

RENAN MARCOS FERREIRA

Uso de modelos de linguagem de grande escala para decisões

arquiteturais de desenvolvimento de software

São Paulo
2024

RENAN MARCOS FERREIRA

Uso de modelos de linguagem de grande escala para decisões

arquiteturais de desenvolvimento de software

Versão Original

Monografia apresentada ao PECE –
Programa de Educação Continuada em
Engenharia da Escola Politécnica da
Universidade de São Paulo como parte dos
requisitos para a conclusão do curso de
MBA em Engenharia de Software.

Área de Concentração: Engenharia de
Software

Orientador: Prof. Dr. Fábio Levy Siqueira

São Paulo
2024

 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Catalogação-na-publicação

Ferreira, Renan
 Uso de modelos de linguagem de grande escala para decisões
arquiteturais de desenvolvimento de software / R. Ferreira -- São Paulo, 2024.
 66 p.

 Monografia (MBA em Engenharia de Software) - Escola Politécnica da
Universidade de São Paulo. PECE – Programa de Educação Continuada em
Engenharia.

 1.TECNOLOGIA DA INFORMAÇÃO 2.ENGENHARIA DE SOFTWARE
3.ARQUITETURA DE SOFTWARE 4.INTELIGÊNCIA ARTIFICIAL
I.Universidade de São Paulo. Escola Politécnica. PECE – Programa de
Educação Continuada em Engenharia II.t.

Nome: FERREIRA, Renan

Título: Uso de modelos de linguagem de grande escala para decisões arquiteturais
de desenvolvimento de software

Monografia apresentada ao PECE – Programa de
Educação Continuada em Engenharia da Escola
Politécnica da Universidade de São Paulo como parte dos
requisitos para a conclusão do curso de MBA em
Engenharia de Software.

Aprovado em:

Banca Examinadora

Prof.(a). Dr.(a). ___

Instituição: __

Julgamento: ___

Prof.(a). Dr.(a). ___

Instituição: __

Julgamento: ___

Prof.(a). Dr.(a). ___

Instituição: __

Julgamento: ___

AGRADECIMENTOS

Agradeço a Amanda Dantas Ferreira, minha querida e amada esposa, por todo o apoio

em diversas etapas de minha vida e pela motivação que sempre me traz.

Agradeço aos meus pais José Lazilote Ferreira e Maria Aparecida Ferreira, por

apoiarem meus estudos em computação e dedicarem parte de suas vidas me

ensinando.

Agradeço aos professores do PECE-USP pela dedicação no ensino e todo o

conhecimento compartilhado, especialmente ao Prof. Dr. Fábio Levy Siqueira por me

orientar e apoiar durante a redação deste trabalho.

Aos amigos e colegas de trabalho e a todas as pessoas que, direta ou indiretamente,

me apoiaram durante o período de estudos no PECE-USP, especialmente aos meus

amigos Arthur Machado, Fernando Godoy, Luan Sales e Pedro Vieira.

RESUMO

FERREIRA, Renan. Uso de modelos de linguagem de grande escala para
decisões arquiteturais de desenvolvimento de software. 2024. 66 p. Monografia
(MBA em Engenharia de Software). Programa de Educação Continuada em
Engenharia da Escola Politécnica da Universidade de São Paulo. São Paulo. 2024.

Avaliar decisões arquiteturais não é um processo simples durante o desenvolvimento

de um software, pois exige a consideração de múltiplos trade-offs. Este trabalho

aborda o uso de Modelos de Linguagem de Grande Escala (LLMs) para apoiar esse

processo, com foco na extração de decisões arquiteturais a partir de requisitos

textuais, atributos de qualidade e modelos de domínio. Foi realizado um estudo de

caso em um sistema real de gestão de inadimplência no setor de fintechs, comparando

as soluções geradas pelos LLMs com a arquitetura efetivamente implementada,

seguindo o método proposto por Eisenreich, Speth e Wagner (2024). Para avaliação

da qualidade de decisões e dos trade-offs envolvidos, utilizou-se uma versão adaptada

do método ATAM.

Os resultados mostram que o modelo GPT-4o1 gerou decisões arquiteturais

plausíveis e alinhadas a práticas comuns no desenvolvimento de software, com

poucas alucinações sobre padrões ou estratégias inexistentes. Além disso, o LLM

identificou trade-offs relevantes e estruturou atributos de qualidade de forma similar à

solução real. A análise evidencia que os LLMs não apenas aceleram o processo de

tomada de decisões, mas também oferecem novas ideias durante o processo.

Embora os resultados sejam promissores, a eficácia das respostas depende de uma

boa estruturação dos prompts e de intervenções humanas para assegurar a

assertividade, evidenciando a necessidade de métodos mais maduros e ferramentas

que facilitem sua adoção em ambientes corporativos e acadêmicos.

Palavras-chave: Arquitetura de Software. IA. LLM. ATAM. ADRs. Gestão do

conhecimento arquitetural.

ABSTRACT

FERREIRA, Renan. Use of Large Language Models for architectural decisions in
software development. 2024. 66 p. Monografia (MBA em Engenharia de Software).
Programa de Educação Continuada em Engenharia da Escola Politécnica da
Universidade de São Paulo. São Paulo. 2024.

Evaluating architectural decisions is not a straightforward process in software

development, as it demands the consideration of multiple trade-offs. This study

investigates the use of Large Language Models (LLMs) to support this process,

focusing on the extraction of architectural decisions from textual requirements, quality

attributes, and domain models. A case study was conducted on a real-world

delinquency management system in the fintech sector, comparing the solutions

generated by LLMs with the effectively implemented architecture, using the method

proposed by Eisenreich, Speth, and Wagner (2024). To assess decision quality and

the trade-offs involved, an adapted version of the ATAM method was applied.

The results indicate that the GPT-4o1 model generated plausible architectural

decisions aligned with common software development practices, demonstrating

minimal hallucinations regarding non-existent patterns or strategies. Furthermore, the

LLM identified relevant trade-offs and structured quality attributes in a manner similar

to the actual solution. The analysis shows that LLMs not only help the decision-making

process but also offer new architectural insights.

Although the findings are promising, the effectiveness of the responses depends on

well-structured prompts and human intervention to ensure accuracy, highlighting the

need for more mature methods and tools to facilitate their adoption in both corporate

and academic environments.

Keywords: Software Architecture, AI, LLM, ATAM, ADRs, Architectural Knowledge

Management.

LISTA DE ILUSTRAÇÕES

Figura 1 - Diagrama do modelo de domínio dos requisitos funcionais. 34
Figura 2 - Prompt criado para o LLM ... 39
Figura 3 - Primeira resposta do LLM ao prompt inicial enviado .. 42
Figura 4 - Segunda resposta do LLM para o modelo de domínio ... 43
Figura 5 - Processo de Chain of Thought interno do modelo de LLM para fornecer a segunda

resposta ... 44

LISTA DE TABELAS

Tabela 1 - Requisitos funcionais textuais do sistema de inadimplência................................ 31
Tabela 2 - Atributos de qualidade do sistema de inadimplência. .. 33
Tabela 3 - Decisões arquiteturais do sistema de inadimplência ... 36
Tabela 4 - Relação entre quais decisões arquiteturais atendem à quais atributos de

qualidade no sistema de inadimplência.. 38
Tabela 5 - Resposta final do LLM com as decisões arquiteturais ... 45
Tabela 6 - Resposta final do LLM com as decisões arquiteturais (continuação) 46

LISTA DE ABREVIATURAS E SIGLAS

ATAM Architecture Trade-off Analysis Method

LLM Large Language Model

IA Inteligência Artificial

GPT Generative Pre-trained Transformer

NLP Natural Language Processing

LLaMA Large Language Model Meta AI

CQRS Command Query Responsibility Segregation

ADR Architecture Decision Records

DDD Domain-Driven Design

MobSTr Model-Based Safety Assurance and Traceability

FR Functional Requirement

NFR Non-Functional Requirement

I/O Input/Output

UML Unified Modeling Language

ACID Atomicity, Consistency, Isolation, Durability

Pub/Sub Publisher-Subscriber Pattern

CSV Comma-separated Values

DSL Domain-Specific Language

SUMÁRIO
1 INTRODUÇÃO ... 12

1.1 Objetivo .. 13

1.2 Metodologia .. 14

1.3 Justificativa ... 15

1.4 Estrutura do trabalho .. 16

2 MODELOS DE LINGUAGEM DE GRANDE ESCALA ... 17

3 ARQUITETURA DE SOFTWARE .. 20

3.1 Estilos e padrões arquiteturais de software .. 21

3.2 Método de avaliação de candidatos à Arquitetura de Software 24

3.3 Gestão do conhecimento arquitetural de software .. 25

3.4 Geração semiautomática de candidatos à Arquitetura de Software 26

4 CONTEXTO DO PROBLEMA E SOLUÇÃO REAL ... 30

4.1 Requisitos funcionais .. 31

4.2 Atributos de qualidade .. 32

4.3 Modelo de domínio ... 34

4.4 Solução real implementada .. 36

4.5 Instruções para o modelo de linguagem de grande escala 38

5 RESULTADOS OBTIDOS DO MODELO DE LINGUAGEM DE GRANDE ESCALA .. 41

5.1 Discussão ... 47

6 CONSIDERAÇÕES FINAIS ... 50

REFERÊNCIAS ... 52

APÊNDICE A – PROMPT E SAÍDA COMPLETA DO LLM ... 53

 12

1 INTRODUÇÃO

Os modelos de linguagem de grande escala (LLM, do inglês large language models)

vem democratizando o uso de IA em diferentes áreas do conhecimento, dado que as

pessoas não precisam conhecer de maneira profunda sobre aprendizado de máquina

ou estatística aplicada para extrair resultados. Isso facilitou tarefas envolvendo o

processamento de linguagem natural como resumo de textos, reescrita de textos

envolvendo mudanças nos tons de conversas, estilos e gramática, além de uma

construção de sua própria base de conhecimento com diferentes fontes para apoio

em tomada de decisões.

Na área do conhecimento da Engenharia de Software, os LLMs têm se destacado

como ferramentas essenciais para diversos processos, além dos já mencionados,

incluindo a geração e revisão de código, pesquisa e criação de testes, entre outros. A

interação com esses modelos pode ser realizada de várias maneiras, desde prompts

em modelos genéricos, como o GPT (Generative Pre-Trained Transformer), até o uso

de modelos específicos treinados para lidar com atividades da Engenharia de

Software, como o GitHub Copilot. Este último opera dentro do contexto do código que

está sendo editado, reduzindo a necessidade de elaborar prompts explícitos e

complexos para atender às solicitações do usuário. Tal abordagem otimiza o fluxo de

trabalho, diminuindo barreiras técnicas no uso dessas tecnologias.

