UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS
DEPARTAMENTO DE ENGENHARIA ELETRICA E DE COMPUTACAO

Otavio Henrique Gotardo Piton

AUTOMACAO RESIDENCIAL UTILIZANDO A
PLATAFORMA EM NUVEM IBM BLUEMIX

Sao Carlos

2017

Otavio Henrique Gotardo Piton

AUTOMACAO RESIDENCIAL UTILIZANDO A
PLATAFORMA EM NUVEM IBM BLUEMIX

Trabalho de conclusao de curso apre-
sentado a escola de engenharia de Sao
Carlos da Universidade de Sao Paulo.

Curso de Engenharia elétrica com

énfase em sistemas de energia e
automacao

Orientador: Prof. Dennis Brandao

Sao Carlos

2017

AUTORIZO A REPRODUGAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

P68la

Piton, Otavio Henrique Gotardo

Automacédo residencial utilizando a plataforma em
nuvem IBM Bluemix / Ot&vio Henrique Gotardo Piton;
orientador Dennis Branddo. Sdao Carlos, 2017.

Monografia (Graduagdo em Engenharia Elétrica com
énfase em Sistemas de Energia e Automacdo) -- Escola de
Engenharia de S&o Carlos da Universidade de S&o Paulo,
2017.

1. Internet das coisas. 2. Computagdo em nuvem. 3.
Automacédo residencial. 4. IBM Bluemix. 5. Protocolo
MQTT. 6. Controle de voz. I. Titulo.

FOLHA DE APROVACAO

Nome: Otavio Henrique Gotardo Piton

Titulo: “Automacao residencial utilizando a plataforma em nuvem
IBM Bluemix”

)

Trabalho de Concluséo de Curso defendido e aprovado
em L& 11 \f i

com NOTA_ 40 (wt IOZN%’), pela Comissédo Julgadora:

Prof. Associado Dennis Brand3o - Orientador - SEL/EESC/USP
Prof. Associado Evandro Luis Linhari Rodrigues - SEL/EESC/USP

Mestre Guilherme Serpa Sestito - Doutorando - SEL/EESC/USP

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Prof. Associado Rogério Andrade Flauzino

RESUMO

PITON, O. H. G. Automacao residencial utilizando a plataforma em nuvem IBM
Bluemix. 2017. 63p. Trabalho de conclusdo de curso - Escola de Engenharia de Sdo Carlos,
Universidade de Sao Paulo, Sao Carlos, 2017.

O objetivo deste trabalho foi a implementagao de um sistema de automacao residencial utilizando
plataformas em nuvem, o IBM Bluemix foi utilizado como base para a sua implementagao. O
sistema foi capaz de simular o controle de iluminacao, do alarme, informar a temperatura do
ambiente, trancar e destrancar a porta. O controle é feito via internet pelo smartphone através de
painel de comando em um aplicativo ou via controle de voz e pode ser realizado de qualquer lugar
do mundo com acesso a internet. O Projeto também possui um sistema de conversagao sendo
capaz de criar um didlogo simples com o usuério, como cumprimentos e despedidas ou até mesmo
responder aos comandos. Foi realizada a implementacao do sistema utilizando o IBM Bluemix
com os servigos Watson Conversation para a conversaciao, Node-Red para o processamento de
informacgOes e comunicagao entre os sevigos e hardware, Cloudant para o armazenamento de
informagoes e Weather Insights para informagdes sobre o clima. A comunicagdo entre os servigos
em nuvem, o smartphone e o hardware foi feita via protocolo MQTT. O hardware utilizado foi
uma placa de desenvolvimento Wemos D1 R2 com componentes conectados a ela para simular os
equipamentos controlados. O sistema atingiu sua motivagdo de agregar praticidade, seguranca e

simplicidade a tarefas realizadas diariamente pelos usudrios.

Palavras-chave: Internet das coisas. Computacdo em nuvem. Automacio residencial. IBM
Bluemix. Protocolo MQTT. Controle de voz.

ABSTRACT

PITON, O. H. G. Home automation using the IBM Bluemix cloud plataform. 2017.
63p. Trabalho de conclusdo de curso - Escola de Engenharia de Sao Carlos, Universidade de Sao
Paulo,Sao Carlos, 2017.

The goal of this paper was the implementation of a home automation system using cloud
platforms, IBM Bluemix was the basis for the implementation. The system was able to simulate
the lighting control, alarm control, information about the ambient temperature and lock and
unlock the door, the control is done via internet by smartphone through control panel in an
application or via voice control and can be done from anywhere in the world with internet
access. The system also has a conversation system able to create a simple dialog with the user,
such compliments and goodbyes or even respond to commands. The system implementation was
made using IBM Bluemix with the services Watson Conversation for conversation, Node Red
for processing information and communication between the services and hardware, Cloudant for
information storage and Weather Insights for information about the weather. The communication
between the cloud services, smartphone and hardware has been done via MQTT protocol. The
hardware used was a development card Wemos D1 R2 with components attached to it to simulate
the equipment controlled. The system has reached its motivation to add practicality, security

and simplicity to the tasks done daily by users.

Keywords: Internet of things. Cloud computing. Home Automation. IBM Bluemix. MQTT

Protocol. Voice control.

LISTA DE ILUSTRACOES

Figura 1 — Painel do IBM Bluemix L. 19
Figura 2 — Painel do servico Watson Conversation 21
Figura 3 — Interface da ferramenta Node-Red 22
Figura 4 — No6s mais utilizados no projeto L Lo 23
Figura 5 — O modelo de publish/subscribe para sensores IoT (YUAN, 2017) 24
Figura 6 — Diagrama de blocos do projeto oL 25
Figura 7 — Interface do aplicativo Termux no Android 26
Figura 8 — Programagdo no aplicativo Automate 27
Figura 9 — Painel do aplicativo “MQTT Dash” 28
Figura 10 — Parte inicial da aplicagdo em Node-Red 29
Figura 11 — Parte de armazenamento de informacoes 30
Figura 12 — Switch principal oo 31
Figura 13 — Parte de processamento das informagdes 31
Figura 14 — Painel de Intents do servico oo 32
Figura 15 — Painel de FEntities do servigo oo 33
Figura 16 — Painel de didlogo doservico oL 33
Figura 17 — Aba de programagéo do servigo 34
Figura 18 — Painel de databases do Cloudant 34
Figura 19 — Painel de warehouses do Cloudant 35
Figura 20 — Painel de tabelas do IBM DashDB 35
Figura 21 — Wemos D1 R2 (PENA, 2016) 36
Figura 22 — Interface de programagdo 37
Figura 23 — Hardware utilizado para a simulagdo 37
Figura 24 — Painel da plataforma Node-Red em funcionamento 40
Figura 25 — Gréafico dos estados das luzes da sala de estar armazenados em nuvem 41
Figura 26 — Painel de comando em funcionamento 41
Figura 27 — Hardware em funcionamento respondendo ao comando 42
Figura 28 — Comando de voz dito ao smartphone 42
Figura 29 — Hardware em funcionamento respondendo ao comando de voz 43

Figura 30 — Mensagem enviada ao smartphone como resposta ao comando anterior 43

LISTA DE ABREVIATURAS E SIGLAS

IBM International Business Machines

PaaS Platform as a Service

MQTT Message Queuing Telemetry Transport
M2M Machine to machine

TCP Transmission Control Protocol

1P Internet Protocol

API Application Programming Interface
QoS Quality of Service

USB Universal Serial Bus

WPA Wi-Fi Protected Access

GPS Global Positioning System

IoT Internet of Things

RAM Random Access Memory

UIMA Unstructured Information Management Architecture
DBaaS Database as a Service

JSON JavaScript Object Notation

Led Light Emiting Diode

1.1
1.2
1.3

2.1
2.11
2.1.1.1
2.1.2
2.1.3
2.2

3.1
3.2

3.2.1
3.2.2
3.3

3.3.1
3.3.2
3.3.3
3.4

SUMARIO

INTRODUGAO e e e e e e e e e e e
Automacao residencial
Internet das coisas o
Objetivo

EMBASAMENTO TEORICOc.ouvu...
IBM Bluemix
IBM Watson
Watson Conversation e
Plataforma Node-Red

Sistema de armazenamento Cloudant

Protocolo MQTT

MATERIAIS E METODOSo ti it ee e
Aplicacao com Node-Red no smartphone
Sistema utilizado no smartphone para realizar comunicagao com
a plataforma em nuvem
Controle de voz via smartphone
Controle por meio de painel de comando
Aplicacao na plataforma em nuvem
Aplicacdo na plataforma Node-Red
Aplicagao no servico Watson Conversation
Armazenamento CINl NUVEIIL v v v v v v v e e e e e e e e e e e e e e e e

Hardware utilizado
RESULTADOS EDISCUSSOES o v v i i i e i i i

CONCLUSAO . . . ottt e e e e e e e e e e e

REFERENCIASt
Apéndice A — Flow completo da plataforma Node-Red

Apéndice B — Dashboard completa do Servico Watson Conver-
sation e e e e e e e e e e e e e e e e

Apéndice C — Flow utilizado no smartphone para realizar con-
troledevoz e e

Apéndice D — Cdédigo utilizado na Placa Wemos D1 R2

47

49

51

15

1 INTRODUCAO

1.1 Automacgao residencial

A automacao residencial, também conhecida como domética, é a automatizacdo e o
controle aplicados a residéncia. Estes se realizam mediante o uso de equipamentos que dispoem de
capacidade para se comunicar interativamente entre eles e com capacidade de seguir as instrugoes
de um programa previamente estabelecido pelo usudrio da residéncia e com possibilidades de
alteracoes conforme seus interesses. Em consequéncia, a domética permite maior qualidade de
vida, reduz o trabalho doméstico, aumenta o bem-estar e a segurancga, racionaliza o consumo de
energia e, além disso, sua evolugao permite oferecer continuamente novas aplicagoes (MURATORI;
B6, 2011).

Como se percebe, o principal fator que define uma instalagdo residencial automatizada é
a integracdo entre os sistemas aliada a capacidade de executar fungoes e comandos mediante
instrugoes. A integracdo pode abranger todos os sistemas tecnolédgicos da residéncia,(MURATORI;
Bé, 2011) como:

o Instalacao elétrica, que compreende: iluminacao, persianas e cortinas, gestdo de energia e

outros;

o Sistema de seguranca: alarmes de intrusao, alarmes técnicos (fumaga, vazamento de gas,

inundagao), circuito fechado de TV, monitoramento, controle de acesso;

e Sistemas multimidia: 4udio e video, som ambiente, jogos eletronicos, além de videos, imagens

e sons sob demanda;
o Sistemas de comunicagoes: telefonia e interfonia, redes domésticas, TV por assinatura;

o Utilidades: irrigacdo, aspiragao central, climatizagdo, aquecimento de agua, bombas e

outros.

