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RESUMO 

 
FERREIRA, Renan. Uso de modelos de linguagem de grande escala para 
decisões arquiteturais de desenvolvimento de software. 2024. 66 p. Monografia 
(MBA em Engenharia de Software). Programa de Educação Continuada em 
Engenharia da Escola Politécnica da Universidade de São Paulo. São Paulo. 2024. 
 
 
Avaliar decisões arquiteturais não é um processo simples durante o desenvolvimento 

de um software, pois exige a consideração de múltiplos trade-offs. Este trabalho 

aborda o uso de Modelos de Linguagem de Grande Escala (LLMs) para apoiar esse 

processo, com foco na extração de decisões arquiteturais a partir de requisitos 

textuais, atributos de qualidade e modelos de domínio. Foi realizado um estudo de 

caso em um sistema real de gestão de inadimplência no setor de fintechs, comparando 

as soluções geradas pelos LLMs com a arquitetura efetivamente implementada, 

seguindo o método proposto por Eisenreich, Speth e Wagner (2024). Para avaliação 

da qualidade de decisões e dos trade-offs envolvidos, utilizou-se uma versão adaptada 

do método ATAM. 

 

Os resultados mostram que o modelo GPT-4o1 gerou decisões arquiteturais 

plausíveis e alinhadas a práticas comuns no desenvolvimento de software, com 

poucas alucinações sobre padrões ou estratégias inexistentes. Além disso, o LLM 

identificou trade-offs relevantes e estruturou atributos de qualidade de forma similar à 

solução real. A análise evidencia que os LLMs não apenas aceleram o processo de 

tomada de decisões, mas também oferecem novas ideias durante o processo. 

 

Embora os resultados sejam promissores, a eficácia das respostas depende de uma 

boa estruturação dos prompts e de intervenções humanas para assegurar a 

assertividade, evidenciando a necessidade de métodos mais maduros e ferramentas 

que facilitem sua adoção em ambientes corporativos e acadêmicos. 

 

 

Palavras-chave: Arquitetura de Software.  IA. LLM. ATAM. ADRs. Gestão do 

conhecimento arquitetural.   



ABSTRACT 

 
FERREIRA, Renan. Use of Large Language Models for architectural decisions in 
software development. 2024. 66 p. Monografia (MBA em Engenharia de Software). 
Programa de Educação Continuada em Engenharia da Escola Politécnica da 
Universidade de São Paulo. São Paulo. 2024. 
 
 
Evaluating architectural decisions is not a straightforward process in software 

development, as it demands the consideration of multiple trade-offs. This study 

investigates the use of Large Language Models (LLMs) to support this process, 

focusing on the extraction of architectural decisions from textual requirements, quality 

attributes, and domain models. A case study was conducted on a real-world 

delinquency management system in the fintech sector, comparing the solutions 

generated by LLMs with the effectively implemented architecture, using the method 

proposed by Eisenreich, Speth, and Wagner (2024). To assess decision quality and 

the trade-offs involved, an adapted version of the ATAM method was applied. 

 

The results indicate that the GPT-4o1 model generated plausible architectural 

decisions aligned with common software development practices, demonstrating 

minimal hallucinations regarding non-existent patterns or strategies. Furthermore, the 

LLM identified relevant trade-offs and structured quality attributes in a manner similar 

to the actual solution. The analysis shows that LLMs not only help the decision-making 

process but also offer new architectural insights. 

 

Although the findings are promising, the effectiveness of the responses depends on 

well-structured prompts and human intervention to ensure accuracy, highlighting the 

need for more mature methods and tools to facilitate their adoption in both corporate 

and academic environments. 

 

 

Keywords: Software Architecture, AI, LLM, ATAM, ADRs, Architectural Knowledge 

Management.  
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1 INTRODUÇÃO 
 

Os modelos de linguagem de grande escala (LLM, do inglês large language models) 

vem democratizando o uso de IA em diferentes áreas do conhecimento, dado que as 

pessoas não precisam conhecer de maneira profunda sobre aprendizado de máquina 

ou estatística aplicada para extrair resultados. Isso facilitou tarefas envolvendo o 

processamento de linguagem natural como resumo de textos, reescrita de textos 

envolvendo mudanças nos tons de conversas, estilos e gramática, além de uma 

construção de sua própria base de conhecimento com diferentes fontes para apoio 

em tomada de decisões. 

 

Na área do conhecimento da Engenharia de Software, os LLMs têm se destacado 

como ferramentas essenciais para diversos processos, além dos já mencionados, 

incluindo a geração e revisão de código, pesquisa e criação de testes, entre outros. A 

interação com esses modelos pode ser realizada de várias maneiras, desde prompts 

em modelos genéricos, como o GPT (Generative Pre-Trained Transformer), até o uso 

de modelos específicos treinados para lidar com atividades da Engenharia de 

Software, como o GitHub Copilot. Este último opera dentro do contexto do código que 

está sendo editado, reduzindo a necessidade de elaborar prompts explícitos e 

complexos para atender às solicitações do usuário. Tal abordagem otimiza o fluxo de 

trabalho, diminuindo barreiras técnicas no uso dessas tecnologias. 

 

Especialmente sobre o tópico de criar e manter sua própria base de conhecimento, 

existe uma intersecção direta com a área da Arquitetura de Software, dado que a 

comunidade tem utilizado a gestão de conhecimento arquitetural como um dos fatores-

chaves para tomar decisões sobre padrões e estilos arquiteturais desde os anos 2000 

(OZKAYA, 2023). 

 

Em geral, engenheiros de software tendem a escolher apenas padrões e estilos 

arquiteturais com os quais eles já trabalharam em algum momento, descartando 

decisões que se encaixariam melhor no projeto, sendo que muitas vezes essa decisão 

leva a custos de manutenção elevados no longo prazo (EISENREICH, SPETH E 

WAGNER, 2024). Isso pode se agravar ainda mais em cenários ágeis em que 

múltiplos times de desenvolvimento estão trabalhando em sistemas maiores e 
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compostos por diversos subsistemas, sendo que de acordo com De Diana, Kon e 

Gerosa (2010), o conceito de arquitetura emergente começa a ficar ainda mais 

complicado nessas situações. 

 

De acordo com Ozkaya (2023), a gestão do conhecimento arquitetural inclui diversos 

elementos: projeto arquitetural, decisões de projeto, contexto, premissas etc. Todos 

esses elementos caracterizam um software em particular. Enquanto é possível 

entender o projeto através do código e de outros artefatos de implementação, 

decisões de projeto requerem conhecimento e contexto sobre os trade-offs (que são 

pontos de vantagens e desvantagens observados em decisões). 

  

Dessa forma, o uso do conhecimento arquitetural em modelos de LLM pode contribuir 

significativamente para decisões mais embasadas e precisas sobre padrões e estilos 

arquiteturais. Essa abordagem não apenas reduz a dependência exclusiva da 

experiência individual dos engenheiros de software, mas também promove uma 

análise mais estruturada e abrangente dos trade-offs envolvidos. A ponderação desse 

conhecimento gerado por LLMs pode, portanto, representar uma ferramenta valiosa 

para a gestão da complexidade arquitetural em contextos de desenvolvimento ágeis, 

melhorando a qualidade das soluções técnicas, ainda mais em cenários envolvendo 

múltiplas equipes e subsistemas. 

 

1.1 Objetivo 
 
O objetivo deste trabalho é fazer uma análise exploratória no uso de modelos de 

linguagem de grande escala para a tomada de decisões arquiteturais. Seguindo o 

método proposto por Eisenreich, Speth e Wagner (2024), através da especificação de 

requisitos textuais (com ênfase em atributos de qualidade – também conhecidos como 

requisitos não funcionais) e modelos de domínio de um software real no escopo de 

fintechs, o modelo de linguagem de grande escala responderá com padrões e estilos 

arquiteturais junto de uma análise de trade-offs. Com isso, é apresentada uma 

discussão dos resultados obtidos para entender o uso dessa tecnologia para o 

processo de projeto de software. 
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1.2 Metodologia 
 

O processo seguido por este trabalho é a aplicação prática do método proposto por 

Eisenreich, Speth e Wagner (2024) para a geração semiautomática de candidatos a 

arquitetura de software, a terceira etapa do método. O método completo, apresentado 

na Seção 3.4, é composto por seis etapas: 

 

1. Gerar o modelo de domínio e cenários de caso de uso com base em requisitos 

textuais (automático); 

2. Refinar o modelo de domínio e os cenários de caso de uso gerados (manual); 

3. Derivar múltiplos candidatos à arquitetura e as decisões arquiteturais usando o 

modelo de domínio, os cenários e os atributos de qualidade (automático); 

4. Avaliar e comparar os candidatos à arquitetura (automático); 

5. Refinar os candidatos à arquitetura (manual); 

6. Selecionar o candidato que mais se encaixa no problema (manual). 

 

Para tal geração de candidatos, primeiramente, junta-se todo o conhecimento 

arquitetural disponível de um sistema que está em sua fase inicial de modelagem de 

domínio: a lista de requisitos funcionais e atributos de qualidade, junto de uma primeira 

versão do modelo de domínio do problema. Depois, cria-se um prompt com todo esse 

conhecimento arquitetural e envia-se esse prompt para um modelo de LLM, coletando 

então as respostas geradas pela IA (Inteligência Artificial). 

