VICTOR CHACON CODESSEIRA

CONTROLE DE TRAJETORIA DE BARCO
AUTONOMO USANDO MODEL PREDICTIVE
CONTROL

Sao Paulo
2020



VICTOR CHACON CODESSEIRA

CONTROLE DE TRAJETORIA DE BARCO
AUTONOMO USANDO MODEL PREDICTIVE
CONTROL

Trabalho apresentado a Escola Politécnica
da Universidade de Sao Paulo para obtencao

do Titulo de Engenheiro Mecatronico.

Sao Paulo
2020



VICTOR CHACON CODESSEIRA

CONTROLE DE TRAJETORIA DE BARCO
AUTONOMO USANDO MODEL PREDICTIVE
CONTROL

Trabalho apresentado a Escola Politécnica
da Universidade de Sao Paulo para obtencao

do Titulo de Engenheiro Mecatronico.

Orientador:

Prof. Dr. Eduardo Aoun Tannuri

Sao Paulo
2020



RESUMO

Embarcacoes de superficies sao, em geral, sub-atuadas, pois apresentam mais graus
de liberdade que atuadores, o que acaba gerando diversas dificuldades no controle. O
Model Predictive Control (MPC) é uma técnica de controle moderno, que com uma oti-
mizacao de horizonte de entradas, busca resolver alguns dos problemas que surgem com
as técnicas classicas de controle. O objetivo central desse trabalho é a implementagao
de um controlador MPC para controle de trajetoria de embarcagoes, que serd testado em
um simulador desenvolvido pelo Tanque de Provas Numérico (TPN) da USP. Com isso,
buscamos chegar em um controle robusto e eficiente, capaz de ser adaptado a diferentes
embarcagcoes e situagoes ambientais.

Palavras-Chave — Model Predictive Control, Embarcacao, Controle Moderno, Controle
de Trajetéria.



ABSTRACT

Water surface vessels are, generally, underactuated, as they have more degrees of
freedom than actuators, which lead to several difficulties in controlling them. Model Pre-
dictive Control (MPC) is a modern control technique, which seeks to solve some of the
problems that arise with classical control techniques by optimizing inputs over a finite
period of time. The central goal in this study is implementing a MPC controller for tra-
jectory tracking, which will be tested in a simulator developed by the Numerical Offshore
Tank (TPN) of the University of Sao Paulo. With such controller, we seek to achieve a
robust and efficient control, capable of adapting to different vessels and environmental
conditions.

Keywords — Model Predictive Control, Vessel, Boat, Modern Control, Trajectory Trac-
king.
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1 INTRODUCAO E DEFINICAO DOS
REQUISITOS

1.1 Introducao

O tema do projeto envolve o desenvolvimento de um controlador de barco auténomo.
Técnicas classicas de controle, apesar de serem usadas, nao sao as mais adequadas para
um barco. Isso porque o sistema é sub-atuado, ou seja, tem 3 graus de liberdade (se
considerarmos um movimento plano), e geralmente apenas 1 varidvel de controle, com no

méaximo 2 (leme e maquina). Assim, técnicas mais avancadas de controle sdo necessarias.

Uma possivel técnica a ser usada é o Model Predictive Control (MPC), que otimiza
a resposta do sistema, levando em conta a sua modelagem dinamica, e a sua resposta
ao esforco de controle. Além disso, com essa técnica é possivel também levar em conta
restricoes dos atuadores, por exemplo um angulo méaximo para o leme, e o controlador
nao vai exceder esses valores, e decidir por um esfor¢o de atuagao maior que o possivel,

levando a saturagao dos atuadores.

Assim, o objetivo deste Trabalho de Conclusao é desenvolver um controlador de tra-
jetoria para um barco autonomo, em Python, capaz de seguir um caminho dado por
pontos chave (waypoints), usando o MPC, e testar sua eficdcia e viabilidade usando um
modulo em Python que simula as equagoes dinamicas de um barco desenvolvido no TPN,

chamado de PyDyna.
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1.2 Objetivos

1.2.1 Primarios

e Obter o modelo simplificado de uma embarcagao no PyDyna;
e Implementar os métodos Line of Sight (LOS) e o controlador MPC;
e Testar a eficacia do controle de trajetéria;

e Testar a robustez do controlador.

