RENAN MARCOS FERREIRA

Uso de modelos de linguagem de grande escala para decisdes

arquiteturais de desenvolvimento de software

Sao Paulo
2024

RENAN MARCOS FERREIRA

Uso de modelos de linguagem de grande escala para decisdes

arquiteturais de desenvolvimento de software

Versao Original

Monografia apresentada ao PECE -
Programa de Educacdo Continuada em
Engenharia da Escola Politécnica da
Universidade de Sao Paulo como parte dos
requisitos para a conclusédo do curso de
MBA em Engenharia de Software.

Area de Concentracdo: Engenharia de
Software

Orientador: Prof. Dr. Fabio Levy Siqueira

Sao Paulo
2024

Autorizo a reproducéo e divulgacao total ou parcial deste trabalho, por qualquer meio
convencional ou eletrdnico, para fins de estudo e pesquisa, desde que citada a fonte.

Catalogacao-na-publicacéo

Ferreira, Renan
Uso de modelos de linguagem de grande escala para decisdes
arquiteturais de desenvolvimento de software / R. Ferreira -- Sdo Paulo, 2024.
66 p.

Monografia (MBA em Engenharia de Software) - Escola Politécnica da
Universidade de S&o Paulo. PECE — Programa de Educacao Continuada em
Engenharia.

1.TECNOLOGIA DA INFORMAGAO 2.ENGENHARIA DE SOFTWARE
3.ARQUITETURA DE SOFTWARE 4.INTELIGENCIA ARTIFICIAL
I.Universidade de Sao Paulo. Escola Politécnica. PECE — Programa de
Educacéo Continuada em Engenharia Il.t.

Nome: FERREIRA, Renan

Titulo: Uso de modelos de linguagem de grande escala para decisfes arquiteturais
de desenvolvimento de software

Monografia apresentada ao PECE - Programa de
Educacdo Continuada em Engenharia da Escola
Politécnica da Universidade de Sao Paulo como parte dos

requisitos para a conclusdo do curso de MBA em
Engenharia de Software.

Aprovado em:

Banca Examinadora

Prof.(a). Dr.(a).

Instituic&o:

Julgamento:

Prof.(a). Dr.(a).

Instituicao:

Julgamento:

Prof.(a). Dr.(a).

Instituicéo:

Julgamento:

AGRADECIMENTOS

Agradeco a Amanda Dantas Ferreira, minha querida e amada esposa, por todo o apoio

em diversas etapas de minha vida e pela motivagao que sempre me traz.

Agradeco aos meus pais José Lazilote Ferreira e Maria Aparecida Ferreira, por
apoiarem meus estudos em computacdo e dedicarem parte de suas vidas me

ensinando.

Agradeco aos professores do PECE-USP pela dedicacdo no ensino e todo o
conhecimento compartilhado, especialmente ao Prof. Dr. Fabio Levy Siqueira por me
orientar e apoiar durante a redacao deste trabalho.

Aos amigos e colegas de trabalho e a todas as pessoas que, direta ou indiretamente,
me apoiaram durante o periodo de estudos no PECE-USP, especialmente aos meus

amigos Arthur Machado, Fernando Godoy, Luan Sales e Pedro Vieira.

RESUMO

FERREIRA, Renan. Uso de modelos de linguagem de grande escala para
decisfes arquiteturais de desenvolvimento de software. 2024. 66 p. Monografia
(MBA em Engenharia de Software). Programa de Educacdo Continuada em
Engenharia da Escola Politécnica da Universidade de S&o Paulo. Sdo Paulo. 2024.

Avaliar decisdes arquiteturais ndo € um processo simples durante o desenvolvimento
de um software, pois exige a consideracdo de multiplos trade-offs. Este trabalho
aborda o uso de Modelos de Linguagem de Grande Escala (LLMs) para apoiar esse
processo, com foco na extracdo de decisbes arquiteturais a partir de requisitos
textuais, atributos de qualidade e modelos de dominio. Foi realizado um estudo de
caso em um sistema real de gestéo de inadimpléncia no setor de fintechs, comparando
as solucdes geradas pelos LLMs com a arquitetura efetivamente implementada,
seguindo o método proposto por Eisenreich, Speth e Wagner (2024). Para avaliacédo
da qualidade de decisdes e dos trade-offs envolvidos, utilizou-se uma versao adaptada
do método ATAM.

Os resultados mostram que o modelo GPT-401 gerou decisbes arquiteturais
plausiveis e alinhadas a praticas comuns no desenvolvimento de software, com
poucas alucina¢cBes sobre padrées ou estratégias inexistentes. Além disso, o LLM
identificou trade-offs relevantes e estruturou atributos de qualidade de forma similar a
solucao real. A andlise evidencia que os LLMs ndo apenas aceleram o processo de

tomada de decisfes, mas também oferecem novas ideias durante o processo.

Embora os resultados sejam promissores, a eficicia das respostas depende de uma
boa estruturacdo dos prompts e de intervencbes humanas para assegurar a
assertividade, evidenciando a necessidade de métodos mais maduros e ferramentas

que facilitem sua adogdo em ambientes corporativos e académicos.

Palavras-chave: Arquitetura de Software. IA. LLM. ATAM. ADRs. Gestdo do

conhecimento arquitetural.

ABSTRACT

FERREIRA, Renan. Use of Large Language Models for architectural decisions in
software development. 2024. 66 p. Monografia (MBA em Engenharia de Software).
Programa de Educacdo Continuada em Engenharia da Escola Politécnica da
Universidade de S&o Paulo. Sdo Paulo. 2024.

Evaluating architectural decisions is not a straightforward process in software
development, as it demands the consideration of multiple trade-offs. This study
investigates the use of Large Language Models (LLMs) to support this process,
focusing on the extraction of architectural decisions from textual requirements, quality
attributes, and domain models. A case study was conducted on a real-world
delinquency management system in the fintech sector, comparing the solutions
generated by LLMs with the effectively implemented architecture, using the method
proposed by Eisenreich, Speth, and Wagner (2024). To assess decision quality and
the trade-offs involved, an adapted version of the ATAM method was applied.

The results indicate that the GPT-401 model generated plausible architectural
decisions aligned with common software development practices, demonstrating
minimal hallucinations regarding non-existent patterns or strategies. Furthermore, the
LLM identified relevant trade-offs and structured quality attributes in a manner similar
to the actual solution. The analysis shows that LLMs not only help the decision-making

process but also offer new architectural insights.

Although the findings are promising, the effectiveness of the responses depends on
well-structured prompts and human intervention to ensure accuracy, highlighting the
need for more mature methods and tools to facilitate their adoption in both corporate

and academic environments.

Keywords: Software Architecture, Al, LLM, ATAM, ADRs, Architectural Knowledge

Management.

LISTA DE ILUSTRACOES

Figura 1 - Diagrama do modelo de dominio dos requisitos funcionais.cccccccuvvveeeenn. 34
Figura 2 - Prompt criado para 0 LLM ... 39
Figura 3 - Primeira resposta do LLM ao prompt inicial enviado............ccccceeviieeiiiiiiiiiineneeen, 42
Figura 4 - Segunda resposta do LLM para o modelo de dominio............cceeeveeeeiiiiiiiiinnnnenn. 43

Figura 5 - Processo de Chain of Thought interno do modelo de LLM para fornecer a segunda
(ST 010 1= = PP TPPPT 44

LISTA DE TABELAS

Tabela 1 - Requisitos funcionais textuais do sistema de inadimpléncia..................c.cevvvennnn. 31
Tabela 2 - Atributos de qualidade do sistema de inadimpléncia.ccccvvveiiiiiiiiiiinnnnn. 33
Tabela 3 - Decisdes arquiteturais do sistema de inadimpléncia...........cccccccvveieiiieeeniiiiiiinnnnn. 36
Tabela 4 - Relacdo entre quais decisfes arquiteturais atendem a quais atributos de

qualidade no sistema de iINAdIMPIENCIA.ccevviiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 38
Tabela 5 - Resposta final do LLM com as decisdes arquiteturais.............cccceeeeeieeeeereeevinnnnnn. 45

Tabela 6 - Resposta final do LLM com as decisdes arquiteturais (continuagao) 46

ATAM
LLM

A

GPT
NLP
LLaMA
CORS
ADR
DDD
MobSTr
FR

NFR

1/O

UML
ACID
Pub/Sub
CsVv
DSL

LISTA DE ABREVIATURAS E SIGLAS

Architecture Trade-off Analysis Method
Large Language Model

Inteligéncia Artificial

Generative Pre-trained Transformer

Natural Language Processing

Large Language Model Meta Al

Command Query Responsibility Segregation
Architecture Decision Records
Domain-Driven Design

Model-Based Safety Assurance and Traceability
Functional Requirement

Non-Functional Requirement

Input/Output

Unified Modeling Language

Atomicity, Consistency, Isolation, Durability
Publisher-Subscriber Pattern
Comma-separated Values

Domain-Specific Language

SUMARIO

1 INTRODUGAO ...ttt ettt en st en e 12
1.1 (O] o1 T=3 1Y/ o TSP 13
1.2 MEEOUOIOGIA. ... 14
1.3 JUSHIFICATIVA . ..ot e e e e e e 15
14 Estrutura do trabalioeuiiii e 16
2 MODELOS DE LINGUAGEM DE GRANDE ESCALA ..., 17
3 ARQUITETURA DE SOFTWAREottt 20
3.1 Estilos e padrdes arquiteturais de SOftwareccccceeeiieeiiiiiiiiiiii e, 21
3.2 Método de avaliagdo de candidatos a Arquitetura de Softwareccccevvvennnns 24
3.3 Gestéo do conhecimento arquitetural de SOftware...........ccccvvvvvvivviviiiiiiiiiiiiiiieeee 25
3.4 Geracao semiautomatica de candidatos a Arquitetura de Software...................... 26
4 CONTEXTO DO PROBLEMA E SOLUCAO REALcoooveeecieceeeeeeee e 30
4.1 ReqUISItOS TUNCIONAIS.........ccuiiiiii e e e e e 31
4.2 ALributos de QUAlIATE..........uueiiiiiiiiiiiiiiei e 32
4.3 MOdEIO A€ OMINIOeiieiiiiee ettt e e e e e e 34
4.4 Solugéo real implementada ... 36
4.5 Instrugcbes para 0 modelo de linguagem de grande escala...........cccccvvvvviinninnnnnnns 38
5 RESULTADOS OBTIDOS DO MODELO DE LINGUAGEM DE GRANDE ESCALA ..41
5.1 DISCUSSEO . . 47
6 CONSIDERAGCOES FINAIS ..ottt ettt sttt ane e e, 50
REFERENCIAS ...ttt ettt s st e s s e e et e s et esene et enenens 52

APENDICE A — PROMPT E SAIDA COMPLETA DO LLM ..c.ooviiiiiiiicicieeee e 53

12

1 INTRODUCAO

Os modelos de linguagem de grande escala (LLM, do inglés large language models)
vem democratizando o uso de IA em diferentes areas do conhecimento, dado que as
pessoas ndo precisam conhecer de maneira profunda sobre aprendizado de maquina
ou estatistica aplicada para extrair resultados. Isso facilitou tarefas envolvendo o
processamento de linguagem natural como resumo de textos, reescrita de textos
envolvendo mudancas nos tons de conversas, estilos e gramética, além de uma
construcdo de sua propria base de conhecimento com diferentes fontes para apoio
em tomada de decisoes.

Na area do conhecimento da Engenharia de Software, os LLMs tém se destacado
como ferramentas essenciais para diversos processos, além dos jA mencionados,
incluindo a geracgéao e revisao de codigo, pesquisa e criacao de testes, entre outros. A
interacdo com esses modelos pode ser realizada de varias maneiras, desde prompts
em modelos genéricos, como o GPT (Generative Pre-Trained Transformer), até o uso
de modelos especificos treinados para lidar com atividades da Engenharia de
Software, como o GitHub Copilot. Este Ultimo opera dentro do contexto do cédigo que
estd sendo editado, reduzindo a necessidade de elaborar prompts explicitos e
complexos para atender as solicitacdes do usuario. Tal abordagem otimiza o fluxo de

trabalho, diminuindo barreiras técnicas no uso dessas tecnologias.

Especialmente sobre o tépico de criar e manter sua prépria base de conhecimento,
existe uma intersec¢do direta com a area da Arquitetura de Software, dado que a
comunidade tem utilizado a gestéo de conhecimento arquitetural como um dos fatores-
chaves para tomar decisdes sobre padrdes e estilos arquiteturais desde os anos 2000
(OZKAYA, 2023).

Em geral, engenheiros de software tendem a escolher apenas padrdes e estilos
arquiteturais com os quais eles ja trabalharam em algum momento, descartando
decisbes que se encaixariam melhor no projeto, sendo que muitas vezes essa deciséo
leva a custos de manutencao elevados no longo prazo (EISENREICH, SPETH E
WAGNER, 2024). Isso pode se agravar ainda mais em cenarios ageis em que

multiplos times de desenvolvimento estdo trabalhando em sistemas maiores e

13

compostos por diversos subsistemas, sendo que de acordo com De Diana, Kon e
Gerosa (2010), o conceito de arquitetura emergente comeca a ficar ainda mais

complicado nessas situacoes.

De acordo com Ozkaya (2023), a gestdo do conhecimento arquitetural inclui diversos
elementos: projeto arquitetural, decisbes de projeto, contexto, premissas etc. Todos
esses elementos caracterizam um software em particular. Enquanto € possivel
entender o projeto através do cédigo e de outros artefatos de implementacéo,
decisOes de projeto requerem conhecimento e contexto sobre os trade-offs (que sé&o

pontos de vantagens e desvantagens observados em decisdes).

Dessa forma, o uso do conhecimento arquitetural em modelos de LLM pode contribuir
significativamente para decisdes mais embasadas e precisas sobre padrdes e estilos
arquiteturais. Essa abordagem ndo apenas reduz a dependéncia exclusiva da
experiéncia individual dos engenheiros de software, mas também promove uma
analise mais estruturada e abrangente dos trade-offs envolvidos. A ponderacdo desse
conhecimento gerado por LLMs pode, portanto, representar uma ferramenta valiosa
para a gestao da complexidade arquitetural em contextos de desenvolvimento ageis,
melhorando a qualidade das solucdes técnicas, ainda mais em cenarios envolvendo

multiplas equipes e subsistemas.

1.1 Objetivo

O objetivo deste trabalho € fazer uma analise exploratoria no uso de modelos de
linguagem de grande escala para a tomada de decisGes arquiteturais. Seguindo o
método proposto por Eisenreich, Speth e Wagner (2024), através da especificacdo de
requisitos textuais (com énfase em atributos de qualidade — também conhecidos como
requisitos ndo funcionais) e modelos de dominio de um software real no escopo de
fintechs, o modelo de linguagem de grande escala respondera com padrdes e estilos
arquiteturais junto de uma analise de trade-offs. Com isso, é apresentada uma
discussdo dos resultados obtidos para entender o uso dessa tecnologia para o

processo de projeto de software.

