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RESUMO

JANKE, R. ESTIMATIVA DA LOCALIZACAO DE CARROS AUTONOMOS
BASEADA NA FUSAO DE SENSORES IMU/GNSS UTILIZANDO O
FILTRO DE KALMAN. 2024. 59 p. Monografia (Trabalho de Conclusao de

Curso) - Escola de Engenharia de Sdo Carlos, Universidade de Sdao Paulo, Sao Carlos,
2024.

Atualmente, os carros autonomos estao com sua popularidade em franca ascensao tanto
no meio académico, quanto no cotidiano da populagao geral.No entanto, ainda hoje, é
caro possuir e utilizar um carro autonomo para criar modelos e realizar treinamentos.
Dessa maneira, neste trabalho, estudou-se a possibilidade de utilizar o simulador CARLA,
acessivel ao publico geral, para desenvolver algoritmos de navegacao para carros autéonomos.
Neste estudo, empregou-se a fusao de dois sensores, o IMU e o GNSS, na previsao de
trajetorias de um carro autéonomo. Além disso, para realizar os calculos necessarios as

previsoes das trajetorias do carro auténomo, utilizou-se o algoritmo de Kalman Estendido.

Palavras-chave: IMU. GNSS. GPS. Carros Autonomos. CARLA. Simulador.






ABSTRACT

JANKE, R. ESTIMATION OF THE LOCATION OF AN AUTONOMOUS
CARS BASED ON THE FUSION OF IMU/GNSS SENSORS USING THE
KALMAN FILTER. 2024. 59 p. Monograph (Conclusion Course Paper) - Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2024.

Currently, autonomous cars are experiencing a significant rise in popularity both in
academic circles and in the daily lives of the general population. However, even today,
owning and using an autonomous car to create models and conduct training is expensive.
Therefore, in this study, we explored the possibility of using the CARLA simulator, which
is accessible to the general public, to develop navigation algorithms for autonomous cars.
In this study, the fusion of two sensors, IMU and GNSS, was employed in the prediction of
autonomous car trajectories. Additionally, the Extended Kalman Filter algorithm was used

to perform the necessary calculations for predicting the trajectories of the autonomous car.

Keywords: IMU. GNSS. Autonomous Cars. CARLA. Simulator.
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1 INTRODUCAO

A crescente complexidade dos sistemas de transporte modernos exige solugoes
inovadoras para atender as necessidades de seguranca, eficiéncia e sustentabilidade. Dentro
desse contexto, a pesquisa e desenvolvimento de carros autonomos tém se destacado como
uma area de estudo vital. O objetivo principal deste trabalho é investigar a estimativa de
localizagao de um carro auténomo através da fusao de sensores IMU (Unidade de Medida

Inercial) e GPS (Sistema de Posicionamento Global), utilizando o Filtro de Kalman.

Este trabalho se concentrara na criacdo de um filtro Estendido de Kalman e sera

testado através do simulador de veiculos autonomos CARLA.
1.1 Objetivos

o Desenvolver um modelo que integre os dados de sensores IMU e GPS para melhorar

a precisao da localizacao de veiculos autéonomos.

o Implementar e testar o Filtro de Kalman para processar e filtrar os dados provenientes
dos sensores do simulador CARLA.

o Avaliar a eficicia do modelo proposto em cenérios de simulagao realistas.

« Contribuir para o avanco das tecnologias de navegagiao autéonoma, promovendo maior

seguranca e confiabilidade no uso de veiculos sem condutor.

1.2 Motivacao

A histéria dos carros autonomos remonta as décadas de 1980 e 1990, quando
universidades e institui¢oes de pesquisa comecaram a explorar a viabilidade de veiculos
automatizados. Projetos como o ALV (Autonomous Land Vehicle) do DARPA e o Navlab
da Carnegie Mellon University foram pioneiros no desenvolvimento de tecnologias que
permitiram a navegacao autonoma em ambientes controlados. Na década de 2000, a
competicdo DARPA Grand Challenge impulsionou ainda mais a pesquisa, levando ao surgi-
mento de empresas especializadas e ao desenvolvimento de veiculos auténomos comerciais.
Atualmente, os carros autonomos estao em fases avancadas de testes e implementacao,

prometendo revolucionar o transporte urbano e rodoviario.

A motivacao para este estudo é diversa. Primeiramente, o interesse do crescente
uso de técnicas de automacgao digital. Estamos vivendo uma nova era de efervescéncia
das técnicas de inteligéncias artificiais. Além disso, tem-se um novo mercado crescente da

industria automobilistica e de tecnologia em desenvolver veiculos autonomos, criando uma
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demanda por solugoes inovadoras e eficientes. Empresas como Tesla, Waymo e Uber tém
investido massivamente em pesquisas relacionadas a carros auténomos, impulsionando a

necessidade de novos talentos e conhecimento na area.

Do ponto de vista académico, a fusao de sensores e o uso do Filtro de Kalman
(Kalman, 1960) sao topicos de grande relevancia e complexidade, oferecendo desafios que
incentivam o desenvolvimento de habilidades técnicas e analiticas avancadas. O Filtro de
Kalman, desenvolvido por Rudolf E. Kalméan na década de 1960, é uma técnica matematica
amplamente utilizada para estimar o estado de um sistema dindmico a partir de medicoes
ruidosas. Além de sua aplicacdo em veiculos autonomos, o Filtro de Kalman é utilizado

em diversas outras areas, como:

« Navegacao Aeronautica e Espacial: Utilizado em sistemas de navegacao de
aeronaves e espacgonaves para estimar a posicao e a velocidade a partir de dados de

SE1Nsores.

« Robdtica: Empregado para a estimativa de estados e controle de robos moveis e

manipuladores robéticos.

« Economia e Finangas: Aplicado na previsao de séries temporais e na estimativa

de varidveis econdmicas ocultas.

e Processamento de Sinais: Usado em sistemas de comunicacao para a filtragem de

ruidos e recuperacao de sinais.

A integragao de inteligéncia artificial (IA) com técnicas como o Filtro de Kalman
exemplifica o potencial sinérgico dessas tecnologias. A TA pode aprimorar a fusao de
sensores através de algoritmos de aprendizado que adaptam os modelos em tempo real,
enquanto o Filtro de Kalman fornece um framework matematico robusto para lidar com
incertezas e ruidos nos dados. Essa combinacao é crucial para alcancar uma localizacao
precisa e confidvel em veiculos autonomos, que dependem de decisoes rapidas e precisas

baseadas em dados sensoriais dindmicos.

A fusdo de sensores é essencial para a navegacao de carros auténomos e com a
fusdo do GNSS com o IMU tem-se um modelo robusto e realistico de navegacao que

posteriormente poderia ser usado em um carro real.

Adicionalmente, hd uma motivagdo pessoal em contribuir para um campo de
estudo que pode trazer beneficios tangiveis a sociedade. Melhorar a seguranca no transito,
promover a eficiéncia energética, e reduzir o impacto ambiental sao objetivos que ressoam
com as preocupagoes contemporaneas sobre desenvolvimento sustentavel e qualidade de

vida.
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Organizacdo do Trabalho

Este trabalho estd estruturado em cinco capitulos, incluindo esta introducao. A

seguir, apresenta-se um breve resumo do contetido de cada capitulo:

o Capitulo 1: Introdugao - Apresenta os objetivos, justificativa, motivacao e or-
ganizacao do trabalho, fornecendo uma visao geral da importancia e relevancia do

estudo de veiculos auténomos e da fusido de sensores IMU/GPS.

o Capitulo 2: Fundamentos Tedricos - Revisa os principais conceitos, técnicas e
trabalhos relacionados a fusao de sensores, filtros de Kalman e tecnologias de veiculos
autonomos. Faz uma analise critica das abordagens existentes, destacando as lacunas

e oportunidades para novas contribuigoes.

o Capitulo 3: Metodologia - Detalha os métodos e procedimentos utilizados para
desenvolver e implementar o modelo de fusao de sensores proposto. Inclui a descri¢ao
dos sensores IMU e GPS, o algoritmo do Filtro de Kalman e os critérios de avaliagdo

dos experimentos.

o Capitulo 4: Resultados e Discussoes - Apresenta os resultados obtidos a partir
dos experimentos e simulagoes, comparando a eficacia do modelo proposto com
diferentes abordagens. Discussoes sobre as implicagoes dos resultados e possiveis

melhorias também estao incluidas.

o Capitulo 5: Conclusao e Trabalhos Futuros - Resume as principais conclusoes
do estudo, destacando as contribui¢oes para a area de veiculos autonomos. Também
sugere direcoes para pesquisas futuras, baseadas nos achados e limitagoes do presente
trabalho.
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2 FUNDAMENTACAO TEORICA

O filtro de Kalman ¢ um algoritmo recursivo que fornece estimativas do estado de
um processo estocastico, que é um processo aleatorio que evolui ao longo do tempo. Em
termos simples, ele combina previsoes baseadas em um modelo de sistema com medig¢oes

reais que contém ruido (incerteza) para produzir uma estimativa mais precisa do estado
do sistema (Welch; Bishop, 2001).