1.2.2 Secundarios

e Testar controlador em aplicacao real-time, para verificar sua viabilidade;

e Implementar algoritmo de Collision Avoidance, capaz de gerar novos waypoints,

caso haja um obstéculo no percurso.

1.3 Estado da Arte

O desenvolvimento de controladores de veiculos autonomos é algo extremamente es-
tudado hoje em dia, e entao, é muito facil encontrar fontes sobre o assunto. Mais es-
pecificamente para o desenvolvimento de controladores MPC para veiculos maritimos de
superficie, apenas no 1ltimo meés ja aparecem diversos resultados em qualquer dispositivo

de busca, como o Google Scholar.

Assim, a quantidade de informagoes disponiveis é grande. Nesta revisao, a pergunta
principal é se é possivel usar MPC para controle de trajetoria de barcos autonomo em
real-time. Para respoder isso, precisamos sobre a modelagem dinamica de um barco e
algoritmos de controle de trajetéria e para evitar colisoes. Principalmente, precisamos
entender o que é MPC e quais os seus tipos, vantagens e desvantagens, e se é possivel a

sua aplicagao em real-time.

1.3.1 Model Predictive Control

O Model Predictive Control (MPC), como o préprio nome diz, é um controle que

leva em conta o modelo dinamico do sistema a ser controlado, ao longo de uma janela de
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tempo, para decidir as agoes de controle. O MPC surgiu na industria, foi desenvolvido

pela industria, e aplicado na industria [1], o que contribui no seu sucesso.

Uma das principais vantagens do MPC é sua capacidade de levar em conta diversos
tipos de limites do controle. Outras formas de controle levam em conta as limitagoes dos
estados da planta controlada, mas o MPC consegue levar em conta também limitagoes dos
atuadores, como saturagao, velocidade maxima de atuacao, além de poder levar em conta
também dinamicas nao controladas do sistema, como a rolagem de um barco. Por exemplo,
[2] fala sobre um experimento no qual foi feito um controle de modo deslizante, que sofria
por problemas de instabilidade quando as condigoes iniciais eram muito distantes do
objetivo, e foi necessario o uso de um controle PID na inicializagao. Com o MPC, nao ha
esse problema, pois na hora de definir a atuacao 6tima, o controlador leva em conta as

limitagoes dos atuadores.

O MPC funciona, basicamente, simulando uma sequéncia de esforcos de atuacao, ao
longo de um periodo de tempo chamado de horizonte deslizante (pois esse periodo avanga,
junto da simulacao). Entao, por métodos numéricos, uma fungao custo é minimizada ao
longo de todo o horizonte, e é definida uma sequéncia de esforcos de atuagao étima. Entao,
apenas o primeiro valor dessa sequéncia é aplicado, o horizonte deslizante se move, e a

simulacao ¢ repetida novamente [3]. A estrutura do controlador ¢ mostrada na figura 1.

A funcao custo define qual tipo de controle deve ser feito. Geralmente, para controle
de trajetoria, a fungao custo é o erro de trajetéria ao longo do horizonte, como em [4,5],
mas ela pode ser, por exemplo, uma funcao que minimize a energia utlilizada para a

atuagao, em sistemas com uma bateria limitada.

1.3.2 Tipos de MPC

O MPC, no entanto, nao é uma tnica estratégia de controle. Existem diversas va-
riagoes de implementacoes, cada uma mais adequada para diferentes situagoes. Em geral,
otimizar a resposta do controlador em um horizonte tem um grande custo computacional
e, por isso, diversas alternativas foram desenvolvidas ao longo do tempo. O mais comum ¢é
o MPC linear, que, em cada instante de tempo, lineariza o sistema em torno do seu estado
atual, e otimiza os esforcos de atuacao. Isso simplifica a otimizacao consideravelmente,
tornando o algoritmo rapido. No entanto, a desvantagem desse método é que, para hori-
zontes de otimizacao grandes, o sistema se afasta demais da condicao de linearizagao, o

que degrada a resposta [3].
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Figura 1: Estrutura geral de um controlador MPC.
Fonte: [1]

Jé& ao se utilizar diretamente o sistema nao-linear, esse problema nao surge, porém a
otimizacao é bem mais complexa e demorada, o que impede o seu uso em real-time para
sistemas de dinamica rapida. O chamado Robust MPC, por sua vez, pode ser aplicado em
cima do MPC nao-linear, e dentro dele se encaixam diversas estratégias para melhorar a
robustez do sistema, como por exemplo, a consideracao na modelagem de distirbios nao
medidos [6], forcas externas [7] e a limita¢do de dinamicas nao diretamente controladas

do sistema [8,9].