14

1.2 Metodologia

O processo seguido por este trabalho € a aplicacédo pratica do método proposto por
Eisenreich, Speth e Wagner (2024) para a geracdo semiautomatica de candidatos a
arquitetura de software, a terceira etapa do método. O método completo, apresentado

na Secao 3.4, € composto por seis etapas:

1. Gerar o modelo de dominio e cenarios de caso de uso com base em requisitos
textuais (automatico);
Refinar o modelo de dominio e os cenérios de caso de uso gerados (manual);
3. Derivar multiplos candidatos a arquitetura e as decisfes arquiteturais usando o
modelo de dominio, os cenarios e os atributos de qualidade (automatico);
4. Avaliar e comparar os candidatos a arquitetura (automatico);
Refinar os candidatos a arquitetura (manual);

6. Selecionar o candidato que mais se encaixa no problema (manual).

Para tal geracdo de candidatos, primeiramente, junta-se todo o conhecimento
arquitetural disponivel de um sistema que estd em sua fase inicial de modelagem de
dominio: a lista de requisitos funcionais e atributos de qualidade, junto de uma primeira
versao do modelo de dominio do problema. Depois, cria-se um prompt com todo esse
conhecimento arquitetural e envia-se esse prompt para um modelo de LLM, coletando

entao as respostas geradas pela IA (Inteligéncia Artificial).

O conhecimento arquitetural do sistema a ser analisado sera apresentado no Capitulo
4. Ainda no mesmo capitulo, sera apresentada a solucéo real de estilos e padrbes
escolhidos para a resolucao do problema em um contexto de uma empresa fintech,
gue foi simplificada e anonimizada, seguindo conceitos do ATAM (Architecture Trade-
off Analysis Method). Com isso, sera possivel discutir e comparar os resultados do
LLM contra a solucéo real, analisando se essas respostas ajudam na tomada de

decisbes e debatendo os resultados alcancados.

15

1.3 Justificativa

O método proposto por Eisenreich, Speth e Wagner (2024), ainda ndo chegou na
etapa de geracao semiautomatica de candidatos a Arquitetura de Software, tendo feito
apenas uma analise exploratéria com os modelos LLaMA2 e GPT-3.5, para gerar
modelos de dominio a partir dos requisitos funcionais textuais. Além disso, o método
utiliza como base o estudo de caso do MobSTr (Model-Based Safety Assurance and
Traceability), um sistema de conducdo automatizada com foco em seguranca e
rastreabilidade baseado no desafio industrial WATERS 2019 (Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems). O trabalho dos
autores também propde o uso de LLM para diversos processos da Arquitetura de

Software, gerando entdo uma visdo mais ampla da Arquitetura.

Este trabalho tem os seguintes complementos em relagéo ao trabalho de Eisenreich,
Speth e Wagner (2024):

e Tem énfase nas especificacdes textuais dos atributos de qualidade (também
conhecidos como requisitos nao funcionais) com foco no uso de IA para tomada
de decisdes sobre padrbes e estilos arquiteturais;

e E a aplicagéo pratica de uma etapa que o trabalho de Eisenreich, Speth e
Wagner (2024) ainda ndo chegou, a etapa de geracdo semiautomatica de
candidatos a Arquitetura de Software

e S&o andlises de resultados em cima de uma solucéo real no escopo de fintech,
mais especificamente em um contexto de gestdo de inadimpléncia, sendo
diferente do setor industrial automotivo. Enquanto o setor automotivo tem maior
foco em sistemas criticos de seguranca e estabilidade, os sistemas financeiros
possuem maior foco em integridade dos dados;

e Uso de um modelo mais recente de LLM, o GPT-401, que foi treinado com mais
parametros, € capaz de simular cadeias de pensamento e possui uma janela
de contexto mais ampla do que alguns modelos como GPT-3.5 e LLaMA2

apresentados no trabalho dos autores.

O principal motivo deste trabalho ter o foco na extracdo de estilos e padrdes
arquiteturais a partir dos atributos de qualidade é que, como mencionado

anteriormente, esse é geralmente o ponto mais complicado de arquitetura emergente

16

em cenarios ageis com multiplas equipes e subsistemas (DE DIANA, KON E
GEROSA, 2010), além de que engenheiros de software tendem a escolher apenas
padrées e estilos arquiteturais que eles ja trabalharam em algum momento
(EISENREICH, SPETH E WAGNER, 2024), sendo que o uso de LLMs podem ajudar
os engenheiros de software a ponderarem outros padrdes e estilos arquiteturais, além
de ajudar a simplificar a manter a agilidade em mudiltiplas equipes e a manter a
arquitetura emergente, que é um dos pontos fundamentais para o desenvolvimento

agil de software.

O uso de um modelo mais recente de LLM com as caracteristicas mencionadas
permite que o modelo possa iterar melhor em documentos extensos, além de
promissoramente lidar com tarefas mais complexas, podendo entdo tomar decisdes
mais assertivas. Foi escolhido o ChatGPT pois na data de desenvolvimento do
trabalho era 0 modelo mais conhecido e o Unico que oferecia recursos de simulacéo

de cadeias de pensamento dentro do modelo.

1.4 Estrutura do trabalho

Nos Capitulos 2 e 3, sdo apresentadas as referéncias académicas que explicam sobre
elementos e conceitos de Arquitetura de Software utilizados neste texto, como
requisitos funcionais e atributos de qualidade, decisGes arquiteturais de software,
gestdo do conhecimento arquitetural e a geracdo semiautomatica de candidatos a
Arquitetura de Software. No Capitulo 4, sdo apresentados todo o conhecimento
arquitetural do sistema real de uma fintech (generalizado e simplificado) e o prompt
gerado para o LLM com o objetivo de gerar os candidatos a arquitetura junto das
decisbes arquiteturais. Ja nos Capitulo 5 e 6 é possivel visualizar a resposta do LLM
para o prompt gerado e a discussao dos resultados apresentados, incluindo sugestdes

e ideias para trabalhos futuros.

17

2 MODELOS DE LINGUAGEM DE GRANDE ESCALA

De acordo com Dhar, Vaidhyanathan e Varma (2024), um Modelo de Linguagem é um
modelo de IA probabilistico de Processamento de Linguagem Natural (do inglés, NLP,
Natural Language Processing) que é projetado para gerar probabilidades associadas
a uma sequéncia de palavras. Os autores diferenciam os Modelos de Linguagem de
Grande Escala (do inglés LLMs, Large Language Models), enfatizando que sé&o
modelos probabilisticos de inteligéncia artificial similares, porém treinados com um
volume extenso de dados, permitindo uma compreensdo e geracao de texto
avancadas. Eles também observam que LLMs sdo amplamente utilizados em tarefas
diversas de NLP, possuem bilhGes de parametros e grandes janelas de contexto
(Context Lengths e Parameters, que geralmente sdo caracteristicas importantes para
diferenciar modelos de LLMs). Tokens representam unidades de texto que podem
corresponder a uma palavra completa ou partes de palavras, enquanto o Context
Length em um LLM refere-se ao numero de tokens considerados pelo modelo ao
processar ou gerar texto (DHAR, VAIDHYANATHAN E VARMA, 2024).

Os autores ainda explicam que LLMs se baseiam na arquitetura de Transformers, que
utiliza mecanismos de atencdo como base de seu funcionamento. Os Transformers
sdo compostos por dois componentes principais: um Encoder (codificador),
responsavel por processar o texto de entrada; um Decoder (decodificador), que gera
0 novo texto a partir das informacdes processadas pelo Encoder (DHAR,
VAIDHYANATHAN E VARMA, 2024).

Kneusel (2024) explica que a interacdo com LLMs é feita através de prompts, que € a
entrada fornecida por um usuario, geralmente em formato de texto. Alguns modelos
multimodais podem ter prompts em formatos de arquivos, imagens, audio, entre
outros. Neste trabalho, o foco sdo os prompts em texto e utilizando o modelo GPT-
401, da empresa OpenAl, que introduz conceitos de raciocinio dentro dos LLMs,
utilizando técnicas internas de Chain of Thougth (cadeias de pensamento), que é uma
técnica de prompt engineering (OPENAI, 2024). O modelo da OpenAl foi escolhido
para uso neste trabalho pois era o Unico capaz de simular cadeias de pensamento e

também o mais conhecido no momento de escrita deste texto.

18

A técnica de cadeia de pensamento (Chain of Thought - CoT), conforme descrita pela
OpenAl (2024), é um método que permite os LLMs melhorarem sua capacidade de
raciocinio em tarefas complexas, promovendo uma abordagem iterativa para a
solucao de problemas. De acordo com a empresa, essa técnica envolve a geragéo de
uma sequéncia légica de passos intermediarios antes de apresentar uma resposta
final, permitindo ao modelo dividir problemas dificeis em partes menores, explorar
abordagens alternativas quando necessario e refinar estratégias com base nos
resultados obtidos. A empresa enfatiza que com o treinamento baseado em
aprendizado por reforco, os modelos aprendem a identificar e corrigir seus proprios
erros e a adaptar suas respostas para questdes desafiadoras. Aproveitando desses
recursos, neste trabalho € utilizado o modelo GPT-401 para a avaliacdo e tomada de

decisOes arquiteturais.

Além da técnica de Chain of Thought, a estruturacédo do prompt que sera apresentada
no Capitulo 4 utiliza-se de diversas outras técnicas mencionadas na documentacéo
oficial da OpenAl, no site intitulado de “Prompt engineering” (OPENAI, 2024). No site,
€ mencionado por exemplo o uso de taticas como “incluir detalhes de contexto”, “pedir
ao modelo para atuar como uma persona”, “especificar passos necessarios para
completar uma tarefa”, “dividir tarefas maiores em subtarefas” e “formatar a resposta
esperada”. Todas essas técnicas sdo autoexplicativas, sendo que de acordo com a

OpenAl (2024), elas melhoram a assertividade do modelo.

Kneusel (2024) observa que uma das propriedades dos LLMs é sua capacidade de
aprendizado de contexto, sendo que esse é provavelmente um dos principais motivos
pela empolgacgéo de entusiastas na area de IA. O autor explica que o aprendizado de
contexto diz respeito ao modelo que aprende dinamicamente a partir das informacoes
gue lhe sdo fornecidas, sem modificar seus pesos. Ele também enfatiza que o
aprendizado de contexto € diferente do ajuste fino de um modelo, sendo que no ajuste
fino, um modelo previamente treinado é adaptado a uma tarefa, atualizando os pesos
com dados novos de treinamento. Ou seja, Kneusel (2024) observa que o aprendizado
de contexto adiciona informagdes novas ao LLM como parte do prompt, enquanto
mantém fixos os pesos do modelo. Isso conecta com a visdo de que o conhecimento

arquitetural de software pode contribuir para o processo de tomada de decisdes

19

arquiteturais, ja que se pode utilizar aprendizado de contexto dos LLMs com o

conhecimento arquitetural para decisdes mais assertivas.

20

3 ARQUITETURA DE SOFTWARE

Segundo Fairbanks e Garlan (2010), a Arquitetura de um Software geralmente esta
associada com uma visao de alto nivel sobre o design de uma solucéo, de forma que
se entende o0s elementos e componentes dessa solugdo junto das relagbes e
caracteristicas deles, aplicando uma otica sobre como as decisdes influenciam os
atributos de qualidade e as restricdes, analisando também como podem afetar a
implementacdo ou manutencdo de novas funcionalidades. Os autores também
enfatizam que existe uma linha ténue entre arquitetura e design detalhado, em que o
design detalhado seria decisdes menores em baixo nivel que estdo diretamente
relacionados a implementacao de codigo dos sistemas, como por exemplo a escolha
de nomes de variaveis ou uso padrbes de projeto (design patterns). Entretanto, os
autores observam que se essas decisdes de baixo nivel possuirem a caracteristica de
intencionalidade e gerarem impactos nos atributos de qualidade, ainda seria uma
decisao arquitetural. Neste trabalho, serdo explicados padrbes e estilos arquiteturais

na Secéao 3.1.

Ainda de acordo com Fairbanks e Garlan (2010), € possivel observar que pensar sobre
Arquitetura de Software é importante porque ela impacta os sistemas em diferentes
aspectos e pode-se reduzir riscos de falha em projetos. Eles comentam que todo
software possui uma arquitetura, independentemente se foi investido muito tempo
pensando sobre as decis6es ou ndo; e se faz necessario entender qual é o risco que
se deseja assumir ao pensar pouco sobre decisbes arquiteturais. Eles citam por
exemplo que talvez para sistemas de pouco risco ou que sdo menores, pode-se nao
ter a necessidade de pensar intencionalmente sobre todas as decisdes arquiteturais.
Neste trabalho, sera feito uma analise exploratéria no uso de modelos de linguagem
de grande escala para ajudar a tomar melhores decisdes arquiteturais de maneira

intencional.

De acordo com Bass, Clements e Kazman (2013), as restricdbes em um projeto
referem-se a decisbes de design que ja foram previamente estabelecidas,
frequentemente associadas a condigBes externas como politicas organizacionais,
limitagbes tecnoldgicas ou acordos comerciais, e que delimitam as escolhas

disponiveis no processo de tomada de decisdes arquiteturais. Os autores também

21

explicam que os requisitos funcionais determinam agbes e comportamentos que o
sistema deve executar, enquanto os atributos de qualidade especificam diferentes
critérios como desempenho, seguranca e adaptabilidade, que qualificam como essas
funcionalidades devem ser implementadas. Eles também discutem que arquitetura de
software conecta esses elementos ao organizar componentes e suas interagdes para

alcancar os objetivos funcionais e de qualidade dentro das restricdes impostas.

Neste trabalho, explora-se como o0 uso de técnicas de IA generativa pode contribuir
para simplificar a identificacdo e priorizacdo dessas decisbes, promovendo
alinhamento entre requisitos e restricbes para facilitar a tomada de decisdes

arquiteturais.

3.1 Estilos e padrbes arquiteturais de software

Estilos e padrdes arquiteturais sao conceitos fundamentais no design de software,
embora possuam escopos distintos. Segundo Fairbanks e Garlan (2010), um estilo
arquitetural refere-se a um conjunto de convencdes de alto nivel que define tipos de
elementos arquiteturais como componentes, conectores e suas interacdes, além de
impor restricdes para orientar o design do sistema. Os autores mencionam exemplos
gue incluem estilos como client-server, pipe-and-filter, map-reduce, cada um
influenciando atributos de qualidade especificos como escalabilidade ou
manutenibilidade. Ainda de acordo com os autores, 0s padrdes arquiteturais operam
em um nivel mais granular, focando em solucdes reutilizaveis para problemas
recorrentes em partes do design, como o uso do padrao REST para mensagens em
sistemas com o estilo arquitetural client-server. Portanto, enquanto os estilos
arquiteturais estruturam o sistema como um todo, padrdes contribuem com detalhes
de implementagé&o dentro dessa estrutura maior, ambos sendo elementos-chave para
alcancar qualidade e consisténcia no design, sendo que sdo considerados decisdes
arquiteturais se forem intencionalmente escolhidos, como citado na introducéo do

Capitulo 3.