O processo estocastico descrito pelo filtro de Kalman pode ser entendido como um
sistema dinamico cujas mudangas sao parcialmente imprevisiveis devido a presenca de ruido

branco. O filtro de Kalman trabalha em duas etapas principais: previsao e atualizacao.

Sendo assim, a fundamentacgao tedrica deste trabalho ira explorar o conceito de

processos estocasticos, definindo o que é probabilidade, variaveis discretas, e continuas.

2.1 Probabilidades

A probabilidade de que o resultado de um evento discreto A, como o langamento

de uma moeda, aconteca é definida como:

Numero de resultados que favorecem o evento A

p(A) =

(2.1)

Numero total de resultados possiveis

Diz-se que dois eventos sao mutuamente exclusivos quando eles ndo podem ocorrer

simultaneamente. Ou seja, a probabilidade de um resultado favorecer A ou B é dada por:

p(AU B) = p(A) + p(B) (2.2)

Se a probabilidade de dois resultados for independente (um nao afeta o outro), entao a

probabilidade de ambos ocorrerem é o produto de suas probabilidades individuais:

p(AN B) = p(A) - p(B) (2.3)

A probabilidade do resultado A, dado a ocorréncia prévia do resultado B, é chamada

de probabilidade condicional de A dado B, e é definida como:

p(ANB)

p(A[B) = o)

(2.4)
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2.2 Variaveis Aleatorias

Ao contrario dos eventos discretos, no caso de rastreamento e captura de movimento,
o interesse geralmente reside na aleatoriedade associada a dindmica do evento(Welch;
Bishop, 2001). Em cada caso, pode-se pensar no item de interesse como uma variavel
aleatoria continua. Uma variavel aleatoria é essencialmente uma fungao que mapeia todos
os pontos do espago amostral para nimeros reais. Por exemplo, a variavel aleatéria continua
X (t) pode mapear o tempo para a posi¢ao. Em qualquer ponto no tempo, X (¢) indicaré a

posicao esperada.

No caso de variaveis aleatorias continuas, a probabilidade de qualquer evento
discreto A é, na verdade, zero. Ou seja, p(A) = 0. Em vez disso, pode-se apenas avaliar a
probabilidade de eventos dentro de algum intervalo. Uma fun¢ao comum que representa a

probabilidade de variaveis aleatorias é definida como a func¢ao de distribui¢ao acumulada:

Fx(x) = P((—00,2]) (2.5)

Esta funcao representa a probabilidade acumulada da variavel aleatoria continua
X para todos os eventos (ndo contéveis) até e incluindo z. Propriedades importantes da

funcao de distribuicdo acumulada sao:

1. Fx(x) = 0 quando x — —o0
2. Fx(xz) — 1 quando z — 400

3. Fx(z) é uma fungao nao decrescente de x.

Ainda mais comum que a equagao (2.5) é a sua derivada, conhecida como a funcao
densidade de probabilidade:

 dx

fx(x) (2.6)

Com base nas propriedades acima da funcao de distribui¢ao acumulada, a funcao

densidade também tem as seguintes propriedades:

1. fx(x) é uma funcdo nao negativa

2. [T fx(z)dx =1

Por fim, observe-se que a probabilidade sobre qualquer intervalo [a, b] é definida

COImo:
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Pya.t]) = [ fx(e)da (2.7)

Assim, em vez de somar as probabilidades de eventos discretos como na equacao
(2.2), para varidveis aleatérias continuas integra-se a fun¢ao densidade de probabilidade

sobre o intervalo de interesse.

2.3 Média e Variancia

O conceito de média de uma sequéncia de niimeros é amplamente utilizado, sendo
que para N amostras de uma variavel aleatoria discreta X, a média ou média amostral é

dada por:

X1+ Xo+-+ Xy

X =
N

(2.8)

No rastreamento, lida-se com sinais continuos (com um espago amostral incontavel),
sendo 1til pensar em termos de um nimero infinito de ensaios. Desta forma, o resultado
final seria uma "média” dos resultados obtidos. Nesse contexto, o valor esperado de uma

variavel aleatéria discreta poderia ser aproximado pela média dos eventos ponderados pela
probabilidade:

X ~ (mN)xy + (paN)xg + -+ + (puN )y,
N

(2.9)

Na pratica, em N ensaios, esperaria-se ver p; N ocorréncias do evento 1, e assim
por diante. Essa nocao de ensaios infinitos (amostras) leva a definigdo convencional de

esperanca para variaveis aleatorias discretas:

E(X) =) pwi (2.10)
i=1
para n possiveis resultados xy, zo, ..., z, e probabilidades correspondentes py, po, ..., py.

De modo semelhante, para a variavel aleatoria continua, o valor esperado é definido como:

o0

E(X) = / v fx(z) do (2.11)

— 00

Por fim, observa-se que a equagao (2.10) e a equagao (2.11) podem ser aplicadas a

fungoes da varidvel aleatoria X da seguinte forma:

B(g(X)) = ipigm) (2.12)
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o0

B(gX) = [ g(@)fx(x)da (2.13)

O valor esperado de uma variavel aleatoria também é conhecido como o primeiro
momento de uma variavel aleatéria. Pode-se aplicar a nogao da equacao (2.12) ou (2.13),
deixando g(X) = X*, para obter o k-ésimo momento de uma variavel aleatéria. O k-ésimo

momento estatistico de uma variavel aleatéria continua X é dado por:

E(X*) = / O; o fx () da (2.14)

De particular interesse, tanto de forma geral como neste especifico, é o segundo

momento da variavel aleatoéria. Ele é dado por:

BE(X?) = / O; 22 fx(z) do (2.15)

Quando se deixa g(X) = X — E(X) e aplica-se a equagao (2.15), obtém-se a

variancia do sinal em relagdo a média. Desta forma,

VaridnciaX = E[(X — E(X))?]
= B(X?) - E(X)?

A variancia é uma propriedade estatistica muito 1til para sinais aleatérios. Isso
se deve ao fato de que, ao conhecer a variancia de um sinal que, de outra forma, deveria
ser “constante” em torno de algum valor (a média) a magnitude da varidncia proporciona

uma nocao de quanto ruido esta presente no sinal.

A raiz quadrada da varidncia, ou desvio padrao, também é uma medida estatistica
util. Ao contrario da varidncia, o desvio padrao é sempre positivo, e possui as mesmas

unidades que o sinal original. O desvio padrao ¢ dado por:

Desvio padrao de X = ox = V/Variancia de X (2.16)

2.4 Distribuicao Normal ou Gaussiana

Uma distribui¢ao de probabilidade especial, conhecida como distribuicao Normal
ou Gaussiana, tem sido historicamente popular na modelagem de sistemas aleatorios
por uma variedade de razoes. Muitos processos aleatérios que ocorrem na natureza
parecem ser normalmente distribuidos, ou muito préximos disso. De fato, sob algumas
condig¢oes moderadas, é possivel demonstrar que a soma de variaveis aleatorias com qualquer

distribuicao tende para uma distribuicao normal. Esta propriedade é formalizada pelo
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teorema do limite central. Além disso, a distribui¢do normal possui algumas propriedades

interessantes que a tornam matematicamente tratavel.