Além disso, existe uma outra técnica, chamada de Fast MPC ou Explicit MPC, mos-
trada em [10], em que o problema de otimizacao é resolvido analiticamente em regides,
offline, e entao o controle se reduz a definir em qual regiao do controle os estados do

sistema estao, e entao procurar as acoes adequadas numa tabela.

1.3.3 Modelo Dinamico

Qualquer que seja o tipo de MPC escolhido, o modelo dinamico do sistema a ser
controlado é a parte mais importante do controle. Se o modelo usado estiver errado, o
controlador nao serd capaz de atuar de forma satisfatéria, podendo levar até mesmo a
instabilidade. Assim, uma das partes mais importantes da implementacao do MPC ¢é a

modelagem tedrica do sistema a ser controlado, e a identificacao de seus parametros.

Para o modelo dinamico de um barco, geralmente ¢é utilizado um sistema sub-atuado,
de 3 graus de liberdade e apenas 1 ou 2 atuadores, o que é um dos motivos do controle

ser dificultado. Algumas modelagens mais complexas, como em [8], levam em conta mais



13

graus de liberdade, como a rolagem, o que dificulta ainda mais o desenvolvimento do con-
trolador. Uma possivel modelagem é dada em [11], junto com os pardmetros necessérios
para a simulagao do CyberShip II. Esse modelo é comumente usado como benchmark para

sistemas de controle.

Uma possivel forma de aproximar o modelo de um sistema dinamico é pela imple-
mentagao de um filtro de Kalman estendido, que além dos estados do sistema, também
aproxima os parametros do modelo, como feito em [12], na qual o filtro é usado para
aproximar os parametros de uma embarcacao para um modelo de Nomoto de segunda

ordem.

1.3.4 Trajectory-Tracking e Collision Avoidance

O MPC, ou qualquer outro tipo de controle, serve para levar o sistema ao estado
desejado. No caso de um barco, o tipo mais provavel de controle para se fazer é o
controle de trajetéria. Para o controle de trajetéria, o controlador recebe um rumo e,

possivelmente, uma velocidade, e deve colocar o sistema nesse estado.

Geralmente, a trajetoria é dada por uma sequéncia de pontos, que define o caminho
a ser tomado pela embarcacao. No caso mais simples, o sistema simplesmente define um
rumo entre a posi¢ao atual do barco e o proximo ponto, e, ao chegar nesse ponto, segue
em direcao ao proximo. No entanto, esse nao ¢ o caminho 6timo, nem em questao de
velocidade nem em energia. Assim, uma possivel melhoria é definir um raio em torno do
proximo ponto. Assim que a embarcacgao estiver dentro desse raio, o objetivo ja passa a

ser o préximo ponto [13].

Mais avangado ainda, e o que é mais utilizado, é um mecanismo de Line of Sight (LOS).
Nesse método, é criada uma linha entre o objetivo anterior e o atual do barco. Entao, o
controlador acha o ponto mais préximo dessa trajetéria, em relagao a sua posicao atual,
e define como rumo uma posicao mais a frente, por uma distancia chamada de lookahead.
Assim, o controlador consegue seguir a trajetéria de forma mais suave e eficiente. Esse
procedimento esta ilustrado na Figura 2. Uma outra alternativa, que serve para manter
o rumo mesmo com perturbagdes constantes (correntes do mar, por exemplo), é a adogao

de uma acao integral no angulo dado pelo LOS [5].