Como observado por Fairbanks e Garlan (2010), a distingdo entre padrdes
arquiteturais e estilos arquiteturais ndo é facilmente demarcada, especialmente em

sistemas de grande escala. Os autores destacam que, a medida que surgem sistemas

22

compostos por outros sistemas menores, essa diferenciagdo torna-se ainda mais
desafiadora. Como exemplo, eles citam que quando um sistema independente é
incorporado a um sistema maior, o estilo arquitetural original do sistema menor pode
ser considerado um padréo no contexto do sistema maior. Sendo que eles reforcam
gue essa ambiguidade leva a uma abordagem mais prética, em que padrdes e estilos
muitas vezes sao tratados como conceitos intercambiaveis, dependendo do contexto
e do nivel de abstracdo em que sédo analisados. Por isso, neste trabalho, serédo
apresentadas diversas decisdes, mas sem afirmar de maneira direta se € um padréo
ou estilo arquitetural, pois a énfase estd em entender como as decisdes foram

tomadas deliberadamente para influenciar a qualidade da solucao.

Serdo mencionadas neste trabalho as seguintes decisdes arquiteturais, na discusséo
do sistema real do escopo de inadimpléncia, no Capitulo 4:

e Aggregate Pattern (DDD);

e Money Pattern;

e CQRS Pattern;

e Cache Write-Through Pattern;

e Banco de dados com propriedades ACID;
e Pub/Sub Pattern.

De acordo com (FOWLER, 2013), o Aggregate Pattern, no contexto de Domain-Driven
Design (DDD), define um grupo de objetos de dominio tratados como uma unidade
Unica. O autor menciona que esse padréo estabelece a raiz do agregado como a Unica
abstracdo acessivel externamente, garantindo a integridade do conjunto. O autor
também observa que geralmente esse padrédo € usado para limitar transacdes ao nivel
do agregado e organizar operacdes de armazenamento e recuperacdo de dados,

reforcando a coeséo e consisténcia no design de sistemas.

O Money Pattern propde a criacdo de uma classe dedicada para representar e
manipular valores monetarios, considerando que linguagens de programacao
costumam néo tratar dinheiro como um tipo de dado nativo (FOWLER, 2003). O autor
destaca que esse padrao é especialmente util em sistemas que lidam com multiplas

moedas, evitando erros como somar valores em délares e ienes sem considerar suas

23

diferencas. Além disso, ele observa que o padrao ajuda a resolver problemas sutis,
como erros de arredondamento em calculos monetarios, garantindo maior precisao e

consisténcia em operac0des financeiras.

Fowler também traz uma definicdo sobre o CQRS Pattern (do inglés, Command Query
Responsibility Segregation). Ele observa que o padrdo promove a separacao entre 0s
modelos de comando (responsaveis por atualizacdes/insercdes) e consulta
(responséveis por leitura) de um sistema, permitindo otimizacbes especificas para
cada finalidade (FOWLER, 2011). O autor observa que essa abordagem pode ser
vantajosa em dois contextos principais: aplicacbes de alto desempenho, onde a
separacdo permite escalabilidade independente de leituras e escritas, e dominios
complexos, onde separar os modelos reduz sobrecarga cognitiva. No entanto, Fowler
(2011) ressalta que a aplicacdo do CQRS deve ser limitada a partes especificas do
sistema, como Bounded Contexts no DDD, pois sua complexidade pode trazer mais

riscos do que beneficios em cenarios inadequados.

De acordo com AWS (2024), o Cache Write-Through Pattern é uma estratégia proativa
de cache que atualiza os dados no cache imediatamente apds qualquer atualizacao
no banco de dados principal. Diferentemente do padrdo Cache-Aside, que preenche
o0 cache apenas ap6s uma falha de consulta, o Write-Through mantém o cache
sincronizado com o banco de dados, reduzindo significativamente a probabilidade de
cache miss e melhorando o desempenho geral da aplicacdo, no entanto, esse padréo
pode aumentar o custo, ja que dados pouco requisitados também sdo armazenados
no cache (AWS, 2024).

A MongoDB (2024) define as propriedades ACID (do inglés, Atomicity, Consistency,
Isolation, Durability) como propriedades que garantem integridade e confiabilidade,
mesmo diante de falhas. Atomicidade assegura que uma transagao seja completada
integralmente ou revertida em caso de erro; Consisténcia garante que as alteracdes
preservem as regras do banco de dados, evitando estados invalidos; Isolamento
protege transacOes simultaneas de interferéncias, e Durabilidade, garante que os
dados persistam apo0s a conclusdo da transagdo, mesmo em falhas de sistema
(MONGODB, 2024). A MongoDB também cita que entre as vantagens do modelo

ACID estdo a confianca em sistemas criticos, como bancos e processamento de

24

pagamentos, e o cumprimento de requisitos regulatérios; no entanto, o modelo
também apresenta desvantagens, como maior complexidade de implementacéo e
impactos de desempenho, especialmente em sistemas distribuidos, devido ao

bloqueio de recursos para evitar conflitos durante as transacoes.

Ja a Microsoft (2024) explica o Pub/Sub Pattern (do inglés, Publisher-Subscriber),
descrevendo como uma abordagem que permite que aplicacdes anunciem eventos
para multiplos consumidores interessados de forma assincrona, desacoplando o
emissor (publisher) dos receptores (subscribers). Entre as principais vantagens do
padrdo estdo o aumento da escalabilidade e desempenho, j& que 0s emissores nao
precisam esperar pelas respostas dos receptores, e a capacidade de integrar sistemas
heterogéneos usando diferentes plataformas e protocolos. No entanto, ele apresenta
desafios como o gerenciamento de assinaturas, garantia de seguranga nos canais de
mensagens e problemas de ordenacédo ou duplicacdo de mensagens (MICROSOFT,
2024).

3.2 Método de avaliacao de candidatos a Arquitetura de Software

Como visto nas sec¢des anteriores, quando se fala de decisdes arquiteturais, € comum
associar o contexto das decisdes com o contexto do software, chegando entdo, nas
vantagens e desvantagens que cada decisdo arquitetural traz para o contexto do
software, que € conhecido também como trade-offs arquiteturais. Para estruturar a
forma de analisar e avaliar diferentes trade-offs, Bass, Clements e Kazman (2013)
descrevem o método ATAM (Architecture Tradeoff Analysis Method) como uma
abordagem estruturada para arquitetos e stakeholders avaliarem de forma
colaborativa escolhas arquiteturais que influenciam aspectos do software, com o
objetivo de identificar riscos e oportunidades relacionadas as decisdes arquiteturais e

seus impactos nos atributos de qualidade do sistema.

Os autores mencionam que o ATAM é baseado na criacdo de cenarios de atributos
de qualidade, na identificacdo pontos sensiveis e trade-offs, e na documentacéo de
riscos e “ndo-riscos”, estabelecendo uma conexao clara entre decisdes arquiteturais
e 0s objetivos de negécio do projeto. Além disso, a metodologia promove o

engajamento dos participantes e gera artefatos valiosos, como arvores de utilidade e

25

relatérios que servem como referéncia para guiar a evolugdo da arquitetura, sendo
especialmente relevante em projetos complexos, nos quais 0s custos de uma ma
decisao arquitetural podem ser significativos (BASS, CLEMENTS E KAZMAN, 2013).
Ainda segundo os autores, o0 método é estruturado em quatro fases principais:
Preparacao e Parceria, onde séao definidos os objetivos do processo, organizados os
participantes e alinhados os principais elementos da arquitetura a serem
apresentados; Analise Inicial, com énfase na apresentacdo dos objetivos de negécio,
na descri¢do da arquitetura e na criagdo de uma arvore de utilidade, em que cenarios
sdo detalhados e priorizados para analise; Andlise Detalhada, que envolve um grupo
ampliado de stakeholders, em que sado refinados e analisados 0s cenarios mais
criticos, avaliando as decisdes arquiteturais em relacdo aos requisitos de qualidade e
identificando sensibilidades, riscos e trade-offs; Relatério Final, em que s&o
documentados os resultados, incluindo os riscos identificados, recomendacdes e

temas criticos que conectam as decisdes arquiteturais aos objetivos de negdcio.

Neste trabalho, o ATAM sera apresentado de maneira simplificada e adaptada, com
énfase principalmente na fase de “Analise Detalhada” para fazer comparac¢des entre

0 modelo de LLM no Capitulo 5 e o sistema real de inadimpléncia no Capitulo 4.

3.3 Gestao do conhecimento arquitetural de software

Segundo Ozkaya (2023), conhecimento arquitetural em engenharia de software pode
ser entendido como um conjunto estruturado de informagdes que orientam decisdes
de design e planejamento de sistemas, podendo abranger elementos como o projeto
da arquitetura; as decisdes de design; os contextos, restricdes e requisitos nos quais
o0 sistema sera implantado. Capturar e gerenciar esse conhecimento € essencial para
alinhar as escolhas de design as necessidades do projeto, otimizando a evolucao
continua dos sistemas frente a mudancas tecnoldgicas e organizacionais (OZKAYA,
2023).

Ozkaya (2023) também enfatiza que ferramentas baseadas em I|A representam uma
oportunidade promissora para automatizar a captura e aplicagéo desse conhecimento,

26

facilitando a tomada de decisdes arquiteturais e permitindo uma abordagem mais

eficiente e alinhada as demandas dindmicas do desenvolvimento de software.

Em resumo, o conhecimento arquitetural ndo tem exatamente apenas um formato fixo,
mas pode ser compreendido como quaisquer informagdes que ajudam na tomada de
decisbes arquiteturais, por isso neste trabalho foi escolhido o uso de modelos de
dominio como diagrama usando a linguagem UML (Unified Modeling Language), a
descricao textual de requisitos funcionais e atributos de qualidade; sendo todo esse
conhecimento usado para construir o prompt para o modelo de LLM.

3.4 Geracao semiautomatica de candidatos a Arquitetura de
Software

Como observado nas secdes anteriores, o processo de tomada de decisbes
arquiteturais tende a ser trabalhoso na construcdo e desenvolvimento de um software,
embora tenha alto valor para a reducdo de riscos e escolhas mais assertivas,
adequando a qualidade com o custo de desenvolvimento da solu¢do. Por isso, nota-
se cada vez mais esforgos para automatizar ou facilitar essa atividade, como observa-
se no trabalho de Eisenreich, Speth e Wagner (2024) em que a intencdo é conectar
as recentes pesquisas sobre LLMs e IA Generativa com Arquitetura de Software, mais
especificamente, a tarefa de avaliacdo de diferentes decisdes arquiteturais. Os
autores enfatizam que a Arquitetura de Software cumpre um papel importante na
qualidade de todo sistema e propdem um método para gerar arquiteturas de forma
semiautomatica utilizando IA. Eles mostram que o método é composto pelas seguintes
principais etapas: gera-se primeiro os modelos de dominio e cenarios de caso de uso
usando LLMs, depois, derivam-se dos LLMs mudltiplos candidatos a Arquitetura
juntamente de suas respectivas decisdes arquiteturais e por fim, avalia-se esses
candidatos e toma-se uma decisdo para a solugao final, que passa a ser escolhida
com mais dados por causa do método. Os autores citam que é importante ter iteracoes
constantes e supervisionadas no método para melhorar os resultados devido a forma
como os LLMs funcionam atualmente, por isso, “semiautomatico”. Tal abordagem
proposta no método pelos autores, promove uma maior qualidade nas decisdes
arquiteturais e acelera o processo de avaliagao arquitetural, alinhando-se de maneira

mais assertiva aos requisitos funcionais, atributos de qualidade e restricbes do projeto.

27

Ainda de acordo com os autores, existem trabalhos relacionados que indicam avancos
no uso de automacdo para apoiar decisbes arquiteturais, porém, apresentam
limitacdes que geralmente apresentam muito esforco manual e sdo focados em partes
isoladas do ciclo de design — como a geracdo de modelos de dominio ou somente a
avaliacdo de candidatos a arquitetura. Eisenreich, Speth e Wagner (2024) propdem
um fluxo completo, que comeca pela geracdo de modelos iniciais até a decisao final
de escolha arquitetural. Essa abordagem se destaca ndao apenas por apoiar a deciséo
da solucdo, mas também por capturar e documentar decises em forma de registros
de decisGes arquiteturais (ADRs, do inglés, Architecture Decision Records),

promovendo um contexto historico das decisfes discutidas ao longo do projeto.

Adentrando nos detalhes do método proposto pelos autores, o processo é pensado
para ser iterativo durante o ciclo de desenvolvimento de um software, sendo que ele
possui seis etapas, onde algumas sdo automaticas (com auxilio do LLM) e outras

manuais (com intervengdo humana):

1. Automético: Gerar o modelo de dominio e cenérios de caso de uso com base
em requisitos textuais;
Manual: Refinar o modelo de dominio e os cenérios de caso de uso gerados;
3. Automatico: Derivar mudltiplos candidatos a arquitetura e as decisdes
arquiteturais usando o modelo de dominio, os cenarios e os atributos de
qualidade;
Automatico: Avaliar e comparar os candidatos a arquitetura;
Manual: Refinar os candidatos a arquitetura;

Manual: Selecionar o candidato que mais se encaixa no problema.

Na primeira etapa, espera-se transformar os requisitos e atributos de qualidade
fornecidos em uma representacdo do dominio e em cenarios de caso de uso,
priorizando nesses artefatos as relagdes das entidades e omitindo detalhes
especificos dessas entidades (como os atributos e comportamentos), j& que € mais
importante para as decisdes arquiteturais entender essas relagfes pois € através
delas que modulariza-se a arquitetura em componentes. Os cenarios de caso de uso

nessa etapa complementam o modelo de dominio com a descri¢cdo do funcionamento

28

do sistema. Em iteracdes recorrentes futuras nessa etapa, sédo incluidas também as
decisOes arquiteturais e a arquitetura atual para aumentar a assertividade ao gerar

novamente modelos de dominio e cenarios de caso de uso.

Na segunda etapa, o arquiteto deve entender o modelo de dominio e refinar, fazendo
uso inclusive de LLMs com prompts adicionais para auxiliar no processo de

refinamento.

Na terceira etapa, espera-se transformar os requisitos, atributos de qualidade,
cenarios de caso de uso e modelo de dominio em diferentes candidatos a arquitetura
com decisdes arquiteturais. O formato exato de resposta e como sera a interacdo com
o LLM ainda esta em discussao no trabalho de Eisenreich, Speth e Wagner (2024),
sendo que tem sido levantadas hipéteses para fazer com que o LLM faca a diviséo de
componentes da arquitetura. Inclusive, estdo querendo extrair as decisdes

arquiteturais em formato de ADRs.

