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da Universidade de São Paulo para obtenção

do T́ıtulo de Engenheiro Mecatrônico.
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RESUMO

Embarcações de superf́ıcies são, em geral, sub-atuadas, pois apresentam mais graus
de liberdade que atuadores, o que acaba gerando diversas dificuldades no controle. O
Model Predictive Control (MPC) é uma técnica de controle moderno, que com uma oti-
mização de horizonte de entradas, busca resolver alguns dos problemas que surgem com
as técnicas clássicas de controle. O objetivo central desse trabalho é a implementação
de um controlador MPC para controle de trajetória de embarcações, que será testado em
um simulador desenvolvido pelo Tanque de Provas Numérico (TPN) da USP. Com isso,
buscamos chegar em um controle robusto e eficiente, capaz de ser adaptado a diferentes
embarcações e situações ambientais.

Palavras-Chave – Model Predictive Control, Embarcação, Controle Moderno, Controle
de Trajetória.



ABSTRACT

Water surface vessels are, generally, underactuated, as they have more degrees of
freedom than actuators, which lead to several difficulties in controlling them. Model Pre-
dictive Control (MPC) is a modern control technique, which seeks to solve some of the
problems that arise with classical control techniques by optimizing inputs over a finite
period of time. The central goal in this study is implementing a MPC controller for tra-
jectory tracking, which will be tested in a simulator developed by the Numerical Offshore
Tank (TPN) of the University of São Paulo. With such controller, we seek to achieve a
robust and efficient control, capable of adapting to different vessels and environmental
conditions.

Keywords – Model Predictive Control, Vessel, Boat, Modern Control, Trajectory Trac-
king.
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1 INTRODUÇÃO E DEFINIÇÃO DOS

REQUISITOS

1.1 Introdução

O tema do projeto envolve o desenvolvimento de um controlador de barco autônomo.

Técnicas clássicas de controle, apesar de serem usadas, não são as mais adequadas para

um barco. Isso porque o sistema é sub-atuado, ou seja, tem 3 graus de liberdade (se

considerarmos um movimento plano), e geralmente apenas 1 variável de controle, com no

máximo 2 (leme e máquina). Assim, técnicas mais avançadas de controle são necessárias.

Uma posśıvel técnica a ser usada é o Model Predictive Control (MPC), que otimiza

a resposta do sistema, levando em conta a sua modelagem dinâmica, e a sua resposta

ao esforço de controle. Além disso, com essa técnica é posśıvel também levar em conta

restrições dos atuadores, por exemplo um ângulo máximo para o leme, e o controlador

não vai exceder esses valores, e decidir por um esforço de atuação maior que o posśıvel,

levando à saturação dos atuadores.

Assim, o objetivo deste Trabalho de Conclusão é desenvolver um controlador de tra-

jetória para um barco autônomo, em Python, capaz de seguir um caminho dado por

pontos chave (waypoints), usando o MPC, e testar sua eficácia e viabilidade usando um

módulo em Python que simula as equações dinâmicas de um barco desenvolvido no TPN,

chamado de PyDyna.
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1.2 Objetivos

1.2.1 Primários

• Obter o modelo simplificado de uma embarcação no PyDyna;

• Implementar os métodos Line of Sight (LOS) e o controlador MPC;

• Testar a eficácia do controle de trajetória;

• Testar a robustez do controlador.

1.2.2 Secundários

• Testar controlador em aplicação real-time, para verificar sua viabilidade;

• Implementar algoritmo de Collision Avoidance, capaz de gerar novos waypoints,

caso haja um obstáculo no percurso.

1.3 Estado da Arte

O desenvolvimento de controladores de véıculos autônomos é algo extremamente es-

tudado hoje em dia, e então, é muito fácil encontrar fontes sobre o assunto. Mais es-

pecificamente para o desenvolvimento de controladores MPC para véıculos maŕıtimos de

superf́ıcie, apenas no último mês já aparecem diversos resultados em qualquer dispositivo

de busca, como o Google Scholar.