Outro problema enfrentado por veiculos autonomos sao as colisdes. Assim, pode
ser implementado algum tipo de Collision Avoidance (COLAV), de forma que o sistema

possa responder a obstaculos no seu caminho. O algoritmo de COLAV pode ser de 2
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Figura 2: Exemplo de LOS.
Fonte: [4]

tipos. Ele pode ser estatico, ou seja, existem obstaculos na trajetéria pré-definidos. Nesse
caso, o algoritmo deve simplesmente definir novos pontos de trajetéria, em que nao haja
obstaculos, antes mesmo de passar para o controlador. O outro caso é o dinamico, em que,
durante o funcionamento, por meio de sensores, a embarcacao detecta um obstaculo. Nesse
caso, o sistema deve responder adequadamente, de acordo com as normas internacionais

de navegacao, para evitar colisoes.

1.3.5 Conclusao da Revisao

Para o desenvolvimento de um controlador, é necessario, primeiro, obter um modelo
dinamico simplificado da simulacao executada no PyDyna. Isso porque, além do moédulo
nao suportar as funcionalidades necesséarias para o MPC, criar um controlador assumindo
perfeito conhecimento da embarcacao, o que seria feito pelo acesso aos estados do simu-
lador, nao é representativo da situacao real. Assim, serd utilizado o método do filtro de
Kalman estendido, como em [12]. Desta forma, a embarcacao simulada através do simu-
lador PyDyna é considerada uma ”caixa preta”, cujos parametros serao identificados de

forma on-line pelo estimador baseado em Filtro de Kalman.

Como mecanismo de Path-Tracking, a melhor solucao é o LOS, por nao ter grandes
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dificuldades na implementacao ou custo computacional, e apresentar uma grande melhoria

na capacidade do sistema se manter na trajetéria.

Como tipo de MPC, o MPC Linear é o mais facil de ser implementado e com menor
custo computacional, e caso ele nao seja suficiente, é possivel ir para o MPC nao-linear.
As embarcagoes para o qual o controlador sera desenvolvido tém dinamicas relativamente
lentas, podendo ter uma frequéncia de amostragem da ordem de 1 Hz. Assim, serd usado
diretamente o MPC nao-linear, com saturacao dos atuadores. Isso porque o controlador
linear, além de menos preciso, é mais sensivel a definicao dos parametros, como mostrado

em [3], e dificultaria a implementagao.

1.4 Requisitos

Os requisitos de projeto envolvem basicamente as caracteristicas desejadas e a eficacia
do controlador. Além disso, temos os requisitos impostos no controlador por limitacoes

fisicas.

1.4.1 Atuacao

° Angulo de leme menor que 30° e propulsor limitado por sua poténcia maxima;

e Variacao entre 2 instantes de tempo consecutivos do esforco de atuacao limitada
para ambos os atuadores. Esse limite ainda serd definido pelas caracteristicas da
embarcacao a ser controlada, pela velocidade maxima do atuador, e também por

otimizacao energética.

1.4.2 Desempenho

Sendo B a largura do navio (bordo), e L o seu comprimento, temos:

e Ao seguir uma trajetéria reta, a embarcacao deve se manter a uma distancia de no

maximo 0.1B da trajetéria desejada, como mostrado na Figura 3;

e Trechos de curva sao considerados dentro de um raio de 2L de um waypoint. Nesse
raio, nao hé a restricao acima, pois é possivel otimizar o caminho usando LOS. Na
Figura 4, o circulo em azul representa o trecho do percurso no qual as restri¢coes de

controle de trajetoria sao relaxadas.
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Figura 3: Limite de desempenho na reta
Fonte: Proépria
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1.4.3 Robustez

O controlador deve ser capaz de manter a embarcacao dentro dos requisitos de de-

sempenho mesmo com disturbios, na forma de:

e Correntes maritimas de até 1 no;
e Ventos de até 20 nés;

e Ondas de até 2 metros;

1.4.4 Computagao

e O controle deve ser capaz de atuar em tempo real, ou seja, o tempo que o controlador

leva para calcular os esforgos de atuacao deve ser menor que o tempo de amostragem.