Dado um processo aleatério X ~ N'(u, o), onde X é um processo aleatério continuo
normalmente distribuido com média u e variancia o2 (desvio padrio ), a fungao densidade

de probabilidade para X é dada por:

1 _ 2
fx(z) = —=exp Gl D , para —oo <z < 00 (2.17)

V2mo?

Finalmente, observa-se que, assim como no caso discreto e nas equagoes (2.2) e

(2.3), a independéncia e a probabilidade condicional sao definidas para variaveis aleatérias
continuas. Duas variaveis aleatorias continuas X e Y sao consideradas estatisticamente
independentes se a sua probabilidade conjunta fxy(z,y) for igual ao produto de suas

probabilidades individuais. Em outras palavras, elas sao consideradas independentes se:

Ixv(z,y) = fx(z) fr(y). (2.18)

2.4.1 Ruido Branco

Ruido branco é um termo estatistico usado para descrever um sinal aleatério que
possui uma densidade espectral constante. Em outras palavras, ruido branco é um sinal
aleatério que contém intensidade igual em diferentes frequéncias, proporcionando uma

poténcia constante ao longo da banda de frequéncia dada.

2.4.1.1 Propriedades do Ruido Branco

O ruido branco possui varias propriedades importantes que o tornam um conceito
util em diversos campos, incluindo estatistica e processamento de sinais. Essas propriedades

incluem:

« Estacionariedade: O ruido branco é considerado um processo estacionério, o que
significa que suas propriedades estatisticas, como média e variancia, nao mudam ao

longo do tempo.

o Independéncia: No ruido branco, todas as variaveis aleatorias sdo independentes
umas das outras. Isso implica que nao hé estrutura previsivel ou padrao na sequéncia

de valores de ruido.

o Espectro Uniforme: O ruido branco possui um espectro plano, o que significa que
sua poténcia é distribuida uniformemente por todas as frequéncias dentro de um

intervalo dado.
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o Distribuicao Gaussiana: Para esse trabalho, assume-se que o ruido branco segue
uma distribuicdo Gaussiana (normal), com média zero e uma variancia finita. Esse

tipo de ruido branco é referido como ruido branco Gaussiano.

2.4.2 Covariancia

A covariancia na teoria das probabilidades e estatistica é uma medida da variabili-

dade conjunta de duas variaveis aleatérias.

O sinal da covariancia indica a tendéncia na relagao linear entre as variaveis. Se
valores maiores de uma variavel correspondem principalmente a valores maiores da outra
variavel, e o mesmo se aplica a valores menores (ou seja, as varidveis tendem a apresentar
um comportamento semelhante), a covaridncia é positiva. Por outro lado, quando valores
maiores de uma variavel correspondem principalmente a valores menores da outra (ou seja,
as varidveis tendem a mostrar um comportamento oposto), a covaridncia é negativa. A
magnitude da covariancia é a média geométrica das varidncias que sao comuns para as
duas variaveis aleatorias. O coeficiente de correlagdo normaliza a covariancia dividindo-a

pela média geométrica das variancias totais das duas varidveis aleatorias.

Variaveis aleatorias cuja covariancia é zero sao chamadas de nao correlacionadas.
Da mesma forma, os componentes de vetores aleatérios cuja matriz de covariancia tem
zero em todas as entradas fora da diagonal principal, também sao chamados de nao

correlacionados.

2.5 Estimativa Estocastica

Enquanto existem muitas abordagens especificas de aplicacdo para estimar um
estado desconhecido a partir de um conjunto de medigdes de processo, muitos desses méto-
dos nao consideram inerentemente a natureza tipicamente ruidosa das medigoes(Grewal.;
Andrews, 2008). Por exemplo, considerando o trabalho em questao sobre rastreamento
posicional interativo. Embora os requisitos para a informacao de rastreamento variem com
a aplicacdo, a fonte fundamental de informacao é a mesma: as estimativas de posicao sao
derivadas de medigoes elétricas ruidosas de sensores mecanicos, inerciais, épticos, actsticos
ou magnéticos. Esse ruido é tipicamente estatistico por natureza (ou pode ser efetivamente

modelado como tal), o que nos leva a métodos estocasticos para resolver os problemas.

2.5.1 Modelo Espaco de Estados

Os modelos de espaco de estados sao essencialmente uma conveniéncia notacional
para problemas de estimagcao e controle, desenvolvidos para tornar tratavel o que, de outra
forma, seria uma analise notacionalmente intratavel. Considere um processo dinamico

descrito por uma equagao de diferengas de ordem n (similarmente uma equacao diferencial)
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da forma:

Yigr = QoYi +++ + Un—1,iYi—nt1 + Ui, 1 >0, (2.19)
onde u; é um processo de “ruido” aleatdrio branco (espectralmente) de média zero (esta-
tisticamente) com autocorrelagao:

e os valores iniciais yo,y_1,...,Y_n+1 a0 variaveis aleatorias de média zero com uma

matriz de covariancia n X n conhecida:
Po=E(y-j,y-x), J.ke0,n—1. (2.21)
Também assume-se que:
E(u;,y;) =0 para —n+1<j<0 e i>0, (2.22)

o que assegura que o ruido é estatisticamente independente do processo a ser estimado.

Essa equacao de diferenca pode ser reescrita, o que leva ao modelo de espago de

estados:

Tiy1 = AZL’Z + Gui, (223)

A Equagao (2.23) representa a forma como um novo estado ;41 é modelado, sendo
uma combinacao linear do estado anterior z;, e algum ruido do processo u;. A Equacao
(2.24) descreve a forma como as medigoes ou observagdes do processo y; sao derivadas
do estado interno z;. Essas duas equacoes sao frequentemente referidas, respectivamente,
como o modelo de processo e o modelo de medicao, e servem como base para virtualmente

todos os métodos de estimacao linear, como o filtro de Kalman descrito a seguir.

As muitas abordagens para esse problema béasico sao tipicamente baseadas no
modelo de espaco de estados. Tipicamente, existe um modelo de processo que modela a
transformacao do estado do processo. Isso geralmente pode ser representado como uma

equacgao de diferenca estocastica linear semelhante a equagao (2.23):

T = Axk_l + Buk + wg_1. (225)
Sendo que na equacao (2.25) uy, representa o valor de entrada e wy_1 o ruido.

Além disso, existe algum tipo de modelo de medicao que descreve a relacao entre
o estado do processo e as medig¢oes. Isso geralmente pode ser representado com uma

expressao linear semelhante a equagao (2.23):
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yr = Hrp + v

Os termos wy, e vy sao variaveis aleatérias representando o ruido do processo e o

ruido da medicao, respectivamente.

2.5.2 Ruido de Medicao e de Processo

Consideramos aqui o caso comum de medigoes ruidosas de sensores. Existem
muitas fontes de ruido em tais medi¢oes. Por exemplo, cada tipo de sensor tem limitagoes
fundamentais relacionadas ao meio fisico associado e, ao empurrar os limites dessas
limitagoes, os sinais sao tipicamente degradados. Além disso, uma certa quantidade de
ruido elétrico aleatdrio é adicionada ao sinal através do sensor e dos circuitos elétricos. A
relagdo variavel ao longo do tempo entre o sinal "puro'e o ruido elétrico afeta continuamente
a quantidade e a qualidade da informacao. O resultado é que a informagcao obtida de
qualquer sensor deve ser qualificada & medida que é interpretada como parte de uma
sequéncia geral de estimativas, e modelos analiticos de medicao tipicamente incorporam

alguma nocao de ruido de medicdo ou incerteza, como mostrado acima.

Existe também o problema adicional de que o modelo de transformacao do estado
real é completamente desconhecido. Embora possamos fazer previsoes em intervalos
relativamente curtos usando modelos baseados em transformagcoes de estado recentes, tais
previsoes assumem que as transformagcoes sao previsiveis, o que nem sempre é o caso.
O resultado é que, assim como a informacao do sensor, estimativas continuas do estado
devem ser qualificadas a medida que sao combinadas com medi¢oes em uma sequéncia
geral de estimativas. Além disso, modelos de processo tipicamente incorporam alguma

nocao de movimento aleatério ou incerteza, como mostrado acima.