Na quarta etapa, os autores querem auxiliar o arquiteto a tomar a decisao que melhor
se encaixa no cenario através de uma automacao de avaliacdo arquitetural utilizando
métodos como o ATAM, sendo que a decisdo de qual método utilizar também sera

discutida e caso prove-se ser muito dificil, tornaram essa etapa como semiautomatica.

As etapas 5 e 6 consistem em o arquiteto entender as vantagens e desvantagens de
cada candidato a decisdo arquitetural e escolher uma que melhor se encaixa no
problema, podendo entdo solicitar melhorias com novos prompts para melhorar a
assertividade das respostas. Por fim, todo o processo € iterativo com a finalidade de
suportar a caracteristica iterativa do proprio processo agil de desenvolvimento de
software, assumindo que os requisitos podem mudar e que todo o método poderia ser

iterado novamente.

Os autores fizeram uma analise exploratéria somente da primeira etapa até entao,
utilizando LLaMA2 e GPT-3.5, utilizando como base o estudo de caso do MobSTr, um
sistema de conducdo automatizada com foco em seguranca e rastreabilidade que
aconteceu no desafio industrial WATERS 2019 (Workshop on Analysis Tools and

Methodologies for Embedded and Real-time Systems), um workshop sobre o tema.

29

Neste trabalho, o objetivo é fazer uma analise e aplicacdo préatica apenas da terceira
etapa em uma solucdo real no escopo de uma fintech, etapa que o trabalho de
Eisenreich, Speth e Wagner (2024) ainda nao chegou, utilizando-se do modelo de LLM
“‘GPT-401” da OpenAl.

As etapas 1 a 2 foram retiradas de uma solucéo real e geradas ainda de maneira
manual, tendo sido simplificado e anonimizado, contendo apenas um contexto
delimitado da solugcéo e maior énfase nos atributos de qualidade. Apesar de a etapa
3 mencionar o uso de cendrios de caso de uso, a andlise exploratoria do trabalho de
Eisenreich, Speth e Wagner (2024) contém apenas uma lista de requisitos. Sera
seguido neste trabalho o mesmo formato de requisitos encontrados na analise
exploratéria, sem casos de uso e com énfase em atributos de qualidade, mas
analisando o comportamento do LLM para a geracéo de candidatos a arquitetura de

software e analise de trade-offs.

30

4 CONTEXTO DO PROBLEMA E SOLUCAO REAL

Como ja mencionado, o objetivo deste trabalho é fazer uma analise exploratoria no
uso de LLMs para a tomada de decisdes arquiteturais. Seguindo o0 método proposto
por Eisenreich, Speth e Wagner (2024), através da especificacdo de requisitos textuais
(com énfase em atributos de qualidade) e modelos de dominio de um software real no
escopo de fintechs, o modelo de linguagem de grande escala respondera com padrdes
e estilos arquiteturais junto de uma analise de trade-offs. Com isso, serdo discutidos
os resultados obtidos para entender o0 uso dessa tecnologia para o processo de projeto
de software.

Nesse capitulo, sdo apresentados alguns conhecimentos arquiteturais e a solucéo que
foi implementada em um ambiente real de uma fintech, tendo o contexto do problema
sido simplificado e generalizado, de forma a omitir especificidades da empresa e
reduzir o escopo. O formato escolhido para a representacdo dos requisitos e do
modelo de dominio foi 0 mesmo encontrado na analise exploratdria do método de
Eisenreich, Speth e Wagner (2024).

O sistema em questéao trata da gestdo de inadimpléncia, que é um tema recorrente e
critico em diferentes fintechs, pois impacta diretamente a saude financeira da
organizacdo e contribui para a continuidade operacional do negécio. Em linhas gerais,
inadimpléncia € o ndo cumprimento de obrigacfes financeiras no prazo acordado.
Realizar a gestao da inadimpléncia é um processo composto por diferentes tarefas,
como: entender quem sao os clientes inadimplentes, quais dividas eles possuem,
como cobrar de forma adequada esses clientes, como entender o comportamento da

inadimpléncia ao longo do tempo para tomada de decisdes estratégicas e afins.

Os conhecimentos arquiteturais incluem: a especificacdo textual dos requisitos
funcionais e dos atributos de qualidade, o modelo de dominio inicial pensado para o
problema, a solugdo arquitetural que foi implementada para esse problema e a
identificacédo de trade-offs para essa solucéo arquitetural utilizando o método ATAM.
Sendo que o maior foco € na especificagdo de requisitos de atributos de qualidade,

pois esses sdo 0s que mais impactam na escolha de decisfes arquiteturais. Todos 0s

31

artefatos foram mapeados com base na principal funcionalidade: “O sistema deve

gerenciar a inadimpléncia dos clientes”.

4.1 Requisitos funcionais

Na Tabela 1 sdo apresentados os requisitos que contextualizam o problema, definindo

conceitos importantes para o funcionamento do sistema.

Tabela 1 - Requisitos funcionais textuais do sistema de inadimpléncia

Id Descricdo
FR-1 O sistema deve gerenciar a inadimpléncia dos clientes
FR-1.1 Um cliente inadimplente possui um documento (CPF ou CNPJ), o conjunto de
' suas dividas e seus respectivos pagamentos realizados para essas dividas
Uma divida é caracterizada por: valor bruto, valor liquido (apds todos os
FR-1.2 . : . , -
pagamentos realizados), data de surgimento da divida, motivo da divida
FR-1.3 Um pagamento para uma divida é caracterizado por: valor pago e hora do
' pagamento
Saldo de inadimpléncia é a soma de valor liquido de todas as dividas de todos
FR-1.4 os clientes inadimplentes, agrupado por dia, é caracterizado por: saldo, data de
referéncia, documento do cliente
Inadimpléncia de um cliente € diferenca entre a soma de valor bruto e a soma
de valor liguido de todas as dividas, agrupado por dia e por documento do cliente
FR-1.5 inadimplente, é caracterizado por: saldo, data de referéncia, documento do
cliente, todas as dividas do cliente até a data de referéncia, todos os pagamentos
do cliente até a data de referéncia
FR-1.6 O sistema deve permitir 0 acesso ao histérico de clientes inadimplentes
FrR.17 |© Sistema deve permitir o acesso ao historico de dividas para clientes
' inadimplentes
FR-1.8 O sistema deve permitir 0 acesso ao historico de pagamentos de dividas
O sistema deve emitir um relatério chamado "Foto da Inadimpléncia" com o saldo
FR-1.9 SN) e . .
de inadimpléncia de acordo com o dia solicitado, que & uma data de referéncia
O sistema deve emitir um relatério chamado "Inadimpléncia do Cliente",
FR-1.10 contendo a inadimpléncia de um cliente especifico e informando de maneira

detalhada todas as dividas e pagamentos desse cliente (com todas as
caracteristicas de dividas e pagamentos)

Fonte: Elaborado pelo autor.

A coluna “Id” (Identificador) identifica os requisitos para facilitar a interacdo com o LLM,

ao solicitar novos prompts ou o modelo precisar citar eles. Os requisitos foram

derivados da principal funcionalidade de “gerenciar inadimpléncia dos clientes”, que é

descrita no FR-1; FR € sigla para Requisito Funcional (do inglés, Functional

Requirement). Por isso, todos os requisitos seguem uma hierarquia de numeragao

derivados do FR-1, como por exemplo, o FR-1.1. A descricdo dos requisitos

32

representa as principais funcionalidades que o sistema deve atender com foco em

entender termos de negdcio e a relacao entre diferentes entidades.

4.2 Atributos de qualidade

A seguir na Tabela 2 sdo apresentados os atributos de qualidade que contextualizam
a solucao arquitetural implementada para o problema. Nas colunas da Tabela 2, a
Categoria, representa qual é o escopo de problema que o atributo de qualidade se
encaixa. As categorias podem ser: “Precisdo; Disponibilidade; Confiabilidade;
Desempenho; Capacidade; Observabilidade; Auditabilidade”. Ja a “Métrica de
Sucesso”, quantifica o atributo de qualidade de maneira que fique clara a expectativa
de como o sistema atende a esse atributo. Ainda na Tabela 2, alguns atributos de
qualidade estao descritos com alguns termos como “D-0” e “D-1”, essa homenclatura
€ uma forma de referenciar temporalidade em dias (“D”) relativos a data de ocorréncia
de geracdo dos dados. Por exemplo, D-6 de uma data especifica seriam 6 dias antes
dessa data. A coluna “Id” (Identificador) identifica os requisitos ndo funcionais (NFR,
do inglés, Non-Functional Requirement, conhecidos também como atributos de
gualidade) para facilitar a interacdo com o LLM, ao solicitar novos prompts ou o

modelo precisar citar eles.

33

Tabela 2 - Atributos de qualidade do sistema de inadimpléncia.

Id Descricao Categoria Métrica de Sucesso
FR-1 | O sistema deve gerenciar a inadimpléncia dos | - -
clientes
NFR- | Erros em célculos financeiros envolvendo dividas e | Preciséo Taxa de erro em
1.1 pagamentos precisam ser igual ou inferior a um operacdes
milionésimo (0,000001), principalmente para manter matematicas
o saldo de inadimpléncia correto envolvendo decimais
<=10°(-6)
NFR- | O relatério de "Foto da Inadimpléncia”, quando é | Disponibilidade | Tempo de resposta
1.2 solicitado em D-0 em relacéo ao dia atual do sistema <= 2 minutos
como data de referéncia deve estar disponivel em
até 2 minutos apoés solicitado a sua emissao
NFR- | O relatério de "Foto da Inadimpléncia”, quando é | Confiabilidade | (Saldo da
1.3 solicitado em D-0 em relagdo ao dia atual do sistema inadimpléncia real -
como data de referéncia pode conter divergéncias Saldo da
de até 1 milhdo em relagdo ao saldo da inadimpléncia
inadimpléncia real final do préprio dia reportado) <=1
milhdo
NFR- | O relatério de "Foto da Inadimpléncia", quando é | Disponibilidade | Tempo de resposta
14 solicitado em D-1 em relacéo ao dia atual do sistema <= 40 minutos
como data de referéncia deve estar disponivel em
até 40 minutos apo6s solicitado a sua emissao
NFR- | O relatério de "Foto da Inadimpléncia”, quando é | Confiabilidade (Saldo da
15 solicitado em D-1 em relagdo ao dia atual do sistema inadimpléncia real -
como data de referéncia ndo pode ter divergéncias Saldo da
relacdo ao saldo da inadimpléncia real final do inadimpléncia
préprio dia reportado) = 0
NFR- | O relatério de "Inadimpléncia do Cliente", quando é | Disponibilidade | Tempo de resposta
1.6 solicitado em D-0 em relacéo ao dia atual do sistema <=1 minuto
como data de referéncia deve estar disponivel em
até 1 minuto apés solicitado a sua emissao
NFR- | O sistema deve suportar a persisténcia de novas | Desempenho Tempo de resposta
1.7 dividas em até 500 milissegundos <=500ms
NFR- | O sistema deve permitir o acesso ao histérico de | Desempenho Tempo de resposta
1.8 novos pagamentos em até 400 milissegundos <= 400ms
NFR- | O sistema deve suportar a persisténcia concorrente | Capacidade Throughput >= 50
1.9 de até 50 novas dividas transagbes
simultaneas
NFR- | O sistema deve suportar o registro persistente | Capacidade Throughput >= 600
1.10 | simultdneo de até 600 novos pagamentos transagodes
simultaneas
NFR- | O sistema deve emitir métricas sobre Throughput, | Observabilidade | Ter dashboard de
111 | Tempo de resposta, Laténcia de todas as Observabilidade
dependéncias de I/0
NFR- | O sistema deve manter o histérico de dividas, | Auditabilidade Dados recuperaveis
1.12 | pagamentos e clientes inadimplentes por 6 anos por até 6 anos
para fins de auditoria
NFR- | O histérico solicitado dentro desse periodo de 6 | Disponibilidade | Tempo de resposta
1.13 | anos para fins de auditoria pode ser emitido em até <=5 dias

5 dias

Fonte: Elaborado pelo autor.

34

Os atributos de qualidade foram derivados da principal funcionalidade de “gerenciar
inadimpléncia dos clientes”, que é descrita no FR-1. Por isso, todos os atributos de
gualidade seguem uma hierarquia de numeracao derivados do FR-1, como por
exemplo, o NFR-1.1. Esses requisitos possuem um contexto sobre tamanho da

companhia, justificando os niumeros apresentados na tabela.

4.3 Modelo de dominio

A Figura 1 apresenta o diagrama de dominio para os requisitos mencionados na
Secao 4.1, utiizando o formato de representacdo de diagrama de classes na
linguagem UML (Unified Modeling Language).

Figura 1 - Diagrama do modelo de dominio dos requisitos funcionais.

Sistemanelnadimplencia\

© RelatorioFotolnadimplencia ©Helatnrinlna dimplenciaDoCliente

©Clientelnadimplente

o documento: String

1..*

@ Divida

© Saldolnadimplencia -
o valorBruto: Decimal

o saldo: Decimal o valorLiguido: Decimal
o dataDeReferencia: Date o dataSurgimento: Date
o motivoDaDivida: String
1
0.*

© Pagamento

o valorPago: Decimal
o horaPagamento: DateTime

Fonte: Elaborado pelo autor.

35

No diagrama, o Cliente Inadimplente € composto por suas respectivas dividas. Nesse
contexto, sdo criados somente Clientes quando eles ja estdo inadimplentes (ou seja,
nao cumpriram obrigacdes financeiras no prazo acordado), portanto, a Divida precisa
existir e isso explica a relagdo de um Cliente Inadimplente que € composta por no

minimo uma ou mais dividas.

Essas dividas podem ser pagas parcialmente ou totalmente, entdo uma divida tem

uma relagdo de associagdo com nenhum ou diversos pagamentos.

O Saldo da Inadimpléncia é gerado diariamente diversas vezes ao longo do dia,
sempre que uma nova divida é criada, aumentando o saldo de inadimpléncia do cliente
ao longo do tempo, por isso o Saldo estd em relacdo de composi¢cdo com o Cliente
Inadimplente, sendo que o Cliente Inadimplente é o objeto-todo responsavel por criar
e destruir suas respectivas partes, tanto na relacdo com a Divida quanto a relacéo do

Saldo da Inadimpléncia.

Como apresentado na Secgédo 4.1, existem dois relatérios: “Foto da Inadimpléncia” e
“Inadimpléncia do Cliente”, em que o primeiro é uma visdo geral de todas as dividas
de todos os clientes inadimplentes agrupados por dia; e o segundo, € o detalhamento
da inadimpléncia de um cliente especifico, contendo também o saldo de inadimpléncia
desse cliente junto com os detalhes das dividas. Por isso, no diagrama da Figura 1,
observa-se que os relatorios possuem uma relacdo de agregacdo com o Cliente
Inadimplente e 0 que muda entre eles € exatamente a relacdo de multiplicidade, que

pode estar relacionado com muitos clientes ou apenas um.

