – Comment Fields

Disponível em <http://www.axis.com/files/tech_notes/JPEG_format_1_02.pdf>

Acesso em 26 de setembro de 2015

[53] Dell Inspiron 14 (N4050)

Disponível em <www.pcworld.com/product/1278065/dell-inspiron-14-n4050-

notebook.html>

Acesso em 28 de outubro 2015.

[54] Curvello, André – Sistemas embarcados - Intel Edison com WhatsApp

Disponível em <http://www.embarcados.com.br/intel-edison-com-whatsapp/>

Acesso em 04 de setembro de 2015

https://www.arduino.cc/en/Main/ArduinoBoardMega2560
http://www.mathworks.com/company/newsletters/articles/teaching-and-learning-resources-project-based-learning.html
http://www.mathworks.com/company/newsletters/articles/teaching-and-learning-resources-project-based-learning.html
http://www.dwin.com.cn/uploads/English%20Documents/DMT48270M043_02W_DATASHEET.pdf
http://www.dwin.com.cn/uploads/English%20Documents/DMT48270M043_02W_DATASHEET.pdf
http://corz.org/windows/software/oodlecam/files/IP%20Camera%20CGI%20Manual%20%5bfrom%20Tenvis%203815%20SDK%5d.pdf
http://corz.org/windows/software/oodlecam/files/IP%20Camera%20CGI%20Manual%20%5bfrom%20Tenvis%203815%20SDK%5d.pdf
http://www.axis.com/files/tech_notes/JPEG_format_1_02.pdf
http://www.pcworld.com/product/1278065/dell-inspiron-14-n4050-notebook.html
http://www.pcworld.com/product/1278065/dell-inspiron-14-n4050-notebook.html
http://www.embarcados.com.br/intel-edison-com-whatsapp/

136

[55] VICTORVISION, Especificação de comandos DGUS

Disponível em :

<http://victorvision.com.br/images/DocumentosAtualizados/DGUS_Commands_Specificati

on.pdf>

Acesso em 02 de setembro de 2015

[56] Hahn, Matthias - Efficient Communication Between Arduino and Linux Native Processes

Disponível em <https://software.intel.com/pt-br/blogs/2014/09/22/efficient-communication-

between-arduino-and-linux-native-processes>

Acesso em 29 de agosto de 2015

[57] Yocto Project, It's not an embedded Linux distribution - it creates a custom one for you

Disponível em <https://www.yoctoproject.org/>

Acesso em 25 de abril de 2015

http://victorvision.com.br/images/DocumentosAtualizados/DGUS_Commands_Specification.pdf
http://victorvision.com.br/images/DocumentosAtualizados/DGUS_Commands_Specification.pdf
https://software.intel.com/pt-br/blogs/2014/09/22/efficient-communication-between-arduino-and-linux-native-processes
https://software.intel.com/pt-br/blogs/2014/09/22/efficient-communication-between-arduino-and-linux-native-processes
https://www.yoctoproject.org/

137

Apêndice

1 - Programa utilizado para acessar o Linux por meio da interface Arduino

void setup()
{
 system("cp /etc/inittab /etc/inittab.bak"); // Back up inittab
 // Replace all "S:2345" with "S0:2345"'s (switching serial ports):
 system("sed -i 's/S:2345/S0:2345/g' /etc/inittab");
 // Replace all "ttyS1" with "ttyGS0"'s (switching serial ports):
 system("sed -i 's/ttyS1/ttyGS0/g' /etc/inittab");
 // Replace all "grst" with "#grst"'s to comment that line out:
 system("sed -i 's/grst/#grst/g' /etc/inittab");
 // Replace all "clld" with "#clld"'s to comment that line out:
 system("sed -i 's/clld/#clld/g' /etc/inittab");
 system("kill -SIGHUP 1");
}
void loop()
{
}

Algoritmo A - 1: Programa Arduino utilizado para acessar linux utilizando comunicação USB

2 - Programa utilizado para obter endereço IP dinâmico do Linux por meio da interface

Arduino

void setup() {
 //Ativar o servidor Telnet
 system("telnetd -l /bin/sh");
}

void loop() {
 system("ifconfig eth0 > /dev/ttyGS0");
}

Algoritmo A - 2: Programa Arduino utilizado para obter endereço IP dinâmico

138

3 - Algoritmo implementado para calcular o tempo de processamento da formação da

imagem

import cv2
import urllib2
import numpy as np
import datetime

stream=urllib2.urlopen('http://143.107.235.59:8086/video.cgi?user=galileo&pwd=la
bytes=''
while True:
 aux = 0
 print datetime.datetime.now().time()
 while (aux<100):
 bytes+=stream.read(1024)
 a = bytes.find('\xff\xd8')
 b = bytes.find('\xff\xd9')
 if a!=-1 and b!=-1:
 jpg = bytes[a:b+2]
 bytes= bytes[b+2:]
 i = cv2.imdecode(np.fromstring(jpg, dtype=np.uint8),cv2.CV_LOAD_IMAG
 aux += 1

Algoritmo A - 3: Programa utilizado para calcular o tempo de processamento de uma imagem obtida por uma câmera
IP