2.6 O Filtro de Kalman

Pode parecer estranho que o termo "filtro” se aplique a um estimador. Tradici-
onalmente, um filtro é um dispositivo fisico para remover componentes indesejadas de
misturas. Originalmente, um filtro resolvia o problema de separar componentes indesejados
de misturas gas-liquido-sélido. Na era dos radios de galena e tubos de vacuo, o termo
passou a ser utilizado para descrever circuitos analégicos que filtram sinais eletronicos.
Esses sinais englobam diferentes componentes de frequéncia, e esses dispositivos fisicos

atenuam preferencialmente frequéncias indesejadas.

No entanto, com o filtro de Kalman, o termo "filtro” assumiu um significado que
vai além da ideia original de separacao dos componentes de uma mistura. Ele também
passou a incluir a solucao de um problema de inversao, onde as variaveis mensuraveis sao

representadas como funcoes das variaveis de principal interesse. Essencialmente, inverte-
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se essa relagao funcional para estimar as variaveis independentes a partir das variaveis
dependentes (mensuraveis). Essas varidveis de interesse também podem ser dindmicas,

com comportamentos que sao apenas parcialmente previsiveis.

O filtro de Kalman é uma das maiores descobertas na histéria da teoria de estimacao
estatistica e uma das maiores descobertas do século XX. Ele possibilitou realizagoes que
seriam impossiveis sem sua existéncia, tornando-se tao indispensavel quanto o silicio
em muitos sistemas eletronicos. Suas aplicagdoes mais imediatas incluem o controle de
sistemas dindmicos complexos, como processos continuos de manufatura, aeronaves, navios
e espagonaves. Para controlar um sistema dinamico, é necessario primeiro saber o que
ele esta fazendo. Para essas aplicagoes, nem sempre é possivel ou desejavel medir todas
as variaveis que se deseja controlar, e o filtro de Kalman fornece um meio de inferir as
informacoOes ausentes a partir de medigdes indiretas e ruidosas. O filtro de Kalman também
¢é utilizado para prever os provaveis cursos futuros de sistemas dindmicos que nao se

pretende controlar, como o fluxo de rios durante enchentes.

Matematicamente, o filtro de Kalman é o melhor estimador possivel (6timo) para
uma grande classe de problemas, e um estimador muito eficaz e 1til para uma classe ainda
maior. Com algumas ferramentas conceituais, o filtro de Kalman torna-se muito facil de

utilizar.

Teoricamente, o filtro de Kalman é um estimador para o que é chamado de problema
linear-quadratico. Esse problema envolve a estimativa do “estado” instantaneo de um
sistema dinamico linear perturbado por ruido branco, utilizando medigoes linearmente
relacionadas ao estado, mas corrompidas por ruido branco. O estimador resultante é esta-
tisticamente 6timo em relacao a qualquer fungao quadrética do erro de estimagao(Grewal.;
Andrews, 2008).

2.6.1 O filtro de Kalman Linear

O filtro de Kalman aborda o problema geral de tentar estimar o estado z € R™ de
um processo controlado em tempo discreto que é governado pela equacao de diferenca
estocastica linear(Welch; Bishop, 2001)

T — AIk_l + Buk + W1, (226)

com uma medicao y € R™ dada por

Yk = Haxp + vy (2.27)

As variaveis aleatorias w;, e v, representam o ruido do processo e da medicao,

respectivamente. Elas sao assumidas como independentes, brancas e com distribuicoes de
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probabilidade normais:
p(w) ~ N(0,Q), (2.28)
p(v) ~ N(0, R). (2.29)

Na pratica, as matrizes de covariancia do ruido do processo @) e do ruido da medigao
R podem mudar a cada passo de tempo ou medig¢ao, porém, aqui assumimos que sao

constantes.

A matriz A de dimensao n X n na equagao de diferenca (2.26) relaciona o estado no
passo de tempo anterior £ — 1 ao estado no passo atual k, na auséncia de uma funcgao de
controle ou ruido do processo. Embora, na pratica, A possa mudar a cada passo de tempo,
aqui assumimos que ela é constante. A matriz B de dimensao n x [ relaciona a entrada
de controle opcional u € R’ ao estado z. A matriz H de dimensdo m X n na equacio de
medigao (2.26) relaciona o estado a medigao yi. Embora, H também possa mudar a cada

passo de tempo ou medigao, aqui assumimos que ela é constante.

Define-se 7 € R"™ como a estimativa de estado a priori no passo k, dado o
conhecimento do processo antes do passo k, e T € R” como a estimativa de estado a
posteriori no passo k, dada a medicao y,. Podemos entao definir os erros de estimativa a
priori e a posteriori como

ék =T — ka, (230)

A covariancia do erro de estimativa a priori é entao
P, = B¢, (2.32)
k — kek ? .
e a covariancia do erro de estimativa a posteriori é

P, = Eleget]. (2.33)

Para derivar as equacoes do filtro de Kalman, comecamos com o objetivo de
encontrar uma equacao que compute uma estimativa de estado a posteriori Z; como uma
combinacao linear de uma estimativa a priori Z; e uma diferenca ponderada entre uma

medicao real y; e uma previsao de medigao H iy, como mostrado abaixo na equagao (2.34).

A diferenga (y, — Hj) na equagao acima é chamada de atualizagao da medicao,
ou residual. O residual reflete a discrepancia entre a medigao prevista HZj; e a medi¢ao

real y,. Um residual de zero significa que os dois estao em completa concordancia.

A matriz K de dimensao n x m na equacao é escolhida para ser o ganho, isto é, o

fator que minimiza a covariancia do erro de estimativa a posteriori na equagao (2.33). Esta
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minimizagao pode ser realizada substituindo a equagao (2.34) na definigdo acima para
ek, substituindo isso na equagao (2.33), realizando as expectativas indicadas, tomando a
derivada do trago do resultado em relacao a K, igualando esse resultado a zero e resolvendo

para K. Uma forma do K resultante que minimiza a equacao (2.33) é dada por

K, = PB,H'(HP,H' + R)™* (2.35)
A atualizagao da covariancia fica:

P, = (I — K;H)P, (2.36)

Outra maneira de pensar sobre a ponderagao por K é que, a medida que a
covariancia do erro de medicao R se aproxima de zero, a medicao real y; é cada vez mais
"confiavel", enquanto a medicao prevista HZj, é cada vez menos confidvel. Por outro lado, a
medida que a covariancia do erro de estimativa a priori P} se aproxima de zero, a medicao

real ¥, é menos confiavel, enquanto a medicao prevista HZj é cada vez mais confiavel.

2.6.2 O Algoritmo

O filtro de Kalman estima um processo utilizando uma forma de controle por
feedback. Primeiro, o filtro estima o estado do processo em algum momento e entao obtém
feedback na forma de medigoes ruidosas. Assim, as equagoes para o filtro de Kalman
se dividem em dois grupos: equacoes de atualizacao temporal e equagoes de atualizacao
de medicao. As equacgdes de atualizacao temporal projetam, no tempo, o estado atual e
as estimativas de covariancia de erro para obter as estimativas a priori para o proximo
passo de tempo. As equacoes de atualizacao de medicao fornecem o feedback necessario,
incorporando novas medicoes nas estimativas a priori para obter uma estimativa a posteriori

aprimorada.

As equacgoes de atualizagao temporal também podem ser pensadas como equagoes
de predicao, enquanto as equagoes de atualizacao de medicao podem ser pensadas como
equacoes de correcao. De fato, o algoritmo final de estimacao se assemelha ao de um

algoritmo preditor-corretor para resolver problemas numéricos, como mostrado abaixo.

P, = AP, AT+ Q (2.38)

As equagoes de atualizacao temporal nas equacoes projetam o estado e as estimativas
de covariancia do passo de tempo k — 1 para o passo k. A e B sdo da equagao (2.26),

enquanto @ é da equagao (2.28).
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A primeira tarefa durante a atualizagdo de medicao é calcular o ganho de Kalman,
K. O proximo passo é medir o processo para obter y, e entdao gerar uma estimativa de
estado a posteriori incorporando a medi¢ao como na equagao (2.34). O passo final é obter

uma estimativa de covariancia do erro a posteriori via equagao (2.36).