36

4.4 Solucéao real implementada

A partir dos requisitos funcionais, modelos de dominio e atributos de qualidade, as
seguintes decisdes arquiteturais foram escolhidas como uma solugao real para o
problema, usado por uma empresa fintech, descritos na Tabela 3. A coluna “Id”
(Identificador) identifica os requisitos para facilitar a interagdo com o LLM, ao solicitar

novos prompt e analisar as respostas do modelo.

Tabela 3 - Decisdes arquiteturais do sistema de inadimpléncia

Id Decisdo Vantagens Desvantagens
ADR-1 | DDD Aggregate Promove abstracdo de transagBes na | Pode aumentar a curva de
Pattern camada de dominio e garante aprendizado sobre o sistema
consisténcia interna, reduz impactos e pode gerar problemas de
de operacdes concorrentes desempenho se nao for bem
pensado o escopo dos
agregados
ADR-2 | Money Pattern Promove coesédo e semantica de Pode gerar alocacdes
valores financeiros, garante abstracdo | excessivas ha memoria e
de arredondamentos por todo o aumenta curva de
cédigo aprendizado sobre o sistema
ADR-3 | CQRS Pattern Otimiza operacgdes de leitura e Consisténcia eventual pode
escrita, melhorando desempenho e aumentar complexidade de
incentiva a escalabilidade horizontal manutenc¢do e detecc¢do de
erros
ADR-4 | Cache Write- Promove reducéo no tempo de Pode aumentar complexidade
Through Pattern resposta, alivia carga de banco de de manutengé&o por ter que
dados operacional e promove a lidar com expiragéo do cache
sensacao de disponibilidade
percebida por clientes do sistema
ADR-5 | Banco de dados Reduz problemas relacionados a Pode aumentar complexidade
com propriedades | concorréncia, reduz problemas em para escalabilidade em alto
ACID cenarios de falha volume de transacdes
simultaneas
ADR-6 | Pub/Sub Pattern Promove processamento assincrono, | Pode aumentar complexidade
facilitando a geracao de novos dados | de manutencéo e ser dificil de
em cenarios de alto volume de dados | investigar problemas,
dependendo onde ¢é aplicado

Fonte: Elaborado pelo autor.

37

As decisOes arquiteturais contém diversos padrdes escolhidos intencionalmente para
atender aos requisitos especificos. Como observado no Capitulo 3 sobre Arquitetura
de Software, existe uma linha ténue entre design de alto nivel e baixo nivel, entdo os
padrbes descritos na Tabela 3 podem ter diferentes pontos de vista: visdo de codigo,
armazenamento de dados, relacédo entre componentes do software e afins. A tabela
mostra como essas decisdes afetam os diferentes atributos de qualidade e quais

trade-offs essas decisbes carregam.

A seguir, na Tabela 4, observa-se a relagédo de quais decisdes arquiteturais afetam

guais atributos de qualidade mencionados na Secéo 4.2.

Ao analisar a relacdo entre a Tabela 3 e a Tabela 4, observa-se que as vantagens
encontradas na decisao arquitetural (ADR) afetam multiplos atributos de qualidade.
Isso acontece porque os atributos de qualidade apesar de muitas vezes apresentarem
propostas especificas, ainda fazem parte de uma categoria de problemas que séo
comuns entre eles. Por exemplo, os atributos de qualidade “NFR-1.3; 1.5; 1.9 e 1.10”
envolvem métricas de sucesso que sdo sobre transa¢cfes simultaneas (concorréncia,
gue esta relacionado a capacidade) e divergéncias de numeros (confianca desses
nameros, relacionado a confiabilidade); pontos em que o Aggregate Pattern tratam

através de abstracdes sobre uso de transa¢cfes na camada de dominio.

Outro ponto importante é que existem algumas decisfes que até poderiam afetar
ainda mais categorias diferentes, como a “ADR-4" que fala sobre um padrao de Cache;
esse padrao até poderia ser uma vantagem para a categoria de “Desempenho”, além
da categoria “Disponibilidade” e “Auditabilidade” que s&o referenciadas na Tabela 4,
porém, no sistema real foi tomada a deciséo de uso de Cache somente nos fluxos dos
atributos “NFR-1.2; 1.4; 1.6 e 1.13”, isso porque pelo contexto do sistema, nao teriam
ganhos de usar cache no momento de insercbes de novas dividas no escopo
transacional. Portanto, a relacdo na Tabela 4 mostra também quais ADRs foram

utilizadas em atributos especificos considerando outros contextos fora do escopo aqui.

Tabela 4 - Relacéo entre quais decisdes arquiteturais atendem a quais atributos de qualidade no

sistema de inadimpléncia

38

Id Atributo(s) atendido(s) | Categorias de atributos

ADR-1 NFR-1.3; Confiabilidade;
NFR-1.5; Capacidade
NFR-1.9;
NFR-1.10

ADR-2 NFR-1.1 Preciséo

ADR-3 NFR-1.2; Disponibilidade;
NFR-1.4; Desempenho;
NFR-1.6; Auditabilidade;
NFR-1.7; Capacidade
NFR-1.8;
NFR-1.9;
NFR-1.10;
NFR-1.12;
NFR-1.13

ADR-4 NFR-1.2; Disponibilidade;
NFR-1.4; Auditabilidade
NFR-1.6;
NFR-1.13

ADR-5 NFR-1.3; Confiabilidade;
NFR-1.5; Desempenho;
NFR-1.9; Capacidade
NFR-1.10

ADR-6 NFR-1.2; Disponibilidade;
NFR-1.3; Confiabilidade;
NFR-1.11 Observabilidade

Fonte: Elaborado pelo autor.

4.5 Instrucdes para o modelo de linguagem de grande escala

Através de todo o conhecimento arquitetural citado nas Secdes 4.1, 4.2 e 4.3
(requisitos funcionais, atributos de qualidade e modelagem inicial do dominio), foi
estruturado um prompt para interagir com o modelo de LLM, utilizando algumas das
diversas técnicas encontradas no site da OpenAl, que sdo mais detalhadas no
Capitulo 2. O conhecimento arquitetural foi condensado em formatos textuais para
facilitar o uso do LLM, sendo que foi utilizado a linguagem especifica de dominio (DSL,

do inglés, Domain-Specific Language) PlantUML para o diagrama de classes e

39

arquivos CSV (do inglés, Comma-separated values, valores separados por virgula)
para os requisitos textuais e atributos de qualidade. A Figura 2 mostra o prompt que

foi criado.
Figura 2 - Prompt criado para o LLM

Vocé é um arquiteto de software. Sua tarefa é me fazer enxergar pontos que talvez eu néo iria ponderar na hora de tomar decisées sobre um

projeto. Pense passo a pa

ArC'IlTHrtLIIF e
re. Seja crlativo na

roes, focando principalmente em
U al) cada um desses estilos e
p1d|oe: aj ud1n| (ou at

3- Leia o modelo de dominio que vou te mandar em formato de PlantUML em texto para entender o contexto
do problema.

4- L'—‘lr! 0S IFqlllHlTI)H que vou te ﬂmlui-:r em formato de CSV, onde tem as seguintes colunas, a coluna
d F ir~ Qualids (Fitness Function)",
que esta na coluna

to prévio que vocé uiriu em nos conversa, me traga estilos e padrdes
erar na hora de decisbes sobre a solugdo técnica para esse problema.

od),

yt, foque em buscar contexto 0s pontos 1 e 2.
tUML no proximo prompt, SO mi resposta formatada

Fonte: Elaborado pelo autor.

E possivel perceber na Figura 2 que uma das principais técnicas empregadas na
construcéo do prompt € o aproveitamento da funcionalidade de cadeia de pensamento
(Chain of Thought) do modelo GPT-401 da OpenAl para quebrar um problema grande
em subproblemas e deixar bem especificado todas as expectativas que se tem de
resposta, incluindo o pedido para que o modelo atue com o papel de arquiteto de

software, aplicando a técnica também de atribuicdo de personas no prompt.

Outra técnica importante aplicada é a de “dar espaco para o modelo pensar”, no qual
esse primeiro prompt € enviado, aguarda-se a resposta do modelo para ele entender
as instrucdes e sO depois envia-se o diagrama de classes do modelo inicial de dominio
em PlantUML. Novamente, aguarda-se o feedback do LLM para ela “entender o

conteudo” e entdo, envia-se por fim, 0s requisitos textuais em formato CSV. No total,

40

foram trés interacdes de prompts com o modelo, sendo que as duas ultimas ndo serédo
apresentadas em figuras pois sdo basicamente os mesmos topicos apresentados nas
secbes 4.1, 4.2 e 4.3, s6 que em formatos especificos. Serdo discutidos os resultados

no capitulo seguinte.

Durante a fase de concepcdo do prompt, foi testado diversas outras técnicas
diferentes e percebeu-se que nem todas trouxeram tanta assertividade. Quanto
menos contexto e mais “solicitacbes ao mesmo tempo” um prompt contém, a
sensacao € que o modelo acaba sendo menos assertivo. Essas “solicitagbes ao
mesmo tempo” seriam multiplas tarefas sem especificar qual € a ordem a ser seguida
ou sem deixar claro o formato e resultado esperado. Por exemplo, pedir ao modelo
algo muito genérico como “Traga trade-offs baseado nos requisitos que vou te enviar”
acaba sendo pouco efetivo, 0 modelo comeca a dar respostas que nao fazem sentido
ou gque pouco ajudam (termo geralmente conhecido como alucinacdes de modelos de

LLM).

41

5 RESULTADOS OBTIDOS DO MODELO DE LINGUAGEM
DE GRANDE ESCALA

Ap6s o envio do primeiro prompt estruturado apresentado na secao 4.5, um fenébmeno
interessante ja pode ser notado logo na primeira resposta que o LLM apresenta, em
que € visto um processo de “pensamento” mesmo, buscando entender justamente
guais referéncias pode-se utilizar da literatura e sugerindo diversos padrdes e estilos
arquiteturais diferentes. A primeira resposta é bem longa por essa caracteristica, entdo
a Figura 3 apresenta apenas parte dessa resposta. A iteragdo completa com o modelo
de LLM esta no APENDICE A — PROMPT E SAIDA COMPLETA DO LLM.

E possivel perceber na Figura 3 que todas as técnicas de prompt empregadas fazem
a diferenga, pois antes do modelo tentar responder de maneira direta, nota-se a coleta
de todo o contexto necessario para preparar a resposta final, claramente isso é o
aprendizado de contexto mencionado no Capitulo 2 que esta em execucdo, sendo
notavel uma das caracteristicas mais interessantes desse tipo de Inteligéncia Artificial.
N&o foi preciso ter conhecimento sobre algoritmos complexos de Deep Learning ou
entendimento profundo sobre estatistica aplicada para induzir o modelo a fazer uma

tarefa avancada.

Figura 3 - Primeira resposta do LLM ao prompt inicial enviado
Entendido. Abaixo segue meu entendimento e a busca de contexto para os pontos 1 e 2 (ainda
nao respondendo o passo 6, conforme solicitado):

Contexto Buscado — Passo 1 (Coletar Estilos e Padroes Arquiteturais):
Em termos de literatura classica e moderna sobre Arquitetura de Software, algumas obras de

referéncia incluem:

s “Software Architecture in Practice” (Bass, Clements, Kazman)
“Fundamentals of Software Architecture” (Mark Richards, Neal Ford)
“Patterns of Enterprise Application Architecture” (Martin Fowler)
“Documenting Software Architectures: Views and Beyond” (Clements, et al.)

“Enterprise Integration Patterns” (Gregor Hohpe, Bobby Woolf)

A partir dessas referéncias, podemos destacar diferentes estilos e padrSes arquiteturais:
Estilos Arquiteturais (Architectural Styles):

. Camadas (Layered Architecture)

. Hexagonal/Ports and Adapters

. Arquitetura em Microservices

. Arquitetura Monolitica

. Arquitetura Orientada a Servicos (SOA)

. Arquitetura Baseada em Eventos (Event-Driven Architecture - EDA)

. Arquitetura Orientada a Mensagens (Message-Oriented Middleware - MOM)

. Arquitetura Pipeline/Filter

. Arquitetura Baseada em Componentes (CBA)

Padroes Arquiteturais (Architecture Patterns):
Do ponto de vista de padrdes, muitas vezes sdo vistos como solugdes para problemas recorrentes de

design dentro de um estilo. Alguns exemplos:
. Model-View-Controller (MVC)
. Model-View-Presenter (MVP)
. Model-View-ViewModel (MVVM)

. Domain-Driven Design (DDD) patterns (Aggregate, Domain Services, Bounded Context,
Repository)
. Padroes de Integracdo Empresarial (como o “Saga Pattern”, “Event Sourcing”, “CQRS”,

“Publish/Subscribe”, “Anti-corruption Layer”, “Strangler Fig", etc.)
. Padrées de Otimizacio de Performance (Caching, Circuit Breaker, Bulkhead, etc.)
Contexto Buscado — Passo 2 (Vantagens, Desvantagens, Atributos de Qualidade):

Abaixo sequem vantagens e desvantagens de alguns estilos e padrées, bem como quais atributos de

qualidade impactam:

Fonte: Elaborado pelo autor.

43

Depois, ao enviar o modelo inicial de dominio em formato de PlantUML, o modelo

responde da seguinte forma, na Figura 4.
Figura 4 - Segunda resposta do LLM para o modelo de dominio

Thought about domain model structure por 4 segundos

Entendido. A partir do diagrama de dominio em PlantUML, vejo um contexto voltado para um
sistema de inadimpléncia, onde temos entidades como Clientelnadimplente, Divida, Pagamento,
Saldolnadimplencia, alem de relatorios especificos para acompanhar a situacao desses clientes. Isso
sugere um dominio voltado a gestio financeira, tracking de dividas, pagamentos e geracdo de
relatorios.

Focando ainda nos pontos 1 e 2 (levantamento de contexto sobre estilos e padrées arquiteturais e
seus impactos em atributos de qualidade), compreendo que o dominio apresentado pode vir a se
beneficiar de padrdes e estilos que facilitem a manutencao, escalabilidade e testabilidade,
principalmente considerando que o dominio lida com regras de negocio sensiveis (calculos de saldo,

valores pagos, surgimento de dividas ao longo do tempo). Por exemplo:

* Estilos mais modulares (como Arquitetura em Camadas ou Hexagonal) podem ajudar na

manutenibilidade e testabilidade.

Padrées como DDD podem ajudar a capturar as nuances do dominio de inadimpléncia de forma

clara, reduzindo complexidade a longo prazo.

Caso haja necessidade de escalabilidade e distribuicao, padrées de microservices ou event-

driven podem ser considerados, embora aumentem a complexidade operacional.

Em resumo, compreendi o contexto do dominio e continuo focado em entender como as diferentes

abordagens arquiteturais (pontos 1 e 2) podem se alinhar com os requisitos nao funcionais,

preparando o terreno para, apds receber o CSV (com requisitos e métricas de sucesso), propor uma

analise de trade-offs conforme solicitado.