Especialmente sobre o tópico de criar e manter sua própria base de conhecimento,

existe uma intersecção direta com a área da Arquitetura de Software, dado que a

comunidade tem utilizado a gestão de conhecimento arquitetural como um dos fatores-

chaves para tomar decisões sobre padrões e estilos arquiteturais desde os anos 2000

(OZKAYA, 2023).

Em geral, engenheiros de software tendem a escolher apenas padrões e estilos

arquiteturais com os quais eles já trabalharam em algum momento, descartando

decisões que se encaixariam melhor no projeto, sendo que muitas vezes essa decisão

leva a custos de manutenção elevados no longo prazo (EISENREICH, SPETH E

WAGNER, 2024). Isso pode se agravar ainda mais em cenários ágeis em que

múltiplos times de desenvolvimento estão trabalhando em sistemas maiores e

 13

compostos por diversos subsistemas, sendo que de acordo com De Diana, Kon e

Gerosa (2010), o conceito de arquitetura emergente começa a ficar ainda mais

complicado nessas situações.

De acordo com Ozkaya (2023), a gestão do conhecimento arquitetural inclui diversos

elementos: projeto arquitetural, decisões de projeto, contexto, premissas etc. Todos

esses elementos caracterizam um software em particular. Enquanto é possível

entender o projeto através do código e de outros artefatos de implementação,

decisões de projeto requerem conhecimento e contexto sobre os trade-offs (que são

pontos de vantagens e desvantagens observados em decisões).

Dessa forma, o uso do conhecimento arquitetural em modelos de LLM pode contribuir

significativamente para decisões mais embasadas e precisas sobre padrões e estilos

arquiteturais. Essa abordagem não apenas reduz a dependência exclusiva da

experiência individual dos engenheiros de software, mas também promove uma

análise mais estruturada e abrangente dos trade-offs envolvidos. A ponderação desse

conhecimento gerado por LLMs pode, portanto, representar uma ferramenta valiosa

para a gestão da complexidade arquitetural em contextos de desenvolvimento ágeis,

melhorando a qualidade das soluções técnicas, ainda mais em cenários envolvendo

múltiplas equipes e subsistemas.

1.1 Objetivo

O objetivo deste trabalho é fazer uma análise exploratória no uso de modelos de

linguagem de grande escala para a tomada de decisões arquiteturais. Seguindo o

método proposto por Eisenreich, Speth e Wagner (2024), através da especificação de

requisitos textuais (com ênfase em atributos de qualidade – também conhecidos como

requisitos não funcionais) e modelos de domínio de um software real no escopo de

fintechs, o modelo de linguagem de grande escala responderá com padrões e estilos

arquiteturais junto de uma análise de trade-offs. Com isso, é apresentada uma

discussão dos resultados obtidos para entender o uso dessa tecnologia para o

processo de projeto de software.

 14

1.2 Metodologia

O processo seguido por este trabalho é a aplicação prática do método proposto por

Eisenreich, Speth e Wagner (2024) para a geração semiautomática de candidatos a

arquitetura de software, a terceira etapa do método. O método completo, apresentado

na Seção 3.4, é composto por seis etapas:

1. Gerar o modelo de domínio e cenários de caso de uso com base em requisitos

textuais (automático);

2. Refinar o modelo de domínio e os cenários de caso de uso gerados (manual);

3. Derivar múltiplos candidatos à arquitetura e as decisões arquiteturais usando o

modelo de domínio, os cenários e os atributos de qualidade (automático);

4. Avaliar e comparar os candidatos à arquitetura (automático);

5. Refinar os candidatos à arquitetura (manual);

6. Selecionar o candidato que mais se encaixa no problema (manual).

Para tal geração de candidatos, primeiramente, junta-se todo o conhecimento

arquitetural disponível de um sistema que está em sua fase inicial de modelagem de

domínio: a lista de requisitos funcionais e atributos de qualidade, junto de uma primeira

versão do modelo de domínio do problema. Depois, cria-se um prompt com todo esse

conhecimento arquitetural e envia-se esse prompt para um modelo de LLM, coletando

então as respostas geradas pela IA (Inteligência Artificial).

O conhecimento arquitetural do sistema a ser analisado será apresentado no Capítulo

4. Ainda no mesmo capítulo, será apresentada a solução real de estilos e padrões

escolhidos para a resolução do problema em um contexto de uma empresa fintech,

que foi simplificada e anonimizada, seguindo conceitos do ATAM (Architecture Trade-

off Analysis Method). Com isso, será possível discutir e comparar os resultados do

LLM contra a solução real, analisando se essas respostas ajudam na tomada de

decisões e debatendo os resultados alcançados.

 15

1.3 Justificativa

O método proposto por Eisenreich, Speth e Wagner (2024), ainda não chegou na

etapa de geração semiautomática de candidatos à Arquitetura de Software, tendo feito

apenas uma análise exploratória com os modelos LLaMA2 e GPT-3.5, para gerar

modelos de domínio a partir dos requisitos funcionais textuais. Além disso, o método

utiliza como base o estudo de caso do MobSTr (Model-Based Safety Assurance and

Traceability), um sistema de condução automatizada com foco em segurança e

rastreabilidade baseado no desafio industrial WATERS 2019 (Workshop on Analysis

Tools and Methodologies for Embedded and Real-time Systems). O trabalho dos

autores também propõe o uso de LLM para diversos processos da Arquitetura de

Software, gerando então uma visão mais ampla da Arquitetura.

Este trabalho tem os seguintes complementos em relação ao trabalho de Eisenreich,

Speth e Wagner (2024):

• Tem ênfase nas especificações textuais dos atributos de qualidade (também

conhecidos como requisitos não funcionais) com foco no uso de IA para tomada

de decisões sobre padrões e estilos arquiteturais;

• É a aplicação prática de uma etapa que o trabalho de Eisenreich, Speth e

Wagner (2024) ainda não chegou, a etapa de geração semiautomática de

candidatos à Arquitetura de Software

• São análises de resultados em cima de uma solução real no escopo de fintech,

mais especificamente em um contexto de gestão de inadimplência, sendo

diferente do setor industrial automotivo. Enquanto o setor automotivo tem maior

foco em sistemas críticos de segurança e estabilidade, os sistemas financeiros

possuem maior foco em integridade dos dados;

• Uso de um modelo mais recente de LLM, o GPT-4o1, que foi treinado com mais

parâmetros, é capaz de simular cadeias de pensamento e possui uma janela

de contexto mais ampla do que alguns modelos como GPT-3.5 e LLaMA2

apresentados no trabalho dos autores.

O principal motivo deste trabalho ter o foco na extração de estilos e padrões

arquiteturais a partir dos atributos de qualidade é que, como mencionado

anteriormente, esse é geralmente o ponto mais complicado de arquitetura emergente

 16

em cenários ágeis com múltiplas equipes e subsistemas (DE DIANA, KON E

GEROSA, 2010), além de que engenheiros de software tendem a escolher apenas

padrões e estilos arquiteturais que eles já trabalharam em algum momento

(EISENREICH, SPETH E WAGNER, 2024), sendo que o uso de LLMs podem ajudar

os engenheiros de software a ponderarem outros padrões e estilos arquiteturais, além

de ajudar a simplificar a manter a agilidade em múltiplas equipes e a manter a

arquitetura emergente, que é um dos pontos fundamentais para o desenvolvimento

ágil de software.

O uso de um modelo mais recente de LLM com as características mencionadas

permite que o modelo possa iterar melhor em documentos extensos, além de

promissoramente lidar com tarefas mais complexas, podendo então tomar decisões

mais assertivas. Foi escolhido o ChatGPT pois na data de desenvolvimento do

trabalho era o modelo mais conhecido e o único que oferecia recursos de simulação

de cadeias de pensamento dentro do modelo.

1.4 Estrutura do trabalho

Nos Capítulos 2 e 3, são apresentadas as referências acadêmicas que explicam sobre

elementos e conceitos de Arquitetura de Software utilizados neste texto, como

requisitos funcionais e atributos de qualidade, decisões arquiteturais de software,

gestão do conhecimento arquitetural e a geração semiautomática de candidatos à

Arquitetura de Software. No Capítulo 4, são apresentados todo o conhecimento

arquitetural do sistema real de uma fintech (generalizado e simplificado) e o prompt

gerado para o LLM com o objetivo de gerar os candidatos à arquitetura junto das

decisões arquiteturais. Já nos Capítulo 5 e 6 é possível visualizar a resposta do LLM

para o prompt gerado e a discussão dos resultados apresentados, incluindo sugestões

e ideias para trabalhos futuros.

 17

2 MODELOS DE LINGUAGEM DE GRANDE ESCALA

De acordo com Dhar, Vaidhyanathan e Varma (2024), um Modelo de Linguagem é um

modelo de IA probabilístico de Processamento de Linguagem Natural (do inglês, NLP,

Natural Language Processing) que é projetado para gerar probabilidades associadas

a uma sequência de palavras. Os autores diferenciam os Modelos de Linguagem de

Grande Escala (do inglês LLMs, Large Language Models), enfatizando que são

modelos probabilísticos de inteligência artificial similares, porém treinados com um

volume extenso de dados, permitindo uma compreensão e geração de texto

avançadas. Eles também observam que LLMs são amplamente utilizados em tarefas

diversas de NLP, possuem bilhões de parâmetros e grandes janelas de contexto

(Context Lengths e Parameters, que geralmente são características importantes para

diferenciar modelos de LLMs). Tokens representam unidades de texto que podem

corresponder a uma palavra completa ou partes de palavras, enquanto o Context

Length em um LLM refere-se ao número de tokens considerados pelo modelo ao

processar ou gerar texto (DHAR, VAIDHYANATHAN E VARMA, 2024).

Os autores ainda explicam que LLMs se baseiam na arquitetura de Transformers, que

utiliza mecanismos de atenção como base de seu funcionamento. Os Transformers

são compostos por dois componentes principais: um Encoder (codificador),

responsável por processar o texto de entrada; um Decoder (decodificador), que gera

o novo texto a partir das informações processadas pelo Encoder (DHAR,

VAIDHYANATHAN E VARMA, 2024).