1.4.5 Transiente

e Se a embarcagao estiver fora da faixa de desempenho na condicao inicial, a uma
distancia h, perpendicular a trajetoria, ela deve ser capaz de atingir a faixa desejada
dentro de uma distancia, ao longo da trajetéria, de M*h, com M aproximadamente
2, ainda a definir com mais precisao. Esse requisito é melhor mostrado na Figura
5. As barras em azul representam a distancia dentro da qual o controlador deve

atingir a faixa desejada.

T
1
1
U

,

Figura 5: Corregao de erro inicial
Fonte: Prépria
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2 DESENVOLVIMENTO

2.1 Obtencao do modelo estimado

O primeiro passo para o desenvolvimento de um controlador MPC é a obtencao de
um modelo dinamico que represente o sistema. Para isso, foi utilizado o método do Filtro
Estendido de Kalman, como mostrado por [12]. Nesse artigo, ¢ adotada apenas a dinamica
rotacional de uma embarcacao, mas para quesitos de testes, foi implementado um modelo

igual ao do artigo. Assim, temos um modelo dinamico da forma:

P = a1 + i) + agih + B1or + Badr

No qual ¥ é o angulo da embarcacao em relagao ao sistema global, e dg € o angulo
do leme (entrada do sistema). oy, ag, ag, 1 e B2 sao os parametros do controlador. Esse
¢ um modelo similar ao modelo de Nomoto de segunda ordem [13], com uma extensao
de permitir um parametro extra, multiplicando 3. Assim, temos um filtro de Kalman

estendido com 8 estados, que sao:
2T(t) = [6(8) $) D) an(t) aslt) ast) Bi(t) Ba(t)

Assim como no artigo, para a convergéncia, foi adotada uma entrada com grandes
variagoes, com o angulo de leme alterado de forma aleatodria, a cada 10 segundos, de
forma que a embarcacgao precisasse realizar manobras bruscas, e fosse possivel captar as
dinamicas mais complexas do sistema. Apods a implementacao, o funcionamento do filtro
para acompanhar os estados do sistema era o esperado, mas ocorreram alguns problemas
na convergencia de alguns dos parametros do modelo. Um possivel motivo para esse
problema, é que, no artigo citado, o modelo a ser estimado é um modelo com exatamente
as mesmas equacoes dinamicas que as do filtro. Isso nao ocorre no caso do PyDyna,
que apresenta uma dinamica muito mais complexa, que leva em conta todos os graus de

liberdade da embarcacao. Assim, foram testados outros tipos de modelos. Primeiro, foi
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testado o modelo de Nomoto de segunda ordem, que corresponde a EDO:

¢(3) = 041¢' + 0621% + B10r + 525R

Novamente, alguns dos parametros do modelo nao convergiram, e entao foi testado o
modelo de Nomoto de primeira ordem. Esse modelo corresponde a equagao:

. 1. K
= ——1+ =0
v Tw T
Em que K e T dependem dos parametros da embarcagao, como massa e momento de

inércia. Para simplificacao da notagao, a equacao foi adotada na forma:

U =ay +bo

Em que a = —% eb= % Com esse modelo, nao apareceram problemas na con-
vergéncia dos parametros. Além disso, foi acoplado ao filtro de Kalman um simulador
que, a partir dos valores dos parametros dados pelo filtro em cada instante, com a equagcao
do modelo, simula, em paralelo a simulagao do PyDyna, o sistema, e os valores dos estados
dados pelos 2 podem ser comparados, para ver se a aproximacao dos parametros é eficaz.
O resultado dessa dinamica pode ser visto nos 2 primeiros graficos da figura 7. Como
os resultados do modelo de primeira ordem se mostraram satisfatorios, esse modelo foi

mantido como a dinamica rotacional.

Para a dinamica longitudinal, foi adotado uma equacao dinamica da forma:

U= cu + dr?

Em que u é a velocidade linear da embarcacao, e r é a rotagao do propulsor, uma
das entradas do sistema dinamico. Essa forma foi adotada pois ¢ faz papel do arrasto
linearizado, multiplicando a velocidade. J& para d, de acordo com a segunda Lei de
Newton, a aceleragdo (i) deve ser proporcional a forga gerada pelo propulsor. A forga
gerada por um propulsor, por sua vez, é proporcional ao quadrado da sua rotagao, e por

isso, temos o termo 7.