Atualmente é possivel desenvolver sistemas de automacao residencial com um alto nivel
de controle utilizando sistemas embarcados, que estao cada vez mais potentes. Utilizando também
a internet ou sistema de telefonia moével que é cada vez mais utilizado com a grande popularizagao

dos smartphones.

Os sistemas de iluminacdo das residéncias tém como base a utilizagdo de interruptores,
com a automacao é esperado que a utilizacdo destes seja reduzida drasticamente e que todo o
controle seja feito a partir de controles no smartphone ou por controles de voz com o principal

objetivo de aumentar o conforto dos moradores.

Os sistemas de alarme e seguranca residenciais sempre foram desejados pelos moradores,
ja que melhoram a seguranca da residéncia, mas atualmente com os indices de violéncia se

elevando cada vez mais estes sistemas vém ganhando cada vez mais procura e mercado.

16

Outro diferencial de sistemas que utilizam a internet como base para automacao residencial
¢é que existe a possibilidade da realizacao de controles de qualquer local do mundo com acesso a
internet. Mesmo durante uma viagem ou durante o trabalho é possivel controlar sua residéncia e

com a instalacdo de cAmeras este sistema poderia ficar ainda mais preciso e interessante.

A proposta deste trabalho é o controle de processos residenciais simples e recorrentes,
como o controle de iluminacao, alarmes e outros equipamentos, por meio do smartphone. Sera
utilizado como base para o controle dos processos e a comunica¢do entre os equipamentos a

plataforma em nuvem do IBM Bluemix.

1.2 Internet das coisas

O conceito da internet das coisas é basicamente conectar qualquer dispositivo com
um botdo ON/OFF a internet, isto inclui tudo, smartphones, cafeteiras, maquinas de lavar,
interruptores e também se aplica a componentes de maquinas. Qualquer dispositivo com um botao
ON/OFF pode ser parte da internet das coisas. Segundo a Gartner, empresa de tecnologia da
informagao, pesquisas e consultoria, em 2020 serdo mais de 26 bilhdes de dispositivos conectados
(alguns estimam este nimero em mais de 100 bilhdes). Uma rede gigante de “coisas” conectadas
(que incluem também pessoas), assim como a relacdo entre pessoa-pessoa, pessoa-coisas e coisas-
coisas (MORGAN, 2014).

As aplicagoes sao diversas e englobam o monitoramento da saide de um individuo, o
controle de um sistema de automacao e o uso de dispositivos pessoais conectados (MARTINS,
2017).

A nova lei do futuro serd, “Qualquer coisa que pode ser conectada, serd conectada’”.
Em uma escala mais ampla, ha possibilidade de aplicacoes em redes de transporte, “cidades
inteligentes” podem nos ajudar a reduzir desperdicios e aumentar a eficiéncia ajudando a
entender e aprimorar como vivemos e trabalhamos. A realidade é que infinitas oportunidades
e possibilidades sao permitidas e muitas delas ndo podemos nem mesmo pensar ou entender

completamente o impacto que resultaria hoje (MORGAN, 2014).

Discussoes sobre a internet das coisas estao acontecendo por todo o mundo e procurando
entender como isso podera impactar vidas. Também busca-se entender como as muitas opor-
tunidades e desafios ocorrerao quando mais e mais dispositivos comecgarem a se juntar a rede.
Por enquanto estudar e informar-se sobre o que é e seu potencial de impactar como vivemos e
trabalhamos é o mais possivel de ser realizado (MORGAN, 2014).

Comunicacao é a parte central da internet das coisas. Tecnologias de rede habilitam
dispositivos a se comunicar com outros dispositivos, aplicaces e servicos que estdo rodando na
nuvem. A internet depende de protocolos padronizados para garantir que a comunicacdo entre
dispositivos diferentes ocorra com seguranga e confiaveis. Estes protocolos especificam as regras
e formatos que dispositivos usam para estabilizar e gerenciar as redes, assim como a transmissao
de informagao entre as redes (GERBER, 2017).

No Brasil ja existe a discussdo de uma politica nacional voltada para o desenvolvimento

17

do mercado de internet das coisas, trata-se do Plano Nacional de Internet das Coisas, que visa
nortear acoes politicas e publicas para o setor. A ABB, empresa de tecnologia de energia e

TM» que esté

automagao, ja trabalha neste segmento de internet das coisas com o “ABB Ability
sendo desenvolvido sobre a plataforma em nuvem Azure da Microsoft, assim um sistema que
antes era centralizado em uma tnica localidade possa ser colaborativo, possibilitando que diversas

pessoas em lugares diferentes possam trabalhar juntas em um mesmo projeto (MARTINS, 2017).

A Philips, empresa voltada a tecnologia e produtos de consumo, ji conta com lampadas
inteligentes, a Philips HUE com elas é possivel acender ldmpadas por aplicativo no celular,
escolher a intensidade da luz, acor da iluminacio ou podem ser configuradas com temporizador
(MARTINS, 2017).

O ecossistema de internet das coisas no Brasil deve movimentar mais de 13 bilhoes de
dolares e o mercado brasileiro deve dobrar até 2020 (MARTINS, 2017).

1.3 Objetivo

O objetivo deste trabalho é desenvolver aplicagoes de automagio e também armazenar o
estado das aplicagbes em nuvem e obter informagdes do funcionamento das aplicagoes, utilizando

para isso as plataformas em nuvem do IBM Bluemix.

Existe o intuito de se desenvolver exemplos de aplicacbes como controle de iluminacao
ou equipamentos por meio de comandos ou agdes automaticas e sistemas de seguranca. Com a

finalidade de gerar as pessoas mais praticidade, facilidade, seguranca e conforto.

19

2 EMBASAMENTO TEORICO

Neste capitulo serd apresentada a fundamentacdo tedrica para o desenvolvimento deste
projeto, como componentes, plataformas e servigos utilizados que necessitam de um aprofunda-

mento tedrico a respeito deles.

2.1 IBM Bluemix

IBM Bluemix é a oferta de nuvem mais recente da IBM. Permite que as organizacoes e

os desenvolvedores criem, implementem e gerenciem aplicativos de maneira ficil e rapida.

Similares ao IBM Bluemix existem por exemplo o Amazon AWS e o Microsoft Azure.
Provavelmente estes outros servigos também seriam suficientes para a realizagdo do mesmo
projeto. A escolha do Bluemix foi feita ja que foi possivel conseguir uma licenga de pesquisa para

a utilizagdo do servico.

O IBM Bluemix é composto por um painel apresentado na Figura 1 de onde é possivel
acessar todos seus servicos e plataformas, além de um catalogo onde é possivel configurar novos
servicos e criar novos aplicativos. Entre os servigos encontrados no Bluemix existem servigos de
infraestrutura, cognitivos e de internet das coisas. O IBM Bluemix, utilizado juntamente com a
plataforma Node-Red , foi a base para este trabalho, a parte central de todas as aplicagoes, que
realiza tanto acOes de controle como comunicagao entre todos os dispositivos.

oard/apps/?env_id =ibm%3Ayp%3Aus-south TH®

Top Internet of Thinc @@ Hands-on, Buildan I 2w Add Decision Autom e Getting started with | «Bv Use Node-red on A [[J MQTT com o ESP82

- C | @ Secure | httpsy//console bluemix.ne

S Apps [1 M UniversidsdedeSic [CPICPDF oF

@ Docs 77 Trial Days Remaining v Otdvio Piton's Account | US South : ofaviopiton@uspbr : DataSciX

= @, IBMBluemix

Q, search ltems t

Dashboard

Cloud Foundry Apps (1) 256 MB/2 GB Used

20 ¥ ltemsperpage | 1-10f 1items 1of 1pages

NAME ROUTE MEMORY (MB) INSTANCES RUNNING STATE ACTIONS
otaviol otaviot.mybluemixnet 256 1 1 Funning AN,

Services (8) 8/10 Used

20 v ltemsp

NAME SERVICE OFFERING PLAN ACTIONS

availabilitv-monitorina-auto Availabilitv Monitorina Lite

Figura 1: Painel do IBM Bluemix

O Bluemix é uma implementagdo da Arquitetura de Nuvem Aberta da IBM baseada em
Cloud Foundry, uma plataforma como servigo (PaaS) de cédigo aberto (REYES, 2014).

Cloud Foundry é uma plataforma como servigo de coédigo aberto que permite criar e

20

implementar aplicativos rapidamente na nuvem. Devido as suas raizes de codigo aberto, o Cloud
Foundry nao é especifico para o provedor e nao o limita a softwares de propriedade intelectual ou
infraestrutura de nuvem. O Cloud Foundry extrai a infraestrutura de cédigo implicita da nuvem
para realizar a operacdo, permitindo se concentrar mais no desenvolvimento de aplicativos e
menos na codificagdo (REYES, 2014).

O IBM Bluemix oferece servigos de nivel bésico e empresarial de que as organizagoes
precisam para que seus aplicativos estejam prontos e disponiveis para quando e onde seus clientes
mais necessitarem. Devido as suas tecnologias de cédigo aberto implicitas, o IBM Bluemix
oferece flexibilidade para integrar desenvolvimento e servigos que se adaptem as suas necessidades
(REYES, 2014).

2.1.1 IBM Watson

O IBM Watson é um supercomputador que combina inteligéncia artificial e software
analitico para oferecer servigos diversos. O supercomputador foi nomeado em homenagem ao
fundador da IBM, Thomas J. Watson. Ele tem uma taxa de processamento de 80 teraflops (um
trilhdo de operagdes com ponto flutuante por segundo), na tentativa de replicar ou ultrapassar
um cérebro humano (ROUSE, 2016).

Os componentes principais do IBM Watson sao: Apache UIMA (Unstructured Information
Management Architecture), estrutura necessaria para andlise de informagoes dispersas; Apache’s
Hadoop uma estrutura de programacao baseada em Java que suporta processamento de grandes
quantidades de informagdes em um ambiente de computacdo distribuida; SUSE Enterprise
Linux Server 11, o mais rapido sistema operacional disponivel; 2880 ntcleos de processador; 15
terabytes de RAM; 50 gigabytes de informacdo processada; IBM’s DeepQA software, designado
para aquisicao informag@o que incorpora processamento de linguagem natural e aprendizado de
méquina (ROUSE, 2016).

O Watson anteriormente contava com um servigo de perguntas e repostas (IBM Watson
Question Answer) que foi impossibilitado de novas criagdes em 20 de novembro de 2015 e
totalmente retirado de funcionamento em 16 de dezembro de 2015. E esta funcao deixada para os
servicos de Natural Language Classifier, Conversation, Retrieve and Rank e Document Conversion,
que sdo servigos que incluem o poder e a flexibilidade de dar respostas a perguntas, entretanto
para aplicagbes mais especificas. Neste projeto o servico do IBM Watson mais utilizado é o

Watson Conversation.

2.1.1.1 Watson Conversation

Com o servico Watson Conversation, é possivel construir um didlogo que entende lingua-
gem natural e utiliza o aprendizado de méquina para responder quem utiliza de forma a simular

uma conversacao entre humanos (MILLER, 2017).