Assim, a quantidade de informações dispońıveis é grande. Nesta revisão, a pergunta

principal é se é posśıvel usar MPC para controle de trajetória de barcos autônomo em

real-time. Para respoder isso, precisamos sobre a modelagem dinâmica de um barco e

algoritmos de controle de trajetória e para evitar colisões. Principalmente, precisamos

entender o que é MPC e quais os seus tipos, vantagens e desvantagens, e se é posśıvel a

sua aplicação em real-time.

1.3.1 Model Predictive Control

O Model Predictive Control (MPC), como o próprio nome diz, é um controle que

leva em conta o modelo dinâmico do sistema a ser controlado, ao longo de uma janela de
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tempo, para decidir as ações de controle. O MPC surgiu na indústria, foi desenvolvido

pela indústria, e aplicado na indústria [1], o que contribui no seu sucesso.

Uma das principais vantagens do MPC é sua capacidade de levar em conta diversos

tipos de limites do controle. Outras formas de controle levam em conta as limitações dos

estados da planta controlada, mas o MPC consegue levar em conta também limitações dos

atuadores, como saturação, velocidade máxima de atuação, além de poder levar em conta

também dinâmicas não controladas do sistema, como a rolagem de um barco. Por exemplo,

[2] fala sobre um experimento no qual foi feito um controle de modo deslizante, que sofria

por problemas de instabilidade quando as condições iniciais eram muito distantes do

objetivo, e foi necessário o uso de um controle PID na inicialização. Com o MPC, não há

esse problema, pois na hora de definir a atuação ótima, o controlador leva em conta as

limitações dos atuadores.

O MPC funciona, basicamente, simulando uma sequência de esforços de atuação, ao

longo de um peŕıodo de tempo chamado de horizonte deslizante (pois esse peŕıodo avança,

junto da simulação). Então, por métodos numéricos, uma função custo é minimizada ao

longo de todo o horizonte, e é definida uma sequência de esforços de atuação ótima. Então,

apenas o primeiro valor dessa sequência é aplicado, o horizonte deslizante se move, e a

simulação é repetida novamente [3]. A estrutura do controlador é mostrada na figura 1.

A função custo define qual tipo de controle deve ser feito. Geralmente, para controle

de trajetória, a função custo é o erro de trajetória ao longo do horizonte, como em [4,5],

mas ela pode ser, por exemplo, uma função que minimize a energia utlilizada para a

atuação, em sistemas com uma bateria limitada.

1.3.2 Tipos de MPC

O MPC, no entanto, não é uma única estratégia de controle. Existem diversas va-

riações de implementações, cada uma mais adequada para diferentes situações. Em geral,

otimizar a resposta do controlador em um horizonte tem um grande custo computacional

e, por isso, diversas alternativas foram desenvolvidas ao longo do tempo. O mais comum é

o MPC linear, que, em cada instante de tempo, lineariza o sistema em torno do seu estado

atual, e otimiza os esforços de atuação. Isso simplifica a otimização consideravelmente,

tornando o algoritmo rápido. No entanto, a desvantagem desse método é que, para hori-

zontes de otimização grandes, o sistema se afasta demais da condição de linearização, o

que degrada a resposta [3].
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Figura 1: Estrutura geral de um controlador MPC.
Fonte: [1]

Já ao se utilizar diretamente o sistema não-linear, esse problema não surge, porém a

otimização é bem mais complexa e demorada, o que impede o seu uso em real-time para

sistemas de dinâmica rápida. O chamado Robust MPC, por sua vez, pode ser aplicado em

cima do MPC não-linear, e dentro dele se encaixam diversas estratégias para melhorar a

robustez do sistema, como por exemplo, a consideração na modelagem de distúrbios não

medidos [6], forças externas [7] e a limitação de dinâmicas não diretamente controladas

do sistema [8,9].

Além disso, existe uma outra técnica, chamada de Fast MPC ou Explicit MPC, mos-

trada em [10], em que o problema de otimização é resolvido analiticamente em regiões,

offline, e então o controle se reduz a definir em qual região do controle os estados do

sistema estão, e então procurar as ações adequadas numa tabela.

1.3.3 Modelo Dinâmico

Qualquer que seja o tipo de MPC escolhido, o modelo dinâmico do sistema a ser

controlado é a parte mais importante do controle. Se o modelo usado estiver errado, o

controlador não será capaz de atuar de forma satisfatória, podendo levar até mesmo à

instabilidade. Assim, uma das partes mais importantes da implementação do MPC é a

modelagem teórica do sistema a ser controlado, e a identificação de seus parâmetros.