139

4 - Algoritmo utilizado para detecção de movimento

Inclusão de bibliotecas
import argparse
import datetime
import imutils
import time
import cv2

Construção do argumentos, threshold de pixel adjacentes para detectar movimento
#de 500 pixels
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help= "path to the video file")
ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size")
args = vars(ap.parse_args())

Caso o endereço não seja encontrado, a câmera utilizada será a default (câmera 0)
if args.get("video", None) is None:
 camera = cv2.VideoCapture(0)
 time.sleep(0.25)

Caso o Endereço seja encontrado
else:
 camera = cv2.VideoCapture(args["video"])

Inicialização do primeiro frame
firstFrame = None

loop de verificação
while True:
 # Leitura da camera e escrita occupied/unoccupied
 (grabbed, frame) = camera.read()
 text = "Unoccupied"

 # Se o frame não for encontrado então o processo é parado
 if not grabbed:
 break

 # Redimensionamento do quadro, conversão para tons de cinza, aplicado filtro
 frame = imutils.resize(frame, width=500)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 gray = cv2.GaussianBlur(gray, (21, 21), 0)

 # Inicializa a primeira imagem caso esta já não tenha inicializado
 if firstFrame is None:
 firstFrame = gray
 continue
 cv2.imshow("firstFrame", firstFrame)

 # Compara a imagem atual e a imagem salva em firstFrame

140

 frameDelta = cv2.absdiff(firstFrame, gray)
 thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]

 # Aplica dilatação e posteriormente detecção de contornos
 thresh = cv2.dilate(thresh, None, iterations=2)
 (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)

 # Verificação dos contornos
 for c in cnts:
 # Se o contorno for pequeno, ignore-o
 if cv2.contourArea(c) < args["min_area"]:
 continue

Calcular a caixa delimitadora do movimento, desenhá-la no frame e atualizar texto
 (x, y, w, h) = cv2.boundingRect(c)
 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
 text = "Occupied"

 # Desenha o texto e as informações de data e hora na imagem
 cv2.putText(frame, "Room Status: {}".format(text), (10, 20),
 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
 cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y
%I:%M:%S%p"),
 (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0,
255), 1)

 # Apresenta os resultados gráficos
 cv2.imshow("Security Feed", frame)
 cv2.imshow("Thresh", thresh)
 cv2.imshow("Frame Delta", frameDelta)
 key = cv2.waitKey(1) & 0xFF

 # Inclui tecla para sair da execução do progama
 if key == ord("q"):
 break

Limpa a variável camera e fecha todas as janelas
camera.release()
cv2.destroyAllWindows()

Algoritmo A - 4: Algoritmo implementado para detecção de movimento da webcam

141

5 - Algoritmo utilizado para processamento de imagens de uma câmera IP e detecção de

movimentos. A figura de referência é atualizada a cada 100 frames.

import cv2
import urllib2
import numpy as np
import imutils
import time
import argparse
import datetime

stream=urllib2.urlopen('http://143.107.235.59:8086/video.cgi?user=usuário&pwd=senha
&url=video.mjpeg')
bytes=''

ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the video file")
ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size")
args = vars(ap.parse_args())

firstFrame = None
cont = 0
while True:
 bytes+=stream.read(1024)
 a = bytes.find('\xff\xd8')
 b = bytes.find('\xff\xd9')
 if a!=-1 and b!=-1:
 jpg = bytes[a:b+2]
 bytes= bytes[b+2:]
 frame = cv2.imdecode(np.fromstring(jpg,
dtype=np.uint8),cv2.CV_LOAD_IMAGE_COLOR)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 gray = cv2.GaussianBlur(gray, (21, 21), 0)

 if cont > 100:
 firstFrame = None
 cont = 0

 if firstFrame is None:
 firstFrame = gray
 continue

 cont = cont+1
 frameDelta = cv2.absdiff(firstFrame, gray)
 thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]

 thresh = cv2.dilate(thresh, None, iterations=2)
 (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)

142

 for c in cnts:
 # verifica se o contorno for muito pequeno, este será ignorado
 if cv2.contourArea(c) < args["min_area"]:
 continue
 (x, y, w, h) = cv2.boundingRect(c)
 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
 print 'detectado'

 cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y
%I:%M:%S%p"),
 (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1)

 cv2.imshow('FF',firstFrame)
 cv2.imshow('frame',frame)
 key = cv2.waitKey(1) & 0xFF

 if key == ord("q"):
 break
stream.close()
cv2.destroyAllWindows()

Algoritmo A - 5: Algoritmo implementado para detecção de movimento em imagens capturadas pela câmera IP

143

6 - Código implementado para obter a velocidade de processamento de imagens na placa

Intel Galileo. Este código apresenta o tempo de processamento da detecção de

movimento registrada por uma câmera IP em tempo de execução. A cada 100 ciclos do

programa, isto é, 100 aquisições e processamento de imagem é apresentado o tempo

resultante.

import cv2
import urllib2
import numpy as np
import imutils
import time
import argparse
import datetime

stream=urllib2.urlopen('http://143.107.235.59:8086/video.cgi?user=usuário&pwd=senha
&url=video.mjpeg')
bytes=''

ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the video file")
ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size")
args = vars(ap.parse_args())

firstFrame = None
cont = 0
while True:
 bytes+=stream.read(1024)
 a = bytes.find('\xff\xd8')
 b = bytes.find('\xff\xd9')
 if a!=-1 and b!=-1:
 jpg = bytes[a:b+2]
 bytes= bytes[b+2:]
 frame = cv2.imdecode(np.fromstring(jpg,
dtype=np.uint8),cv2.CV_LOAD_IMAGE_COLOR)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21, 21), 0)

 if cont > 100:
 print datetime.datetime.now().time()
 firstFrame = None
 cont = 0

 if firstFrame is None:
 firstFrame = gray
 continue

 cont = cont+1
 frameDelta = cv2.absdiff(firstFrame, gray)

144

 thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]

 thresh = cv2.dilate(thresh, None, iterations=2)
 (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)

 for c in cnts:
 # verifica se o contorno for muito pequeno, este será ignorado
 if cv2.contourArea(c) < args["min_area"]:
 continue
 # (x, y, w, h) = cv2.boundingRect(c)
 # cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
 # print 'detectado'

cv2.putText(frame, "Room Status: {}".format(text), (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y
%I:%M:%S%p"),
(10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255),
1)

 key = cv2.waitKey(1) & 0xFF

 if key == ord("q"):
 break
stream.close()
cv2.destroyAllWindows()
Algoritmo A - 6: Código implementado para calcular tempo de aquisição e processamento de imagens de câmera IP

145

7 - Algoritmo otimizado para identificação de movimento, com atualização da figura de

referência. Ao detectar movimento o programa escreve o número da referida câmera IP

em um arquivo.

-*- coding: utf-8 -*-
import sys
sys.path.append('/usr/lib/python2.7/site-packages')
import cv2
import numpy as np
import time
import requests
import threading
import urllib2
import imutils
import argparse
import datetime
from threading import Thread, Event, ThreadError

class Cam0():

 def __init__(self, url):

 self.stream = requests.get(url, stream=True)
 self.thread_cancelled = False
 self.thread = Thread(target=self.run)
 print "camera initialised"

 def start(self):
 self.thread.start()
 print "camera stream started"

 def run(self):
 bytes=''
 firstFrame = None
 cont = 0
 while not self.thread_cancelled:
 try:
 bytes+=self.stream.raw.read(1024)
 a = bytes.find('\xff\xd8')
 b = bytes.find('\xff\xd9')
 if a!=-1 and b!=-1:
 jpg = bytes[a:b+2]
 bytes= bytes[b+2:]
 frame = cv2.imdecode(np.fromstring(jpg,
dtype=np.uint8),cv2.CV_LOAD_IMAGE_COLOR)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 if cont > 100:
 firstFrame = None

146

 cont = 0

 if firstFrame is None:
 firstFrame = gray
cv2.imwrite("teste referenceframe.png",firstFrame);
 continue

 cont = cont+1
 frameDelta = cv2.absdiff(firstFrame, gray)
 thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
cv2.imwrite("framedelta.png",firstFrame);
 thresh = cv2.dilate(thresh, None, iterations=2)
 (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)

 for c in cnts:
 if cv2.contourArea(c) < args["min_area"]:
 continue
 arq = open("/media/mmcblk0p1/test.txt", 'w')
 texto = []
 texto.append('Cam00\n')
 arq.writelines(texto)
 arq.close()

cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y
%I:%M:%S%p"),
(10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255),
1)

cv2.imshow('FF',firstFrame)
cv2.imshow('frame',frame)
 if cv2.waitKey(1) ==27:
 exit(0)
 except ThreadError:
 self.thread_cancelled = True

 def is_running(self):
 return self.thread.isAlive()

 def shut_down(self):
 self.thread_cancelled = True
 #block while waiting for thread to terminate
 while self.thread.isAlive():
 time.sleep(1)
 return True

class Cam1():

 def __init__(self, url):

147

 self.stream = requests.get(url, stream=True)
 self.thread_cancelled = False
 self.thread = Thread(target=self.run)
 print "camera initialised"

 def start(self):
 self.thread.start()
 print "camera stream started"

 def run(self):
 bytes=''
 firstFrame = None
 cont = 0
 while not self.thread_cancelled:
 try:
 bytes+=self.stream.raw.read(1024)
 a = bytes.find('\xff\xd8')
 b = bytes.find('\xff\xd9')
 if a!=-1 and b!=-1:
 jpg = bytes[a:b+2]
 bytes= bytes[b+2:]
 frame = cv2.imdecode(np.fromstring(jpg,
dtype=np.uint8),cv2.CV_LOAD_IMAGE_COLOR)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 if cont > 100:
 firstFrame = None
 cont = 0

 if firstFrame is None:
 firstFrame = gray
cv2.imwrite("teste referenceframe.png",firstFrame);
 continue

 cont = cont+1
 frameDelta = cv2.absdiff(firstFrame, gray)
 thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
cv2.imwrite("framedelta.png",firstFrame);
 thresh = cv2.dilate(thresh, None, iterations=2)
 (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)

 for c in cnts:
 if cv2.contourArea(c) < args["min_area"]:
 continue
 arq = open("/media/mmcblk0p1/test.txt", 'w')
 texto = []
 texto.append('Cam01\n')