Kneusel (2024) explica que a interação com LLMs é feita através de prompts, que é a

entrada fornecida por um usuário, geralmente em formato de texto. Alguns modelos

multimodais podem ter prompts em formatos de arquivos, imagens, áudio, entre

outros. Neste trabalho, o foco são os prompts em texto e utilizando o modelo GPT-

4o1, da empresa OpenAI, que introduz conceitos de raciocínio dentro dos LLMs,

utilizando técnicas internas de Chain of Thougth (cadeias de pensamento), que é uma

técnica de prompt engineering (OPENAI, 2024). O modelo da OpenAI foi escolhido

para uso neste trabalho pois era o único capaz de simular cadeias de pensamento e

também o mais conhecido no momento de escrita deste texto.

 18

A técnica de cadeia de pensamento (Chain of Thought - CoT), conforme descrita pela

OpenAI (2024), é um método que permite os LLMs melhorarem sua capacidade de

raciocínio em tarefas complexas, promovendo uma abordagem iterativa para a

solução de problemas. De acordo com a empresa, essa técnica envolve a geração de

uma sequência lógica de passos intermediários antes de apresentar uma resposta

final, permitindo ao modelo dividir problemas difíceis em partes menores, explorar

abordagens alternativas quando necessário e refinar estratégias com base nos

resultados obtidos. A empresa enfatiza que com o treinamento baseado em

aprendizado por reforço, os modelos aprendem a identificar e corrigir seus próprios

erros e a adaptar suas respostas para questões desafiadoras. Aproveitando desses

recursos, neste trabalho é utilizado o modelo GPT-4o1 para a avaliação e tomada de

decisões arquiteturais.

Além da técnica de Chain of Thought, a estruturação do prompt que será apresentada

no Capítulo 4 utiliza-se de diversas outras técnicas mencionadas na documentação

oficial da OpenAI, no site intitulado de “Prompt engineering” (OPENAI, 2024). No site,

é mencionado por exemplo o uso de táticas como “incluir detalhes de contexto”, “pedir

ao modelo para atuar como uma persona”, “especificar passos necessários para

completar uma tarefa”, “dividir tarefas maiores em subtarefas” e “formatar a resposta

esperada”. Todas essas técnicas são autoexplicativas, sendo que de acordo com a

OpenAI (2024), elas melhoram a assertividade do modelo.

Kneusel (2024) observa que uma das propriedades dos LLMs é sua capacidade de

aprendizado de contexto, sendo que esse é provavelmente um dos principais motivos

pela empolgação de entusiastas na área de IA. O autor explica que o aprendizado de

contexto diz respeito ao modelo que aprende dinamicamente a partir das informações

que lhe são fornecidas, sem modificar seus pesos. Ele também enfatiza que o

aprendizado de contexto é diferente do ajuste fino de um modelo, sendo que no ajuste

fino, um modelo previamente treinado é adaptado a uma tarefa, atualizando os pesos

com dados novos de treinamento. Ou seja, Kneusel (2024) observa que o aprendizado

de contexto adiciona informações novas ao LLM como parte do prompt, enquanto

mantém fixos os pesos do modelo. Isso conecta com a visão de que o conhecimento

arquitetural de software pode contribuir para o processo de tomada de decisões

 19

arquiteturais, já que se pode utilizar aprendizado de contexto dos LLMs com o

conhecimento arquitetural para decisões mais assertivas.

 20

3 ARQUITETURA DE SOFTWARE

Segundo Fairbanks e Garlan (2010), a Arquitetura de um Software geralmente está

associada com uma visão de alto nível sobre o design de uma solução, de forma que

se entende os elementos e componentes dessa solução junto das relações e

características deles, aplicando uma ótica sobre como as decisões influenciam os

atributos de qualidade e as restrições, analisando também como podem afetar a

implementação ou manutenção de novas funcionalidades. Os autores também

enfatizam que existe uma linha tênue entre arquitetura e design detalhado, em que o

design detalhado seria decisões menores em baixo nível que estão diretamente

relacionados à implementação de código dos sistemas, como por exemplo a escolha

de nomes de variáveis ou uso padrões de projeto (design patterns). Entretanto, os

autores observam que se essas decisões de baixo nível possuírem a característica de

intencionalidade e gerarem impactos nos atributos de qualidade, ainda seria uma

decisão arquitetural. Neste trabalho, serão explicados padrões e estilos arquiteturais

na Seção 3.1.

Ainda de acordo com Fairbanks e Garlan (2010), é possível observar que pensar sobre

Arquitetura de Software é importante porque ela impacta os sistemas em diferentes

aspectos e pode-se reduzir riscos de falha em projetos. Eles comentam que todo

software possui uma arquitetura, independentemente se foi investido muito tempo

pensando sobre as decisões ou não; e se faz necessário entender qual é o risco que

se deseja assumir ao pensar pouco sobre decisões arquiteturais. Eles citam por

exemplo que talvez para sistemas de pouco risco ou que são menores, pode-se não

ter a necessidade de pensar intencionalmente sobre todas as decisões arquiteturais.

Neste trabalho, será feito uma análise exploratória no uso de modelos de linguagem

de grande escala para ajudar a tomar melhores decisões arquiteturais de maneira

intencional.

De acordo com Bass, Clements e Kazman (2013), as restrições em um projeto

referem-se a decisões de design que já foram previamente estabelecidas,

frequentemente associadas a condições externas como políticas organizacionais,

limitações tecnológicas ou acordos comerciais, e que delimitam as escolhas

disponíveis no processo de tomada de decisões arquiteturais. Os autores também

 21

explicam que os requisitos funcionais determinam ações e comportamentos que o

sistema deve executar, enquanto os atributos de qualidade especificam diferentes

critérios como desempenho, segurança e adaptabilidade, que qualificam como essas

funcionalidades devem ser implementadas. Eles também discutem que arquitetura de

software conecta esses elementos ao organizar componentes e suas interações para

alcançar os objetivos funcionais e de qualidade dentro das restrições impostas.

Neste trabalho, explora-se como o uso de técnicas de IA generativa pode contribuir

para simplificar a identificação e priorização dessas decisões, promovendo

alinhamento entre requisitos e restrições para facilitar a tomada de decisões

arquiteturais.

3.1 Estilos e padrões arquiteturais de software

Estilos e padrões arquiteturais são conceitos fundamentais no design de software,

embora possuam escopos distintos. Segundo Fairbanks e Garlan (2010), um estilo

arquitetural refere-se a um conjunto de convenções de alto nível que define tipos de

elementos arquiteturais como componentes, conectores e suas interações, além de

impor restrições para orientar o design do sistema. Os autores mencionam exemplos

que incluem estilos como client-server, pipe-and-filter, map-reduce, cada um

influenciando atributos de qualidade específicos como escalabilidade ou

manutenibilidade. Ainda de acordo com os autores, os padrões arquiteturais operam

em um nível mais granular, focando em soluções reutilizáveis para problemas

recorrentes em partes do design, como o uso do padrão REST para mensagens em

sistemas com o estilo arquitetural client-server. Portanto, enquanto os estilos

arquiteturais estruturam o sistema como um todo, padrões contribuem com detalhes

de implementação dentro dessa estrutura maior, ambos sendo elementos-chave para

alcançar qualidade e consistência no design, sendo que são considerados decisões

arquiteturais se forem intencionalmente escolhidos, como citado na introdução do

Capítulo 3.

Como observado por Fairbanks e Garlan (2010), a distinção entre padrões

arquiteturais e estilos arquiteturais não é facilmente demarcada, especialmente em

sistemas de grande escala. Os autores destacam que, à medida que surgem sistemas

 22

compostos por outros sistemas menores, essa diferenciação torna-se ainda mais

desafiadora. Como exemplo, eles citam que quando um sistema independente é

incorporado a um sistema maior, o estilo arquitetural original do sistema menor pode

ser considerado um padrão no contexto do sistema maior. Sendo que eles reforçam

que essa ambiguidade leva a uma abordagem mais prática, em que padrões e estilos

muitas vezes são tratados como conceitos intercambiáveis, dependendo do contexto

e do nível de abstração em que são analisados. Por isso, neste trabalho, serão

apresentadas diversas decisões, mas sem afirmar de maneira direta se é um padrão

ou estilo arquitetural, pois a ênfase está em entender como as decisões foram

tomadas deliberadamente para influenciar a qualidade da solução.

Serão mencionadas neste trabalho as seguintes decisões arquiteturais, na discussão

do sistema real do escopo de inadimplência, no Capítulo 4:

• Aggregate Pattern (DDD);

• Money Pattern;

• CQRS Pattern;

• Cache Write-Through Pattern;

• Banco de dados com propriedades ACID;

• Pub/Sub Pattern.

De acordo com (FOWLER, 2013), o Aggregate Pattern, no contexto de Domain-Driven

Design (DDD), define um grupo de objetos de domínio tratados como uma unidade

única. O autor menciona que esse padrão estabelece a raiz do agregado como a única

abstração acessível externamente, garantindo a integridade do conjunto. O autor

também observa que geralmente esse padrão é usado para limitar transações ao nível

do agregado e organizar operações de armazenamento e recuperação de dados,

reforçando a coesão e consistência no design de sistemas.

O Money Pattern propõe a criação de uma classe dedicada para representar e

manipular valores monetários, considerando que linguagens de programação

costumam não tratar dinheiro como um tipo de dado nativo (FOWLER, 2003). O autor

destaca que esse padrão é especialmente útil em sistemas que lidam com múltiplas

moedas, evitando erros como somar valores em dólares e ienes sem considerar suas

 23

diferenças. Além disso, ele observa que o padrão ajuda a resolver problemas sutis,

como erros de arredondamento em cálculos monetários, garantindo maior precisão e

consistência em operações financeiras.

Fowler também traz uma definição sobre o CQRS Pattern (do inglês, Command Query

Responsibility Segregation). Ele observa que o padrão promove a separação entre os

modelos de comando (responsáveis por atualizações/inserções) e consulta

(responsáveis por leitura) de um sistema, permitindo otimizações específicas para

cada finalidade (FOWLER, 2011). O autor observa que essa abordagem pode ser

vantajosa em dois contextos principais: aplicações de alto desempenho, onde a

separação permite escalabilidade independente de leituras e escritas, e domínios

complexos, onde separar os modelos reduz sobrecarga cognitiva. No entanto, Fowler

(2011) ressalta que a aplicação do CQRS deve ser limitada a partes específicas do

sistema, como Bounded Contexts no DDD, pois sua complexidade pode trazer mais

riscos do que benefícios em cenários inadequados.