Juntando as duas dinamicas, temos um sistema da forma:

U =ay +bé

U= cu+ dr?
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A formulagao do Filtro de Kalman Estendido fica, entao:

2T(t) = [(t) (1) ult) alt) b(t) elt) d(t)]
u™(t) = [Bw(t) (1)

h'(z) = [z1 29 23]

o)
Tyg* T+ Ts - UL
xﬁ-xg—l—xy-u%

(t) = f(z,u) = 0

0
0
0

Sendo 7, a predicao do estado do filtro de Kalman no instante k, e x; os valores reais
dos estados, ao discretizar o sistema com passo A, seguimos essa metodologia, para cada

passo k.

Predicoes a priori

Tp—1 = Th—1jo—1 T [ (Tho1jp—1, Ue) Ay

Pijk—1 = Pr—1jp—1 + (FePr1jp—1 + Pocapp—1Fr + Q) Ay

Céalculo dos erros

Uk = 26 — h(Trp—1)

Sy = HyPy—1 H}} + Ry
Obtengao do ganho de Kalman Otimo

Ky, = Pyp—1H, S} 1

Atualizacao das predicoes
Tpp = Trpp—1 + Ki

Py = (I — Ky Hy,) Py
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Usando esse modelo, com a entrada de leme e maquina, varidveis de forma aleatéria
a cada 10 segundos, podemos ver os parametros obtidos pelo filtro, na figura 6, e os
estados aproximados, na figura 7. Podemos perceber que, apesar dos parametro nao
terem convergido para um valor, principalmente nos casos de a e b, a simulacao a partir
dos modelos obtidos acima é suficiente para aproximar os estados. No comego, temos
alguns erros grandes devido a diferencas nos valores iniciais das varidveis, e também um
pico no parametro c. O tunico estado cuja aproximacao foi pior foi ¥, devido ao seu
carater de integrar os erros iniciais em YL, mas esse erro nao ¢ importante, pois o estado
1 nao entra na dinamica da embarcacao, e nao afetara o controlador. O angulo v s6 é

importante para o mecanismo de LOS, que obtera esse dado diretamente da embarcacao.

Foi testado, também, uma simulacao com um modelo com parametros fixos, cujos
parametros sao aproximadamente os valores médios dos obtidos na figura 6, apds a va-
riacao inicial, ou seja, [—0.015, —0.0005, —0.002, 0.015]. Os estados da simulagao também
foram inicializados de acordo com os do sistema. Como podemos ver na figura 8, os re-
sultados sao bem piores, com maiores diferencas nos estados w e u, cuja precisao importa
mais. A diferenca, principalmente na dinamica rotacional, provavelmente acontece pois a
dinadmica é mais complexa que a adotada(de primeira ordem), e os parametros precisam

variar para se adequar aos estados.

Por dltimo, foi testado novamente o modelo com a simulacao usando parametros
decididos a cada instante, mas ja inicializando os parametros nos parametros obtidos
anteriormente. Como podemos ver na figura 9, os resultados foram ainda melhores, pois
o sistema ainda foi capaz de acompanhar os estados da embarcacao, mas nao apresentou

erros tao grandes nos instantes iniciais.
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de primeira ordem (”Simula¢ao”)
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Figura 8: Estados com o modulo PyDyna ("Real”), e com a simulacao de parametros

fixos com modo de primeira ordem (”Simulacao”)
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Assim, apesar de nao ter sido obtido um modelo fechado para a embarcacao, temos
uma forma de estimar os parametros, a partir do filtro estendido de Kalman. Como o
MPC calcula a préxima acao, a partir do modelo, a cada instante de tempo, podemos ter
esse estimador sendo executado em paralelo ao controlador, e usando esses parametros
para o controlador. Assim, teremos um estimador de parametros online, ao invés de
obter todos os parametros previamente. Isso, além das vantagens vistas nos resultados ja
obtidos, também permitird que o sistema responda de forma melhor a distirbios, como

correntes e ventos, ja que os parametros do controlador vao se alterar nessas condicoes.