Funciona da seguinte maneira, o usuario interage com a aplicacdo por uma interface
que pode ser uma janela de chat ou uma interface de voz, a aplicacdo envia a informagao de

entrada do usudrio para o servigo, a este conecta-se um workspace (area de trabalho) que contem

21

o diadlogo e informacoes de treinamento, o servigo interpreta a entrada e encontra a resposta
correspondente, a aplicagdo pode agora com a informacao adquirida interagir novamente com o

sistema de interface e realizar a¢Ges determinadas.

A Figura 2 mostra o painel do Watson Conversation onde ficam os workspaces e dentro

de cada um destes todas as informagoes referentes aos didlogos.

18M Watson Conversatic X e - X

<« C | @ Secure | https//watson-conversationng.bluemix.net/us-south/c0

i Apps [) M Universidade deSic B+ Top Intemetof Thino @8 Hands-on,Build an | #B Add Decision Autorm: Bw Getting started with | <& Use Node-red on Ar. [} MQTT com o ESPE2

Watson Col

Workspaces @ e e

Car Dashboard - Sample : Conversation Dashboard Create an

Dashboard sample
hich allows multi-turn ~

Figura 2: Painel do servico Watson Conversation

Para implementar o servigo é necessario configurar um workspace, é possivel fazer isto
utilizando uma interface grafica. Em seguida é preciso inserir a informacao de treinamento que
sao chamadas de Intents (Intengoes) e Entities (Entidades). As Intengoes definem em que tipo
de acdo o usudrio estd interessado, sdo literalmente as intencdes do usuario com o servigo, por
exemplo se o usudrio estd falando sobre o clima ou sobre as luzes. As Entidades sdo termos que
ddo contexto a Intencao, por exemplo sobre qual luz o usudrio esta falando ou sobre o clima de

qual dia o usuario esta se referindo.

Conforme informagdes sao adicionadas, um qualificador de linguagem natural é adicionado
ao workspace, e é treinado para entender os tipos de solicitacbes que estas informagoes indicam,

para que o servico entenda estas solicitacOes e responda a elas.

A ferramenta de didlogo é utilizada para construir o didlogo que incorpora as intengoes e
entidades. O didlogo é representado graficamente como uma arvore, é possivel adicionar ramos ao
didlogo que correspondem as intencoes e deste ramo sairem novos ramos que lidam com possiveis

variacoes desta intencao e estas variagoes podem ser por exemplo as entidades.

2.1.2 Plataforma Node-Red

Node-Red é uma ferramenta de programacio para conectar dispositivos de hardware,
APIs, e servicos online de maneiras diferentes e interessantes. Fornece um editor baseado em

navegador web que deixa o processo facil e tem um vasto diretério de nds que podem ser utilizados

22

com um simples clique (NODERED.ORG, 2017). A Figura 3 mostra a interface da ferramenta
com o diretério de nés a esquerda, o editor de Flows no centro e a direita abas de informacao

sobre os nos e de “Debug” para testes do Flow.

& @ | @ secure | https//otaviol mybluemixnet/rec/# T
HoApes D

Node-RED

a Flow 1 Flow 2 + info debug

& mail -

twitter

msg payload ‘
ETIEL voice_cloud
twitter
voiceotavio_in ~“~—_
v storage ® comnecied Function =) voiceotavio_out

@ connected

mongodb
ibm hafs

ibm hdfs
cloudant

mongods

cloudant

~ analysis

sentiment

Figura 3: Interface da ferramenta Node-Red

A ferramenta é construida em Node.js que a faz ideal para rodar em hardwares de baixo
custo e também na nuvem. Ainda fungées em JavaScript podem ser criadas dentro do editor
utilizando um editor de texto (NODERED.ORG, 2017).

A ferramenta Node-Red, neste projeto, é utilizada para conectar a plataforma em nuvem
com os dispositivos de hardware, a comunicacdo em sua maioria é feita pelo protocolo MQTT, a
ferramenta também processa as informacoes recebidas e envia os comandos correspondentes a

tais informacoes para o hardware.

A Figura 4 apresenta exemplos de nés da ferramenta Node-Red, estes sdo os nés mais

utilizados no projeto.

O no “inject” que basicamente injeta alguma informacao no flow quando pressionado,
assim sendo ttil para fazer testes de como a programacao ird se comportar com determinadas

entradas.

Os nés “mqtt” tanto de entrada quanto de saida sdo para comunicagdo com o smartphone
e com o hardware. Eles sdo configurados basicamente com o servidor, o topico e a QoS. Depois

disso ja sado capazes de receber e transmitir informagoes respectivamente.

O né “debug” é um no de teste utilizado para verificar as informagoes que fluem e assim

conferir se a programacao estd funcionando corretamente.

O noé “weather insights” é utilizado para obter informagdes sobre o clima e pode retornar
informagoes sobre o clima no instante atual, de hora em hora, ou de dia em dia. E precisa ser

configurado com o intervalo de tempo da previsao e com as coordenadas do local da previsao.

Os nods do IBM Watson sao os nods referentes a conversagao, o né “conversation” é o né

utilizado para utilizar o servigo Watson Conversaion e precisa ser configurado com o workspace

23

referente ao didlogo predeterminado. O servigo de traducao (language translator) também pode

ser utilizado para mudar o idioma em que o sistema ird trabalhar.

O né “function” é utilizado quando é necessario escrever uma fungao dentro do fluxo
de informacao para processar a mensagem, a funcao deve ser escrita em Java. O n6 “switch” é
utilizado para controlar o fluxo de informacgéao escolhendo para qual caminho a informagao deve

seguir dependendo do tipo de informagao que entrou no no.

Os nés “cloudant” sao utilizados para armazenar informagao em nuvem, basicamente

armazenam a informacao que entrar no no e esta informacéo fica disponivel para acesso posterior.

Os nos de dashboard sdo nds utilizados para passar e apresentar as informagoes do sistema

em um painel que pode ser acessado via internet.

~ input ~ weather ~ |IBM Watson

| inject |:¢| IJ:I o weather |]‘|

| insights

;—‘L - 92000 .
|‘ - III -
~ output + function

. r T
I‘ ITI iunCllon I :

swrtch IJ'I

3
2

Figura 4: N6s mais utilizados no projeto

2.1.3 Sistema de armazenamento Cloudant

O IBM Cloudant é um sistema de gerenciamento de banco de dados, é nada mais do que
um armazenador de documentos JSON totalmente gerenciado para aplicativos moveis e da web

progressivos, que mantém acesso e disponibilidade de dados em méxima escala.

E um DBaaS (Database as a Service) de documento JSON totalmente gerenciado e
otimizado para disponibilidade, durabilidade e mobilidade de dados - perfeito para aplicativos
moveis e da web de rapido crescimento. O que torna o Cloudant exclusivo é sua indexacao
avancada e a capacidade de enviar dados até a extremidade da rede, em multiplos datacenters e
dispositivos, para acesso mais rapido e de maior tolerancia a falhas. Ele permite que os usudrios

acessem dados a qualquer momento, em qualquer lugar.

No projeto o Cloudant ¢é utilizado para armazenar em nuvem as informagoes dos estados

das aplicacoes do sistema.

24

2.2 Protocolo MQTT

O principal protocolo utilizado para a comunicacdo entre as aplicagoes é o MQTT
(Message Queuing Telemetry Transport). Principalmente entre o smartphone e a plataforma, e
entre a placa Wemos D1 R2 e a plataforma. Este protocolo foi utilizado neste projeto devido a
sua praticidade de utilizacdo, ser de facil processamento e ser muito utilizado em internet das

coisas.

O protocolo MQTT é um protocolo de mensagem leve e simples baseado em publish/subs-
cribe (publicar/se inscrever), os seus principios sdo minimizar a largura de banda e os recursos dos
dispositivos, enquanto também assegura confiabilidade e seguranga de comunicacio. Estes princi-
pios o fazem ideal para a comunicagdo “machine-to-machine” (M2M) ou maquina-a-maquina,

para a internet das coisas e para aplica¢oes méveis (MQTT.ORG, 2017).

Para os dispositivos da internet das coisas, a conexdo com a internet é um requisito. Esta
comunicagao permite os dispositivos a trabalhar com os outros e com os servicos. O protocolo
fundamental da internet é o TCP/IP, e construido neste protocolo temos o MQTT que se tornou

o padrao para comunicacao na internet das coisas (YUAN, 2017).

O protocolo define dois tipos de individuos na rede, um message broker e um ntimero de
clientes. O message broker é um servidor que recebe todas as mensagens dos clientes e encaminha
estas mensagens aos clientes destinatarios. Um cliente é qualquer dispositivo que pode interagir
com o broker e receber ou enviar mensagens. Um cliente pode ser um sensor no campo ou uma

aplicagdo na plataforma que processa informagao (YUAN, 2017).

As mensagens MQTT sdo organizadas por topics (t6picos), assim existe a flexibilidade de
especificar quais clientes tem acesso a certas mensagens. O cliente se conecta ao broker e pode
se inscrever ou publicar para qualquer tépico do broker. Na Figura 5 sensores publicam suas
mensagens no tépico de “sensor_data” e se inscrevem no topico “config_change”, aplicacoes de
processamento de dados se inscrevem no toépico “sensor__data” e um “Admin Console” recebe
comandos e ajusta as configuragoes dos sensores e publica no tépico “config_change” (YUAN,
2017).

Data processing

Subscribe sensor_data
and storage

Publish sensor_data

" Broker
l Sensor \

Subscribe config_change

Admin consol
Publish config_change HERERTIERS

Figura 5: O modelo de publish/subscribe para sensores IoT (YUAN, 2017)

25

3 MATERIAIS E METODOS

Na Figura 6 temos o diagrama de blocos do projeto completo, onde sdo representados
os componentes do projeto. Basicamente o smartphone, a placa Wemos D1 R2 e a plataforma
Node-Red se comunicam pela internet. A placa Wemos e a plataforma Node-Red ainda se

comunicam com seus respectivos periféricos e servigos, para completar o sistema.

lluminagéo

Interface com o usuario

Smartphone | MQTT‘ -F{ lr\;zlteéfmdi‘: H Lampadas ‘
| Tablet i ”
MQTT
Wemos D1 R2
5 o Plataforma _matT
IBM Watson [« > Node-Red < >
A

I
Weather
Cloudant i
Insights » Motor de
i passo Fechadurs

Armazenamento Informacgoes
em nuvem Climaticas

Y

- Sirene
Conversacdo

Alarme

mZam-—-Z—

Sensor PIR

Termistor Temperatura
Interna

Figura 6: Diagrama de blocos do projeto

As principais funcionalidades do sistema sio:

e Controlar as luzes;

o Controlar o alarme;

e Trancar e destrancar a porta;

o Informar a temperatura;

e Informagoes sobre o clima;

e Criar um didlogo com o usuério;

e Responder sobre capacidades do sistema;

3.1 Aplicagcdo com Node-Red no smartphone

Esta aplicagdo é uma demonstracao da plataforma Node-Red e do Bluemix em funciona-
mento foi baseada no trabalho de Stuart Arnell na pagina DeveloperWorks da IBM (ARNELL,
2017). Onde o smartphone Android se conecta ao Watson IOT via Node-Red e funciona simulando

um dispositivo IOT com sensores de temperatura e umidade. E o computador também conectado

26

ao Watson IOT pelo Node-Red, funcionando como o servidor e neste ha um painel que apresenta

os estados da simulacdo feita no smartphone.

