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RESUMO

JANKE, R. ESTIMATIVA DA LOCALIZAÇÃO DE CARROS AUTÔNOMOS
BASEADA NA FUSÃO DE SENSORES IMU/GNSS UTILIZANDO O
FILTRO DE KALMAN. 2024. 59 p. Monografia (Trabalho de Conclusão de
Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,
2024.

Atualmente, os carros autônomos estão com sua popularidade em franca ascensão tanto
no meio acadêmico, quanto no cotidiano da população geral.No entanto, ainda hoje, é
caro possuir e utilizar um carro autônomo para criar modelos e realizar treinamentos.
Dessa maneira, neste trabalho, estudou-se a possibilidade de utilizar o simulador CARLA,
acessível ao público geral, para desenvolver algoritmos de navegação para carros autônomos.
Neste estudo, empregou-se a fusão de dois sensores, o IMU e o GNSS, na previsão de
trajetórias de um carro autônomo. Além disso, para realizar os cálculos necessários às
previsões das trajetórias do carro autônomo, utilizou-se o algoritmo de Kalman Estendido.

Palavras-chave: IMU. GNSS. GPS. Carros Autônomos. CARLA. Simulador.





ABSTRACT

JANKE, R. ESTIMATION OF THE LOCATION OF AN AUTONOMOUS
CARS BASED ON THE FUSION OF IMU/GNSS SENSORS USING THE
KALMAN FILTER. 2024. 59 p. Monograph (Conclusion Course Paper) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2024.

Currently, autonomous cars are experiencing a significant rise in popularity both in
academic circles and in the daily lives of the general population. However, even today,
owning and using an autonomous car to create models and conduct training is expensive.
Therefore, in this study, we explored the possibility of using the CARLA simulator, which
is accessible to the general public, to develop navigation algorithms for autonomous cars.
In this study, the fusion of two sensors, IMU and GNSS, was employed in the prediction of
autonomous car trajectories. Additionally, the Extended Kalman Filter algorithm was used
to perform the necessary calculations for predicting the trajectories of the autonomous car.

Keywords: IMU. GNSS. Autonomous Cars. CARLA. Simulator.
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1 INTRODUÇÃO

A crescente complexidade dos sistemas de transporte modernos exige soluções
inovadoras para atender às necessidades de segurança, eficiência e sustentabilidade. Dentro
desse contexto, a pesquisa e desenvolvimento de carros autônomos têm se destacado como
uma área de estudo vital. O objetivo principal deste trabalho é investigar a estimativa de
localização de um carro autônomo através da fusão de sensores IMU (Unidade de Medida
Inercial) e GPS (Sistema de Posicionamento Global), utilizando o Filtro de Kalman.

Este trabalho se concentrará na criação de um filtro Estendido de Kalman e será
testado através do simulador de veículos autônomos CARLA.

1.1 Objetivos

• Desenvolver um modelo que integre os dados de sensores IMU e GPS para melhorar
a precisão da localização de veículos autônomos.

• Implementar e testar o Filtro de Kalman para processar e filtrar os dados provenientes
dos sensores do simulador CARLA.

• Avaliar a eficácia do modelo proposto em cenários de simulação realistas.

• Contribuir para o avanço das tecnologias de navegação autônoma, promovendo maior
segurança e confiabilidade no uso de veículos sem condutor.

1.2 Motivação

A história dos carros autônomos remonta às décadas de 1980 e 1990, quando
universidades e instituições de pesquisa começaram a explorar a viabilidade de veículos
automatizados. Projetos como o ALV (Autonomous Land Vehicle) do DARPA e o Navlab
da Carnegie Mellon University foram pioneiros no desenvolvimento de tecnologias que
permitiram a navegação autônoma em ambientes controlados. Na década de 2000, a
competição DARPA Grand Challenge impulsionou ainda mais a pesquisa, levando ao surgi-
mento de empresas especializadas e ao desenvolvimento de veículos autônomos comerciais.
Atualmente, os carros autônomos estão em fases avançadas de testes e implementação,
prometendo revolucionar o transporte urbano e rodoviário.

A motivação para este estudo é diversa. Primeiramente, o interesse do crescente
uso de técnicas de automação digital. Estamos vivendo uma nova era de efervescência
das técnicas de inteligências artificiais. Além disso, tem-se um novo mercado crescente da
indústria automobilística e de tecnologia em desenvolver veículos autônomos, criando uma
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demanda por soluções inovadoras e eficientes. Empresas como Tesla, Waymo e Uber têm
investido massivamente em pesquisas relacionadas a carros autônomos, impulsionando a
necessidade de novos talentos e conhecimento na área.

Do ponto de vista acadêmico, a fusão de sensores e o uso do Filtro de Kalman
(Kalman, 1960) são tópicos de grande relevância e complexidade, oferecendo desafios que
incentivam o desenvolvimento de habilidades técnicas e analíticas avançadas. O Filtro de
Kalman, desenvolvido por Rudolf E. Kálmán na década de 1960, é uma técnica matemática
amplamente utilizada para estimar o estado de um sistema dinâmico a partir de medições
ruidosas. Além de sua aplicação em veículos autônomos, o Filtro de Kalman é utilizado
em diversas outras áreas, como:

• Navegação Aeronáutica e Espacial: Utilizado em sistemas de navegação de
aeronaves e espaçonaves para estimar a posição e a velocidade a partir de dados de
sensores.

• Robótica: Empregado para a estimativa de estados e controle de robôs móveis e
manipuladores robóticos.

• Economia e Finanças: Aplicado na previsão de séries temporais e na estimativa
de variáveis econômicas ocultas.

• Processamento de Sinais: Usado em sistemas de comunicação para a filtragem de
ruídos e recuperação de sinais.

A integração de inteligência artificial (IA) com técnicas como o Filtro de Kalman
exemplifica o potencial sinérgico dessas tecnologias. A IA pode aprimorar a fusão de
sensores através de algoritmos de aprendizado que adaptam os modelos em tempo real,
enquanto o Filtro de Kalman fornece um framework matemático robusto para lidar com
incertezas e ruídos nos dados. Essa combinação é crucial para alcançar uma localização
precisa e confiável em veículos autônomos, que dependem de decisões rápidas e precisas
baseadas em dados sensoriais dinâmicos.

A fusão de sensores é essencial para a navegação de carros autônomos e com a
fusão do GNSS com o IMU tem-se um modelo robusto e realístico de navegação que
posteriormente poderia ser usado em um carro real.

Adicionalmente, há uma motivação pessoal em contribuir para um campo de
estudo que pode trazer benefícios tangíveis à sociedade. Melhorar a segurança no trânsito,
promover a eficiência energética, e reduzir o impacto ambiental são objetivos que ressoam
com as preocupações contemporâneas sobre desenvolvimento sustentável e qualidade de
vida.
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Organização do Trabalho

Este trabalho está estruturado em cinco capítulos, incluindo esta introdução. A
seguir, apresenta-se um breve resumo do conteúdo de cada capítulo:

• Capítulo 1: Introdução - Apresenta os objetivos, justificativa, motivação e or-
ganização do trabalho, fornecendo uma visão geral da importância e relevância do
estudo de veículos autônomos e da fusão de sensores IMU/GPS.

• Capítulo 2: Fundamentos Teóricos - Revisa os principais conceitos, técnicas e
trabalhos relacionados à fusão de sensores, filtros de Kalman e tecnologias de veículos
autônomos. Faz uma análise crítica das abordagens existentes, destacando as lacunas
e oportunidades para novas contribuições.

• Capítulo 3: Metodologia - Detalha os métodos e procedimentos utilizados para
desenvolver e implementar o modelo de fusão de sensores proposto. Inclui a descrição
dos sensores IMU e GPS, o algoritmo do Filtro de Kalman e os critérios de avaliação
dos experimentos.