Apés cada par de atualizacao temporal e de medicao, o processo é repetido utili-
zando as estimativas anteriores como base para projetar ou prever as novas estimativas
subsequentes. Essa natureza recursiva é uma das caracteristicas muito atraentes do filtro
de Kalman, pois torna implementacoes praticas muito mais viaveis do que outros filtros
que sao projetados para operar em todos os dados diretamente para cada estimativa. O
filtro de Kalman, em vez disso, condiciona recursivamente a estimativa atual em todas as

medigoes passadas.

Figura 1 — Algoritmo Filtro de Kalman Estendido

|

Atualizag@o Tempo (“Previsto”) Atualizacdo Medida (“Correto”)

(1) Calcula o ganho de Kalman
(1) Projeta o estado seguinte

T = ATp_1 + Buyg

K, =P H' (HP,H" + R)!

(2) Atualizacao estimacao com a

_ o medida de y
(2) Projeta o erro da covariancia i = &+ K(y — Hix)
seguinte
P.= AP AT +Q (3) Atualizagao erro da covariancia
Py = (I — Ky H) P,
T A
Estimativas iniciais para &;_, e P._,

Fonte: Adaptado de (Welch; Bishop, 2001)

2.7 O filtro de Kalman Estendido

O filtro de Kalman aborda o problema geral de tentar estimar o estado = € R de
um processo controlado em tempo discreto, que é governado por uma equagao de diferenca
estocdstica linear. Mas o que acontece se o processo a ser estimado e (ou) a relagdo de
medi¢do com o processo for nao linear? Isso é comum, como no caso do presente trabalho,
em que o GNSS nao segue um padrao linear. Algumas das aplicagdes mais interessantes
e bem-sucedidas do filtro de Kalman ocorreram em tais situacoes. Para lidar com isso,

um tipo especifico de filtro de Kalman, denominado filtro de Kalman estendido (EKF) é
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utilizado. O EKF lineariza em torno da média e da covariancia atuais para fazer estimativas

em ambientes nao lineares.

De maneira semelhante a uma série de Taylor, pode-se linearizar a estimativa
em torno da estimativa atual usando as derivadas parciais das func¢des de processo e
medicao para calcular estimativas mesmo diante de relagoes nao lineares. Para fazer isso,
deve-se comecar modificando algumas equagoes da secao acima. Suponha-se que o processo
novamente tenha um vetor de estado x € R”, mas que agora o processo seja governado

pela equagao de diferenca estocastica nao linear

T = f(xk_l,uk,wk_l) (239)

com uma medicao y € R™

Yr = h(zk, vi) (2.40)

onde as variaveis aleatérias wy e v, novamente representam o ruido do processo
e da medigdo, como nas equagoes (2.28) e (2.29). Neste caso, a funcao nao linear f na
equacao de diferenca (2.39) relaciona o estado no instante de tempo anterior £k — 1 com o
estado no instante de tempo atual k. Inclui como parametros qualquer fun¢ao de controle
u, e o ruido do processo wy de média zero. A funcao nao linear h na equacao de medicao

(2.40) relaciona o estado xj a medigao zy.

Na pratica, valores individuais do ruido wy e vy em cada instante de tempo nao sdo

conhecidos. No entanto, pode-se aproximar o vetor de estado e de medi¢ao sem eles como

Ty = f(&k-1,u,0),

gk - h<a~:k7 O)J

sendo T ¢ uma estimativa do estado de um instante de tempo anterior k.

E importante notar que uma falha fundamental do EKF é que as distribuicdes (ou
densidades no caso continuo) das varias varidveis aleatérias, deixam de ser normais apos
passarem por suas respectivas transformagcoes nao lineares. O EKF é essencialmente um
estimador de estado que apenas aproxima a optimalidade da regra de Bayes através da

linearizacao.

2.7.1 IMU

Dois sensores foram utilizados neste trabalho para fazer a fusao de dados. O primeiro

deles, é o IMU, Inertial Mreasurement Unit, ou, em portugués, unidade de medicao inercial,
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que consiste em giroscopios para medir a taxa de rotagao, e acelerdmetros para medir a
forga especifica onde ele esta acoplado(VECTORNAV, 2024).

o Giroscopios: fornecem a medida da taxa angular.
o Acelerometros: fornecem a medida da forca especifica/aceleracao.

« Magnetometros (opcional): medi¢do do campo magnético ao redor do sistema.

Um acelerdometro é o sensor principal responsavel por medir a aceleragao inercial,
ou a mudanca de velocidade ao longo do tempo, e pode ser encontrado em uma varie-
dade de tipos diferentes, incluindo acelerdmetros mecéanicos, acelerometros de quartzo e

acelerometros MEMS.

Um giroscopio ¢ um sensor inercial que mede a taxa angular de um objeto em
relacdo a um referencial inercial. Existem muitos tipos diferentes de giroscopios disponiveis
no mercado, que variam em diversos niveis de desempenho, incluindo giroscdpios mecanicos,
giroscopios de fibra 6ptica (FOGs), giroscopios a laser de anel (RLGs) e giroscépios de
quartzo/MEMS.

Figura 2 — Exemplo de IMU comercial

Fonte: (MEMSESE, 2024)
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2.7.2 GNSS

Um sistema global de navegagao por satélite (GNSS) é uma rede de satélites
que transmite informacoes de tempo e 6rbita usadas para navegacao e medicoes de
posicionamento. Os satélites transmitem sinais contendo informacoes sobre suas posi¢oes
e horarios. Essas informacgoes sao utilizadas para determinar a localizagdo de um ponto na
terra. Através de uma série complexa de calculos de trilateragao, a tecnologia calcula a

localiza¢do com base na sua posi¢ao em relagdo a pelo menos quatro satélites. (Programme,

2024)

Os GNSS sao mais do que os satélites em oOrbita terrestre. Os multiplos grupos
de satélites, conhecidos como constelagoes, transmitem sinais para estacoes de controle
principais e usuarios de GNSS em todo o planeta. Esses trés segmentos — espacial, de
controle e de usuario — sao todos considerados parte do GNSS. Mas, com mais frequéncia,

GNSS ¢é usado para descrever os satélites no espaco.

Figura 3 — Ilustracao do sistema GNSS

= = =)
Oy =

Segmento de controle

Segmento do usudrio

Fonte: Adaptado de (ESALQ/USP, 2020)
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O segmento espacial consiste em constelacoes de GNSS orbitando entre 20.000 e
37.000 quilémetros acima da Terra. Os satélites transmitem sinais identificando seu tempo,
orbita e status. As principais constelagoes sao GPS, GLONASS, Galileo e BeiDou, além
dos sistemas regionais QZSS e IRNSS.

O segmento de controle é composto por estagoes de controle que recebem e mo-
nitoram os sinais dos satélites, comparando suas posicoes reais com modelos orbitais.
Os operadores podem ajustar as trajetérias dos satélites para garantir precisao e evitar

colisoes com detritos, mantendo a precisao do posicionamento GNSS.

O segmento de usuario inclui equipamentos que recebem os sinais dos satélites e
calculam a posicao com base no tempo e na localizagao orbital de pelo menos quatro satélites.
Isso envolve antenas receptoras, receptores de alta precisao e motores de posicionamento

para corrigir erros de tempo.

O posicionamento GNSS pode ser utilizado em diferentes industrias, entretanto,

toda aplicacdo GNSS depende desses trés segmentos para funcionar.

2.8 Trabalhos Relacionados

A combinacao GPS/IMU com uma bussola digital é a principal configuragao
encontrada como solugao para o problema de navegacao dos veiculos autéonomos. Em
(Zhang et al., 2005), os autores enfatizam que ¢é possivel encontrar sensores baratos e
de baixa precisao para realizar a fusao sensorial. No entanto, os autores utilizam uma
versao diferente do filtro de Kalman, o chamado Unscented Kalman Filter (UKF), que é
uma forma mais adequada para se trabalhar com equacoes que sdo nao lineares e dificeis
de serem linearizadas. Outros autores também utilizaram o UKM para fazer a fusao e

obtiveram bons resultados, como por exemplo o trabalho. (Cahyadi et al., 2023)

Este trabalho, como mencionado nas se¢oes anteriores, empregara o filtro de Kalman
Estendido para a fusao dos sensores. A abordagem adotada serd mais simplificada em
comparagao com o estudo recente realizado por (Costa, 2013), pois os dados utilizados

para os calculos foram obtidos do simulador CARLA.