Para rodar o Node-Red no smartphone Android também é necessario ter instalado um
aplicativo chamado Termux e também o aplicativo Termux-API. O Termux é um emulador de
terminal e ambiente Linux, e na aplicacdo ele é utilizado para fazer a plataforma Node-Red
funcionar dentro do Android. A inicializacdo nao é facil e requer uma sequéncia de cédigos

inseridos no aplicativo. Na Figura 7 é apresentada a interface do aplicativo Termux no Android.

B 25 a1l 70% M0 20:31

Welcome to Termux!

lOnline help: https://termux.com/help
Community forum: https://termux.com/community
IRC channel: #termux on freenode

Gitter chat: https://gitter.im/termux/termux
Mailing list: termux+subscribe@groups. io

Search packages: packages search <query>
Install a package: packages install <package>
Upgrade packages: packages upgrade

more: packages help

update

http://termux.net stable InRelease [1666 B]

12 http://termux.net stable/main all Packages

[3820 B]
Get:3 http://termux.net stable/main aarch64 Packa
es [54.9 kB)
Fetched 60.4 kB in 4s (13.1 kB/s)
Reading package lists... Done
Building endency tree
Reading state information... Done
16 packages can be upgraded. Run 'apt list --upgr
adable' to see them.
$ apt upgrade

Figura 7: Interface do aplicativo Termux no Android

Depois disso o Node-Red sera iniciado no celular e podera ser acessado pelo navegador
acessando localhost:1880. Entretanto existe um problema neste método que se o aplicativo for
fechado no celular, ndo serd mais possivel acessar o Node-Red. E serd necessario reabrir o

aplicativo e repetir os 2 ultimos comandos para inicializar o Node-Red novamente.

Este método apesar de aparentemente promissor e 1til se mostrou complicado de se
utilizar pela necessidade da utilizagao do aplicativo Termux e por cada inicializagdo necessitar de

refazer uma parte da codificacdo para que tudo volte a funcionar.

3.2 Sistema utilizado no smartphone para realizar comunicacao com a plata-
forma em nuvem

O smartphone é utilizado como interface do usuério com o sistema por meio de comandos
de voz, ou por meio de um aplicativo que contém um painel de controle.
3.2.1 Controle de voz via smartphone

Primeiramente o smartphone Android precisa ser programado para realizar um ciclo de

agoes, isto pode ser feito utilizando um aplicativo chamado Automate e plug-ins necessarios. O

27

ciclo funciona da seguinte maneira:

1. Espera-se até que o smartphone receba um comando de voz pelo préprio aplicativo do

Google;

2. O comando ¢é enviado a plataforma Node-Red em formato de texto;

3. O texto sera analisado e sera enviada uma resposta;

4. O smartphone espera até que a mensagem de resposta seja recebida e entdo a reproduz;

O comando de voz precisa ter a palavra chave programada para ser enviado a plataforma

em nuvem, se ele ndo contem esta palavra o smartphone reconhece como um comando qualquer

para o aplicativo do Google. Neste projeto a palavra chave é “home”, entdo qualquer comando

deve comegar com esta palavra, um comando pode ser por exemplo: “home turn on the kitchen

lights” ou “home how is the temperature”.

i =45 .01 77% MW} 21:05

= 3¢ Voice Home A

-
a s

— {3

Automate Flow beginning
5
Y
i)
w
Aguarda o ﬂ 7
comando Command: "home” SIS Q 1
de voz 3 b
0 J AutoVoice
Envia o
comando ﬂ

d voiceotavio_in :
¢ Voz wvoicel : 2 : false

neohe s / MQTT Client
resposta da
nuvem voiceotavio_out :
voice2
Pl
O
Reproduz a «©
resposta [y
recebida Speak voice2
o

Figura 8: Programagao no aplicativo Automate

A Figura 8 contém a programacao feita no aplicativo Automate e os respectivos plug-ins
utilizados, funciona da maneira descrita na imagem. O primeiro bloco é somente uma inicializagao.

O segundo bloco é responsavel por aguardar o comando de voz programado, este bloco chama

28

um aplicativo de plug-in chamado “AutoVoice”, este aplicativo reconhece uma palavra chave

falada e entdo o comando é reconhecido e enviado a plataforma Node-Red.

O terceiro bloco é responsavel por enviar o comando de voz reconhecido no bloco anterior
para a plataforma Node-Red, isto é feito utilizando um aplicativo de plug-in chamado “MQTT
Client (Tasker Plugin)”, a mensagem é publicada através deste utilizando o protocolo MQTT

para a comunicacao.

O quarto bloco aguarda a mensagem em nuvem ser recebida, utilizando o protocolo
MQTT e o mesmo plug-in “MQTT Client (Tasker Plugin)”. No quinto bloco a resposta recebida

no bloco anterior é reproduzida pelo smartphone e assim é finalizada a interagdo com o usuério.

Em alternativa ao Automate seria possivel utilizar um aplicativo chamado “Tasker”, este
realiza as mesmas fungdes e tem mais plug-ins que funcionam em conjunto, seu problema é que é

pago, e entdo foi feita a escolha do Automate que é gratuito.

3.2.2 Controle por meio de painel de comando

Para o comando manual do sistema é utilizado um aplicativo chamado “MQTT Dash”,
este aplicativo permite criar painéis com fung¢des de botoes, barras ou texto, que podem enviar e
receber mensagens. Assim é possivel apresentar o estado das aplicagoes e controla-las no mesmo
painel. Na Figura 9 o painel feito no aplicativo que foi utilizado como interface com o sistema é

apresentado.

Otavio Home

Cada botao no painel do aplicativo pode ser utilizado para controlar um respectivo

Living room light

v

Dining room light

v

Door lock

o

Kitchen light

v
N

Temperatura

27.0°C '

Figura 9: Painel do aplicativo “MQTT Dash”

29

equipamento, este contém comando para as luzes da sala de estar, cozinha e sala de jantar,
controle sobre o alarme e a fechadura da porta, além de um mostrador da temperatura indicada

pelo hardware.

Outros aplicativos como “IoT MQTT Dashboard” e “My MQTT” realizam acoes similares
com o “MQTT Dash”, no entanto estes aplicativos nao recebem informacoes e modificam
indicadores da maneira necessaria e quando recebem informagoes, se mais de um botao estiver
conectado & um mesmo tépico, haverao modificagdoes nao esperadas nos estados dos botdes, sendo

que o “MQTT Dash” consegue fazer da maneira correta.

3.3 Aplicagao na plataforma em nuvem

O smartphone envia as informagoes por meio do protocolo MQTT que vao para a nuvem,
mais precisamente para a plataforma Node-Red que processa a informacao da maneira requerida

em conjunto com os servigos Watson Conversation, Weather Insights e Cloudant.

3.3.1 Aplicacao na plataforma Node-Red

No Apéndice A esté o flow completo utilizado no projeto, para fins de apresentacdo neste

capitulo serdo apresentadas as partes que compoem o flow completo.

A parte inicial do flow se encontra na Figura 10, primeiramente a informacao chega na
plataforma Node-Red por um né de entrada do protocolo MQTT, o né “otavio_ digital” recebe a

informacao digital de botoes do aplicativo “MQTT Dash”.

, Node-RED

Q Flow 1 Projeto oice Flow 2 ErmuXx Flow{P | 4
catch
status
link

mgit
msg

= Va msg payload ‘

otavio_digital
websocket @ connected \
tep

@ connected
| mglight

v output

timestamp * —_ Start Context

debug |
link

mgtt

Figura 10: Parte inicial da aplicacdo em Node-Red

O né “voiceotavio__in” recebe a informacao de voz enviada pelo smartphone que passa por
um né de funcao para processamento da informagao, as informagoes de ambos os nds sdo entregues

ao servico Watson Conversation que processa as informagoes conforme o seu respectivo workspace.

30

Na subsecdo 3.3.2 a aplicacdo no Watson Conversation serd mais explicada. O né “timestamp'”

injeta sinal toda vez que o flow é iniciado, para que o né de fun¢do mande informagao para o

servigo de conversagdo colocar as varidveis de contexto em seu estado inicial.

Na Figura 11 estd a parte do flow onde as informagoes do estado das aplicagbes sao
enviadas e armazenadas em nuvem. A cada comando enviado ao servigo de conversagao, os
estados das aplicacoes sdo enviados a nuvem e armazenados, primeiramente passam por um no
de funcao onde sdo adicionadas informagdes como data e hora a mensagem, entdo as mensagens
vao para os nés de “Cloudant” onde sdo armazenadas. As informagoes também sdo apresentadas
em graficos em um painel acessado diretamente no navegador, os blocos de grafico que estao

mais a direita sdo os responsaveis por enviar estas mensagens.

a Flow 1 Projeto Voice
Inject

Flow 2 Termux Flow 4

msg.payload | £ Clesr Graph

mat — Cloud msg S kitchen_light — Graph msg - Kitchen light
i msg payload | //j
websocket : et Cloud msg S living_light - Graph msg ‘=" Living room light
|
msg ! T
| & msg payload
I f

(— Cloud msg dining_light = Graph msg Dining room light

- output

‘ ‘msg.payload

e Cloud msg

i Graph msg \ Door lock
door_lock

Graph msg K Alarm status

e | msg.payload

{ e
ink pre—rp Cloud msg = alarm

matt
hitp reszonse
websockst

top

Figura 11: Parte de armazenamento de informagoes

A Figura 12 mostra o né “Switch” principal, as informagoes de saida do servigo de

conversagao chegam neste né que direciona cada informagao para seu devido caminho. Acontece
da seguinte maneira:

1. O servigo de conversacao identifica a mensagem do usuario;

2. Armazena em uma varidvel a fungdo requerida por esta mensagem;

3. Este né 1é esta variavel;

4. Entao redireciona a mensagem para seu devido fluxo.

31

=<=_ Node RED
a Flow 1 Projeto Voice Flow 2 Temux Flow 4 +
slider - / =
— Processing Temperature (=<
numeric
text input
— Processing Weather —
date picker

colour picker

[S Processing Default Voice ol

éz : — Processing Action Vioice: -
B

form

text =0k
gauge _\ o Switch Function

chart

Processing Status Ai
1
Processing Lock $—

audio out

natification

Pr
- Switch Action
- location TN ol
worldmap
_— Proce:
weridmap - Swilch Digital ~
B Proce
tracks -
-4 .
- *

Figura 12: Switch principal

Na Figura 13 é apresentada a parte de processamento das informagoes, que dependendo

da solicitacao do usudrio algum destes caminhos é tomado e as a¢Ges necessarias sdo realizadas.