 

O conhecimento arquitetural do sistema a ser analisado será apresentado no Capítulo 

4. Ainda no mesmo capítulo, será apresentada a solução real de estilos e padrões 

escolhidos para a resolução do problema em um contexto de uma empresa fintech, 

que foi simplificada e anonimizada, seguindo conceitos do ATAM (Architecture Trade-

off Analysis Method). Com isso, será possível discutir e comparar os resultados do 

LLM contra a solução real, analisando se essas respostas ajudam na tomada de 

decisões e debatendo os resultados alcançados. 
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1.3 Justificativa 
 

O método proposto por Eisenreich, Speth e Wagner (2024), ainda não chegou na 

etapa de geração semiautomática de candidatos à Arquitetura de Software, tendo feito 

apenas uma análise exploratória com os modelos LLaMA2 e GPT-3.5, para gerar 

modelos de domínio a partir dos requisitos funcionais textuais. Além disso, o método 

utiliza como base o estudo de caso do MobSTr (Model-Based Safety Assurance and 

Traceability), um sistema de condução automatizada com foco em segurança e 

rastreabilidade baseado no desafio industrial WATERS 2019 (Workshop on Analysis 

Tools and Methodologies for Embedded and Real-time Systems). O trabalho dos 

autores também propõe o uso de LLM para diversos processos da Arquitetura de 

Software, gerando então uma visão mais ampla da Arquitetura. 

 

Este trabalho tem os seguintes complementos em relação ao trabalho de Eisenreich, 

Speth e Wagner (2024): 

• Tem ênfase nas especificações textuais dos atributos de qualidade (também 

conhecidos como requisitos não funcionais) com foco no uso de IA para tomada 

de decisões sobre padrões e estilos arquiteturais; 

• É a aplicação prática de uma etapa que o trabalho de Eisenreich, Speth e 

Wagner (2024) ainda não chegou, a etapa de geração semiautomática de 

candidatos à Arquitetura de Software 

• São análises de resultados em cima de uma solução real no escopo de fintech, 

mais especificamente em um contexto de gestão de inadimplência, sendo 

diferente do setor industrial automotivo. Enquanto o setor automotivo tem maior 

foco em sistemas críticos de segurança e estabilidade, os sistemas financeiros 

possuem maior foco em integridade dos dados; 

• Uso de um modelo mais recente de LLM, o GPT-4o1, que foi treinado com mais 

parâmetros, é capaz de simular cadeias de pensamento e possui uma janela 

de contexto mais ampla do que alguns modelos como GPT-3.5 e LLaMA2 

apresentados no trabalho dos autores. 

 

O principal motivo deste trabalho ter o foco na extração de estilos e padrões 

arquiteturais a partir dos atributos de qualidade é que, como mencionado 

anteriormente, esse é geralmente o ponto mais complicado de arquitetura emergente 
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em cenários ágeis com múltiplas equipes e subsistemas (DE DIANA, KON E 

GEROSA, 2010), além de que engenheiros de software tendem a escolher apenas 

padrões e estilos arquiteturais que eles já trabalharam em algum momento 

(EISENREICH, SPETH E WAGNER, 2024), sendo que o uso de LLMs podem ajudar 

os engenheiros de software a ponderarem outros padrões e estilos arquiteturais, além 

de ajudar a simplificar a manter a agilidade em múltiplas equipes e a manter a 

arquitetura emergente, que é um dos pontos fundamentais para o desenvolvimento 

ágil de software. 

 

O uso de um modelo mais recente de LLM com as características mencionadas 

permite que o modelo possa iterar melhor em documentos extensos, além de 

promissoramente lidar com tarefas mais complexas, podendo então tomar decisões 

mais assertivas. Foi escolhido o ChatGPT pois na data de desenvolvimento do 

trabalho era o modelo mais conhecido e o único que oferecia recursos de simulação 

de cadeias de pensamento dentro do modelo. 

 

1.4 Estrutura do trabalho 
 

Nos Capítulos 2 e 3, são apresentadas as referências acadêmicas que explicam sobre 

elementos e conceitos de Arquitetura de Software utilizados neste texto, como 

requisitos funcionais e atributos de qualidade, decisões arquiteturais de software, 

gestão do conhecimento arquitetural e a geração semiautomática de candidatos à 

Arquitetura de Software. No Capítulo 4, são apresentados todo o conhecimento 

arquitetural do sistema real de uma fintech (generalizado e simplificado) e o prompt 

gerado para o LLM com o objetivo de gerar os candidatos à arquitetura junto das 

decisões arquiteturais. Já nos Capítulo 5 e 6 é possível visualizar a resposta do LLM 

para o prompt gerado e a discussão dos resultados apresentados, incluindo sugestões 

e ideias para trabalhos futuros.  
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2 MODELOS DE LINGUAGEM DE GRANDE ESCALA 
 

De acordo com Dhar, Vaidhyanathan e Varma (2024), um Modelo de Linguagem é um 

modelo de IA probabilístico de Processamento de Linguagem Natural (do inglês, NLP, 

Natural Language Processing) que é projetado para gerar probabilidades associadas 

a uma sequência de palavras. Os autores diferenciam os Modelos de Linguagem de 

Grande Escala (do inglês LLMs, Large Language Models), enfatizando que são 

modelos probabilísticos de inteligência artificial similares, porém treinados com um 

volume extenso de dados, permitindo uma compreensão e geração de texto 

avançadas. Eles também observam que LLMs são amplamente utilizados em tarefas 

diversas de NLP, possuem bilhões de parâmetros e grandes janelas de contexto 

(Context Lengths e Parameters, que geralmente são características importantes para 

diferenciar modelos de LLMs). Tokens representam unidades de texto que podem 

corresponder a uma palavra completa ou partes de palavras, enquanto o Context 

Length em um LLM refere-se ao número de tokens considerados pelo modelo ao 

processar ou gerar texto (DHAR, VAIDHYANATHAN E VARMA, 2024). 

 

Os autores ainda explicam que LLMs se baseiam na arquitetura de Transformers, que 

utiliza mecanismos de atenção como base de seu funcionamento. Os Transformers 

são compostos por dois componentes principais: um Encoder (codificador), 

responsável por processar o texto de entrada; um Decoder (decodificador), que gera 

o novo texto a partir das informações processadas pelo Encoder (DHAR, 

VAIDHYANATHAN E VARMA, 2024). 

 

Kneusel (2024) explica que a interação com LLMs é feita através de prompts, que é a 

entrada fornecida por um usuário, geralmente em formato de texto. Alguns modelos 

multimodais podem ter prompts em formatos de arquivos, imagens, áudio, entre 

outros. Neste trabalho, o foco são os prompts em texto e utilizando o modelo GPT-

4o1, da empresa OpenAI, que introduz conceitos de raciocínio dentro dos LLMs, 

utilizando técnicas internas de Chain of Thougth (cadeias de pensamento), que é uma 

técnica de prompt engineering (OPENAI, 2024). O modelo da OpenAI foi escolhido 

para uso neste trabalho pois era o único capaz de simular cadeias de pensamento e 

também o mais conhecido no momento de escrita deste texto. 

 



 18 

A técnica de cadeia de pensamento (Chain of Thought - CoT), conforme descrita pela 

OpenAI (2024), é um método que permite os LLMs melhorarem sua capacidade de 

raciocínio em tarefas complexas, promovendo uma abordagem iterativa para a 

solução de problemas. De acordo com a empresa, essa técnica envolve a geração de 

uma sequência lógica de passos intermediários antes de apresentar uma resposta 

final, permitindo ao modelo dividir problemas difíceis em partes menores, explorar 

abordagens alternativas quando necessário e refinar estratégias com base nos 

resultados obtidos. A empresa enfatiza que com o treinamento baseado em 

aprendizado por reforço, os modelos aprendem a identificar e corrigir seus próprios 

erros e a adaptar suas respostas para questões desafiadoras. Aproveitando desses 

recursos, neste trabalho é utilizado o modelo GPT-4o1 para a avaliação e tomada de 

decisões arquiteturais. 

 

Além da técnica de Chain of Thought, a estruturação do prompt que será apresentada 

no Capítulo 4 utiliza-se de diversas outras técnicas mencionadas na documentação 

oficial da OpenAI, no site intitulado de “Prompt engineering” (OPENAI, 2024). No site, 

é mencionado por exemplo o uso de táticas como “incluir detalhes de contexto”, “pedir 

ao modelo para atuar como uma persona”, “especificar passos necessários para 

completar uma tarefa”, “dividir tarefas maiores em subtarefas” e “formatar a resposta 

esperada”. Todas essas técnicas são autoexplicativas, sendo que de acordo com a 

OpenAI (2024), elas melhoram a assertividade do modelo. 

 

Kneusel (2024) observa que uma das propriedades dos LLMs é sua capacidade de 

aprendizado de contexto, sendo que esse é provavelmente um dos principais motivos 

pela empolgação de entusiastas na área de IA. O autor explica que o aprendizado de 

contexto diz respeito ao modelo que aprende dinamicamente a partir das informações 

que lhe são fornecidas, sem modificar seus pesos. Ele também enfatiza que o 

aprendizado de contexto é diferente do ajuste fino de um modelo, sendo que no ajuste 

fino, um modelo previamente treinado é adaptado a uma tarefa, atualizando os pesos 

com dados novos de treinamento. Ou seja, Kneusel (2024) observa que o aprendizado 

de contexto adiciona informações novas ao LLM como parte do prompt, enquanto 

mantém fixos os pesos do modelo. Isso conecta com a visão de que o conhecimento 

arquitetural de software pode contribuir para o processo de tomada de decisões 
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arquiteturais, já que se pode utilizar aprendizado de contexto dos LLMs com o 

conhecimento arquitetural para decisões mais assertivas.  
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3 ARQUITETURA DE SOFTWARE 
 

Segundo Fairbanks e Garlan (2010), a Arquitetura de um Software geralmente está 

associada com uma visão de alto nível sobre o design de uma solução, de forma que 

se entende os elementos e componentes dessa solução junto das relações e 

características deles, aplicando uma ótica sobre como as decisões influenciam os 

atributos de qualidade e as restrições, analisando também como podem afetar a 

implementação ou manutenção de novas funcionalidades. Os autores também 

enfatizam que existe uma linha tênue entre arquitetura e design detalhado, em que o 

design detalhado seria decisões menores em baixo nível que estão diretamente 

relacionados à implementação de código dos sistemas, como por exemplo a escolha 

de nomes de variáveis ou uso padrões de projeto (design patterns). Entretanto, os 

autores observam que se essas decisões de baixo nível possuírem a característica de 

intencionalidade e gerarem impactos nos atributos de qualidade, ainda seria uma 

decisão arquitetural. Neste trabalho, serão explicados padrões e estilos arquiteturais 

na Seção 3.1. 