Para o modelo dinâmico de um barco, geralmente é utilizado um sistema sub-atuado,

de 3 graus de liberdade e apenas 1 ou 2 atuadores, o que é um dos motivos do controle

ser dificultado. Algumas modelagens mais complexas, como em [8], levam em conta mais
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graus de liberdade, como a rolagem, o que dificulta ainda mais o desenvolvimento do con-

trolador. Uma posśıvel modelagem é dada em [11], junto com os parâmetros necessários

para a simulação do CyberShip II. Esse modelo é comumente usado como benchmark para

sistemas de controle.

Uma posśıvel forma de aproximar o modelo de um sistema dinâmico é pela imple-

mentação de um filtro de Kalman estendido, que além dos estados do sistema, também

aproxima os parâmetros do modelo, como feito em [12], na qual o filtro é usado para

aproximar os parâmetros de uma embarcação para um modelo de Nomoto de segunda

ordem.

1.3.4 Trajectory-Tracking e Collision Avoidance

O MPC, ou qualquer outro tipo de controle, serve para levar o sistema ao estado

desejado. No caso de um barco, o tipo mais provável de controle para se fazer é o

controle de trajetória. Para o controle de trajetória, o controlador recebe um rumo e,

possivelmente, uma velocidade, e deve colocar o sistema nesse estado.

Geralmente, a trajetória é dada por uma sequência de pontos, que define o caminho

a ser tomado pela embarcação. No caso mais simples, o sistema simplesmente define um

rumo entre a posição atual do barco e o próximo ponto, e, ao chegar nesse ponto, segue

em direção ao próximo. No entanto, esse não é o caminho ótimo, nem em questão de

velocidade nem em energia. Assim, uma posśıvel melhoria é definir um raio em torno do

próximo ponto. Assim que a embarcação estiver dentro desse raio, o objetivo já passa a

ser o próximo ponto [13].

Mais avançado ainda, e o que é mais utilizado, é um mecanismo de Line of Sight (LOS).

Nesse método, é criada uma linha entre o objetivo anterior e o atual do barco. Então, o

controlador acha o ponto mais próximo dessa trajetória, em relação a sua posição atual,

e define como rumo uma posição mais a frente, por uma distância chamada de lookahead.

Assim, o controlador consegue seguir a trajetória de forma mais suave e eficiente. Esse

procedimento está ilustrado na Figura 2. Uma outra alternativa, que serve para manter

o rumo mesmo com perturbações constantes (correntes do mar, por exemplo), é a adoção

de uma ação integral no ângulo dado pelo LOS [5].

Outro problema enfrentado por véıculos autônomos são as colisões. Assim, pode

ser implementado algum tipo de Collision Avoidance (COLAV), de forma que o sistema

possa responder a obstáculos no seu caminho. O algoritmo de COLAV pode ser de 2
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Figura 2: Exemplo de LOS.
Fonte: [4]

tipos. Ele pode ser estático, ou seja, existem obstáculos na trajetória pré-definidos. Nesse

caso, o algoritmo deve simplesmente definir novos pontos de trajetória, em que não haja

obstáculos, antes mesmo de passar para o controlador. O outro caso é o dinâmico, em que,

durante o funcionamento, por meio de sensores, a embarcação detecta um obstáculo. Nesse

caso, o sistema deve responder adequadamente, de acordo com as normas internacionais

de navegação, para evitar colisões.

1.3.5 Conclusão da Revisão

Para o desenvolvimento de um controlador, é necessário, primeiro, obter um modelo

dinâmico simplificado da simulação executada no PyDyna. Isso porque, além do módulo

não suportar as funcionalidades necessárias para o MPC, criar um controlador assumindo

perfeito conhecimento da embarcação, o que seria feito pelo acesso aos estados do simu-

lador, não é representativo da situação real. Assim, será utilizado o método do filtro de

Kalman estendido, como em [12]. Desta forma, a embarcação simulada através do simu-

lador PyDyna é considerada uma ”caixa preta”, cujos parâmetros serão identificados de

forma on-line pelo estimador baseado em Filtro de Kalman.