148

 arq.writelines(texto)
 arq.close()

cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y
%I:%M:%S%p"),
(10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255),
1)

cv2.imshow('FF1',firstFrame)
cv2.imshow('frame1',frame)
 if cv2.waitKey(1) ==27:
 exit(0)
 except ThreadError:
 self.thread_cancelled = True

 def is_running(self):
 return self.thread.isAlive()

 def shut_down(self):
 self.thread_cancelled = True
 #block while waiting for thread to terminate
 while self.thread.isAlive():
 time.sleep(1)
 return True

if __name__ == "__main__":
 url =
'http://143.107.235.59:8086/video.cgi?user=usuário&pwd=senha&url=video.mjpeg'
 cam = Cam0(url)
 cam.start()
 ap = argparse.ArgumentParser()
 ap.add_argument("-v", "--video", help="path to the video file")
 ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size")
 args = vars(ap.parse_args())
 url1 =
'http://143.107.235.59:8085/video.cgi?user=usuário&pwd=senha&url=video.mjpeg'
 cam1 = Cam1(url1)
 cam1.start()

Algoritmo A - 7: Algoritmo implementado e otimizado para detecção de movimento e escrita em arquivos.

149

8 - Código implementado para obter a velocidade de processamento de imagens na placa

Intel Galileo. Este código apresenta o tempo de processamento da detecção de

movimento registrada por duas câmeras IPs em tempo de execução e escrita em

arquivos. A cada 10 ciclos do programa, isto é, 10 aquisições e processamento de

imagem é apresentado o tempo resultante.

-*- coding: utf-8 -*-
import sys
sys.path.append('/usr/lib/python2.7/site-packages')
import cv2
import numpy as np
import time
import requests
import threading
import urllib2
import imutils
import argparse
import datetime
import os
from threading import Thread, Event, ThreadError

class Cam0():

 def __init__(self, url):

 self.stream = requests.get(url, stream=True)
 self.thread_cancelled = False
 self.thread = Thread(target=self.run)
 print "camera initialised"

 def start(self):
 self.thread.start()
 print "camera stream started"

 def run(self):
 bytes=''
 firstFrame = None
 cont = 0
 while not self.thread_cancelled:
 try:
 bytes+=self.stream.raw.read(1024)
 a = bytes.find('\xff\xd8')
 b = bytes.find('\xff\xd9')
 if a!=-1 and b!=-1:
 jpg = bytes[a:b+2]
 bytes= bytes[b+2:]

150

 frame = cv2.imdecode(np.fromstring(jpg,
dtype=np.uint8),cv2.CV_LOAD_IMAGE_COLOR)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 if cont > 100:
 print datetime.datetime.now().time()
 firstFrame = None
 cont = 0

 if firstFrame is None:
 firstFrame = gray
cv2.imwrite("teste referenceframe.png",firstFrame);
 continue

 cont = cont+1
 frameDelta = cv2.absdiff(firstFrame, gray)
 thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
cv2.imwrite("framedelta.png",firstFrame);
 thresh = cv2.dilate(thresh, None, iterations=2)
 (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)

 for c in cnts:
 if cv2.contourArea(c) < args["min_area"]:
 continue
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
 arq = open("/media/mmcblk0p1/test.txt", 'w')
 texto = []
 texto.append('Cam00\n')
 arq.writelines(texto)
 arq.close()

cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y
%I:%M:%S%p"),
(10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0,
255), 1)

cv2.imshow('FF',firstFrame)
cv2.imshow('frame',frame)
 if cv2.waitKey(1) ==27:
 exit(0)
 except ThreadError:
 self.thread_cancelled = True

 def is_running(self):
 return self.thread.isAlive()

 def shut_down(self):

151

 self.thread_cancelled = True
 #block while waiting for thread to terminate
 while self.thread.isAlive():
 time.sleep(1)
 return True

class Cam1():

 def __init__(self, url):

 self.stream = requests.get(url, stream=True)
 self.thread_cancelled = False
 self.thread = Thread(target=self.run)
 print "camera initialised"

 def start(self):
 self.thread.start()
 print "camera stream started"

 def run(self):
 bytes=''
 firstFrame = None
 cont = 0
 while not self.thread_cancelled:
 try:
 bytes+=self.stream.raw.read(1024)
 a = bytes.find('\xff\xd8')
 b = bytes.find('\xff\xd9')
 if a!=-1 and b!=-1:
 jpg = bytes[a:b+2]
 bytes= bytes[b+2:]
 frame = cv2.imdecode(np.fromstring(jpg,
dtype=np.uint8),cv2.CV_LOAD_IMAGE_COLOR)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 if cont > 100:
 print datetime.datetime.now().time()
 firstFrame = None
 cont = 0

 if firstFrame is None:
 firstFrame = gray
cv2.imwrite("teste referenceframe.png",firstFrame);
 continue

 cont = cont+1
 frameDelta = cv2.absdiff(firstFrame, gray)
 thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
cv2.imwrite("framedelta.png",firstFrame);