De acordo com AWS (2024), o Cache Write-Through Pattern é uma estratégia proativa

de cache que atualiza os dados no cache imediatamente após qualquer atualização

no banco de dados principal. Diferentemente do padrão Cache-Aside, que preenche

o cache apenas após uma falha de consulta, o Write-Through mantém o cache

sincronizado com o banco de dados, reduzindo significativamente a probabilidade de

cache miss e melhorando o desempenho geral da aplicação, no entanto, esse padrão

pode aumentar o custo, já que dados pouco requisitados também são armazenados

no cache (AWS, 2024).

A MongoDB (2024) define as propriedades ACID (do inglês, Atomicity, Consistency,

Isolation, Durability) como propriedades que garantem integridade e confiabilidade,

mesmo diante de falhas. Atomicidade assegura que uma transação seja completada

integralmente ou revertida em caso de erro; Consistência garante que as alterações

preservem as regras do banco de dados, evitando estados inválidos; Isolamento

protege transações simultâneas de interferências, e Durabilidade, garante que os

dados persistam após a conclusão da transação, mesmo em falhas de sistema

(MONGODB, 2024). A MongoDB também cita que entre as vantagens do modelo

ACID estão a confiança em sistemas críticos, como bancos e processamento de

 24

pagamentos, e o cumprimento de requisitos regulatórios; no entanto, o modelo

também apresenta desvantagens, como maior complexidade de implementação e

impactos de desempenho, especialmente em sistemas distribuídos, devido ao

bloqueio de recursos para evitar conflitos durante as transações.

Já a Microsoft (2024) explica o Pub/Sub Pattern (do inglês, Publisher-Subscriber),

descrevendo como uma abordagem que permite que aplicações anunciem eventos

para múltiplos consumidores interessados de forma assíncrona, desacoplando o

emissor (publisher) dos receptores (subscribers). Entre as principais vantagens do

padrão estão o aumento da escalabilidade e desempenho, já que os emissores não

precisam esperar pelas respostas dos receptores, e a capacidade de integrar sistemas

heterogêneos usando diferentes plataformas e protocolos. No entanto, ele apresenta

desafios como o gerenciamento de assinaturas, garantia de segurança nos canais de

mensagens e problemas de ordenação ou duplicação de mensagens (MICROSOFT,

2024).

3.2 Método de avaliação de candidatos à Arquitetura de Software

Como visto nas seções anteriores, quando se fala de decisões arquiteturais, é comum

associar o contexto das decisões com o contexto do software, chegando então, nas

vantagens e desvantagens que cada decisão arquitetural traz para o contexto do

software, que é conhecido também como trade-offs arquiteturais. Para estruturar a

forma de analisar e avaliar diferentes trade-offs, Bass, Clements e Kazman (2013)

descrevem o método ATAM (Architecture Tradeoff Analysis Method) como uma

abordagem estruturada para arquitetos e stakeholders avaliarem de forma

colaborativa escolhas arquiteturais que influenciam aspectos do software, com o

objetivo de identificar riscos e oportunidades relacionadas às decisões arquiteturais e

seus impactos nos atributos de qualidade do sistema.

Os autores mencionam que o ATAM é baseado na criação de cenários de atributos

de qualidade, na identificação pontos sensíveis e trade-offs, e na documentação de

riscos e “não-riscos”, estabelecendo uma conexão clara entre decisões arquiteturais

e os objetivos de negócio do projeto. Além disso, a metodologia promove o

engajamento dos participantes e gera artefatos valiosos, como árvores de utilidade e

 25

relatórios que servem como referência para guiar a evolução da arquitetura, sendo

especialmente relevante em projetos complexos, nos quais os custos de uma má

decisão arquitetural podem ser significativos (BASS, CLEMENTS E KAZMAN, 2013).

Ainda segundo os autores, o método é estruturado em quatro fases principais:

Preparação e Parceria, onde são definidos os objetivos do processo, organizados os

participantes e alinhados os principais elementos da arquitetura a serem

apresentados; Análise Inicial, com ênfase na apresentação dos objetivos de negócio,

na descrição da arquitetura e na criação de uma árvore de utilidade, em que cenários

são detalhados e priorizados para análise; Análise Detalhada, que envolve um grupo

ampliado de stakeholders, em que são refinados e analisados os cenários mais

críticos, avaliando as decisões arquiteturais em relação aos requisitos de qualidade e

identificando sensibilidades, riscos e trade-offs; Relatório Final, em que são

documentados os resultados, incluindo os riscos identificados, recomendações e

temas críticos que conectam as decisões arquiteturais aos objetivos de negócio.

Neste trabalho, o ATAM será apresentado de maneira simplificada e adaptada, com

ênfase principalmente na fase de “Análise Detalhada” para fazer comparações entre

o modelo de LLM no Capítulo 5 e o sistema real de inadimplência no Capítulo 4.

3.3 Gestão do conhecimento arquitetural de software

Segundo Ozkaya (2023), conhecimento arquitetural em engenharia de software pode

ser entendido como um conjunto estruturado de informações que orientam decisões

de design e planejamento de sistemas, podendo abranger elementos como o projeto

da arquitetura; as decisões de design; os contextos, restrições e requisitos nos quais

o sistema será implantado. Capturar e gerenciar esse conhecimento é essencial para

alinhar as escolhas de design às necessidades do projeto, otimizando a evolução

contínua dos sistemas frente a mudanças tecnológicas e organizacionais (OZKAYA,

2023).

Ozkaya (2023) também enfatiza que ferramentas baseadas em IA representam uma

oportunidade promissora para automatizar a captura e aplicação desse conhecimento,

 26

facilitando a tomada de decisões arquiteturais e permitindo uma abordagem mais

eficiente e alinhada às demandas dinâmicas do desenvolvimento de software.

Em resumo, o conhecimento arquitetural não tem exatamente apenas um formato fixo,

mas pode ser compreendido como quaisquer informações que ajudam na tomada de

decisões arquiteturais, por isso neste trabalho foi escolhido o uso de modelos de

domínio como diagrama usando a linguagem UML (Unified Modeling Language), a

descrição textual de requisitos funcionais e atributos de qualidade; sendo todo esse

conhecimento usado para construir o prompt para o modelo de LLM.

3.4 Geração semiautomática de candidatos à Arquitetura de
Software

Como observado nas seções anteriores, o processo de tomada de decisões

arquiteturais tende a ser trabalhoso na construção e desenvolvimento de um software,

embora tenha alto valor para a redução de riscos e escolhas mais assertivas,

adequando a qualidade com o custo de desenvolvimento da solução. Por isso, nota-

se cada vez mais esforços para automatizar ou facilitar essa atividade, como observa-

se no trabalho de Eisenreich, Speth e Wagner (2024) em que a intenção é conectar

as recentes pesquisas sobre LLMs e IA Generativa com Arquitetura de Software, mais

especificamente, a tarefa de avaliação de diferentes decisões arquiteturais. Os

autores enfatizam que a Arquitetura de Software cumpre um papel importante na

qualidade de todo sistema e propõem um método para gerar arquiteturas de forma

semiautomática utilizando IA. Eles mostram que o método é composto pelas seguintes

principais etapas: gera-se primeiro os modelos de domínio e cenários de caso de uso

usando LLMs, depois, derivam-se dos LLMs múltiplos candidatos à Arquitetura

juntamente de suas respectivas decisões arquiteturais e por fim, avalia-se esses

candidatos e toma-se uma decisão para a solução final, que passa a ser escolhida

com mais dados por causa do método. Os autores citam que é importante ter iterações

constantes e supervisionadas no método para melhorar os resultados devido à forma

como os LLMs funcionam atualmente, por isso, “semiautomático”. Tal abordagem

proposta no método pelos autores, promove uma maior qualidade nas decisões

arquiteturais e acelera o processo de avaliação arquitetural, alinhando-se de maneira

mais assertiva aos requisitos funcionais, atributos de qualidade e restrições do projeto.

 27

Ainda de acordo com os autores, existem trabalhos relacionados que indicam avanços

no uso de automação para apoiar decisões arquiteturais, porém, apresentam

limitações que geralmente apresentam muito esforço manual e são focados em partes

isoladas do ciclo de design – como a geração de modelos de domínio ou somente a

avaliação de candidatos à arquitetura. Eisenreich, Speth e Wagner (2024) propõem

um fluxo completo, que começa pela geração de modelos iniciais até a decisão final

de escolha arquitetural. Essa abordagem se destaca não apenas por apoiar a decisão

da solução, mas também por capturar e documentar decisões em forma de registros

de decisões arquiteturais (ADRs, do inglês, Architecture Decision Records),

promovendo um contexto histórico das decisões discutidas ao longo do projeto.

Adentrando nos detalhes do método proposto pelos autores, o processo é pensado

para ser iterativo durante o ciclo de desenvolvimento de um software, sendo que ele

possui seis etapas, onde algumas são automáticas (com auxílio do LLM) e outras

manuais (com intervenção humana):

1. Automático: Gerar o modelo de domínio e cenários de caso de uso com base

em requisitos textuais;

2. Manual: Refinar o modelo de domínio e os cenários de caso de uso gerados;

3. Automático: Derivar múltiplos candidatos à arquitetura e as decisões

arquiteturais usando o modelo de domínio, os cenários e os atributos de

qualidade;

4. Automático: Avaliar e comparar os candidatos à arquitetura;

5. Manual: Refinar os candidatos à arquitetura;

6. Manual: Selecionar o candidato que mais se encaixa no problema.

Na primeira etapa, espera-se transformar os requisitos e atributos de qualidade

fornecidos em uma representação do domínio e em cenários de caso de uso,

priorizando nesses artefatos as relações das entidades e omitindo detalhes

específicos dessas entidades (como os atributos e comportamentos), já que é mais

importante para as decisões arquiteturais entender essas relações pois é através

delas que modulariza-se a arquitetura em componentes. Os cenários de caso de uso

nessa etapa complementam o modelo de domínio com a descrição do funcionamento

 28

do sistema. Em iterações recorrentes futuras nessa etapa, são incluídas também as

decisões arquiteturais e a arquitetura atual para aumentar a assertividade ao gerar

novamente modelos de domínio e cenários de caso de uso.