Como mecanismo de Path-Tracking, a melhor solução é o LOS, por não ter grandes
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dificuldades na implementação ou custo computacional, e apresentar uma grande melhoria

na capacidade do sistema se manter na trajetória.

Como tipo de MPC, o MPC Linear é o mais fácil de ser implementado e com menor

custo computacional, e caso ele não seja suficiente, é posśıvel ir para o MPC não-linear.

As embarcações para o qual o controlador será desenvolvido têm dinâmicas relativamente

lentas, podendo ter uma frequência de amostragem da ordem de 1 Hz. Assim, será usado

diretamente o MPC não-linear, com saturação dos atuadores. Isso porque o controlador

linear, além de menos preciso, é mais senśıvel à definição dos parâmetros, como mostrado

em [3], e dificultaria a implementação.

1.4 Requisitos

Os requisitos de projeto envolvem basicamente as caracteŕısticas desejadas e a eficácia

do controlador. Além disso, temos os requisitos impostos no controlador por limitações

f́ısicas.

1.4.1 Atuação

• Ângulo de leme menor que 30o e propulsor limitado por sua potência máxima;

• Variação entre 2 instantes de tempo consecutivos do esforço de atuação limitada

para ambos os atuadores. Esse limite ainda será definido pelas caracteŕısticas da

embarcação a ser controlada, pela velocidade máxima do atuador, e também por

otimização energética.

1.4.2 Desempenho

Sendo B a largura do navio (bordo), e L o seu comprimento, temos:

• Ao seguir uma trajetória reta, a embarcação deve se manter a uma distância de no

máximo 0.1B da trajetória desejada, como mostrado na Figura 3;

• Trechos de curva são considerados dentro de um raio de 2L de um waypoint. Nesse

raio, não há a restrição acima, pois é posśıvel otimizar o caminho usando LOS. Na

Figura 4, o ćırculo em azul representa o trecho do percurso no qual as restrições de

controle de trajetória são relaxadas.
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Figura 3: Limite de desempenho na reta
Fonte: Própria

Figura 4: Raio de trechos curvos
Fonte: Própria



17

1.4.3 Robustez

O controlador deve ser capaz de manter a embarcação dentro dos requisitos de de-

sempenho mesmo com distúrbios, na forma de:

• Correntes maŕıtimas de até 1 nó;

• Ventos de até 20 nós;

• Ondas de até 2 metros;

1.4.4 Computação

• O controle deve ser capaz de atuar em tempo real, ou seja, o tempo que o controlador

leva para calcular os esforços de atuação deve ser menor que o tempo de amostragem.

1.4.5 Transiente

• Se a embarcação estiver fora da faixa de desempenho na condição inicial, a uma

distância h, perpendicular à trajetória, ela deve ser capaz de atingir a faixa desejada

dentro de uma distância, ao longo da trajetória, de M*h, com M aproximadamente

2, ainda a definir com mais precisão. Esse requisito é melhor mostrado na Figura

5. As barras em azul representam a distância dentro da qual o controlador deve

atingir a faixa desejada.

Figura 5: Correção de erro inicial
Fonte: Própria
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2 DESENVOLVIMENTO

2.1 Obtenção do modelo estimado

O primeiro passo para o desenvolvimento de um controlador MPC é a obtenção de

um modelo dinâmico que represente o sistema. Para isso, foi utilizado o método do Filtro

Estendido de Kalman, como mostrado por [12]. Nesse artigo, é adotada apenas a dinâmica

rotacional de uma embarcação, mas para quesitos de testes, foi implementado um modelo

igual ao do artigo. Assim, temos um modelo dinâmico da forma:

ψ(3) = α1ψ̇
3 + α2ψ̇ + α3ψ̈ + β1δR + β2δ̇R

No qual ψ é o ângulo da embarcação em relação ao sistema global, e δR é o ângulo

do leme (entrada do sistema). α1, α2, α3, β1 e β2 são os parâmetros do controlador. Esse