152

 thresh = cv2.dilate(thresh, None, iterations=2)
 (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)

 for c in cnts:
 if cv2.contourArea(c) < args["min_area"]:
 continue
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
 arq = open("/media/mmcblk0p1/test.txt", 'w')
 texto = []
 texto.append('Cam01\n')
 arq.writelines(texto)
 arq.close()
cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y
%I:%M:%S%p"),
(10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0,
255), 1)
 if cv2.waitKey(1) ==27:
 exit(0)
 except ThreadError:
 self.thread_cancelled = True

 def is_running(self):
 return self.thread.isAlive()

 def shut_down(self):
 self.thread_cancelled = True
 #block while waiting for thread to terminate
 while self.thread.isAlive():
 time.sleep(1)
 return True

if __name__ == "__main__":
 url =
'http://143.107.235.59:8086/video.cgi?user=usuário&pwd=senha&url=video.mjpeg'
 cam = Cam0(url)
 cam.start()
 ap = argparse.ArgumentParser()
 ap.add_argument("-v", "--video", help="path to the video file")
 ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area
size")
 args = vars(ap.parse_args())
 url1 =
'http://143.107.235.59:8085/video.cgi?user=usuário&pwd=senha&url=video.mjpeg'
 cam1 = Cam1(url1)
 cam1.start()

Algoritmo A - 8: Código implementado para calcular velocidade de processamento do Algoritmo A - 7.

9 - Programa Arduino implementado para envio de mensagem SMS utilizando o módulo

GSM.

153

#include "SIM900.h"
#include <SoftwareSerial.h>
#include "sms.h"
SMSGSM sms;

int numdata;
boolean started=false;
char smsbuffer[160];
char n[33];

char sms_position;
char phone_number[33];
char sms_text[100];
int i;

void setup()
{
 Serial.begin(9600);

 if (gsm.begin(9600))
 {
 Serial.println("\nstatus=READY");
 started=true;
 }
 else
 Serial.println("\nstatus=IDLE");

 if(started)
 {
 if (sms.SendSMS("+55199927779XX", "Arduino SMS"))
 {
 Serial.println("\nSMS sent OK.");
 }
 else
 {
 Serial.println("\nError sending SMS.");
 }
 }
};

void loop()
{
 if(started)
 {
 sms_position=sms.IsSMSPresent(SMS_UNREAD);
 if (sms_position)
 {
 Serial.print("SMS postion:");
 Serial.println(sms_position,DEC);
 sms.GetSMS(sms_position, phone_number, sms_text, 100);

154

 Serial.println(phone_number);
 Serial.println(sms_text);
 }
 delay(2000);
 }
};

Algoritmo A - 9: Código implementado para envio de mensagem SMS

155

10 - Leitura e atuação do acelerômetro ADXL335

const int xpin = A3; // x-axis of the accelerometer
const int ypin = A4; // y-axis
const int zpin = A5; // z-axis (only on 3-axis models)
const float const_conv = 204.6;
int set_alarm=0;
float X0,X1;
float Y0,Y1;
float Z0,Z1;
int i=0;
float dt = 200,dx,dy,dz;

void setup()
{
 // initialize the serial communications:
 Serial.begin(9600);

 //analogReference(EXTERNAL);
 pinMode(52, OUTPUT);
 Serial.println(" ++++ ADXL335 Sensor ++++");
 Serial.println();
 Serial.print("X Sensor");

 Serial.print("\t");
 Serial.print("Y Sensor");

 Serial.print("\t");
 Serial.println("Z Sensor");
}

void loop()
{
 if(i == 0){
 X0 = analogRead(xpin);
 Y0 = analogRead(ypin);
 Z0 = analogRead(zpin);
 i++;
 }
 else{
 delay(dt);
 X1 = analogRead(xpin);
 Y1 = analogRead(ypin);
 Z1 = analogRead(zpin);
 i = 0;
 dx = abs(X1-X0)/const_conv;
 dy = abs(Y1-Y0)/const_conv;
 dz = abs(Z1-Z0)/const_conv;

 Serial.print(dx);

156

 Serial.print("\t");
 Serial.print("\t");

 Serial.print(dy);
 Serial.print("\t");
 Serial.print("\t");

 Serial.print(dz);
 Serial.println();

 if(dx > 1.0 || dy > 1.0 || dz > 1.0){
 set_alarm = 1;
 }
 if (set_alarm == 1){
 digitalWrite(52, HIGH);
 }
 }
}

Algoritmo A - 10: Código implementado para leitura e atuação do acelerômetro ADXL335

157

11 - Leitura e atuação do acelerômetro MPU6050

#include<Wire.h>
const int MPU=0x68; // I2C address of the MPU-6050
int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ;
int16_t dx,dy,dz;
int OldAcX,OldAcY,OldAcZ,OldTmp,OldGyX,OldGyY,OldGyZ;

int AcSensitivity = 10000;
boolean moved = false;

void setup(){
Wire.begin();
Wire.beginTransmission(MPU);
Wire.write(0x6B); // PWR_MGMT_1 register
Wire.write(0); // set to zero (wakes up the MPU-6050)
Wire.endTransmission(true);
Serial.begin(9600);
}

void loop(){
Wire.beginTransmission(MPU);
Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H)
Wire.endTransmission(false);
Wire.requestFrom(MPU,14,true);
AcX=Wire.read()<<8|Wire.read();
AcY=Wire.read()<<8|Wire.read();
AcZ=Wire.read()<<8|Wire.read();
Tmp=Wire.read()<<8|Wire.read();
GyX=Wire.read()<<8|Wire.read();
GyY=Wire.read()<<8|Wire.read();
GyZ=Wire.read()<<8|Wire.read();

dx = abs(AcX - OldAcX);
dy = abs(AcY - OldAcY);
dz = abs(AcZ - OldAcZ);

if (dx > AcSensitivity || dy > AcSensitivity || dz > AcSensitivity) {
moved = true;
}

if (moved == true) {
Serial.println("MOVED");
}
OldAcX = AcX;
OldAcY = AcY;
OldAcZ = AcZ;
moved = false;
delay(100);
}