Na segunda etapa, o arquiteto deve entender o modelo de domínio e refinar, fazendo

uso inclusive de LLMs com prompts adicionais para auxiliar no processo de

refinamento.

Na terceira etapa, espera-se transformar os requisitos, atributos de qualidade,

cenários de caso de uso e modelo de domínio em diferentes candidatos à arquitetura

com decisões arquiteturais. O formato exato de resposta e como será a interação com

o LLM ainda está em discussão no trabalho de Eisenreich, Speth e Wagner (2024),

sendo que tem sido levantadas hipóteses para fazer com que o LLM faça a divisão de

componentes da arquitetura. Inclusive, estão querendo extrair as decisões

arquiteturais em formato de ADRs.

Na quarta etapa, os autores querem auxiliar o arquiteto a tomar a decisão que melhor

se encaixa no cenário através de uma automação de avaliação arquitetural utilizando

métodos como o ATAM, sendo que a decisão de qual método utilizar também será

discutida e caso prove-se ser muito difícil, tornaram essa etapa como semiautomática.

As etapas 5 e 6 consistem em o arquiteto entender as vantagens e desvantagens de

cada candidato à decisão arquitetural e escolher uma que melhor se encaixa no

problema, podendo então solicitar melhorias com novos prompts para melhorar a

assertividade das respostas. Por fim, todo o processo é iterativo com a finalidade de

suportar a característica iterativa do próprio processo ágil de desenvolvimento de

software, assumindo que os requisitos podem mudar e que todo o método poderia ser

iterado novamente.

Os autores fizeram uma análise exploratória somente da primeira etapa até então,

utilizando LLaMA2 e GPT-3.5, utilizando como base o estudo de caso do MobSTr, um

sistema de condução automatizada com foco em segurança e rastreabilidade que

aconteceu no desafio industrial WATERS 2019 (Workshop on Analysis Tools and

Methodologies for Embedded and Real-time Systems), um workshop sobre o tema.

 29

Neste trabalho, o objetivo é fazer uma análise e aplicação prática apenas da terceira

etapa em uma solução real no escopo de uma fintech, etapa que o trabalho de

Eisenreich, Speth e Wagner (2024) ainda não chegou, utilizando-se do modelo de LLM

“GPT-4o1” da OpenAI.

As etapas 1 a 2 foram retiradas de uma solução real e geradas ainda de maneira

manual, tendo sido simplificado e anonimizado, contendo apenas um contexto

delimitado da solução e maior ênfase nos atributos de qualidade. Apesar de a etapa

3 mencionar o uso de cenários de caso de uso, a análise exploratória do trabalho de

Eisenreich, Speth e Wagner (2024) contém apenas uma lista de requisitos. Será

seguido neste trabalho o mesmo formato de requisitos encontrados na análise

exploratória, sem casos de uso e com ênfase em atributos de qualidade, mas

analisando o comportamento do LLM para a geração de candidatos à arquitetura de

software e análise de trade-offs.

 30

4 CONTEXTO DO PROBLEMA E SOLUÇÃO REAL

Como já mencionado, o objetivo deste trabalho é fazer uma análise exploratória no

uso de LLMs para a tomada de decisões arquiteturais. Seguindo o método proposto

por Eisenreich, Speth e Wagner (2024), através da especificação de requisitos textuais

(com ênfase em atributos de qualidade) e modelos de domínio de um software real no

escopo de fintechs, o modelo de linguagem de grande escala responderá com padrões

e estilos arquiteturais junto de uma análise de trade-offs. Com isso, serão discutidos

os resultados obtidos para entender o uso dessa tecnologia para o processo de projeto

de software.

Nesse capítulo, são apresentados alguns conhecimentos arquiteturais e a solução que

foi implementada em um ambiente real de uma fintech, tendo o contexto do problema

sido simplificado e generalizado, de forma a omitir especificidades da empresa e

reduzir o escopo. O formato escolhido para a representação dos requisitos e do

modelo de domínio foi o mesmo encontrado na análise exploratória do método de

Eisenreich, Speth e Wagner (2024).

O sistema em questão trata da gestão de inadimplência, que é um tema recorrente e

crítico em diferentes fintechs, pois impacta diretamente a saúde financeira da

organização e contribui para a continuidade operacional do negócio. Em linhas gerais,

inadimplência é o não cumprimento de obrigações financeiras no prazo acordado.

Realizar a gestão da inadimplência é um processo composto por diferentes tarefas,

como: entender quem são os clientes inadimplentes, quais dívidas eles possuem,

como cobrar de forma adequada esses clientes, como entender o comportamento da

inadimplência ao longo do tempo para tomada de decisões estratégicas e afins.

Os conhecimentos arquiteturais incluem: a especificação textual dos requisitos

funcionais e dos atributos de qualidade, o modelo de domínio inicial pensado para o

problema, a solução arquitetural que foi implementada para esse problema e a

identificação de trade-offs para essa solução arquitetural utilizando o método ATAM.

Sendo que o maior foco é na especificação de requisitos de atributos de qualidade,

pois esses são os que mais impactam na escolha de decisões arquiteturais. Todos os

 31

artefatos foram mapeados com base na principal funcionalidade: “O sistema deve

gerenciar a inadimplência dos clientes”.

4.1 Requisitos funcionais

Na Tabela 1 são apresentados os requisitos que contextualizam o problema, definindo

conceitos importantes para o funcionamento do sistema.

Tabela 1 - Requisitos funcionais textuais do sistema de inadimplência

Id Descrição

FR-1 O sistema deve gerenciar a inadimplência dos clientes

FR-1.1
Um cliente inadimplente possui um documento (CPF ou CNPJ), o conjunto de
suas dívidas e seus respectivos pagamentos realizados para essas dívidas

FR-1.2
Uma dívida é caracterizada por: valor bruto, valor líquido (após todos os
pagamentos realizados), data de surgimento da dívida, motivo da dívida

FR-1.3
Um pagamento para uma dívida é caracterizado por: valor pago e hora do
pagamento

FR-1.4
Saldo de inadimplência é a soma de valor líquido de todas as dívidas de todos
os clientes inadimplentes, agrupado por dia, é caracterizado por: saldo, data de
referência, documento do cliente

FR-1.5

Inadimplência de um cliente é diferença entre a soma de valor bruto e a soma
de valor líquido de todas as dívidas, agrupado por dia e por documento do cliente
inadimplente, é caracterizado por: saldo, data de referência, documento do
cliente, todas as dívidas do cliente até a data de referência, todos os pagamentos
do cliente até a data de referência

FR-1.6 O sistema deve permitir o acesso ao histórico de clientes inadimplentes

FR-1.7
O sistema deve permitir o acesso ao histórico de dívidas para clientes
inadimplentes

FR-1.8 O sistema deve permitir o acesso ao histórico de pagamentos de dívidas

FR-1.9
O sistema deve emitir um relatório chamado "Foto da Inadimplência" com o saldo
de inadimplência de acordo com o dia solicitado, que é uma data de referência

FR-1.10

O sistema deve emitir um relatório chamado "Inadimplência do Cliente",
contendo a inadimplência de um cliente específico e informando de maneira
detalhada todas as dívidas e pagamentos desse cliente (com todas as
características de dívidas e pagamentos)

Fonte: Elaborado pelo autor.

A coluna “Id” (Identificador) identifica os requisitos para facilitar a interação com o LLM,

ao solicitar novos prompts ou o modelo precisar citar eles. Os requisitos foram

derivados da principal funcionalidade de “gerenciar inadimplência dos clientes”, que é

descrita no FR-1; FR é sigla para Requisito Funcional (do inglês, Functional

Requirement). Por isso, todos os requisitos seguem uma hierarquia de numeração

derivados do FR-1, como por exemplo, o FR-1.1. A descrição dos requisitos

 32

representa as principais funcionalidades que o sistema deve atender com foco em

entender termos de negócio e a relação entre diferentes entidades.

4.2 Atributos de qualidade

A seguir na Tabela 2 são apresentados os atributos de qualidade que contextualizam

a solução arquitetural implementada para o problema. Nas colunas da Tabela 2, a

Categoria, representa qual é o escopo de problema que o atributo de qualidade se

encaixa. As categorias podem ser: “Precisão; Disponibilidade; Confiabilidade;

Desempenho; Capacidade; Observabilidade; Auditabilidade”. Já a “Métrica de

Sucesso”, quantifica o atributo de qualidade de maneira que fique clara a expectativa

de como o sistema atende a esse atributo. Ainda na Tabela 2, alguns atributos de

qualidade estão descritos com alguns termos como “D-0” e “D-1”, essa nomenclatura

é uma forma de referenciar temporalidade em dias (“D”) relativos à data de ocorrência

de geração dos dados. Por exemplo, D-6 de uma data específica seriam 6 dias antes

dessa data. A coluna “Id” (Identificador) identifica os requisitos não funcionais (NFR,

do inglês, Non-Functional Requirement, conhecidos também como atributos de

qualidade) para facilitar a interação com o LLM, ao solicitar novos prompts ou o

modelo precisar citar eles.

 33

Tabela 2 - Atributos de qualidade do sistema de inadimplência.