• Capítulo 4: Resultados e Discussões - Apresenta os resultados obtidos a partir
dos experimentos e simulações, comparando a eficácia do modelo proposto com
diferentes abordagens. Discussões sobre as implicações dos resultados e possíveis
melhorias também estão incluídas.

• Capítulo 5: Conclusão e Trabalhos Futuros - Resume as principais conclusões
do estudo, destacando as contribuições para a área de veículos autônomos. Também
sugere direções para pesquisas futuras, baseadas nos achados e limitações do presente
trabalho.
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2 FUNDAMENTAÇÃO TEÓRICA

O filtro de Kalman é um algoritmo recursivo que fornece estimativas do estado de
um processo estocástico, que é um processo aleatório que evolui ao longo do tempo. Em
termos simples, ele combina previsões baseadas em um modelo de sistema com medições
reais que contêm ruído (incerteza) para produzir uma estimativa mais precisa do estado
do sistema (Welch; Bishop, 2001).

O processo estocástico descrito pelo filtro de Kalman pode ser entendido como um
sistema dinâmico cujas mudanças são parcialmente imprevisíveis devido à presença de ruído
branco. O filtro de Kalman trabalha em duas etapas principais: previsão e atualização.

Sendo assim, a fundamentação teórica deste trabalho irá explorar o conceito de
processos estocásticos, definindo o que é probabilidade, variáveis discretas, e contínuas.

2.1 Probabilidades

A probabilidade de que o resultado de um evento discreto A, como o lançamento
de uma moeda, aconteça é definida como:

p(A) = Número de resultados que favorecem o evento A

Número total de resultados possíveis (2.1)

Diz-se que dois eventos são mutuamente exclusivos quando eles não podem ocorrer
simultaneamente. Ou seja, a probabilidade de um resultado favorecer A ou B é dada por:

p(A ∪ B) = p(A) + p(B) (2.2)

Se a probabilidade de dois resultados for independente (um não afeta o outro), então a
probabilidade de ambos ocorrerem é o produto de suas probabilidades individuais:

p(A ∩ B) = p(A) · p(B) (2.3)

A probabilidade do resultado A, dado a ocorrência prévia do resultado B, é chamada
de probabilidade condicional de A dado B, e é definida como:

p(A|B) = p(A ∩ B)
p(B) (2.4)
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2.2 Variáveis Aleatórias

Ao contrário dos eventos discretos, no caso de rastreamento e captura de movimento,
o interesse geralmente reside na aleatoriedade associada à dinâmica do evento(Welch;
Bishop, 2001). Em cada caso, pode-se pensar no item de interesse como uma variável
aleatória contínua. Uma variável aleatória é essencialmente uma função que mapeia todos
os pontos do espaço amostral para números reais. Por exemplo, a variável aleatória contínua
X(t) pode mapear o tempo para a posição. Em qualquer ponto no tempo, X(t) indicará a
posição esperada.

No caso de variáveis aleatórias contínuas, a probabilidade de qualquer evento
discreto A é, na verdade, zero. Ou seja, p(A) = 0. Em vez disso, pode-se apenas avaliar a
probabilidade de eventos dentro de algum intervalo. Uma função comum que representa a
probabilidade de variáveis aleatórias é definida como a função de distribuição acumulada:

FX(x) = P ((−∞, x]) (2.5)

Esta função representa a probabilidade acumulada da variável aleatória contínua
X para todos os eventos (não contáveis) até e incluindo x. Propriedades importantes da
função de distribuição acumulada são:

1. FX(x) → 0 quando x → −∞

2. FX(x) → 1 quando x → +∞

3. FX(x) é uma função não decrescente de x.

Ainda mais comum que a equação (2.5) é a sua derivada, conhecida como a função
densidade de probabilidade:

fX(x) = dFX(x)
dx

(2.6)

Com base nas propriedades acima da função de distribuição acumulada, a função
densidade também tem as seguintes propriedades:

1. fX(x) é uma função não negativa

2.
∫∞

−∞ fX(x) dx = 1

Por fim, observe-se que a probabilidade sobre qualquer intervalo [a, b] é definida
como:
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PX([a, b]) =
∫ b

a
fX(x) dx (2.7)

Assim, em vez de somar as probabilidades de eventos discretos como na equação
(2.2), para variáveis aleatórias contínuas integra-se a função densidade de probabilidade
sobre o intervalo de interesse.

2.3 Média e Variância

O conceito de média de uma sequência de números é amplamente utilizado, sendo
que para N amostras de uma variável aleatória discreta X, a média ou média amostral é
dada por:

X̄ = X1 + X2 + · · · + XN

N
(2.8)

No rastreamento, lida-se com sinais contínuos (com um espaço amostral incontável),
sendo útil pensar em termos de um número infinito de ensaios. Desta forma, o resultado
final seria uma ”média” dos resultados obtidos. Nesse contexto, o valor esperado de uma
variável aleatória discreta poderia ser aproximado pela média dos eventos ponderados pela
probabilidade:

X̄ ≈ (p1N)x1 + (p2N)x2 + · · · + (pnN)xn

N
(2.9)

Na prática, em N ensaios, esperaria-se ver p1N ocorrências do evento x1, e assim
por diante. Essa noção de ensaios infinitos (amostras) leva à definição convencional de
esperança para variáveis aleatórias discretas:

E(X) =
n∑

i=1
pixi (2.10)

para n possíveis resultados x1, x2, . . . , xn e probabilidades correspondentes p1, p2, . . . , pn.
De modo semelhante, para a variável aleatória contínua, o valor esperado é definido como:

E(X) =
∫ ∞

−∞
xfX(x) dx (2.11)

Por fim, observa-se que a equação (2.10) e a equação (2.11) podem ser aplicadas a
funções da variável aleatória X da seguinte forma:

E(g(X)) =
n∑

i=1
pig(xi) (2.12)

e
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E(g(X)) =
∫ ∞

−∞
g(x)fX(x) dx (2.13)

O valor esperado de uma variável aleatória também é conhecido como o primeiro
momento de uma variável aleatória. Pode-se aplicar a noção da equação (2.12) ou (2.13),
deixando g(X) = Xk, para obter o k-ésimo momento de uma variável aleatória. O k-ésimo
momento estatístico de uma variável aleatória contínua X é dado por:

E(Xk) =
∫ ∞

−∞
xkfX(x) dx (2.14)

De particular interesse, tanto de forma geral como neste específico, é o segundo
momento da variável aleatória. Ele é dado por:

E(X2) =
∫ ∞

−∞
x2fX(x) dx (2.15)

Quando se deixa g(X) = X − E(X) e aplica-se a equação (2.15), obtém-se a
variância do sinal em relação à média. Desta forma,

VariânciaX = E[(X − E(X))2]

= E(X2) − E(X)2

A variância é uma propriedade estatística muito útil para sinais aleatórios. Isso
se deve ao fato de que, ao conhecer a variância de um sinal que, de outra forma, deveria
ser “constante” em torno de algum valor (a média) a magnitude da variância proporciona
uma noção de quanto ruído está presente no sinal.

A raiz quadrada da variância, ou desvio padrão, também é uma medida estatística
útil. Ao contrário da variância, o desvio padrão é sempre positivo, e possui as mesmas
unidades que o sinal original. O desvio padrão é dado por:

Desvio padrão de X = σX =
√

Variância de X (2.16)

2.4 Distribuição Normal ou Gaussiana

Uma distribuição de probabilidade especial, conhecida como distribuição Normal
ou Gaussiana, tem sido historicamente popular na modelagem de sistemas aleatórios
por uma variedade de razões. Muitos processos aleatórios que ocorrem na natureza
parecem ser normalmente distribuídos, ou muito próximos disso. De fato, sob algumas
condições moderadas, é possível demonstrar que a soma de variáveis aleatórias com qualquer
distribuição tende para uma distribuição normal. Esta propriedade é formalizada pelo
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teorema do limite central. Além disso, a distribuição normal possui algumas propriedades
interessantes que a tornam matematicamente tratável.