O b POy

Fonte: Elaborado pelo autor.

E visivel que o modelo ja comeca a afunilar a resposta conectando o contetido que
ele coletou na Figura 3 com o novo conhecimento arquitetural (o diagrama inicial do
modelo de dominio), apesar de ainda néo ser a resposta final do modelo, ele comeca
a citar pontos como “talvez trazer estilos modulares como a Arquitetura em Camadas
ou Arquitetura Hexagonal possa ajudar no longo prazo”. O ChatGPT permite também
visualizar quais foram os processos executados internamente do Chain of Thought,

reforcando como ele estava afunilando a resposta, como pode ser visto na Figura 5.

44

Figura 5 - Processo de Chain of Thought interno do modelo de LLM para fornecer a segunda resposta

Detalhes

Honing tradeoffs

The user is working on ATAM step 4, emphasizing
tradeoffs. They are awaiting a CSV file to complete the
analysis. The ATAM outcome will be delivered after the
CSV is provided.

Working through the steps

OK, let me see. I've examined the domain model and

now I'm waiting for the CSV to complete the analysis.
I'm focusing on understanding and gathering context
for points 1 and 2.

Piecing it together

Received the UML model and piecing together steps 5
and 6. Waiting for the CSV file to finish the analysis in
the next conversation.

Fonte: Elaborado pelo autor.

Na Figura 5, o processo de Chain of Thought fica muito evidente, ele comega a
‘raciocinar” de forma sequencial: “Preciso formatar a resposta utilizando ATAM e
avaliar trade-offs”; “Vou examinar o modelo de dominio agora e focar em entender o

contexto por completo”; “Quando eu receber o arquivo CSV com 0s requisitos, vou

juntar tudo para emitir a resposta final”.

Por fim, a resposta final para o modelo com a analise de trade-offs é apresentada nas

Tabelas 5 e 6.

45

Tabela 5 - Resposta final do LLM com as decisfes arquiteturais

Decisao

Vantagens

Desvantagens

Arquitetura em
Camadas +
Domain-Driven
Design (DDD)

O DDD combinado com uma arquitetura
em camadas (Aplicagdo, Dominio,
Infraestrutura) melhora a
manutenibilidade e clareza do dominio,
facilitando garantir a precisdo (NFR-1.1)
nos célculos financeiros e mantendo
regras de negécio coerentes. Também
torna mais simples a auditabilidade
(NFR-1.12), ja que o dominio é bem

definido e rastreavel.

Pode aumentar a complexidade
inicial de desenvolvimento e o
tempo de resposta (por adicionar
camadas), comprometendo parte
das metas de desempenho (NFR-
1.7 e NFR-1.8) se ndo houver
otimizagdes. Além disso, o
acréscimo de camadas pode afetar
a laténcia e dificultar atingir metas
de tempo estritas para relatérios
(NFR-1.2, NFR-1.4, NFR-1.6).

Arquitetura
Hexagonal (Ports

and Adapters)

Ajuda na flexibilidade e substituicdo de
fontes de dados ou servigos externos,
facilitando a observabilidade (NFR-1.11)
e 0 cumprimento de requisitos de
auditabilidade. Permite manter a
precisdo no dominio central, isolado de
infraestruturas que podem introduzir

erros.

Exige maior esforco de
configuracao inicial e abstracdes
adicionais, 0 que pode afetar
desempenho em cenarios de alto
throughput (NFR-1.9, NFR-1.10), ja
gue cada porta/adaptador pode
adicionar overhead.

Microservices +
Event-Driven
Architecture
(EDA)

Pode facilitar a escalabilidade horizontal
(NFR-1.9 e NFR-1.10) e aumentar a
capacidade do sistema de lidar com
grandes volumes de transacdes
simultaneas, além de permitir resiliéncia
e disponibilidade (NFR-1.2, NFR-1.6,
NFR-1.4) distribuindo a carga entre
diferentes servigos. A separacao de
componentes pode também facilitar
reportar métricas e atingir requisitos de
observabilidade (NFR-1.11).

A comunicacao assincrona e
distribuida pode introduzir
dificuldades em garantir precisédo
(NFR-1.1) e confiabilidade estrita
nos relatérios (NFR-1.3, NFR-1.5),
gerando discrepancias nos dados
em tempo real. Também aumenta a
complexidade de coordenagéo,
debug e testes, o que pode
prejudicar manutenibilidade e
auditabilidade caso ndo haja uma
boa estratégia de versionamento e

rastreamento de eventos.

Fonte: Elaborado pelo autor.

46

Tabela 6 - Resposta final do LLM com as decisdes arquiteturais (continuacéo)

Decisdo

Vantagens

Desvantagens

CQRS (Command Query
Responsibility Segregation) +
Event Sourcing

Facilita a auditabilidade (NFR-
1.12) e consulta historica
(NFR-1.13) por armazenar o
histérico completo de eventos.
Pode ajudar a gerenciar o alto
throughput (NFR-1.9, NFR-
1.10) isolando comandos de
leituras, melhorando
disponibilidade e
escalabilidade na geracao de

relatorios com dados antigos.

Aumenta a complexidade do
modelo de dados e exige
infraestrutura adicional. A
recomposicao do estado pode
afetar desempenho se néo for
bem projetada, dificultando
atender metas estritas de
tempo para relatérios (NFR-
1.2, NFR-1.4, NFR-1.6). Além
disso, garantir precisdo com
célculos financeiros ao
reconstituir estados a partir de
eventos pode ser trabalhoso e
suscetivel a erros se nao

houver validag&o rigorosa.

Padrées de Performance
(Caching, Circuit Breaker) e

Otimizagdo de Laténcia

Uso de cache pode reduzir
tempo de resposta dos
relatérios imediatos (NFR-1.2,
NFR-1.6), e circuit breakers
podem melhorar a
disponibilidade sob falhas de
servicos externos. Isso ajuda a

atingir metas de desempenho.

O cache pode introduzir
discrepancias entre o estado
real e o estado retornado,
comprometendo a preciséo
(NFR-1.1) e a confiabilidade
(NFR-1.3, NFR-1.5),
principalmente em relatérios
financeiros sensiveis. Circuit
breakers e politicas de fallback
podem devolver dados
desatualizados ou incompletos,
prejudicando a consisténcia

dos relatorios.

Fonte: Elaborado pelo autor.

Apbs todo o contexto adquirido, o modelo responde atendendo as solicitacdes exatas

feitas no prompt, seguindo uma metodologia adaptada do ATAM com analise de trade-

offs, e referenciando de maneira breve quais atributos de qualidade sao atendidos por

quais decisbes. Os resultados sdo mais bem discutidos na proxima secao.

47

5.1 Discussao

A primeira observagéo que é possivel retirar nos resultados do LLM, € que existe uma
solugéo interessante para o problema levantado por Eisenreich, Speth e Wagner
(2024) e que foi citado no Capitulo 1 deste trabalho, em que basicamente os autores
enfatizam que os engenheiros de software tendem a escolher apenas padrdes e
estilos arquiteturais que eles ja trabalharam em algum momento, descartando
decisdes que se encaixariam melhor no projeto. Nos resultados, apareceram diversas
decisfes arquiteturais novas e diferentes das que foram mostradas na Secéo 4.4, que
mostra a solucdo real implementada. Sendo que, todas as decisfes arquiteturais
existem e geralmente s&o abordagens consideradas no ambiente real de
desenvolvimento de software, nao teve nenhuma alucinacdo da parte do modelo de

LLM sobre padrdes ou estratégias que ndo existem.

Isso enfatiza o fato de que, podemos utilizar 1A tanto para acelerar o processo de
tomada de decisdo arquitetural, quanto para extrair novas ideias que antes nao
estavam claras ou que nao foram discutidas por um cenario de arquitetura emergente,

principalmente em ambientes ageis de software.

Quanto a qualidade da resposta pensando nos trade-offs, é possivel perceber que o
modelo errou pouco, pois ele conseguiu tanto agrupar diversas categorias de atributos
de qualidade de maneira muito parecida de como foi feita na solucéo real apresentada
neste trabalho; quanto citar trade-offs que sédo realmente relevantes. Um exemplo é o
padrdao CQRS, que o modelo cita que isso facilitaria a auditabilidade e a consulta
histérica, podendo também ajudar em disponibilidade e escalabilidade; sendo que
esses pontos foram exatamente os mesmos pontos enfatizados na solugéo real na
Secéo 4.4, sendo que outro fato surpreendente é que ele cita alguns atributos afetados
gue também sao idénticos aos citados como vantagem na solucéo real, como o NFR-
1.9 e NFR-1.10.

Um exemplo claro da qualidade da resposta é a menc¢éo sobre Caching, que também
cita os mesmos NFR-1.2 e NFR-1.6 como sendo beneficiados por essa decisédo

arquitetural, tanto no modelo de LLM, como na solucéo real.

48

Outro ponto que se pode perceber € que nem todas as decisdes citadas na solucéo
real aparecem na resposta do modelo, principalmente os padrées menores que ainda
afetam decisdes arquiteturais. Um exemplo claro € sobre o NFR-1.1 que fala sobre
precisédo, o modelo acaba citando de maneira genérica que algumas técnicas de DDD
podem ajudar, mas ndo fala exatamente quais técnicas. O Money Pattern costuma
aparecer em estudos relacionados a DDD, de fato; mas a solucéo real apresentada
cita esse padrao de forma especifica, enquanto o modelo de LLM deixa mais genérico.
Apesar de ser uma desvantagem, se for pensar que alguns engenheiros podem nem
conhecer técnicas de DDD, s6 o fato de o modelo citar de maneira genérica, ja € algo
gue poderia gerar um tipo de insight para buscar mais sobre o tema. Inclusive
elencando o exemplo sobre Caching novamente, o modelo fala de forma genérica
sobre adocao dele, enquanto na solucao real foi optado um padréo especifico de
Cache Write-Through Pattern.

Durante os experimentos deste trabalho, percebeu-se que o uso de GPT-401 fez muita
diferenga. Como j& citado algumas vezes, a capacidade do modelo de utilizar técnicas
de Chain of Thought internamente acaba sendo essencial para esse tipo de tarefa
complexa envolvendo tomada de decisdes arquiteturais e 0 modelo depender de tanto
contexto e conhecimento de diferentes fontes para dar respostas assertivas. Quando
foi testado durante o desenvolvimento deste trabalho o uso de modelos como o GPT-
4 ou GPT-3 para executar as mesmas tarefas, pela falta dessa técnica, as respostas

nao foram boas.

Um aspecto ndo tdo positivo é que, como mencionado na Sec¢éo 4.5, o processo de
estruturacéo de prompts requer um conhecimento de técnicas que ainda estado sendo
descobertas e moldadas, até porque o assunto de LLMs ainda € algo recente. Ou seja,
existem poucos conteldos sobre como estruturar um prompt de uma maneira ideal; e
guando ndo se conhecem essas técnicas, as primeiras respostas parecem
desanimadoras, podendo entdo desmotivar engenheiros ou arquitetos a quererem
buscar mais sobre o tema e acharem que os LLMs ainda sdo muito imaturas. Para
melhorar esse aspecto, seria interessante ver novos produtos ou sistemas que
encapsulam toda a dificuldade de ter que aprender como estruturar um prompt para
tomar decisfes arquiteturais, ou entao, fazer com que essas técnicas sejam cada vez

mais difundidas tanto no ambiente corporativo, como académico.

49

Inclusive, ainda comentando sobre produtos ou sistemas que poderiam encapsular e
automatizar a tarefa de avaliacdo de decisdes arquiteturais, uma coisa que facilitaria
muito seria a cria¢do de algum tipo de DSL que também ajudasse a estruturar a forma
de pensar e descrever requisitos funcionais e atributos de qualidade, porque em geral,
boa parte do motivo pelo qual a qualidade da resposta foi muito boa, é porque os
requisitos estavam bem estruturados; algo que acontece poucas vezes em ambientes
reais corporativos. Talvez nesse aspecto o método completo proposto por Eisenreich,
Speth e Wagner (2024) possa ser efetivo, pois ele propde uma iteracdo completa que
conta com a ajuda da IA para estruturar esses requisitos. Inclusive usar a propria IA
generativa para coletar, juntar e transformar conhecimento arquitetural desestruturado
encontrado no ambiente corporativo em informacgdes estruturadas também poderia ser

um excelente caminho.

50

6 CONSIDERACOES FINAIS

O uso de IA generativa, mais especificamente, os LLMs, tem empolgado diversos
entusiastas na area justamente pelo seu aprendizado de contexto. Algo que neste

trabalho, foi possivel analisar acontecendo na prética.

Este trabalho €, de certa forma, uma validagcdo e um complemento de uma etapa
proposta no método de geracdo semiautomatica de candidatos a Arquitetura de
Software, que é o trabalho proposto por Eisenreich, Speth e Wagner (2024),
enfatizando que o tema é promissor e pode trazer bons frutos. Quanto aos resultados
gue esperava-se alcancar fazendo o estudo neste trabalho, eles foram positivos e
trazem alguns complementos ao trabalho dos autores, pois utiliza-se de um software
real e ainda utiliza um modelo recente de LLM que possui técnicas novas na area.
Muitas técnicas de LLM ainda estdo em processo de estruturacdo e ha muito espaco
para novos estudos nessa area. Apesar das andlises evidenciarem resultados
interessantes, a IA vem apenas para facilitar e automatizar parte do trabalho, sendo
qgue intervencdes humanas ainda sdo completamente necessarias para evitar

alucinagoes.

A é&rea de Arquitetura de Software costuma ter muito conhecimento arquitetural e
contexto especifico aplicado para cada situacao, pois € o que diferencia um software
do outro. Essa caracteristica impulsiona o uso de LLMs na area, mas as respostas

devem ser analisadas cautela para tomar decisées assertivas.
Como possiveis trabalhos futuros, pode-se mencionar as seguintes oportunidades:

e Poderia ser testado outras etapas do método do trabalho de Eisenreich, Speth
e Wagner (2024), ou testar em diferentes situacdes e softwares existentes;

e O uso de LLMs para Arquitetura de Software parece se encaixar muito bem,
pode-se buscar maneiras diferentes sobre como melhorar processos
arquiteturais envolvendo essas novas técnicas;

e As técnicas de LLMs ainda sdo muito novas e pouco conhecidas, pode-se
existir trabalhos de treinamento no ambiente corporativo e académico ou

ferramentas e abstracdes que facilitem o uso e aplicacéo de técnicas, como o

51

uso de DSL para encapsular formatos especificos de escrita textual dos

atributos de qualidade.

52

REFERENCIAS

AWS. Caching patterns - Database Caching Strategies. AWS Docs, 2024. Disponivel em:
<https://docs.aws.amazon.com/whitepapers/latest/database-caching-strategies-using-
redis/caching-patterns.html>. Acesso em: 05 Dezembro 2024.

BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in Practice. 32 ed. [S.L]:
Addison-Wesley Professional, 2013. 45;80-87 p.