 

Ainda de acordo com Fairbanks e Garlan (2010), é possível observar que pensar sobre 

Arquitetura de Software é importante porque ela impacta os sistemas em diferentes 

aspectos e pode-se reduzir riscos de falha em projetos. Eles comentam que todo 

software possui uma arquitetura, independentemente se foi investido muito tempo 

pensando sobre as decisões ou não; e se faz necessário entender qual é o risco que 

se deseja assumir ao pensar pouco sobre decisões arquiteturais. Eles citam por 

exemplo que talvez para sistemas de pouco risco ou que são menores, pode-se não 

ter a necessidade de pensar intencionalmente sobre todas as decisões arquiteturais. 

Neste trabalho, será feito uma análise exploratória no uso de modelos de linguagem 

de grande escala para ajudar a tomar melhores decisões arquiteturais de maneira 

intencional. 

 

De acordo com Bass, Clements e Kazman (2013), as restrições em um projeto 

referem-se a decisões de design que já foram previamente estabelecidas, 

frequentemente associadas a condições externas como políticas organizacionais, 

limitações tecnológicas ou acordos comerciais, e que delimitam as escolhas 

disponíveis no processo de tomada de decisões arquiteturais. Os autores também 
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explicam que os requisitos funcionais determinam ações e comportamentos que o 

sistema deve executar, enquanto os atributos de qualidade especificam diferentes 

critérios como desempenho, segurança e adaptabilidade, que qualificam como essas 

funcionalidades devem ser implementadas. Eles também discutem que arquitetura de 

software conecta esses elementos ao organizar componentes e suas interações para 

alcançar os objetivos funcionais e de qualidade dentro das restrições impostas.  

 

Neste trabalho, explora-se como o uso de técnicas de IA generativa pode contribuir 

para simplificar a identificação e priorização dessas decisões, promovendo 

alinhamento entre requisitos e restrições para facilitar a tomada de decisões 

arquiteturais. 

 

3.1 Estilos e padrões arquiteturais de software 
 

Estilos e padrões arquiteturais são conceitos fundamentais no design de software, 

embora possuam escopos distintos. Segundo Fairbanks e Garlan (2010), um estilo 

arquitetural refere-se a um conjunto de convenções de alto nível que define tipos de 

elementos arquiteturais como componentes, conectores e suas interações, além de 

impor restrições para orientar o design do sistema. Os autores mencionam exemplos 

que incluem estilos como client-server, pipe-and-filter, map-reduce, cada um 

influenciando atributos de qualidade específicos como escalabilidade ou 

manutenibilidade. Ainda de acordo com os autores, os padrões arquiteturais operam 

em um nível mais granular, focando em soluções reutilizáveis para problemas 

recorrentes em partes do design, como o uso do padrão REST para mensagens em 

sistemas com o estilo arquitetural client-server. Portanto, enquanto os estilos 

arquiteturais estruturam o sistema como um todo, padrões contribuem com detalhes 

de implementação dentro dessa estrutura maior, ambos sendo elementos-chave para 

alcançar qualidade e consistência no design, sendo que são considerados decisões 

arquiteturais se forem intencionalmente escolhidos, como citado na introdução do 

Capítulo 3.  

 

Como observado por Fairbanks e Garlan (2010), a distinção entre padrões 

arquiteturais e estilos arquiteturais não é facilmente demarcada, especialmente em 

sistemas de grande escala. Os autores destacam que, à medida que surgem sistemas 
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compostos por outros sistemas menores, essa diferenciação torna-se ainda mais 

desafiadora. Como exemplo, eles citam que quando um sistema independente é 

incorporado a um sistema maior, o estilo arquitetural original do sistema menor pode 

ser considerado um padrão no contexto do sistema maior. Sendo que eles reforçam 

que essa ambiguidade leva a uma abordagem mais prática, em que padrões e estilos 

muitas vezes são tratados como conceitos intercambiáveis, dependendo do contexto 

e do nível de abstração em que são analisados. Por isso, neste trabalho, serão 

apresentadas diversas decisões, mas sem afirmar de maneira direta se é um padrão 

ou estilo arquitetural, pois a ênfase está em entender como as decisões foram 

tomadas deliberadamente para influenciar a qualidade da solução. 

 

Serão mencionadas neste trabalho as seguintes decisões arquiteturais, na discussão 

do sistema real do escopo de inadimplência, no Capítulo 4: 

  

• Aggregate Pattern (DDD); 

• Money Pattern; 

• CQRS Pattern; 

• Cache Write-Through Pattern; 

• Banco de dados com propriedades ACID; 

• Pub/Sub Pattern. 

 

De acordo com (FOWLER, 2013), o Aggregate Pattern, no contexto de Domain-Driven 

Design (DDD), define um grupo de objetos de domínio tratados como uma unidade 

única. O autor menciona que esse padrão estabelece a raiz do agregado como a única 

abstração acessível externamente, garantindo a integridade do conjunto. O autor 

também observa que geralmente esse padrão é usado para limitar transações ao nível 

do agregado e organizar operações de armazenamento e recuperação de dados, 

reforçando a coesão e consistência no design de sistemas. 

 

O Money Pattern propõe a criação de uma classe dedicada para representar e 

manipular valores monetários, considerando que linguagens de programação 

costumam não tratar dinheiro como um tipo de dado nativo (FOWLER, 2003). O autor 

destaca que esse padrão é especialmente útil em sistemas que lidam com múltiplas 

moedas, evitando erros como somar valores em dólares e ienes sem considerar suas 
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diferenças. Além disso, ele observa que o padrão ajuda a resolver problemas sutis, 

como erros de arredondamento em cálculos monetários, garantindo maior precisão e 

consistência em operações financeiras. 

 

Fowler também traz uma definição sobre o CQRS Pattern (do inglês, Command Query 

Responsibility Segregation). Ele observa que o padrão promove a separação entre os 

modelos de comando (responsáveis por atualizações/inserções) e consulta 

(responsáveis por leitura) de um sistema, permitindo otimizações específicas para 

cada finalidade (FOWLER, 2011). O autor observa que essa abordagem pode ser 

vantajosa em dois contextos principais: aplicações de alto desempenho, onde a 

separação permite escalabilidade independente de leituras e escritas, e domínios 

complexos, onde separar os modelos reduz sobrecarga cognitiva. No entanto, Fowler 

(2011) ressalta que a aplicação do CQRS deve ser limitada a partes específicas do 

sistema, como Bounded Contexts no DDD, pois sua complexidade pode trazer mais 

riscos do que benefícios em cenários inadequados. 

 

De acordo com AWS (2024), o Cache Write-Through Pattern é uma estratégia proativa 

de cache que atualiza os dados no cache imediatamente após qualquer atualização 

no banco de dados principal. Diferentemente do padrão Cache-Aside, que preenche 

o cache apenas após uma falha de consulta, o Write-Through mantém o cache 

sincronizado com o banco de dados, reduzindo significativamente a probabilidade de 

cache miss e melhorando o desempenho geral da aplicação, no entanto, esse padrão 

pode aumentar o custo, já que dados pouco requisitados também são armazenados 

no cache (AWS, 2024). 

 

A MongoDB (2024) define as propriedades ACID (do inglês, Atomicity, Consistency, 

Isolation, Durability) como propriedades que garantem integridade e confiabilidade, 

mesmo diante de falhas. Atomicidade assegura que uma transação seja completada 

integralmente ou revertida em caso de erro; Consistência garante que as alterações 

preservem as regras do banco de dados, evitando estados inválidos; Isolamento 

protege transações simultâneas de interferências, e Durabilidade, garante que os 

dados persistam após a conclusão da transação, mesmo em falhas de sistema 

(MONGODB, 2024). A MongoDB também cita que entre as vantagens do modelo 

ACID estão a confiança em sistemas críticos, como bancos e processamento de 
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pagamentos, e o cumprimento de requisitos regulatórios; no entanto, o modelo 

também apresenta desvantagens, como maior complexidade de implementação e 

impactos de desempenho, especialmente em sistemas distribuídos, devido ao 

bloqueio de recursos para evitar conflitos durante as transações. 

 

Já a Microsoft (2024) explica o Pub/Sub Pattern (do inglês, Publisher-Subscriber), 

descrevendo como uma abordagem que permite que aplicações anunciem eventos 

para múltiplos consumidores interessados de forma assíncrona, desacoplando o 

emissor (publisher) dos receptores (subscribers). Entre as principais vantagens do 

padrão estão o aumento da escalabilidade e desempenho, já que os emissores não 

precisam esperar pelas respostas dos receptores, e a capacidade de integrar sistemas 

heterogêneos usando diferentes plataformas e protocolos. No entanto, ele apresenta 

desafios como o gerenciamento de assinaturas, garantia de segurança nos canais de 

mensagens e problemas de ordenação ou duplicação de mensagens (MICROSOFT, 

2024). 