Dado um processo aleatório X ∼ N (µ, σ2), onde X é um processo aleatório contínuo
normalmente distribuído com média µ e variância σ2 (desvio padrão σ), a função densidade
de probabilidade para X é dada por:

fX(x) = 1√
2πσ2

exp
(

−(x − µ)2

2σ2

)
, para − ∞ < x < ∞ (2.17)

Finalmente, observa-se que, assim como no caso discreto e nas equações (2.2) e
(2.3), a independência e a probabilidade condicional são definidas para variáveis aleatórias
contínuas. Duas variáveis aleatórias contínuas X e Y são consideradas estatisticamente
independentes se a sua probabilidade conjunta fXY (x, y) for igual ao produto de suas
probabilidades individuais. Em outras palavras, elas são consideradas independentes se:

fXY (x, y) = fX(x)fY (y). (2.18)

2.4.1 Ruído Branco

Ruído branco é um termo estatístico usado para descrever um sinal aleatório que
possui uma densidade espectral constante. Em outras palavras, ruído branco é um sinal
aleatório que contém intensidade igual em diferentes frequências, proporcionando uma
potência constante ao longo da banda de frequência dada.

2.4.1.1 Propriedades do Ruído Branco

O ruído branco possui várias propriedades importantes que o tornam um conceito
útil em diversos campos, incluindo estatística e processamento de sinais. Essas propriedades
incluem:

• Estacionariedade: O ruído branco é considerado um processo estacionário, o que
significa que suas propriedades estatísticas, como média e variância, não mudam ao
longo do tempo.

• Independência: No ruído branco, todas as variáveis aleatórias são independentes
umas das outras. Isso implica que não há estrutura previsível ou padrão na sequência
de valores de ruído.

• Espectro Uniforme: O ruído branco possui um espectro plano, o que significa que
sua potência é distribuída uniformemente por todas as frequências dentro de um
intervalo dado.
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• Distribuição Gaussiana: Para esse trabalho, assume-se que o ruído branco segue
uma distribuição Gaussiana (normal), com média zero e uma variância finita. Esse
tipo de ruído branco é referido como ruído branco Gaussiano.

2.4.2 Covariância

A covariância na teoria das probabilidades e estatística é uma medida da variabili-
dade conjunta de duas variáveis aleatórias.

O sinal da covariância indica a tendência na relação linear entre as variáveis. Se
valores maiores de uma variável correspondem principalmente a valores maiores da outra
variável, e o mesmo se aplica a valores menores (ou seja, as variáveis tendem a apresentar
um comportamento semelhante), a covariância é positiva. Por outro lado, quando valores
maiores de uma variável correspondem principalmente a valores menores da outra (ou seja,
as variáveis tendem a mostrar um comportamento oposto), a covariância é negativa. A
magnitude da covariância é a média geométrica das variâncias que são comuns para as
duas variáveis aleatórias. O coeficiente de correlação normaliza a covariância dividindo-a
pela média geométrica das variâncias totais das duas variáveis aleatórias.

Variáveis aleatórias cuja covariância é zero são chamadas de não correlacionadas.
Da mesma forma, os componentes de vetores aleatórios cuja matriz de covariância tem
zero em todas as entradas fora da diagonal principal, também são chamados de não
correlacionados.

2.5 Estimativa Estocástica

Enquanto existem muitas abordagens específicas de aplicação para estimar um
estado desconhecido a partir de um conjunto de medições de processo, muitos desses méto-
dos não consideram inerentemente a natureza tipicamente ruidosa das medições(Grewal.;
Andrews, 2008). Por exemplo, considerando o trabalho em questão sobre rastreamento
posicional interativo. Embora os requisitos para a informação de rastreamento variem com
a aplicação, a fonte fundamental de informação é a mesma: as estimativas de posição são
derivadas de medições elétricas ruidosas de sensores mecânicos, inerciais, ópticos, acústicos
ou magnéticos. Esse ruído é tipicamente estatístico por natureza (ou pode ser efetivamente
modelado como tal), o que nos leva a métodos estocásticos para resolver os problemas.

2.5.1 Modelo Espaço de Estados

Os modelos de espaço de estados são essencialmente uma conveniência notacional
para problemas de estimação e controle, desenvolvidos para tornar tratável o que, de outra
forma, seria uma análise notacionalmente intratável. Considere um processo dinâmico
descrito por uma equação de diferenças de ordem n (similarmente uma equação diferencial)
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da forma:
yi+1 = a0,iyi + · · · + an−1,iyi−n+1 + ui, i ≥ 0, (2.19)

onde ui é um processo de “ruído” aleatório branco (espectralmente) de média zero (esta-
tisticamente) com autocorrelação:

E(ui, uj) = Ru = Qiδij, (2.20)

e os valores iniciais y0, y−1, . . . , y−n+1 são variáveis aleatórias de média zero com uma
matriz de covariância n × n conhecida:

P0 = E(y−j, y−k), j, k ∈ 0, n − 1. (2.21)

Também assume-se que:

E(ui, yi) = 0 para − n + 1 ≤ j ≤ 0 e i ≥ 0, (2.22)

o que assegura que o ruído é estatisticamente independente do processo a ser estimado.

Essa equação de diferença pode ser reescrita, o que leva ao modelo de espaço de
estados:

xi+1 = Axi + Gui, (2.23)

yi = Hixi. (2.24)

A Equação (2.23) representa a forma como um novo estado xi+1 é modelado, sendo
uma combinação linear do estado anterior xi, e algum ruído do processo ui. A Equação
(2.24) descreve a forma como as medições ou observações do processo yi são derivadas
do estado interno xi. Essas duas equações são frequentemente referidas, respectivamente,
como o modelo de processo e o modelo de medição, e servem como base para virtualmente
todos os métodos de estimação linear, como o filtro de Kalman descrito a seguir.

As muitas abordagens para esse problema básico são tipicamente baseadas no
modelo de espaço de estados. Tipicamente, existe um modelo de processo que modela a
transformação do estado do processo. Isso geralmente pode ser representado como uma
equação de diferença estocástica linear semelhante à equação (2.23):

xk = Axk−1 + Buk + wk−1. (2.25)

Sendo que na equação (2.25) uk representa o valor de entrada e wk−1 o ruído.

Além disso, existe algum tipo de modelo de medição que descreve a relação entre
o estado do processo e as medições. Isso geralmente pode ser representado com uma
expressão linear semelhante à equação (2.23):
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yk = Hxk + vk.

Os termos wk e vk são variáveis aleatórias representando o ruído do processo e o
ruído da medição, respectivamente.

2.5.2 Ruído de Medição e de Processo

Consideramos aqui o caso comum de medições ruidosas de sensores. Existem
muitas fontes de ruído em tais medições. Por exemplo, cada tipo de sensor tem limitações
fundamentais relacionadas ao meio físico associado e, ao empurrar os limites dessas
limitações, os sinais são tipicamente degradados. Além disso, uma certa quantidade de
ruído elétrico aleatório é adicionada ao sinal através do sensor e dos circuitos elétricos. A
relação variável ao longo do tempo entre o sinal "puro"e o ruído elétrico afeta continuamente
a quantidade e a qualidade da informação. O resultado é que a informação obtida de
qualquer sensor deve ser qualificada à medida que é interpretada como parte de uma
sequência geral de estimativas, e modelos analíticos de medição tipicamente incorporam
alguma noção de ruído de medição ou incerteza, como mostrado acima.