=<, Node-RED
a Flow 1 Projeto Voice Flow 2 Termux Flow 4 +| || mo debug dashboa
Lt < <
3 = ‘ f Inside Tempertature Taiinodes | [@
nito raspanse
% tempotavio_out fempolavio_in < Format temperature text =
- Processing Temperature (1 A———————————— | -
wabsacket @ comecie ® comnezea
2 timestamp t 5 Clowdmsg (— femperatura
toa =
Bosessro Dok s msg Inside Temperature Chart
uep
3 /@ weamermsignis - —<\—" Processing Weatner
malight ‘ ~ Processing Weather (- Swilch Time -\ \\\
weather insights <L — Processing Weather ——
- 1 -
0 Processing Action Voice ()= Lo
g Processing Weatner
iamaush 5
. o] <0 Processing status { =] f =3
ofavio_outstatus otavio_instatus (—<L T oo ST
Opsnmmzk | e)
6 L L msg payiosd
— Progessing Lock
msg. g
. |=— voiceotavio_out
=5— marTAction 8 conneci=

Processing Light <
o 7 =,
Switch Action
template N\ Processing Alam (—X%

.~ function ‘ﬁ_\\T/
L []

— . otavio_digttai2
Swilch appiication "~ =
Yoo elytoms X

8 " Processing Light <
e Suitch Digital _] b’ maTT Action &7 detay 20ms
:Z Processing Alarm \/ @ coonected
Frocessing Lock (== 1 msg |
5 reau <
-l k

Figura 13: Parte de processamento das informagdes

O primeiro caminho é referente a solicitagdo de temperatura interna, nesta fungao
basicamente a plataforma envia uma informagao por meio do protocolo MQTT para a placa
Wemos D1 R2, entao esta retorna um valor de temperatura medido pelo termistor, que é enviado

para o painel acessado no navegador, para o smartphone e para o armazenamento em nuvem.

O segundo caminho somente processa mensagens de voz padrao, somente para finalidade
de didlogo com o usuério. O terceiro caminho processa informagoes relacionadas a previsao do

tempo, o servigo de “Weather insights” é acessado pelos respectivos nds e a informacgao recebida

32

¢é transmitida ao smartphone por meio de MQTT.

O quarto caminho é basicamente o processamento de mensagens de voz que serao resposta
para o usudrio em decorréncia de comandos de acdo. O quinto caminho processa solicitacoes de
estado das aplicagoes, quando o usuario perguntar sobre o estado de uma aplicagio este caminho
serd tomado, a plataforma Node-Red envia um pedido para a placa Wemos e esta responde com

o estado da aplicagao solicitada.

O sexto caminho processa as agoes solicitadas por comando de voz para o comando de
trancar e destrancar a porta, ele basicamente verifica se o comando foi para trancar ou destrancar
a porta e encaminha a respectiva informagao para o né MQTT que envia o comando a placa

Wemos.

O sétimo caminho faz basicamente o mesmo que o anterior, mas para ac¢oes de luzes e

alarme, comandos em que o usudrio utiliza as palavras “turn on”(ligar) e “turn off”(desligar).

O dultimo caminho processa as informagoes recebidas por meio do aplicativo “MQTT
Dash” do smartphone, essas informacoes sdo consideradas digitais e solicitam as acoes digitais de

luzes, alarme e fechadura.

3.3.2 Aplicacao no servico Watson Conversation

O servico Watson Conversation é o principal servico utilizado, todas as mensagens de
comando passam por ele. Este servigo basicamente recebe a mensagem enviada pelo usuério e
a responde com outra mensagem para formar um didlogo. Utiliza varidveis de contexto para
reconhecer o que foi dito na mensagem e o que precisa ser realizado e repassar para o sistema.

No Apéndice B temos a arvore de programacio completa utilizada no servigo.

Como apresentado no subsecao 2.1.1.1, a primeira parte de reconhecimento das mensagens
utiliza as Intents ou intencdes, na Figura 14 estd o painel onde sdo definidas as intenc¢oes do
servigo, é possivel observar nesta por exemplo as intengoes de entradas digitais (#digital _on e

#digital _off) , de abrir e trancar a porta (#lock e #unlock) e a intencao de estado (#status).

Watson Conversation / Conversation Dashboard / Build @)

Intents Entities Dialog

Dimport b Export il pelete 25intents Sortby: Newest v

> #digital_on 1
digital 1

N #digital_off 1
digital O

N #unlock 2
unbar the door

5 #Hlock 3
lock the door

> #status 8

what is the status

Figura 14: Painel de Intents do servigo

33

A segunda parte de reconhecimento utiliza as Entities ou entidades, o painel onde séo
definidas as entidades do servigo estd na Figura 15 , podemos observar nesta imagem as entidades

de aplicagao (@Qappliance), local (@place e @place_bad) e tempo (@time).

Watson Gonversation / Gonversation Dashboard / Build ()

Intents Entities Dialog

My entities System entities

Dimport b Export T Delets 12entities Sortby: Newest

> @appliance
alarm, door, lights

» @place_bad

gallery, games room, library, porch, cellar

5 @time
in three days, in eight days, in four days, in nine days, next tomorrow, now, in seven days, today, in six days, tomorrow, in ten days, in five days

@place
kitchen, living room, bathroom, dining room, bedroom, all

Figura 15: Painel de FEntities do servico

Com as intengoes e entidades definidas é necessario criar um didlogo utilizando o painel
da Figura 16, é possivel ver nesta imagem um exemplo de ramo do didlogo. Neste ramo o primeiro
né “#turn_on” reconhece a intencdo de ligar algo, entdo o segundo né “@appliance:light”
reconhece se a aplicacdo a ser ligada é uma lampada, existe também em paralelo com este um
né “@appliance:alarm” que reconhece se a aplicacao a ser ligada é o alarme. Se a aplicacgao for
uma lampada, o terceiro né “@place” reconhece o local da lampada e entdao com todas estas
informagdes o servigo responde o usudrio com uma mensagem e modifica as varidveis de saida

conforme necessario para que a agao seja realizada.

Watson Conversation / Conversation Dashboard / Build ()

ntents Entiies Dialog

#turn_on

0Respanses /2 Context set /Jump to

Jump to @appliance:lights
(Evaluate condition)

@appliance:lights

1Response /1Contextset / Jump to

Jump to @place
(Evaluate condition)

@place

Figura 16: Painel de didlogo do servico

A Figura 17 contém um exemplo de né que modifica uma varidavel, podemos observar que
quando a condi¢ao de “@place” é satisfeita, se for reconhecida a condigdo de “@place:kitchen” o
servico modifica a variavel de contexto “appl_place” para “kitchen”, na saida do servico esta

varidvel indicara que o local reconhecido e onde a acdo deve ser realizada é a cozinha, neste

34

mesmo bloco temos as condigdes para outros locais como “@place:living room” e “@place:dining

room” que reconhecem respectivamente a sala de estar e a sala de jantar.

Intents Entities

‘Watson Conversation / Conversation Dashboard / Build

Dialog

#turn_on

Jump to @appliance:iights
(Evaluate condition)

@appliancellights

1Response /1 Context set / Jumpto

Jump to @place
(Evaluate condition)

@place

Name this node...

If bot recognizes:

@place

Bcustomize X

Figura 17: Aba de programacao do servigo

Desta mesma maneira sdo reconhecidas todas as fungoes do sistema, como ligar e apagar

luzes, controlar o alarme, a fechadura, informar a temperatura, informar a previsao climética,

responder cumprimentos e despedidas e informar o estado de aplicagoes.

3.3.3 Armazenamento em nuvem

As informagcoes de estado de todas as aplicacoes assim como a temperatura medida pelo

hardware sdo armazenados em nuvem. Utiliza-se para isso o sistema de armazenamento Cloudant

da IBM que foi melhor apresentado na subsegdo 2.1.3. A Figura 11 mostra a parte do flow do

Node-Red que envia as informagbes para a nuvem.

A Figura 18 mostra as databases do servigo, cada uma destas corresponde a um né de Clou-

dant da plataforma Node-Red, assim cada um destes databases corresponde ao armazenamento

dos estados de um aplicagao.

!

Databases

Your Databases

(A

Name

Size

#of Docs

& Create Database | {}JsON

Actions

H A

alarm

- 3

dining_light

door_lock

Kitchen_light

living_light

2
©

nodered

temperatura

teste

15.0KB

40.6KB

36.8KB

43.9KB

422KB

139.TKB

36.7KB

127.6KB

800
800
800
800
800
800
800
800

Showing 1-2 of & databases.

Figura 18: Painel de databases do Cloudant

35

Com as databases prontas € necessario agora criar uma warehouse e incluir suas databases

como na Figura 19. Depois disso é necessario abrir com o IBM DashDB e abrir a tabela

correspondente a database requerida e entdo poderd exportar ou filtrar as informacdoes.

Warehouses » Applications

Home
Tables
Load

Run sQL
Analytics
Monitor
Settings
Connect
Downloads

Help

>

Source Name Size Last Updated Status Actions
temperatura 491.1KB 2 minutes ago [|
door_lock 310.9KB 5 minutes ago []
kitchen_light 310.0KB 6 minutes ago []
alarm 310.9kB 6 minutes ago [|
dining_light 310.9 KB 6 minutes ago []
iving_light 278.8 KB 6 minutes ago [|

Figura 19: Painel de warehouses do Cloudant

Create, drop, and work with tables

For existing tables, you can view details, browse data, and export data. Learn more

Q dash14973

Quick tour

[

Add Table ‘ | Delete Table ‘ Schema | DASH14973 | v | TableName | TEMPERATURA
Tavte Detniton
Click a row {0 see its details

Macmum namber of ows t et

APPLICATION DATA HORA TEMPERATURA _ID

Temperaiure 9/110/2017 20:36:9 31 D6792541033835¢512784
a34e67d237e

Temperature 911012017 19:46:9 31 4778ich7d5ee9315d38c9
d24d5b3e07

Temperaiure 9110/2017 2011:9 31 11962275391562197970
377d3e23a32

Temperature 911012017 19:36:9 31 4862cf9e010dedfc3ee355

¥ELC

_REV

1-309801cdachb120c3ds
5842045DC0212

1-413000447608126C59:
061023c05613b

1-05Cb05¢69009C04405
47ddacti656

1-84C259¢5209872734¢C -

Figura 20: Painel de tabelas do IBM DashDB

3.4 Hardware utilizado

Foi utilizada a placa de desenvolvimento Wemos D1 R2 que é compativel com o Arduino,

ela foi escolhida por ser ideal para projetos de robética e automagao que utilizam a internet

das coisas, pois possui suporte embutido a rede Wi-Fi. A programacao dela é feita através da

Arduino IDE da mesma maneira que uma placa Arduino.