37

3 METODOLOGIA

3.1 Apresentacao do CARLA

Para facilitar o processo de desenvolvimento, treinamento e validacao de sistemas
de conducao, o CARLA evoluiu para se tornar um ecossistema de projetos, construido
em torno de uma comunidade, uma vez que ele é todo de desenvolvimento aberto. Nesse
contexto, é importante entender alguns aspectos sobre o funcionamento do CARLA, para

compreender totalmente suas capacidades.

O CARLA é um simulador de conducao auténoma de cédigo aberto. Foi construido
do zero para servir como uma API modular e flexivel que aborda uma gama de tarefas
envolvidas no problema da condugao autéonoma. Um dos principais objetivos do CARLA
¢ ajudar a democratizar a pesquisa e desenvolvimento (P&D) de condugao auténoma,
servindo como uma ferramenta que pode ser facilmente acessada e personalizada pelos
usuarios. Para isso, o simulador deve atender aos requisitos de diferentes casos de uso
dentro do problema geral da condugao (por exemplo, aprendizado de politicas de condugao,
treinamento de algoritmos de percepgao, etc.). O CARLA é baseado no Unreal Engine
para executar a simulagao e utiliza o padrao ASAM OpenDRIVE (versao 1.4 atualmente)
para definir estradas e ambientes urbanos. O controle sobre a simulagao é realizado por
meio de uma API em Python e C++, que estd em constante crescimento conforme o

projeto evolui.

3.1.1 O simulador

O simulador CARLA consiste em uma arquitetura escalavel cliente-servidor. O
servidor é responsavel por tudo relacionado a simulagao: renderizacao de sensores, com-
putacgao de fisica, atualizacoes no estado do mundo e seus atores, entre outros. Como o
objetivo é obter resultados realistas, a melhor opgao é executar o servidor com uma GPU
dedicada, especialmente ao lidar com aprendizado de méaquina. O lado do cliente consiste
em um conjunto de médulos clientes que controlam a légica dos atores em cena e definem
as condigoes do mundo. Isso é alcangado aproveitando a API do CARLA (em Python
ou C++), uma camada que medeia entre o servidor e o cliente, que estd em constante

evolugao para fornecer novas funcionalidades.

3.2 Modelagem do sistema

O sistema foi modelado utilizando as formula¢oes de (Kelly; Waslander, 2020)
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3.2.1 Estado do Veiculo

Pk
xp = |v| € RY (3.1)

Ak

e P representa a posicao do veiculo.
e Vv, representa a velocidade do veiculo.

e (i € 0 quaternion que parametriza a orientacao do veiculo.

3.2.2 Modelo de Movimento

A entrada do modelo de movimento consistira em forca especifica e taxas de rotagao

provenientes da IMU:

f
mk:[k €R6

Wi

e my representa a entrada do modelo de movimento.
o f; representa a forca especifica medida pela IMU.
e wy, representa as taxas de rotacao medidas pela IMU.
Dessa forma, o estado do veiculo e as entradas do modelo de movimento sao

fundamentais para a predicao e corre¢do do estado no Filtro de Kalman Estendido,

utilizando os dados fornecidos pela IMU.

Posicao:
At?
Pr = Pi—1 + Atvy_q + N (Crsfio1 + 8) (3.2)
Velocidade:
Vi =Vi_1+ At (Cnsfk—l + g) (33)
Orientagao:
ar = dr—1 ® q(wi-1At) = Q (q(wi-1At)) g1 (3.4)

No contexto do Filtro de Kalman, a multiplicagdo de quaternions (®) é crucial
para a representacao e atualizacao das orientagoes em sistemas de navegacao e controle,
especialmente em veiculos autéonomos e robodtica. Os quaternions sao usados devido a

sua eficiéncia computacional e a capacidade de evitar as singularidades que ocorrem com
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angulos de Euler. A multiplicacao de quaternions permite combinar rotagdes de maneira
compacta e precisa. A multiplicacdo de quaternions a direita, em particular, é utilizada
para atualizar a orientacao de um corpo em movimento ao aplicar uma nova rotagao
relativa. Isso é fundamental no Filtro de Kalman estendido, onde a previsao da préxima
posicao e orientacao requer a integracao continua das mudancas de atitude com base
nas medicoes dos sensores, garantindo assim que as estimativas permanegam precisas e

consistentes ao longo do tempo.

sendo

6]
cos (—
_ 2
q(0) = (9 . (\ |) (3.7)
wosin (5!
Devido aos parametros de orientacao, que expressam como uma matriz de rotacao,
o modelo de movimento nao ¢é linear. Para usa-lo no EKF, precisam lineariza-lo em relacao

a algum pequeno erro ou perturbagao sobre o estado previsto. Para fazer isso, definirao

um estado de erro que consiste em 0p, 0v e d¢, onde d¢ é um erro de orientagao 3 x 1.

Estado de Erro:

) o}
6x = |ovy, | €R? (3.8)
o
Dindmica do Erro:
(SXk = kaléxkfl -+ Lk,lnk,l (39)

onde o termo noise de medicdo é representado por ny_q.

I At 0
Froi =10 T —[Cfi1]xAt (3.10)
0 0 I
0
Ly = |1 (3.11)
0

n, ~N(0,Qr) Q= At 2 (3.12)

gyro

O-SCC O ]
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3.2.3 Medicao GNSS

Medicao GNSS:
Vi = h(Xk) + v (313)

Para o modelo de medicao, utiliza-se uma observagao muito simples da posicao,
somada a algum ruido gaussiano aditivo. Defini-se uma covariancia Rgyss para o ruido
da posicdo GNSS. E importante notar que assumiram que o GNSS fornece-se medicoes de
posicao no mesmo quadro de coordenadas. Em uma implementacao realista, as estimativas

de posicao do GNSS podem servir como uma forma de selecionar um mapa conhecido.

Medigao Linearizada:

yi=Hix, +vp onde Hy=[I 0 0] (3.14)

Simplificagdo da Medigao:
Yi =Pkt Vg (3.15)

Ruido da Medicao:
Vi ~ N(O, RG’NSS) (316)

3.3 EKF com IMU e GNSS

O filtro sera executado toda vez que houver uma medi¢ao do IMU. Primeiro, usarao
o modelo de movimento para prever um novo estado baseado no estado anterior. O estado
anterior pode ser um estado totalmente corrigido ou um que também foi propagado usando
apenas o modelo de movimento, dependendo se receberam ou nao a medigao do GNSS .
Em seguida, propagarao a incerteza do estado através do modelo de movimento linearizado,
novamente considerando se o estado anterior foi corrigido ou nao. Neste ponto, se ndo
tiver medigoes GNSS, pode repetir os passos um e dois. Se tiverem, primeiro calcularao o
ganho de Kalman apropriado para a observacao dada. Em seguida, calcula-se um estado
de erro que serd usado para corrigir o estado previsto. Esse estado de erro é baseado no
produto do ganho de Kalman e na diferenga entre a posicao prevista e a observada. A
seguir, corrigira-se o estado previsto usando o estado de erro. Esta correcao ¢ direta para a
posicao e velocidade, mas algebra mais complicada é necessaria para corrigir o quaternion.
Durante a atualizagdo da orientacao, é necessario considerar o erro de orientagao global,
o que significa que a atualizagao de orientacao envolve multiplicar pelo quaternion do
estado de erro a esquerda. Isso é diferente do passo de propagacao, onde se multiplica pelo
quaternion incremental que define a mudanca de orientagao a direita. Essa abordagem é
uma simplificacdo que deriva do fato de que a mudanga de quadro em quaternion envolve
uma multiplicagao, e isso pode ser generalizado para pequenos erros. Por fim, atualizarao

a covariancia do estado da maneira usual.
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Loop do Filtro de Kalman Estendido (EKF):

1. Atualizar o estado com as entradas do IMU.

2. Propagar a incerteza.

3. Se a posigdo do GNSS ou LIDAR estiver disponivel:

a) Calcular o ganho de Kalman.
b) Calcular o estado de erro.

c¢) Corrigir o estado previsto.
4. Computar a covariancia corrigida.