Existe também o problema adicional de que o modelo de transformação do estado
real é completamente desconhecido. Embora possamos fazer previsões em intervalos
relativamente curtos usando modelos baseados em transformações de estado recentes, tais
previsões assumem que as transformações são previsíveis, o que nem sempre é o caso.
O resultado é que, assim como a informação do sensor, estimativas contínuas do estado
devem ser qualificadas à medida que são combinadas com medições em uma sequência
geral de estimativas. Além disso, modelos de processo tipicamente incorporam alguma
noção de movimento aleatório ou incerteza, como mostrado acima.

2.6 O Filtro de Kalman

Pode parecer estranho que o termo ”filtro” se aplique a um estimador. Tradici-
onalmente, um filtro é um dispositivo físico para remover componentes indesejadas de
misturas. Originalmente, um filtro resolvia o problema de separar componentes indesejados
de misturas gás-líquido-sólido. Na era dos rádios de galena e tubos de vácuo, o termo
passou a ser utilizado para descrever circuitos analógicos que filtram sinais eletrônicos.
Esses sinais englobam diferentes componentes de frequência, e esses dispositivos físicos
atenuam preferencialmente frequências indesejadas.

No entanto, com o filtro de Kalman, o termo ”filtro” assumiu um significado que
vai além da ideia original de separação dos componentes de uma mistura. Ele também
passou a incluir a solução de um problema de inversão, onde as variáveis mensuráveis são
representadas como funções das variáveis de principal interesse. Essencialmente, inverte-
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se essa relação funcional para estimar as variáveis independentes a partir das variáveis
dependentes (mensuráveis). Essas variáveis de interesse também podem ser dinâmicas,
com comportamentos que são apenas parcialmente previsíveis.

O filtro de Kalman é uma das maiores descobertas na história da teoria de estimação
estatística e uma das maiores descobertas do século XX. Ele possibilitou realizações que
seriam impossíveis sem sua existência, tornando-se tão indispensável quanto o silício
em muitos sistemas eletrônicos. Suas aplicações mais imediatas incluem o controle de
sistemas dinâmicos complexos, como processos contínuos de manufatura, aeronaves, navios
e espaçonaves. Para controlar um sistema dinâmico, é necessário primeiro saber o que
ele está fazendo. Para essas aplicações, nem sempre é possível ou desejável medir todas
as variáveis que se deseja controlar, e o filtro de Kalman fornece um meio de inferir as
informações ausentes a partir de medições indiretas e ruidosas. O filtro de Kalman também
é utilizado para prever os prováveis cursos futuros de sistemas dinâmicos que não se
pretende controlar, como o fluxo de rios durante enchentes.

Matematicamente, o filtro de Kalman é o melhor estimador possível (ótimo) para
uma grande classe de problemas, e um estimador muito eficaz e útil para uma classe ainda
maior. Com algumas ferramentas conceituais, o filtro de Kalman torna-se muito fácil de
utilizar.

Teoricamente, o filtro de Kalman é um estimador para o que é chamado de problema
linear-quadrático. Esse problema envolve a estimativa do “estado” instantâneo de um
sistema dinâmico linear perturbado por ruído branco, utilizando medições linearmente
relacionadas ao estado, mas corrompidas por ruído branco. O estimador resultante é esta-
tisticamente ótimo em relação a qualquer função quadrática do erro de estimação(Grewal.;
Andrews, 2008).

2.6.1 O filtro de Kalman Linear

O filtro de Kalman aborda o problema geral de tentar estimar o estado x ∈ Rn de
um processo controlado em tempo discreto que é governado pela equação de diferença
estocástica linear(Welch; Bishop, 2001)

xk = Axk−1 + Buk + wk−1, (2.26)

com uma medição y ∈ Rm dada por

yk = Hxk + vk. (2.27)

As variáveis aleatórias wk e vk representam o ruído do processo e da medição,
respectivamente. Elas são assumidas como independentes, brancas e com distribuições de
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probabilidade normais:
p(w) ∼ N (0, Q), (2.28)

p(v) ∼ N (0, R). (2.29)

Na prática, as matrizes de covariância do ruído do processo Q e do ruído da medição
R podem mudar a cada passo de tempo ou medição, porém, aqui assumimos que são
constantes.

A matriz A de dimensão n × n na equação de diferença (2.26) relaciona o estado no
passo de tempo anterior k − 1 ao estado no passo atual k, na ausência de uma função de
controle ou ruído do processo. Embora, na prática, A possa mudar a cada passo de tempo,
aqui assumimos que ela é constante. A matriz B de dimensão n × l relaciona a entrada
de controle opcional u ∈ Rl ao estado x. A matriz H de dimensão m × n na equação de
medição (2.26) relaciona o estado à medição yk. Embora, H também possa mudar a cada
passo de tempo ou medição, aqui assumimos que ela é constante.

Define-se x̌k ∈ Rn como a estimativa de estado a priori no passo k, dado o
conhecimento do processo antes do passo k, e x̂k ∈ Rn como a estimativa de estado a
posteriori no passo k, dada a medição yk. Podemos então definir os erros de estimativa a
priori e a posteriori como

ěk ≡ xk − x̌k, (2.30)

ek ≡ xk − x̂k. (2.31)

A covariância do erro de estimativa a priori é então

P̌k = E[ěkěT
k ], (2.32)

e a covariância do erro de estimativa a posteriori é

Pk = E[ekeT
k ]. (2.33)

Para derivar as equações do filtro de Kalman, começamos com o objetivo de
encontrar uma equação que compute uma estimativa de estado a posteriori x̂k como uma
combinação linear de uma estimativa a priori x̌k e uma diferença ponderada entre uma
medição real yk e uma previsão de medição Hx̌k, como mostrado abaixo na equação (2.34).

x̂k = x̌k + K(yk − Hx̌k) (2.34)

A diferença (yk − Hx̌k) na equação acima é chamada de atualização da medição,
ou residual. O residual reflete a discrepância entre a medição prevista Hx̌k e a medição
real yk. Um residual de zero significa que os dois estão em completa concordância.

A matriz K de dimensão n × m na equação é escolhida para ser o ganho, isto é, o
fator que minimiza a covariância do erro de estimativa a posteriori na equação (2.33). Esta
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minimização pode ser realizada substituindo a equação (2.34) na definição acima para
ek, substituindo isso na equação (2.33), realizando as expectativas indicadas, tomando a
derivada do traço do resultado em relação a K, igualando esse resultado a zero e resolvendo
para K. Uma forma do K resultante que minimiza a equação (2.33) é dada por

Kk = P̌kHT (HP̌kHT + R)−1 (2.35)

A atualização da covariância fica:

Pk = (I − KkH)P̌k (2.36)

Outra maneira de pensar sobre a ponderação por K é que, à medida que a
covariância do erro de medição R se aproxima de zero, a medição real yk é cada vez mais
"confiável", enquanto a medição prevista Hx̌k é cada vez menos confiável. Por outro lado, à
medida que a covariância do erro de estimativa a priori P̌k se aproxima de zero, a medição
real yk é menos confiável, enquanto a medição prevista Hx̌k é cada vez mais confiável.

2.6.2 O Algoritmo

O filtro de Kalman estima um processo utilizando uma forma de controle por
feedback. Primeiro, o filtro estima o estado do processo em algum momento e então obtém
feedback na forma de medições ruidosas. Assim, as equações para o filtro de Kalman
se dividem em dois grupos: equações de atualização temporal e equações de atualização
de medição. As equações de atualização temporal projetam, no tempo, o estado atual e
as estimativas de covariância de erro para obter as estimativas a priori para o próximo
passo de tempo. As equações de atualização de medição fornecem o feedback necessário,
incorporando novas medições nas estimativas a priori para obter uma estimativa a posteriori
aprimorada.