é um modelo similar ao modelo de Nomoto de segunda ordem [13], com uma extensão

de permitir um parâmetro extra, multiplicando ψ3. Assim, temos um filtro de Kalman

estendido com 8 estados, que são:

xT(t) =
[
ψ(t) ψ̇(t) ψ̈(t) α1(t) α2(t) α3(t) β1(t) β2(t)

]
Assim como no artigo, para a convergência, foi adotada uma entrada com grandes

variações, com o ângulo de leme alterado de forma aleatória, a cada 10 segundos, de

forma que a embarcação precisasse realizar manobras bruscas, e fosse posśıvel captar as

dinâmicas mais complexas do sistema. Após a implementação, o funcionamento do filtro

para acompanhar os estados do sistema era o esperado, mas ocorreram alguns problemas

na convergência de alguns dos parâmetros do modelo. Um posśıvel motivo para esse

problema, é que, no artigo citado, o modelo a ser estimado é um modelo com exatamente

as mesmas equações dinâmicas que as do filtro. Isso não ocorre no caso do PyDyna,

que apresenta uma dinâmica muito mais complexa, que leva em conta todos os graus de

liberdade da embarcação. Assim, foram testados outros tipos de modelos. Primeiro, foi
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testado o modelo de Nomoto de segunda ordem, que corresponde à EDO:

ψ(3) = α1ψ̇ + α2ψ̈ + β1δR + β2δ̇R

Novamente, alguns dos parâmetros do modelo não convergiram, e então foi testado o

modelo de Nomoto de primeira ordem. Esse modelo corresponde à equação:

ψ̈ = − 1

T
ψ̇ +

K

T
δ

Em que K e T dependem dos parâmetros da embarcação, como massa e momento de

inércia. Para simplificação da notação, a equação foi adotada na forma:

ψ̈ = aψ̇ + bδ

Em que a = − 1
T

e b = K
T

. Com esse modelo, não apareceram problemas na con-

vergência dos parâmetros. Além disso, foi acoplado ao filtro de Kalman um simulador

que, a partir dos valores dos parâmetros dados pelo filtro em cada instante, com a equação

do modelo, simula, em paralelo à simulação do PyDyna, o sistema, e os valores dos estados

dados pelos 2 podem ser comparados, para ver se a aproximação dos parâmetros é eficaz.

O resultado dessa dinâmica pode ser visto nos 2 primeiros gráficos da figura 7. Como

os resultados do modelo de primeira ordem se mostraram satisfatórios, esse modelo foi

mantido como a dinâmica rotacional.

Para a dinâmica longitudinal, foi adotado uma equação dinâmica da forma:

u̇ = cu+ dr2

Em que u é a velocidade linear da embarcação, e r é a rotação do propulsor, uma

das entradas do sistema dinâmico. Essa forma foi adotada pois c faz papel do arrasto

linearizado, multiplicando a velocidade. Já para d, de acordo com a segunda Lei de

Newton, a aceleração (u̇) deve ser proporcional à força gerada pelo propulsor. A força

gerada por um propulsor, por sua vez, é proporcional ao quadrado da sua rotação, e por

isso, temos o termo r2.

Juntando as duas dinâmicas, temos um sistema da forma:

ψ̈ = aψ̇ + bδ

u̇ = cu+ dr2
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A formulação do Filtro de Kalman Estendido fica, então:

xT(t) =
[
ψ(t) ψ̇(t) u(t) a(t) b(t) c(t) d(t)

]
uT(t) = [δR(t) r(t)]

hT(x) = [x1 x2 x3]

ẋ(t) = f(x, u) =



x2

x4 · x2 + x5 · u1
x6 · x3 + x7 · u22

0

0

0

0


Sendo x̂k a predição do estado do filtro de Kalman no instante k, e xk os valores reais

dos estados, ao discretizar o sistema com passo ∆t, seguimos essa metodologia, para cada

passo k.