Id Descrição Categoria Métrica de Sucesso

FR-1 O sistema deve gerenciar a inadimplência dos
clientes

- -

NFR-
1.1

Erros em cálculos financeiros envolvendo dívidas e
pagamentos precisam ser igual ou inferior a um
milionésimo (0,000001), principalmente para manter
o saldo de inadimplência correto

Precisão Taxa de erro em
operações
matemáticas
envolvendo decimais
<= 10^(-6)

NFR-
1.2

O relatório de "Foto da Inadimplência", quando é
solicitado em D-0 em relação ao dia atual do sistema
como data de referência deve estar disponível em
até 2 minutos após solicitado a sua emissão

Disponibilidade Tempo de resposta
<= 2 minutos

NFR-
1.3

O relatório de "Foto da Inadimplência", quando é
solicitado em D-0 em relação ao dia atual do sistema
como data de referência pode conter divergências
de até 1 milhão em relação ao saldo da
inadimplência real final do próprio dia

Confiabilidade (Saldo da
inadimplência real -
Saldo da
inadimplência
reportado) <= 1
milhão

NFR-
1.4

O relatório de "Foto da Inadimplência", quando é
solicitado em D-1 em relação ao dia atual do sistema
como data de referência deve estar disponível em
até 40 minutos após solicitado a sua emissão

Disponibilidade Tempo de resposta
<= 40 minutos

NFR-
1.5

O relatório de "Foto da Inadimplência", quando é
solicitado em D-1 em relação ao dia atual do sistema
como data de referência não pode ter divergências
relação ao saldo da inadimplência real final do
próprio dia

Confiabilidade (Saldo da
inadimplência real -
Saldo da
inadimplência
reportado) = 0

NFR-
1.6

O relatório de "Inadimplência do Cliente", quando é
solicitado em D-0 em relação ao dia atual do sistema
como data de referência deve estar disponível em
até 1 minuto após solicitado a sua emissão

Disponibilidade Tempo de resposta
<= 1 minuto

NFR-
1.7

O sistema deve suportar a persistência de novas
dívidas em até 500 milissegundos

Desempenho Tempo de resposta
<= 500ms

NFR-
1.8

O sistema deve permitir o acesso ao histórico de
novos pagamentos em até 400 milissegundos

Desempenho Tempo de resposta
<= 400ms

NFR-
1.9

O sistema deve suportar a persistência concorrente
de até 50 novas dívidas

Capacidade Throughput >= 50
transações
simultâneas

NFR-
1.10

O sistema deve suportar o registro persistente
simultâneo de até 600 novos pagamentos

Capacidade Throughput >= 600
transações
simultâneas

NFR-
1.11

O sistema deve emitir métricas sobre Throughput,
Tempo de resposta, Latência de todas as
dependências de I/O

Observabilidade Ter dashboard de
Observabilidade

NFR-
1.12

O sistema deve manter o histórico de dívidas,
pagamentos e clientes inadimplentes por 6 anos
para fins de auditoria

Auditabilidade Dados recuperáveis
por até 6 anos

NFR-
1.13

O histórico solicitado dentro desse período de 6
anos para fins de auditoria pode ser emitido em até
5 dias

Disponibilidade Tempo de resposta
<= 5 dias

Fonte: Elaborado pelo autor.

 34

Os atributos de qualidade foram derivados da principal funcionalidade de “gerenciar

inadimplência dos clientes”, que é descrita no FR-1. Por isso, todos os atributos de

qualidade seguem uma hierarquia de numeração derivados do FR-1, como por

exemplo, o NFR-1.1. Esses requisitos possuem um contexto sobre tamanho da

companhia, justificando os números apresentados na tabela.

4.3 Modelo de domínio

A Figura 1 apresenta o diagrama de domínio para os requisitos mencionados na

Seção 4.1, utilizando o formato de representação de diagrama de classes na

linguagem UML (Unified Modeling Language).

Figura 1 - Diagrama do modelo de domínio dos requisitos funcionais.

Fonte: Elaborado pelo autor.

 35

No diagrama, o Cliente Inadimplente é composto por suas respectivas dívidas. Nesse

contexto, são criados somente Clientes quando eles já estão inadimplentes (ou seja,

não cumpriram obrigações financeiras no prazo acordado), portanto, a Dívida precisa

existir e isso explica a relação de um Cliente Inadimplente que é composta por no

mínimo uma ou mais dívidas.

Essas dívidas podem ser pagas parcialmente ou totalmente, então uma dívida tem

uma relação de associação com nenhum ou diversos pagamentos.

O Saldo da Inadimplência é gerado diariamente diversas vezes ao longo do dia,

sempre que uma nova dívida é criada, aumentando o saldo de inadimplência do cliente

ao longo do tempo, por isso o Saldo está em relação de composição com o Cliente

Inadimplente, sendo que o Cliente Inadimplente é o objeto-todo responsável por criar

e destruir suas respectivas partes, tanto na relação com a Dívida quanto a relação do

Saldo da Inadimplência.

Como apresentado na Seção 4.1, existem dois relatórios: “Foto da Inadimplência” e

“Inadimplência do Cliente”, em que o primeiro é uma visão geral de todas as dívidas

de todos os clientes inadimplentes agrupados por dia; e o segundo, é o detalhamento

da inadimplência de um cliente específico, contendo também o saldo de inadimplência

desse cliente junto com os detalhes das dívidas. Por isso, no diagrama da Figura 1,

observa-se que os relatórios possuem uma relação de agregação com o Cliente

Inadimplente e o que muda entre eles é exatamente a relação de multiplicidade, que

pode estar relacionado com muitos clientes ou apenas um.

 36

4.4 Solução real implementada

A partir dos requisitos funcionais, modelos de domínio e atributos de qualidade, as

seguintes decisões arquiteturais foram escolhidas como uma solução real para o

problema, usado por uma empresa fintech, descritos na Tabela 3. A coluna “Id”

(Identificador) identifica os requisitos para facilitar a interação com o LLM, ao solicitar

novos prompt e analisar as respostas do modelo.

Tabela 3 - Decisões arquiteturais do sistema de inadimplência

Id Decisão Vantagens Desvantagens

ADR-1 DDD Aggregate

Pattern

Promove abstração de transações na

camada de domínio e garante

consistência interna, reduz impactos

de operações concorrentes

Pode aumentar a curva de

aprendizado sobre o sistema

e pode gerar problemas de

desempenho se não for bem

pensado o escopo dos

agregados

ADR-2 Money Pattern Promove coesão e semântica de

valores financeiros, garante abstração

de arredondamentos por todo o

código

Pode gerar alocações

excessivas na memória e

aumenta curva de

aprendizado sobre o sistema

ADR-3 CQRS Pattern Otimiza operações de leitura e

escrita, melhorando desempenho e

incentiva a escalabilidade horizontal

Consistência eventual pode

aumentar complexidade de

manutenção e detecção de

erros

ADR-4 Cache Write-

Through Pattern

Promove redução no tempo de

resposta, alivia carga de banco de

dados operacional e promove a

sensação de disponibilidade

percebida por clientes do sistema

Pode aumentar complexidade

de manutenção por ter que

lidar com expiração do cache

ADR-5 Banco de dados

com propriedades

ACID

Reduz problemas relacionados a

concorrência, reduz problemas em

cenários de falha

Pode aumentar complexidade

para escalabilidade em alto

volume de transações

simultâneas

ADR-6 Pub/Sub Pattern Promove processamento assíncrono,

facilitando a geração de novos dados

em cenários de alto volume de dados

Pode aumentar complexidade

de manutenção e ser difícil de

investigar problemas,

dependendo onde é aplicado

Fonte: Elaborado pelo autor.

 37

As decisões arquiteturais contêm diversos padrões escolhidos intencionalmente para

atender aos requisitos específicos. Como observado no Capítulo 3 sobre Arquitetura

de Software, existe uma linha tênue entre design de alto nível e baixo nível, então os

padrões descritos na Tabela 3 podem ter diferentes pontos de vista: visão de código,

armazenamento de dados, relação entre componentes do software e afins. A tabela

mostra como essas decisões afetam os diferentes atributos de qualidade e quais

trade-offs essas decisões carregam.

A seguir, na Tabela 4, observa-se a relação de quais decisões arquiteturais afetam

quais atributos de qualidade mencionados na Seção 4.2.

Ao analisar a relação entre a Tabela 3 e a Tabela 4, observa-se que as vantagens

encontradas na decisão arquitetural (ADR) afetam múltiplos atributos de qualidade.

Isso acontece porque os atributos de qualidade apesar de muitas vezes apresentarem

propostas específicas, ainda fazem parte de uma categoria de problemas que são

comuns entre eles. Por exemplo, os atributos de qualidade “NFR-1.3; 1.5; 1.9 e 1.10”

envolvem métricas de sucesso que são sobre transações simultâneas (concorrência,

que está relacionado a capacidade) e divergências de números (confiança desses

números, relacionado à confiabilidade); pontos em que o Aggregate Pattern tratam

através de abstrações sobre uso de transações na camada de domínio.

Outro ponto importante é que existem algumas decisões que até poderiam afetar

ainda mais categorias diferentes, como a “ADR-4” que fala sobre um padrão de Cache;

esse padrão até poderia ser uma vantagem para a categoria de “Desempenho”, além

da categoria “Disponibilidade” e “Auditabilidade” que são referenciadas na Tabela 4,

porém, no sistema real foi tomada a decisão de uso de Cache somente nos fluxos dos

atributos “NFR-1.2; 1.4; 1.6 e 1.13”, isso porque pelo contexto do sistema, não teriam

ganhos de usar cache no momento de inserções de novas dívidas no escopo

transacional. Portanto, a relação na Tabela 4 mostra também quais ADRs foram

utilizadas em atributos específicos considerando outros contextos fora do escopo aqui.

 38

Tabela 4 - Relação entre quais decisões arquiteturais atendem à quais atributos de qualidade no

sistema de inadimplência

Id Atributo(s) atendido(s) Categorias de atributos

ADR-1 NFR-1.3;

NFR-1.5;

NFR-1.9;

NFR-1.10

Confiabilidade;

Capacidade

ADR-2 NFR-1.1 Precisão

ADR-3 NFR-1.2;

NFR-1.4;

NFR-1.6;

NFR-1.7;

NFR-1.8;

NFR-1.9;

NFR-1.10;

NFR-1.12;

NFR-1.13

Disponibilidade;

Desempenho;

Auditabilidade;

Capacidade

ADR-4 NFR-1.2;

NFR-1.4;

NFR-1.6;

NFR-1.13

Disponibilidade;

Auditabilidade

ADR-5 NFR-1.3;

NFR-1.5;

NFR-1.9;

NFR-1.10

Confiabilidade;

Desempenho;

Capacidade

ADR-6 NFR-1.2;

NFR-1.3;

NFR-1.11

Disponibilidade;

Confiabilidade;

Observabilidade

Fonte: Elaborado pelo autor.

4.5 Instruções para o modelo de linguagem de grande escala

Através de todo o conhecimento arquitetural citado nas Seções 4.1, 4.2 e 4.3

(requisitos funcionais, atributos de qualidade e modelagem inicial do domínio), foi

estruturado um prompt para interagir com o modelo de LLM, utilizando algumas das

diversas técnicas encontradas no site da OpenAI, que são mais detalhadas no

Capítulo 2. O conhecimento arquitetural foi condensado em formatos textuais para

facilitar o uso do LLM, sendo que foi utilizado a linguagem específica de domínio (DSL,

do inglês, Domain-Specific Language) PlantUML para o diagrama de classes e

 39

arquivos CSV (do inglês, Comma-separated values, valores separados por vírgula)

para os requisitos textuais e atributos de qualidade. A Figura 2 mostra o prompt que

foi criado.