As equações de atualização temporal também podem ser pensadas como equações
de predição, enquanto as equações de atualização de medição podem ser pensadas como
equações de correção. De fato, o algoritmo final de estimação se assemelha ao de um
algoritmo preditor-corretor para resolver problemas numéricos, como mostrado abaixo.

x̌k = Ax̂k−1 + Buk (2.37)

P̌k = APk−1A
T + Q (2.38)

As equações de atualização temporal nas equações projetam o estado e as estimativas
de covariância do passo de tempo k − 1 para o passo k. A e B são da equação (2.26),
enquanto Q é da equação (2.28).
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A primeira tarefa durante a atualização de medição é calcular o ganho de Kalman,
Kk. O próximo passo é medir o processo para obter yk e então gerar uma estimativa de
estado a posteriori incorporando a medição como na equação (2.34). O passo final é obter
uma estimativa de covariância do erro a posteriori via equação (2.36).

Após cada par de atualização temporal e de medição, o processo é repetido utili-
zando as estimativas anteriores como base para projetar ou prever as novas estimativas
subsequentes. Essa natureza recursiva é uma das características muito atraentes do filtro
de Kalman, pois torna implementações práticas muito mais viáveis do que outros filtros
que são projetados para operar em todos os dados diretamente para cada estimativa. O
filtro de Kalman, em vez disso, condiciona recursivamente a estimativa atual em todas as
medições passadas.

Figura 1 – Algoritmo Filtro de Kalman Estendido

Fonte: Adaptado de (Welch; Bishop, 2001)

2.7 O filtro de Kalman Estendido

O filtro de Kalman aborda o problema geral de tentar estimar o estado x ∈ R de
um processo controlado em tempo discreto, que é governado por uma equação de diferença
estocástica linear. Mas o que acontece se o processo a ser estimado e (ou) a relação de
medição com o processo for não linear? Isso é comum, como no caso do presente trabalho,
em que o GNSS não segue um padrão linear. Algumas das aplicações mais interessantes
e bem-sucedidas do filtro de Kalman ocorreram em tais situações. Para lidar com isso,
um tipo específico de filtro de Kalman, denominado filtro de Kalman estendido (EKF) é
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utilizado. O EKF lineariza em torno da média e da covariância atuais para fazer estimativas
em ambientes não lineares.

De maneira semelhante a uma série de Taylor, pode-se linearizar a estimativa
em torno da estimativa atual usando as derivadas parciais das funções de processo e
medição para calcular estimativas mesmo diante de relações não lineares. Para fazer isso,
deve-se começar modificando algumas equações da seção acima. Suponha-se que o processo
novamente tenha um vetor de estado x ∈ Rn, mas que agora o processo seja governado
pela equação de diferença estocástica não linear

xk = f(xk−1, uk, wk−1) (2.39)

com uma medição y ∈ Rm

yk = h(xk, vk) (2.40)

onde as variáveis aleatórias wk e vk novamente representam o ruído do processo
e da medição, como nas equações (2.28) e (2.29). Neste caso, a função não linear f na
equação de diferença (2.39) relaciona o estado no instante de tempo anterior k − 1 com o
estado no instante de tempo atual k. Inclui como parâmetros qualquer função de controle
uk e o ruído do processo wk de média zero. A função não linear h na equação de medição
(2.40) relaciona o estado xk à medição zk.

Na prática, valores individuais do ruído wk e vk em cada instante de tempo não são
conhecidos. No entanto, pode-se aproximar o vetor de estado e de medição sem eles como

x̃k = f(x̂k−1, uk, 0),

ỹk = h(x̃k, 0),

sendo x̂k é uma estimativa do estado de um instante de tempo anterior k.

É importante notar que uma falha fundamental do EKF é que as distribuições (ou
densidades no caso contínuo) das várias variáveis aleatórias, deixam de ser normais após
passarem por suas respectivas transformações não lineares. O EKF é essencialmente um
estimador de estado que apenas aproxima a optimalidade da regra de Bayes através da
linearização.

2.7.1 IMU

Dois sensores foram utilizados neste trabalho para fazer a fusão de dados. O primeiro
deles, é o IMU, Inertial Mreasurement Unit, ou, em português, unidade de medição inercial,
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que consiste em giroscópios para medir a taxa de rotação, e acelerômetros para medir a
força específica onde ele está acoplado(VECTORNAV, 2024).

• Giroscópios: fornecem a medida da taxa angular.

• Acelerômetros: fornecem a medida da força específica/aceleração.

• Magnetômetros (opcional): medição do campo magnético ao redor do sistema.

Um acelerômetro é o sensor principal responsável por medir a aceleração inercial,
ou a mudança de velocidade ao longo do tempo, e pode ser encontrado em uma varie-
dade de tipos diferentes, incluindo acelerômetros mecânicos, acelerômetros de quartzo e
acelerômetros MEMS.

Um giroscópio é um sensor inercial que mede a taxa angular de um objeto em
relação a um referencial inercial. Existem muitos tipos diferentes de giroscópios disponíveis
no mercado, que variam em diversos níveis de desempenho, incluindo giroscópios mecânicos,
giroscópios de fibra óptica (FOGs), giroscópios a laser de anel (RLGs) e giroscópios de
quartzo/MEMS.

Figura 2 – Exemplo de IMU comercial

Fonte: (MEMSESE, 2024)
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2.7.2 GNSS

Um sistema global de navegação por satélite (GNSS) é uma rede de satélites
que transmite informações de tempo e órbita usadas para navegação e medições de
posicionamento. Os satélites transmitem sinais contendo informações sobre suas posições
e horários. Essas informações são utilizadas para determinar a localização de um ponto na
terra. Através de uma série complexa de cálculos de trilateração, a tecnologia calcula a
localização com base na sua posição em relação a pelo menos quatro satélites. (Programme,
2024)

Os GNSS são mais do que os satélites em órbita terrestre. Os múltiplos grupos
de satélites, conhecidos como constelações, transmitem sinais para estações de controle
principais e usuários de GNSS em todo o planeta. Esses três segmentos – espacial, de
controle e de usuário – são todos considerados parte do GNSS. Mas, com mais frequência,
GNSS é usado para descrever os satélites no espaço.

Figura 3 – Ilustração do sistema GNSS

Fonte: Adaptado de (ESALQ/USP, 2020)
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O segmento espacial consiste em constelações de GNSS orbitando entre 20.000 e
37.000 quilômetros acima da Terra. Os satélites transmitem sinais identificando seu tempo,
órbita e status. As principais constelações são GPS, GLONASS, Galileo e BeiDou, além
dos sistemas regionais QZSS e IRNSS.

O segmento de controle é composto por estações de controle que recebem e mo-
nitoram os sinais dos satélites, comparando suas posições reais com modelos orbitais.
Os operadores podem ajustar as trajetórias dos satélites para garantir precisão e evitar
colisões com detritos, mantendo a precisão do posicionamento GNSS.

O segmento de usuário inclui equipamentos que recebem os sinais dos satélites e
calculam a posição com base no tempo e na localização orbital de pelo menos quatro satélites.
Isso envolve antenas receptoras, receptores de alta precisão e motores de posicionamento
para corrigir erros de tempo.

O posicionamento GNSS pode ser utilizado em diferentes indústrias, entretanto,
toda aplicação GNSS depende desses três segmentos para funcionar.