 

3.2 Método de avaliação de candidatos à Arquitetura de Software 
 

Como visto nas seções anteriores, quando se fala de decisões arquiteturais, é comum 

associar o contexto das decisões com o contexto do software, chegando então, nas 

vantagens e desvantagens que cada decisão arquitetural traz para o contexto do 

software, que é conhecido também como trade-offs arquiteturais. Para estruturar a 

forma de analisar e avaliar diferentes trade-offs, Bass, Clements e Kazman (2013) 

descrevem o método ATAM (Architecture Tradeoff Analysis Method) como uma 

abordagem estruturada para arquitetos e stakeholders avaliarem de forma 

colaborativa escolhas arquiteturais que influenciam aspectos do software, com o 

objetivo de identificar riscos e oportunidades relacionadas às decisões arquiteturais e 

seus impactos nos atributos de qualidade do sistema. 

 

Os autores mencionam que o ATAM é baseado na criação de cenários de atributos 

de qualidade, na identificação pontos sensíveis e trade-offs, e na documentação de 

riscos e “não-riscos”, estabelecendo uma conexão clara entre decisões arquiteturais 

e os objetivos de negócio do projeto. Além disso, a metodologia promove o 

engajamento dos participantes e gera artefatos valiosos, como árvores de utilidade e 
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relatórios que servem como referência para guiar a evolução da arquitetura, sendo 

especialmente relevante em projetos complexos, nos quais os custos de uma má 

decisão arquitetural podem ser significativos (BASS, CLEMENTS E KAZMAN, 2013). 

 

Ainda segundo os autores, o método é estruturado em quatro fases principais: 

Preparação e Parceria, onde são definidos os objetivos do processo, organizados os 

participantes e alinhados os principais elementos da arquitetura a serem 

apresentados; Análise Inicial, com ênfase na apresentação dos objetivos de negócio, 

na descrição da arquitetura e na criação de uma árvore de utilidade, em que cenários 

são detalhados e priorizados para análise; Análise Detalhada, que envolve um grupo 

ampliado de stakeholders, em que são refinados e analisados os cenários mais 

críticos, avaliando as decisões arquiteturais em relação aos requisitos de qualidade e 

identificando sensibilidades, riscos e trade-offs; Relatório Final, em que são 

documentados os resultados, incluindo os riscos identificados, recomendações e 

temas críticos que conectam as decisões arquiteturais aos objetivos de negócio. 

 

Neste trabalho, o ATAM será apresentado de maneira simplificada e adaptada, com 

ênfase principalmente na fase de “Análise Detalhada” para fazer comparações entre 

o modelo de LLM no Capítulo 5 e o sistema real de inadimplência no Capítulo 4. 

 

3.3 Gestão do conhecimento arquitetural de software 
  

Segundo Ozkaya (2023), conhecimento arquitetural em engenharia de software pode 

ser entendido como um conjunto estruturado de informações que orientam decisões 

de design e planejamento de sistemas, podendo abranger elementos como o projeto 

da arquitetura; as decisões de design; os contextos, restrições e requisitos nos quais 

o sistema será implantado. Capturar e gerenciar esse conhecimento é essencial para 

alinhar as escolhas de design às necessidades do projeto, otimizando a evolução 

contínua dos sistemas frente a mudanças tecnológicas e organizacionais (OZKAYA, 

2023). 

 

Ozkaya (2023) também enfatiza que ferramentas baseadas em IA representam uma 

oportunidade promissora para automatizar a captura e aplicação desse conhecimento, 
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facilitando a tomada de decisões arquiteturais e permitindo uma abordagem mais 

eficiente e alinhada às demandas dinâmicas do desenvolvimento de software. 

 

Em resumo, o conhecimento arquitetural não tem exatamente apenas um formato fixo, 

mas pode ser compreendido como quaisquer informações que ajudam na tomada de 

decisões arquiteturais, por isso neste trabalho foi escolhido o uso de modelos de 

domínio como diagrama usando a linguagem UML (Unified Modeling Language), a 

descrição textual de requisitos funcionais e atributos de qualidade; sendo todo esse 

conhecimento usado para construir o prompt para o modelo de LLM. 

 

3.4 Geração semiautomática de candidatos à Arquitetura de 
Software 

 

Como observado nas seções anteriores, o processo de tomada de decisões 

arquiteturais tende a ser trabalhoso na construção e desenvolvimento de um software, 

embora tenha alto valor para a redução de riscos e escolhas mais assertivas, 

adequando a qualidade com o custo de desenvolvimento da solução. Por isso, nota-

se cada vez mais esforços para automatizar ou facilitar essa atividade, como observa-

se no trabalho de Eisenreich, Speth e Wagner (2024) em que a intenção é conectar 

as recentes pesquisas sobre LLMs e IA Generativa com Arquitetura de Software, mais 

especificamente, a tarefa de avaliação de diferentes decisões arquiteturais. Os 

autores enfatizam que a Arquitetura de Software cumpre um papel importante na 

qualidade de todo sistema e propõem um método para gerar arquiteturas de forma 

semiautomática utilizando IA. Eles mostram que o método é composto pelas seguintes 

principais etapas: gera-se primeiro os modelos de domínio e cenários de caso de uso 

usando LLMs, depois, derivam-se dos LLMs múltiplos candidatos à Arquitetura 

juntamente de suas respectivas decisões arquiteturais e por fim, avalia-se esses 

candidatos e toma-se uma decisão para a solução final, que passa a ser escolhida 

com mais dados por causa do método. Os autores citam que é importante ter iterações 

constantes e supervisionadas no método para melhorar os resultados devido à forma 

como os LLMs funcionam atualmente, por isso, “semiautomático”. Tal abordagem 

proposta no método pelos autores, promove uma maior qualidade nas decisões 

arquiteturais e acelera o processo de avaliação arquitetural, alinhando-se de maneira 

mais assertiva aos requisitos funcionais, atributos de qualidade e restrições do projeto. 
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Ainda de acordo com os autores, existem trabalhos relacionados que indicam avanços 

no uso de automação para apoiar decisões arquiteturais, porém, apresentam 

limitações que geralmente apresentam muito esforço manual e são focados em partes 

isoladas do ciclo de design – como a geração de modelos de domínio ou somente a 

avaliação de candidatos à arquitetura. Eisenreich, Speth e Wagner (2024) propõem 

um fluxo completo, que começa pela geração de modelos iniciais até a decisão final 

de escolha arquitetural. Essa abordagem se destaca não apenas por apoiar a decisão 

da solução, mas também por capturar e documentar decisões em forma de registros 

de decisões arquiteturais (ADRs, do inglês, Architecture Decision Records), 

promovendo um contexto histórico das decisões discutidas ao longo do projeto. 

 

Adentrando nos detalhes do método proposto pelos autores, o processo é pensado 

para ser iterativo durante o ciclo de desenvolvimento de um software, sendo que ele 

possui seis etapas, onde algumas são automáticas (com auxílio do LLM) e outras 

manuais (com intervenção humana): 

 

1. Automático: Gerar o modelo de domínio e cenários de caso de uso com base 

em requisitos textuais; 

2. Manual: Refinar o modelo de domínio e os cenários de caso de uso gerados; 

3. Automático: Derivar múltiplos candidatos à arquitetura e as decisões 

arquiteturais usando o modelo de domínio, os cenários e os atributos de 

qualidade; 

4. Automático: Avaliar e comparar os candidatos à arquitetura; 

5. Manual: Refinar os candidatos à arquitetura; 

6. Manual: Selecionar o candidato que mais se encaixa no problema. 

 

Na primeira etapa, espera-se transformar os requisitos e atributos de qualidade 

fornecidos em uma representação do domínio e em cenários de caso de uso, 

priorizando nesses artefatos as relações das entidades e omitindo detalhes 

específicos dessas entidades (como os atributos e comportamentos), já que é mais 

importante para as decisões arquiteturais entender essas relações pois é através 

delas que modulariza-se a arquitetura em componentes. Os cenários de caso de uso 

nessa etapa complementam o modelo de domínio com a descrição do funcionamento 
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do sistema. Em iterações recorrentes futuras nessa etapa, são incluídas também as 

decisões arquiteturais e a arquitetura atual para aumentar a assertividade ao gerar 

novamente modelos de domínio e cenários de caso de uso. 

 

Na segunda etapa, o arquiteto deve entender o modelo de domínio e refinar, fazendo 

uso inclusive de LLMs com prompts adicionais para auxiliar no processo de 

refinamento. 

 

Na terceira etapa, espera-se transformar os requisitos, atributos de qualidade, 

cenários de caso de uso e modelo de domínio em diferentes candidatos à arquitetura 

com decisões arquiteturais. O formato exato de resposta e como será a interação com 

o LLM ainda está em discussão no trabalho de Eisenreich, Speth e Wagner (2024), 

sendo que tem sido levantadas hipóteses para fazer com que o LLM faça a divisão de 

componentes da arquitetura. Inclusive, estão querendo extrair as decisões 

arquiteturais em formato de ADRs. 

 

Na quarta etapa, os autores querem auxiliar o arquiteto a tomar a decisão que melhor 

se encaixa no cenário através de uma automação de avaliação arquitetural utilizando 

métodos como o ATAM, sendo que a decisão de qual método utilizar também será 

discutida e caso prove-se ser muito difícil, tornaram essa etapa como semiautomática.  

 

As etapas 5 e 6 consistem em o arquiteto entender as vantagens e desvantagens de 

cada candidato à decisão arquitetural e escolher uma que melhor se encaixa no 

problema, podendo então solicitar melhorias com novos prompts para melhorar a 

assertividade das respostas. Por fim, todo o processo é iterativo com a finalidade de 

suportar a característica iterativa do próprio processo ágil de desenvolvimento de 

software, assumindo que os requisitos podem mudar e que todo o método poderia ser 

iterado novamente. 