158

Algoritmo A - 11: Código implementado para leitura e atuação do acelerômetro MPU6050

12 - Algoritmo implementado para o cálculo da variação da altitude em função da pressão

atmosférica

#include <Wire.h>
#include <Adafruit_BMP085.h>
Adafruit_BMP085 bmp;
void setup() {
 Serial.begin(9600);
 if (!bmp.begin()) {
 Serial.println("Could not find a valid BMP085 sensor, check wiring!");
 while (1) {}
 }
}
void loop() {
 int i,media = 100;
 double temp[media],a=0,b,c;
// Serial.print("Temperature = ");
// Serial.print(bmp.readTemperature());
// Serial.println(" *C");
//
// Serial.print("Pressure = ");
// Serial.print(bmp.readPressure());
// Serial.println(" Pa");
//
// // Calculate altitude assuming 'standard' barometric
// // pressure of 1013.25 millibar = 101325 Pascal
// Serial.print("Altitude = ");
// Serial.print(bmp.readAltitude());
// Serial.println(" meters");
//
// Serial.print("Pressure at sealevel (calculated) = ");
// Serial.print(bmp.readSealevelPressure());
// Serial.println(" Pa");

while(1){
 b = a;
 a=0;
 for(i=0;i<media;i++){

 temp[i] = (bmp.readAltitude(101500))/media;
 a += temp[i];
 }

 delay(1700);
 //delay(1);
 // Serial.print("Real altitude = ");

159

 // Serial.print(a);
 // Serial.println(" meters");
 c = a-b;
 if (c > 0.5 || c < -0.5){
// Serial.print(a);
// Serial.println(" ");
 Serial.println("**queda**");
 }
 Serial.print(c);
 Serial.println();
}
}

Algoritmo A - 12: Algoritmo implementado calcular altitude com base na informação da pressão atmosférica fornecida
pelo sensor BMP180

160

13 - Programa do módulo ESP8266 utilizado para comunicação dos transdutores à placa

de desenvolvimento Intel Galileo.

#include <ESP8266WiFi.h>

const char* ssid = "REDE";
const char* password = "SENHA";

const char* host = "143.107.235.59";

void setup() {
 Serial.begin(115200);
 delay(10);

 // We start by connecting to a WiFi network

 Serial.println();
 Serial.println();
 Serial.print("Connecting to ");
 Serial.println(ssid);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }

 Serial.println("");
 Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
}

void loop() {
 delay(10000);

 Serial.print("connecting to ");
 Serial.println(host);

 // Use WiFiClient class to create TCP connections
 WiFiClient client;
 const int httpPort = 8152;
 if (!client.connect(host, httpPort)) {
 Serial.println("connection failed");
 return;
 }

 // We now create a URL for the request
 String url = "/?LED2;";

161

 Serial.print("Requesting URL: ");
 Serial.println(url);

 // This will send the request to the server
 client.print(String("GET ") + url + " HTTP/1.1\r\n" +
 "Host: " + host + "\r\n" +
 "Connection: close\r\n\r\n");
 delay(10);

 // Read all the lines of the reply from server and print them to Serial
 while(client.available()){
 String line = client.readStringUntil('\r');
 Serial.print(line);
 }

 Serial.println();
 Serial.println("closing connection");
}

Algoritmo A - 13: Código implementado no módulo ESP8266 e utilizado para conexão e comunicação com a placa Intel
Galileo

162

14 - Programa utilizado no módulo detector de vazamento de gás

#include <ESP8266WiFi.h>

const char* ssid = "REDE";
const char* password = "SENHA";

const char* host = "143.107.235.59";

void setup() {
 Serial.begin(115200);
 delay(10);

 // We start by connecting to a WiFi network

 Serial.println();
 Serial.println();
 Serial.print("Connecting to ");
 Serial.println(ssid);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }
 Serial.println("");
 Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
}

void loop() {
 if(analogRead(A0) > 600){

 Serial.print("connecting to ");
 Serial.println(host);

 // Use WiFiClient class to create TCP connections
 WiFiClient client;
 const int httpPort = 8152;
 if (!client.connect(host, httpPort)) {
 Serial.println("connection failed");
 return;
 }

 // We now create a URI for the request
 String url = "/?GAS;";

 Serial.print("Requesting URL: ");

163

 Serial.println(url);

 // This will send the request to the server
 client.print(String("GET ") + url + " HTTP/1.1\r\n" +
 "Host: " + host + "\r\n" +
 "Connection: close\r\n\r\n");
 delay(10000);

 // Read all the lines of the reply from server and print them to Serial
 while(client.available()){
 String line = client.readStringUntil('\r');
 Serial.print(line);
 }

 Serial.println();
 Serial.println("closing connection");
 }
}

Algoritmo A - 14: Programa implementado para o módulo detectar vazamento de gás

164

15 - Algoritmo completo da placa de desenvolvimento Intel Galileo, incluindo comunicação

entre o processo Arduino e o Linux.