2.2 Estrutura do Controlador

Como o controlador serd adaptativo, temos uma estrutura diferente de um controlador
MPC padrao, como podemos ver na figura 10. O mecanismo de LOS calcula o angulo
desejado 14, a partir das coordenadas cartesianas da embarcagao e da lista de Waypoints.
Esse angulo é comparado com o angulo real, e o erro é usado como entrada para o
controlador. O MPC, entao, da as entradas para o navio (aqui representado pelo modelo
simulado no PyDyna). Os estados do navio (PyDyna), e as entradas do sistema sao
enviados ao filtro de Kalman Estendido, o Estimador de Parametros, que entao, usa esses

parametros para alterar a dinamica do controlador.

h l,."f.-t,-i'.'i-e. ]
» PyDyna it
| o, u

Waypaints

Estimador
de
Parametros

Figura 10: Diagrama de Blocos do Sistema
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2.3 Implementacao do Line of Sight

A maior utilidade do Line of Sight (LOS), é que, com ele, conseguimos converter
uma sequéncia de waypoints com 2 coordenadas (X e Y') em apenas uma, 14, 0 angulo
desejado. Podemos ver alguns exemplos gerados com o programa implementado na figura
11. Em 11a, o waypoint alvo é o segundo, em (3000, 0). Podemos ver que o LOS calcula
uma dire¢ao intermedidria, que nao segue diretamente para o waypoint (o que o manteria
fora do rumo por toda a trajetéria), mas também nao segue diretamente para a reta
que conecta o waypoint anterior e o atual. Em 11b, podemos ver como, ao ficar em um
certo raio do waypoint alvo, o LOS segue para o préximo waypoint, de forma a suavizar
a transicao. Para esses testes, a distancia de lookahead foi adotada como 4 vezes o

comprimento da embarcagao, e o raio de troca de waypoint, 2 vezes esse comprimento.

2.4 Implementacao do Controlador MPC

Usando o modelo simplificado obtido anteriormente, foi possivel implementar um con-
trolador MPC. Para isso, foi utilizada a fungao minimize da biblioteca scipy. Essa funcao
permite achar os valores das entradas que minimizam o valor de uma certa funcao. Para
o MPC, a funcao a ser minimizada é a funcao de custo, que deve levar em conta essas

entradas e o modelo do sistema para calcular um determinado custo.

No caso, o modelo do sistema foi adotado como explicado anteriormente, e para uma
certa entrada, a funcao de custo integra os estados do sistema ao longo de um certo
horizonte, e calcula o custo para essas entradas, que, para os testes iniciais, foi adotado
como uma soma ponderada dos quadrados do erro de 1 ao longo do horizonte, e também
da sua derivada w Assim, estamos otimizando o sistema, nao s6 para convergir ao valor
desejado, mas também manter o valor da derivada controlado, para evitar problemas de
instabilidade e overshoot. Para os testes iniciais, também foi adotado um alvo estatico,
de 0.01 rad.

Podemos ver, na figura 12, que com o uso do controlador, o sistema converge para a
posicao desejada, e entao, vemos o controlador diminuindo também o valor da derivada.
Sem esse controle da derivada, o sistema s6 comeca a tentar reverter depois de passar no

alvo, e terlamos um comportamento oscilatério.

Para uma situacao mais real, o controlador foi testado com uma sequéncia de way-

points, que com o uso do LOS, dao a direcao desejada da embarcacao em determinado
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Figura 12: Resultado do controle MPC

momento. Além disso, foram adicionados mais 2 parametros na funcao de otimizacao do
controlador, de forma que ele trabalhasse na minimizacao do erro, da derivada do erro,
do valor da entrada do leme e da sua derivada. Com esses parametros, conseguimos um
melhor controle, evidenciado tanto pela trajetoria seguida pela embarcacao, como pelos
valores das entradas. Como podemos ver na figura 13, o controlador é capaz de seguir a
trajetoria imposta pelos waypoints. Ja na figura 14, vemos as entradas que a velocidade
do sistema, o erro de acompanhamento, e a entrada do leme. Vale ressaltar que essa
¢ apenas a entrada imposta pelo controlador, e a posi¢ao real do leme respeita a sua

dinamica, sem essas variagoes bruscas.
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3 VALIDACAO DE RESULTADOS

3.1 Apresentacao de resultados

Para a validacgao de resultados, utilizamos casos reais, de uma embarcacao entrando no
porto de Paranagua, a trajetdria a ser seguida pode ser vista na figura 15. Essa trajetéria

foi simulada para diferentes condi¢oes ambientais, como dado pela tabela 1.