A Figura 21 mostra a Wemos D1 R2. Ela foi utilizada basicamente para conectar o

hardware com a nuvem, ela se conecta pela internet aos servicos em nuvem do Bluemix através

da plataforma Node-Red e assim controla o hardware do projeto.

36

Figura 21: Wemos D1 R2 (PENA, 2016)

A Wemos D1 R2 foi escolhida entre as placas que poderiam ser utilizadas em projetos
deste tipo como Arduino ou o NodeMcu. O Arduino foi descartado devido a sua conectividade via
Wi-Fi necessitar a adigdo de um médulo ou shield ao circuito. J4 o NodeMcu se mostra similar
a Wemos D1 R2 somente com a diferenca de formato entre as placas, sendo possivel realizar o

mesmo projeto utilizando o NodeMcu somente fazendo altera¢des necessarias no cédigo.

A Wemos D1 R2 é uma plataforma de software e hardware voltada para a desenvolvimento
de aplicacbes de internet das coisas. Possui um controlador ESP-8266EX, porta micro USB para
a alimentacao e programacdo, pino para alimentacdo externa de 9 a 24V, 9 portas digitais que
operam em nivel l6gico de 3,3V e uma entrada analdgica com resolucao de 10 bits limitada a
3,2V. O seu moédulo ESP8266 consiste em um microprocessador ARM de 32 bits com suporte
embutido a rede Wi-Fi (suporte as redes Wi-Fi 802.11 b/g/n e criptografia WPA e WPA2),
baixo consumo de energia e meméria flash integrada, que permite a ele ser programado de forma

independente sem a necessidade de outras placas.

O hardware utilizado para a simulagao do circuito esta na Figura 23, este sistema foi
utilizado para fazer os testes do sistema e verificar se esta tudo funcionando como deveria. Nesta
figura temos a placa Wemos D1 R2 que foi programada utilizando o programa Arduino IDE, a
interface deste se encontra na Figura 22. A placa se comunica com a plataforma em nuvem. E

assim controla os demais componentes o cdédigo utilizado para a programacao estd no Apéndice
D.

Para a programacao da placa Wemos via Arduino IDE é necessario adicionar a biblioteca
correspondente a placa “ESP8266WiFi.h”, esta permite a conexao via internet pelo processador
ESP8266 da placa. Para a comunicacao via protocolo MQTT com a plataforma é necessario
utilizar a biblioteca “PubSubClient.h” com ela é possivel publicar e se inscrever em tépicos do

broker.

No co6digo em si, primeiramente a funcdo “setup” faz um setup geral do hardware

37

conectando-o a internet e , depois a funcdo “ntc” extrai a temperatura utilizando o termistor,
para calcular a temperatura informada pelo termistor é utilizada a equacao de Steinhart—Hart

que descreve a temperatura de um dispositivo semicondutor em dada temperatura.

A funcao “callback” é a principal funcéo do c6digo onde o hardware recebe as informagoes
via MQTT, quando uma mensagem é recebida esta funcdo é chamada e identifica qual é o topico
em que esta mensagem chegou e qual a mensagem, assim executa a acio respectiva. A funcéo
“reconnect” serve para reconectar o hardware a internet quando o sistema se desconecta por
algum motivo. A funcdo “loop” é o laco principal do programa onde a conexao & internet é
testada, o cliente da biblioteca “PubSubClient.h” é rodado novamente para verificar as inscrigoes

aos tépicos, e o alarme quando ligado é monitorado para que seja acionado quando necessario.

@ Wemos2 | Arduino 183 - X
Arquivo err

Figura 22: Interface de programacao

Para fins de teste da aplicacao foi utilizado um médulo de relés de 2 canais onde cada
relé é responsavel pelo acionamento de uma respectiva lampada, assim estas lampadas podem ser
controladas pelo sistema. A Lampada 1 simula as luzes da sala de estar e a Lampada 2 simula as

luzes da cozinha.

127/220v

Sensor PIR

Médulo de relés

Servo Motor Wemos D1 R2

Figura 23: Hardware utilizado para a simulagao

38

O termistor mede a temperatura do ambiente. Temos o Sensor PIR e o Buzzer que sédo

parte do alarme, o Sensor PIR reconhece movimentos e o Buzzer simula a sirene do alarme.

Quando a placa Wemos recebe um comando para ligar ou desligar uma das lampadas,
seja via painel de controle ou via comando de voz, o relé correspondente a esta sera ligado ou

desligado, assim acendendo ou apagando a ldampada correspondente.

Se a placa recebe um sinal para informar a temperatura, a leitura do termistor é enviada
para a plataforma e entdo enviada para o smartphone como resposta, podendo ser uma resposta

de voz ou o niimero de amostra no painel de comando.

Se o sinal recebido é para acionar o alarme, entdo o alarme é acionado e a placa espera
um sinal do Sensor PIR, se esse sinal existir, o Buzzer é acionado e simula uma sirene, mostrando

que o alarme funciona corretamente.

Quando é recebido um sinal para que a porta seja trancada ou destrancada a placa envia
a informacdo correspondente ao comando para o servo motor que entao se desloca para a posi¢do

indicada simulando um trancamento ou abertura da porta.

O cbdigo utilizou na placa Wemos D1 R2 238713 bytes (22%) de espago de armazenamento
para programas, o maximo sao 1044464 bytes. Varidveis globais usam 32716 bytes (39%) de
memoéria dindmica, deixando 49204 bytes para varidveis locais, o maximo sdo 81920 bytes. Assim

ainda existe espaco para realizar aplicacbes maiores, ou adicionar dispositivos.

39

4 RESULTADOS E DISCUSSOES

No projeto em geral, o acesso ao hardware via painel de comando foi realizado com
sucesso sem nenhum tipo de falha em intimeros testes com o sistema final. O acesso realizado via
comando de voz apresentou problema no proprio reconhecimento de voz do smartphone quando
a palavra de comando "home"nao era reconhecida no inicio da frase, entretanto se reconhecido

corretamente o sistema ndo apresentou falha em nenhum momento.

O controle do sistema via painel de comando tem um tempo de resposta praticamente
imperceptivel, para medigao deste foram medidos 20 valores com um cronémetro, a média obtida
foi de 0,66s e o desvio padrao de 0,07s. J& o controle de voz tem um tempo de resposta do
ciclo completo (desde o envio da mensagem até que a mensagem comece a ser reproduzida pelo
smartphone) em torno de 4 segundos, foram realizadas novamente 20 medidas, a média obtida

foi de 3,82s e o desvio padrao foi 0,33s.

O sistema utilizado no smartphone para fazer o papel de painel de comando foi executado
sem problemas maiores, no entanto a escolha do aplicativo que exerceu este papel é fundamental e
exigiu pesquisa e testes, pois cada aplicativo tem um método de funcionamento e suas limitagoes.
O aplicativo utilizado “MQTT Dash” foi o mais completo encontrado durante as pesquisas, ele é
capaz de enviar as informacoes e receber informagoes, sendo assim possivel ter botoes interativos
que mudam de estado com o estado das aplicagoes. Isto evita um grande problema apresentado
durante a execucao do projeto, que é o estado da aplicacdo mudar e o status do botdo nao, assim
seria necessario apertar o botao para mudar o estado da aplicacdo para o correto e depois disso

alterar o estado para o almejado.

O servico de conversacao utilizado foi o Watson Conversation, a programacao deste
requer uma boa nocao de como o servigo funciona, o servigo faz o papel de didlogo e resposta aos
comandos de voz, um grande obstaculo na utilizacdo deste servigo é o mesmo problema que o

aplicativo do smartphone conseguiu evitar.

O problema é que se o smartphone envia um comando direto para o hardware e o servigo
de conversagao nao estiver a par deste comando, o servigo continuaréd entendendo o estado da
aplicacdo como o anterior, assim para o smartphone o estado da aplicacdo sera correto e o
servigo de conversagao tera conhecimento do estado como errado e quando receber um comando

a resposta serd errada e nao gerard a acao requerida.

Como o servigo de conversacao entende o estado das aplicagoes por varidveis proprias
dentro do servigo, s6 é possivel mudar estas varidveis com comandos enviados ao servico. Em um
primeiro momento no projeto o smartphone envia comandos diretamente para a placa Wemos,
entdo o comando ndo passa pelo servico de conversagao que nao fica a par do comando e entende

que nao existem modificagdes no sistema.

Alterar as variaveis do servico individualmente nao é possivel, entdo nao é possivel

alterar a variavel correspondente quando um comando é enviado. Entao para resolver o problema,

40

necessariamente todos os comandos devem passar pelo servigo de conversagao e o este os repassar
para a plataforma Node-Red que os processa, nao havendo mais comunicacio direta entre o

smartphone e o hardware.

Na aplicagdo do hardware a programacao da placa Wemos para a comunicacdo via
protocolo MQTT com a plataforma é necessario utilizar a biblioteca “PubSubClient.h” com
ela é possivel publicar e se inscrever em tépicos do broker, mas existe um problema, em que a
inscricao utilizando a fungao “callback” e comparando o topico de que a mensagem foi recebida,
descobrir de qual tépico a mensagem se originou, entretanto se existirem muitos topicos diferentes,
observou-se que o sistema fica mais lento, demorando para responder aos comandos. Entao para
este problema néo existir foi necessario reduzir os tépicos na medida do possivel e em vez de
fazer um tépico para cada aplicacao, os tépicos foram divididos por tipo de aplicacao, e cada
aplicacdo por uma mensagem recebida. Por exemplo o tépico ao invés de ser um tépico para
cada luz, existe um topico para todas as luzes e a mensagem recebida por este corresponde as

luzes de cada comodo.

Na Figura 24 temos o painel da plataforma Node-Red que é acessado pelo préprio
navegador no enderego “http://otaviol.mybluemix.net/ui/#/0”, ele nos mostra o funcionamento
do sistema, mostrando o status de cada componente do sistema em cada instante de tempo por
meio de graficos e também a temperatura. Nesta imagem o sistema ficou em funcionamento
um dia inteiro, assim foi simulado como o sistema se comportaria nesse periodo. Os dados nos

mostram como as aplicagoes foram ligadas e desligadas durante o periodo.

Na Figura 25 temos um grafico feito utilizando o Excel, onde podemos ver os estados das
luzes da sala de estar armazenados em nuvem utilizando o servico Cloudant, comparando este
grafico com o estado das luzes da sala de estar da Figura 24 é possivel observar que os dados
armazenados correspondem exatamente com os dados apresentados no painel da plataforma
Node-Red, podendo assim validar os dados recebidos tanto pelo painel quanto os armazenados

em nuvem.