DE DIANA, M. J. D. O.; KON, F.; GEROSA, M. A. Conducting an Architecture Group in a Multi-
team. Department of Computer Science — University of Sao Paulo (USP), S&o Paulo, 2010.

DHAR, R.; VAIDHYANATHAN, K.; VARMA, V. Can LLMs Generate Architectural Design
Decisions? - An Exploratory Empirical Study. 2024 IEEE 21st International Conference on
Software Architecture (ICSA), 4 Margo 2024.

EISENREICH, T.; SPETH, S.; WAGNER, S. From Requirements to Architecture: An Al-Based
Journey to Semi-Automatically Generate Software Architectures. Designing '24: 1st
International Workshop on Designing Software, Lisbon Portugal, 25 Julho 2024.

FAIRBANKS, G.; GARLAN, D. Just Enough Software Architecture: A Risk-Driven
Approach. [S.l.]: Marshall & Brainerd, 2010. 34-48;292-312 p.

FOWLER, M. Money. Martin Fowler, 2003. Disponivel em:
<https://martinfowler.com/eaaCatalog/money.html>. Acesso em: 12 Dezembro 2024.

FOWLER, M. CQRS. Martin Fowler, 2011. Disponivel em:
<https://martinfowler.com/bliki/fCQRS.html>. Acesso em: 12 Dezembro 2024.

FOWLER, M. DDD Aggregate. Martin Fowler, 2013. Disponivel em:
<https://martinfowler.com/bliki/DDD_Aggregate.html>. Acesso em: 12 Dezembro 2024.

KNEUSEL, R. T. Como a Inteligéncia Artificial Funciona: Da Magia a Ciéncia. 1°. ed. [S.L.]:
Novatec Editora, 2024. 207-248 p.

MICROSOFT. Publisher-Subscriber pattern. Microsoft Learn, 2024. Disponivel em:
<https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber>. Acesso
em: 12 Dezembro 2024.

MONGODB. A Guide to ACID Properties in Database Management Systems. MongoDB,
2024. Disponivel em: <https://www.mongodb.com/resources/basics/databases/acid-
transactions>. Acesso em: 12 Dezembro 2024.

OPENAI. Learning to Reason with LLMs. OpenAl, 2024. Disponivel em:
<https://openai.com/index/learning-to-reason-with-llms/>. Acesso em: 24 Novembro 2024.

OPENAI. Prompt engineering. OpenAl Platform, 2024. Disponivel em:
<https://platform.openai.com/docs/guides/prompt-engineering>. Acesso em: 12 Dezembro
2024.

OZKAYA, I. Can Architecture Knowledge Guide Software Development With Generative Al?
IEEE Software, Outubro 2023.

53

APENDICE A — PROMPT E SAIDA COMPLETA DO LLM

Vocé é um arquiteto de software. Sua tarefa € me fazer enxergar
pontos que talvez eu nao iria

ponderar na hora de tomar decisGes sobre um projeto. Pense
passo a passo antes de responder:

1- Colete quais sao os estilos e padroes arquiteturais de software
baseado em referéncias

académicas importantes da area (utilize livros classicos e modernos
conhecios, como Software

Architecture In Practice, Fundamentals of Software Architecture,
Patterns of Enterprise Application

Architecture e afins), sabendo que existe diferenca entre padrao e
estilo arquitetural de software.

Seja criativo na busca.

2- Colete as vantagens e desvantagens de cada um desses estilos e
padrées, focando

principalmente em quais atributos de qualidade (também
chamado de requisito nao funcional) cada

um desses estilos e padroes ajudam (ou atrapalham).

3- Leia o modelo de dominio que vou te mandar em formato de
PlantUML em texto para entender o
contexto do problema.

4- Leia os requisitos que vou te mandar em formato de CSV, onde

tem as seguintes colunas, a

coluna mais importante é a de "Métrica de sucesso para atingir o
Atributo de Qualidade (Fitness
Function)”, que & um objetivo metrificando um pouco mais o

requisito nao funcional, que esta na

coluna "Categoria”.

5- Baseado em todo o contexto prévio que vocé adquiriu em nossa
conversa, me traga estilos e

padrdes que eu poderia usar ou ponderar na hora de tomar
decisbes sobre a solugdo técnica para

esse problema.

6- Formate a resposta utilizando a fase 4 do método ATAM
(Architecture Tradeoff Analysis Method), focando somente em uma
etapa: identificacao de trade-offs. Vocé dira qual é o estilo/padrao
e tradeoffs tenho para o meu contexto.

7- Diga de forma resumida se entendeu e nesse prompt, foque em
buscar contexto para os pontos

1 e 2. Vou te enviar o CSV e o modelo de dominio em PlantUML no
proximo prompt, s6 me dé a

resposta formatada do passo 6 ap6s eu te enviar CSV e modelo em
PlantUML.

Thought about software architecture trade-offs por dois segundos

Entendido. Abaixo segue meu entendimento e a busca de contexto para os pontos 1 e 2 (ainda nao

respondendo o passo 6, conforme solicitado):

Contexto Buscado — Passo 1 (Coletar Estilos e Padrdes Arquiteturais):
Em termos de literatura classica e moderna sobre Arquitetura de Software, algumas obras de referéncia

incluem:
“Software Architecture in Practice” (Bass, Clements, Kazman)
“Fundamentals of Software Architecture” (Mark Richards, Neal Ford)
“Patterns of Enterprise Application Architecture” (Martin Fowler)
“Documenting Software Architectures: Views and Beyond” (Clements, et al.)

“Enterprise Integration Patterns” (Gregor Hohpe, Bobby Woolf)

A partir dessas referéncias, podemos destacar diferentes estilos e padrées arquiteturais:

Estilos Arquiteturais (Architectural Styles):
. Camadas (Layered Architecture)
. Hexagonal/Ports and Adapters
. Arquitetura em Microservices
. Arquitetura Monolitica
. Arquitetura Orientada a Servicos (SOA)
. Arquitetura Baseada em Eventos (Event-Driven Architecture - EDA)
. Arquitetura Orientada a Mensagens (Message-Oriented Middleware - MOM)
. Arquitetura Pipeline/Filter

. Arquitetura Baseada em Componentes (CBA)

Padroes Arquiteturais (Architecture Patterns):
Do ponto de vista de padrées, muitas vezes sio vistos como solucGes para problemas recorrentes de

design dentro de um estilo. Alguns exemplos:
. Model-View-Controller (MVC)
. Model-View-Presenter (MVP)
. Model-View-ViewModel (MVVM)

. Domain-Driven Design (DDD) patterns (Aggregate, Domain Services, Bounded Context,
Repository)

. Padrdes de Integracdo Empresarial (como o “Saga Pattern”, “Event Sourcing”, “CQRS",

v

“Publish/Subscribe”, “Anti-corruption Layer”, “Strangler Fig”, etc.)
. Padrées de Otimizacdo de Performance (Caching, Circuit Breaker, Bulkhead, etc.)
Contexto Buscado — Passo 2 (Vantagens, Desvantagens, Atributos de Qualidade):

Abaixo seguem vantagens e desvantagens de alguns estilos e padrées, bem como quais atributos de

qualidade impactam:

Estilos Arquiteturais

1. Camadas (Layered Architecture)

e \Vantagens:

e Separagao de responsabilidades clara.
e Facilita a manutencio e substituicdo de camadas.
* Bom para aplicacGes monoliticas tradicionais.
¢ Desvantagens:
* Pode gerar camadas desnecessarias, aumentando laténcia e complexidade.
* Atributos de Qualidade Afetados:
* Manutenibilidade: melhora, pois cada camada tem responsabilidade especifica.
» Testabilidade: melhora, pois cada camada pode ser testada isoladamente.

e Performance: pode piorar pela sobrecarga de chamadas entre camadas.

2. Hexagonal / Ports and Adapters
e Vantagens:
* Desacoplamento entre dominio e infraestrutura.
e Facilidade de troca de tecnologias (adapters).

¢ Desvantagens:

e Configuracao inicial mais complexa.

Atributos de Qualidade Afetados:

Flexibilidade e Evolutividade: melhora, pois é facil substituir componentes externos.
Testabilidade: melhora, pois o dominio pode ser testado isoladamente.

Complexidade Inicial: pode aumentar, dificultando o aprendizado.

3. Microservices Architecture

Vantagens:

Escalabilidade independente de servigos.

Permite deploy e evolugdo independentes.

Desvantagens:

Aumento da complexidade de comunicacdo e orquestracao.

Dificuldade de troubleshooting e observabilidade.

Atributos de Qualidade Afetados:

Escalabilidade e Resiliéncia: melhoram pela separacao em servicos auténomos.
Desempenho: pode variar; a comunicacao em rede pode aumentar laténcia.

Manutenibilidade: pode melhorar em servicos bem isolados, mas a complexidade global

cresce.

4. Monolitica

Vantagens:

Simplicidade de desenvolvimento inicial.

Facilidade de testes end-to-end, pois tudo esta em um dnico deploy.

Desvantagens:

Escalabilidade limitada, geralmente escalado como uma unidade.

Dificuldade em introduzir novas tecnologias e alterar partes isoladas.

Atributos de Qualidade Afetados:

Performance: pode ser boa internamente (chamadas internas muito rapidas),
Manutenibilidade: tende a piorar conforme a base cresce e se torna complexa.

Escalabilidade: limitada, pois escala-se o todo em vez de partes especificas.

5. SOA (Service-Oriented Architecture)

Vantagens:

Reuso de servigos.

Padronizacao de interfaces, interoperabilidade.

¢ Desvantagens:

» Semelhante a microservices, mas pode levar a um “ESB” (Enterprise Service Bus) pesado e

complexo.

e Atributos de Qualidade Afetados:

Reusabilidade: alta, servicos padronizados podem ser reutilizados.
Complexidade: pode aumentar com governanca de servicos.

Escalabilidade: melhor que um mondlito, mas potencialmente menos flexivel que

microservices.

6. Event-Driven Architecture (EDA)

¢ Vantagens:

e Alta desacoplagem entre produtores e consumidores de eventos.
» Sistemas reativos, escalaveis, facilitando a implementacao de integracées complexas.

e Desvantagens:

» Dificuldade de rastrear fluxos de eventos.
e Raciocinio mais complexo sobre estado do sistema.

e Atributos de Qualidade Afetados:
* Escalabilidade e Resiliéncia: melhora, pois a comunicagao assincrona é natural.
» Testabilidade e Depurabilidade: pode piorar pela dificuldade em reproduzir cenarios

complexos de eventos.
7. Message-Oriented Middleware (MOM)

e Vantagens:
e Desacoplamento temporal, sistemas podem se comunicar assincronamente.
e Tolerdncia a falhas melhorada (mensagens persistidas).

¢ Desvantagens:

e Complexidade de gerenciamento de filas e topicos.

* Potencial laténcia acrescida.
e Atributos de Qualidade Afetados:
e Resiliéncia e Escalabilidade: melhoram com filas assincronas.

e Laténcia e Tempo de Resposta: podem piorar devido & comunicacao assincrona.

8. Pipeline/Filter

e Vantagens:

¢ Facilidade de entender o fluxo de dados.
* Possibilidade de paralelizagéo e substituicdo de etapas do pipeline.

¢ Desvantagens:

* Pode nao lidar bem com estados complexos.
* Ajuste fino de performance pode ser complicado.

¢ Atributos de Qualidade Afetados:

* Manutenibilidade e Composabilidade: melhora, pois etapas sdo modulares.

* Desempenho: pode ser bom se bem projetado, mas cada estagio adiciona overhead.

9. Arquitetura Baseada em Componentes (CBA)

* Vantagens:

® Reuso e substituicio de componentes.
* Modularidade clara.
¢ Desvantagens:
* Necessidade de padronizacao clara de interfaces entre componentes.
* Potencial de sobrecarga caso ndo haja uma orquestragdo adequada.
e Atributos de Qualidade Afetados:
* Reusabilidade e Evolutividade: melhoram com componentes bem definidos.

¢ Complexidade de Integracdo: pode aumentar, demandando mais governanca.

Padrdes Arquiteturais

1. MVC/MVP/MVVM

¢ Vantagens:
e Separacao de responsabilidades (Ul, logica e dados).
* Facilidade de teste de l6gica separada da interface.

¢ Desvantagens:
* Pode introduzir sobrecarga com camadas extras se o projeto for simples.

e Atributos de Qualidade Afetados:
¢ Manutenibilidade e Testabilidade: melhoram, pois a l6gica nao esta misturada a Ul.

¢ Complexidade: pode aumentar, dependendo da granularidade.

2. Domain-Driven Design Patterns (Aggregate, Repository, etc.)

* Vantagens:

* Foco no dominio do negdcio, modelos ricos e expressivos.
* Enfatiza clareza do modelo e linguagem ubiqua.

e Desvantagens:

e Curva de aprendizado maior.
* Pode ser complexo demais para dominios simples.

e Atributos de Qualidade Afetados:

* Manutenibilidade, Entendimento do Dominio: melhoram consideravelmente.

* Performance: pode ser impactada se o modelo for pesado ou mal projetado.

3. Enterprise Integration Patterns (ex: Saga, Event Sourcing, CQRS)

¢ Vantagens:

* Solucdes comprovadas para problemas complexos de integracao e consisténcia de dados.
* Permitem lidar com eventual consistency, escalabilidade e resiliéncia.
¢ Desvantagens:
* Aumentam a complexidade de design e implementacao.
* Podem exigir ferramentas e infraestrutura especificas.
e Atributos de Qualidade Afetados:
* Escalabilidade, Tolerancia a Falhas, Consisténcia Eventual: podem melhorar.

e Complexidade, Testabilidade: podem piorar pelo aumento da complexidade.

4. Padrées de Performance (Caching, Circuit Breaker, etc.)

e \Vantagens:

e Melhoria de desempenho (caching).
* Aumento de resiliéncia frente a falhas transitorias (circuit breaker).

¢ Desvantagens:

* Gestdo do estado do cache e validade dos dados pode ser complexa.

e Circuit breaker pode introduzir laténcias adicionais se mal configurado.
e Atributos de Qualidade Afetados:

* Performance (Laténcia e Throughput): melhora com caching.

¢ Resiliéncia: melhora com circuit breaker.

* Complexidade Operacional: aumenta, pois requer monitoramento e tuning.

60

Resumo de Entendimento:

¢ Neste prompt, estou entendendo que preciso levantar um contexto inicial sobre estilos e padrées
de arquitetura, tirando referéncias da literatura e apontando suas vantagens e desvantagens, bem

como quais atributos de qualidade sdo afetados.

O objetivo é preparar o terreno para, no préoximo prompt, receber o modelo de dominio em
PlantUML e o CSV de requisitos, para entdo formular as recomendacGes arquiteturais e fazer a

analise de trade-offs (passo 6 do método ATAM) no contexto especifico do problema.

Por ora, a tarefa era apenas buscar contexto (1 e 2) e, por fim, dizer de forma resumida se entendi e

focar nesses pontos. Sim, entendi: estou preparando a base tedrica para a analise posterior.