Predições a priori

x̂k|k−1 = x̂k−1|k−1 + f(x̂k−1|k−1, uk)∆t

Pk|k−1 = Pk−1|k−1 + (FkPk−1|k−1 + Pk−1|k−1Fk +Qk)∆t

Cálculo dos erros

zk = h(xk)

ỹk = zk − h(x̂k|k−1)

Sk = HkPk|k−1H
T
k +Rk

Obtenção do ganho de Kalman Ótimo

Kk = Pk|k−1H
T
k S
−
k 1

Atualização das predições

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I −KkHk)Pk|k−1
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Sendo

Fk =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk

=



0 1 0 0 0 0 0

0 x4 0 x2 u1 0 0

0 0 x6 0 0 x3 u22

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



Hk =
∂f

∂x

∣∣∣∣
x̂k|k−1

=


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0


Usando esse modelo, com a entrada de leme e máquina, variáveis de forma aleatória

a cada 10 segundos, podemos ver os parâmetros obtidos pelo filtro, na figura 6, e os

estados aproximados, na figura 7. Podemos perceber que, apesar dos parâmetro não

terem convergido para um valor, principalmente nos casos de a e b, a simulação a partir

dos modelos obtidos acima é suficiente para aproximar os estados. No começo, temos

alguns erros grandes devido a diferenças nos valores iniciais das variáveis, e também um

pico no parâmetro c. O único estado cuja aproximação foi pior foi ψ, devido ao seu

caráter de integrar os erros iniciais em ψ̇, mas esse erro não é importante, pois o estado

ψ não entra na dinâmica da embarcação, e não afetará o controlador. O ângulo ψ só é

importante para o mecanismo de LOS, que obterá esse dado diretamente da embarcação.

Foi testado, também, uma simulação com um modelo com parâmetros fixos, cujos

parâmetros são aproximadamente os valores médios dos obtidos na figura 6, após a va-

riação inicial, ou seja, [−0.015,−0.0005,−0.002, 0.015]. Os estados da simulação também

foram inicializados de acordo com os do sistema. Como podemos ver na figura 8, os re-

sultados são bem piores, com maiores diferenças nos estados ψ̇ e u, cuja precisão importa

mais. A diferença, principalmente na dinâmica rotacional, provavelmente acontece pois a

dinâmica é mais complexa que a adotada(de primeira ordem), e os parâmetros precisam

variar para se adequar aos estados.

Por último, foi testado novamente o modelo com a simulação usando parâmetros

decididos a cada instante, mas já inicializando os parâmetros nos parâmetros obtidos

anteriormente. Como podemos ver na figura 9, os resultados foram ainda melhores, pois

o sistema ainda foi capaz de acompanhar os estados da embarcação, mas não apresentou

erros tão grandes nos instantes iniciais.
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Figura 6: Parâmetros obtidos com o filtro

Figura 7: Estados com o modulo PyDyna (”Real”), e com a simulacão paralela com modo
de primeira ordem (”Simulação”)
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Figura 8: Estados com o modulo PyDyna (”Real”), e com a simulacão de parâmetros
fixos com modo de primeira ordem (”Simulação”)

Figura 9: Estados com o modulo PyDyna (”Real”), e com a simulacão paralela com modo
de primeira ordem, pré-inicializada (”Simulação”)
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Assim, apesar de não ter sido obtido um modelo fechado para a embarcação, temos

uma forma de estimar os parâmetros, a partir do filtro estendido de Kalman. Como o

MPC calcula a próxima ação, a partir do modelo, a cada instante de tempo, podemos ter

esse estimador sendo executado em paralelo ao controlador, e usando esses parâmetros

para o controlador. Assim, teremos um estimador de parâmetros online, ao invés de

obter todos os parâmetros previamente. Isso, além das vantagens vistas nos resultados já

obtidos, também permitirá que o sistema responda de forma melhor a distúrbios, como

correntes e ventos, já que os parâmetros do controlador vão se alterar nessas condições.

2.2 Estrutura do Controlador

Como o controlador será adaptativo, temos uma estrutura diferente de um controlador

MPC padrão, como podemos ver na figura 10. O mecanismo de LOS calcula o ângulo

desejado ψd, a partir das coordenadas cartesianas da embarcação e da lista de Waypoints.

Esse ângulo é comparado com o ângulo real, e o erro é usado como entrada para o

controlador. O MPC, então, dá as entradas para o navio (aqui representado pelo modelo

simulado no PyDyna). Os estados do navio (PyDyna), e as entradas do sistema são

enviados ao filtro de Kalman Estendido, o Estimador de Parâmetros, que então, usa esses

parâmetros para alterar a dinâmica do controlador.