2.8 Trabalhos Relacionados

A combinação GPS/IMU com uma bússola digital é a principal configuração
encontrada como solução para o problema de navegação dos veículos autônomos. Em
(Zhang et al., 2005), os autores enfatizam que é possível encontrar sensores baratos e
de baixa precisão para realizar a fusão sensorial. No entanto, os autores utilizam uma
versão diferente do filtro de Kalman, o chamado Unscented Kalman Filter (UKF), que é
uma forma mais adequada para se trabalhar com equações que são não lineares e difíceis
de serem linearizadas. Outros autores também utilizaram o UKM para fazer a fusão e
obtiveram bons resultados, como por exemplo o trabalho. (Cahyadi et al., 2023)

Este trabalho, como mencionado nas seções anteriores, empregará o filtro de Kalman
Estendido para a fusão dos sensores. A abordagem adotada será mais simplificada em
comparação com o estudo recente realizado por (Costa, 2013), pois os dados utilizados
para os cálculos foram obtidos do simulador CARLA.
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3 METODOLOGIA

3.1 Apresentação do CARLA

Para facilitar o processo de desenvolvimento, treinamento e validação de sistemas
de condução, o CARLA evoluiu para se tornar um ecossistema de projetos, construído
em torno de uma comunidade, uma vez que ele é todo de desenvolvimento aberto. Nesse
contexto, é importante entender alguns aspectos sobre o funcionamento do CARLA, para
compreender totalmente suas capacidades.

O CARLA é um simulador de condução autônoma de código aberto. Foi construído
do zero para servir como uma API modular e flexível que aborda uma gama de tarefas
envolvidas no problema da condução autônoma. Um dos principais objetivos do CARLA
é ajudar a democratizar a pesquisa e desenvolvimento (P&D) de condução autônoma,
servindo como uma ferramenta que pode ser facilmente acessada e personalizada pelos
usuários. Para isso, o simulador deve atender aos requisitos de diferentes casos de uso
dentro do problema geral da condução (por exemplo, aprendizado de políticas de condução,
treinamento de algoritmos de percepção, etc.). O CARLA é baseado no Unreal Engine
para executar a simulação e utiliza o padrão ASAM OpenDRIVE (versão 1.4 atualmente)
para definir estradas e ambientes urbanos. O controle sobre a simulação é realizado por
meio de uma API em Python e C++, que está em constante crescimento conforme o
projeto evolui.

3.1.1 O simulador

O simulador CARLA consiste em uma arquitetura escalável cliente-servidor. O
servidor é responsável por tudo relacionado à simulação: renderização de sensores, com-
putação de física, atualizações no estado do mundo e seus atores, entre outros. Como o
objetivo é obter resultados realistas, a melhor opção é executar o servidor com uma GPU
dedicada, especialmente ao lidar com aprendizado de máquina. O lado do cliente consiste
em um conjunto de módulos clientes que controlam a lógica dos atores em cena e definem
as condições do mundo. Isso é alcançado aproveitando a API do CARLA (em Python
ou C++), uma camada que medeia entre o servidor e o cliente, que está em constante
evolução para fornecer novas funcionalidades.

3.2 Modelagem do sistema

O sistema foi modelado utilizando as formulações de (Kelly; Waslander, 2020)
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3.2.1 Estado do Veículo

xk =


pk

vk

qk

 ∈ R10 (3.1)

• pk representa a posição do veículo.

• vk representa a velocidade do veículo.

• qk é o quaternion que parametriza a orientação do veículo.

3.2.2 Modelo de Movimento

A entrada do modelo de movimento consistirá em força específica e taxas de rotação
provenientes da IMU:

mk =
 fk

ωk

 ∈ R6

• mk representa a entrada do modelo de movimento.

• fk representa a força específica medida pela IMU.

• ωk representa as taxas de rotação medidas pela IMU.

Dessa forma, o estado do veículo e as entradas do modelo de movimento são
fundamentais para a predição e correção do estado no Filtro de Kalman Estendido,
utilizando os dados fornecidos pela IMU.

Posição:
pk = pk−1 + ∆tvk−1 + ∆t2

2 (Cnsfk−1 + g) (3.2)

Velocidade:
vk = vk−1 + ∆t (Cnsfk−1 + g) (3.3)

Orientação:

qk = qk−1 ⊗ q(ωk−1∆t) = Ω (q(ωk−1∆t)) qk−1 (3.4)

No contexto do Filtro de Kalman, a multiplicação de quaternions (⊗) é crucial
para a representação e atualização das orientações em sistemas de navegação e controle,
especialmente em veículos autônomos e robótica. Os quaternions são usados devido à
sua eficiência computacional e à capacidade de evitar as singularidades que ocorrem com
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ângulos de Euler. A multiplicação de quaternions permite combinar rotações de maneira
compacta e precisa. A multiplicação de quaternions à direita, em particular, é utilizada
para atualizar a orientação de um corpo em movimento ao aplicar uma nova rotação
relativa. Isso é fundamental no Filtro de Kalman estendido, onde a previsão da próxima
posição e orientação requer a integração contínua das mudanças de atitude com base
nas medições dos sensores, garantindo assim que as estimativas permaneçam precisas e
consistentes ao longo do tempo.

sendo

Cns = Cns(qk−1) (3.5)

Ω
qw

qv

 = qwI +
 0 −q⊤

v

qv −[qv]×

 (3.6)

q(θ) =
 cos

(
|θ|
2

)
θ

|θ| sin
(

|θ|
2

) (3.7)

Devido aos parâmetros de orientação, que expressam como uma matriz de rotação,
o modelo de movimento não é linear. Para usá-lo no EKF, precisam linearizá-lo em relação
a algum pequeno erro ou perturbação sobre o estado previsto. Para fazer isso, definirão
um estado de erro que consiste em δp, δv e δϕ, onde δϕ é um erro de orientação 3 × 1.

Estado de Erro:

δxk =


δpk

δvk

δϕk

 ∈ R9 (3.8)

Dinâmica do Erro:

δxk = Fk−1δxk−1 + Lk−1nk−1 (3.9)

onde o termo noise de medição é representado por nk−1.

Fk−1 =


I ∆t 0
0 I −[Cnsfk−1]×∆t

0 0 I

 (3.10)

Lk−1 =


0
I
0

 (3.11)

nk ∼ N (0, Qk) Qk = ∆t2

σ2
acc 0
0 σ2

gyro

 (3.12)
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3.2.3 Medição GNSS

Medição GNSS:
yk = h(xk) + νk (3.13)

Para o modelo de medição, utiliza-se uma observação muito simples da posição,
somada a algum ruído gaussiano aditivo. Defini-se uma covariância RGNSS para o ruído
da posição GNSS. É importante notar que assumiram que o GNSS fornece-se medições de
posição no mesmo quadro de coordenadas. Em uma implementação realista, as estimativas
de posição do GNSS podem servir como uma forma de selecionar um mapa conhecido.