 

Os autores fizeram uma análise exploratória somente da primeira etapa até então, 

utilizando LLaMA2 e GPT-3.5, utilizando como base o estudo de caso do MobSTr, um 

sistema de condução automatizada com foco em segurança e rastreabilidade que 

aconteceu no desafio industrial WATERS 2019 (Workshop on Analysis Tools and 

Methodologies for Embedded and Real-time Systems), um workshop sobre o tema. 
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Neste trabalho, o objetivo é fazer uma análise e aplicação prática apenas da terceira 

etapa em uma solução real no escopo de uma fintech, etapa que o trabalho de 

Eisenreich, Speth e Wagner (2024) ainda não chegou, utilizando-se do modelo de LLM 

“GPT-4o1” da OpenAI.  

 

As etapas 1 a 2 foram retiradas de uma solução real e geradas ainda de maneira 

manual, tendo sido simplificado e anonimizado, contendo apenas um contexto 

delimitado da solução e maior ênfase nos atributos de qualidade. Apesar de a etapa 

3 mencionar o uso de cenários de caso de uso, a análise exploratória do trabalho de 

Eisenreich, Speth e Wagner (2024) contém apenas uma lista de requisitos. Será 

seguido neste trabalho o mesmo formato de requisitos encontrados na análise 

exploratória, sem casos de uso e com ênfase em atributos de qualidade, mas 

analisando o comportamento do LLM para a geração de candidatos à arquitetura de 

software e análise de trade-offs. 
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4 CONTEXTO DO PROBLEMA E SOLUÇÃO REAL 
 

Como já mencionado, o objetivo deste trabalho é fazer uma análise exploratória no 

uso de LLMs para a tomada de decisões arquiteturais. Seguindo o método proposto 

por Eisenreich, Speth e Wagner (2024), através da especificação de requisitos textuais 

(com ênfase em atributos de qualidade) e modelos de domínio de um software real no 

escopo de fintechs, o modelo de linguagem de grande escala responderá com padrões 

e estilos arquiteturais junto de uma análise de trade-offs. Com isso, serão discutidos 

os resultados obtidos para entender o uso dessa tecnologia para o processo de projeto 

de software. 

 

Nesse capítulo, são apresentados alguns conhecimentos arquiteturais e a solução que 

foi implementada em um ambiente real de uma fintech, tendo o contexto do problema 

sido simplificado e generalizado, de forma a omitir especificidades da empresa e 

reduzir o escopo. O formato escolhido para a representação dos requisitos e do 

modelo de domínio foi o mesmo encontrado na análise exploratória do método de 

Eisenreich, Speth e Wagner (2024). 

 

O sistema em questão trata da gestão de inadimplência, que é um tema recorrente e 

crítico em diferentes fintechs, pois impacta diretamente a saúde financeira da 

organização e contribui para a continuidade operacional do negócio. Em linhas gerais, 

inadimplência é o não cumprimento de obrigações financeiras no prazo acordado. 

Realizar a gestão da inadimplência é um processo composto por diferentes tarefas, 

como: entender quem são os clientes inadimplentes, quais dívidas eles possuem, 

como cobrar de forma adequada esses clientes, como entender o comportamento da 

inadimplência ao longo do tempo para tomada de decisões estratégicas e afins. 

 

Os conhecimentos arquiteturais incluem: a especificação textual dos requisitos 

funcionais e dos atributos de qualidade, o modelo de domínio inicial pensado para o 

problema, a solução arquitetural que foi implementada para esse problema e a 

identificação de trade-offs para essa solução arquitetural utilizando o método ATAM. 

Sendo que o maior foco é na especificação de requisitos de atributos de qualidade, 

pois esses são os que mais impactam na escolha de decisões arquiteturais. Todos os 
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artefatos foram mapeados com base na principal funcionalidade: “O sistema deve 

gerenciar a inadimplência dos clientes”. 

 

4.1 Requisitos funcionais 
 

Na Tabela 1 são apresentados os requisitos que contextualizam o problema, definindo 

conceitos importantes para o funcionamento do sistema. 

Tabela 1 - Requisitos funcionais textuais do sistema de inadimplência 

Id Descrição 

FR-1 O sistema deve gerenciar a inadimplência dos clientes 

FR-1.1 
Um cliente inadimplente possui um documento (CPF ou CNPJ), o conjunto de 
suas dívidas e seus respectivos pagamentos realizados para essas dívidas 

FR-1.2 
Uma dívida é caracterizada por: valor bruto, valor líquido (após todos os 
pagamentos realizados), data de surgimento da dívida, motivo da dívida 

FR-1.3 
Um pagamento para uma dívida é caracterizado por: valor pago e hora do 
pagamento 

FR-1.4 
Saldo de inadimplência é a soma de valor líquido de todas as dívidas de todos 
os clientes inadimplentes, agrupado por dia, é caracterizado por: saldo, data de 
referência, documento do cliente 

FR-1.5 

Inadimplência de um cliente é diferença entre a soma de valor bruto e a soma 
de valor líquido de todas as dívidas, agrupado por dia e por documento do cliente 
inadimplente, é caracterizado por: saldo, data de referência, documento do 
cliente, todas as dívidas do cliente até a data de referência, todos os pagamentos 
do cliente até a data de referência 

FR-1.6 O sistema deve permitir o acesso ao histórico de clientes inadimplentes 

FR-1.7 
O sistema deve permitir o acesso ao histórico de dívidas para clientes 
inadimplentes 

FR-1.8 O sistema deve permitir o acesso ao histórico de pagamentos de dívidas 

FR-1.9 
O sistema deve emitir um relatório chamado "Foto da Inadimplência" com o saldo 
de inadimplência de acordo com o dia solicitado, que é uma data de referência 

FR-1.10 

O sistema deve emitir um relatório chamado "Inadimplência do Cliente", 
contendo a inadimplência de um cliente específico e informando de maneira 
detalhada todas as dívidas e pagamentos desse cliente (com todas as 
características de dívidas e pagamentos) 

Fonte: Elaborado pelo autor. 

A coluna “Id” (Identificador) identifica os requisitos para facilitar a interação com o LLM, 

ao solicitar novos prompts ou o modelo precisar citar eles. Os requisitos foram 

derivados da principal funcionalidade de “gerenciar inadimplência dos clientes”, que é 

descrita no FR-1; FR é sigla para Requisito Funcional (do inglês, Functional 

Requirement). Por isso, todos os requisitos seguem uma hierarquia de numeração 

derivados do FR-1, como por exemplo, o FR-1.1. A descrição dos requisitos 
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representa as principais funcionalidades que o sistema deve atender com foco em 

entender termos de negócio e a relação entre diferentes entidades. 

 

4.2 Atributos de qualidade 
 

A seguir na Tabela 2 são apresentados os atributos de qualidade que contextualizam 

a solução arquitetural implementada para o problema. Nas colunas da Tabela 2, a 

Categoria, representa qual é o escopo de problema que o atributo de qualidade se 

encaixa. As categorias podem ser: “Precisão; Disponibilidade; Confiabilidade; 

Desempenho; Capacidade; Observabilidade; Auditabilidade”. Já a “Métrica de 

Sucesso”, quantifica o atributo de qualidade de maneira que fique clara a expectativa 

de como o sistema atende a esse atributo. Ainda na Tabela 2, alguns atributos de 

qualidade estão descritos com alguns termos como “D-0” e “D-1”, essa nomenclatura 

é uma forma de referenciar temporalidade em dias (“D”) relativos à data de ocorrência 

de geração dos dados. Por exemplo, D-6 de uma data específica seriam 6 dias antes 

dessa data. A coluna “Id” (Identificador) identifica os requisitos não funcionais (NFR, 

do inglês, Non-Functional Requirement, conhecidos também como atributos de 

qualidade) para facilitar a interação com o LLM, ao solicitar novos prompts ou o 

modelo precisar citar eles.   
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Tabela 2 - Atributos de qualidade do sistema de inadimplência. 

Id Descrição Categoria Métrica de Sucesso 

FR-1 O sistema deve gerenciar a inadimplência dos 
clientes 

- - 

NFR-
1.1 

Erros em cálculos financeiros envolvendo dívidas e 
pagamentos precisam ser igual ou inferior a um 
milionésimo (0,000001), principalmente para manter 
o saldo de inadimplência correto 

Precisão Taxa de erro em 
operações 
matemáticas 
envolvendo decimais 
<= 10^(-6) 

NFR-
1.2 

O relatório de "Foto da Inadimplência", quando é 
solicitado em D-0 em relação ao dia atual do sistema 
como data de referência deve estar disponível em 
até 2 minutos após solicitado a sua emissão 

Disponibilidade Tempo de resposta 
<= 2 minutos 

NFR-
1.3 

O relatório de "Foto da Inadimplência", quando é 
solicitado em D-0 em relação ao dia atual do sistema 
como data de referência pode conter divergências 
de até 1 milhão em relação ao saldo da 
inadimplência real final do próprio dia 

Confiabilidade (Saldo da 
inadimplência real - 
Saldo da 
inadimplência 
reportado) <= 1 
milhão 

NFR-
1.4 

O relatório de "Foto da Inadimplência", quando é 
solicitado em D-1 em relação ao dia atual do sistema 
como data de referência deve estar disponível em 
até 40 minutos após solicitado a sua emissão 

Disponibilidade Tempo de resposta 
<= 40 minutos 

NFR-
1.5 

O relatório de "Foto da Inadimplência", quando é 
solicitado em D-1 em relação ao dia atual do sistema 
como data de referência não pode ter divergências 
relação ao saldo da inadimplência real final do 
próprio dia 