@startuml
skinparam componentStyle uml2

package SistemaDelnadimplencia {

class Saldolnadimplencia {
+ saldo: Decimal
+ dataDeReferencia: Date

class Clientelnadimplente {
+ documento: String

class Divida {
+ valorBruto: Decimal
+ valorLiquido: Decimal
+ dataSurgimento: Date
+ motivoDaDivida: String

class Pagamento {
+ valorPago: Decimal
+ horaPagamento: DateTime

class RelatorioFotolnadimplencia {

}

class RelatoriolnadimplenciaDoCliente {

}

Clientelnadimplente “1" *--> "1..*" Divida
Clientelnadimplente “1" *--> "1_*" Saldolnadimplencia

Divida "1" -- "0..*" Pagamento

RelatorioFotolnadimplencia 1" o-- "1..*" Clientelnadimplente
RelatoriolnadimplenciaDoCliente “1" o-- “1" Clientelnadimplente
@enduml

Thought about domain model structure por 4 sequndos ~
Honing tradeoffs

The user is working on ATAM step 4, emphasizing tradeoffs. They are awaiting a CSV file to complete
the analysis. The ATAM outcome will be delivered after the CSV is provided.

Working through the steps

OK, let me see. I've examined the domain model and now I'm waiting for the CSV to complete the
analysis. I'm focusing on understanding and gathering context for points 1 and 2.

Piecing it together

Received the UML model and piecing together steps 5 and 6. Waiting for the CSV file to finish the
analysis in the next conversation.

Entendido. A partir do diagrama de dominio em PlantUML, vejo um contexto voltado para um sistema
de inadimpléncia, onde temos entidades como Clientelnadimplente, Divida, Pagamento,

Saldolnadimplencia, além de relatorios especificos para acompanhar a situacao desses clientes. Isso

sugere um dominio voltado a gestao financeira, tracking de dividas, pagamentos e geracao de

relatorios.

Focando ainda nos pontos 1 e 2 (levantamento de contexto sobre estilos e padrées arquiteturais e seus
impactos em atributos de qualidade), compreendo que o dominio apresentado pode vir a se beneficiar
de padroes e estilos que facilitem a manutengao, escalabilidade e testabilidade, principalmente
considerando que o dominio lida com regras de negadcio sensiveis (calculos de saldo, valores pagos,

surgimento de dividas ao longo do tempo). Por exemplo:

62

Estilos mais modulares (como Arquitetura em Camadas ou Hexagonal) podem ajudar na

manutenibilidade e testabilidade.

Padrées como DDD podem ajudar a capturar as nuances do dominio de inadimpléncia de forma

clara, reduzindo complexidade a longo prazo.

Caso haja necessidade de escalabilidade e distribuicdo, padrées de microservices ou event-driven

podem ser considerados, embora aumentem a complexidade operacional.

Em resumo, compreendi o contexto do dominio e continuo focado em entender como as diferentes
abordagens arquiteturais (pontos 1 e 2) podem se alinhar com os requisitos nao funcionais, preparando
o terreno para, apos receber o CSV (com requisitos e métricas de sucesso), propor uma analise de

trade-offs conforme solicitado.

ID do Requisito;Descricao;Categoria;Métrica de sucesso para
atingir o Atributo de Qualidade (Fitness

FR-1;0 sistema deve gerenciar a inadimpléncia dos
clientes;Funcional; "

FR-1.1;Um cliente inadimplente possui um documento (CPF ou
CNPJ), o conjunto de suas dividas e seus respectivos pagamentos

FR-1.2;Uma divida é caracterizada por: valor bruto, valor liquido
(apos todos os pagamentos realizados), data de surgimento da

FR-1.4;Saldo de inadimpléncia é a soma de valor liquido de todas
as dividas de todos os clientes inadimplentes, agrupado por dia, &
caracterizado por: saldo, data de referéncia, documento do

FR-1.5;lnadimpléncia de um cliente é diferenca entre a soma de
valor bruto e a soma de valor liquido de todas as dividas, agrupado
por dia e por documento do cliente inadimplente, é caracterizado
por: saldo, data de referéncia, documento do cliente, todas as
dividas do cliente até a data de referéncia, todos os pagamentos

do cliente até a data de referéncia;Funcional;;;;; e
NFR-1.1;Erros em calculos financeiros envolvendo dividas e
pagamentos precisam ser igual ou inferior a um milionésimo
(0,000001), principalmente para manter o saldo de inadimpléncia
correto;Precisdo;Taxa de erro em operagoes matematicas
envolvendo decimais <= 10~(-6);: o

FR-1.6;0 sistema deve permitir o acesso ao historico de clientes
inadimplentes;Funcional;; i

FR-1.7;0 sistema deve permitir o acesso ao histérico de dividas
para clientes inadimplentes;Funcional;;;;

FR-1.8;0 sistema deve permitir o acesso ao historico de
pagamentos de dividas;Funcional;;;m

FR-1.9;"0 sistema deve emitir um relatorio chamado

Fotolnadimplencia" com o saldo de inadimpléncia de acordo
com o dia solicitado, que é uma data de
referéncia”;Funcional;;;

NFR-1.2;"0 relatorio de ""Fotolnadimplencia

, quando é solicitado
em D-0 em relagao ao dia atual do sistema como data de
referéncia deve estar disponivel em até 2 minutos apés solicitado a
sua emissao”;Disponibilidade;Tempo de resposta <= 2

DU IS pmerimmit

NFR-1.3;"0 relatorio de ""Fotolnadimplencia™, quando € solicitado
em D-0 em relagao ao dia atual do sistema como data de
referéncia pode conter divergéncias de até 1 milhdo em relacdo ao
saldo da inadimpléncia real final do proprio dia";Confiabilidade;
(Saldo da inadimpléncia real - Saldo da inadimpléncia reportado)
2= | Ml e

NFR-1.4;"0 relatorio de ""Fotolnadimplencia™, quando é solicitado
em D-1 em relagdo ao dia atual do sistema como data de
referéncia deve estar disponivel em até 40 minutos apos solicitado
a sua emissdo”;Disponibilidade;Tempo de resposta <= 40
minutos;;

NFR-1.5;"0 relatorio de ""Fotolnadimplencia™, quando é solicitado
em D-1 em relagdo ao dia atual do sistema como data de
referéncia ndo pode ter divergéncias relacdo ao saldo da
inadimpléncia real final do proprio dia";Confiabilidade;(Saldo da
inadimpléncia real - Saldo da inadimpléncia reportado) =

O et

FR-1.10;"O sistema deve emitir um relatério chamado

InadimplenciaDoCliente-X"", contendo a inadimpléncia de um
cliente e informando de maneira detalhada todas as dividas e
pagamentos desse cliente (com todas as caracteristicas de dividas
e pagamentos)”;Funcional;;;:n

NFR-1.6;"0 relatorio de ""InadimplenciaDoCliente-X"", quando é
solicitado em D-0 em relagao ao dia atual do sistema como data

de referéncia deve estar disponivel em até 1 minuto apés

solicitado a sua emissao”;Disponibilidade;Tempo de resposta <= 1

TR sttt
NFR-1.7;0 sistema deve suportar a persisténcia de novas dividas
em até 500 milissegundos;Desempenho;Tempo de resposta <=

NFR-1.8;0 sistema deve permitir o acesso ao historico de novos
pagamentos em até 400 milissegundos;Desempenho;Tempo de
resposta <= 400ms; s

NFR-1.9;0 sistema deve suportar a persisténcia concorrente de até
50 novas dividas;Capacidade;Throughput >= 50 transagdes

NFR-1.10;0 sistema deve suportar o registro persistente
simultaneo de até 600 novos pagamentos;Capacidade;Throughput

NFR-1.11;0 sistema deve emitir métricas sobre Throughput, Tempo
de resposta, Laténcia de todas as dependéncias de
I/0O;0Observabilidade;Métricas exibidas em uma plataforma
qualquer de Observabilidade;;;;:;:

NFR-1.12;0 sistema deve manter o historico de dividas,
pagamentos e clientes inadimplentes por 6 anos para fins de
auditoria;Auditabilidade;Dados historicos sobre dividas,
pagamentos e clientes inadimplentes disponiveis em qualquer

NFR-1.13;0 historico solicitado dentro desse periodo de 6 anos
para fins de auditoria pode ser emitido em até 5

T O T O e

Pronto para analise de trade-offs conforme solicitado. ~
Piecing together trade-offs

Now I'm weaving through the CSV and domain model to pinpoint style and pattern trade-offs,
ensuring clarity in how they integrate with the overall architecture.

Mapping architectural choices

I'm aligning high concurrency, precision, and performance constraints with microservices and
domain-driven design, while ensuring good observability and auditability. The goal is to pinpoint the

optimal setups for these needs.

Mapping architectural paths

OK, let me see. I'm charting microservices and domain-driven design to address high concurrency and
performance constraints. The aim is to pinpoint the best setup for these needs.

Weighing options

I'm exploring microservices for scalability and performance. They're complex and have overheads, but
simpler monoliths might ensure precision initially with fewer distributed issues.

Navigating architectural challenges

I'm evaluating DDD with hexagonal architecture for precision versus complexity. Also, weighing CQRS

with event sourcing for concurrency and auditability against simpler CRUD.

Passo 6 do ATAM - Identificacdao de Trade-offs

Abaixo seguem alguns estilos e padrées arquiteturais sugeridos para o contexto dado, bem como os
principais trade-offs envolvidos considerando os requisitos funcionais e nao funcionais identificados no
CSV (NFRs relacionadas a precisao, disponibilidade, confiabilidade, desempenho, capacidade,

observabilidade, auditabilidade) e o modelo de dominio do sistema de inadimpléncia:

1. Arquitetura em Camadas + Domain-Driven Design (DDD)

¢ Trade-off:

Pros: O DDD combinado com uma arquitetura em camadas (Aplicacdo, Dominio,
Infraestrutura) melhora a manutenibilidade e clareza do dominio, facilitando garantir a
precisdao (NFR-1.1) nos calculos financeiros e mantendo regras de negacio coerentes.
Também torna mais simples a auditabilidade (NFR-1.12), ja que o dominio & bem definido

e rastreavel.

Contras: Pode aumentar a complexidade inicial de desenvolvimento e o tempo de
resposta (por adicionar camadas), comprometendo parte das metas de desempenho
(NFR-1.7 e NFR-1.8) se ndo houver otimizacbes. Além disso, o acréscimo de camadas pode
afetar a laténcia e dificultar atingir metas de tempo estritas para relatérios (NFR-1.2, NFR-

1.4, NFR-1.6).

2. Arquitetura Hexagonal (Ports and Adapters)

* Trade-off:

Pros: Ajuda na flexibilidade e substituicao de fontes de dados ou servigos externos,
facilitando a observabilidade (NFR-1.11) e o cumprimento de requisitos de auditabilidade.
Permite manter a precisdo no dominio central, isolado de infraestruturas que podem

introduzir erros.

Contras: Exige maior esforco de configuracao inicial e abstragées adicionais, o que pode
afetar desempenho em cenarios de alto throughput (NFR-1.9, NFR-1.10), ja que cada

porta/adaptador pode adicionar overhead.

3. Microservices + Event-Driven Architecture (EDA)

¢ Trade-off:

Pros: Pode facilitar a escalabilidade horizontal (NFR-1.9 e NFR-1.10) e aumentar a

capacidade do sistema de lidar com grandes volumes de transa¢oes simulténeas, além de
permitir resiliéncia e disponibilidade (NFR-1.2, NFR-1.6, NFR-1.4) distribuindo a carga

entre diferentes servicos. A separacdo de componentes pode também facilitar reportar

métricas e atingir requisitos de observabilidade (NFR-1.11).

Contras: A comunicacao assincrona e distribuida pode introduzir dificuldades em garantir
precisdo (NFR-1.1) e confiabilidade estrita nos relatorios (NFR-1.3, NFR-1.5), gerando
discrepancias nos dados em tempo real. Também aumenta a complexidade de
coordenacao, debug e testes, o que pode prejudicar manutenibilidade e auditabilidade

caso nao haja uma boa estratégia de versionamento e rastreamento de eventos.

65

4. CQRS (Command Query Responsibility Segregation) + Event Sourcing

* Trade-off:

e Pros: Facilita a auditabilidade (NFR-1.12) e consulta historica (NFR-1.13) por armazenar o
historico completo de eventos. Pode ajudar a gerenciar o alto throughput (NFR-1.9, NFR-
1.10) isolando comandos de leituras, melhorando disponibilidade e escalabilidade na

geracao de relatorios com dados antigos.

Contras: Aumenta a complexidade do modelo de dados e exige infraestrutura adicional.

A recomposicao do estado pode afetar desempenho se nio for bem projetada,

dificultando atender metas estritas de tempo para relatorios (NFR-1.2, NFR-1.4, NFR-1.6).

Além disso, garantir precisdo com calculos financeiros ao reconstituir estados a partir de

eventos pode ser trabalhoso e suscetivel a erros se nao houver validacao rigorosa.
5. Padr6es de Performance (Caching, Circuit Breaker) e Otimizacdo de Laténcia

¢ Trade-off:

* Pros: Uso de cache pode reduzir tempo de resposta dos relatorios imediatos (NFR-1.2,
NFR-1.6), e circuit breakers podem melhorar a disponibilidade sob falhas de servicos

externos. Isso ajuda a atingir metas de desempenho.

Contras: O cache pode introduzir discrepancias entre o estado real e o estado retornado,
comprometendo a precisdo (NFR-1.1) e a confiabilidade (NFR-1.3, NFR-1.5),
principalmente em relatorios financeiros sensiveis. Circuit breakers e politicas de fallback
podem devolver dados desatualizados ou incompletos, prejudicando a consisténcia dos

relatorios.

Resumo do Entendimento:

* Ha um entendimento claro dos trade-offs entre diferentes estilos/padrées e os requisitos ndo
funcionais levantados. Por exemplo, microservices e EDA melhoram escalabilidade e disponibilidade

mas podem prejudicar precisao e confiabilidade imediata.

DDD com arquiteturas em camadas ou hexagonais melhora manutenibilidade e precisao, mas pode

afetar desempenho.

CQRS e Event Sourcing ajudam na auditabilidade e historico, mas aumentam complexidade e

podem afetar o desempenho de geracao de relatorios.

Padrées de performance (caching) otimizam laténcia, mas podem comprometer precisao.

Entendido: Esta é a resposta formatada do passo 6 do método ATAM (identificacdo de trade-offs)

considerando o contexto fornecido (modelo de dominio e requisitos do CSV).

	1c9c49f1f8e20767bc6ede6cefe5e4d398bfe9002c97f1627db746937dc542ee.pdf
	2128b27e63058a54f8fca5370bff7df17565fc0c8172332810e34f7e34ca3611.pdf
	1c9c49f1f8e20767bc6ede6cefe5e4d398bfe9002c97f1627db746937dc542ee.pdf