Home

Lights Door Alarm Temperature

Kitchen light Door lock Alarm status Inside Tempertature

10 Lo 1 10 10

00:00:00 120000 010000 00:00:00 120000 010000 000000 1200:00 01:00:00

Living room light Y

10 = - —

18
0
03 10

o 00:0000 1200:00 010000

00:00:00 120000 01:00:00

Dining room light

00:00:00 120000 01:00:00

Figura 24: Painel da plataforma Node-Red em funcionamento

41

Living Room Light Status

=
Fa

=

=

04:48:00 09:36:00 14:24:00 15:12:00

[=1
=]
s
=
=
[=1
=1
=1
=
=1
=

Figura 25: Grafico dos estados das luzes da sala de estar armazenados em nuvem

Na Figura 26 e na Figura 27 temos respectivamente o painel de comando e o hardware em
funcionamento no mesmo instante. O sistema e o painel estdo em sincronia, o painel mostrando
as luzes da sala de estar e da cozinha ligadas, enquanto o médulo de relés estd com os 2 relés

acionados, que seriam a ligacao das respectivas luzes.

Otavio Home

Living room light Kitchen light

(]
LY ’
-9-
-

Dining room light Alarm

|\

Door lock Temperatura

Figura 26: Painel de comando em funcionamento

42

Figura 27: Hardware em funcionamento respondendo ao comando

Na Figura 28 temos o comando de voz dito para o smartphone e na Figura 29 temos a
resposta do hardware para o comando de voz enviado, o relé correspondente a luz da sala de
estar é desligado, pelo comando de voz “home turn off the living room lights”. Na Figura 30 é
possivel ver na plataforma Node-Red a resposta que foi enviada e reproduzida pelo smartphone

destacada em vermelho.

Q O =% .l 78% M} 19:59

home turn off the living room
lights

Figura 28: Comando de voz dito ao smartphone

43

It

lleMos

Figura 29: Hardware em funcionamento respondendo ao comando de voz

a Flow 1 Projeto Voice Flow 2 Termux Flows P | 4 info debug dashboal

Y all nodes]

CTnpaT FUnaL e A | 7
v input ¥ @ connected = F ——
8 Cloud msg (m temperatura |
i . T y 0192017, 5024 P nase: e931027 910468

"turn off the living room lights”

Processing Weather 2007 0BcaT

| staus O P o) ‘

g > &) | Processing Weather (e) i L

) T ceotavio_in”, peyload:
| nk O / retain: false, _msgid:
B r & "FD650D48.53208" }
| | matt ¢ 1011862017, 75024 PM node: 3422508a.224766
— __E woiosotavio_in : msg.payload : siring[43]

y G)
| http Q "Turning off the living room lights for I

g = ou. "

) Format status text [3—1 .

L

| B— o —.

L
| w0 - f

| (== voiceotavio_out ﬂ

_‘ ® connecled o

otavio_digital2 _J

@ connected
delay 10ms

:

Figura 30: Mensagem enviada ao smartphone como resposta ao comando anterior

O sistema é capaz de responder as mensagens de voz dos tipos:

Cumprimentos e despedidas.

Ligar e desligar as luzes da sala de estar, cozinha e sala de jantar.
Perguntas sobre a temperatura interna.

Perguntas sobre o clima no dia atual e nos 10 dias seguintes.
Trancar e destrancar a porta.

Ligar e desligar o alarme.

Perguntas sobre os estados de aplicacoes.

44

e Perguntas sobre suas capacidades.

¢ Responder quando a mensagem nao for reconhecida.

45

5 CONCLUSAO

Com a execugao do projeto e os resultados relatados, conclui-se que foi possivel alcangar
0 objetivo inicial deste por meio dos métodos propostos. A utilizacdo de plataformas em nuvem
é um método muito utilizado atualmente. As plataformas em nuvem utilizadas se mostraram

eficientes.

Foi possivel concluir que a plataforma Node-Red se mostrou muito 1til, ela foi o elo
principal do sistema, a sua capacidade de ligar diferentes servicos, processar a informacao durante
as ligacOes e se comunicar com diferentes sistemas garante uma flexibilidade para integrar
varios sistemas, mesmo que se comuniquem por maneiras diferentes. Se existisse acesso a mais
equipamentos que sdo capazes de se comunicar, o que no futuro serd uma realidade, a plataforma
ainda seria capaz de integrar todos os equipamentos e processar a comunicacio entre eles e

adicionar os servigos em nuvem disponiveis a eles.

O servigco Watson Conversation demonstrou eficiéncia na sua finalidade de realmente
criar didlogos, além de simplesmente responder as mensagens com texto, tem ferramentas capazes
de entender o contexto da mensagem e assim ser possivel gerar uma agao sobre a mensagem

recebida.

Em geral a utilizacdo de plataformas em nuvem voltadas para automagao residencial, se
mostrou promissora. E; com o crescente nimero de equipamentos que sdo capazes de se conectar
a aplicacdo em nuvem pode ser um caminho para evolugdo do segmento. Com a utilizagao deste
método pode nao ser necesséria a utilizagdo de hardwares para processamento de informacao, isso
se os equipamentos forem capazes de se comunicar, deixando para que todo o processamento seja
feito em nuvem e o hardware seja somente necessario para realizar as agoes e enviar informagoes

de monitoramento, além de permitir que toda a comunicacao seja feita sem fio a partir do Wi-Fi.

47

REFERENCIAS

ARNELL, S. Use Node-red on Android to Simulate IOT device connecting
to Watson IOT. 2017. Disponivel em: <https://developer.ibm.com/recipes/tutorials/
use-nodered-on-android-to-simulate-iot-device-connecting-to-watson-iot/>. Acesso em:
22.08.2017.

GERBER, A. Connecting all the things in the Internet of Things. 2017. Disponivel em:
<https://www.ibm.com/developerworks/library /iot-1p101-connectivity-network-protocols/
index.html>. Acesso em: 19.06.2017.

MARTINS, P. Mundo digital. Poténcia, v. 13, n. 136, p. 10-23, 2017.

MILLER, M. IBM Bluemix Docs Conversation. 2017. Disponivel em: <https:
//console.bluemix.net/docs/services/conversation/index.html#about>. Acesso em: 19.09.2017.

MORGAN, J. A Simple Explanation Of "The Internet Of Things’. 2014. Disponivel
em: <https://www.forbes.com/forbes/welcome/?toURL=https://www.forbes.com/sites/
jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/
&refURL=https://www.google.com.br/&referrer=https: //www.google.com.br/>. Acesso em:
19.06.2017.

MQTT.ORG. Frequently Asked Questions. 2017. Disponivel em: <http://mqtt.org/faq>.
Acesso em: 19.06.2017.

MURATORI, J. R.; B4, P. H. D. Automacao residencial:histérico, definigbes e conceitos.
2011. Disponivel em: <http://www.osetoreletrico.com.br/wp-content/uploads/2011/04/Ed62_
fasc__automacao__capl.pdf>. Acesso em: 19.06.2017.

NODERED.ORG. Flow-based programming for the Internet of Things. 2017. Disponivel
em: <https://nodered.org/#features>. Acesso em: 20.06.2017.

PENA, M. Iniciando em IoT com a placa D1 da Wemos.cc, um ESP8266 compativel
com Arduino - Parte 1. 2016. Disponivel em: <http://blog.robotto.com.br/2016/01/
iniciando-em-iot-com-placa-d1-da.html>. Acesso em: 12.08.2017.

REYES, A. T. O que é IBM Bluemix? 2014. Disponivel em: <https://www.ibm.com/
developerworks/br/cloud/library/cl-bluemixfoundry/index.html>. Acesso em: 29.06.2017.

ROUSE, M. IBM Watson supercomputer. 2016. Disponivel em: <http://whatis.techtarget.
com/definition /IBM-Watson-supercomputer>. Acesso em: 18.09.2017.

YUAN, M. Getting to know MQTT. 2017. Disponivel em: <https://www.ibm.com/
developerworks/library /iot-mqtt-why-good-for-iot /index.html>. Acesso em: 19.06.2017.

49

APENDICE A - FLOW COMPLETO DA PLATAFORMA
NODE-RED

O flow pode ser encontrado e importado do repositério: <https://github.com/otaviopiton/
TCC/blob/master /Node-Red%20Flow>.

o1

APENDICE B - WORKSPACE COMPLETO DO SERVICO
WATSON CONVERSATION

Para ter acesso ao arquivo em formato json e assim importa-lo para o servico Watson
Conversation baixe todos os arquivos de <https://github.com/otaviopiton/TCC> pelo botao

“Clone or download”.

G Conversation Dashboard

Start And Initialize Context

welcome o
2 Responses / 14 Context set

#hello

1Response / 1 Context set

#greetings

1Response / 1 Context set

Entry Point For On Off Commands

fiturn_on

0 Responses / 2 Context set / Jump to

Jump to @appliance:lights
(Evaluate condition)

‘@appliance:lights

1Response /1 Context set / Jump to

Jump to @place
(Evaluate condition)

@place

& Responses /1 Context set / Jump to

Jump to On Off
(Evaluate condition)

On Off

true

o000

14 Responses / 4 Context set

@place_bad

coo

1Response /0 Context set

@appliance:alarm

Qoo

4 Responses / 2 Context set

entities.size()>1

@oo

1Response /0 Context set

true

ooe

1Response /0 Context set

2,

oo
on

&) Conversation Dashboard

Start And Initialize Context
_| welcome

2 Responses / 14 Context set

[=1-1-]

#hello

1Response / 1 Context set

000

#greetings

1Response / 1 Context set

000

Entry Point For On Off Commands
L #turn_on

0 Responses / 2 Context set / Jump to

1-1-)

Jump to @appliance:lights
(Evaluate condition)

@appliance:lights

1Response / 1 Context set / Jump to

L1T-3

Jump to @place
(Evaluate condition)

@place

& Responses /1 Context set / Jump to

Jump to On Off
(Evaluate condition)

ooo

On Off

true

14 Responses / 4 Context set

000

@place_bad

1Response /0 Context set

ooo

@appliance:alarm

4 Responses / 2 Context set

L1.T-3

entities.size()>1

1Response / 0 Context set

ocoo

true

1Response / 0 Context set

LT

53

.

1]

() Conversation Dashboard

-

Start And Initialize Context
welcome

2 Responses / 14 Context set

-1-1-)

#hello

1Response / 1 Context set

1.1

#greetings

1Response / 1 Context set

L-1-1-3

Entry Point For On Off Commands
#turn_on

0 Responses / 2 Context set / Jump to

o000

_l Jump to @appliance:lights
(Evaluate condition)

@appliance:lights

1Response / 1Context set / Jump to

coo

Jump to @place
({Evaluate condition)

@place

6 Responses /1 Context set / Jump to

Jump to On Off
(Evaluate condition)

o0

On Off

true

14 Responses / 4 Context set

ooo

@place_bad

1Response /0 Context set

[+1=1+]

@appliance:alarm

4 Responses / 2 Context set

LLT.3

entities.size)>1

1Response / 0 Context set

coo

true

1Response /0 Context set

ooo0

2,

oo
on

&) Conversation Dashboard

Start And Initialize Context
_| welcome

2 Responses / 14 Context set

[=1-1-]

#hello

1Response / 1 Context set

000

#greetings

1Response / 1 Context set

000

Entry Point For On Off Commands
L #turn_on

0 Responses / 2 Context set / Jump to

1-1-)

Jump to @appliance:lights
(Evaluate condition)

@appliance:lights

1Response / 1 Context set / Jump to

L1T-3

Jump to @place
(Evaluate condition)

@place

& Responses /1 Context set / Jump to

Jump to On Off
(Evaluate condition)

ooo

On Off

true

14 Responses / 4 Context set

000

@place_bad

1Response /0 Context set

ooo

@appliance:alarm

4 Responses / 2 Context set

L1.T-3

entities.size()>1

1Response / 0 Context set

ocoo

true

1Response / 0 Context set

LT

95

APENDICE C -~ FLOW UTILIZADO NO SMARTPHONE
PARA REALIZAR CONTROLE DE VOZ

O flow pode ser encontrado e importado do repositério: <https://github.com/otaviopiton/
TCC/blob/master/Voice%20Home.flo>.