Figura 2 - Prompt criado para o LLM

Fonte: Elaborado pelo autor.

É possível perceber na Figura 2 que uma das principais técnicas empregadas na

construção do prompt é o aproveitamento da funcionalidade de cadeia de pensamento

(Chain of Thought) do modelo GPT-4o1 da OpenAI para quebrar um problema grande

em subproblemas e deixar bem especificado todas as expectativas que se tem de

resposta, incluindo o pedido para que o modelo atue com o papel de arquiteto de

software, aplicando a técnica também de atribuição de personas no prompt.

Outra técnica importante aplicada é a de “dar espaço para o modelo pensar”, no qual

esse primeiro prompt é enviado, aguarda-se a resposta do modelo para ele entender

as instruções e só depois envia-se o diagrama de classes do modelo inicial de domínio

em PlantUML. Novamente, aguarda-se o feedback do LLM para ela “entender o

conteúdo” e então, envia-se por fim, os requisitos textuais em formato CSV. No total,

 40

foram três interações de prompts com o modelo, sendo que as duas últimas não serão

apresentadas em figuras pois são basicamente os mesmos tópicos apresentados nas

seções 4.1, 4.2 e 4.3, só que em formatos específicos. Serão discutidos os resultados

no capítulo seguinte.

Durante a fase de concepção do prompt, foi testado diversas outras técnicas

diferentes e percebeu-se que nem todas trouxeram tanta assertividade. Quanto

menos contexto e mais “solicitações ao mesmo tempo” um prompt contém, a

sensação é que o modelo acaba sendo menos assertivo. Essas “solicitações ao

mesmo tempo” seriam múltiplas tarefas sem especificar qual é a ordem a ser seguida

ou sem deixar claro o formato e resultado esperado. Por exemplo, pedir ao modelo

algo muito genérico como “Traga trade-offs baseado nos requisitos que vou te enviar”

acaba sendo pouco efetivo, o modelo começa a dar respostas que não fazem sentido

ou que pouco ajudam (termo geralmente conhecido como alucinações de modelos de

LLM).

 41

5 RESULTADOS OBTIDOS DO MODELO DE LINGUAGEM
DE GRANDE ESCALA

Após o envio do primeiro prompt estruturado apresentado na seção 4.5, um fenômeno

interessante já pode ser notado logo na primeira resposta que o LLM apresenta, em

que é visto um processo de “pensamento” mesmo, buscando entender justamente

quais referências pode-se utilizar da literatura e sugerindo diversos padrões e estilos

arquiteturais diferentes. A primeira resposta é bem longa por essa característica, então

a Figura 3 apresenta apenas parte dessa resposta. A iteração completa com o modelo

de LLM está no APÊNDICE A – PROMPT E SAÍDA COMPLETA DO LLM.

É possível perceber na Figura 3 que todas as técnicas de prompt empregadas fazem

a diferença, pois antes do modelo tentar responder de maneira direta, nota-se a coleta

de todo o contexto necessário para preparar a resposta final, claramente isso é o

aprendizado de contexto mencionado no Capítulo 2 que está em execução, sendo

notável uma das características mais interessantes desse tipo de Inteligência Artificial.

Não foi preciso ter conhecimento sobre algoritmos complexos de Deep Learning ou

entendimento profundo sobre estatística aplicada para induzir o modelo a fazer uma

tarefa avançada.

 42

Figura 3 - Primeira resposta do LLM ao prompt inicial enviado

Fonte: Elaborado pelo autor.

 43

Depois, ao enviar o modelo inicial de domínio em formato de PlantUML, o modelo

responde da seguinte forma, na Figura 4.

Figura 4 - Segunda resposta do LLM para o modelo de domínio

Fonte: Elaborado pelo autor.

É visível que o modelo já começa a afunilar a resposta conectando o conteúdo que

ele coletou na Figura 3 com o novo conhecimento arquitetural (o diagrama inicial do

modelo de domínio), apesar de ainda não ser a resposta final do modelo, ele começa

a citar pontos como “talvez trazer estilos modulares como a Arquitetura em Camadas

ou Arquitetura Hexagonal possa ajudar no longo prazo”. O ChatGPT permite também

visualizar quais foram os processos executados internamente do Chain of Thought,

reforçando como ele estava afunilando a resposta, como pode ser visto na Figura 5.

 44

Figura 5 - Processo de Chain of Thought interno do modelo de LLM para fornecer a segunda resposta

Fonte: Elaborado pelo autor.

Na Figura 5, o processo de Chain of Thought fica muito evidente, ele começa a

“raciocinar” de forma sequencial: “Preciso formatar a resposta utilizando ATAM e

avaliar trade-offs”; “Vou examinar o modelo de domínio agora e focar em entender o

contexto por completo”; “Quando eu receber o arquivo CSV com os requisitos, vou

juntar tudo para emitir a resposta final”.

Por fim, a resposta final para o modelo com a análise de trade-offs é apresentada nas

Tabelas 5 e 6.

 45

Tabela 5 - Resposta final do LLM com as decisões arquiteturais

Decisão Vantagens Desvantagens

Arquitetura em

Camadas +

Domain-Driven

Design (DDD)

O DDD combinado com uma arquitetura

em camadas (Aplicação, Domínio,

Infraestrutura) melhora a

manutenibilidade e clareza do domínio,

facilitando garantir a precisão (NFR-1.1)

nos cálculos financeiros e mantendo

regras de negócio coerentes. Também

torna mais simples a auditabilidade

(NFR-1.12), já que o domínio é bem

definido e rastreável.

Pode aumentar a complexidade

inicial de desenvolvimento e o

tempo de resposta (por adicionar

camadas), comprometendo parte

das metas de desempenho (NFR-

1.7 e NFR-1.8) se não houver

otimizações. Além disso, o

acréscimo de camadas pode afetar

a latência e dificultar atingir metas

de tempo estritas para relatórios

(NFR-1.2, NFR-1.4, NFR-1.6).

Arquitetura

Hexagonal (Ports

and Adapters)

Ajuda na flexibilidade e substituição de

fontes de dados ou serviços externos,

facilitando a observabilidade (NFR-1.11)

e o cumprimento de requisitos de

auditabilidade. Permite manter a

precisão no domínio central, isolado de

infraestruturas que podem introduzir

erros.

Exige maior esforço de

configuração inicial e abstrações

adicionais, o que pode afetar

desempenho em cenários de alto

throughput (NFR-1.9, NFR-1.10), já

que cada porta/adaptador pode

adicionar overhead.

Microservices +

Event-Driven

Architecture

(EDA)

Pode facilitar a escalabilidade horizontal

(NFR-1.9 e NFR-1.10) e aumentar a

capacidade do sistema de lidar com

grandes volumes de transações

simultâneas, além de permitir resiliência

e disponibilidade (NFR-1.2, NFR-1.6,

NFR-1.4) distribuindo a carga entre

diferentes serviços. A separação de

componentes pode também facilitar

reportar métricas e atingir requisitos de

observabilidade (NFR-1.11).

A comunicação assíncrona e

distribuída pode introduzir

dificuldades em garantir precisão

(NFR-1.1) e confiabilidade estrita

nos relatórios (NFR-1.3, NFR-1.5),

gerando discrepâncias nos dados

em tempo real. Também aumenta a

complexidade de coordenação,

debug e testes, o que pode

prejudicar manutenibilidade e

auditabilidade caso não haja uma

boa estratégia de versionamento e

rastreamento de eventos.

Fonte: Elaborado pelo autor.

 46

Tabela 6 - Resposta final do LLM com as decisões arquiteturais (continuação)

Decisão Vantagens Desvantagens

CQRS (Command Query

Responsibility Segregation) +

Event Sourcing

Facilita a auditabilidade (NFR-

1.12) e consulta histórica

(NFR-1.13) por armazenar o

histórico completo de eventos.

Pode ajudar a gerenciar o alto

throughput (NFR-1.9, NFR-

1.10) isolando comandos de

leituras, melhorando

disponibilidade e

escalabilidade na geração de

relatórios com dados antigos.

Aumenta a complexidade do

modelo de dados e exige

infraestrutura adicional. A

recomposição do estado pode

afetar desempenho se não for

bem projetada, dificultando

atender metas estritas de

tempo para relatórios (NFR-

1.2, NFR-1.4, NFR-1.6). Além

disso, garantir precisão com

cálculos financeiros ao

reconstituir estados a partir de

eventos pode ser trabalhoso e

suscetível a erros se não

houver validação rigorosa.

Padrões de Performance

(Caching, Circuit Breaker) e

Otimização de Latência

Uso de cache pode reduzir

tempo de resposta dos

relatórios imediatos (NFR-1.2,

NFR-1.6), e circuit breakers

podem melhorar a

disponibilidade sob falhas de

serviços externos. Isso ajuda a

atingir metas de desempenho.

O cache pode introduzir

discrepâncias entre o estado

real e o estado retornado,

comprometendo a precisão

(NFR-1.1) e a confiabilidade

(NFR-1.3, NFR-1.5),

principalmente em relatórios

financeiros sensíveis. Circuit

breakers e políticas de fallback

podem devolver dados

desatualizados ou incompletos,

prejudicando a consistência

dos relatórios.

Fonte: Elaborado pelo autor.

Após todo o contexto adquirido, o modelo responde atendendo às solicitações exatas

feitas no prompt, seguindo uma metodologia adaptada do ATAM com análise de trade-

offs, e referenciando de maneira breve quais atributos de qualidade são atendidos por

quais decisões. Os resultados são mais bem discutidos na próxima seção.

 47

5.1 Discussão

A primeira observação que é possível retirar nos resultados do LLM, é que existe uma

solução interessante para o problema levantado por Eisenreich, Speth e Wagner

(2024) e que foi citado no Capítulo 1 deste trabalho, em que basicamente os autores

enfatizam que os engenheiros de software tendem a escolher apenas padrões e

estilos arquiteturais que eles já trabalharam em algum momento, descartando

decisões que se encaixariam melhor no projeto. Nos resultados, apareceram diversas

decisões arquiteturais novas e diferentes das que foram mostradas na Seção 4.4, que

mostra a solução real implementada. Sendo que, todas as decisões arquiteturais

existem e geralmente são abordagens consideradas no ambiente real de

desenvolvimento de software, não teve nenhuma alucinação da parte do modelo de

LLM sobre padrões ou estratégias que não existem.