Confiabilidade (Saldo da 
inadimplência real - 
Saldo da 
inadimplência 
reportado) = 0 

NFR-
1.6 

O relatório de "Inadimplência do Cliente", quando é 
solicitado em D-0 em relação ao dia atual do sistema 
como data de referência deve estar disponível em 
até 1 minuto após solicitado a sua emissão 

Disponibilidade Tempo de resposta 
<= 1 minuto 

NFR-
1.7 

O sistema deve suportar a persistência de novas 
dívidas em até 500 milissegundos 

Desempenho Tempo de resposta 
<= 500ms 

NFR-
1.8 

O sistema deve permitir o acesso ao histórico de 
novos pagamentos em até 400 milissegundos 

Desempenho Tempo de resposta 
<= 400ms 

NFR-
1.9 

O sistema deve suportar a persistência concorrente 
de até 50 novas dívidas 

Capacidade Throughput >= 50 
transações 
simultâneas 

NFR-
1.10 

O sistema deve suportar o registro persistente 
simultâneo de até 600 novos pagamentos 

Capacidade Throughput >= 600 
transações 
simultâneas 

NFR-
1.11 

O sistema deve emitir métricas sobre Throughput, 
Tempo de resposta, Latência de todas as 
dependências de I/O 

Observabilidade Ter dashboard de 
Observabilidade 

NFR-
1.12 

O sistema deve manter o histórico de dívidas, 
pagamentos e clientes inadimplentes por 6 anos 
para fins de auditoria 

Auditabilidade Dados recuperáveis 
por até 6 anos 

NFR-
1.13 

O histórico solicitado dentro desse período de 6 
anos para fins de auditoria pode ser emitido em até 
5 dias 

Disponibilidade Tempo de resposta 
<= 5 dias 

Fonte: Elaborado pelo autor. 
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Os atributos de qualidade foram derivados da principal funcionalidade de “gerenciar 

inadimplência dos clientes”, que é descrita no FR-1. Por isso, todos os atributos de 

qualidade seguem uma hierarquia de numeração derivados do FR-1, como por 

exemplo, o NFR-1.1. Esses requisitos possuem um contexto sobre tamanho da 

companhia, justificando os números apresentados na tabela. 

 

4.3 Modelo de domínio 
 

A Figura 1 apresenta o diagrama de domínio para os requisitos mencionados na 

Seção 4.1, utilizando o formato de representação de diagrama de classes na 

linguagem UML (Unified Modeling Language). 

Figura 1 - Diagrama do modelo de domínio dos requisitos funcionais. 

 

Fonte: Elaborado pelo autor. 
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No diagrama, o Cliente Inadimplente é composto por suas respectivas dívidas. Nesse 

contexto, são criados somente Clientes quando eles já estão inadimplentes (ou seja, 

não cumpriram obrigações financeiras no prazo acordado), portanto, a Dívida precisa 

existir e isso explica a relação de um Cliente Inadimplente que é composta por no 

mínimo uma ou mais dívidas.  

 

Essas dívidas podem ser pagas parcialmente ou totalmente, então uma dívida tem 

uma relação de associação com nenhum ou diversos pagamentos.  

 

O Saldo da Inadimplência é gerado diariamente diversas vezes ao longo do dia, 

sempre que uma nova dívida é criada, aumentando o saldo de inadimplência do cliente 

ao longo do tempo, por isso o Saldo está em relação de composição com o Cliente 

Inadimplente, sendo que o Cliente Inadimplente é o objeto-todo responsável por criar 

e destruir suas respectivas partes, tanto na relação com a Dívida quanto a relação do 

Saldo da Inadimplência. 

 

Como apresentado na Seção 4.1, existem dois relatórios: “Foto da Inadimplência” e 

“Inadimplência do Cliente”, em que o primeiro é uma visão geral de todas as dívidas 

de todos os clientes inadimplentes agrupados por dia; e o segundo, é o detalhamento 

da inadimplência de um cliente específico, contendo também o saldo de inadimplência 

desse cliente junto com os detalhes das dívidas. Por isso, no diagrama da Figura 1, 

observa-se que os relatórios possuem uma relação de agregação com o Cliente 

Inadimplente e o que muda entre eles é exatamente a relação de multiplicidade, que 

pode estar relacionado com muitos clientes ou apenas um. 
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4.4 Solução real implementada 
 

A partir dos requisitos funcionais, modelos de domínio e atributos de qualidade, as 

seguintes decisões arquiteturais foram escolhidas como uma solução real para o 

problema, usado por uma empresa fintech, descritos na Tabela 3. A coluna “Id” 

(Identificador) identifica os requisitos para facilitar a interação com o LLM, ao solicitar 

novos prompt e analisar as respostas do modelo. 

Tabela 3 - Decisões arquiteturais do sistema de inadimplência 

Id Decisão Vantagens Desvantagens 

ADR-1 DDD Aggregate 

Pattern 

Promove abstração de transações na 

camada de domínio e garante 

consistência interna, reduz impactos 

de operações concorrentes 

Pode aumentar a curva de 

aprendizado sobre o sistema 

e pode gerar problemas de 

desempenho se não for bem 

pensado o escopo dos 

agregados 

ADR-2 Money Pattern Promove coesão e semântica de 

valores financeiros, garante abstração 

de arredondamentos por todo o 

código 

Pode gerar alocações 

excessivas na memória e 

aumenta curva de 

aprendizado sobre o sistema 

ADR-3 CQRS Pattern Otimiza operações de leitura e 

escrita, melhorando desempenho e 

incentiva a escalabilidade horizontal 

 

Consistência eventual pode 

aumentar complexidade de 

manutenção e detecção de 

erros 

ADR-4 Cache Write-

Through Pattern 

Promove redução no tempo de 

resposta, alivia carga de banco de 

dados operacional e promove a 

sensação de disponibilidade 

percebida por clientes do sistema 

Pode aumentar complexidade 

de manutenção por ter que 

lidar com expiração do cache 

ADR-5 Banco de dados 

com propriedades 

ACID 

Reduz problemas relacionados a 

concorrência, reduz problemas em 

cenários de falha 

Pode aumentar complexidade 

para escalabilidade em alto 

volume de transações 

simultâneas 

ADR-6 Pub/Sub Pattern Promove processamento assíncrono, 

facilitando a geração de novos dados 

em cenários de alto volume de dados 

Pode aumentar complexidade 

de manutenção e ser difícil de 

investigar problemas, 

dependendo onde é aplicado 

Fonte: Elaborado pelo autor. 
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As decisões arquiteturais contêm diversos padrões escolhidos intencionalmente para 

atender aos requisitos específicos. Como observado no Capítulo 3 sobre Arquitetura 

de Software, existe uma linha tênue entre design de alto nível e baixo nível, então os 

padrões descritos na Tabela 3 podem ter diferentes pontos de vista: visão de código, 

armazenamento de dados, relação entre componentes do software e afins. A tabela 

mostra como essas decisões afetam os diferentes atributos de qualidade e quais 

trade-offs essas decisões carregam. 

 

A seguir, na Tabela 4, observa-se a relação de quais decisões arquiteturais afetam 

quais atributos de qualidade mencionados na Seção 4.2. 

 

Ao analisar a relação entre a Tabela 3 e a Tabela 4, observa-se que as vantagens 

encontradas na decisão arquitetural (ADR) afetam múltiplos atributos de qualidade. 

Isso acontece porque os atributos de qualidade apesar de muitas vezes apresentarem 

propostas específicas, ainda fazem parte de uma categoria de problemas que são 

comuns entre eles. Por exemplo, os atributos de qualidade “NFR-1.3; 1.5; 1.9 e 1.10” 

envolvem métricas de sucesso que são sobre transações simultâneas (concorrência, 

que está relacionado a capacidade) e divergências de números (confiança desses 

números, relacionado à confiabilidade); pontos em que o Aggregate Pattern tratam 

através de abstrações sobre uso de transações na camada de domínio. 

  

Outro ponto importante é que existem algumas decisões que até poderiam afetar 

ainda mais categorias diferentes, como a “ADR-4” que fala sobre um padrão de Cache; 

esse padrão até poderia ser uma vantagem para a categoria de “Desempenho”, além 

da categoria “Disponibilidade” e “Auditabilidade” que são referenciadas na Tabela 4, 

porém, no sistema real foi tomada a decisão de uso de Cache somente nos fluxos dos 

atributos “NFR-1.2; 1.4; 1.6 e 1.13”, isso porque pelo contexto do sistema, não teriam 

ganhos de usar cache no momento de inserções de novas dívidas no escopo 

transacional. Portanto, a relação na Tabela 4 mostra também quais ADRs foram 

utilizadas em atributos específicos considerando outros contextos fora do escopo aqui.  
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Tabela 4 - Relação entre quais decisões arquiteturais atendem à quais atributos de qualidade no 

sistema de inadimplência 

Id Atributo(s) atendido(s) Categorias de atributos 

ADR-1 NFR-1.3; 

NFR-1.5; 

NFR-1.9; 

NFR-1.10 

Confiabilidade; 

Capacidade 

ADR-2 NFR-1.1 Precisão 

ADR-3 NFR-1.2; 

NFR-1.4; 

NFR-1.6;  

NFR-1.7; 

NFR-1.8; 

NFR-1.9; 

NFR-1.10; 

NFR-1.12; 

NFR-1.13 

Disponibilidade; 

Desempenho; 

Auditabilidade; 

Capacidade 

ADR-4 NFR-1.2; 

NFR-1.4; 

NFR-1.6;  

NFR-1.13 

Disponibilidade; 

Auditabilidade 

ADR-5 NFR-1.3; 

NFR-1.5; 

NFR-1.9; 

NFR-1.10 

Confiabilidade; 

Desempenho; 

Capacidade 

ADR-6 NFR-1.2;  

NFR-1.3; 

NFR-1.11 

Disponibilidade; 

Confiabilidade; 

Observabilidade 

Fonte: Elaborado pelo autor. 