#include <Ethernet.h>
#include <SPI.h>
#include <SD.h>

boolean reading = false;
String readString;
//const int chipSelect = 4;

// http request termina com uma linha em branco
boolean currentLineIsBlank = true;
boolean sentHeader = false;
String header;

//
//CONFIGURACAO
//
 byte ip[] = { 192, 168, 1, 151 }; //Para setup manual
 byte gateway[] = { 192, 168, 0, 1 }; //Para setup manual
 byte subnet[] = { 255, 255, 255, 0 }; //Para setup manual

 // Caso precise alterar o MAC address
 byte mac[] = { 0x98, 0x4F, 0xEE, 0x01, 0x13, 0x30 };

 EthernetServer server = EthernetServer(8152); //port 80
//

void setup(){
 Serial.begin(115200);

 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
 pinMode(13, OUTPUT);
 pinMode(SS, OUTPUT);

// if (!SD.begin(chipSelect)) {
// Serial.println("initialization failed!");
// return;
// }

 Ethernet.begin(mac);

 server.begin();
 Serial.println(Ethernet.localIP());
}

void loop(){

165

// listen for incoming clients
 EthernetClient client = server.available();
 if (client) {
 Serial.println("new client");
 // an http request ends with a blank line
 boolean currentLineIsBlank = true;

 while (client.connected()) {
 if (client.available()) {
 char c = client.read();
 header += c;

 if (c == '\n' && currentLineIsBlank) {

 //parse headers
 //bWluaDp0ZXN0 = 'minh:test' (user:password) base64 encode

 Serial.print(header);

 // Simpler just to find the credential string
 // send a standard http response header
 if(header.indexOf("dGhvbWFzOnZpYWRv") >= 0) {
 //successful login
 while(1)
 checkForClient();
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connection: close"); // the connection will be closed after
completion of the response
 //client.println("Refresh: 5"); // refresh the page automatically every 5 sec
 client.println();
 if(header.indexOf("GET / HTTP/1.1") >= 0) {
 client.println("<!DOCTYPE HTML>");
 client.println("<html>");
 client.println("index");
 client.println("</html>");
 } else {
 client.println("<!DOCTYPE HTML>");
 client.println("<html>");
 client.println("hello world!");
 client.println("</html>");
 }

 } else {

 // wrong user/pass
 //client.println("HTTP/1.0 401 Authorization Required");
 client.println("HTTP/1.1 401 Unauthorized");
 client.println("WWW-Authenticate: Basic realm=\"Secure\"");
 client.println("Content-Type: text/html");
 client.println();

166

 client.println("<html>Text to send if user hits Cancel button</html>"); // really
need this for the popup!

 }

 header = "";
 break;
 }
 if (c == '\n') {
 // you're starting a new line
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // you've gotten a character on the current line
 currentLineIsBlank = false;
 }
 }
 }
 // give the web browser time to receive the data
 delay(1);
 // close the connection:
 client.stop();
 Serial.println("client disconnected");
 }
}

void printPage(EthernetClient client){

 client.println("<!DOCTYPE html>");
 client.println("<h1>Galileo na web!</h1>");
 client.println("<p>Página web para acender os leds da Galileo.</p>");
 client.println("<p>Selecione o led que deseja acender:</p>");
// client.println("<input type=button value=LED1
onmousedown=location.href='http://143.107.235.59:8086/snapshot.cgi?user=usuário&p
wd=senha&next_url='>");
 client.println("<input type=button value=LED1
onmousedown=location.href='/?LED1;'>");
 client.println("<input type=button value=Buzzer
onmousedown=location.href='/?LED2;'>");
 client.println("<input type=button value=LED3
onmousedown=location.href='/?LED3;'>");
 client.println("<input type=button value=LED13
onmousedown=location.href='/?LED4;'>");
 client.println("<input type=button value=GAS
onmousedown=location.href='/?GAS;'>");
 client.println("<input type=button value=BAR
onmousedown=location.href='/?BAR;'>");
 client.println("<input type=button value=ACEL
onmousedown=location.href='/?ACEL;'>");
 client.println("<input type=button value=BOTH
onmousedown=location.href='/?BOTH;'>");

167

 client.println("</body>");
 client.println("</html>");
 client.println();

}
void sendHeader(EthernetClient client, char *title)
{
 // envia o http response header padrao
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html ; charset=UTF-8");
 client.println ("Connection: close");
 client.println();
 client.print("<html><head><title>");
 client.print(title);
 client.println("</title><body>");
}

void checkForClient(){
 EthernetClient client = server.available();
 int pin = 0;
 if (client) {

 while (client.connected()) {
 if (client.available()) {
 char c = client.read();