Figura 10: Diagrama de Blocos do Sistema
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2.3 Implementação do Line of Sight

A maior utilidade do Line of Sight (LOS), é que, com ele, conseguimos converter

uma sequência de waypoints com 2 coordenadas (X e Y ) em apenas uma, ψd, o ângulo

desejado. Podemos ver alguns exemplos gerados com o programa implementado na figura

11. Em 11a, o waypoint alvo é o segundo, em (3000, 0). Podemos ver que o LOS calcula

uma direção intermediária, que não segue diretamente para o waypoint (o que o manteria

fora do rumo por toda a trajetória), mas também não segue diretamente para a reta

que conecta o waypoint anterior e o atual. Em 11b, podemos ver como, ao ficar em um

certo raio do waypoint alvo, o LOS segue para o próximo waypoint, de forma a suavizar

a transição. Para esses testes, a distância de lookahead foi adotada como 4 vezes o

comprimento da embarcação, e o raio de troca de waypoint, 2 vezes esse comprimento.

2.4 Implementação do Controlador MPC

Usando o modelo simplificado obtido anteriormente, foi posśıvel implementar um con-

trolador MPC. Para isso, foi utilizada a função minimize da biblioteca scipy. Essa função

permite achar os valores das entradas que minimizam o valor de uma certa função. Para

o MPC, a função a ser minimizada é a função de custo, que deve levar em conta essas

entradas e o modelo do sistema para calcular um determinado custo.

No caso, o modelo do sistema foi adotado como explicado anteriormente, e para uma

certa entrada, a função de custo integra os estados do sistema ao longo de um certo

horizonte, e calcula o custo para essas entradas, que, para os testes iniciais, foi adotado

como uma soma ponderada dos quadrados do erro de ψ ao longo do horizonte, e também

da sua derivada ψ̇. Assim, estamos otimizando o sistema, não só para convergir ao valor

desejado, mas também manter o valor da derivada controlado, para evitar problemas de

instabilidade e overshoot. Para os testes iniciais, também foi adotado um alvo estático,

de 0.01 rad.

Podemos ver, na figura 12, que com o uso do controlador, o sistema converge para a

posição desejada, e então, vemos o controlador diminuindo também o valor da derivada.

Sem esse controle da derivada, o sistema só começa a tentar reverter depois de passar no

alvo, e teŕıamos um comportamento oscilatório.

Para uma situação mais real, o controlador foi testado com uma sequência de way-

points, que com o uso do LOS, dão a direção desejada da embarcação em determinado
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(a) Alvo é o segundo waypoint

(b) Alvo é o terceiro waypoint

Figura 11: Exemplos de LOS
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Figura 12: Resultado do controle MPC

momento. Além disso, foram adicionados mais 2 parâmetros na função de otimização do

controlador, de forma que ele trabalhasse na minimização do erro, da derivada do erro,

do valor da entrada do leme e da sua derivada. Com esses parâmetros, conseguimos um

melhor controle, evidenciado tanto pela trajetória seguida pela embarcação, como pelos

valores das entradas. Como podemos ver na figura 13, o controlador é capaz de seguir a

trajetória imposta pelos waypoints. Já na figura 14, vemos as entradas que a velocidade

do sistema, o erro de acompanhamento, e a entrada do leme. Vale ressaltar que essa

é apenas a entrada imposta pelo controlador, e a posição real do leme respeita a sua

dinâmica, sem essas variações bruscas.
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Figura 13: Trajetória realizada pelo caso de teste
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Figura 14: Velocidade, entrada e erro no caso de teste
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3 VALIDAÇÃO DE RESULTADOS

3.1 Apresentação de resultados

Para a validação de resultados, utilizamos casos reais, de uma embarcação entrando no

porto de Paranaguá, a trajetória a ser seguida pode ser vista na figura 15. Essa trajetória

foi simulada para diferentes condições ambientais, como dado pela tabela 1.