Isso enfatiza o fato de que, podemos utilizar IA tanto para acelerar o processo de

tomada de decisão arquitetural, quanto para extrair novas ideias que antes não

estavam claras ou que não foram discutidas por um cenário de arquitetura emergente,

principalmente em ambientes ágeis de software.

Quanto a qualidade da resposta pensando nos trade-offs, é possível perceber que o

modelo errou pouco, pois ele conseguiu tanto agrupar diversas categorias de atributos

de qualidade de maneira muito parecida de como foi feita na solução real apresentada

neste trabalho; quanto citar trade-offs que são realmente relevantes. Um exemplo é o

padrão CQRS, que o modelo cita que isso facilitaria a auditabilidade e a consulta

histórica, podendo também ajudar em disponibilidade e escalabilidade; sendo que

esses pontos foram exatamente os mesmos pontos enfatizados na solução real na

Seção 4.4, sendo que outro fato surpreendente é que ele cita alguns atributos afetados

que também são idênticos aos citados como vantagem na solução real, como o NFR-

1.9 e NFR-1.10.

Um exemplo claro da qualidade da resposta é a menção sobre Caching, que também

cita os mesmos NFR-1.2 e NFR-1.6 como sendo beneficiados por essa decisão

arquitetural, tanto no modelo de LLM, como na solução real.

 48

Outro ponto que se pode perceber é que nem todas as decisões citadas na solução

real aparecem na resposta do modelo, principalmente os padrões menores que ainda

afetam decisões arquiteturais. Um exemplo claro é sobre o NFR-1.1 que fala sobre

precisão, o modelo acaba citando de maneira genérica que algumas técnicas de DDD

podem ajudar, mas não fala exatamente quais técnicas. O Money Pattern costuma

aparecer em estudos relacionados a DDD, de fato; mas a solução real apresentada

cita esse padrão de forma específica, enquanto o modelo de LLM deixa mais genérico.

Apesar de ser uma desvantagem, se for pensar que alguns engenheiros podem nem

conhecer técnicas de DDD, só o fato de o modelo citar de maneira genérica, já é algo

que poderia gerar um tipo de insight para buscar mais sobre o tema. Inclusive

elencando o exemplo sobre Caching novamente, o modelo fala de forma genérica

sobre adoção dele, enquanto na solução real foi optado um padrão específico de

Cache Write-Through Pattern.

Durante os experimentos deste trabalho, percebeu-se que o uso de GPT-4o1 fez muita

diferença. Como já citado algumas vezes, a capacidade do modelo de utilizar técnicas

de Chain of Thought internamente acaba sendo essencial para esse tipo de tarefa

complexa envolvendo tomada de decisões arquiteturais e o modelo depender de tanto

contexto e conhecimento de diferentes fontes para dar respostas assertivas. Quando

foi testado durante o desenvolvimento deste trabalho o uso de modelos como o GPT-

4 ou GPT-3 para executar as mesmas tarefas, pela falta dessa técnica, as respostas

não foram boas.

Um aspecto não tão positivo é que, como mencionado na Seção 4.5, o processo de

estruturação de prompts requer um conhecimento de técnicas que ainda estão sendo

descobertas e moldadas, até porque o assunto de LLMs ainda é algo recente. Ou seja,

existem poucos conteúdos sobre como estruturar um prompt de uma maneira ideal; e

quando não se conhecem essas técnicas, as primeiras respostas parecem

desanimadoras, podendo então desmotivar engenheiros ou arquitetos a quererem

buscar mais sobre o tema e acharem que os LLMs ainda são muito imaturas. Para

melhorar esse aspecto, seria interessante ver novos produtos ou sistemas que

encapsulam toda a dificuldade de ter que aprender como estruturar um prompt para

tomar decisões arquiteturais, ou então, fazer com que essas técnicas sejam cada vez

mais difundidas tanto no ambiente corporativo, como acadêmico.

 49

Inclusive, ainda comentando sobre produtos ou sistemas que poderiam encapsular e

automatizar a tarefa de avaliação de decisões arquiteturais, uma coisa que facilitaria

muito seria a criação de algum tipo de DSL que também ajudasse a estruturar a forma

de pensar e descrever requisitos funcionais e atributos de qualidade, porque em geral,

boa parte do motivo pelo qual a qualidade da resposta foi muito boa, é porque os

requisitos estavam bem estruturados; algo que acontece poucas vezes em ambientes

reais corporativos. Talvez nesse aspecto o método completo proposto por Eisenreich,

Speth e Wagner (2024) possa ser efetivo, pois ele propõe uma iteração completa que

conta com a ajuda da IA para estruturar esses requisitos. Inclusive usar a própria IA

generativa para coletar, juntar e transformar conhecimento arquitetural desestruturado

encontrado no ambiente corporativo em informações estruturadas também poderia ser

um excelente caminho.

 50

6 CONSIDERAÇÕES FINAIS

O uso de IA generativa, mais especificamente, os LLMs, tem empolgado diversos

entusiastas na área justamente pelo seu aprendizado de contexto. Algo que neste

trabalho, foi possível analisar acontecendo na prática.

Este trabalho é, de certa forma, uma validação e um complemento de uma etapa

proposta no método de geração semiautomática de candidatos à Arquitetura de

Software, que é o trabalho proposto por Eisenreich, Speth e Wagner (2024),

enfatizando que o tema é promissor e pode trazer bons frutos. Quanto aos resultados

que esperava-se alcançar fazendo o estudo neste trabalho, eles foram positivos e

trazem alguns complementos ao trabalho dos autores, pois utiliza-se de um software

real e ainda utiliza um modelo recente de LLM que possui técnicas novas na área.

Muitas técnicas de LLM ainda estão em processo de estruturação e há muito espaço

para novos estudos nessa área. Apesar das análises evidenciarem resultados

interessantes, a IA vem apenas para facilitar e automatizar parte do trabalho, sendo

que intervenções humanas ainda são completamente necessárias para evitar

alucinações.

A área de Arquitetura de Software costuma ter muito conhecimento arquitetural e

contexto específico aplicado para cada situação, pois é o que diferencia um software

do outro. Essa característica impulsiona o uso de LLMs na área, mas as respostas

devem ser analisadas cautela para tomar decisões assertivas.

Como possíveis trabalhos futuros, pode-se mencionar as seguintes oportunidades:

• Poderia ser testado outras etapas do método do trabalho de Eisenreich, Speth

e Wagner (2024), ou testar em diferentes situações e softwares existentes;

• O uso de LLMs para Arquitetura de Software parece se encaixar muito bem,

pode-se buscar maneiras diferentes sobre como melhorar processos

arquiteturais envolvendo essas novas técnicas;

• As técnicas de LLMs ainda são muito novas e pouco conhecidas, pode-se

existir trabalhos de treinamento no ambiente corporativo e acadêmico ou

ferramentas e abstrações que facilitem o uso e aplicação de técnicas, como o

 51

uso de DSL para encapsular formatos específicos de escrita textual dos

atributos de qualidade.

 52

REFERÊNCIAS

AWS. Caching patterns - Database Caching Strategies. AWS Docs, 2024. Disponivel em:
<https://docs.aws.amazon.com/whitepapers/latest/database-caching-strategies-using-
redis/caching-patterns.html>. Acesso em: 05 Dezembro 2024.

BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in Practice. 3ª. ed. [S.l.]:
Addison-Wesley Professional, 2013. 45;80-87 p.

DE DIANA, M. J. D. O.; KON, F.; GEROSA, M. A. Conducting an Architecture Group in a Multi-
team. Department of Computer Science – University of Sao Paulo (USP), São Paulo, 2010.

DHAR, R.; VAIDHYANATHAN, K.; VARMA, V. Can LLMs Generate Architectural Design
Decisions? - An Exploratory Empirical Study. 2024 IEEE 21st International Conference on
Software Architecture (ICSA), 4 Março 2024.

EISENREICH, T.; SPETH, S.; WAGNER, S. From Requirements to Architecture: An AI-Based
Journey to Semi-Automatically Generate Software Architectures. Designing '24: 1st
International Workshop on Designing Software, Lisbon Portugal, 25 Julho 2024.

FAIRBANKS, G.; GARLAN, D. Just Enough Software Architecture: A Risk-Driven
Approach. [S.l.]: Marshall & Brainerd, 2010. 34-48;292-312 p.

FOWLER, M. Money. Martin Fowler, 2003. Disponivel em:
<https://martinfowler.com/eaaCatalog/money.html>. Acesso em: 12 Dezembro 2024.

FOWLER, M. CQRS. Martin Fowler, 2011. Disponivel em:
<https://martinfowler.com/bliki/CQRS.html>. Acesso em: 12 Dezembro 2024.

FOWLER, M. DDD Aggregate. Martin Fowler, 2013. Disponivel em:
<https://martinfowler.com/bliki/DDD_Aggregate.html>. Acesso em: 12 Dezembro 2024.

KNEUSEL, R. T. Como a Inteligência Artificial Funciona: Da Magia à Ciência. 1º. ed. [S.l.]:
Novatec Editora, 2024. 207-248 p.

MICROSOFT. Publisher-Subscriber pattern. Microsoft Learn, 2024. Disponivel em:
<https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber>. Acesso
em: 12 Dezembro 2024.

MONGODB. A Guide to ACID Properties in Database Management Systems. MongoDB,
2024. Disponivel em: <https://www.mongodb.com/resources/basics/databases/acid-
transactions>. Acesso em: 12 Dezembro 2024.

OPENAI. Learning to Reason with LLMs. OpenAI, 2024. Disponivel em:
<https://openai.com/index/learning-to-reason-with-llms/>. Acesso em: 24 Novembro 2024.

OPENAI. Prompt engineering. OpenAI Platform, 2024. Disponivel em:
<https://platform.openai.com/docs/guides/prompt-engineering>. Acesso em: 12 Dezembro
2024.

OZKAYA, I. Can Architecture Knowledge Guide Software Development With Generative AI?
IEEE Software, Outubro 2023.

 53

APÊNDICE A – PROMPT E SAÍDA COMPLETA DO LLM

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

	1c9c49f1f8e20767bc6ede6cefe5e4d398bfe9002c97f1627db746937dc542ee.pdf
	2128b27e63058a54f8fca5370bff7df17565fc0c8172332810e34f7e34ca3611.pdf
	1c9c49f1f8e20767bc6ede6cefe5e4d398bfe9002c97f1627db746937dc542ee.pdf