 //read char by char HTTP request
 while (readString.length() < 100) {
 char c = client.read();
 //store characters to string
 readString += c;
 //Serial.print(c);
 if(c == '\n')
 break;
 }

 if(!sentHeader) {
 sendHeader(client,"Web Page Galileo");
 printPage(client);
 sentHeader = true;
 }

 //controle no led 1 (pino 2)
 if(readString.indexOf("LED1") >= 0){
 File myFile;
 system("touch /media/mmcblk0p1/test.txt");
 myFile = SD.open("test.txt",FILE_READ);

 // envia o http response header padrao
 digitalWrite(2, HIGH);
 Serial.println("Led 1 On");

168

 delay(3000);
 digitalWrite(2, LOW);
 readString = "";
 client.println("
");
 if (myFile) {
 // Serial.println("test.txt:");
 char aux[5];
 unsigned int i;
 // read from the file until there's nothing else in it:
 // while (myFile.available()) {
 for(i = 0; i < 5; i++)
 aux[i] = myFile.read();
 aux[5] = aux[4];
 myFile.close();
 if (aux[3] == '0'){
 if (aux[4] == '1'){
// Serial.write("0");
// Serial.write("1");
 client.println("<img src
='http://143.107.235.59:8085/videostream.cgi?user=usuário&pwd=senha&resolution=32
&rate=0'>");
// client.println("<img src
='http://143.107.235.59:8086/videostream.cgi?user=usuário&pwd=senha&resolution=32
&rate=0'>");
 }
 if (aux[4] == '0'){
// Serial.write("0");
// Serial.write("0");
 client.println("<img src
='http://143.107.235.59:8086/videostream.cgi?user=usuário&pwd=senha&resolution=32
&rate=0'>");
 }
 }
 // }
 // close the file:
 }
 }

 //controle no led 2 (pino 3)
 if(readString.indexOf("LED2") >= 0){
 digitalWrite(3, HIGH);
 Serial.println("Led 2 On");
 delay(3000);
 digitalWrite(3, LOW);
 readString = "";
 }

 //controle no led 3 (pino 4)
 if(readString.indexOf("LED3") >= 0){
 digitalWrite(4, HIGH);
 Serial.println("Led 3 On");

169

 delay(3000);
 digitalWrite(4, LOW);
 readString = "";
 }

 //controle no led 13 (pino 13)
 if(readString.indexOf("LED4") >= 0){
 digitalWrite(13, HIGH);
 Serial.println("Led 13 On");
 delay(3000);
 digitalWrite(13, LOW);
 readString = "";
 client.println("
");
 }

 //Recebimento de comando pelo sistema de detecção de vazamento de gás
 if(readString.indexOf("GAS") >= 0){
 system("./gas.sh");
 readString = "";
 client.println("
");
 }

 //Recebimento de comando pelo sistema de detecção de variação da velocidade
 if(readString.indexOf("ACEL") >= 0){
 system("./acelerometro.sh");
 readString = "";
 client.println("
");
 }

 //Recebimento de comando pelo sistema de detecção de variação de altura
(altitude)
 if(readString.indexOf("BAR") >= 0){
 system("./barometro.sh");
 readString = "";
 client.println("
");
 }

 //Recebimento de comando pelo sistema de detecção de variação da velocidade
e altitude
 if(readString.indexOf("BOTH") >= 0){
 system("./acel_and_bar.sh");
 readString = "";
 client.println("
");
 }

 if (c == '\n' && currentLineIsBlank)
 break;

 if (c == '\n') {
 currentLineIsBlank = true;
 }

170

 else if (c != '\r') {
 currentLineIsBlank = false;
 }
 }
 }

 readString="";
 sentHeader = false;
 delay(1); // tempo para o browser receber os dados
 client.stop(); // fecha a conexão
 }
}
Algoritmo A - 15: Algoritmo completo implementado na placa Intel Galileo, incluindo comunicação entre o processo

Arduino e Linux

171

Anexo

A Figura 53 apresenta o diagrama esquemático do conversor de tensão. Para

aplicações unidirecionais o sistema funciona como um divisor resistivo, isto é, com os

resistores devidamente calculados pode-se obter a tensão de 3,3V a partir de 5V. Para

aplicações bidirecionais, utiliza-se um transistor (BSS138).

Se a conexão TX_LV apresentar nível lógico alto (3V3), o transistor entra em corte,

pois seu VGS tende a 0. Neste caso, a saída TX_LH apresentará o mesmo nível de HV, isto

é, de 5V.

Se a conexão TX_LV apresentar nível lógico baixo (0V), o transistor apresenta VGS

suficiente para conduzir e TX_LH passa a nível lógico baixo.

De forma análoga, se TX_HV apresentar nível lógico alto (3V3), o diodo intrínseco

ao transistor não conduz, pois apresenta-se reversamente polarizado. Neste caso, a saída

TX_LV apresentará o mesmo nível de LV, isto é, de 3V3.

Se a conexão TX_HV apresentar nível lógico baixo (0V), o diodo intrínseco ao

transistor entrará em condução e a saída TX_LV passa a nível lógico baixo.

Figura 53: Esquemático do circuito conversor de tensão. Fonte:

https://cdn.sparkfun.com/assets/b/0/e/1/0/522637c6757b7f2b228b4568.png