Medição Linearizada:

yk = Hkxk + νk onde Hk =
[
I 0 0

]
(3.14)

Simplificação da Medição:

yk = pk + νk (3.15)

Ruído da Medição:
νk ∼ N (0, RGNSS) (3.16)

3.3 EKF com IMU e GNSS

O filtro será executado toda vez que houver uma medição do IMU. Primeiro, usarão
o modelo de movimento para prever um novo estado baseado no estado anterior. O estado
anterior pode ser um estado totalmente corrigido ou um que também foi propagado usando
apenas o modelo de movimento, dependendo se receberam ou não a medição do GNSS .
Em seguida, propagarão a incerteza do estado através do modelo de movimento linearizado,
novamente considerando se o estado anterior foi corrigido ou não. Neste ponto, se não
tiver medições GNSS, pode repetir os passos um e dois. Se tiverem, primeiro calcularão o
ganho de Kalman apropriado para a observação dada. Em seguida, calcula-se um estado
de erro que será usado para corrigir o estado previsto. Esse estado de erro é baseado no
produto do ganho de Kalman e na diferença entre a posição prevista e a observada. A
seguir, corrigirá-se o estado previsto usando o estado de erro. Esta correção é direta para a
posição e velocidade, mas álgebra mais complicada é necessária para corrigir o quaternion.
Durante a atualização da orientação, é necessário considerar o erro de orientação global,
o que significa que a atualização de orientação envolve multiplicar pelo quaternion do
estado de erro à esquerda. Isso é diferente do passo de propagação, onde se multiplica pelo
quaternion incremental que define a mudança de orientação à direita. Essa abordagem é
uma simplificação que deriva do fato de que a mudança de quadro em quaternion envolve
uma multiplicação, e isso pode ser generalizado para pequenos erros. Por fim, atualizarão
a covariância do estado da maneira usual.
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Loop do Filtro de Kalman Estendido (EKF):

1. Atualizar o estado com as entradas do IMU.

2. Propagar a incerteza.

3. Se a posição do GNSS ou LIDAR estiver disponível:

a) Calcular o ganho de Kalman.

b) Calcular o estado de erro.

c) Corrigir o estado previsto.

4. Computar a covariância corrigida.

3.3.1 1. Atualizar o Estado com Entradas do IMU

x̂k =


p̂k

v̂k

q̂k

 (3.17)

p̂k = pk−1 + ∆tvk−1 + ∆t2

2 (Cnsfk−1 + gn) (3.18)

v̂k = vk−1 + ∆t(Cnsfk−1 + gn) (3.19)

q̂k = Ω(q(ωk−1∆t))qk−1 (3.20)

(pk−1, vk−1 e qk−1 podem ser corrigidos ou não corrigidos, dependendo de ter havido ou
não uma medição GNSS no passo de tempo k − 1).

3.3.2 2. Propagar a Incerteza

P̂k = Fk−1P̂k−1FT
k−1 + Lk−1Qk−1LT

k−1 (3.21)

3.3.3 3. Correção com Medições de GNSS

a. Calcular o Ganho de Kalman

Kk = P̂kHT
k (HkP̂kHT

k + R)−1 (3.22)

(R é RGNSS).
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b. Calcular o Estado de Erro

δxk = Kk(yk − ŷk) (3.23)

c. Corrigir o Estado Previsto

pk = p̂k + δpk (3.24)

vk = v̂k + δvk (3.25)

qk = q(δϕ) ⊗ q̂k (3.26)

(δϕ representa o erro de orientação global).

3.3.4 4. Computar a Covariância Corrigida

P̂k = (I − KkHk)P̌k (3.27)
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4 IMPLEMENTAÇÃO E RESULTADOS

4.1 Simulação no Carla

A simulação no CARLA foi feita usando um carro com os sensores de IMU e GNSS
acoplados a ele. Durante a execução do programa, a frequência de coleta de dados foi
de 500 hertz, isto é, para cada iteração que o programa executava, as informações eram
salvas. Durante a simulação, a cada iteração, os dados necessários eram salvos em uma
tabela. Tal tabela possuía todos os valores do movimento real do carro e os valores da
simulação para cada sensor. Para manter a simulação coerente com os dados de um caso
real, os dados do GNSS também coletados na mesma frequência, mas para se fazer os
cálculos, foi-se usado apenas 5%, 10% e 20% dos dados obtidos, respectivamente, ou seja,
simulando uma frequência de 25 Hz, 50 Hz e 100 Hz que está na mesma ordem de grandeza
de alguns dados reais. Além disso, como será visto na próxima sessão, a quantidade de
pontos disponíveis do GNSS para o algoritmo influencia na estabilidade de alguns pontos
críticos do caminho.

Outros conceitos importantes são as coordenadas ENU (East-North-Up), ECEF
(Earth-Centered, Earth-Fixed) e Geodetic que são sistemas usados em geodésia e navegação
para definir posições na Terra.

O sistema ENU é local, definindo posições relativas a um ponto específico na
superfície da Terra. É muito útil em navegação, mapeamento local e navegação por GPS.
Será a partir do ENU que vamos comparar o caminho verdadeiro (Ground Truth). No
entanto, as Latitudes e Longitudes dadas pelo GNSS no CARLA estão em Geodetic, então,
para comparar os valores, foi necessário fazer uma conversão de Geodectic -> ECEF ->
ENU para assim comparar os valores.

Assim, após feitas todas considerações, temos o seguinte caminho:
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Figura 4 – Cenário de simulação

Fonte: Elaboração Própria

Figura 5 – Caminho realizado pelo carro no CARLA

Fonte: Elaboração Própria

Como pode ser observado na Figura 5, no trajeto não houve deslocamento no eixo
vertical, dessa maneira, pode-se olhar apenas para o plano XY sem perder informações
relevantes sobre a dinâmica do movimento. Na figura a seguir, tem-se o trecho percorrido
pelo carro no plano XY e os valores do GNSS após a conversão.
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Figura 6 – Trajetória percorrida no plano XY e GNSS 25 Hz

Fonte: Elaboração Própria

4.2 Resultados

Os dados coletados foram utilizados no código do Filtro de Kalman Estendido
implementado em Python.

Durante a simulação, o CARLA possui dois momentos críticos que podem ser
observados nos gráficos, que são no início do movimento e perto do final. Nesses locais, há
a quebra da inércia do carro e nesses momentos, são os momentos mais ruidosos para as
medidas do filtro de Kalman, pois os valores de velocidade e aceleração tendem ao infinito
gerando assim no baco de dados valores cuja ordem de grandeza é 10000 vezes maior que
os valores para o restante do trajeto.
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4.2.1 GNSS 25 Hz

Figura 7 – Estimativa GNSS 25 Hz

Fonte: Elaboração Própria

Como podemos verificar, o algortimo de Kalman Estendido conseguiu fazer uma
previsão robusta para o trecho simulado. Como pode ser observado, para os eixos X
e Y, não houve grandes discrepâncias do resultado. Porém, pode-se ver uma pequena
instabilidade no eixo Z que possui resultados substancialmente diferentes da referência. A
hipótese levantada para justificar essa diferença no eixo Z foi a quantidade de dados usada
para fazer a previsão. A simulação total produziu cerca de 1100 pontos com oS dados da
dinâmica do carro. Nesse caso, foram usados apenas cerca de 50 pontos para se fazer as
correções do GNSS.

Para análise dos erros, foram feitos gráficos com a previsão e o desvio padrão das
previsões:
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Figura 8 – Erro dos eixos 25 Hz

Fonte: Elaboração Própria

As linhas vermelhas representam o intervalo de 3 vezes o desvio padrão da previsão
e as linhas azuis são o caminho verdadeiro para cada eixo menos o valor previsto, ou
seja, os valores esperados são por volta de zero. Como podemos ver, os valores estão
relativamente ruidosos, mas no geral os resultados estão dentro do intervalo esperado. É
possível ver o gráfico os pontos no eixo Z que estão fora do intervalo de confiança e estão
no mesmo intervalo do pico na figura 9.

No gráfico seguinte temos os desvios dos ângulos:

Figura 9 – Erro dos eixos 25 Hz

Fonte: Elaboração Própria

De forma semelhante à Figura 9, as linhas vermelhas representam o intervalo de 3
vezes o desvio padrão dos valores previstos e as linhas azuis são os valores dos ângulos
verdadeiros decrescidos dos valores previstos.
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Como podemos ver, os valores dos ângulos coerentes para as duas primeiras medidas,
mas para a última ela possui grandes variações com relação ao desvio padrão calculado.
Como os valores do Yaw estão por volta de 3, tal diferença pode ser justificada pela
diferença de referencial no círculo trigonométrico, pois os valores próximos de 180◦ e
-180◦ e foram considerados π e -π respectivamente. Com uma mudança no referencial tais
medidas poderiam estar próximas de 0.