4.5 Instruções para o modelo de linguagem de grande escala 
 

Através de todo o conhecimento arquitetural citado nas Seções 4.1, 4.2 e 4.3 

(requisitos funcionais, atributos de qualidade e modelagem inicial do domínio), foi 

estruturado um prompt para interagir com o modelo de LLM, utilizando algumas das 

diversas técnicas encontradas no site da OpenAI, que são mais detalhadas no 

Capítulo 2. O conhecimento arquitetural foi condensado em formatos textuais para 

facilitar o uso do LLM, sendo que foi utilizado a linguagem específica de domínio (DSL, 

do inglês, Domain-Specific Language) PlantUML para o diagrama de classes e 
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arquivos CSV (do inglês, Comma-separated values, valores separados por vírgula) 

para os requisitos textuais e atributos de qualidade. A Figura 2 mostra o prompt que 

foi criado. 

Figura 2 - Prompt criado para o LLM 

 

Fonte: Elaborado pelo autor. 

É possível perceber na Figura 2 que uma das principais técnicas empregadas na 

construção do prompt é o aproveitamento da funcionalidade de cadeia de pensamento 

(Chain of Thought) do modelo GPT-4o1 da OpenAI para quebrar um problema grande 

em subproblemas e deixar bem especificado todas as expectativas que se tem de 

resposta, incluindo o pedido para que o modelo atue com o papel de arquiteto de 

software, aplicando a técnica também de atribuição de personas no prompt.  

 

Outra técnica importante aplicada é a de “dar espaço para o modelo pensar”, no qual 

esse primeiro prompt é enviado, aguarda-se a resposta do modelo para ele entender 

as instruções e só depois envia-se o diagrama de classes do modelo inicial de domínio 

em PlantUML. Novamente, aguarda-se o feedback do LLM para ela “entender o 

conteúdo” e então, envia-se por fim, os requisitos textuais em formato CSV. No total, 
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foram três interações de prompts com o modelo, sendo que as duas últimas não serão 

apresentadas em figuras pois são basicamente os mesmos tópicos apresentados nas 

seções 4.1, 4.2 e 4.3, só que em formatos específicos. Serão discutidos os resultados 

no capítulo seguinte. 

 

Durante a fase de concepção do prompt, foi testado diversas outras técnicas 

diferentes e percebeu-se que nem todas trouxeram tanta assertividade. Quanto 

menos contexto e mais “solicitações ao mesmo tempo” um prompt contém, a 

sensação é que o modelo acaba sendo menos assertivo. Essas “solicitações ao 

mesmo tempo” seriam múltiplas tarefas sem especificar qual é a ordem a ser seguida 

ou sem deixar claro o formato e resultado esperado. Por exemplo, pedir ao modelo 

algo muito genérico como “Traga trade-offs baseado nos requisitos que vou te enviar” 

acaba sendo pouco efetivo, o modelo começa a dar respostas que não fazem sentido 

ou que pouco ajudam (termo geralmente conhecido como alucinações de modelos de 

LLM).  
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5 RESULTADOS OBTIDOS DO MODELO DE LINGUAGEM 
DE GRANDE ESCALA 

 

Após o envio do primeiro prompt estruturado apresentado na seção 4.5, um fenômeno 

interessante já pode ser notado logo na primeira resposta que o LLM apresenta, em 

que é visto um processo de “pensamento” mesmo, buscando entender justamente 

quais referências pode-se utilizar da literatura e sugerindo diversos padrões e estilos 

arquiteturais diferentes. A primeira resposta é bem longa por essa característica, então 

a Figura 3 apresenta apenas parte dessa resposta. A iteração completa com o modelo 

de LLM está no APÊNDICE A – PROMPT E SAÍDA COMPLETA DO LLM. 

 

É possível perceber na Figura 3 que todas as técnicas de prompt empregadas fazem 

a diferença, pois antes do modelo tentar responder de maneira direta, nota-se a coleta 

de todo o contexto necessário para preparar a resposta final, claramente isso é o 

aprendizado de contexto mencionado no Capítulo 2 que está em execução, sendo 

notável uma das características mais interessantes desse tipo de Inteligência Artificial. 

Não foi preciso ter conhecimento sobre algoritmos complexos de Deep Learning ou 

entendimento profundo sobre estatística aplicada para induzir o modelo a fazer uma 

tarefa avançada.   
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Figura 3 - Primeira resposta do LLM ao prompt inicial enviado 

 

Fonte: Elaborado pelo autor. 
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Depois, ao enviar o modelo inicial de domínio em formato de PlantUML, o modelo 

responde da seguinte forma, na Figura 4. 

Figura 4 - Segunda resposta do LLM para o modelo de domínio 

 

Fonte: Elaborado pelo autor. 

É visível que o modelo já começa a afunilar a resposta conectando o conteúdo que 

ele coletou na Figura 3 com o novo conhecimento arquitetural (o diagrama inicial do 

modelo de domínio), apesar de ainda não ser a resposta final do modelo, ele começa 

a citar pontos como “talvez trazer estilos modulares como a Arquitetura em Camadas 

ou Arquitetura Hexagonal possa ajudar no longo prazo”. O ChatGPT permite também 

visualizar quais foram os processos executados internamente do Chain of Thought, 

reforçando como ele estava afunilando a resposta, como pode ser visto na Figura 5. 

  



 44 

Figura 5 - Processo de Chain of Thought interno do modelo de LLM para fornecer a segunda resposta 

 

Fonte: Elaborado pelo autor. 

Na Figura 5, o processo de Chain of Thought fica muito evidente, ele começa a 

“raciocinar” de forma sequencial: “Preciso formatar a resposta utilizando ATAM e 

avaliar trade-offs”; “Vou examinar o modelo de domínio agora e focar em entender o 

contexto por completo”; “Quando eu receber o arquivo CSV com os requisitos, vou 

juntar tudo para emitir a resposta final”. 

 

Por fim, a resposta final para o modelo com a análise de trade-offs é apresentada nas 

Tabelas 5 e 6. 
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Tabela 5 - Resposta final do LLM com as decisões arquiteturais 

Decisão Vantagens Desvantagens 

Arquitetura em 

Camadas + 

Domain-Driven 

Design (DDD) 

O DDD combinado com uma arquitetura 

em camadas (Aplicação, Domínio, 

Infraestrutura) melhora a 

manutenibilidade e clareza do domínio, 

facilitando garantir a precisão (NFR-1.1) 

nos cálculos financeiros e mantendo 

regras de negócio coerentes. Também 

torna mais simples a auditabilidade 

(NFR-1.12), já que o domínio é bem 

definido e rastreável. 

Pode aumentar a complexidade 

inicial de desenvolvimento e o 

tempo de resposta (por adicionar 

camadas), comprometendo parte 

das metas de desempenho (NFR-

1.7 e NFR-1.8) se não houver 

otimizações. Além disso, o 

acréscimo de camadas pode afetar 

a latência e dificultar atingir metas 

de tempo estritas para relatórios 

(NFR-1.2, NFR-1.4, NFR-1.6). 

Arquitetura 

Hexagonal (Ports 

and Adapters) 

Ajuda na flexibilidade e substituição de 

fontes de dados ou serviços externos, 

facilitando a observabilidade (NFR-1.11) 

e o cumprimento de requisitos de 

auditabilidade. Permite manter a 

precisão no domínio central, isolado de 

infraestruturas que podem introduzir 

erros. 

Exige maior esforço de 

configuração inicial e abstrações 

adicionais, o que pode afetar 

desempenho em cenários de alto 

throughput (NFR-1.9, NFR-1.10), já 

que cada porta/adaptador pode 

adicionar overhead. 

Microservices + 

Event-Driven 

Architecture 

(EDA) 

Pode facilitar a escalabilidade horizontal 

(NFR-1.9 e NFR-1.10) e aumentar a 

capacidade do sistema de lidar com 

grandes volumes de transações 

simultâneas, além de permitir resiliência 

e disponibilidade (NFR-1.2, NFR-1.6, 

NFR-1.4) distribuindo a carga entre 

diferentes serviços. A separação de 

componentes pode também facilitar 

reportar métricas e atingir requisitos de 

observabilidade (NFR-1.11). 

A comunicação assíncrona e 

distribuída pode introduzir 

dificuldades em garantir precisão 

(NFR-1.1) e confiabilidade estrita 

nos relatórios (NFR-1.3, NFR-1.5), 

gerando discrepâncias nos dados 

em tempo real. Também aumenta a 

complexidade de coordenação, 

debug e testes, o que pode 

prejudicar manutenibilidade e 

auditabilidade caso não haja uma 

boa estratégia de versionamento e 

rastreamento de eventos. 

Fonte: Elaborado pelo autor. 
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Tabela 6 - Resposta final do LLM com as decisões arquiteturais (continuação) 

Decisão Vantagens Desvantagens 

CQRS (Command Query 

Responsibility Segregation) + 

Event Sourcing 

Facilita a auditabilidade (NFR-

1.12) e consulta histórica 

(NFR-1.13) por armazenar o 

histórico completo de eventos. 

Pode ajudar a gerenciar o alto 

throughput (NFR-1.9, NFR-

1.10) isolando comandos de 

leituras, melhorando 

disponibilidade e 

escalabilidade na geração de 

relatórios com dados antigos. 