Figura 15: Trajetéria a ser seguida

A embarcacao utilizada para os testes é diferente da utilizada anteriormente. Assim,

foi necessario treinar novamente o filtro de Kalman, para obter novos parametros para o



31

’Caso\ Corrente \ Vento \ Onda ‘

1 Enchente - 2kn | SE - 21kn | 2m - 12.2s - SE
Vazante - 2kn | SW - 21kn 2m - 8.8s-S
Estofo - Okn NE - 21kn 2m - 9.2s - E
Estofo - Okn E-21kn | 2m- 11.1s - ESE
Estofo - Okn S-21lkn | 2m - 12.3s - SSE

QY | W N

Tabela 1: Casos simulados

modelo dinamico da embarcacao. Na figura 16, podemos ver que a trajetoria seguida pela
embarcacao nos b casos é praticamente ideéntica, e coincide fortemente com a trajetéria
definida pelos waypoints. Nas figuras 17 a 19, temos as trajetérias dos 5 casos sobrepostas
sobre a carta nautica do porto, considerando o tamanho da embarcagao. Podemos ver a
velocidade, a entrada e o erro nas figuras 20 a 24. Apesar de termos entradas bastante
irregulares, isso nao influencia de forma consideravel a dinamica do erro, cujos picos

equivalem aos pontos nos quais existe uma troca de waypoint alvo.

3.2 Requisitos

Os requisitos de atuagao sao levados em conta na otimizacao realizada pelo contro-
lador, entao eles sao automaticamente atendidos. Analisando os dados da saida, esta-
mos também atendendo aos requisitos de desempenho. Os testes foram realizados com
condicoes ambientais até mais severas que as previstas nos requisitos, entao eles também
foram atendidos. Por 1ltimo, o sistema também atende aos requisitos de computagao
real-time, como pode ser visto na tabela 2. No sistema simulado, o atuador aplica a sua
entrada a cada 0.5 segundos. Assim, podemos ver que mesmo apenas nos piores casos
(menos de 1% dos passos), temos um tempo de célculo maior do que isso. Esses passos
poderiam ser ignorados, ou se necessario, poderiamos aplicar entradas numa cadéncia

menor, e ajustar os parametros do controlador, caso se mostrasse necessario.

| Estatistica | Tempo (s) |

Média 0.018
90% 0.045
99% 0.225

Maéaxima 0.585

Tabela 2: Estatisticas de tempo de execugao do controlador
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4 CONSIDERACOES FINAIS

Nesse trabalho, implementamos um controlador de uma embarcagao usando Model
Predictive Control. Com o LOS, otimizamos a trajetoria para evitar mudancas bruscas
no objetivo e minimizar o overshoot ao chegar em um waypoint. Além disso, foi imple-
mentado um filtro de Kalman, capaz de obter os parametros necessarios para o modelo do
MPC. Com o uso do simulador PyDyna, implementado num médulo em Python, fomos

capazes de obter os melhores parametros para o sistema e validar os nosso resultados.

Como préximo passo, poderiamos otimizar os valores dos parametros do filtro de
Kalman e do controlador, de forma a ter entradas mais suaves de controle e um sistema
de identificagdo dinamica mais estavel. Além disso, poderiamos implementar também um
algoritmo de Collision Avoidance, capaz de gerar novos waypoints e depois retornar a

trajetoria original, caso encontrasse um obstaculo no caminho.

De forma geral, o controlador foi capaz de otimizar as entradas do controlador, para
seguir uma trajetoria bem definida, com erros baixos, sendo capaz de funcionar até mesmo
em uma situacao mais arriscada no qual a dinamica do sistema varia, como na entrada de
um porto, com diferentes situagoes ambientais. Assim, ao fim do projeto, tivemos uma
performance satisfatoria, com um sistema capaz de controlar uma embarcagao de forma

autonoma, em tempo real.
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