Figura 15: Trajetória a ser seguida

A embarcação utilizada para os testes é diferente da utilizada anteriormente. Assim,

foi necessário treinar novamente o filtro de Kalman, para obter novos parâmetros para o
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Caso Corrente Vento Onda

1 Enchente - 2kn SE - 21kn 2m - 12.2s - SE
2 Vazante - 2kn SW - 21kn 2m - 8.8s - S
3 Estofo - 0kn NE - 21kn 2m - 9.2s - E
4 Estofo - 0kn E - 21kn 2m - 11.1s - ESE
5 Estofo - 0kn S - 21kn 2m - 12.3s - SSE

Tabela 1: Casos simulados

modelo dinâmico da embarcação. Na figura 16, podemos ver que a trajetória seguida pela

embarcação nos 5 casos é praticamente idêntica, e coincide fortemente com a trajetória

definida pelos waypoints. Nas figuras 17 a 19, temos as trajetórias dos 5 casos sobrepostas

sobre a carta náutica do porto, considerando o tamanho da embarcação. Podemos ver a

velocidade, a entrada e o erro nas figuras 20 a 24. Apesar de termos entradas bastante

irregulares, isso não influencia de forma considerável a dinâmica do erro, cujos picos

equivalem aos pontos nos quais existe uma troca de waypoint alvo.

3.2 Requisitos

Os requisitos de atuação são levados em conta na otimização realizada pelo contro-

lador, então eles são automaticamente atendidos. Analisando os dados da sáıda, esta-

mos também atendendo aos requisitos de desempenho. Os testes foram realizados com

condições ambientais até mais severas que as previstas nos requisitos, então eles também

foram atendidos. Por último, o sistema também atende aos requisitos de computação

real-time, como pode ser visto na tabela 2. No sistema simulado, o atuador aplica a sua

entrada a cada 0.5 segundos. Assim, podemos ver que mesmo apenas nos piores casos

(menos de 1% dos passos), temos um tempo de cálculo maior do que isso. Esses passos

poderiam ser ignorados, ou se necessário, podeŕıamos aplicar entradas numa cadência

menor, e ajustar os parâmetros do controlador, caso se mostrasse necessário.

Estat́ıstica Tempo (s)

Média 0.018
90% 0.045
99% 0.225

Máxima 0.585

Tabela 2: Estat́ısticas de tempo de execução do controlador
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Figura 16: Trajetórias seguidas em todos os casos de teste
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Figura 17: Trecho inicial da trajetória

Figura 18: Trecho intermediário da trajetória
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Figura 19: Trecho final da trajetória



35

Figura 20: Velocidade, entrada e erro no caso 1
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Figura 21: Velocidade, entrada e erro no caso 2



37

Figura 22: Velocidade, entrada e erro no caso 3
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Figura 23: Velocidade, entrada e erro no caso 4
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Figura 24: Velocidade, entrada e erro no caso 5
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4 CONSIDERAÇÕES FINAIS

Nesse trabalho, implementamos um controlador de uma embarcação usando Model

Predictive Control. Com o LOS, otimizamos a trajetória para evitar mudanças bruscas

no objetivo e minimizar o overshoot ao chegar em um waypoint. Além disso, foi imple-

mentado um filtro de Kalman, capaz de obter os parâmetros necessários para o modelo do

MPC. Com o uso do simulador PyDyna, implementado num módulo em Python, fomos

capazes de obter os melhores parâmetros para o sistema e validar os nosso resultados.

Como próximo passo, podeŕıamos otimizar os valores dos parâmetros do filtro de

Kalman e do controlador, de forma a ter entradas mais suaves de controle e um sistema

de identificação dinâmica mais estável. Além disso, podeŕıamos implementar também um

algoritmo de Collision Avoidance, capaz de gerar novos waypoints e depois retornar à

trajetória original, caso encontrasse um obstáculo no caminho.

De forma geral, o controlador foi capaz de otimizar as entradas do controlador, para

seguir uma trajetória bem definida, com erros baixos, sendo capaz de funcionar até mesmo

em uma situação mais arriscada no qual a dinâmica do sistema varia, como na entrada de

um porto, com diferentes situações ambientais. Assim, ao fim do projeto, tivemos uma

performance satisfatória, com um sistema capaz de controlar uma embarcação de forma

autônoma, em tempo real.
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