Aumenta a complexidade do 

modelo de dados e exige 

infraestrutura adicional. A 

recomposição do estado pode 

afetar desempenho se não for 

bem projetada, dificultando 

atender metas estritas de 

tempo para relatórios (NFR-

1.2, NFR-1.4, NFR-1.6). Além 

disso, garantir precisão com 

cálculos financeiros ao 

reconstituir estados a partir de 

eventos pode ser trabalhoso e 

suscetível a erros se não 

houver validação rigorosa. 

Padrões de Performance 

(Caching, Circuit Breaker) e 

Otimização de Latência 

Uso de cache pode reduzir 

tempo de resposta dos 

relatórios imediatos (NFR-1.2, 

NFR-1.6), e circuit breakers 

podem melhorar a 

disponibilidade sob falhas de 

serviços externos. Isso ajuda a 

atingir metas de desempenho. 

O cache pode introduzir 

discrepâncias entre o estado 

real e o estado retornado, 

comprometendo a precisão 

(NFR-1.1) e a confiabilidade 

(NFR-1.3, NFR-1.5), 

principalmente em relatórios 

financeiros sensíveis. Circuit 

breakers e políticas de fallback 

podem devolver dados 

desatualizados ou incompletos, 

prejudicando a consistência 

dos relatórios. 

Fonte: Elaborado pelo autor. 

Após todo o contexto adquirido, o modelo responde atendendo às solicitações exatas 

feitas no prompt, seguindo uma metodologia adaptada do ATAM com análise de trade-

offs, e referenciando de maneira breve quais atributos de qualidade são atendidos por 

quais decisões. Os resultados são mais bem discutidos na próxima seção. 
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5.1 Discussão 
 

A primeira observação que é possível retirar nos resultados do LLM, é que existe uma 

solução interessante para o problema levantado por Eisenreich, Speth e Wagner 

(2024) e que foi citado no Capítulo 1 deste trabalho, em que basicamente os autores 

enfatizam que os engenheiros de software tendem a escolher apenas padrões e 

estilos arquiteturais que eles já trabalharam em algum momento, descartando 

decisões que se encaixariam melhor no projeto. Nos resultados, apareceram diversas 

decisões arquiteturais novas e diferentes das que foram mostradas na Seção 4.4, que 

mostra a solução real implementada. Sendo que, todas as decisões arquiteturais 

existem e geralmente são abordagens consideradas no ambiente real de 

desenvolvimento de software, não teve nenhuma alucinação da parte do modelo de 

LLM sobre padrões ou estratégias que não existem.  

 

Isso enfatiza o fato de que, podemos utilizar IA tanto para acelerar o processo de 

tomada de decisão arquitetural, quanto para extrair novas ideias que antes não 

estavam claras ou que não foram discutidas por um cenário de arquitetura emergente, 

principalmente em ambientes ágeis de software. 

 

Quanto a qualidade da resposta pensando nos trade-offs, é possível perceber que o 

modelo errou pouco, pois ele conseguiu tanto agrupar diversas categorias de atributos 

de qualidade de maneira muito parecida de como foi feita na solução real apresentada 

neste trabalho; quanto citar trade-offs que são realmente relevantes. Um exemplo é o 

padrão CQRS, que o modelo cita que isso facilitaria a auditabilidade e a consulta 

histórica, podendo também ajudar em disponibilidade e escalabilidade; sendo que 

esses pontos foram exatamente os mesmos pontos enfatizados na solução real na 

Seção 4.4, sendo que outro fato surpreendente é que ele cita alguns atributos afetados 

que também são idênticos aos citados como vantagem na solução real, como o NFR-

1.9 e NFR-1.10. 

 

Um exemplo claro da qualidade da resposta é a menção sobre Caching, que também 

cita os mesmos NFR-1.2 e NFR-1.6 como sendo beneficiados por essa decisão 

arquitetural, tanto no modelo de LLM, como na solução real. 
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Outro ponto que se pode perceber é que nem todas as decisões citadas na solução 

real aparecem na resposta do modelo, principalmente os padrões menores que ainda 

afetam decisões arquiteturais. Um exemplo claro é sobre o NFR-1.1 que fala sobre 

precisão, o modelo acaba citando de maneira genérica que algumas técnicas de DDD 

podem ajudar, mas não fala exatamente quais técnicas. O Money Pattern costuma 

aparecer em estudos relacionados a DDD, de fato; mas a solução real apresentada 

cita esse padrão de forma específica, enquanto o modelo de LLM deixa mais genérico. 

Apesar de ser uma desvantagem, se for pensar que alguns engenheiros podem nem 

conhecer técnicas de DDD, só o fato de o modelo citar de maneira genérica, já é algo 

que poderia gerar um tipo de insight para buscar mais sobre o tema. Inclusive 

elencando o exemplo sobre Caching novamente, o modelo fala de forma genérica 

sobre adoção dele, enquanto na solução real foi optado um padrão específico de 

Cache Write-Through Pattern. 

 

Durante os experimentos deste trabalho, percebeu-se que o uso de GPT-4o1 fez muita 

diferença. Como já citado algumas vezes, a capacidade do modelo de utilizar técnicas 

de Chain of Thought internamente acaba sendo essencial para esse tipo de tarefa 

complexa envolvendo tomada de decisões arquiteturais e o modelo depender de tanto 

contexto e conhecimento de diferentes fontes para dar respostas assertivas. Quando 

foi testado durante o desenvolvimento deste trabalho o uso de modelos como o GPT-

4 ou GPT-3 para executar as mesmas tarefas, pela falta dessa técnica, as respostas 

não foram boas. 

 

Um aspecto não tão positivo é que, como mencionado na Seção 4.5, o processo de 

estruturação de prompts requer um conhecimento de técnicas que ainda estão sendo 

descobertas e moldadas, até porque o assunto de LLMs ainda é algo recente. Ou seja, 

existem poucos conteúdos sobre como estruturar um prompt de uma maneira ideal; e 

quando não se conhecem essas técnicas, as primeiras respostas parecem 

desanimadoras, podendo então desmotivar engenheiros ou arquitetos a quererem 

buscar mais sobre o tema e acharem que os LLMs ainda são muito imaturas. Para 

melhorar esse aspecto, seria interessante ver novos produtos ou sistemas que 

encapsulam toda a dificuldade de ter que aprender como estruturar um prompt para 

tomar decisões arquiteturais, ou então, fazer com que essas técnicas sejam cada vez 

mais difundidas tanto no ambiente corporativo, como acadêmico.  
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Inclusive, ainda comentando sobre produtos ou sistemas que poderiam encapsular e 

automatizar a tarefa de avaliação de decisões arquiteturais, uma coisa que facilitaria 

muito seria a criação de algum tipo de DSL que também ajudasse a estruturar a forma 

de pensar e descrever requisitos funcionais e atributos de qualidade, porque em geral, 

boa parte do motivo pelo qual a qualidade da resposta foi muito boa, é porque os 

requisitos estavam bem estruturados; algo que acontece poucas vezes em ambientes 

reais corporativos. Talvez nesse aspecto o método completo proposto por Eisenreich, 

Speth e Wagner (2024) possa ser efetivo, pois ele propõe uma iteração completa que 

conta com a ajuda da IA para estruturar esses requisitos. Inclusive usar a própria IA 

generativa para coletar, juntar e transformar conhecimento arquitetural desestruturado 

encontrado no ambiente corporativo em informações estruturadas também poderia ser 

um excelente caminho.  
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6 CONSIDERAÇÕES FINAIS 
 

O uso de IA generativa, mais especificamente, os LLMs, tem empolgado diversos 

entusiastas na área justamente pelo seu aprendizado de contexto. Algo que neste 

trabalho, foi possível analisar acontecendo na prática. 

 

Este trabalho é, de certa forma, uma validação e um complemento de uma etapa 

proposta no método de geração semiautomática de candidatos à Arquitetura de 

Software, que é o trabalho proposto por Eisenreich, Speth e Wagner (2024), 

enfatizando que o tema é promissor e pode trazer bons frutos. Quanto aos resultados 

que esperava-se alcançar fazendo o estudo neste trabalho, eles foram positivos e 

trazem alguns complementos ao trabalho dos autores, pois utiliza-se de um software 

real e ainda utiliza um modelo recente de LLM que possui técnicas novas na área. 

Muitas técnicas de LLM ainda estão em processo de estruturação e há muito espaço 

para novos estudos nessa área. Apesar das análises evidenciarem resultados 

interessantes, a IA vem apenas para facilitar e automatizar parte do trabalho, sendo 

que intervenções humanas ainda são completamente necessárias para evitar 

alucinações.  

 

A área de Arquitetura de Software costuma ter muito conhecimento arquitetural e 

contexto específico aplicado para cada situação, pois é o que diferencia um software 

do outro. Essa característica impulsiona o uso de LLMs na área, mas as respostas 

devem ser analisadas cautela para tomar decisões assertivas. 

 

Como possíveis trabalhos futuros, pode-se mencionar as seguintes oportunidades: 

 

• Poderia ser testado outras etapas do método do trabalho de Eisenreich, Speth 

e Wagner (2024), ou testar em diferentes situações e softwares existentes; 

• O uso de LLMs para Arquitetura de Software parece se encaixar muito bem, 

pode-se buscar maneiras diferentes sobre como melhorar processos 

arquiteturais envolvendo essas novas técnicas; 

• As técnicas de LLMs ainda são muito novas e pouco conhecidas, pode-se 

existir trabalhos de treinamento no ambiente corporativo e acadêmico ou 

ferramentas e abstrações que facilitem o uso e aplicação de técnicas, como o 
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uso de DSL para encapsular formatos específicos de escrita textual dos 

atributos de qualidade. 
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APÊNDICE A – PROMPT E SAÍDA COMPLETA DO LLM 
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