3.3.1 1. Atualizar o Estado com Entradas do IMU

Pk
Xp = | Vg (3.17)
Qr
. At?
Pr = Pr—1 + Atvi_1 + T(Cnsfk—l +8,) (3.18)
Vi = Vi_1 + At(Cnsfk_l + gn) (319)
(3.20)

ar = Aq(wir_1A))qr—1

(Pk—1, Vk—1 € Qx—1 podem ser corrigidos ou nao corrigidos, dependendo de ter havido ou

nao uma medi¢do GNSS no passo de tempo k — 1).

3.3.2 2. Propagar a Incerteza

P, = kalpqug,l + L1 Qi L, (3.21)
3.3.3 3. Correcao com Medicoes de GNSS
a. Calcular o Ganho de Kalman
(3.22)

K, =PH/(H,P,H +R)™!

(R é Ranss)-
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b. Calcular o Estado de Erro

c. Corrigir o Estado Previsto

Pr = Pr + 0Pk (3.24)
Vi = Vi + vy (325)
ar = q(0d) ® qs (3.26)

(0¢ representa o erro de orientagao global).

3.3.4 4. Computar a Covariancia Corrigida

~

(I- KH,)P, (3.27)

Py
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4 IMPLEMENTACAO E RESULTADOS

4.1 Simulacao no Carla

A simulagdo no CARLA foi feita usando um carro com os sensores de IMU e GNSS
acoplados a ele. Durante a execuc¢ao do programa, a frequéncia de coleta de dados foi
de 500 hertz, isto é, para cada iteracao que o programa executava, as informagoes eram
salvas. Durante a simulagao, a cada iteracao, os dados necessarios eram salvos em uma
tabela. Tal tabela possuia todos os valores do movimento real do carro e os valores da
simulagao para cada sensor. Para manter a simulagdo coerente com os dados de um caso
real, os dados do GNSS também coletados na mesma frequéncia, mas para se fazer os
célculos, foi-se usado apenas 5%, 10% e 20% dos dados obtidos, respectivamente, ou seja,
simulando uma frequéncia de 25 Hz, 50 Hz e 100 Hz que esta na mesma ordem de grandeza
de alguns dados reais. Além disso, como sera visto na préxima sessao, a quantidade de
pontos disponiveis do GNSS para o algoritmo influencia na estabilidade de alguns pontos

criticos do caminho.

Outros conceitos importantes sao as coordenadas ENU (East-North-Up), ECEF
(Earth-Centered, Earth-Fixed) e Geodetic que sao sistemas usados em geodésia e navegacao

para definir posi¢oes na Terra.

O sistema ENU ¢ local, definindo posi¢oes relativas a um ponto especifico na
superficie da Terra. E muito til em navegacio, mapeamento local e navegacio por GPS.
Serd a partir do ENU que vamos comparar o caminho verdadeiro (Ground Truth). No
entanto, as Latitudes e Longitudes dadas pelo GNSS no CARLA estao em Geodetic, entao,
para comparar os valores, foi necessario fazer uma conversao de Geodectic -> ECEF ->

ENU para assim comparar os valores.

Assim, apés feitas todas consideragoes, temos o seguinte caminho:



Figura 4 — Cenario de simulacao

Fonte: Elaboracao Prépria

Figura 5 — Caminho realizado pelo carro no CARLA

Ground Truth trajectory

z[m]

Inicio

=300
—250

—200
-150 B0
*imy T -100

Fonte: Elaboracao Prépria

Como pode ser observado na Figura 5, no trajeto nao houve deslocamento no eixo
vertical, dessa maneira, pode-se olhar apenas para o plano XY sem perder informacoes
relevantes sobre a dinamica do movimento. Na figura a seguir, tem-se o trecho percorrido

pelo carro no plano XY e os valores do GNSS apés a conversao.
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Figura 6 — Trajetéria percorrida no plano XY e GNSS 25 Hz

Ground Truth trajectory XY

= Ground Truth
@ GN55

120 A

100 A

¥ [m]

=300 —250 —200 =150 =100
% [m]

Fonte: Elaboragao Prépria

4.2 Resultados

Os dados coletados foram utilizados no coédigo do Filtro de Kalman Estendido

implementado em Python.

Durante a simulacao, o CARLA possui dois momentos criticos que podem ser
observados nos graficos, que sao no inicio do movimento e perto do final. Nesses locais, ha
a quebra da inércia do carro e nesses momentos, sao os momentos mais ruidosos para as
medidas do filtro de Kalman, pois os valores de velocidade e aceleracao tendem ao infinito
gerando assim no baco de dados valores cuja ordem de grandeza é 10000 vezes maior que

os valores para o restante do trajeto.
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4.2.1 GNSS 25 Hz
Figura 7 — Estimativa GNSS 25 Hz
Trajetdria Estimada X Ground Truth

—— Estimativa
Ground Truth

%]

== )
Eixo Z [m)

Fonte: Elaboragao Prépria

Como podemos verificar, o algortimo de Kalman Estendido conseguiu fazer uma
previsdo robusta para o trecho simulado. Como pode ser observado, para os eixos X
e Y, nao houve grandes discrepancias do resultado. Porém, pode-se ver uma pequena
instabilidade no eixo Z que possui resultados substancialmente diferentes da referéncia. A
hipétese levantada para justificar essa diferenca no eixo Z foi a quantidade de dados usada
para fazer a previsao. A simulagao total produziu cerca de 1100 pontos com oS dados da
dindamica do carro. Nesse caso, foram usados apenas cerca de 50 pontos para se fazer as
corregoes do GNSS.

Para analise dos erros, foram feitos graficos com a previsao e o desvio padrao das

previsoes:
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Figura 8 — Erro dos eixos 25 Hz

Erros estimativas da trajetoria

Eixo X Eixo ¥ Eixo Z
20

15 A

10 A

0.5

0.0 A

Metros

0.5 4

-1.0 4

=15

—2.0 A1
T

Fonte: Elaboracao Prépria

As linhas vermelhas representam o intervalo de 3 vezes o desvio padrao da previsao
e as linhas azuis sdo o caminho verdadeiro para cada eixo menos o valor previsto, ou
seja, os valores esperados sao por volta de zero. Como podemos ver, os valores estao
relativamente ruidosos, mas no geral os resultados estao dentro do intervalo esperado. E
possivel ver o grafico os pontos no eixo Z que estao fora do intervalo de confianca e estao

no mesmo intervalo do pico na figura 9.

No grafico seguinte temos os desvios dos angulos:

Figura 9 — Erro dos eixos 25 Hz

Erros estimativas dos angulos
Roll Fitch Yaw

Radianos

0 500 1000 O 500 1000 O 500 1000
Fonte: Elaboracao Prépria
De forma semelhante a Figura 9, as linhas vermelhas representam o intervalo de 3

vezes o desvio padrao dos valores previstos e as linhas azuis sao os valores dos angulos

verdadeiros decrescidos dos valores previstos.
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Como podemos ver, os valores dos angulos coerentes para as duas primeiras medidas,
mas para a ultima ela possui grandes variacoes com relagao ao desvio padrao calculado.
Como os valores do Yaw estao por volta de 3, tal diferenca pode ser justificada pela
diferenca de referencial no circulo trigonométrico, pois os valores préximos de 180° e
-180° e foram considerados 7 e -7 respectivamente. Com uma mudanca no referencial tais

medidas poderiam estar préximas de 0.