4.2.2 GNSS 50 Hz

Figura 10 – Estimativa GNSS 50 Hz

Fonte: Elaboração Própria

Nesta seção, a frequência de amostragem foi aumentada para 50 Hz. O algoritmo
de Kalman Estendido mostrou-se ainda mais robusto, com previsões que se aproximam
significativamente da referência. Para os eixos X e Y, as discrepâncias foram ainda menores.
No entanto, ainda observamos alguma instabilidade no eixo Z, embora menos pronunciada
do que na frequência de 25 Hz. Neste caso, a simulação produziu cerca de 1100 pontos de
dados da dinâmica do carro, dos quais aproximadamente 100 pontos foram usados para as
previsões.

Para análise dos erros, foram gerados gráficos com a previsão e o desvio padrão
das previsões:
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Figura 11 – Erro dos eixos 50 Hz

Fonte: Elaboração Própria

As linhas vermelhas representam o intervalo de 3 vezes o desvio padrão da previsão
e as linhas azuis são o caminho verdadeiro para cada eixo menos o valor previsto, ou seja,
os valores esperados são por volta de zero. Observa-se que os valores estão menos ruidosos
e, em geral, dentro do intervalo esperado. A instabilidade no eixo Z, apesar de presente, é
menos acentuada.

No gráfico a seguir, temos os desvios dos ângulos:

Figura 12 – Erro dos ângulos 50 Hz

Fonte: Elaboração Própria

Os valores dos ângulos são consistentes com as duas primeiras medidas, mas a última
medida continua apresentando grandes variações em relação ao desvio padrão calculado.
Novamente, tal diferença também pode ser justificada pela diferença de referencial no
círculo trigonométrico, pois os valores próximos de 180◦ e -180◦ e foram considerados
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π e -π respectivamente. Com uma mudança no referencial tais medidas poderiam estar
próximas de 0.

4.2.3 GNSS 100 Hz

Figura 13 – Estimativa GNSS 100 Hz

Fonte: Elaboração Própria

Para a frequência de amostragem de 100 Hz, o algoritmo de Kalman Estendido
mostrou um desempenho superior. As previsões para os eixos X e Y foram extremamente
precisas, com discrepâncias mínimas em relação à referência. No eixo Z, a instabilidade foi
ainda mais reduzida. A simulação gerou cerca de 1100 pontos de dados da dinâmica do
carro, com cerca de 200 pontos utilizados para as previsões.

Para a análise dos erros, foram criados gráficos com a previsão e o desvio padrão
das previsões:
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Figura 14 – Erro dos eixos 100 Hz

Fonte: Elaboração Própria

As linhas vermelhas representam o intervalo de 3 vezes o desvio padrão da previsão
e as linhas azuis são o caminho verdadeiro para cada eixo menos o valor previsto, ou seja,
os valores esperados são por volta de zero. Observa-se que os valores estão ainda menos
ruidosos e, em geral, dentro do intervalo esperado. A instabilidade no eixo Z, embora
presente, é mínima.

No gráfico a seguir, temos os desvios dos ângulos:

Figura 15 – Erro dos ângulos 100 Hz

Fonte: Elaboração Própria

Os valores dos ângulos são consistentes para as duas primeiras medidas, e a última
medida apresenta menos variações em relação ao desvio padrão calculado. Mais uma vez,
tal diferença pode ser justificada pela diferença de referencial no círculo trigonométrico,
pois os valores próximos de 180◦ e -180◦ e foram considerados π e -π respectivamente.
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Com uma mudança no referencial tais medidas poderiam estar próximas de 0.

Ou seja, como pode ser visto, a quantidade de pontos usados fez diferença para
manter a estabilidade no eixo Z no filtro de Kalman Estendido. As variações não foram
grosseiras, pois, mesmo no pior caso, a diferença de altura marcada com relação ao eixo
zero foi de 80 cm. Esse valor é elevado, mas não está numa dimensão totalmente impossível
para o mundo real. O melhor caso, por sua vez, deu diferenças com relação ao eixo z de,
no máximo 20 cm, que é um valor perfeitamente aceitável para uma diferença de altura de
carro controlada pelo GNSS.
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5 CONCLUSÃO

O objetivo deste trabalho foi desenvolver técnicas de fusão sensorial para serem
utilizadas em um sistema de localização de um carro autônomo e simulá-las em um
programa bem estabelecido na área, o simulador CARLA. As etapas de desenvolvimento
deste trabalho passaram pela definição dos objetos matemáticos utilizados pelo estudo do
filtro de Kalman, pela análise das técnicas de fusão. Por fim, foi utilizado o simulador para
colher dados e aplicar o algoritmo criado para testar sua robustez e sua verossimilhança
com uma trajetória simulad.

5.1 Principais Resultados Obtidos e Conclusões

Os resultados obtidos no capítulo anterior a respeito da reconstrução de trajetória
realizadas no simulador CARLA evidenciaram que a fusão sensorial feita pelo filtro de
Kalman foi funcional e adequada para a previsão do caminho. Durante à análise, foram
utilizados três frequências diferentes para o GNSS afim de descobrir a influência desse
fator no caminho previsto. Os resultados mostraram que o aumento de valores de GNSS
melhoraram a estabilidade do algoritmo em momentos críticos. Além disso, foi possível ver
que existe a possibilidade fazer o estudo usando o simulador e obter resultados confiáveis.
Dessa maneira, conclui-se que o CARLA é uma ferramenta que pode baratear os custos
na hora de testar ideias e algoritmos novos, uma vez que é possível ter resultados úteis
sem a necessidade de um carro autônomo real.

Em suma, o projeto atendeu aos seus principais objetivos e proporcionou um estudo
de conceitos relacionados à carros autônomos e sistemas estocásticos. Dessa maneira, usando
os resultados obtidos, tem-se meios baratos para se testar novas ideias de algoritmos
melhores e mais eficientes, uma vez que os resultados obtidos com o simulador são
consistentes.

5.2 Trabalhos Futuros

Como apresentado, concluiu-se que o trabalho desenvolvido apresentou resultados
positivos e esperados em diversos aspectos, porém esses resultados podem ser melhorados
em diversos aspectos. Os resultados obtidos pelo CARLA poderiam ser mais estáveis do
que os usados no presente trabalho. Isso poderia ser feito com o uso de um código mais
eficiente dentro do CARLA ou um computador mais potente durante a simulação.

Outro ponto que poderia ser acrescentado seria fazer a fusão tripla entre IMU,GNSS
e LIDAR deixando o algoritmo ainda mais robusto e mais realista, uma vez que poderia
ter maiores informações sobre os arredores do carro. Assim, para um sistema ainda mais
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real, poderiam ser adicionados mais carros e pedestres na simulação para fazer e testar
algoritmos mais plausíveis de serem aplicados na vida real.

O principal interesse para um trabalho futuro, porém, seria em testar os algoritmos
criados para a simulação em dados reais retirados de um carro autônomo real. Isso poderia
ser realizado usando o carro disponível na universidade quando ele estiver pronto para que
todo o desenvolvimento do algoritmo no CARLA pudesse ser replicado e utilizado em um
caso real.
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APÊNDICE A – APÊNDICE(S)

Todos os códigos usados estão no GIthub.

https://github.com/rafaeljanke/Fusion-IMU-GNSS-Kalman-s-FIlter-with-CARLA/
tree/main

https://github.com/rafaeljanke/Fusion-IMU-GNSS-Kalman-s-FIlter-with-CARLA/tree/main
https://github.com/rafaeljanke/Fusion-IMU-GNSS-Kalman-s-FIlter-with-CARLA/tree/main
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