B =5 .l 77% M 21:05

& Voice Home

Aguarda o
comando
de voz

Envia o
comando
de voz

Recebe a
resposta da
nuvem

Reproduz a '

resposta
recebida

{}

Flow beginning

ﬁ

Command: "home"

voiceotavio_in :
%voicel : 2 : false

voiceotavio_out :
voice2

€

Speak voice2

v

= W

© 0w 9 o o

o7

APENDICE D - CODIGO UTILIZADO NA PLACA WEMOS
D1 R2

O cédigo também pode ser encontrado e importado do repositério: <https://github.com/
otaviopiton/TCC/blob/master/Wemos_ Code>.

// BIBLIOTECAS === - - — - oo oo oo oo -
#include <ESP8266WiFi.h>

#include <PubSubClient .h>

#include<Servo.h>

// VARIAVEILS === - m o oo oo oo oo oo

char receivedChar;

char msg([5];

// Temperature
byte NTCPin = AOQ;
int i, n=0;

char temp;

float steinhart;

// Led

int dining_light = D7;
char dining_status = ’h’;
int living_light = D6;
char living_status = ’g’;
int kitchen_light = D3;
char kitchen_status = ’f’;

char all_status = ’z’7;

// Servo
int pinservo = D2;
Servo s;
int pos;

char lock_status = ’o0’;

// Alarme
int buzzer = Di;

int pinopir = DO;

char alarm_status = ’r’;
int valorpir = O0;
const char* mqtt_server = "iot.eclipse.org";

const char* ssid = "TP-LINK_C274";

41
42
43

44

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78

80
81
82
83
84
85
86
87
88

58

const char* password = "12111994";
WiFiClient espclient;

// SETUP GERAL ————— - = — - m oo oo oo

void setup () {

pinMode (dining_light, OUTPUT) ;
pinMode (living_light , OUTPUT) ;
pinMode (kitchen_light, OUTPUT);
pinMode (BUILTIN_LED, OUTPUT);
pinMode (buzzer , QUTPUT);

pinMode (pinopir, INPUT);

Serial.begin(115200) ;
Serial.print("WiFi connecting.");
WiFi.begin(ssid, password); //SSID,PASSWORD
while (WiFi.status() != WL_CONNECTED) {
delay (500) ;
Serial.print(".");
}
Serial.print ("Connected") ;

Serial.println();

reconnect () ;

s.attach(pinservo);

s.write (0) ;

PubSubClient client(mqtt_server, 1883, callback, espclient);

// Temperature sensor NTC —-—----------—--—-—"——"———~—~—~—~—~—~—~—~—\—~"—~"—~—~—~—~—~—-

void ntc() {

float AOvalue;

float Resistance;

for (i = 0; i < 5; i++) {

AOvalue = AOvalue + analogRead (NTCPin);
}
AOvalue = AOvalue / 5;

(1023 / AOvalue) - 1;
10000 / Resistance;

Resistance

Resistance

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136

// FUNCAO CALLBACK

float steinhart;

steinhart = Resistance / 10000; // (R/Ro)

steinhart = log(steinhart); // 1n(R/Ro)

steinhart = steinhart / 3950; // 1/B * 1n(R/Ro)
steinhart = steinhart + (1.0 / (25 + 273.15)); // + (1/To)

steinhart = 1.0 / steinhart; // Invert
steinhart = steinhart - 273.15; // convert to C
steinhart = round(steinhart);

int temp = (int) steinhart;

Serial.print ("Temperature:");
Serial.print (steinhart);
Serial.println("C");

snprintf (msg, 5, " %d ", temp);

client.publish("tempotavio_in", msg);

void callback (char* topic, bytex* payload,

Serial.print ("Message arrived [");
Serial.print(topic);
Serial.print ("] ");

if (strcmp(topic, "testlight_otavio") ==

for (int i = 0; i < length; i++) {

unsigned int length) {

0) {

char receivedChar = (char)payloadl[il;

Serial.print(receivedChar) ;

if (receivedChar == ’1°’)
digitalWrite (BUILTIN_LED, HIGH);

:O;)

digitalWrite (BUILTIN_LED, LOW);

if (receivedChar =

if (strcmp(topic, "otavio_alarm") == 0)
n = 0;
for (int i = 0; i < length; i++) {

{

char receivedChar = (char)payloadl[il;

Serial.print(receivedChar);
if (receivedChar == ’1’){

alarm_status = ’'m’;

137
138
139
140
141
142
143
144
145
146
147
148
149
150

151

153

158
159
160
161
162
163
164
165
166

167

169
170

172
173

174

176
177
178
179
180
181
182
183

184

60

snprintf (msg, 3, "%c", alarm_status);

client.publish("otavio_allstatus",

if (receivedChar == ’0’){

alarm_status = ’r’;

msg) ;

snprintf (msg, 3, "%c", alarm_status);

client.publish("otavio_allstatus",

if (strcmp(topic, "otavio_lock")

== 0) {

for (int i = 0; i < length; i++) {

char receivedChar = (char)payloadl[i];

Serial.print (receivedChar);
if (receivedChar == ’0’){

lock_status = ’0’;

msg) ;

snprintf (msg, 3, "%c", lock_status);

client.publish("otavio_allstatus",

s.write (90) ;3
if (receivedChar == ’1’){

lock_status = ’c’;

msg) ;

snprintf (msg, 3, "%c", lock_status);

client.publish("otavio_allstatus", msg);

s.write (0);}

if (strcmp(topic, "otavio_light")

== 0)

for (int i = 0; i < length; i++) {

{

char receivedChar = (char)payload[il;

Serial.print(receivedChar) ;
if (receivedChar == ’k’){
digitalWrite (kitchen_light,

kitchen_status = ’k’;

HIGH) ;

snprintf (msg, 3, "%c", kitchen_status);

client.publish("otavio_allstatus",

if (receivedChar == ’f’){
digitalWrite(kitchen_light,
kitchen_status = ’f’;

LOW) ;

msg) ;

snprintf (msg, 3, "%c", kitchen_status);

client.publish("otavio_allstatus", msg);}

if (receivedChar == ’d’){
digitalWrite(dining_light,

dining_status = ’d’;

HIGH) ;

snprintf (msg, 3, "%c", dining_status);

client.publish("otavio_allstatus",

if (receivedChar == ’h’){
digitalWrite(dining_light,

LOW) ;

msg) ;

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

210

213
214
215

216

218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

61

dining_status = ’h’;

snprintf (msg, 3, "%c", dining_status);

client.publish("otavio_allstatus", msg);}

if (receivedChar == ’1’){
digitalWrite(1iving_1ight, HIGH) ;
living_status = ’17;

snprintf (msg, 3, "%c", living_status);

client.publish("otavio_allstatus", msg);}

if (receivedChar == ’g’){
digitalWrite(living_light, LOW);

living_status = ’g’;

snprintf (msg, 3, "%c", living_status);

client.publish("otavio_allstatus", msg);}

if (receivedChar == ’a’){
digitalWrite(kitchen_light, HIGH);
kitchen_status = ’k’;
digitalWrite (dining_light, HIGH) ;
dining_status = ’d’;
digitalWrite (living_light, HIGH);
living_status = ’17;
all_status = ’a’;

snprintf (msg, 3, "%c", all_status);

client.publish("otavio_allstatus", msg);}

if (receivedChar == ’z°’){
digitalWrite(kitchen_light, LOW);
kitchen_status = ’f’;

digitalWrite (dining_light, LOW);
dining_status = ’h’;
digitalWrite(1iving_1ight, LOW) ;
living_status = ’g’;

all_status = ’z’;

snprintf (msg, 3, "%c", all_status);

client.publish("otavio_allstatus", msg);}

if (strcmp(topic, "otavio_outstatus") == 0)
for (int i = 0; i < length; i++) {
char receivedChar = (char)payload[il;
Serial.print(receivedChar) ;
if (receivedChar == ’k’){
snprintf (msg, 3, "%c", kitchen_status);

client.publish("otavio_instatus", msg);}

if (receivedChar == ’d’){

{

62

233 snprintf (msg, 3, "%c", dining_status);
234 client.publish("otavio_instatus", msg);}
235

236 if (receivedChar == ’1°){

237 snprintf (msg, 3, "%c", living_status);
238 client.publish("otavio_instatus", msg);}
239

240 if (receivedChar == ’c’){

241 snprintf (msg, 3, "%c", lock_status);

242 client.publish("otavio_instatus", msg);}
243

244 if (receivedChar == ’'m’){

245 snprintf (msg, 3, "%c", alarm_status);
246 client.publish("otavio_instatus", msg);}
247 }

248 }

249

250

251 if (strcmp(topic, "tempotavio_out") == 0) {
252 ntc () ;

253 }

254

255 Serial.println();

256}

257

258 // FUNCAO RECONNECT == -=- === mm oo oo oo o oo

259 void reconnect () {

260 // Loop until we’re reconnected

261 while (!client.connected()) {

262 Serial.print ("Attempting MQTT connection...");
263 // Attempt to connect

264 if (client.connect("espclient")) {

265 Serial.println("Connected");

266 // ... and subscribe to topic

267

268 client.subscribe("otavio_light");

269 client.subscribe("otavio_lock");

270 client.subscribe("otavio_alarm");

271 client.subscribe("testlight_otavio");

272 client.subscribe("tempotavio_out");

273 client.subscribe("otavio_outstatus");

274

275 } else {

276 Serial.print("failed, rc=");

277 Serial.print(client.state());

278 Serial.println(" try again in 5 seconds");
279 // Wait 5 seconds before retrying

280 delay (5000) ;

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

311

63

// MAIN LOOP === o oo oo oo oo oo oo oo oo
void loop ()

{

if (!client.connected()) {

reconnect () ;

client.loop();

// Alarm function

if (alarm_status == ’m’){

valorpir = digitalRead (pinopir);

if (valorpir == 1) {
Serial.print("Alarm");
Serial.println();
tone (buzzer, 3000);
delay (2000) ;
noTone (buzzer) ;

} else {

noTone (buzzer) ;