4.2.2 GNSS 50 Hz

Figura 10 — Estimativa GNSS 50 Hz
Trajetdria Estimada X Ground Truth

—— Estimativa
Ground Truth

Eixg Z [m]

fmy 100

Fonte: Elaboragao Prépria

Nesta secao, a frequéncia de amostragem foi aumentada para 50 Hz. O algoritmo
de Kalman Estendido mostrou-se ainda mais robusto, com previsoes que se aproximam
significativamente da referéncia. Para os eixos X e Y, as discrepancias foram ainda menores.
No entanto, ainda observamos alguma instabilidade no eixo Z, embora menos pronunciada
do que na frequéncia de 25 Hz. Neste caso, a simulag¢ao produziu cerca de 1100 pontos de
dados da dinamica do carro, dos quais aproximadamente 100 pontos foram usados para as

previsoes.

Para analise dos erros, foram gerados graficos com a previsao e o desvio padrao

das previsoes:
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Figura 11 — Erro dos eixos 50 Hz

Erros estimativas da trajetoria
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Fonte: Elaboracao Prépria

As linhas vermelhas representam o intervalo de 3 vezes o desvio padrao da previsao
e as linhas azuis sdo o caminho verdadeiro para cada eixo menos o valor previsto, ou seja,
os valores esperados sao por volta de zero. Observa-se que os valores estao menos ruidosos
e, em geral, dentro do intervalo esperado. A instabilidade no eixo Z, apesar de presente, é

menos acentuada.

No grafico a seguir, temos os desvios dos angulos:

Figura 12 — Erro dos angulos 50 Hz

Erros estimativas dos angulos
Roll Pitch Yaw

Radianos

500 1000 0 500 1000 O 500 1000

(=1

Fonte: Elaboracao Prépria

Os valores dos angulos sdo consistentes com as duas primeiras medidas, mas a tltima
medida continua apresentando grandes variagdes em relagao ao desvio padrao calculado.
Novamente, tal diferenca também pode ser justificada pela diferenca de referencial no

circulo trigonométrico, pois os valores proximos de 180° e -180° e foram considerados
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7 e -m respectivamente. Com uma mudanca no referencial tais medidas poderiam estar

proximas de 0.

4.2.3 GNSS 100 Hz
Figura 13 — Estimativa GNSS 100 Hz

Trajetdria Estimada ¥ Ground Truth

—— Estimativa
Ground Truth

Eixo Z [m]

Fonte: Elaboracao Prépria

Para a frequéncia de amostragem de 100 Hz, o algoritmo de Kalman Estendido
mostrou um desempenho superior. As previsdes para os eixos X e Y foram extremamente
precisas, com discrepancias minimas em relagao a referéncia. No eixo Z, a instabilidade foi
ainda mais reduzida. A simulac¢ao gerou cerca de 1100 pontos de dados da dinamica do
carro, com cerca de 200 pontos utilizados para as previsoes.

Para a andlise dos erros, foram criados graficos com a previsao e o desvio padrao

das previsoes:
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Figura 14 — Erro dos eixos 100 Hz

Erros estimativas da trajetoria
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Fonte: Elaboracao Prépria

As linhas vermelhas representam o intervalo de 3 vezes o desvio padrao da previsao
e as linhas azuis sdo o caminho verdadeiro para cada eixo menos o valor previsto, ou seja,
os valores esperados sao por volta de zero. Observa-se que os valores estao ainda menos

ruidosos e, em geral, dentro do intervalo esperado. A instabilidade no eixo Z, embora

presente, ¢ minima.

No grafico a seguir, temos os desvios dos angulos:

Figura 15 — Erro dos angulos 100 Hz

Erros estimativas dos angulos
Roll Pitch Yaw
34

Radianos

_3-
500 1000 0 500 1000 O 500 1000

(=1

Fonte: Elaboracao Prépria

Os valores dos angulos sao consistentes para as duas primeiras medidas, e a tltima
medida apresenta menos variagoes em relagao ao desvio padrao calculado. Mais uma vez,
tal diferenca pode ser justificada pela diferenca de referencial no circulo trigonométrico,

pois os valores préoximos de 180° e -180° e foram considerados m e -m respectivamente.
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Com uma mudanca no referencial tais medidas poderiam estar préximas de 0.

Ou seja, como pode ser visto, a quantidade de pontos usados fez diferenca para
manter a estabilidade no eixo Z no filtro de Kalman Estendido. As varia¢des nao foram
grosseiras, pois, mesmo no pior caso, a diferenga de altura marcada com relagao ao eixo
zero foi de 80 cm. Esse valor é elevado, mas nao estd numa dimensao totalmente impossivel
para o mundo real. O melhor caso, por sua vez, deu diferencas com relacao ao eixo z de,
no maximo 20 cm, que é um valor perfeitamente aceitavel para uma diferenca de altura de

carro controlada pelo GNSS.
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5 CONCLUSAO

O objetivo deste trabalho foi desenvolver técnicas de fusao sensorial para serem
utilizadas em um sistema de localizacao de um carro autéonomo e simula-las em um
programa bem estabelecido na area, o simulador CARLA. As etapas de desenvolvimento
deste trabalho passaram pela definicdo dos objetos matematicos utilizados pelo estudo do
filtro de Kalman, pela anélise das técnicas de fusdo. Por fim, foi utilizado o simulador para
colher dados e aplicar o algoritmo criado para testar sua robustez e sua verossimilhanca

com uma trajetéria simulad.

5.1 Principais Resultados Obtidos e Conclusoes

Os resultados obtidos no capitulo anterior a respeito da reconstrucao de trajetoria
realizadas no simulador CARLA evidenciaram que a fusao sensorial feita pelo filtro de
Kalman foi funcional e adequada para a previsdo do caminho. Durante a analise, foram
utilizados trés frequéncias diferentes para o GNSS afim de descobrir a influéncia desse
fator no caminho previsto. Os resultados mostraram que o aumento de valores de GNSS
melhoraram a estabilidade do algoritmo em momentos criticos. Além disso, foi possivel ver
que existe a possibilidade fazer o estudo usando o simulador e obter resultados confidveis.
Dessa maneira, conclui-se que o CARLA é uma ferramenta que pode baratear os custos
na hora de testar ideias e algoritmos novos, uma vez que é possivel ter resultados tteis

sem a necessidade de um carro autonomo real.

Em suma, o projeto atendeu aos seus principais objetivos e proporcionou um estudo
de conceitos relacionados a carros autonomos e sistemas estocasticos. Dessa maneira, usando
os resultados obtidos, tem-se meios baratos para se testar novas ideias de algoritmos
melhores e mais eficientes, uma vez que os resultados obtidos com o simulador sao

consistentes.

5.2 Trabalhos Futuros

Como apresentado, concluiu-se que o trabalho desenvolvido apresentou resultados
positivos e esperados em diversos aspectos, porém esses resultados podem ser melhorados
em diversos aspectos. Os resultados obtidos pelo CARLA poderiam ser mais estaveis do
que os usados no presente trabalho. Isso poderia ser feito com o uso de um c6digo mais

eficiente dentro do CARLA ou um computador mais potente durante a simulacao.

Outro ponto que poderia ser acrescentado seria fazer a fusao tripla entre IMU,GNSS
e LIDAR deixando o algoritmo ainda mais robusto e mais realista, uma vez que poderia

ter maiores informagoes sobre os arredores do carro. Assim, para um sistema ainda mais
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real, poderiam ser adicionados mais carros e pedestres na simulagao para fazer e testar

algoritmos mais plausiveis de serem aplicados na vida real.

O principal interesse para um trabalho futuro, porém, seria em testar os algoritmos
criados para a simulagao em dados reais retirados de um carro autonomo real. Isso poderia
ser realizado usando o carro disponivel na universidade quando ele estiver pronto para que
todo o desenvolvimento do algoritmo no CARLA pudesse ser replicado e utilizado em um

caso real.
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APENDICE A - APENDICE(S)

Todos os codigos usados estao no GIthub.

https://github.com/rafaeljanke/Fusion-IMU-GNSS- Kalman-s-FIlter-with-CARLA /

tree/main


https://github.com/rafaeljanke/Fusion-IMU-GNSS-Kalman-s-FIlter-with-CARLA/tree/main
https://github.com/rafaeljanke/Fusion-IMU-GNSS-Kalman-s-FIlter-with-CARLA/tree/main
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